1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopIterator.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <utility> 65 #include <variant> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> MaxForkedSCEVDepth( 134 "max-forked-scev-depth", cl::Hidden, 135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 136 cl::init(5)); 137 138 static cl::opt<bool> SpeculateUnitStride( 139 "laa-speculate-unit-stride", cl::Hidden, 140 cl::desc("Speculate that non-constant strides are unit in LAA"), 141 cl::init(true)); 142 143 static cl::opt<bool, true> HoistRuntimeChecks( 144 "hoist-runtime-checks", cl::Hidden, 145 cl::desc( 146 "Hoist inner loop runtime memory checks to outer loop if possible"), 147 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true)); 148 bool VectorizerParams::HoistRuntimeChecks; 149 150 bool VectorizerParams::isInterleaveForced() { 151 return ::VectorizationInterleave.getNumOccurrences() > 0; 152 } 153 154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 155 const DenseMap<Value *, const SCEV *> &PtrToStride, 156 Value *Ptr) { 157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 158 159 // If there is an entry in the map return the SCEV of the pointer with the 160 // symbolic stride replaced by one. 161 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr); 162 if (SI == PtrToStride.end()) 163 // For a non-symbolic stride, just return the original expression. 164 return OrigSCEV; 165 166 const SCEV *StrideSCEV = SI->second; 167 // Note: This assert is both overly strong and overly weak. The actual 168 // invariant here is that StrideSCEV should be loop invariant. The only 169 // such invariant strides we happen to speculate right now are unknowns 170 // and thus this is a reasonable proxy of the actual invariant. 171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map"); 172 173 ScalarEvolution *SE = PSE.getSE(); 174 const SCEV *CT = SE->getOne(StrideSCEV->getType()); 175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT)); 176 const SCEV *Expr = PSE.getSCEV(Ptr); 177 178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 179 << " by: " << *Expr << "\n"); 180 return Expr; 181 } 182 183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 184 unsigned Index, const RuntimePointerChecking &RtCheck) 185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 186 AddressSpace(RtCheck.Pointers[Index] 187 .PointerValue->getType() 188 ->getPointerAddressSpace()), 189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 190 Members.push_back(Index); 191 } 192 193 /// Calculate Start and End points of memory access. 194 /// Let's assume A is the first access and B is a memory access on N-th loop 195 /// iteration. Then B is calculated as: 196 /// B = A + Step*N . 197 /// Step value may be positive or negative. 198 /// N is a calculated back-edge taken count: 199 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 200 /// Start and End points are calculated in the following way: 201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 202 /// where SizeOfElt is the size of single memory access in bytes. 203 /// 204 /// There is no conflict when the intervals are disjoint: 205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess( 207 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, 208 PredicatedScalarEvolution &PSE, 209 DenseMap<std::pair<const SCEV *, Type *>, 210 std::pair<const SCEV *, const SCEV *>> &PointerBounds) { 211 ScalarEvolution *SE = PSE.getSE(); 212 213 auto [Iter, Ins] = PointerBounds.insert( 214 {{PtrExpr, AccessTy}, 215 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}}); 216 if (!Ins) 217 return Iter->second; 218 219 const SCEV *ScStart; 220 const SCEV *ScEnd; 221 222 if (SE->isLoopInvariant(PtrExpr, Lp)) { 223 ScStart = ScEnd = PtrExpr; 224 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) { 225 const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount(); 226 227 ScStart = AR->getStart(); 228 ScEnd = AR->evaluateAtIteration(Ex, *SE); 229 const SCEV *Step = AR->getStepRecurrence(*SE); 230 231 // For expressions with negative step, the upper bound is ScStart and the 232 // lower bound is ScEnd. 233 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 234 if (CStep->getValue()->isNegative()) 235 std::swap(ScStart, ScEnd); 236 } else { 237 // Fallback case: the step is not constant, but we can still 238 // get the upper and lower bounds of the interval by using min/max 239 // expressions. 240 ScStart = SE->getUMinExpr(ScStart, ScEnd); 241 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 242 } 243 } else 244 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()}; 245 246 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant"); 247 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant"); 248 249 // Add the size of the pointed element to ScEnd. 250 auto &DL = Lp->getHeader()->getDataLayout(); 251 Type *IdxTy = DL.getIndexType(PtrExpr->getType()); 252 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 253 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 254 255 Iter->second = {ScStart, ScEnd}; 256 return Iter->second; 257 } 258 259 /// Calculate Start and End points of memory access using 260 /// getStartAndEndForAccess. 261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 262 Type *AccessTy, bool WritePtr, 263 unsigned DepSetId, unsigned ASId, 264 PredicatedScalarEvolution &PSE, 265 bool NeedsFreeze) { 266 const auto &[ScStart, ScEnd] = getStartAndEndForAccess( 267 Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds()); 268 assert(!isa<SCEVCouldNotCompute>(ScStart) && 269 !isa<SCEVCouldNotCompute>(ScEnd) && 270 "must be able to compute both start and end expressions"); 271 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 272 NeedsFreeze); 273 } 274 275 bool RuntimePointerChecking::tryToCreateDiffCheck( 276 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 277 // If either group contains multiple different pointers, bail out. 278 // TODO: Support multiple pointers by using the minimum or maximum pointer, 279 // depending on src & sink. 280 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) 281 return false; 282 283 const PointerInfo *Src = &Pointers[CGI.Members[0]]; 284 const PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 285 286 // If either pointer is read and written, multiple checks may be needed. Bail 287 // out. 288 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 289 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) 290 return false; 291 292 ArrayRef<unsigned> AccSrc = 293 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 294 ArrayRef<unsigned> AccSink = 295 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 296 // If either pointer is accessed multiple times, there may not be a clear 297 // src/sink relation. Bail out for now. 298 if (AccSrc.size() != 1 || AccSink.size() != 1) 299 return false; 300 301 // If the sink is accessed before src, swap src/sink. 302 if (AccSink[0] < AccSrc[0]) 303 std::swap(Src, Sink); 304 305 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 306 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 307 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 308 SinkAR->getLoop() != DC.getInnermostLoop()) 309 return false; 310 311 SmallVector<Instruction *, 4> SrcInsts = 312 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 313 SmallVector<Instruction *, 4> SinkInsts = 314 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 315 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 316 Type *DstTy = getLoadStoreType(SinkInsts[0]); 317 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 318 return false; 319 320 const DataLayout &DL = 321 SinkAR->getLoop()->getHeader()->getDataLayout(); 322 unsigned AllocSize = 323 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 324 325 // Only matching constant steps matching the AllocSize are supported at the 326 // moment. This simplifies the difference computation. Can be extended in the 327 // future. 328 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 329 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 330 Step->getAPInt().abs() != AllocSize) 331 return false; 332 333 IntegerType *IntTy = 334 IntegerType::get(Src->PointerValue->getContext(), 335 DL.getPointerSizeInBits(CGI.AddressSpace)); 336 337 // When counting down, the dependence distance needs to be swapped. 338 if (Step->getValue()->isNegative()) 339 std::swap(SinkAR, SrcAR); 340 341 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 342 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 343 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 344 isa<SCEVCouldNotCompute>(SrcStartInt)) 345 return false; 346 347 const Loop *InnerLoop = SrcAR->getLoop(); 348 // If the start values for both Src and Sink also vary according to an outer 349 // loop, then it's probably better to avoid creating diff checks because 350 // they may not be hoisted. We should instead let llvm::addRuntimeChecks 351 // do the expanded full range overlap checks, which can be hoisted. 352 if (HoistRuntimeChecks && InnerLoop->getParentLoop() && 353 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) { 354 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt); 355 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt); 356 const Loop *StartARLoop = SrcStartAR->getLoop(); 357 if (StartARLoop == SinkStartAR->getLoop() && 358 StartARLoop == InnerLoop->getParentLoop() && 359 // If the diff check would already be loop invariant (due to the 360 // recurrences being the same), then we prefer to keep the diff checks 361 // because they are cheaper. 362 SrcStartAR->getStepRecurrence(*SE) != 363 SinkStartAR->getStepRecurrence(*SE)) { 364 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these " 365 "cannot be hoisted out of the outer loop\n"); 366 return false; 367 } 368 } 369 370 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n" 371 << "SrcStart: " << *SrcStartInt << '\n' 372 << "SinkStartInt: " << *SinkStartInt << '\n'); 373 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 374 Src->NeedsFreeze || Sink->NeedsFreeze); 375 return true; 376 } 377 378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 379 SmallVector<RuntimePointerCheck, 4> Checks; 380 381 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 382 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 383 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 384 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 385 386 if (needsChecking(CGI, CGJ)) { 387 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ); 388 Checks.emplace_back(&CGI, &CGJ); 389 } 390 } 391 } 392 return Checks; 393 } 394 395 void RuntimePointerChecking::generateChecks( 396 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 397 assert(Checks.empty() && "Checks is not empty"); 398 groupChecks(DepCands, UseDependencies); 399 Checks = generateChecks(); 400 } 401 402 bool RuntimePointerChecking::needsChecking( 403 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 404 for (const auto &I : M.Members) 405 for (const auto &J : N.Members) 406 if (needsChecking(I, J)) 407 return true; 408 return false; 409 } 410 411 /// Compare \p I and \p J and return the minimum. 412 /// Return nullptr in case we couldn't find an answer. 413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 414 ScalarEvolution *SE) { 415 std::optional<APInt> Diff = SE->computeConstantDifference(J, I); 416 if (!Diff) 417 return nullptr; 418 return Diff->isNegative() ? J : I; 419 } 420 421 bool RuntimeCheckingPtrGroup::addPointer( 422 unsigned Index, const RuntimePointerChecking &RtCheck) { 423 return addPointer( 424 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 425 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 426 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 427 } 428 429 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 430 const SCEV *End, unsigned AS, 431 bool NeedsFreeze, 432 ScalarEvolution &SE) { 433 assert(AddressSpace == AS && 434 "all pointers in a checking group must be in the same address space"); 435 436 // Compare the starts and ends with the known minimum and maximum 437 // of this set. We need to know how we compare against the min/max 438 // of the set in order to be able to emit memchecks. 439 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 440 if (!Min0) 441 return false; 442 443 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 444 if (!Min1) 445 return false; 446 447 // Update the low bound expression if we've found a new min value. 448 if (Min0 == Start) 449 Low = Start; 450 451 // Update the high bound expression if we've found a new max value. 452 if (Min1 != End) 453 High = End; 454 455 Members.push_back(Index); 456 this->NeedsFreeze |= NeedsFreeze; 457 return true; 458 } 459 460 void RuntimePointerChecking::groupChecks( 461 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 462 // We build the groups from dependency candidates equivalence classes 463 // because: 464 // - We know that pointers in the same equivalence class share 465 // the same underlying object and therefore there is a chance 466 // that we can compare pointers 467 // - We wouldn't be able to merge two pointers for which we need 468 // to emit a memcheck. The classes in DepCands are already 469 // conveniently built such that no two pointers in the same 470 // class need checking against each other. 471 472 // We use the following (greedy) algorithm to construct the groups 473 // For every pointer in the equivalence class: 474 // For each existing group: 475 // - if the difference between this pointer and the min/max bounds 476 // of the group is a constant, then make the pointer part of the 477 // group and update the min/max bounds of that group as required. 478 479 CheckingGroups.clear(); 480 481 // If we need to check two pointers to the same underlying object 482 // with a non-constant difference, we shouldn't perform any pointer 483 // grouping with those pointers. This is because we can easily get 484 // into cases where the resulting check would return false, even when 485 // the accesses are safe. 486 // 487 // The following example shows this: 488 // for (i = 0; i < 1000; ++i) 489 // a[5000 + i * m] = a[i] + a[i + 9000] 490 // 491 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 492 // (0, 10000) which is always false. However, if m is 1, there is no 493 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 494 // us to perform an accurate check in this case. 495 // 496 // The above case requires that we have an UnknownDependence between 497 // accesses to the same underlying object. This cannot happen unless 498 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 499 // is also false. In this case we will use the fallback path and create 500 // separate checking groups for all pointers. 501 502 // If we don't have the dependency partitions, construct a new 503 // checking pointer group for each pointer. This is also required 504 // for correctness, because in this case we can have checking between 505 // pointers to the same underlying object. 506 if (!UseDependencies) { 507 for (unsigned I = 0; I < Pointers.size(); ++I) 508 CheckingGroups.emplace_back(I, *this); 509 return; 510 } 511 512 unsigned TotalComparisons = 0; 513 514 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 515 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 516 auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}}); 517 It->second.push_back(Index); 518 } 519 520 // We need to keep track of what pointers we've already seen so we 521 // don't process them twice. 522 SmallSet<unsigned, 2> Seen; 523 524 // Go through all equivalence classes, get the "pointer check groups" 525 // and add them to the overall solution. We use the order in which accesses 526 // appear in 'Pointers' to enforce determinism. 527 for (unsigned I = 0; I < Pointers.size(); ++I) { 528 // We've seen this pointer before, and therefore already processed 529 // its equivalence class. 530 if (Seen.count(I)) 531 continue; 532 533 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 534 Pointers[I].IsWritePtr); 535 536 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 537 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 538 539 // Because DepCands is constructed by visiting accesses in the order in 540 // which they appear in alias sets (which is deterministic) and the 541 // iteration order within an equivalence class member is only dependent on 542 // the order in which unions and insertions are performed on the 543 // equivalence class, the iteration order is deterministic. 544 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 545 MI != ME; ++MI) { 546 auto PointerI = PositionMap.find(MI->getPointer()); 547 assert(PointerI != PositionMap.end() && 548 "pointer in equivalence class not found in PositionMap"); 549 for (unsigned Pointer : PointerI->second) { 550 bool Merged = false; 551 // Mark this pointer as seen. 552 Seen.insert(Pointer); 553 554 // Go through all the existing sets and see if we can find one 555 // which can include this pointer. 556 for (RuntimeCheckingPtrGroup &Group : Groups) { 557 // Don't perform more than a certain amount of comparisons. 558 // This should limit the cost of grouping the pointers to something 559 // reasonable. If we do end up hitting this threshold, the algorithm 560 // will create separate groups for all remaining pointers. 561 if (TotalComparisons > MemoryCheckMergeThreshold) 562 break; 563 564 TotalComparisons++; 565 566 if (Group.addPointer(Pointer, *this)) { 567 Merged = true; 568 break; 569 } 570 } 571 572 if (!Merged) 573 // We couldn't add this pointer to any existing set or the threshold 574 // for the number of comparisons has been reached. Create a new group 575 // to hold the current pointer. 576 Groups.emplace_back(Pointer, *this); 577 } 578 } 579 580 // We've computed the grouped checks for this partition. 581 // Save the results and continue with the next one. 582 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 583 } 584 } 585 586 bool RuntimePointerChecking::arePointersInSamePartition( 587 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 588 unsigned PtrIdx2) { 589 return (PtrToPartition[PtrIdx1] != -1 && 590 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 591 } 592 593 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 594 const PointerInfo &PointerI = Pointers[I]; 595 const PointerInfo &PointerJ = Pointers[J]; 596 597 // No need to check if two readonly pointers intersect. 598 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 599 return false; 600 601 // Only need to check pointers between two different dependency sets. 602 if (PointerI.DependencySetId == PointerJ.DependencySetId) 603 return false; 604 605 // Only need to check pointers in the same alias set. 606 return PointerI.AliasSetId == PointerJ.AliasSetId; 607 } 608 609 void RuntimePointerChecking::printChecks( 610 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 611 unsigned Depth) const { 612 unsigned N = 0; 613 for (const auto &[Check1, Check2] : Checks) { 614 const auto &First = Check1->Members, &Second = Check2->Members; 615 616 OS.indent(Depth) << "Check " << N++ << ":\n"; 617 618 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n"; 619 for (unsigned K : First) 620 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 621 622 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n"; 623 for (unsigned K : Second) 624 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 625 } 626 } 627 628 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 629 630 OS.indent(Depth) << "Run-time memory checks:\n"; 631 printChecks(OS, Checks, Depth); 632 633 OS.indent(Depth) << "Grouped accesses:\n"; 634 for (const auto &CG : CheckingGroups) { 635 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 636 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 637 << ")\n"; 638 for (unsigned Member : CG.Members) { 639 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n"; 640 } 641 } 642 } 643 644 namespace { 645 646 /// Analyses memory accesses in a loop. 647 /// 648 /// Checks whether run time pointer checks are needed and builds sets for data 649 /// dependence checking. 650 class AccessAnalysis { 651 public: 652 /// Read or write access location. 653 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 654 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 655 656 AccessAnalysis(const Loop *TheLoop, AAResults *AA, const LoopInfo *LI, 657 MemoryDepChecker::DepCandidates &DA, 658 PredicatedScalarEvolution &PSE, 659 SmallPtrSetImpl<MDNode *> &LoopAliasScopes) 660 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE), 661 LoopAliasScopes(LoopAliasScopes) { 662 // We're analyzing dependences across loop iterations. 663 BAA.enableCrossIterationMode(); 664 } 665 666 /// Register a load and whether it is only read from. 667 void addLoad(const MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 668 Value *Ptr = const_cast<Value *>(Loc.Ptr); 669 AST.add(adjustLoc(Loc)); 670 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 671 if (IsReadOnly) 672 ReadOnlyPtr.insert(Ptr); 673 } 674 675 /// Register a store. 676 void addStore(const MemoryLocation &Loc, Type *AccessTy) { 677 Value *Ptr = const_cast<Value *>(Loc.Ptr); 678 AST.add(adjustLoc(Loc)); 679 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 680 } 681 682 /// Check if we can emit a run-time no-alias check for \p Access. 683 /// 684 /// Returns true if we can emit a run-time no alias check for \p Access. 685 /// If we can check this access, this also adds it to a dependence set and 686 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 687 /// we will attempt to use additional run-time checks in order to get 688 /// the bounds of the pointer. 689 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 690 MemAccessInfo Access, Type *AccessTy, 691 const DenseMap<Value *, const SCEV *> &Strides, 692 DenseMap<Value *, unsigned> &DepSetId, 693 Loop *TheLoop, unsigned &RunningDepId, 694 unsigned ASId, bool ShouldCheckStride, bool Assume); 695 696 /// Check whether we can check the pointers at runtime for 697 /// non-intersection. 698 /// 699 /// Returns true if we need no check or if we do and we can generate them 700 /// (i.e. the pointers have computable bounds). 701 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 702 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides, 703 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 704 705 /// Goes over all memory accesses, checks whether a RT check is needed 706 /// and builds sets of dependent accesses. 707 void buildDependenceSets() { 708 processMemAccesses(); 709 } 710 711 /// Initial processing of memory accesses determined that we need to 712 /// perform dependency checking. 713 /// 714 /// Note that this can later be cleared if we retry memcheck analysis without 715 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 716 bool isDependencyCheckNeeded() const { return !CheckDeps.empty(); } 717 718 /// We decided that no dependence analysis would be used. Reset the state. 719 void resetDepChecks(MemoryDepChecker &DepChecker) { 720 CheckDeps.clear(); 721 DepChecker.clearDependences(); 722 } 723 724 const MemAccessInfoList &getDependenciesToCheck() const { return CheckDeps; } 725 726 private: 727 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 728 729 /// Adjust the MemoryLocation so that it represents accesses to this 730 /// location across all iterations, rather than a single one. 731 MemoryLocation adjustLoc(MemoryLocation Loc) const { 732 // The accessed location varies within the loop, but remains within the 733 // underlying object. 734 Loc.Size = LocationSize::beforeOrAfterPointer(); 735 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope); 736 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias); 737 return Loc; 738 } 739 740 /// Drop alias scopes that are only valid within a single loop iteration. 741 MDNode *adjustAliasScopeList(MDNode *ScopeList) const { 742 if (!ScopeList) 743 return nullptr; 744 745 // For the sake of simplicity, drop the whole scope list if any scope is 746 // iteration-local. 747 if (any_of(ScopeList->operands(), [&](Metadata *Scope) { 748 return LoopAliasScopes.contains(cast<MDNode>(Scope)); 749 })) 750 return nullptr; 751 752 return ScopeList; 753 } 754 755 /// Go over all memory access and check whether runtime pointer checks 756 /// are needed and build sets of dependency check candidates. 757 void processMemAccesses(); 758 759 /// Map of all accesses. Values are the types used to access memory pointed to 760 /// by the pointer. 761 PtrAccessMap Accesses; 762 763 /// The loop being checked. 764 const Loop *TheLoop; 765 766 /// List of accesses that need a further dependence check. 767 MemAccessInfoList CheckDeps; 768 769 /// Set of pointers that are read only. 770 SmallPtrSet<Value*, 16> ReadOnlyPtr; 771 772 /// Batched alias analysis results. 773 BatchAAResults BAA; 774 775 /// An alias set tracker to partition the access set by underlying object and 776 //intrinsic property (such as TBAA metadata). 777 AliasSetTracker AST; 778 779 /// The LoopInfo of the loop being checked. 780 const LoopInfo *LI; 781 782 /// Sets of potentially dependent accesses - members of one set share an 783 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 784 /// dependence check. 785 MemoryDepChecker::DepCandidates &DepCands; 786 787 /// Initial processing of memory accesses determined that we may need 788 /// to add memchecks. Perform the analysis to determine the necessary checks. 789 /// 790 /// Note that, this is different from isDependencyCheckNeeded. When we retry 791 /// memcheck analysis without dependency checking 792 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 793 /// cleared while this remains set if we have potentially dependent accesses. 794 bool IsRTCheckAnalysisNeeded = false; 795 796 /// The SCEV predicate containing all the SCEV-related assumptions. 797 PredicatedScalarEvolution &PSE; 798 799 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects; 800 801 /// Alias scopes that are declared inside the loop, and as such not valid 802 /// across iterations. 803 SmallPtrSetImpl<MDNode *> &LoopAliasScopes; 804 }; 805 806 } // end anonymous namespace 807 808 /// Check whether a pointer can participate in a runtime bounds check. 809 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 810 /// by adding run-time checks (overflow checks) if necessary. 811 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 812 const SCEV *PtrScev, Loop *L, bool Assume) { 813 // The bounds for loop-invariant pointer is trivial. 814 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 815 return true; 816 817 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 818 819 if (!AR && Assume) 820 AR = PSE.getAsAddRec(Ptr); 821 822 if (!AR) 823 return false; 824 825 return AR->isAffine(); 826 } 827 828 /// Check whether a pointer address cannot wrap. 829 static bool isNoWrap(PredicatedScalarEvolution &PSE, 830 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy, 831 Loop *L) { 832 const SCEV *PtrScev = PSE.getSCEV(Ptr); 833 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 834 return true; 835 836 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0); 837 return Stride == 1 || 838 PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 839 } 840 841 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 842 function_ref<void(Value *)> AddPointer) { 843 SmallPtrSet<Value *, 8> Visited; 844 SmallVector<Value *> WorkList; 845 WorkList.push_back(StartPtr); 846 847 while (!WorkList.empty()) { 848 Value *Ptr = WorkList.pop_back_val(); 849 if (!Visited.insert(Ptr).second) 850 continue; 851 auto *PN = dyn_cast<PHINode>(Ptr); 852 // SCEV does not look through non-header PHIs inside the loop. Such phis 853 // can be analyzed by adding separate accesses for each incoming pointer 854 // value. 855 if (PN && InnermostLoop.contains(PN->getParent()) && 856 PN->getParent() != InnermostLoop.getHeader()) { 857 for (const Use &Inc : PN->incoming_values()) 858 WorkList.push_back(Inc); 859 } else 860 AddPointer(Ptr); 861 } 862 } 863 864 // Walk back through the IR for a pointer, looking for a select like the 865 // following: 866 // 867 // %offset = select i1 %cmp, i64 %a, i64 %b 868 // %addr = getelementptr double, double* %base, i64 %offset 869 // %ld = load double, double* %addr, align 8 870 // 871 // We won't be able to form a single SCEVAddRecExpr from this since the 872 // address for each loop iteration depends on %cmp. We could potentially 873 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 874 // memory safety/aliasing if needed. 875 // 876 // If we encounter some IR we don't yet handle, or something obviously fine 877 // like a constant, then we just add the SCEV for that term to the list passed 878 // in by the caller. If we have a node that may potentially yield a valid 879 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 880 // ourselves before adding to the list. 881 static void findForkedSCEVs( 882 ScalarEvolution *SE, const Loop *L, Value *Ptr, 883 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 884 unsigned Depth) { 885 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 886 // we've exceeded our limit on recursion, just return whatever we have 887 // regardless of whether it can be used for a forked pointer or not, along 888 // with an indication of whether it might be a poison or undef value. 889 const SCEV *Scev = SE->getSCEV(Ptr); 890 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 891 !isa<Instruction>(Ptr) || Depth == 0) { 892 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 893 return; 894 } 895 896 Depth--; 897 898 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 899 return get<1>(S); 900 }; 901 902 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 903 switch (Opcode) { 904 case Instruction::Add: 905 return SE->getAddExpr(L, R); 906 case Instruction::Sub: 907 return SE->getMinusSCEV(L, R); 908 default: 909 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 910 } 911 }; 912 913 Instruction *I = cast<Instruction>(Ptr); 914 unsigned Opcode = I->getOpcode(); 915 switch (Opcode) { 916 case Instruction::GetElementPtr: { 917 auto *GEP = cast<GetElementPtrInst>(I); 918 Type *SourceTy = GEP->getSourceElementType(); 919 // We only handle base + single offset GEPs here for now. 920 // Not dealing with preexisting gathers yet, so no vectors. 921 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 922 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 923 break; 924 } 925 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 926 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 927 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 928 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 929 930 // See if we need to freeze our fork... 931 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 932 any_of(OffsetScevs, UndefPoisonCheck); 933 934 // Check that we only have a single fork, on either the base or the offset. 935 // Copy the SCEV across for the one without a fork in order to generate 936 // the full SCEV for both sides of the GEP. 937 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 938 BaseScevs.push_back(BaseScevs[0]); 939 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 940 OffsetScevs.push_back(OffsetScevs[0]); 941 else { 942 ScevList.emplace_back(Scev, NeedsFreeze); 943 break; 944 } 945 946 // Find the pointer type we need to extend to. 947 Type *IntPtrTy = SE->getEffectiveSCEVType( 948 SE->getSCEV(GEP->getPointerOperand())->getType()); 949 950 // Find the size of the type being pointed to. We only have a single 951 // index term (guarded above) so we don't need to index into arrays or 952 // structures, just get the size of the scalar value. 953 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 954 955 // Scale up the offsets by the size of the type, then add to the bases. 956 const SCEV *Scaled1 = SE->getMulExpr( 957 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 958 const SCEV *Scaled2 = SE->getMulExpr( 959 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 960 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 961 NeedsFreeze); 962 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 963 NeedsFreeze); 964 break; 965 } 966 case Instruction::Select: { 967 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 968 // A select means we've found a forked pointer, but we currently only 969 // support a single select per pointer so if there's another behind this 970 // then we just bail out and return the generic SCEV. 971 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 972 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 973 if (ChildScevs.size() == 2) { 974 ScevList.push_back(ChildScevs[0]); 975 ScevList.push_back(ChildScevs[1]); 976 } else 977 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 978 break; 979 } 980 case Instruction::PHI: { 981 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 982 // A phi means we've found a forked pointer, but we currently only 983 // support a single phi per pointer so if there's another behind this 984 // then we just bail out and return the generic SCEV. 985 if (I->getNumOperands() == 2) { 986 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth); 987 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 988 } 989 if (ChildScevs.size() == 2) { 990 ScevList.push_back(ChildScevs[0]); 991 ScevList.push_back(ChildScevs[1]); 992 } else 993 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 994 break; 995 } 996 case Instruction::Add: 997 case Instruction::Sub: { 998 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 999 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 1000 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 1001 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 1002 1003 // See if we need to freeze our fork... 1004 bool NeedsFreeze = 1005 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 1006 1007 // Check that we only have a single fork, on either the left or right side. 1008 // Copy the SCEV across for the one without a fork in order to generate 1009 // the full SCEV for both sides of the BinOp. 1010 if (LScevs.size() == 2 && RScevs.size() == 1) 1011 RScevs.push_back(RScevs[0]); 1012 else if (RScevs.size() == 2 && LScevs.size() == 1) 1013 LScevs.push_back(LScevs[0]); 1014 else { 1015 ScevList.emplace_back(Scev, NeedsFreeze); 1016 break; 1017 } 1018 1019 ScevList.emplace_back( 1020 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 1021 NeedsFreeze); 1022 ScevList.emplace_back( 1023 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 1024 NeedsFreeze); 1025 break; 1026 } 1027 default: 1028 // Just return the current SCEV if we haven't handled the instruction yet. 1029 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 1030 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1031 break; 1032 } 1033 } 1034 1035 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 1036 findForkedPointer(PredicatedScalarEvolution &PSE, 1037 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr, 1038 const Loop *L) { 1039 ScalarEvolution *SE = PSE.getSE(); 1040 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 1041 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 1042 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 1043 1044 // For now, we will only accept a forked pointer with two possible SCEVs 1045 // that are either SCEVAddRecExprs or loop invariant. 1046 if (Scevs.size() == 2 && 1047 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 1048 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 1049 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 1050 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 1051 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 1052 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 1053 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 1054 return Scevs; 1055 } 1056 1057 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 1058 } 1059 1060 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 1061 MemAccessInfo Access, Type *AccessTy, 1062 const DenseMap<Value *, const SCEV *> &StridesMap, 1063 DenseMap<Value *, unsigned> &DepSetId, 1064 Loop *TheLoop, unsigned &RunningDepId, 1065 unsigned ASId, bool ShouldCheckWrap, 1066 bool Assume) { 1067 Value *Ptr = Access.getPointer(); 1068 1069 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 1070 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 1071 1072 for (const auto &P : TranslatedPtrs) { 1073 const SCEV *PtrExpr = get<0>(P); 1074 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 1075 return false; 1076 1077 // When we run after a failing dependency check we have to make sure 1078 // we don't have wrapping pointers. 1079 if (ShouldCheckWrap) { 1080 // Skip wrap checking when translating pointers. 1081 if (TranslatedPtrs.size() > 1) 1082 return false; 1083 1084 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 1085 const SCEV *Expr = PSE.getSCEV(Ptr); 1086 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 1087 return false; 1088 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1089 } 1090 } 1091 // If there's only one option for Ptr, look it up after bounds and wrap 1092 // checking, because assumptions might have been added to PSE. 1093 if (TranslatedPtrs.size() == 1) 1094 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1095 false}; 1096 } 1097 1098 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1099 // The id of the dependence set. 1100 unsigned DepId; 1101 1102 if (isDependencyCheckNeeded()) { 1103 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1104 unsigned &LeaderId = DepSetId[Leader]; 1105 if (!LeaderId) 1106 LeaderId = RunningDepId++; 1107 DepId = LeaderId; 1108 } else 1109 // Each access has its own dependence set. 1110 DepId = RunningDepId++; 1111 1112 bool IsWrite = Access.getInt(); 1113 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1114 NeedsFreeze); 1115 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1116 } 1117 1118 return true; 1119 } 1120 1121 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1122 ScalarEvolution *SE, Loop *TheLoop, 1123 const DenseMap<Value *, const SCEV *> &StridesMap, 1124 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1125 // Find pointers with computable bounds. We are going to use this information 1126 // to place a runtime bound check. 1127 bool CanDoRT = true; 1128 1129 bool MayNeedRTCheck = false; 1130 if (!IsRTCheckAnalysisNeeded) return true; 1131 1132 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1133 1134 // We assign a consecutive id to access from different alias sets. 1135 // Accesses between different groups doesn't need to be checked. 1136 unsigned ASId = 0; 1137 for (const auto &AS : AST) { 1138 int NumReadPtrChecks = 0; 1139 int NumWritePtrChecks = 0; 1140 bool CanDoAliasSetRT = true; 1141 ++ASId; 1142 auto ASPointers = AS.getPointers(); 1143 1144 // We assign consecutive id to access from different dependence sets. 1145 // Accesses within the same set don't need a runtime check. 1146 unsigned RunningDepId = 1; 1147 DenseMap<Value *, unsigned> DepSetId; 1148 1149 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1150 1151 // First, count how many write and read accesses are in the alias set. Also 1152 // collect MemAccessInfos for later. 1153 SmallVector<MemAccessInfo, 4> AccessInfos; 1154 for (const Value *ConstPtr : ASPointers) { 1155 Value *Ptr = const_cast<Value *>(ConstPtr); 1156 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1157 if (IsWrite) 1158 ++NumWritePtrChecks; 1159 else 1160 ++NumReadPtrChecks; 1161 AccessInfos.emplace_back(Ptr, IsWrite); 1162 } 1163 1164 // We do not need runtime checks for this alias set, if there are no writes 1165 // or a single write and no reads. 1166 if (NumWritePtrChecks == 0 || 1167 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1168 assert((ASPointers.size() <= 1 || 1169 all_of(ASPointers, 1170 [this](const Value *Ptr) { 1171 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr), 1172 true); 1173 return DepCands.findValue(AccessWrite) == DepCands.end(); 1174 })) && 1175 "Can only skip updating CanDoRT below, if all entries in AS " 1176 "are reads or there is at most 1 entry"); 1177 continue; 1178 } 1179 1180 for (auto &Access : AccessInfos) { 1181 for (const auto &AccessTy : Accesses[Access]) { 1182 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1183 DepSetId, TheLoop, RunningDepId, ASId, 1184 ShouldCheckWrap, false)) { 1185 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1186 << *Access.getPointer() << '\n'); 1187 Retries.emplace_back(Access, AccessTy); 1188 CanDoAliasSetRT = false; 1189 } 1190 } 1191 } 1192 1193 // Note that this function computes CanDoRT and MayNeedRTCheck 1194 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1195 // we have a pointer for which we couldn't find the bounds but we don't 1196 // actually need to emit any checks so it does not matter. 1197 // 1198 // We need runtime checks for this alias set, if there are at least 2 1199 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1200 // any bound checks (because in that case the number of dependence sets is 1201 // incomplete). 1202 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1203 1204 // We need to perform run-time alias checks, but some pointers had bounds 1205 // that couldn't be checked. 1206 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1207 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1208 // We know that we need these checks, so we can now be more aggressive 1209 // and add further checks if required (overflow checks). 1210 CanDoAliasSetRT = true; 1211 for (const auto &[Access, AccessTy] : Retries) { 1212 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1213 DepSetId, TheLoop, RunningDepId, ASId, 1214 ShouldCheckWrap, /*Assume=*/true)) { 1215 CanDoAliasSetRT = false; 1216 UncomputablePtr = Access.getPointer(); 1217 break; 1218 } 1219 } 1220 } 1221 1222 CanDoRT &= CanDoAliasSetRT; 1223 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1224 ++ASId; 1225 } 1226 1227 // If the pointers that we would use for the bounds comparison have different 1228 // address spaces, assume the values aren't directly comparable, so we can't 1229 // use them for the runtime check. We also have to assume they could 1230 // overlap. In the future there should be metadata for whether address spaces 1231 // are disjoint. 1232 unsigned NumPointers = RtCheck.Pointers.size(); 1233 for (unsigned i = 0; i < NumPointers; ++i) { 1234 for (unsigned j = i + 1; j < NumPointers; ++j) { 1235 // Only need to check pointers between two different dependency sets. 1236 if (RtCheck.Pointers[i].DependencySetId == 1237 RtCheck.Pointers[j].DependencySetId) 1238 continue; 1239 // Only need to check pointers in the same alias set. 1240 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1241 continue; 1242 1243 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1244 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1245 1246 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1247 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1248 if (ASi != ASj) { 1249 LLVM_DEBUG( 1250 dbgs() << "LAA: Runtime check would require comparison between" 1251 " different address spaces\n"); 1252 return false; 1253 } 1254 } 1255 } 1256 1257 if (MayNeedRTCheck && CanDoRT) 1258 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1259 1260 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1261 << " pointer comparisons.\n"); 1262 1263 // If we can do run-time checks, but there are no checks, no runtime checks 1264 // are needed. This can happen when all pointers point to the same underlying 1265 // object for example. 1266 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1267 1268 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1269 if (!CanDoRTIfNeeded) 1270 RtCheck.reset(); 1271 return CanDoRTIfNeeded; 1272 } 1273 1274 void AccessAnalysis::processMemAccesses() { 1275 // We process the set twice: first we process read-write pointers, last we 1276 // process read-only pointers. This allows us to skip dependence tests for 1277 // read-only pointers. 1278 1279 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1280 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1281 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1282 LLVM_DEBUG({ 1283 for (const auto &[A, _] : Accesses) 1284 dbgs() << "\t" << *A.getPointer() << " (" 1285 << (A.getInt() ? "write" 1286 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only" 1287 : "read")) 1288 << ")\n"; 1289 }); 1290 1291 // The AliasSetTracker has nicely partitioned our pointers by metadata 1292 // compatibility and potential for underlying-object overlap. As a result, we 1293 // only need to check for potential pointer dependencies within each alias 1294 // set. 1295 for (const auto &AS : AST) { 1296 // Note that both the alias-set tracker and the alias sets themselves used 1297 // ordered collections internally and so the iteration order here is 1298 // deterministic. 1299 auto ASPointers = AS.getPointers(); 1300 1301 bool SetHasWrite = false; 1302 1303 // Map of pointers to last access encountered. 1304 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1305 UnderlyingObjToAccessMap ObjToLastAccess; 1306 1307 // Set of access to check after all writes have been processed. 1308 PtrAccessMap DeferredAccesses; 1309 1310 // Iterate over each alias set twice, once to process read/write pointers, 1311 // and then to process read-only pointers. 1312 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1313 bool UseDeferred = SetIteration > 0; 1314 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1315 1316 for (const Value *ConstPtr : ASPointers) { 1317 Value *Ptr = const_cast<Value *>(ConstPtr); 1318 1319 // For a single memory access in AliasSetTracker, Accesses may contain 1320 // both read and write, and they both need to be handled for CheckDeps. 1321 for (const auto &[AC, _] : S) { 1322 if (AC.getPointer() != Ptr) 1323 continue; 1324 1325 bool IsWrite = AC.getInt(); 1326 1327 // If we're using the deferred access set, then it contains only 1328 // reads. 1329 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1330 if (UseDeferred && !IsReadOnlyPtr) 1331 continue; 1332 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1333 // read or a write. 1334 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1335 S.count(MemAccessInfo(Ptr, false))) && 1336 "Alias-set pointer not in the access set?"); 1337 1338 MemAccessInfo Access(Ptr, IsWrite); 1339 DepCands.insert(Access); 1340 1341 // Memorize read-only pointers for later processing and skip them in 1342 // the first round (they need to be checked after we have seen all 1343 // write pointers). Note: we also mark pointer that are not 1344 // consecutive as "read-only" pointers (so that we check 1345 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1346 if (!UseDeferred && IsReadOnlyPtr) { 1347 // We only use the pointer keys, the types vector values don't 1348 // matter. 1349 DeferredAccesses.insert({Access, {}}); 1350 continue; 1351 } 1352 1353 // If this is a write - check other reads and writes for conflicts. If 1354 // this is a read only check other writes for conflicts (but only if 1355 // there is no other write to the ptr - this is an optimization to 1356 // catch "a[i] = a[i] + " without having to do a dependence check). 1357 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1358 CheckDeps.push_back(Access); 1359 IsRTCheckAnalysisNeeded = true; 1360 } 1361 1362 if (IsWrite) 1363 SetHasWrite = true; 1364 1365 // Create sets of pointers connected by a shared alias set and 1366 // underlying object. 1367 typedef SmallVector<const Value *, 16> ValueVector; 1368 ValueVector TempObjects; 1369 1370 UnderlyingObjects[Ptr] = {}; 1371 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr]; 1372 ::getUnderlyingObjects(Ptr, UOs, LI); 1373 LLVM_DEBUG(dbgs() 1374 << "Underlying objects for pointer " << *Ptr << "\n"); 1375 for (const Value *UnderlyingObj : UOs) { 1376 // nullptr never alias, don't join sets for pointer that have "null" 1377 // in their UnderlyingObjects list. 1378 if (isa<ConstantPointerNull>(UnderlyingObj) && 1379 !NullPointerIsDefined( 1380 TheLoop->getHeader()->getParent(), 1381 UnderlyingObj->getType()->getPointerAddressSpace())) 1382 continue; 1383 1384 UnderlyingObjToAccessMap::iterator Prev = 1385 ObjToLastAccess.find(UnderlyingObj); 1386 if (Prev != ObjToLastAccess.end()) 1387 DepCands.unionSets(Access, Prev->second); 1388 1389 ObjToLastAccess[UnderlyingObj] = Access; 1390 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1391 } 1392 } 1393 } 1394 } 1395 } 1396 } 1397 1398 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1399 /// i.e. monotonically increasing/decreasing. 1400 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1401 PredicatedScalarEvolution &PSE, const Loop *L) { 1402 1403 // FIXME: This should probably only return true for NUW. 1404 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1405 return true; 1406 1407 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 1408 return true; 1409 1410 // Scalar evolution does not propagate the non-wrapping flags to values that 1411 // are derived from a non-wrapping induction variable because non-wrapping 1412 // could be flow-sensitive. 1413 // 1414 // Look through the potentially overflowing instruction to try to prove 1415 // non-wrapping for the *specific* value of Ptr. 1416 1417 // The arithmetic implied by an inbounds GEP can't overflow. 1418 const auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1419 if (!GEP || !GEP->isInBounds()) 1420 return false; 1421 1422 // Make sure there is only one non-const index and analyze that. 1423 Value *NonConstIndex = nullptr; 1424 for (Value *Index : GEP->indices()) 1425 if (!isa<ConstantInt>(Index)) { 1426 if (NonConstIndex) 1427 return false; 1428 NonConstIndex = Index; 1429 } 1430 if (!NonConstIndex) 1431 // The recurrence is on the pointer, ignore for now. 1432 return false; 1433 1434 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1435 // AddRec using a NSW operation. 1436 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1437 if (OBO->hasNoSignedWrap() && 1438 // Assume constant for other the operand so that the AddRec can be 1439 // easily found. 1440 isa<ConstantInt>(OBO->getOperand(1))) { 1441 const SCEV *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1442 1443 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1444 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1445 } 1446 1447 return false; 1448 } 1449 1450 /// Check whether the access through \p Ptr has a constant stride. 1451 std::optional<int64_t> 1452 llvm::getPtrStride(PredicatedScalarEvolution &PSE, Type *AccessTy, Value *Ptr, 1453 const Loop *Lp, 1454 const DenseMap<Value *, const SCEV *> &StridesMap, 1455 bool Assume, bool ShouldCheckWrap) { 1456 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1457 if (PSE.getSE()->isLoopInvariant(PtrScev, Lp)) 1458 return {0}; 1459 1460 Type *Ty = Ptr->getType(); 1461 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1462 if (isa<ScalableVectorType>(AccessTy)) { 1463 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1464 << "\n"); 1465 return std::nullopt; 1466 } 1467 1468 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1469 if (Assume && !AR) 1470 AR = PSE.getAsAddRec(Ptr); 1471 1472 if (!AR) { 1473 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1474 << " SCEV: " << *PtrScev << "\n"); 1475 return std::nullopt; 1476 } 1477 1478 // The access function must stride over the innermost loop. 1479 if (Lp != AR->getLoop()) { 1480 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1481 << *Ptr << " SCEV: " << *AR << "\n"); 1482 return std::nullopt; 1483 } 1484 1485 // Check the step is constant. 1486 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1487 1488 // Calculate the pointer stride and check if it is constant. 1489 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1490 if (!C) { 1491 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1492 << " SCEV: " << *AR << "\n"); 1493 return std::nullopt; 1494 } 1495 1496 const auto &DL = Lp->getHeader()->getDataLayout(); 1497 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1498 int64_t Size = AllocSize.getFixedValue(); 1499 const APInt &APStepVal = C->getAPInt(); 1500 1501 // Huge step value - give up. 1502 if (APStepVal.getBitWidth() > 64) 1503 return std::nullopt; 1504 1505 int64_t StepVal = APStepVal.getSExtValue(); 1506 1507 // Strided access. 1508 int64_t Stride = StepVal / Size; 1509 int64_t Rem = StepVal % Size; 1510 if (Rem) 1511 return std::nullopt; 1512 1513 if (!ShouldCheckWrap) 1514 return Stride; 1515 1516 // The address calculation must not wrap. Otherwise, a dependence could be 1517 // inverted. 1518 if (isNoWrapAddRec(Ptr, AR, PSE, Lp)) 1519 return Stride; 1520 1521 // An inbounds getelementptr that is a AddRec with a unit stride 1522 // cannot wrap per definition. If it did, the result would be poison 1523 // and any memory access dependent on it would be immediate UB 1524 // when executed. 1525 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1526 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1)) 1527 return Stride; 1528 1529 // If the null pointer is undefined, then a access sequence which would 1530 // otherwise access it can be assumed not to unsigned wrap. Note that this 1531 // assumes the object in memory is aligned to the natural alignment. 1532 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1533 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) && 1534 (Stride == 1 || Stride == -1)) 1535 return Stride; 1536 1537 if (Assume) { 1538 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1539 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n" 1540 << "LAA: Pointer: " << *Ptr << "\n" 1541 << "LAA: SCEV: " << *AR << "\n" 1542 << "LAA: Added an overflow assumption\n"); 1543 return Stride; 1544 } 1545 LLVM_DEBUG( 1546 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1547 << *Ptr << " SCEV: " << *AR << "\n"); 1548 return std::nullopt; 1549 } 1550 1551 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1552 Type *ElemTyB, Value *PtrB, 1553 const DataLayout &DL, 1554 ScalarEvolution &SE, bool StrictCheck, 1555 bool CheckType) { 1556 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1557 1558 // Make sure that A and B are different pointers. 1559 if (PtrA == PtrB) 1560 return 0; 1561 1562 // Make sure that the element types are the same if required. 1563 if (CheckType && ElemTyA != ElemTyB) 1564 return std::nullopt; 1565 1566 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1567 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1568 1569 // Check that the address spaces match. 1570 if (ASA != ASB) 1571 return std::nullopt; 1572 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1573 1574 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1575 const Value *PtrA1 = 1576 PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1577 const Value *PtrB1 = 1578 PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1579 1580 int Val; 1581 if (PtrA1 == PtrB1) { 1582 // Retrieve the address space again as pointer stripping now tracks through 1583 // `addrspacecast`. 1584 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1585 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1586 // Check that the address spaces match and that the pointers are valid. 1587 if (ASA != ASB) 1588 return std::nullopt; 1589 1590 IdxWidth = DL.getIndexSizeInBits(ASA); 1591 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1592 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1593 1594 OffsetB -= OffsetA; 1595 Val = OffsetB.getSExtValue(); 1596 } else { 1597 // Otherwise compute the distance with SCEV between the base pointers. 1598 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1599 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1600 std::optional<APInt> Diff = 1601 SE.computeConstantDifference(PtrSCEVB, PtrSCEVA); 1602 if (!Diff) 1603 return std::nullopt; 1604 Val = Diff->getSExtValue(); 1605 } 1606 int Size = DL.getTypeStoreSize(ElemTyA); 1607 int Dist = Val / Size; 1608 1609 // Ensure that the calculated distance matches the type-based one after all 1610 // the bitcasts removal in the provided pointers. 1611 if (!StrictCheck || Dist * Size == Val) 1612 return Dist; 1613 return std::nullopt; 1614 } 1615 1616 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1617 const DataLayout &DL, ScalarEvolution &SE, 1618 SmallVectorImpl<unsigned> &SortedIndices) { 1619 assert(llvm::all_of( 1620 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1621 "Expected list of pointer operands."); 1622 // Walk over the pointers, and map each of them to an offset relative to 1623 // first pointer in the array. 1624 Value *Ptr0 = VL[0]; 1625 1626 using DistOrdPair = std::pair<int64_t, int>; 1627 auto Compare = llvm::less_first(); 1628 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1629 Offsets.emplace(0, 0); 1630 bool IsConsecutive = true; 1631 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) { 1632 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1633 /*StrictCheck=*/true); 1634 if (!Diff) 1635 return false; 1636 1637 // Check if the pointer with the same offset is found. 1638 int64_t Offset = *Diff; 1639 auto [It, IsInserted] = Offsets.emplace(Offset, Idx); 1640 if (!IsInserted) 1641 return false; 1642 // Consecutive order if the inserted element is the last one. 1643 IsConsecutive &= std::next(It) == Offsets.end(); 1644 } 1645 SortedIndices.clear(); 1646 if (!IsConsecutive) { 1647 // Fill SortedIndices array only if it is non-consecutive. 1648 SortedIndices.resize(VL.size()); 1649 for (auto [Idx, Off] : enumerate(Offsets)) 1650 SortedIndices[Idx] = Off.second; 1651 } 1652 return true; 1653 } 1654 1655 /// Returns true if the memory operations \p A and \p B are consecutive. 1656 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1657 ScalarEvolution &SE, bool CheckType) { 1658 Value *PtrA = getLoadStorePointerOperand(A); 1659 Value *PtrB = getLoadStorePointerOperand(B); 1660 if (!PtrA || !PtrB) 1661 return false; 1662 Type *ElemTyA = getLoadStoreType(A); 1663 Type *ElemTyB = getLoadStoreType(B); 1664 std::optional<int> Diff = 1665 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1666 /*StrictCheck=*/true, CheckType); 1667 return Diff && *Diff == 1; 1668 } 1669 1670 void MemoryDepChecker::addAccess(StoreInst *SI) { 1671 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1672 [this, SI](Value *Ptr) { 1673 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1674 InstMap.push_back(SI); 1675 ++AccessIdx; 1676 }); 1677 } 1678 1679 void MemoryDepChecker::addAccess(LoadInst *LI) { 1680 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1681 [this, LI](Value *Ptr) { 1682 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1683 InstMap.push_back(LI); 1684 ++AccessIdx; 1685 }); 1686 } 1687 1688 MemoryDepChecker::VectorizationSafetyStatus 1689 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1690 switch (Type) { 1691 case NoDep: 1692 case Forward: 1693 case BackwardVectorizable: 1694 return VectorizationSafetyStatus::Safe; 1695 1696 case Unknown: 1697 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1698 case ForwardButPreventsForwarding: 1699 case Backward: 1700 case BackwardVectorizableButPreventsForwarding: 1701 case IndirectUnsafe: 1702 return VectorizationSafetyStatus::Unsafe; 1703 } 1704 llvm_unreachable("unexpected DepType!"); 1705 } 1706 1707 bool MemoryDepChecker::Dependence::isBackward() const { 1708 switch (Type) { 1709 case NoDep: 1710 case Forward: 1711 case ForwardButPreventsForwarding: 1712 case Unknown: 1713 case IndirectUnsafe: 1714 return false; 1715 1716 case BackwardVectorizable: 1717 case Backward: 1718 case BackwardVectorizableButPreventsForwarding: 1719 return true; 1720 } 1721 llvm_unreachable("unexpected DepType!"); 1722 } 1723 1724 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1725 return isBackward() || Type == Unknown || Type == IndirectUnsafe; 1726 } 1727 1728 bool MemoryDepChecker::Dependence::isForward() const { 1729 switch (Type) { 1730 case Forward: 1731 case ForwardButPreventsForwarding: 1732 return true; 1733 1734 case NoDep: 1735 case Unknown: 1736 case BackwardVectorizable: 1737 case Backward: 1738 case BackwardVectorizableButPreventsForwarding: 1739 case IndirectUnsafe: 1740 return false; 1741 } 1742 llvm_unreachable("unexpected DepType!"); 1743 } 1744 1745 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1746 uint64_t TypeByteSize) { 1747 // If loads occur at a distance that is not a multiple of a feasible vector 1748 // factor store-load forwarding does not take place. 1749 // Positive dependences might cause troubles because vectorizing them might 1750 // prevent store-load forwarding making vectorized code run a lot slower. 1751 // a[i] = a[i-3] ^ a[i-8]; 1752 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1753 // hence on your typical architecture store-load forwarding does not take 1754 // place. Vectorizing in such cases does not make sense. 1755 // Store-load forwarding distance. 1756 1757 // After this many iterations store-to-load forwarding conflicts should not 1758 // cause any slowdowns. 1759 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1760 // Maximum vector factor. 1761 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1762 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes); 1763 1764 // Compute the smallest VF at which the store and load would be misaligned. 1765 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1766 VF *= 2) { 1767 // If the number of vector iteration between the store and the load are 1768 // small we could incur conflicts. 1769 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1770 MaxVFWithoutSLForwardIssues = (VF >> 1); 1771 break; 1772 } 1773 } 1774 1775 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1776 LLVM_DEBUG( 1777 dbgs() << "LAA: Distance " << Distance 1778 << " that could cause a store-load forwarding conflict\n"); 1779 return true; 1780 } 1781 1782 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes && 1783 MaxVFWithoutSLForwardIssues != 1784 VectorizerParams::MaxVectorWidth * TypeByteSize) 1785 MinDepDistBytes = MaxVFWithoutSLForwardIssues; 1786 return false; 1787 } 1788 1789 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1790 if (Status < S) 1791 Status = S; 1792 } 1793 1794 /// Given a dependence-distance \p Dist between two 1795 /// memory accesses, that have strides in the same direction whose absolute 1796 /// value of the maximum stride is given in \p MaxStride, and that have the same 1797 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is 1798 /// \p MaxBTC, check if it is possible to prove statically that the dependence 1799 /// distance is larger than the range that the accesses will travel through the 1800 /// execution of the loop. If so, return true; false otherwise. This is useful 1801 /// for example in loops such as the following (PR31098): 1802 /// for (i = 0; i < D; ++i) { 1803 /// = out[i]; 1804 /// out[i+D] = 1805 /// } 1806 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1807 const SCEV &MaxBTC, const SCEV &Dist, 1808 uint64_t MaxStride, 1809 uint64_t TypeByteSize) { 1810 1811 // If we can prove that 1812 // (**) |Dist| > MaxBTC * Step 1813 // where Step is the absolute stride of the memory accesses in bytes, 1814 // then there is no dependence. 1815 // 1816 // Rationale: 1817 // We basically want to check if the absolute distance (|Dist/Step|) 1818 // is >= the loop iteration count (or > MaxBTC). 1819 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1820 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1821 // that the dependence distance is >= VF; This is checked elsewhere. 1822 // But in some cases we can prune dependence distances early, and 1823 // even before selecting the VF, and without a runtime test, by comparing 1824 // the distance against the loop iteration count. Since the vectorized code 1825 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1826 // also guarantees that distance >= VF. 1827 // 1828 const uint64_t ByteStride = MaxStride * TypeByteSize; 1829 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride); 1830 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step); 1831 1832 const SCEV *CastedDist = &Dist; 1833 const SCEV *CastedProduct = Product; 1834 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1835 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1836 1837 // The dependence distance can be positive/negative, so we sign extend Dist; 1838 // The multiplication of the absolute stride in bytes and the 1839 // backedgeTakenCount is non-negative, so we zero extend Product. 1840 if (DistTypeSizeBits > ProductTypeSizeBits) 1841 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1842 else 1843 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1844 1845 // Is Dist - (MaxBTC * Step) > 0 ? 1846 // (If so, then we have proven (**) because |Dist| >= Dist) 1847 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1848 if (SE.isKnownPositive(Minus)) 1849 return true; 1850 1851 // Second try: Is -Dist - (MaxBTC * Step) > 0 ? 1852 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1853 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1854 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1855 return SE.isKnownPositive(Minus); 1856 } 1857 1858 /// Check the dependence for two accesses with the same stride \p Stride. 1859 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1860 /// bytes. 1861 /// 1862 /// \returns true if they are independent. 1863 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1864 uint64_t TypeByteSize) { 1865 assert(Stride > 1 && "The stride must be greater than 1"); 1866 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1867 assert(Distance > 0 && "The distance must be non-zero"); 1868 1869 // Skip if the distance is not multiple of type byte size. 1870 if (Distance % TypeByteSize) 1871 return false; 1872 1873 uint64_t ScaledDist = Distance / TypeByteSize; 1874 1875 // No dependence if the scaled distance is not multiple of the stride. 1876 // E.g. 1877 // for (i = 0; i < 1024 ; i += 4) 1878 // A[i+2] = A[i] + 1; 1879 // 1880 // Two accesses in memory (scaled distance is 2, stride is 4): 1881 // | A[0] | | | | A[4] | | | | 1882 // | | | A[2] | | | | A[6] | | 1883 // 1884 // E.g. 1885 // for (i = 0; i < 1024 ; i += 3) 1886 // A[i+4] = A[i] + 1; 1887 // 1888 // Two accesses in memory (scaled distance is 4, stride is 3): 1889 // | A[0] | | | A[3] | | | A[6] | | | 1890 // | | | | | A[4] | | | A[7] | | 1891 return ScaledDist % Stride; 1892 } 1893 1894 std::variant<MemoryDepChecker::Dependence::DepType, 1895 MemoryDepChecker::DepDistanceStrideAndSizeInfo> 1896 MemoryDepChecker::getDependenceDistanceStrideAndSize( 1897 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst, 1898 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst) { 1899 const auto &DL = InnermostLoop->getHeader()->getDataLayout(); 1900 auto &SE = *PSE.getSE(); 1901 const auto &[APtr, AIsWrite] = A; 1902 const auto &[BPtr, BIsWrite] = B; 1903 1904 // Two reads are independent. 1905 if (!AIsWrite && !BIsWrite) 1906 return MemoryDepChecker::Dependence::NoDep; 1907 1908 Type *ATy = getLoadStoreType(AInst); 1909 Type *BTy = getLoadStoreType(BInst); 1910 1911 // We cannot check pointers in different address spaces. 1912 if (APtr->getType()->getPointerAddressSpace() != 1913 BPtr->getType()->getPointerAddressSpace()) 1914 return MemoryDepChecker::Dependence::Unknown; 1915 1916 std::optional<int64_t> StrideAPtr = 1917 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true, true); 1918 std::optional<int64_t> StrideBPtr = 1919 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true, true); 1920 1921 const SCEV *Src = PSE.getSCEV(APtr); 1922 const SCEV *Sink = PSE.getSCEV(BPtr); 1923 1924 // If the induction step is negative we have to invert source and sink of the 1925 // dependence when measuring the distance between them. We should not swap 1926 // AIsWrite with BIsWrite, as their uses expect them in program order. 1927 if (StrideAPtr && *StrideAPtr < 0) { 1928 std::swap(Src, Sink); 1929 std::swap(AInst, BInst); 1930 std::swap(StrideAPtr, StrideBPtr); 1931 } 1932 1933 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1934 1935 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1936 << "\n"); 1937 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst 1938 << ": " << *Dist << "\n"); 1939 1940 // Check if we can prove that Sink only accesses memory after Src's end or 1941 // vice versa. At the moment this is limited to cases where either source or 1942 // sink are loop invariant to avoid compile-time increases. This is not 1943 // required for correctness. 1944 if (SE.isLoopInvariant(Src, InnermostLoop) || 1945 SE.isLoopInvariant(Sink, InnermostLoop)) { 1946 const auto &[SrcStart, SrcEnd] = 1947 getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds); 1948 const auto &[SinkStart, SinkEnd] = 1949 getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds); 1950 if (!isa<SCEVCouldNotCompute>(SrcStart) && 1951 !isa<SCEVCouldNotCompute>(SrcEnd) && 1952 !isa<SCEVCouldNotCompute>(SinkStart) && 1953 !isa<SCEVCouldNotCompute>(SinkEnd)) { 1954 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart)) 1955 return MemoryDepChecker::Dependence::NoDep; 1956 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart)) 1957 return MemoryDepChecker::Dependence::NoDep; 1958 } 1959 } 1960 1961 // Need accesses with constant strides and the same direction for further 1962 // dependence analysis. We don't want to vectorize "A[B[i]] += ..." and 1963 // similar code or pointer arithmetic that could wrap in the address space. 1964 1965 // If either Src or Sink are not strided (i.e. not a non-wrapping AddRec) and 1966 // not loop-invariant (stride will be 0 in that case), we cannot analyze the 1967 // dependence further and also cannot generate runtime checks. 1968 if (!StrideAPtr || !StrideBPtr) { 1969 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1970 return MemoryDepChecker::Dependence::IndirectUnsafe; 1971 } 1972 1973 int64_t StrideAPtrInt = *StrideAPtr; 1974 int64_t StrideBPtrInt = *StrideBPtr; 1975 LLVM_DEBUG(dbgs() << "LAA: Src induction step: " << StrideAPtrInt 1976 << " Sink induction step: " << StrideBPtrInt << "\n"); 1977 // At least Src or Sink are loop invariant and the other is strided or 1978 // invariant. We can generate a runtime check to disambiguate the accesses. 1979 if (StrideAPtrInt == 0 || StrideBPtrInt == 0) 1980 return MemoryDepChecker::Dependence::Unknown; 1981 1982 // Both Src and Sink have a constant stride, check if they are in the same 1983 // direction. 1984 if ((StrideAPtrInt > 0 && StrideBPtrInt < 0) || 1985 (StrideAPtrInt < 0 && StrideBPtrInt > 0)) { 1986 LLVM_DEBUG( 1987 dbgs() << "Pointer access with strides in different directions\n"); 1988 return MemoryDepChecker::Dependence::Unknown; 1989 } 1990 1991 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1992 bool HasSameSize = 1993 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 1994 if (!HasSameSize) 1995 TypeByteSize = 0; 1996 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtrInt), 1997 std::abs(StrideBPtrInt), TypeByteSize, 1998 AIsWrite, BIsWrite); 1999 } 2000 2001 MemoryDepChecker::Dependence::DepType 2002 MemoryDepChecker::isDependent(const MemAccessInfo &A, unsigned AIdx, 2003 const MemAccessInfo &B, unsigned BIdx) { 2004 assert(AIdx < BIdx && "Must pass arguments in program order"); 2005 2006 // Get the dependence distance, stride, type size and what access writes for 2007 // the dependence between A and B. 2008 auto Res = 2009 getDependenceDistanceStrideAndSize(A, InstMap[AIdx], B, InstMap[BIdx]); 2010 if (std::holds_alternative<Dependence::DepType>(Res)) 2011 return std::get<Dependence::DepType>(Res); 2012 2013 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] = 2014 std::get<DepDistanceStrideAndSizeInfo>(Res); 2015 bool HasSameSize = TypeByteSize > 0; 2016 2017 std::optional<uint64_t> CommonStride = 2018 StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt; 2019 if (isa<SCEVCouldNotCompute>(Dist)) { 2020 // TODO: Relax requirement that there is a common stride to retry with 2021 // non-constant distance dependencies. 2022 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2023 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n"); 2024 return Dependence::Unknown; 2025 } 2026 2027 ScalarEvolution &SE = *PSE.getSE(); 2028 auto &DL = InnermostLoop->getHeader()->getDataLayout(); 2029 uint64_t MaxStride = std::max(StrideA, StrideB); 2030 2031 // If the distance between the acecsses is larger than their maximum absolute 2032 // stride multiplied by the symbolic maximum backedge taken count (which is an 2033 // upper bound of the number of iterations), the accesses are independet, i.e. 2034 // they are far enough appart that accesses won't access the same location 2035 // across all loop ierations. 2036 if (HasSameSize && isSafeDependenceDistance( 2037 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), 2038 *Dist, MaxStride, TypeByteSize)) 2039 return Dependence::NoDep; 2040 2041 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 2042 2043 // Attempt to prove strided accesses independent. 2044 if (C) { 2045 const APInt &Val = C->getAPInt(); 2046 int64_t Distance = Val.getSExtValue(); 2047 2048 // If the distance between accesses and their strides are known constants, 2049 // check whether the accesses interlace each other. 2050 if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 && 2051 HasSameSize && 2052 areStridedAccessesIndependent(std::abs(Distance), *CommonStride, 2053 TypeByteSize)) { 2054 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 2055 return Dependence::NoDep; 2056 } 2057 } else { 2058 if (!LoopGuards) 2059 LoopGuards.emplace( 2060 ScalarEvolution::LoopGuards::collect(InnermostLoop, SE)); 2061 Dist = SE.applyLoopGuards(Dist, *LoopGuards); 2062 } 2063 2064 // Negative distances are not plausible dependencies. 2065 if (SE.isKnownNonPositive(Dist)) { 2066 if (SE.isKnownNonNegative(Dist)) { 2067 if (HasSameSize) { 2068 // Write to the same location with the same size. 2069 return Dependence::Forward; 2070 } 2071 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but " 2072 "different type sizes\n"); 2073 return Dependence::Unknown; 2074 } 2075 2076 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 2077 // Check if the first access writes to a location that is read in a later 2078 // iteration, where the distance between them is not a multiple of a vector 2079 // factor and relatively small. 2080 // 2081 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to 2082 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a 2083 // forward dependency will allow vectorization using any width. 2084 2085 if (IsTrueDataDependence && EnableForwardingConflictDetection) { 2086 if (!C) { 2087 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2088 // condition to consider retrying with runtime checks. Historically, we 2089 // did not set it when strides were different but there is no inherent 2090 // reason to. 2091 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2092 return Dependence::Unknown; 2093 } 2094 if (!HasSameSize || 2095 couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(), 2096 TypeByteSize)) { 2097 LLVM_DEBUG( 2098 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 2099 return Dependence::ForwardButPreventsForwarding; 2100 } 2101 } 2102 2103 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 2104 return Dependence::Forward; 2105 } 2106 2107 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue(); 2108 // Below we only handle strictly positive distances. 2109 if (MinDistance <= 0) { 2110 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2111 return Dependence::Unknown; 2112 } 2113 2114 if (!isa<SCEVConstant>(Dist)) { 2115 // Previously this case would be treated as Unknown, possibly setting 2116 // FoundNonConstantDistanceDependence to force re-trying with runtime 2117 // checks. Until the TODO below is addressed, set it here to preserve 2118 // original behavior w.r.t. re-trying with runtime checks. 2119 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2120 // condition to consider retrying with runtime checks. Historically, we 2121 // did not set it when strides were different but there is no inherent 2122 // reason to. 2123 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2124 } 2125 2126 if (!HasSameSize) { 2127 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 2128 "different type sizes\n"); 2129 return Dependence::Unknown; 2130 } 2131 2132 if (!CommonStride) 2133 return Dependence::Unknown; 2134 2135 // Bail out early if passed-in parameters make vectorization not feasible. 2136 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 2137 VectorizerParams::VectorizationFactor : 1); 2138 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 2139 VectorizerParams::VectorizationInterleave : 1); 2140 // The minimum number of iterations for a vectorized/unrolled version. 2141 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 2142 2143 // It's not vectorizable if the distance is smaller than the minimum distance 2144 // needed for a vectroized/unrolled version. Vectorizing one iteration in 2145 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 2146 // TypeByteSize (No need to plus the last gap distance). 2147 // 2148 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2149 // foo(int *A) { 2150 // int *B = (int *)((char *)A + 14); 2151 // for (i = 0 ; i < 1024 ; i += 2) 2152 // B[i] = A[i] + 1; 2153 // } 2154 // 2155 // Two accesses in memory (stride is 2): 2156 // | A[0] | | A[2] | | A[4] | | A[6] | | 2157 // | B[0] | | B[2] | | B[4] | 2158 // 2159 // MinDistance needs for vectorizing iterations except the last iteration: 2160 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4. 2161 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 2162 // 2163 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 2164 // 12, which is less than distance. 2165 // 2166 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 2167 // the minimum distance needed is 28, which is greater than distance. It is 2168 // not safe to do vectorization. 2169 2170 // We know that Dist is positive, but it may not be constant. Use the signed 2171 // minimum for computations below, as this ensures we compute the closest 2172 // possible dependence distance. 2173 uint64_t MinDistanceNeeded = 2174 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize; 2175 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) { 2176 if (!isa<SCEVConstant>(Dist)) { 2177 // For non-constant distances, we checked the lower bound of the 2178 // dependence distance and the distance may be larger at runtime (and safe 2179 // for vectorization). Classify it as Unknown, so we re-try with runtime 2180 // checks. 2181 return Dependence::Unknown; 2182 } 2183 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance " 2184 << MinDistance << '\n'); 2185 return Dependence::Backward; 2186 } 2187 2188 // Unsafe if the minimum distance needed is greater than smallest dependence 2189 // distance distance. 2190 if (MinDistanceNeeded > MinDepDistBytes) { 2191 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 2192 << MinDistanceNeeded << " size in bytes\n"); 2193 return Dependence::Backward; 2194 } 2195 2196 // Positive distance bigger than max vectorization factor. 2197 // FIXME: Should use max factor instead of max distance in bytes, which could 2198 // not handle different types. 2199 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2200 // void foo (int *A, char *B) { 2201 // for (unsigned i = 0; i < 1024; i++) { 2202 // A[i+2] = A[i] + 1; 2203 // B[i+2] = B[i] + 1; 2204 // } 2205 // } 2206 // 2207 // This case is currently unsafe according to the max safe distance. If we 2208 // analyze the two accesses on array B, the max safe dependence distance 2209 // is 2. Then we analyze the accesses on array A, the minimum distance needed 2210 // is 8, which is less than 2 and forbidden vectorization, But actually 2211 // both A and B could be vectorized by 2 iterations. 2212 MinDepDistBytes = 2213 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes); 2214 2215 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 2216 uint64_t MinDepDistBytesOld = MinDepDistBytes; 2217 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2218 isa<SCEVConstant>(Dist) && 2219 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) { 2220 // Sanity check that we didn't update MinDepDistBytes when calling 2221 // couldPreventStoreLoadForward 2222 assert(MinDepDistBytes == MinDepDistBytesOld && 2223 "An update to MinDepDistBytes requires an update to " 2224 "MaxSafeVectorWidthInBits"); 2225 (void)MinDepDistBytesOld; 2226 return Dependence::BackwardVectorizableButPreventsForwarding; 2227 } 2228 2229 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits 2230 // since there is a backwards dependency. 2231 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride); 2232 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance 2233 << " with max VF = " << MaxVF << '\n'); 2234 2235 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2236 if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) { 2237 // For non-constant distances, we checked the lower bound of the dependence 2238 // distance and the distance may be larger at runtime (and safe for 2239 // vectorization). Classify it as Unknown, so we re-try with runtime checks. 2240 return Dependence::Unknown; 2241 } 2242 2243 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2244 return Dependence::BackwardVectorizable; 2245 } 2246 2247 bool MemoryDepChecker::areDepsSafe(const DepCandidates &AccessSets, 2248 const MemAccessInfoList &CheckDeps) { 2249 2250 MinDepDistBytes = -1; 2251 SmallPtrSet<MemAccessInfo, 8> Visited; 2252 for (MemAccessInfo CurAccess : CheckDeps) { 2253 if (Visited.count(CurAccess)) 2254 continue; 2255 2256 // Get the relevant memory access set. 2257 EquivalenceClasses<MemAccessInfo>::iterator I = 2258 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2259 2260 // Check accesses within this set. 2261 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2262 AccessSets.member_begin(I); 2263 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2264 AccessSets.member_end(); 2265 2266 // Check every access pair. 2267 while (AI != AE) { 2268 Visited.insert(*AI); 2269 bool AIIsWrite = AI->getInt(); 2270 // Check loads only against next equivalent class, but stores also against 2271 // other stores in the same equivalence class - to the same address. 2272 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2273 (AIIsWrite ? AI : std::next(AI)); 2274 while (OI != AE) { 2275 // Check every accessing instruction pair in program order. 2276 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2277 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2278 // Scan all accesses of another equivalence class, but only the next 2279 // accesses of the same equivalent class. 2280 for (std::vector<unsigned>::iterator 2281 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2282 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2283 I2 != I2E; ++I2) { 2284 auto A = std::make_pair(&*AI, *I1); 2285 auto B = std::make_pair(&*OI, *I2); 2286 2287 assert(*I1 != *I2); 2288 if (*I1 > *I2) 2289 std::swap(A, B); 2290 2291 Dependence::DepType Type = 2292 isDependent(*A.first, A.second, *B.first, B.second); 2293 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2294 2295 // Gather dependences unless we accumulated MaxDependences 2296 // dependences. In that case return as soon as we find the first 2297 // unsafe dependence. This puts a limit on this quadratic 2298 // algorithm. 2299 if (RecordDependences) { 2300 if (Type != Dependence::NoDep) 2301 Dependences.emplace_back(A.second, B.second, Type); 2302 2303 if (Dependences.size() >= MaxDependences) { 2304 RecordDependences = false; 2305 Dependences.clear(); 2306 LLVM_DEBUG(dbgs() 2307 << "Too many dependences, stopped recording\n"); 2308 } 2309 } 2310 if (!RecordDependences && !isSafeForVectorization()) 2311 return false; 2312 } 2313 ++OI; 2314 } 2315 ++AI; 2316 } 2317 } 2318 2319 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2320 return isSafeForVectorization(); 2321 } 2322 2323 SmallVector<Instruction *, 4> 2324 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const { 2325 MemAccessInfo Access(Ptr, IsWrite); 2326 auto &IndexVector = Accesses.find(Access)->second; 2327 2328 SmallVector<Instruction *, 4> Insts; 2329 transform(IndexVector, 2330 std::back_inserter(Insts), 2331 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2332 return Insts; 2333 } 2334 2335 const char *MemoryDepChecker::Dependence::DepName[] = { 2336 "NoDep", 2337 "Unknown", 2338 "IndirectUnsafe", 2339 "Forward", 2340 "ForwardButPreventsForwarding", 2341 "Backward", 2342 "BackwardVectorizable", 2343 "BackwardVectorizableButPreventsForwarding"}; 2344 2345 void MemoryDepChecker::Dependence::print( 2346 raw_ostream &OS, unsigned Depth, 2347 const SmallVectorImpl<Instruction *> &Instrs) const { 2348 OS.indent(Depth) << DepName[Type] << ":\n"; 2349 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2350 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2351 } 2352 2353 bool LoopAccessInfo::canAnalyzeLoop() { 2354 // We need to have a loop header. 2355 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '" 2356 << TheLoop->getHeader()->getParent()->getName() << "' from " 2357 << TheLoop->getLocStr() << "\n"); 2358 2359 // We can only analyze innermost loops. 2360 if (!TheLoop->isInnermost()) { 2361 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2362 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2363 return false; 2364 } 2365 2366 // We must have a single backedge. 2367 if (TheLoop->getNumBackEdges() != 1) { 2368 LLVM_DEBUG( 2369 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2370 recordAnalysis("CFGNotUnderstood") 2371 << "loop control flow is not understood by analyzer"; 2372 return false; 2373 } 2374 2375 // ScalarEvolution needs to be able to find the symbolic max backedge taken 2376 // count, which is an upper bound on the number of loop iterations. The loop 2377 // may execute fewer iterations, if it exits via an uncountable exit. 2378 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount(); 2379 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2380 recordAnalysis("CantComputeNumberOfIterations") 2381 << "could not determine number of loop iterations"; 2382 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2383 return false; 2384 } 2385 2386 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: " 2387 << TheLoop->getHeader()->getName() << "\n"); 2388 return true; 2389 } 2390 2391 bool LoopAccessInfo::analyzeLoop(AAResults *AA, const LoopInfo *LI, 2392 const TargetLibraryInfo *TLI, 2393 DominatorTree *DT) { 2394 // Holds the Load and Store instructions. 2395 SmallVector<LoadInst *, 16> Loads; 2396 SmallVector<StoreInst *, 16> Stores; 2397 SmallPtrSet<MDNode *, 8> LoopAliasScopes; 2398 2399 // Holds all the different accesses in the loop. 2400 unsigned NumReads = 0; 2401 unsigned NumReadWrites = 0; 2402 2403 bool HasComplexMemInst = false; 2404 2405 // A runtime check is only legal to insert if there are no convergent calls. 2406 HasConvergentOp = false; 2407 2408 PtrRtChecking->Pointers.clear(); 2409 PtrRtChecking->Need = false; 2410 2411 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2412 2413 const bool EnableMemAccessVersioningOfLoop = 2414 EnableMemAccessVersioning && 2415 !TheLoop->getHeader()->getParent()->hasOptSize(); 2416 2417 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2418 // loop info, as it may be arbitrary. 2419 LoopBlocksRPO RPOT(TheLoop); 2420 RPOT.perform(LI); 2421 for (BasicBlock *BB : RPOT) { 2422 // Scan the BB and collect legal loads and stores. Also detect any 2423 // convergent instructions. 2424 for (Instruction &I : *BB) { 2425 if (auto *Call = dyn_cast<CallBase>(&I)) { 2426 if (Call->isConvergent()) 2427 HasConvergentOp = true; 2428 } 2429 2430 // With both a non-vectorizable memory instruction and a convergent 2431 // operation, found in this loop, no reason to continue the search. 2432 if (HasComplexMemInst && HasConvergentOp) 2433 return false; 2434 2435 // Avoid hitting recordAnalysis multiple times. 2436 if (HasComplexMemInst) 2437 continue; 2438 2439 // Record alias scopes defined inside the loop. 2440 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 2441 for (Metadata *Op : Decl->getScopeList()->operands()) 2442 LoopAliasScopes.insert(cast<MDNode>(Op)); 2443 2444 // Many math library functions read the rounding mode. We will only 2445 // vectorize a loop if it contains known function calls that don't set 2446 // the flag. Therefore, it is safe to ignore this read from memory. 2447 auto *Call = dyn_cast<CallInst>(&I); 2448 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2449 continue; 2450 2451 // If this is a load, save it. If this instruction can read from memory 2452 // but is not a load, we only allow it if it's a call to a function with a 2453 // vector mapping and no pointer arguments. 2454 if (I.mayReadFromMemory()) { 2455 auto hasPointerArgs = [](CallBase *CB) { 2456 return any_of(CB->args(), [](Value const *Arg) { 2457 return Arg->getType()->isPointerTy(); 2458 }); 2459 }; 2460 2461 // If the function has an explicit vectorized counterpart, and does not 2462 // take output/input pointers, we can safely assume that it can be 2463 // vectorized. 2464 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2465 !hasPointerArgs(Call) && !VFDatabase::getMappings(*Call).empty()) 2466 continue; 2467 2468 auto *Ld = dyn_cast<LoadInst>(&I); 2469 if (!Ld) { 2470 recordAnalysis("CantVectorizeInstruction", Ld) 2471 << "instruction cannot be vectorized"; 2472 HasComplexMemInst = true; 2473 continue; 2474 } 2475 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2476 recordAnalysis("NonSimpleLoad", Ld) 2477 << "read with atomic ordering or volatile read"; 2478 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2479 HasComplexMemInst = true; 2480 continue; 2481 } 2482 NumLoads++; 2483 Loads.push_back(Ld); 2484 DepChecker->addAccess(Ld); 2485 if (EnableMemAccessVersioningOfLoop) 2486 collectStridedAccess(Ld); 2487 continue; 2488 } 2489 2490 // Save 'store' instructions. Abort if other instructions write to memory. 2491 if (I.mayWriteToMemory()) { 2492 auto *St = dyn_cast<StoreInst>(&I); 2493 if (!St) { 2494 recordAnalysis("CantVectorizeInstruction", St) 2495 << "instruction cannot be vectorized"; 2496 HasComplexMemInst = true; 2497 continue; 2498 } 2499 if (!St->isSimple() && !IsAnnotatedParallel) { 2500 recordAnalysis("NonSimpleStore", St) 2501 << "write with atomic ordering or volatile write"; 2502 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2503 HasComplexMemInst = true; 2504 continue; 2505 } 2506 NumStores++; 2507 Stores.push_back(St); 2508 DepChecker->addAccess(St); 2509 if (EnableMemAccessVersioningOfLoop) 2510 collectStridedAccess(St); 2511 } 2512 } // Next instr. 2513 } // Next block. 2514 2515 if (HasComplexMemInst) 2516 return false; 2517 2518 // Now we have two lists that hold the loads and the stores. 2519 // Next, we find the pointers that they use. 2520 2521 // Check if we see any stores. If there are no stores, then we don't 2522 // care if the pointers are *restrict*. 2523 if (!Stores.size()) { 2524 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2525 return true; 2526 } 2527 2528 MemoryDepChecker::DepCandidates DependentAccesses; 2529 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE, 2530 LoopAliasScopes); 2531 2532 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2533 // multiple times on the same object. If the ptr is accessed twice, once 2534 // for read and once for write, it will only appear once (on the write 2535 // list). This is okay, since we are going to check for conflicts between 2536 // writes and between reads and writes, but not between reads and reads. 2537 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2538 2539 // Record uniform store addresses to identify if we have multiple stores 2540 // to the same address. 2541 SmallPtrSet<Value *, 16> UniformStores; 2542 2543 for (StoreInst *ST : Stores) { 2544 Value *Ptr = ST->getPointerOperand(); 2545 2546 if (isInvariant(Ptr)) { 2547 // Record store instructions to loop invariant addresses 2548 StoresToInvariantAddresses.push_back(ST); 2549 HasStoreStoreDependenceInvolvingLoopInvariantAddress |= 2550 !UniformStores.insert(Ptr).second; 2551 } 2552 2553 // If we did *not* see this pointer before, insert it to the read-write 2554 // list. At this phase it is only a 'write' list. 2555 Type *AccessTy = getLoadStoreType(ST); 2556 if (Seen.insert({Ptr, AccessTy}).second) { 2557 ++NumReadWrites; 2558 2559 MemoryLocation Loc = MemoryLocation::get(ST); 2560 // The TBAA metadata could have a control dependency on the predication 2561 // condition, so we cannot rely on it when determining whether or not we 2562 // need runtime pointer checks. 2563 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2564 Loc.AATags.TBAA = nullptr; 2565 2566 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2567 [&Accesses, AccessTy, Loc](Value *Ptr) { 2568 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2569 Accesses.addStore(NewLoc, AccessTy); 2570 }); 2571 } 2572 } 2573 2574 if (IsAnnotatedParallel) { 2575 LLVM_DEBUG( 2576 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2577 << "checks.\n"); 2578 return true; 2579 } 2580 2581 for (LoadInst *LD : Loads) { 2582 Value *Ptr = LD->getPointerOperand(); 2583 // If we did *not* see this pointer before, insert it to the 2584 // read list. If we *did* see it before, then it is already in 2585 // the read-write list. This allows us to vectorize expressions 2586 // such as A[i] += x; Because the address of A[i] is a read-write 2587 // pointer. This only works if the index of A[i] is consecutive. 2588 // If the address of i is unknown (for example A[B[i]]) then we may 2589 // read a few words, modify, and write a few words, and some of the 2590 // words may be written to the same address. 2591 bool IsReadOnlyPtr = false; 2592 Type *AccessTy = getLoadStoreType(LD); 2593 if (Seen.insert({Ptr, AccessTy}).second || 2594 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2595 ++NumReads; 2596 IsReadOnlyPtr = true; 2597 } 2598 2599 // See if there is an unsafe dependency between a load to a uniform address and 2600 // store to the same uniform address. 2601 if (UniformStores.count(Ptr)) { 2602 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2603 "load and uniform store to the same address!\n"); 2604 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true; 2605 } 2606 2607 MemoryLocation Loc = MemoryLocation::get(LD); 2608 // The TBAA metadata could have a control dependency on the predication 2609 // condition, so we cannot rely on it when determining whether or not we 2610 // need runtime pointer checks. 2611 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2612 Loc.AATags.TBAA = nullptr; 2613 2614 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2615 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2616 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2617 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2618 }); 2619 } 2620 2621 // If we write (or read-write) to a single destination and there are no 2622 // other reads in this loop then is it safe to vectorize. 2623 if (NumReadWrites == 1 && NumReads == 0) { 2624 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2625 return true; 2626 } 2627 2628 // Build dependence sets and check whether we need a runtime pointer bounds 2629 // check. 2630 Accesses.buildDependenceSets(); 2631 2632 // Find pointers with computable bounds. We are going to use this information 2633 // to place a runtime bound check. 2634 Value *UncomputablePtr = nullptr; 2635 bool CanDoRTIfNeeded = 2636 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2637 SymbolicStrides, UncomputablePtr, false); 2638 if (!CanDoRTIfNeeded) { 2639 const auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2640 recordAnalysis("CantIdentifyArrayBounds", I) 2641 << "cannot identify array bounds"; 2642 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2643 << "the array bounds.\n"); 2644 return false; 2645 } 2646 2647 LLVM_DEBUG( 2648 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2649 2650 bool DepsAreSafe = true; 2651 if (Accesses.isDependencyCheckNeeded()) { 2652 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2653 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses, 2654 Accesses.getDependenciesToCheck()); 2655 2656 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) { 2657 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2658 2659 // Clear the dependency checks. We assume they are not needed. 2660 Accesses.resetDepChecks(*DepChecker); 2661 2662 PtrRtChecking->reset(); 2663 PtrRtChecking->Need = true; 2664 2665 auto *SE = PSE->getSE(); 2666 UncomputablePtr = nullptr; 2667 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2668 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2669 2670 // Check that we found the bounds for the pointer. 2671 if (!CanDoRTIfNeeded) { 2672 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2673 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2674 << "cannot check memory dependencies at runtime"; 2675 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2676 return false; 2677 } 2678 DepsAreSafe = true; 2679 } 2680 } 2681 2682 if (HasConvergentOp) { 2683 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2684 << "cannot add control dependency to convergent operation"; 2685 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2686 "would be needed with a convergent operation\n"); 2687 return false; 2688 } 2689 2690 if (DepsAreSafe) { 2691 LLVM_DEBUG( 2692 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2693 << (PtrRtChecking->Need ? "" : " don't") 2694 << " need runtime memory checks.\n"); 2695 return true; 2696 } 2697 2698 emitUnsafeDependenceRemark(); 2699 return false; 2700 } 2701 2702 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2703 const auto *Deps = getDepChecker().getDependences(); 2704 if (!Deps) 2705 return; 2706 const auto *Found = 2707 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2708 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2709 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2710 }); 2711 if (Found == Deps->end()) 2712 return; 2713 MemoryDepChecker::Dependence Dep = *Found; 2714 2715 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2716 2717 // Emit remark for first unsafe dependence 2718 bool HasForcedDistribution = false; 2719 std::optional<const MDOperand *> Value = 2720 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable"); 2721 if (Value) { 2722 const MDOperand *Op = *Value; 2723 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 2724 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 2725 } 2726 2727 const std::string Info = 2728 HasForcedDistribution 2729 ? "unsafe dependent memory operations in loop." 2730 : "unsafe dependent memory operations in loop. Use " 2731 "#pragma clang loop distribute(enable) to allow loop distribution " 2732 "to attempt to isolate the offending operations into a separate " 2733 "loop"; 2734 OptimizationRemarkAnalysis &R = 2735 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info; 2736 2737 switch (Dep.Type) { 2738 case MemoryDepChecker::Dependence::NoDep: 2739 case MemoryDepChecker::Dependence::Forward: 2740 case MemoryDepChecker::Dependence::BackwardVectorizable: 2741 llvm_unreachable("Unexpected dependence"); 2742 case MemoryDepChecker::Dependence::Backward: 2743 R << "\nBackward loop carried data dependence."; 2744 break; 2745 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2746 R << "\nForward loop carried data dependence that prevents " 2747 "store-to-load forwarding."; 2748 break; 2749 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2750 R << "\nBackward loop carried data dependence that prevents " 2751 "store-to-load forwarding."; 2752 break; 2753 case MemoryDepChecker::Dependence::IndirectUnsafe: 2754 R << "\nUnsafe indirect dependence."; 2755 break; 2756 case MemoryDepChecker::Dependence::Unknown: 2757 R << "\nUnknown data dependence."; 2758 break; 2759 } 2760 2761 if (Instruction *I = Dep.getSource(getDepChecker())) { 2762 DebugLoc SourceLoc = I->getDebugLoc(); 2763 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2764 SourceLoc = DD->getDebugLoc(); 2765 if (SourceLoc) 2766 R << " Memory location is the same as accessed at " 2767 << ore::NV("Location", SourceLoc); 2768 } 2769 } 2770 2771 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2772 DominatorTree *DT) { 2773 assert(TheLoop->contains(BB) && "Unknown block used"); 2774 2775 // Blocks that do not dominate the latch need predication. 2776 const BasicBlock *Latch = TheLoop->getLoopLatch(); 2777 return !DT->dominates(BB, Latch); 2778 } 2779 2780 OptimizationRemarkAnalysis & 2781 LoopAccessInfo::recordAnalysis(StringRef RemarkName, const Instruction *I) { 2782 assert(!Report && "Multiple reports generated"); 2783 2784 const Value *CodeRegion = TheLoop->getHeader(); 2785 DebugLoc DL = TheLoop->getStartLoc(); 2786 2787 if (I) { 2788 CodeRegion = I->getParent(); 2789 // If there is no debug location attached to the instruction, revert back to 2790 // using the loop's. 2791 if (I->getDebugLoc()) 2792 DL = I->getDebugLoc(); 2793 } 2794 2795 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2796 CodeRegion); 2797 return *Report; 2798 } 2799 2800 bool LoopAccessInfo::isInvariant(Value *V) const { 2801 auto *SE = PSE->getSE(); 2802 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2803 // trivially loop-invariant FP values to be considered invariant. 2804 if (!SE->isSCEVable(V->getType())) 2805 return false; 2806 const SCEV *S = SE->getSCEV(V); 2807 return SE->isLoopInvariant(S, TheLoop); 2808 } 2809 2810 /// Find the operand of the GEP that should be checked for consecutive 2811 /// stores. This ignores trailing indices that have no effect on the final 2812 /// pointer. 2813 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 2814 const DataLayout &DL = Gep->getDataLayout(); 2815 unsigned LastOperand = Gep->getNumOperands() - 1; 2816 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 2817 2818 // Walk backwards and try to peel off zeros. 2819 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 2820 // Find the type we're currently indexing into. 2821 gep_type_iterator GEPTI = gep_type_begin(Gep); 2822 std::advance(GEPTI, LastOperand - 2); 2823 2824 // If it's a type with the same allocation size as the result of the GEP we 2825 // can peel off the zero index. 2826 TypeSize ElemSize = GEPTI.isStruct() 2827 ? DL.getTypeAllocSize(GEPTI.getIndexedType()) 2828 : GEPTI.getSequentialElementStride(DL); 2829 if (ElemSize != GEPAllocSize) 2830 break; 2831 --LastOperand; 2832 } 2833 2834 return LastOperand; 2835 } 2836 2837 /// If the argument is a GEP, then returns the operand identified by 2838 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 2839 /// operand, it returns that instead. 2840 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2841 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 2842 if (!GEP) 2843 return Ptr; 2844 2845 unsigned InductionOperand = getGEPInductionOperand(GEP); 2846 2847 // Check that all of the gep indices are uniform except for our induction 2848 // operand. 2849 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I) 2850 if (I != InductionOperand && 2851 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp)) 2852 return Ptr; 2853 return GEP->getOperand(InductionOperand); 2854 } 2855 2856 /// Get the stride of a pointer access in a loop. Looks for symbolic 2857 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 2858 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2859 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 2860 if (!PtrTy || PtrTy->isAggregateType()) 2861 return nullptr; 2862 2863 // Try to remove a gep instruction to make the pointer (actually index at this 2864 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 2865 // pointer, otherwise, we are analyzing the index. 2866 Value *OrigPtr = Ptr; 2867 2868 // The size of the pointer access. 2869 int64_t PtrAccessSize = 1; 2870 2871 Ptr = stripGetElementPtr(Ptr, SE, Lp); 2872 const SCEV *V = SE->getSCEV(Ptr); 2873 2874 if (Ptr != OrigPtr) 2875 // Strip off casts. 2876 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2877 V = C->getOperand(); 2878 2879 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 2880 if (!S) 2881 return nullptr; 2882 2883 // If the pointer is invariant then there is no stride and it makes no 2884 // sense to add it here. 2885 if (Lp != S->getLoop()) 2886 return nullptr; 2887 2888 V = S->getStepRecurrence(*SE); 2889 if (!V) 2890 return nullptr; 2891 2892 // Strip off the size of access multiplication if we are still analyzing the 2893 // pointer. 2894 if (OrigPtr == Ptr) { 2895 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 2896 if (M->getOperand(0)->getSCEVType() != scConstant) 2897 return nullptr; 2898 2899 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 2900 2901 // Huge step value - give up. 2902 if (APStepVal.getBitWidth() > 64) 2903 return nullptr; 2904 2905 int64_t StepVal = APStepVal.getSExtValue(); 2906 if (PtrAccessSize != StepVal) 2907 return nullptr; 2908 V = M->getOperand(1); 2909 } 2910 } 2911 2912 // Note that the restriction after this loop invariant check are only 2913 // profitability restrictions. 2914 if (!SE->isLoopInvariant(V, Lp)) 2915 return nullptr; 2916 2917 // Look for the loop invariant symbolic value. 2918 if (isa<SCEVUnknown>(V)) 2919 return V; 2920 2921 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2922 if (isa<SCEVUnknown>(C->getOperand())) 2923 return V; 2924 2925 return nullptr; 2926 } 2927 2928 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2929 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2930 if (!Ptr) 2931 return; 2932 2933 // Note: getStrideFromPointer is a *profitability* heuristic. We 2934 // could broaden the scope of values returned here - to anything 2935 // which happens to be loop invariant and contributes to the 2936 // computation of an interesting IV - but we chose not to as we 2937 // don't have a cost model here, and broadening the scope exposes 2938 // far too many unprofitable cases. 2939 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2940 if (!StrideExpr) 2941 return; 2942 2943 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2944 "versioning:"); 2945 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n"); 2946 2947 if (!SpeculateUnitStride) { 2948 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n"); 2949 return; 2950 } 2951 2952 // Avoid adding the "Stride == 1" predicate when we know that 2953 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2954 // or zero iteration loop, as Trip-Count <= Stride == 1. 2955 // 2956 // TODO: We are currently not making a very informed decision on when it is 2957 // beneficial to apply stride versioning. It might make more sense that the 2958 // users of this analysis (such as the vectorizer) will trigger it, based on 2959 // their specific cost considerations; For example, in cases where stride 2960 // versioning does not help resolving memory accesses/dependences, the 2961 // vectorizer should evaluate the cost of the runtime test, and the benefit 2962 // of various possible stride specializations, considering the alternatives 2963 // of using gather/scatters (if available). 2964 2965 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount(); 2966 2967 // Match the types so we can compare the stride and the MaxBTC. 2968 // The Stride can be positive/negative, so we sign extend Stride; 2969 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC. 2970 const DataLayout &DL = TheLoop->getHeader()->getDataLayout(); 2971 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2972 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType()); 2973 const SCEV *CastedStride = StrideExpr; 2974 const SCEV *CastedBECount = MaxBTC; 2975 ScalarEvolution *SE = PSE->getSE(); 2976 if (BETypeSizeBits >= StrideTypeSizeBits) 2977 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType()); 2978 else 2979 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType()); 2980 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2981 // Since TripCount == BackEdgeTakenCount + 1, checking: 2982 // "Stride >= TripCount" is equivalent to checking: 2983 // Stride - MaxBTC> 0 2984 if (SE->isKnownPositive(StrideMinusBETaken)) { 2985 LLVM_DEBUG( 2986 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2987 "Stride==1 predicate will imply that the loop executes " 2988 "at most once.\n"); 2989 return; 2990 } 2991 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2992 2993 // Strip back off the integer cast, and check that our result is a 2994 // SCEVUnknown as we expect. 2995 const SCEV *StrideBase = StrideExpr; 2996 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase)) 2997 StrideBase = C->getOperand(); 2998 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase); 2999 } 3000 3001 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 3002 const TargetTransformInfo *TTI, 3003 const TargetLibraryInfo *TLI, AAResults *AA, 3004 DominatorTree *DT, LoopInfo *LI) 3005 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 3006 PtrRtChecking(nullptr), TheLoop(L) { 3007 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3008 if (TTI) { 3009 TypeSize FixedWidth = 3010 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); 3011 if (FixedWidth.isNonZero()) { 3012 // Scale the vector width by 2 as rough estimate to also consider 3013 // interleaving. 3014 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2; 3015 } 3016 3017 TypeSize ScalableWidth = 3018 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector); 3019 if (ScalableWidth.isNonZero()) 3020 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3021 } 3022 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides, 3023 MaxTargetVectorWidthInBits); 3024 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 3025 if (canAnalyzeLoop()) 3026 CanVecMem = analyzeLoop(AA, LI, TLI, DT); 3027 } 3028 3029 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 3030 if (CanVecMem) { 3031 OS.indent(Depth) << "Memory dependences are safe"; 3032 const MemoryDepChecker &DC = getDepChecker(); 3033 if (!DC.isSafeForAnyVectorWidth()) 3034 OS << " with a maximum safe vector width of " 3035 << DC.getMaxSafeVectorWidthInBits() << " bits"; 3036 if (PtrRtChecking->Need) 3037 OS << " with run-time checks"; 3038 OS << "\n"; 3039 } 3040 3041 if (HasConvergentOp) 3042 OS.indent(Depth) << "Has convergent operation in loop\n"; 3043 3044 if (Report) 3045 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 3046 3047 if (auto *Dependences = DepChecker->getDependences()) { 3048 OS.indent(Depth) << "Dependences:\n"; 3049 for (const auto &Dep : *Dependences) { 3050 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 3051 OS << "\n"; 3052 } 3053 } else 3054 OS.indent(Depth) << "Too many dependences, not recorded\n"; 3055 3056 // List the pair of accesses need run-time checks to prove independence. 3057 PtrRtChecking->print(OS, Depth); 3058 OS << "\n"; 3059 3060 OS.indent(Depth) 3061 << "Non vectorizable stores to invariant address were " 3062 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress || 3063 HasLoadStoreDependenceInvolvingLoopInvariantAddress 3064 ? "" 3065 : "not ") 3066 << "found in loop.\n"; 3067 3068 OS.indent(Depth) << "SCEV assumptions:\n"; 3069 PSE->getPredicate().print(OS, Depth); 3070 3071 OS << "\n"; 3072 3073 OS.indent(Depth) << "Expressions re-written:\n"; 3074 PSE->print(OS, Depth); 3075 } 3076 3077 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 3078 const auto &[It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr}); 3079 3080 if (Inserted) 3081 It->second = 3082 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI); 3083 3084 return *It->second; 3085 } 3086 void LoopAccessInfoManager::clear() { 3087 SmallVector<Loop *> ToRemove; 3088 // Collect LoopAccessInfo entries that may keep references to IR outside the 3089 // analyzed loop or SCEVs that may have been modified or invalidated. At the 3090 // moment, that is loops requiring memory or SCEV runtime checks, as those cache 3091 // SCEVs, e.g. for pointer expressions. 3092 for (const auto &[L, LAI] : LoopAccessInfoMap) { 3093 if (LAI->getRuntimePointerChecking()->getChecks().empty() && 3094 LAI->getPSE().getPredicate().isAlwaysTrue()) 3095 continue; 3096 ToRemove.push_back(L); 3097 } 3098 3099 for (Loop *L : ToRemove) 3100 LoopAccessInfoMap.erase(L); 3101 } 3102 3103 bool LoopAccessInfoManager::invalidate( 3104 Function &F, const PreservedAnalyses &PA, 3105 FunctionAnalysisManager::Invalidator &Inv) { 3106 // Check whether our analysis is preserved. 3107 auto PAC = PA.getChecker<LoopAccessAnalysis>(); 3108 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 3109 // If not, give up now. 3110 return true; 3111 3112 // Check whether the analyses we depend on became invalid for any reason. 3113 // Skip checking TargetLibraryAnalysis as it is immutable and can't become 3114 // invalid. 3115 return Inv.invalidate<AAManager>(F, PA) || 3116 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 3117 Inv.invalidate<LoopAnalysis>(F, PA) || 3118 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 3119 } 3120 3121 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 3122 FunctionAnalysisManager &FAM) { 3123 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 3124 auto &AA = FAM.getResult<AAManager>(F); 3125 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 3126 auto &LI = FAM.getResult<LoopAnalysis>(F); 3127 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 3128 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 3129 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI); 3130 } 3131 3132 AnalysisKey LoopAccessAnalysis::Key; 3133