xref: /llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision 22a7f6dcc4fc83f80f81722ab9c83b6fa73416f8)
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <utility>
65 #include <variant>
66 #include <vector>
67 
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "loop-accesses"
72 
73 static cl::opt<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden,
75                     cl::desc("Sets the SIMD width. Zero is autoselect."),
76                     cl::location(VectorizerParams::VectorizationFactor));
77 unsigned VectorizerParams::VectorizationFactor;
78 
79 static cl::opt<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden,
81                         cl::desc("Sets the vectorization interleave count. "
82                                  "Zero is autoselect."),
83                         cl::location(
84                             VectorizerParams::VectorizationInterleave));
85 unsigned VectorizerParams::VectorizationInterleave;
86 
87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88     "runtime-memory-check-threshold", cl::Hidden,
89     cl::desc("When performing memory disambiguation checks at runtime do not "
90              "generate more than this number of comparisons (default = 8)."),
91     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
93 
94 /// The maximum iterations used to merge memory checks
95 static cl::opt<unsigned> MemoryCheckMergeThreshold(
96     "memory-check-merge-threshold", cl::Hidden,
97     cl::desc("Maximum number of comparisons done when trying to merge "
98              "runtime memory checks. (default = 100)"),
99     cl::init(100));
100 
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth = 64;
103 
104 /// We collect dependences up to this threshold.
105 static cl::opt<unsigned>
106     MaxDependences("max-dependences", cl::Hidden,
107                    cl::desc("Maximum number of dependences collected by "
108                             "loop-access analysis (default = 100)"),
109                    cl::init(100));
110 
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 ///   for (i = 0; i < N; ++i)
114 ///     A[i * Stride1] += B[i * Stride2] ...
115 ///
116 /// Will be roughly translated to
117 ///    if (Stride1 == 1 && Stride2 == 1) {
118 ///      for (i = 0; i < N; i+=4)
119 ///       A[i:i+3] += ...
120 ///    } else
121 ///      ...
122 static cl::opt<bool> EnableMemAccessVersioning(
123     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124     cl::desc("Enable symbolic stride memory access versioning"));
125 
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt<bool> EnableForwardingConflictDetection(
129     "store-to-load-forwarding-conflict-detection", cl::Hidden,
130     cl::desc("Enable conflict detection in loop-access analysis"),
131     cl::init(true));
132 
133 static cl::opt<unsigned> MaxForkedSCEVDepth(
134     "max-forked-scev-depth", cl::Hidden,
135     cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136     cl::init(5));
137 
138 static cl::opt<bool> SpeculateUnitStride(
139     "laa-speculate-unit-stride", cl::Hidden,
140     cl::desc("Speculate that non-constant strides are unit in LAA"),
141     cl::init(true));
142 
143 static cl::opt<bool, true> HoistRuntimeChecks(
144     "hoist-runtime-checks", cl::Hidden,
145     cl::desc(
146         "Hoist inner loop runtime memory checks to outer loop if possible"),
147     cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
148 bool VectorizerParams::HoistRuntimeChecks;
149 
150 bool VectorizerParams::isInterleaveForced() {
151   return ::VectorizationInterleave.getNumOccurrences() > 0;
152 }
153 
154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
155                                             const DenseMap<Value *, const SCEV *> &PtrToStride,
156                                             Value *Ptr) {
157   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
158 
159   // If there is an entry in the map return the SCEV of the pointer with the
160   // symbolic stride replaced by one.
161   DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
162   if (SI == PtrToStride.end())
163     // For a non-symbolic stride, just return the original expression.
164     return OrigSCEV;
165 
166   const SCEV *StrideSCEV = SI->second;
167   // Note: This assert is both overly strong and overly weak.  The actual
168   // invariant here is that StrideSCEV should be loop invariant.  The only
169   // such invariant strides we happen to speculate right now are unknowns
170   // and thus this is a reasonable proxy of the actual invariant.
171   assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
172 
173   ScalarEvolution *SE = PSE.getSE();
174   const auto *CT = SE->getOne(StrideSCEV->getType());
175   PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176   auto *Expr = PSE.getSCEV(Ptr);
177 
178   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 	     << " by: " << *Expr << "\n");
180   return Expr;
181 }
182 
183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
184     unsigned Index, RuntimePointerChecking &RtCheck)
185     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186       AddressSpace(RtCheck.Pointers[Index]
187                        .PointerValue->getType()
188                        ->getPointerAddressSpace()),
189       NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
190   Members.push_back(Index);
191 }
192 
193 /// Calculate Start and End points of memory access.
194 /// Let's assume A is the first access and B is a memory access on N-th loop
195 /// iteration. Then B is calculated as:
196 ///   B = A + Step*N .
197 /// Step value may be positive or negative.
198 /// N is a calculated back-edge taken count:
199 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
200 /// Start and End points are calculated in the following way:
201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
202 /// where SizeOfElt is the size of single memory access in bytes.
203 ///
204 /// There is no conflict when the intervals are disjoint:
205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
207     const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy,
208     PredicatedScalarEvolution &PSE,
209     DenseMap<const SCEV *, std::pair<const SCEV *, const SCEV *>>
210         &PointerBounds) {
211   ScalarEvolution *SE = PSE.getSE();
212 
213   auto [Iter, Ins] = PointerBounds.insert(
214       {PtrExpr, {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
215   if (!Ins)
216     return Iter->second;
217 
218   const SCEV *ScStart;
219   const SCEV *ScEnd;
220 
221   if (SE->isLoopInvariant(PtrExpr, Lp)) {
222     ScStart = ScEnd = PtrExpr;
223   } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
224     const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount();
225 
226     ScStart = AR->getStart();
227     ScEnd = AR->evaluateAtIteration(Ex, *SE);
228     const SCEV *Step = AR->getStepRecurrence(*SE);
229 
230     // For expressions with negative step, the upper bound is ScStart and the
231     // lower bound is ScEnd.
232     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
233       if (CStep->getValue()->isNegative())
234         std::swap(ScStart, ScEnd);
235     } else {
236       // Fallback case: the step is not constant, but we can still
237       // get the upper and lower bounds of the interval by using min/max
238       // expressions.
239       ScStart = SE->getUMinExpr(ScStart, ScEnd);
240       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
241     }
242   } else
243     return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
244 
245   assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
246   assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
247 
248   // Add the size of the pointed element to ScEnd.
249   auto &DL = Lp->getHeader()->getDataLayout();
250   Type *IdxTy = DL.getIndexType(PtrExpr->getType());
251   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
252   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
253 
254   Iter->second = {ScStart, ScEnd};
255   return Iter->second;
256 }
257 
258 /// Calculate Start and End points of memory access using
259 /// getStartAndEndForAccess.
260 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
261                                     Type *AccessTy, bool WritePtr,
262                                     unsigned DepSetId, unsigned ASId,
263                                     PredicatedScalarEvolution &PSE,
264                                     bool NeedsFreeze) {
265   const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
266       Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds());
267   assert(!isa<SCEVCouldNotCompute>(ScStart) &&
268          !isa<SCEVCouldNotCompute>(ScEnd) &&
269          "must be able to compute both start and end expressions");
270   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
271                         NeedsFreeze);
272 }
273 
274 bool RuntimePointerChecking::tryToCreateDiffCheck(
275     const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
276   // If either group contains multiple different pointers, bail out.
277   // TODO: Support multiple pointers by using the minimum or maximum pointer,
278   // depending on src & sink.
279   if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
280     return false;
281 
282   PointerInfo *Src = &Pointers[CGI.Members[0]];
283   PointerInfo *Sink = &Pointers[CGJ.Members[0]];
284 
285   // If either pointer is read and written, multiple checks may be needed. Bail
286   // out.
287   if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
288       !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
289     return false;
290 
291   ArrayRef<unsigned> AccSrc =
292       DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
293   ArrayRef<unsigned> AccSink =
294       DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
295   // If either pointer is accessed multiple times, there may not be a clear
296   // src/sink relation. Bail out for now.
297   if (AccSrc.size() != 1 || AccSink.size() != 1)
298     return false;
299 
300   // If the sink is accessed before src, swap src/sink.
301   if (AccSink[0] < AccSrc[0])
302     std::swap(Src, Sink);
303 
304   auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
305   auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
306   if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
307       SinkAR->getLoop() != DC.getInnermostLoop())
308     return false;
309 
310   SmallVector<Instruction *, 4> SrcInsts =
311       DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
312   SmallVector<Instruction *, 4> SinkInsts =
313       DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
314   Type *SrcTy = getLoadStoreType(SrcInsts[0]);
315   Type *DstTy = getLoadStoreType(SinkInsts[0]);
316   if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
317     return false;
318 
319   const DataLayout &DL =
320       SinkAR->getLoop()->getHeader()->getDataLayout();
321   unsigned AllocSize =
322       std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
323 
324   // Only matching constant steps matching the AllocSize are supported at the
325   // moment. This simplifies the difference computation. Can be extended in the
326   // future.
327   auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
328   if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
329       Step->getAPInt().abs() != AllocSize)
330     return false;
331 
332   IntegerType *IntTy =
333       IntegerType::get(Src->PointerValue->getContext(),
334                        DL.getPointerSizeInBits(CGI.AddressSpace));
335 
336   // When counting down, the dependence distance needs to be swapped.
337   if (Step->getValue()->isNegative())
338     std::swap(SinkAR, SrcAR);
339 
340   const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
341   const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
342   if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
343       isa<SCEVCouldNotCompute>(SrcStartInt))
344     return false;
345 
346   const Loop *InnerLoop = SrcAR->getLoop();
347   // If the start values for both Src and Sink also vary according to an outer
348   // loop, then it's probably better to avoid creating diff checks because
349   // they may not be hoisted. We should instead let llvm::addRuntimeChecks
350   // do the expanded full range overlap checks, which can be hoisted.
351   if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
352       isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
353     auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
354     auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
355     const Loop *StartARLoop = SrcStartAR->getLoop();
356     if (StartARLoop == SinkStartAR->getLoop() &&
357         StartARLoop == InnerLoop->getParentLoop() &&
358         // If the diff check would already be loop invariant (due to the
359         // recurrences being the same), then we prefer to keep the diff checks
360         // because they are cheaper.
361         SrcStartAR->getStepRecurrence(*SE) !=
362             SinkStartAR->getStepRecurrence(*SE)) {
363       LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
364                            "cannot be hoisted out of the outer loop\n");
365       return false;
366     }
367   }
368 
369   LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
370                     << "SrcStart: " << *SrcStartInt << '\n'
371                     << "SinkStartInt: " << *SinkStartInt << '\n');
372   DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
373                           Src->NeedsFreeze || Sink->NeedsFreeze);
374   return true;
375 }
376 
377 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
378   SmallVector<RuntimePointerCheck, 4> Checks;
379 
380   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
381     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
382       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
383       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
384 
385       if (needsChecking(CGI, CGJ)) {
386         CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
387         Checks.push_back(std::make_pair(&CGI, &CGJ));
388       }
389     }
390   }
391   return Checks;
392 }
393 
394 void RuntimePointerChecking::generateChecks(
395     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
396   assert(Checks.empty() && "Checks is not empty");
397   groupChecks(DepCands, UseDependencies);
398   Checks = generateChecks();
399 }
400 
401 bool RuntimePointerChecking::needsChecking(
402     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
403   for (const auto &I : M.Members)
404     for (const auto &J : N.Members)
405       if (needsChecking(I, J))
406         return true;
407   return false;
408 }
409 
410 /// Compare \p I and \p J and return the minimum.
411 /// Return nullptr in case we couldn't find an answer.
412 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
413                                    ScalarEvolution *SE) {
414   const SCEV *Diff = SE->getMinusSCEV(J, I);
415   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
416 
417   if (!C)
418     return nullptr;
419   return C->getValue()->isNegative() ? J : I;
420 }
421 
422 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
423                                          RuntimePointerChecking &RtCheck) {
424   return addPointer(
425       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
426       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
427       RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
428 }
429 
430 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
431                                          const SCEV *End, unsigned AS,
432                                          bool NeedsFreeze,
433                                          ScalarEvolution &SE) {
434   assert(AddressSpace == AS &&
435          "all pointers in a checking group must be in the same address space");
436 
437   // Compare the starts and ends with the known minimum and maximum
438   // of this set. We need to know how we compare against the min/max
439   // of the set in order to be able to emit memchecks.
440   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
441   if (!Min0)
442     return false;
443 
444   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
445   if (!Min1)
446     return false;
447 
448   // Update the low bound  expression if we've found a new min value.
449   if (Min0 == Start)
450     Low = Start;
451 
452   // Update the high bound expression if we've found a new max value.
453   if (Min1 != End)
454     High = End;
455 
456   Members.push_back(Index);
457   this->NeedsFreeze |= NeedsFreeze;
458   return true;
459 }
460 
461 void RuntimePointerChecking::groupChecks(
462     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
463   // We build the groups from dependency candidates equivalence classes
464   // because:
465   //    - We know that pointers in the same equivalence class share
466   //      the same underlying object and therefore there is a chance
467   //      that we can compare pointers
468   //    - We wouldn't be able to merge two pointers for which we need
469   //      to emit a memcheck. The classes in DepCands are already
470   //      conveniently built such that no two pointers in the same
471   //      class need checking against each other.
472 
473   // We use the following (greedy) algorithm to construct the groups
474   // For every pointer in the equivalence class:
475   //   For each existing group:
476   //   - if the difference between this pointer and the min/max bounds
477   //     of the group is a constant, then make the pointer part of the
478   //     group and update the min/max bounds of that group as required.
479 
480   CheckingGroups.clear();
481 
482   // If we need to check two pointers to the same underlying object
483   // with a non-constant difference, we shouldn't perform any pointer
484   // grouping with those pointers. This is because we can easily get
485   // into cases where the resulting check would return false, even when
486   // the accesses are safe.
487   //
488   // The following example shows this:
489   // for (i = 0; i < 1000; ++i)
490   //   a[5000 + i * m] = a[i] + a[i + 9000]
491   //
492   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
493   // (0, 10000) which is always false. However, if m is 1, there is no
494   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
495   // us to perform an accurate check in this case.
496   //
497   // The above case requires that we have an UnknownDependence between
498   // accesses to the same underlying object. This cannot happen unless
499   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
500   // is also false. In this case we will use the fallback path and create
501   // separate checking groups for all pointers.
502 
503   // If we don't have the dependency partitions, construct a new
504   // checking pointer group for each pointer. This is also required
505   // for correctness, because in this case we can have checking between
506   // pointers to the same underlying object.
507   if (!UseDependencies) {
508     for (unsigned I = 0; I < Pointers.size(); ++I)
509       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
510     return;
511   }
512 
513   unsigned TotalComparisons = 0;
514 
515   DenseMap<Value *, SmallVector<unsigned>> PositionMap;
516   for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
517     auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}});
518     It->second.push_back(Index);
519   }
520 
521   // We need to keep track of what pointers we've already seen so we
522   // don't process them twice.
523   SmallSet<unsigned, 2> Seen;
524 
525   // Go through all equivalence classes, get the "pointer check groups"
526   // and add them to the overall solution. We use the order in which accesses
527   // appear in 'Pointers' to enforce determinism.
528   for (unsigned I = 0; I < Pointers.size(); ++I) {
529     // We've seen this pointer before, and therefore already processed
530     // its equivalence class.
531     if (Seen.count(I))
532       continue;
533 
534     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
535                                            Pointers[I].IsWritePtr);
536 
537     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
538     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
539 
540     // Because DepCands is constructed by visiting accesses in the order in
541     // which they appear in alias sets (which is deterministic) and the
542     // iteration order within an equivalence class member is only dependent on
543     // the order in which unions and insertions are performed on the
544     // equivalence class, the iteration order is deterministic.
545     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
546          MI != ME; ++MI) {
547       auto PointerI = PositionMap.find(MI->getPointer());
548       assert(PointerI != PositionMap.end() &&
549              "pointer in equivalence class not found in PositionMap");
550       for (unsigned Pointer : PointerI->second) {
551         bool Merged = false;
552         // Mark this pointer as seen.
553         Seen.insert(Pointer);
554 
555         // Go through all the existing sets and see if we can find one
556         // which can include this pointer.
557         for (RuntimeCheckingPtrGroup &Group : Groups) {
558           // Don't perform more than a certain amount of comparisons.
559           // This should limit the cost of grouping the pointers to something
560           // reasonable.  If we do end up hitting this threshold, the algorithm
561           // will create separate groups for all remaining pointers.
562           if (TotalComparisons > MemoryCheckMergeThreshold)
563             break;
564 
565           TotalComparisons++;
566 
567           if (Group.addPointer(Pointer, *this)) {
568             Merged = true;
569             break;
570           }
571         }
572 
573         if (!Merged)
574           // We couldn't add this pointer to any existing set or the threshold
575           // for the number of comparisons has been reached. Create a new group
576           // to hold the current pointer.
577           Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
578       }
579     }
580 
581     // We've computed the grouped checks for this partition.
582     // Save the results and continue with the next one.
583     llvm::copy(Groups, std::back_inserter(CheckingGroups));
584   }
585 }
586 
587 bool RuntimePointerChecking::arePointersInSamePartition(
588     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
589     unsigned PtrIdx2) {
590   return (PtrToPartition[PtrIdx1] != -1 &&
591           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
592 }
593 
594 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
595   const PointerInfo &PointerI = Pointers[I];
596   const PointerInfo &PointerJ = Pointers[J];
597 
598   // No need to check if two readonly pointers intersect.
599   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
600     return false;
601 
602   // Only need to check pointers between two different dependency sets.
603   if (PointerI.DependencySetId == PointerJ.DependencySetId)
604     return false;
605 
606   // Only need to check pointers in the same alias set.
607   if (PointerI.AliasSetId != PointerJ.AliasSetId)
608     return false;
609 
610   return true;
611 }
612 
613 void RuntimePointerChecking::printChecks(
614     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
615     unsigned Depth) const {
616   unsigned N = 0;
617   for (const auto &[Check1, Check2] : Checks) {
618     const auto &First = Check1->Members, &Second = Check2->Members;
619 
620     OS.indent(Depth) << "Check " << N++ << ":\n";
621 
622     OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n";
623     for (unsigned K : First)
624       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
625 
626     OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n";
627     for (unsigned K : Second)
628       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
629   }
630 }
631 
632 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
633 
634   OS.indent(Depth) << "Run-time memory checks:\n";
635   printChecks(OS, Checks, Depth);
636 
637   OS.indent(Depth) << "Grouped accesses:\n";
638   for (const auto &CG : CheckingGroups) {
639     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
640     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
641                          << ")\n";
642     for (unsigned Member : CG.Members) {
643       OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
644     }
645   }
646 }
647 
648 namespace {
649 
650 /// Analyses memory accesses in a loop.
651 ///
652 /// Checks whether run time pointer checks are needed and builds sets for data
653 /// dependence checking.
654 class AccessAnalysis {
655 public:
656   /// Read or write access location.
657   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
658   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
659 
660   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
661                  MemoryDepChecker::DepCandidates &DA,
662                  PredicatedScalarEvolution &PSE,
663                  SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
664       : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
665         LoopAliasScopes(LoopAliasScopes) {
666     // We're analyzing dependences across loop iterations.
667     BAA.enableCrossIterationMode();
668   }
669 
670   /// Register a load  and whether it is only read from.
671   void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
672     Value *Ptr = const_cast<Value *>(Loc.Ptr);
673     AST.add(adjustLoc(Loc));
674     Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
675     if (IsReadOnly)
676       ReadOnlyPtr.insert(Ptr);
677   }
678 
679   /// Register a store.
680   void addStore(MemoryLocation &Loc, Type *AccessTy) {
681     Value *Ptr = const_cast<Value *>(Loc.Ptr);
682     AST.add(adjustLoc(Loc));
683     Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
684   }
685 
686   /// Check if we can emit a run-time no-alias check for \p Access.
687   ///
688   /// Returns true if we can emit a run-time no alias check for \p Access.
689   /// If we can check this access, this also adds it to a dependence set and
690   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
691   /// we will attempt to use additional run-time checks in order to get
692   /// the bounds of the pointer.
693   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
694                             MemAccessInfo Access, Type *AccessTy,
695                             const DenseMap<Value *, const SCEV *> &Strides,
696                             DenseMap<Value *, unsigned> &DepSetId,
697                             Loop *TheLoop, unsigned &RunningDepId,
698                             unsigned ASId, bool ShouldCheckStride, bool Assume);
699 
700   /// Check whether we can check the pointers at runtime for
701   /// non-intersection.
702   ///
703   /// Returns true if we need no check or if we do and we can generate them
704   /// (i.e. the pointers have computable bounds).
705   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
706                        Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
707                        Value *&UncomputablePtr, bool ShouldCheckWrap = false);
708 
709   /// Goes over all memory accesses, checks whether a RT check is needed
710   /// and builds sets of dependent accesses.
711   void buildDependenceSets() {
712     processMemAccesses();
713   }
714 
715   /// Initial processing of memory accesses determined that we need to
716   /// perform dependency checking.
717   ///
718   /// Note that this can later be cleared if we retry memcheck analysis without
719   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
720   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
721 
722   /// We decided that no dependence analysis would be used.  Reset the state.
723   void resetDepChecks(MemoryDepChecker &DepChecker) {
724     CheckDeps.clear();
725     DepChecker.clearDependences();
726   }
727 
728   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
729 
730   const DenseMap<Value *, SmallVector<const Value *, 16>> &
731   getUnderlyingObjects() {
732     return UnderlyingObjects;
733   }
734 
735 private:
736   typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
737 
738   /// Adjust the MemoryLocation so that it represents accesses to this
739   /// location across all iterations, rather than a single one.
740   MemoryLocation adjustLoc(MemoryLocation Loc) const {
741     // The accessed location varies within the loop, but remains within the
742     // underlying object.
743     Loc.Size = LocationSize::beforeOrAfterPointer();
744     Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
745     Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
746     return Loc;
747   }
748 
749   /// Drop alias scopes that are only valid within a single loop iteration.
750   MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
751     if (!ScopeList)
752       return nullptr;
753 
754     // For the sake of simplicity, drop the whole scope list if any scope is
755     // iteration-local.
756     if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
757           return LoopAliasScopes.contains(cast<MDNode>(Scope));
758         }))
759       return nullptr;
760 
761     return ScopeList;
762   }
763 
764   /// Go over all memory access and check whether runtime pointer checks
765   /// are needed and build sets of dependency check candidates.
766   void processMemAccesses();
767 
768   /// Map of all accesses. Values are the types used to access memory pointed to
769   /// by the pointer.
770   PtrAccessMap Accesses;
771 
772   /// The loop being checked.
773   const Loop *TheLoop;
774 
775   /// List of accesses that need a further dependence check.
776   MemAccessInfoList CheckDeps;
777 
778   /// Set of pointers that are read only.
779   SmallPtrSet<Value*, 16> ReadOnlyPtr;
780 
781   /// Batched alias analysis results.
782   BatchAAResults BAA;
783 
784   /// An alias set tracker to partition the access set by underlying object and
785   //intrinsic property (such as TBAA metadata).
786   AliasSetTracker AST;
787 
788   LoopInfo *LI;
789 
790   /// Sets of potentially dependent accesses - members of one set share an
791   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
792   /// dependence check.
793   MemoryDepChecker::DepCandidates &DepCands;
794 
795   /// Initial processing of memory accesses determined that we may need
796   /// to add memchecks.  Perform the analysis to determine the necessary checks.
797   ///
798   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
799   /// memcheck analysis without dependency checking
800   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
801   /// cleared while this remains set if we have potentially dependent accesses.
802   bool IsRTCheckAnalysisNeeded = false;
803 
804   /// The SCEV predicate containing all the SCEV-related assumptions.
805   PredicatedScalarEvolution &PSE;
806 
807   DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
808 
809   /// Alias scopes that are declared inside the loop, and as such not valid
810   /// across iterations.
811   SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
812 };
813 
814 } // end anonymous namespace
815 
816 /// Check whether a pointer can participate in a runtime bounds check.
817 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
818 /// by adding run-time checks (overflow checks) if necessary.
819 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
820                                 const SCEV *PtrScev, Loop *L, bool Assume) {
821   // The bounds for loop-invariant pointer is trivial.
822   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
823     return true;
824 
825   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
826 
827   if (!AR && Assume)
828     AR = PSE.getAsAddRec(Ptr);
829 
830   if (!AR)
831     return false;
832 
833   return AR->isAffine();
834 }
835 
836 /// Check whether a pointer address cannot wrap.
837 static bool isNoWrap(PredicatedScalarEvolution &PSE,
838                      const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy,
839                      Loop *L) {
840   const SCEV *PtrScev = PSE.getSCEV(Ptr);
841   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
842     return true;
843 
844   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
845   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
846     return true;
847 
848   return false;
849 }
850 
851 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
852                           function_ref<void(Value *)> AddPointer) {
853   SmallPtrSet<Value *, 8> Visited;
854   SmallVector<Value *> WorkList;
855   WorkList.push_back(StartPtr);
856 
857   while (!WorkList.empty()) {
858     Value *Ptr = WorkList.pop_back_val();
859     if (!Visited.insert(Ptr).second)
860       continue;
861     auto *PN = dyn_cast<PHINode>(Ptr);
862     // SCEV does not look through non-header PHIs inside the loop. Such phis
863     // can be analyzed by adding separate accesses for each incoming pointer
864     // value.
865     if (PN && InnermostLoop.contains(PN->getParent()) &&
866         PN->getParent() != InnermostLoop.getHeader()) {
867       for (const Use &Inc : PN->incoming_values())
868         WorkList.push_back(Inc);
869     } else
870       AddPointer(Ptr);
871   }
872 }
873 
874 // Walk back through the IR for a pointer, looking for a select like the
875 // following:
876 //
877 //  %offset = select i1 %cmp, i64 %a, i64 %b
878 //  %addr = getelementptr double, double* %base, i64 %offset
879 //  %ld = load double, double* %addr, align 8
880 //
881 // We won't be able to form a single SCEVAddRecExpr from this since the
882 // address for each loop iteration depends on %cmp. We could potentially
883 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
884 // memory safety/aliasing if needed.
885 //
886 // If we encounter some IR we don't yet handle, or something obviously fine
887 // like a constant, then we just add the SCEV for that term to the list passed
888 // in by the caller. If we have a node that may potentially yield a valid
889 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
890 // ourselves before adding to the list.
891 static void findForkedSCEVs(
892     ScalarEvolution *SE, const Loop *L, Value *Ptr,
893     SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
894     unsigned Depth) {
895   // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
896   // we've exceeded our limit on recursion, just return whatever we have
897   // regardless of whether it can be used for a forked pointer or not, along
898   // with an indication of whether it might be a poison or undef value.
899   const SCEV *Scev = SE->getSCEV(Ptr);
900   if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
901       !isa<Instruction>(Ptr) || Depth == 0) {
902     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
903     return;
904   }
905 
906   Depth--;
907 
908   auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
909     return get<1>(S);
910   };
911 
912   auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
913     switch (Opcode) {
914     case Instruction::Add:
915       return SE->getAddExpr(L, R);
916     case Instruction::Sub:
917       return SE->getMinusSCEV(L, R);
918     default:
919       llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
920     }
921   };
922 
923   Instruction *I = cast<Instruction>(Ptr);
924   unsigned Opcode = I->getOpcode();
925   switch (Opcode) {
926   case Instruction::GetElementPtr: {
927     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
928     Type *SourceTy = GEP->getSourceElementType();
929     // We only handle base + single offset GEPs here for now.
930     // Not dealing with preexisting gathers yet, so no vectors.
931     if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
932       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
933       break;
934     }
935     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
936     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
937     findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
938     findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
939 
940     // See if we need to freeze our fork...
941     bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
942                        any_of(OffsetScevs, UndefPoisonCheck);
943 
944     // Check that we only have a single fork, on either the base or the offset.
945     // Copy the SCEV across for the one without a fork in order to generate
946     // the full SCEV for both sides of the GEP.
947     if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
948       BaseScevs.push_back(BaseScevs[0]);
949     else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
950       OffsetScevs.push_back(OffsetScevs[0]);
951     else {
952       ScevList.emplace_back(Scev, NeedsFreeze);
953       break;
954     }
955 
956     // Find the pointer type we need to extend to.
957     Type *IntPtrTy = SE->getEffectiveSCEVType(
958         SE->getSCEV(GEP->getPointerOperand())->getType());
959 
960     // Find the size of the type being pointed to. We only have a single
961     // index term (guarded above) so we don't need to index into arrays or
962     // structures, just get the size of the scalar value.
963     const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
964 
965     // Scale up the offsets by the size of the type, then add to the bases.
966     const SCEV *Scaled1 = SE->getMulExpr(
967         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
968     const SCEV *Scaled2 = SE->getMulExpr(
969         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
970     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
971                           NeedsFreeze);
972     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
973                           NeedsFreeze);
974     break;
975   }
976   case Instruction::Select: {
977     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
978     // A select means we've found a forked pointer, but we currently only
979     // support a single select per pointer so if there's another behind this
980     // then we just bail out and return the generic SCEV.
981     findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
982     findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
983     if (ChildScevs.size() == 2) {
984       ScevList.push_back(ChildScevs[0]);
985       ScevList.push_back(ChildScevs[1]);
986     } else
987       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
988     break;
989   }
990   case Instruction::PHI: {
991     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
992     // A phi means we've found a forked pointer, but we currently only
993     // support a single phi per pointer so if there's another behind this
994     // then we just bail out and return the generic SCEV.
995     if (I->getNumOperands() == 2) {
996       findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
997       findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
998     }
999     if (ChildScevs.size() == 2) {
1000       ScevList.push_back(ChildScevs[0]);
1001       ScevList.push_back(ChildScevs[1]);
1002     } else
1003       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1004     break;
1005   }
1006   case Instruction::Add:
1007   case Instruction::Sub: {
1008     SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
1009     SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
1010     findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
1011     findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1012 
1013     // See if we need to freeze our fork...
1014     bool NeedsFreeze =
1015         any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1016 
1017     // Check that we only have a single fork, on either the left or right side.
1018     // Copy the SCEV across for the one without a fork in order to generate
1019     // the full SCEV for both sides of the BinOp.
1020     if (LScevs.size() == 2 && RScevs.size() == 1)
1021       RScevs.push_back(RScevs[0]);
1022     else if (RScevs.size() == 2 && LScevs.size() == 1)
1023       LScevs.push_back(LScevs[0]);
1024     else {
1025       ScevList.emplace_back(Scev, NeedsFreeze);
1026       break;
1027     }
1028 
1029     ScevList.emplace_back(
1030         GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1031         NeedsFreeze);
1032     ScevList.emplace_back(
1033         GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1034         NeedsFreeze);
1035     break;
1036   }
1037   default:
1038     // Just return the current SCEV if we haven't handled the instruction yet.
1039     LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1040     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1041     break;
1042   }
1043 }
1044 
1045 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1046 findForkedPointer(PredicatedScalarEvolution &PSE,
1047                   const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1048                   const Loop *L) {
1049   ScalarEvolution *SE = PSE.getSE();
1050   assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1051   SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1052   findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1053 
1054   // For now, we will only accept a forked pointer with two possible SCEVs
1055   // that are either SCEVAddRecExprs or loop invariant.
1056   if (Scevs.size() == 2 &&
1057       (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1058        SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1059       (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1060        SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1061     LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1062     LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1063     LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1064     return Scevs;
1065   }
1066 
1067   return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1068 }
1069 
1070 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1071                                           MemAccessInfo Access, Type *AccessTy,
1072                                           const DenseMap<Value *, const SCEV *> &StridesMap,
1073                                           DenseMap<Value *, unsigned> &DepSetId,
1074                                           Loop *TheLoop, unsigned &RunningDepId,
1075                                           unsigned ASId, bool ShouldCheckWrap,
1076                                           bool Assume) {
1077   Value *Ptr = Access.getPointer();
1078 
1079   SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1080       findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1081 
1082   for (auto &P : TranslatedPtrs) {
1083     const SCEV *PtrExpr = get<0>(P);
1084     if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1085       return false;
1086 
1087     // When we run after a failing dependency check we have to make sure
1088     // we don't have wrapping pointers.
1089     if (ShouldCheckWrap) {
1090       // Skip wrap checking when translating pointers.
1091       if (TranslatedPtrs.size() > 1)
1092         return false;
1093 
1094       if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1095         auto *Expr = PSE.getSCEV(Ptr);
1096         if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1097           return false;
1098         PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1099       }
1100     }
1101     // If there's only one option for Ptr, look it up after bounds and wrap
1102     // checking, because assumptions might have been added to PSE.
1103     if (TranslatedPtrs.size() == 1)
1104       TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1105                            false};
1106   }
1107 
1108   for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1109     // The id of the dependence set.
1110     unsigned DepId;
1111 
1112     if (isDependencyCheckNeeded()) {
1113       Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1114       unsigned &LeaderId = DepSetId[Leader];
1115       if (!LeaderId)
1116         LeaderId = RunningDepId++;
1117       DepId = LeaderId;
1118     } else
1119       // Each access has its own dependence set.
1120       DepId = RunningDepId++;
1121 
1122     bool IsWrite = Access.getInt();
1123     RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1124                    NeedsFreeze);
1125     LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1126   }
1127 
1128   return true;
1129 }
1130 
1131 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1132                                      ScalarEvolution *SE, Loop *TheLoop,
1133                                      const DenseMap<Value *, const SCEV *> &StridesMap,
1134                                      Value *&UncomputablePtr, bool ShouldCheckWrap) {
1135   // Find pointers with computable bounds. We are going to use this information
1136   // to place a runtime bound check.
1137   bool CanDoRT = true;
1138 
1139   bool MayNeedRTCheck = false;
1140   if (!IsRTCheckAnalysisNeeded) return true;
1141 
1142   bool IsDepCheckNeeded = isDependencyCheckNeeded();
1143 
1144   // We assign a consecutive id to access from different alias sets.
1145   // Accesses between different groups doesn't need to be checked.
1146   unsigned ASId = 0;
1147   for (auto &AS : AST) {
1148     int NumReadPtrChecks = 0;
1149     int NumWritePtrChecks = 0;
1150     bool CanDoAliasSetRT = true;
1151     ++ASId;
1152     auto ASPointers = AS.getPointers();
1153 
1154     // We assign consecutive id to access from different dependence sets.
1155     // Accesses within the same set don't need a runtime check.
1156     unsigned RunningDepId = 1;
1157     DenseMap<Value *, unsigned> DepSetId;
1158 
1159     SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1160 
1161     // First, count how many write and read accesses are in the alias set. Also
1162     // collect MemAccessInfos for later.
1163     SmallVector<MemAccessInfo, 4> AccessInfos;
1164     for (const Value *ConstPtr : ASPointers) {
1165       Value *Ptr = const_cast<Value *>(ConstPtr);
1166       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1167       if (IsWrite)
1168         ++NumWritePtrChecks;
1169       else
1170         ++NumReadPtrChecks;
1171       AccessInfos.emplace_back(Ptr, IsWrite);
1172     }
1173 
1174     // We do not need runtime checks for this alias set, if there are no writes
1175     // or a single write and no reads.
1176     if (NumWritePtrChecks == 0 ||
1177         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1178       assert((ASPointers.size() <= 1 ||
1179               all_of(ASPointers,
1180                      [this](const Value *Ptr) {
1181                        MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1182                                                  true);
1183                        return DepCands.findValue(AccessWrite) == DepCands.end();
1184                      })) &&
1185              "Can only skip updating CanDoRT below, if all entries in AS "
1186              "are reads or there is at most 1 entry");
1187       continue;
1188     }
1189 
1190     for (auto &Access : AccessInfos) {
1191       for (const auto &AccessTy : Accesses[Access]) {
1192         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1193                                   DepSetId, TheLoop, RunningDepId, ASId,
1194                                   ShouldCheckWrap, false)) {
1195           LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1196                             << *Access.getPointer() << '\n');
1197           Retries.push_back({Access, AccessTy});
1198           CanDoAliasSetRT = false;
1199         }
1200       }
1201     }
1202 
1203     // Note that this function computes CanDoRT and MayNeedRTCheck
1204     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1205     // we have a pointer for which we couldn't find the bounds but we don't
1206     // actually need to emit any checks so it does not matter.
1207     //
1208     // We need runtime checks for this alias set, if there are at least 2
1209     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1210     // any bound checks (because in that case the number of dependence sets is
1211     // incomplete).
1212     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1213 
1214     // We need to perform run-time alias checks, but some pointers had bounds
1215     // that couldn't be checked.
1216     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1217       // Reset the CanDoSetRt flag and retry all accesses that have failed.
1218       // We know that we need these checks, so we can now be more aggressive
1219       // and add further checks if required (overflow checks).
1220       CanDoAliasSetRT = true;
1221       for (const auto &[Access, AccessTy] : Retries) {
1222         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1223                                   DepSetId, TheLoop, RunningDepId, ASId,
1224                                   ShouldCheckWrap, /*Assume=*/true)) {
1225           CanDoAliasSetRT = false;
1226           UncomputablePtr = Access.getPointer();
1227           break;
1228         }
1229       }
1230     }
1231 
1232     CanDoRT &= CanDoAliasSetRT;
1233     MayNeedRTCheck |= NeedsAliasSetRTCheck;
1234     ++ASId;
1235   }
1236 
1237   // If the pointers that we would use for the bounds comparison have different
1238   // address spaces, assume the values aren't directly comparable, so we can't
1239   // use them for the runtime check. We also have to assume they could
1240   // overlap. In the future there should be metadata for whether address spaces
1241   // are disjoint.
1242   unsigned NumPointers = RtCheck.Pointers.size();
1243   for (unsigned i = 0; i < NumPointers; ++i) {
1244     for (unsigned j = i + 1; j < NumPointers; ++j) {
1245       // Only need to check pointers between two different dependency sets.
1246       if (RtCheck.Pointers[i].DependencySetId ==
1247           RtCheck.Pointers[j].DependencySetId)
1248        continue;
1249       // Only need to check pointers in the same alias set.
1250       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1251         continue;
1252 
1253       Value *PtrI = RtCheck.Pointers[i].PointerValue;
1254       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1255 
1256       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1257       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1258       if (ASi != ASj) {
1259         LLVM_DEBUG(
1260             dbgs() << "LAA: Runtime check would require comparison between"
1261                       " different address spaces\n");
1262         return false;
1263       }
1264     }
1265   }
1266 
1267   if (MayNeedRTCheck && CanDoRT)
1268     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1269 
1270   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1271                     << " pointer comparisons.\n");
1272 
1273   // If we can do run-time checks, but there are no checks, no runtime checks
1274   // are needed. This can happen when all pointers point to the same underlying
1275   // object for example.
1276   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1277 
1278   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1279   if (!CanDoRTIfNeeded)
1280     RtCheck.reset();
1281   return CanDoRTIfNeeded;
1282 }
1283 
1284 void AccessAnalysis::processMemAccesses() {
1285   // We process the set twice: first we process read-write pointers, last we
1286   // process read-only pointers. This allows us to skip dependence tests for
1287   // read-only pointers.
1288 
1289   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1290   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
1291   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
1292   LLVM_DEBUG({
1293     for (const auto &[A, _] : Accesses)
1294       dbgs() << "\t" << *A.getPointer() << " ("
1295              << (A.getInt() ? "write"
1296                             : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
1297                                                                  : "read"))
1298              << ")\n";
1299   });
1300 
1301   // The AliasSetTracker has nicely partitioned our pointers by metadata
1302   // compatibility and potential for underlying-object overlap. As a result, we
1303   // only need to check for potential pointer dependencies within each alias
1304   // set.
1305   for (const auto &AS : AST) {
1306     // Note that both the alias-set tracker and the alias sets themselves used
1307     // ordered collections internally and so the iteration order here is
1308     // deterministic.
1309     auto ASPointers = AS.getPointers();
1310 
1311     bool SetHasWrite = false;
1312 
1313     // Map of pointers to last access encountered.
1314     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1315     UnderlyingObjToAccessMap ObjToLastAccess;
1316 
1317     // Set of access to check after all writes have been processed.
1318     PtrAccessMap DeferredAccesses;
1319 
1320     // Iterate over each alias set twice, once to process read/write pointers,
1321     // and then to process read-only pointers.
1322     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1323       bool UseDeferred = SetIteration > 0;
1324       PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1325 
1326       for (const Value *ConstPtr : ASPointers) {
1327         Value *Ptr = const_cast<Value *>(ConstPtr);
1328 
1329         // For a single memory access in AliasSetTracker, Accesses may contain
1330         // both read and write, and they both need to be handled for CheckDeps.
1331         for (const auto &[AC, _] : S) {
1332           if (AC.getPointer() != Ptr)
1333             continue;
1334 
1335           bool IsWrite = AC.getInt();
1336 
1337           // If we're using the deferred access set, then it contains only
1338           // reads.
1339           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1340           if (UseDeferred && !IsReadOnlyPtr)
1341             continue;
1342           // Otherwise, the pointer must be in the PtrAccessSet, either as a
1343           // read or a write.
1344           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1345                   S.count(MemAccessInfo(Ptr, false))) &&
1346                  "Alias-set pointer not in the access set?");
1347 
1348           MemAccessInfo Access(Ptr, IsWrite);
1349           DepCands.insert(Access);
1350 
1351           // Memorize read-only pointers for later processing and skip them in
1352           // the first round (they need to be checked after we have seen all
1353           // write pointers). Note: we also mark pointer that are not
1354           // consecutive as "read-only" pointers (so that we check
1355           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1356           if (!UseDeferred && IsReadOnlyPtr) {
1357             // We only use the pointer keys, the types vector values don't
1358             // matter.
1359             DeferredAccesses.insert({Access, {}});
1360             continue;
1361           }
1362 
1363           // If this is a write - check other reads and writes for conflicts. If
1364           // this is a read only check other writes for conflicts (but only if
1365           // there is no other write to the ptr - this is an optimization to
1366           // catch "a[i] = a[i] + " without having to do a dependence check).
1367           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1368             CheckDeps.push_back(Access);
1369             IsRTCheckAnalysisNeeded = true;
1370           }
1371 
1372           if (IsWrite)
1373             SetHasWrite = true;
1374 
1375           // Create sets of pointers connected by a shared alias set and
1376           // underlying object.
1377           typedef SmallVector<const Value *, 16> ValueVector;
1378           ValueVector TempObjects;
1379 
1380           UnderlyingObjects[Ptr] = {};
1381           SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1382           ::getUnderlyingObjects(Ptr, UOs, LI);
1383           LLVM_DEBUG(dbgs()
1384                      << "Underlying objects for pointer " << *Ptr << "\n");
1385           for (const Value *UnderlyingObj : UOs) {
1386             // nullptr never alias, don't join sets for pointer that have "null"
1387             // in their UnderlyingObjects list.
1388             if (isa<ConstantPointerNull>(UnderlyingObj) &&
1389                 !NullPointerIsDefined(
1390                     TheLoop->getHeader()->getParent(),
1391                     UnderlyingObj->getType()->getPointerAddressSpace()))
1392               continue;
1393 
1394             UnderlyingObjToAccessMap::iterator Prev =
1395                 ObjToLastAccess.find(UnderlyingObj);
1396             if (Prev != ObjToLastAccess.end())
1397               DepCands.unionSets(Access, Prev->second);
1398 
1399             ObjToLastAccess[UnderlyingObj] = Access;
1400             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
1401           }
1402         }
1403       }
1404     }
1405   }
1406 }
1407 
1408 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1409 /// i.e. monotonically increasing/decreasing.
1410 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1411                            PredicatedScalarEvolution &PSE, const Loop *L) {
1412 
1413   // FIXME: This should probably only return true for NUW.
1414   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1415     return true;
1416 
1417   if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
1418     return true;
1419 
1420   // Scalar evolution does not propagate the non-wrapping flags to values that
1421   // are derived from a non-wrapping induction variable because non-wrapping
1422   // could be flow-sensitive.
1423   //
1424   // Look through the potentially overflowing instruction to try to prove
1425   // non-wrapping for the *specific* value of Ptr.
1426 
1427   // The arithmetic implied by an inbounds GEP can't overflow.
1428   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1429   if (!GEP || !GEP->isInBounds())
1430     return false;
1431 
1432   // Make sure there is only one non-const index and analyze that.
1433   Value *NonConstIndex = nullptr;
1434   for (Value *Index : GEP->indices())
1435     if (!isa<ConstantInt>(Index)) {
1436       if (NonConstIndex)
1437         return false;
1438       NonConstIndex = Index;
1439     }
1440   if (!NonConstIndex)
1441     // The recurrence is on the pointer, ignore for now.
1442     return false;
1443 
1444   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1445   // AddRec using a NSW operation.
1446   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1447     if (OBO->hasNoSignedWrap() &&
1448         // Assume constant for other the operand so that the AddRec can be
1449         // easily found.
1450         isa<ConstantInt>(OBO->getOperand(1))) {
1451       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1452 
1453       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1454         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1455     }
1456 
1457   return false;
1458 }
1459 
1460 /// Check whether the access through \p Ptr has a constant stride.
1461 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
1462                                           Type *AccessTy, Value *Ptr,
1463                                           const Loop *Lp,
1464                                           const DenseMap<Value *, const SCEV *> &StridesMap,
1465                                           bool Assume, bool ShouldCheckWrap) {
1466   Type *Ty = Ptr->getType();
1467   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1468 
1469   if (isa<ScalableVectorType>(AccessTy)) {
1470     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1471                       << "\n");
1472     return std::nullopt;
1473   }
1474 
1475   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1476 
1477   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1478   if (Assume && !AR)
1479     AR = PSE.getAsAddRec(Ptr);
1480 
1481   if (!AR) {
1482     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1483                       << " SCEV: " << *PtrScev << "\n");
1484     return std::nullopt;
1485   }
1486 
1487   // The access function must stride over the innermost loop.
1488   if (Lp != AR->getLoop()) {
1489     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1490                       << *Ptr << " SCEV: " << *AR << "\n");
1491     return std::nullopt;
1492   }
1493 
1494   // Check the step is constant.
1495   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1496 
1497   // Calculate the pointer stride and check if it is constant.
1498   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1499   if (!C) {
1500     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1501                       << " SCEV: " << *AR << "\n");
1502     return std::nullopt;
1503   }
1504 
1505   auto &DL = Lp->getHeader()->getDataLayout();
1506   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1507   int64_t Size = AllocSize.getFixedValue();
1508   const APInt &APStepVal = C->getAPInt();
1509 
1510   // Huge step value - give up.
1511   if (APStepVal.getBitWidth() > 64)
1512     return std::nullopt;
1513 
1514   int64_t StepVal = APStepVal.getSExtValue();
1515 
1516   // Strided access.
1517   int64_t Stride = StepVal / Size;
1518   int64_t Rem = StepVal % Size;
1519   if (Rem)
1520     return std::nullopt;
1521 
1522   if (!ShouldCheckWrap)
1523     return Stride;
1524 
1525   // The address calculation must not wrap. Otherwise, a dependence could be
1526   // inverted.
1527   if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1528     return Stride;
1529 
1530   // An inbounds getelementptr that is a AddRec with a unit stride
1531   // cannot wrap per definition.  If it did, the result would be poison
1532   // and any memory access dependent on it would be immediate UB
1533   // when executed.
1534   if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1535       GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1))
1536     return Stride;
1537 
1538   // If the null pointer is undefined, then a access sequence which would
1539   // otherwise access it can be assumed not to unsigned wrap.  Note that this
1540   // assumes the object in memory is aligned to the natural alignment.
1541   unsigned AddrSpace = Ty->getPointerAddressSpace();
1542   if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1543       (Stride == 1 || Stride == -1))
1544     return Stride;
1545 
1546   if (Assume) {
1547     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1548     LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1549                       << "LAA:   Pointer: " << *Ptr << "\n"
1550                       << "LAA:   SCEV: " << *AR << "\n"
1551                       << "LAA:   Added an overflow assumption\n");
1552     return Stride;
1553   }
1554   LLVM_DEBUG(
1555       dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1556              << *Ptr << " SCEV: " << *AR << "\n");
1557   return std::nullopt;
1558 }
1559 
1560 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1561                                          Type *ElemTyB, Value *PtrB,
1562                                          const DataLayout &DL,
1563                                          ScalarEvolution &SE, bool StrictCheck,
1564                                          bool CheckType) {
1565   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1566 
1567   // Make sure that A and B are different pointers.
1568   if (PtrA == PtrB)
1569     return 0;
1570 
1571   // Make sure that the element types are the same if required.
1572   if (CheckType && ElemTyA != ElemTyB)
1573     return std::nullopt;
1574 
1575   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1576   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1577 
1578   // Check that the address spaces match.
1579   if (ASA != ASB)
1580     return std::nullopt;
1581   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1582 
1583   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1584   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1585   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1586 
1587   int Val;
1588   if (PtrA1 == PtrB1) {
1589     // Retrieve the address space again as pointer stripping now tracks through
1590     // `addrspacecast`.
1591     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1592     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1593     // Check that the address spaces match and that the pointers are valid.
1594     if (ASA != ASB)
1595       return std::nullopt;
1596 
1597     IdxWidth = DL.getIndexSizeInBits(ASA);
1598     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1599     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1600 
1601     OffsetB -= OffsetA;
1602     Val = OffsetB.getSExtValue();
1603   } else {
1604     // Otherwise compute the distance with SCEV between the base pointers.
1605     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1606     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1607     const auto *Diff =
1608         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1609     if (!Diff)
1610       return std::nullopt;
1611     Val = Diff->getAPInt().getSExtValue();
1612   }
1613   int Size = DL.getTypeStoreSize(ElemTyA);
1614   int Dist = Val / Size;
1615 
1616   // Ensure that the calculated distance matches the type-based one after all
1617   // the bitcasts removal in the provided pointers.
1618   if (!StrictCheck || Dist * Size == Val)
1619     return Dist;
1620   return std::nullopt;
1621 }
1622 
1623 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1624                            const DataLayout &DL, ScalarEvolution &SE,
1625                            SmallVectorImpl<unsigned> &SortedIndices) {
1626   assert(llvm::all_of(
1627              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1628          "Expected list of pointer operands.");
1629   // Walk over the pointers, and map each of them to an offset relative to
1630   // first pointer in the array.
1631   Value *Ptr0 = VL[0];
1632 
1633   using DistOrdPair = std::pair<int64_t, int>;
1634   auto Compare = llvm::less_first();
1635   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1636   Offsets.emplace(0, 0);
1637   bool IsConsecutive = true;
1638   for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1639     std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1640                                               /*StrictCheck=*/true);
1641     if (!Diff)
1642       return false;
1643 
1644     // Check if the pointer with the same offset is found.
1645     int64_t Offset = *Diff;
1646     auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1647     if (!IsInserted)
1648       return false;
1649     // Consecutive order if the inserted element is the last one.
1650     IsConsecutive &= std::next(It) == Offsets.end();
1651   }
1652   SortedIndices.clear();
1653   if (!IsConsecutive) {
1654     // Fill SortedIndices array only if it is non-consecutive.
1655     SortedIndices.resize(VL.size());
1656     for (auto [Idx, Off] : enumerate(Offsets))
1657       SortedIndices[Idx] = Off.second;
1658   }
1659   return true;
1660 }
1661 
1662 /// Returns true if the memory operations \p A and \p B are consecutive.
1663 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1664                                ScalarEvolution &SE, bool CheckType) {
1665   Value *PtrA = getLoadStorePointerOperand(A);
1666   Value *PtrB = getLoadStorePointerOperand(B);
1667   if (!PtrA || !PtrB)
1668     return false;
1669   Type *ElemTyA = getLoadStoreType(A);
1670   Type *ElemTyB = getLoadStoreType(B);
1671   std::optional<int> Diff =
1672       getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1673                       /*StrictCheck=*/true, CheckType);
1674   return Diff && *Diff == 1;
1675 }
1676 
1677 void MemoryDepChecker::addAccess(StoreInst *SI) {
1678   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1679                 [this, SI](Value *Ptr) {
1680                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1681                   InstMap.push_back(SI);
1682                   ++AccessIdx;
1683                 });
1684 }
1685 
1686 void MemoryDepChecker::addAccess(LoadInst *LI) {
1687   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1688                 [this, LI](Value *Ptr) {
1689                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1690                   InstMap.push_back(LI);
1691                   ++AccessIdx;
1692                 });
1693 }
1694 
1695 MemoryDepChecker::VectorizationSafetyStatus
1696 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1697   switch (Type) {
1698   case NoDep:
1699   case Forward:
1700   case BackwardVectorizable:
1701     return VectorizationSafetyStatus::Safe;
1702 
1703   case Unknown:
1704     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1705   case ForwardButPreventsForwarding:
1706   case Backward:
1707   case BackwardVectorizableButPreventsForwarding:
1708   case IndirectUnsafe:
1709     return VectorizationSafetyStatus::Unsafe;
1710   }
1711   llvm_unreachable("unexpected DepType!");
1712 }
1713 
1714 bool MemoryDepChecker::Dependence::isBackward() const {
1715   switch (Type) {
1716   case NoDep:
1717   case Forward:
1718   case ForwardButPreventsForwarding:
1719   case Unknown:
1720   case IndirectUnsafe:
1721     return false;
1722 
1723   case BackwardVectorizable:
1724   case Backward:
1725   case BackwardVectorizableButPreventsForwarding:
1726     return true;
1727   }
1728   llvm_unreachable("unexpected DepType!");
1729 }
1730 
1731 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1732   return isBackward() || Type == Unknown;
1733 }
1734 
1735 bool MemoryDepChecker::Dependence::isForward() const {
1736   switch (Type) {
1737   case Forward:
1738   case ForwardButPreventsForwarding:
1739     return true;
1740 
1741   case NoDep:
1742   case Unknown:
1743   case BackwardVectorizable:
1744   case Backward:
1745   case BackwardVectorizableButPreventsForwarding:
1746   case IndirectUnsafe:
1747     return false;
1748   }
1749   llvm_unreachable("unexpected DepType!");
1750 }
1751 
1752 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1753                                                     uint64_t TypeByteSize) {
1754   // If loads occur at a distance that is not a multiple of a feasible vector
1755   // factor store-load forwarding does not take place.
1756   // Positive dependences might cause troubles because vectorizing them might
1757   // prevent store-load forwarding making vectorized code run a lot slower.
1758   //   a[i] = a[i-3] ^ a[i-8];
1759   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1760   //   hence on your typical architecture store-load forwarding does not take
1761   //   place. Vectorizing in such cases does not make sense.
1762   // Store-load forwarding distance.
1763 
1764   // After this many iterations store-to-load forwarding conflicts should not
1765   // cause any slowdowns.
1766   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1767   // Maximum vector factor.
1768   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1769       VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1770 
1771   // Compute the smallest VF at which the store and load would be misaligned.
1772   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1773        VF *= 2) {
1774     // If the number of vector iteration between the store and the load are
1775     // small we could incur conflicts.
1776     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1777       MaxVFWithoutSLForwardIssues = (VF >> 1);
1778       break;
1779     }
1780   }
1781 
1782   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1783     LLVM_DEBUG(
1784         dbgs() << "LAA: Distance " << Distance
1785                << " that could cause a store-load forwarding conflict\n");
1786     return true;
1787   }
1788 
1789   if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1790       MaxVFWithoutSLForwardIssues !=
1791           VectorizerParams::MaxVectorWidth * TypeByteSize)
1792     MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1793   return false;
1794 }
1795 
1796 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1797   if (Status < S)
1798     Status = S;
1799 }
1800 
1801 /// Given a dependence-distance \p Dist between two
1802 /// memory accesses, that have strides in the same direction whose absolute
1803 /// value of the maximum stride is given in \p MaxStride, and that have the same
1804 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1805 /// \p MaxBTC, check if it is possible to prove statically that the dependence
1806 /// distance is larger than the range that the accesses will travel through the
1807 /// execution of the loop. If so, return true; false otherwise. This is useful
1808 /// for example in loops such as the following (PR31098):
1809 ///     for (i = 0; i < D; ++i) {
1810 ///                = out[i];
1811 ///       out[i+D] =
1812 ///     }
1813 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1814                                      const SCEV &MaxBTC, const SCEV &Dist,
1815                                      uint64_t MaxStride,
1816                                      uint64_t TypeByteSize) {
1817 
1818   // If we can prove that
1819   //      (**) |Dist| > MaxBTC * Step
1820   // where Step is the absolute stride of the memory accesses in bytes,
1821   // then there is no dependence.
1822   //
1823   // Rationale:
1824   // We basically want to check if the absolute distance (|Dist/Step|)
1825   // is >= the loop iteration count (or > MaxBTC).
1826   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1827   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1828   // that the dependence distance is >= VF; This is checked elsewhere.
1829   // But in some cases we can prune dependence distances early, and
1830   // even before selecting the VF, and without a runtime test, by comparing
1831   // the distance against the loop iteration count. Since the vectorized code
1832   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1833   // also guarantees that distance >= VF.
1834   //
1835   const uint64_t ByteStride = MaxStride * TypeByteSize;
1836   const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride);
1837   const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1838 
1839   const SCEV *CastedDist = &Dist;
1840   const SCEV *CastedProduct = Product;
1841   uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1842   uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1843 
1844   // The dependence distance can be positive/negative, so we sign extend Dist;
1845   // The multiplication of the absolute stride in bytes and the
1846   // backedgeTakenCount is non-negative, so we zero extend Product.
1847   if (DistTypeSizeBits > ProductTypeSizeBits)
1848     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1849   else
1850     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1851 
1852   // Is  Dist - (MaxBTC * Step) > 0 ?
1853   // (If so, then we have proven (**) because |Dist| >= Dist)
1854   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1855   if (SE.isKnownPositive(Minus))
1856     return true;
1857 
1858   // Second try: Is  -Dist - (MaxBTC * Step) > 0 ?
1859   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1860   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1861   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1862   return SE.isKnownPositive(Minus);
1863 }
1864 
1865 /// Check the dependence for two accesses with the same stride \p Stride.
1866 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1867 /// bytes.
1868 ///
1869 /// \returns true if they are independent.
1870 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1871                                           uint64_t TypeByteSize) {
1872   assert(Stride > 1 && "The stride must be greater than 1");
1873   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1874   assert(Distance > 0 && "The distance must be non-zero");
1875 
1876   // Skip if the distance is not multiple of type byte size.
1877   if (Distance % TypeByteSize)
1878     return false;
1879 
1880   uint64_t ScaledDist = Distance / TypeByteSize;
1881 
1882   // No dependence if the scaled distance is not multiple of the stride.
1883   // E.g.
1884   //      for (i = 0; i < 1024 ; i += 4)
1885   //        A[i+2] = A[i] + 1;
1886   //
1887   // Two accesses in memory (scaled distance is 2, stride is 4):
1888   //     | A[0] |      |      |      | A[4] |      |      |      |
1889   //     |      |      | A[2] |      |      |      | A[6] |      |
1890   //
1891   // E.g.
1892   //      for (i = 0; i < 1024 ; i += 3)
1893   //        A[i+4] = A[i] + 1;
1894   //
1895   // Two accesses in memory (scaled distance is 4, stride is 3):
1896   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1897   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1898   return ScaledDist % Stride;
1899 }
1900 
1901 /// Returns true if any of the underlying objects has a loop varying address,
1902 /// i.e. may change in \p L.
1903 static bool
1904 isLoopVariantIndirectAddress(ArrayRef<const Value *> UnderlyingObjects,
1905                              ScalarEvolution &SE, const Loop *L) {
1906   return any_of(UnderlyingObjects, [&SE, L](const Value *UO) {
1907     return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L);
1908   });
1909 }
1910 
1911 std::variant<MemoryDepChecker::Dependence::DepType,
1912              MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1913 MemoryDepChecker::getDependenceDistanceStrideAndSize(
1914     const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1915     const AccessAnalysis::MemAccessInfo &B, Instruction *BInst,
1916     const DenseMap<Value *, SmallVector<const Value *, 16>>
1917         &UnderlyingObjects) {
1918   auto &DL = InnermostLoop->getHeader()->getDataLayout();
1919   auto &SE = *PSE.getSE();
1920   auto [APtr, AIsWrite] = A;
1921   auto [BPtr, BIsWrite] = B;
1922 
1923   // Two reads are independent.
1924   if (!AIsWrite && !BIsWrite)
1925     return MemoryDepChecker::Dependence::NoDep;
1926 
1927   Type *ATy = getLoadStoreType(AInst);
1928   Type *BTy = getLoadStoreType(BInst);
1929 
1930   // We cannot check pointers in different address spaces.
1931   if (APtr->getType()->getPointerAddressSpace() !=
1932       BPtr->getType()->getPointerAddressSpace())
1933     return MemoryDepChecker::Dependence::Unknown;
1934 
1935   int64_t StrideAPtr =
1936       getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true)
1937           .value_or(0);
1938   int64_t StrideBPtr =
1939       getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true)
1940           .value_or(0);
1941 
1942   const SCEV *Src = PSE.getSCEV(APtr);
1943   const SCEV *Sink = PSE.getSCEV(BPtr);
1944 
1945   // If the induction step is negative we have to invert source and sink of the
1946   // dependence when measuring the distance between them. We should not swap
1947   // AIsWrite with BIsWrite, as their uses expect them in program order.
1948   if (StrideAPtr < 0) {
1949     std::swap(Src, Sink);
1950     std::swap(AInst, BInst);
1951   }
1952 
1953   const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1954 
1955   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1956                     << "(Induction step: " << StrideAPtr << ")\n");
1957   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1958                     << ": " << *Dist << "\n");
1959 
1960   // Needs accesses where the addresses of the accessed underlying objects do
1961   // not change within the loop.
1962   if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE,
1963                                    InnermostLoop) ||
1964       isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE,
1965                                    InnermostLoop))
1966     return MemoryDepChecker::Dependence::IndirectUnsafe;
1967 
1968   // Check if we can prove that Sink only accesses memory after Src's end or
1969   // vice versa. At the moment this is limited to cases where either source or
1970   // sink are loop invariant to avoid compile-time increases. This is not
1971   // required for correctness.
1972   if (SE.isLoopInvariant(Src, InnermostLoop) ||
1973       SE.isLoopInvariant(Sink, InnermostLoop)) {
1974     const auto &[SrcStart, SrcEnd] =
1975         getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds);
1976     const auto &[SinkStart, SinkEnd] =
1977         getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds);
1978     if (!isa<SCEVCouldNotCompute>(SrcStart) &&
1979         !isa<SCEVCouldNotCompute>(SrcEnd) &&
1980         !isa<SCEVCouldNotCompute>(SinkStart) &&
1981         !isa<SCEVCouldNotCompute>(SinkEnd)) {
1982       if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
1983         return MemoryDepChecker::Dependence::NoDep;
1984       if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart))
1985         return MemoryDepChecker::Dependence::NoDep;
1986     }
1987   }
1988 
1989   // Need accesses with constant strides and the same direction. We don't want
1990   // to vectorize "A[B[i]] += ..." and similar code or pointer arithmetic that
1991   // could wrap in the address space.
1992   if (!StrideAPtr || !StrideBPtr || (StrideAPtr > 0 && StrideBPtr < 0) ||
1993       (StrideAPtr < 0 && StrideBPtr > 0)) {
1994     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1995     return MemoryDepChecker::Dependence::Unknown;
1996   }
1997 
1998   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
1999   bool HasSameSize =
2000       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
2001   if (!HasSameSize)
2002     TypeByteSize = 0;
2003   return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtr),
2004                                       std::abs(StrideBPtr), TypeByteSize,
2005                                       AIsWrite, BIsWrite);
2006 }
2007 
2008 MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent(
2009     const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B,
2010     unsigned BIdx,
2011     const DenseMap<Value *, SmallVector<const Value *, 16>>
2012         &UnderlyingObjects) {
2013   assert(AIdx < BIdx && "Must pass arguments in program order");
2014 
2015   // Get the dependence distance, stride, type size and what access writes for
2016   // the dependence between A and B.
2017   auto Res = getDependenceDistanceStrideAndSize(
2018       A, InstMap[AIdx], B, InstMap[BIdx], UnderlyingObjects);
2019   if (std::holds_alternative<Dependence::DepType>(Res))
2020     return std::get<Dependence::DepType>(Res);
2021 
2022   auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] =
2023       std::get<DepDistanceStrideAndSizeInfo>(Res);
2024   bool HasSameSize = TypeByteSize > 0;
2025 
2026   std::optional<uint64_t> CommonStride =
2027       StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt;
2028   if (isa<SCEVCouldNotCompute>(Dist)) {
2029     // TODO: Relax requirement that there is a common stride to retry with
2030     // non-constant distance dependencies.
2031     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2032     LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2033     return Dependence::Unknown;
2034   }
2035 
2036   ScalarEvolution &SE = *PSE.getSE();
2037   auto &DL = InnermostLoop->getHeader()->getDataLayout();
2038   uint64_t MaxStride = std::max(StrideA, StrideB);
2039 
2040   // If the distance between the acecsses is larger than their maximum absolute
2041   // stride multiplied by the symbolic maximum backedge taken count (which is an
2042   // upper bound of the number of iterations), the accesses are independet, i.e.
2043   // they are far enough appart that accesses won't access the same location
2044   // across all loop ierations.
2045   if (HasSameSize && isSafeDependenceDistance(
2046                          DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()),
2047                          *Dist, MaxStride, TypeByteSize))
2048     return Dependence::NoDep;
2049 
2050   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
2051 
2052   // Attempt to prove strided accesses independent.
2053   if (C) {
2054     const APInt &Val = C->getAPInt();
2055     int64_t Distance = Val.getSExtValue();
2056 
2057     // If the distance between accesses and their strides are known constants,
2058     // check whether the accesses interlace each other.
2059     if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 &&
2060         HasSameSize &&
2061         areStridedAccessesIndependent(std::abs(Distance), *CommonStride,
2062                                       TypeByteSize)) {
2063       LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2064       return Dependence::NoDep;
2065     }
2066   } else
2067     Dist = SE.applyLoopGuards(Dist, InnermostLoop);
2068 
2069   // Negative distances are not plausible dependencies.
2070   if (SE.isKnownNonPositive(Dist)) {
2071     if (SE.isKnownNonNegative(Dist)) {
2072       if (HasSameSize) {
2073         // Write to the same location with the same size.
2074         return Dependence::Forward;
2075       }
2076       LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2077                            "different type sizes\n");
2078       return Dependence::Unknown;
2079     }
2080 
2081     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2082     // Check if the first access writes to a location that is read in a later
2083     // iteration, where the distance between them is not a multiple of a vector
2084     // factor and relatively small.
2085     //
2086     // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2087     // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2088     // forward dependency will allow vectorization using any width.
2089 
2090     if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2091       if (!C) {
2092         // TODO: FoundNonConstantDistanceDependence is used as a necessary
2093         // condition to consider retrying with runtime checks. Historically, we
2094         // did not set it when strides were different but there is no inherent
2095         // reason to.
2096         FoundNonConstantDistanceDependence |= CommonStride.has_value();
2097         return Dependence::Unknown;
2098       }
2099       if (!HasSameSize ||
2100           couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(),
2101                                        TypeByteSize)) {
2102         LLVM_DEBUG(
2103             dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2104         return Dependence::ForwardButPreventsForwarding;
2105       }
2106     }
2107 
2108     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2109     return Dependence::Forward;
2110   }
2111 
2112   int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2113   // Below we only handle strictly positive distances.
2114   if (MinDistance <= 0) {
2115     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2116     return Dependence::Unknown;
2117   }
2118 
2119   if (!isa<SCEVConstant>(Dist)) {
2120     // Previously this case would be treated as Unknown, possibly setting
2121     // FoundNonConstantDistanceDependence to force re-trying with runtime
2122     // checks. Until the TODO below is addressed, set it here to preserve
2123     // original behavior w.r.t. re-trying with runtime checks.
2124     // TODO: FoundNonConstantDistanceDependence is used as a necessary
2125     // condition to consider retrying with runtime checks. Historically, we
2126     // did not set it when strides were different but there is no inherent
2127     // reason to.
2128     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2129   }
2130 
2131   if (!HasSameSize) {
2132     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2133                          "different type sizes\n");
2134     return Dependence::Unknown;
2135   }
2136 
2137   if (!CommonStride)
2138     return Dependence::Unknown;
2139 
2140   // Bail out early if passed-in parameters make vectorization not feasible.
2141   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2142                            VectorizerParams::VectorizationFactor : 1);
2143   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2144                            VectorizerParams::VectorizationInterleave : 1);
2145   // The minimum number of iterations for a vectorized/unrolled version.
2146   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2147 
2148   // It's not vectorizable if the distance is smaller than the minimum distance
2149   // needed for a vectroized/unrolled version. Vectorizing one iteration in
2150   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2151   // TypeByteSize (No need to plus the last gap distance).
2152   //
2153   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2154   //      foo(int *A) {
2155   //        int *B = (int *)((char *)A + 14);
2156   //        for (i = 0 ; i < 1024 ; i += 2)
2157   //          B[i] = A[i] + 1;
2158   //      }
2159   //
2160   // Two accesses in memory (stride is 2):
2161   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
2162   //                              | B[0] |      | B[2] |      | B[4] |
2163   //
2164   // MinDistance needs for vectorizing iterations except the last iteration:
2165   // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2166   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2167   //
2168   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2169   // 12, which is less than distance.
2170   //
2171   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2172   // the minimum distance needed is 28, which is greater than distance. It is
2173   // not safe to do vectorization.
2174 
2175   // We know that Dist is positive, but it may not be constant. Use the signed
2176   // minimum for computations below, as this ensures we compute the closest
2177   // possible dependence distance.
2178   uint64_t MinDistanceNeeded =
2179       TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2180   if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2181     if (!isa<SCEVConstant>(Dist)) {
2182       // For non-constant distances, we checked the lower bound of the
2183       // dependence distance and the distance may be larger at runtime (and safe
2184       // for vectorization). Classify it as Unknown, so we re-try with runtime
2185       // checks.
2186       return Dependence::Unknown;
2187     }
2188     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2189                       << MinDistance << '\n');
2190     return Dependence::Backward;
2191   }
2192 
2193   // Unsafe if the minimum distance needed is greater than smallest dependence
2194   // distance distance.
2195   if (MinDistanceNeeded > MinDepDistBytes) {
2196     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2197                       << MinDistanceNeeded << " size in bytes\n");
2198     return Dependence::Backward;
2199   }
2200 
2201   // Positive distance bigger than max vectorization factor.
2202   // FIXME: Should use max factor instead of max distance in bytes, which could
2203   // not handle different types.
2204   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2205   //      void foo (int *A, char *B) {
2206   //        for (unsigned i = 0; i < 1024; i++) {
2207   //          A[i+2] = A[i] + 1;
2208   //          B[i+2] = B[i] + 1;
2209   //        }
2210   //      }
2211   //
2212   // This case is currently unsafe according to the max safe distance. If we
2213   // analyze the two accesses on array B, the max safe dependence distance
2214   // is 2. Then we analyze the accesses on array A, the minimum distance needed
2215   // is 8, which is less than 2 and forbidden vectorization, But actually
2216   // both A and B could be vectorized by 2 iterations.
2217   MinDepDistBytes =
2218       std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2219 
2220   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2221   uint64_t MinDepDistBytesOld = MinDepDistBytes;
2222   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2223       isa<SCEVConstant>(Dist) &&
2224       couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2225     // Sanity check that we didn't update MinDepDistBytes when calling
2226     // couldPreventStoreLoadForward
2227     assert(MinDepDistBytes == MinDepDistBytesOld &&
2228            "An update to MinDepDistBytes requires an update to "
2229            "MaxSafeVectorWidthInBits");
2230     (void)MinDepDistBytesOld;
2231     return Dependence::BackwardVectorizableButPreventsForwarding;
2232   }
2233 
2234   // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2235   // since there is a backwards dependency.
2236   uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2237   LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2238                     << " with max VF = " << MaxVF << '\n');
2239 
2240   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2241   if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) {
2242     // For non-constant distances, we checked the lower bound of the dependence
2243     // distance and the distance may be larger at runtime (and safe for
2244     // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2245     return Dependence::Unknown;
2246   }
2247 
2248   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2249   return Dependence::BackwardVectorizable;
2250 }
2251 
2252 bool MemoryDepChecker::areDepsSafe(
2253     DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
2254     const DenseMap<Value *, SmallVector<const Value *, 16>>
2255         &UnderlyingObjects) {
2256 
2257   MinDepDistBytes = -1;
2258   SmallPtrSet<MemAccessInfo, 8> Visited;
2259   for (MemAccessInfo CurAccess : CheckDeps) {
2260     if (Visited.count(CurAccess))
2261       continue;
2262 
2263     // Get the relevant memory access set.
2264     EquivalenceClasses<MemAccessInfo>::iterator I =
2265       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2266 
2267     // Check accesses within this set.
2268     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2269         AccessSets.member_begin(I);
2270     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2271         AccessSets.member_end();
2272 
2273     // Check every access pair.
2274     while (AI != AE) {
2275       Visited.insert(*AI);
2276       bool AIIsWrite = AI->getInt();
2277       // Check loads only against next equivalent class, but stores also against
2278       // other stores in the same equivalence class - to the same address.
2279       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2280           (AIIsWrite ? AI : std::next(AI));
2281       while (OI != AE) {
2282         // Check every accessing instruction pair in program order.
2283         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2284              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2285           // Scan all accesses of another equivalence class, but only the next
2286           // accesses of the same equivalent class.
2287           for (std::vector<unsigned>::iterator
2288                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2289                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
2290                I2 != I2E; ++I2) {
2291             auto A = std::make_pair(&*AI, *I1);
2292             auto B = std::make_pair(&*OI, *I2);
2293 
2294             assert(*I1 != *I2);
2295             if (*I1 > *I2)
2296               std::swap(A, B);
2297 
2298             Dependence::DepType Type = isDependent(*A.first, A.second, *B.first,
2299                                                    B.second, UnderlyingObjects);
2300             mergeInStatus(Dependence::isSafeForVectorization(Type));
2301 
2302             // Gather dependences unless we accumulated MaxDependences
2303             // dependences.  In that case return as soon as we find the first
2304             // unsafe dependence.  This puts a limit on this quadratic
2305             // algorithm.
2306             if (RecordDependences) {
2307               if (Type != Dependence::NoDep)
2308                 Dependences.push_back(Dependence(A.second, B.second, Type));
2309 
2310               if (Dependences.size() >= MaxDependences) {
2311                 RecordDependences = false;
2312                 Dependences.clear();
2313                 LLVM_DEBUG(dbgs()
2314                            << "Too many dependences, stopped recording\n");
2315               }
2316             }
2317             if (!RecordDependences && !isSafeForVectorization())
2318               return false;
2319           }
2320         ++OI;
2321       }
2322       ++AI;
2323     }
2324   }
2325 
2326   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2327   return isSafeForVectorization();
2328 }
2329 
2330 SmallVector<Instruction *, 4>
2331 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const {
2332   MemAccessInfo Access(Ptr, IsWrite);
2333   auto &IndexVector = Accesses.find(Access)->second;
2334 
2335   SmallVector<Instruction *, 4> Insts;
2336   transform(IndexVector,
2337                  std::back_inserter(Insts),
2338                  [&](unsigned Idx) { return this->InstMap[Idx]; });
2339   return Insts;
2340 }
2341 
2342 const char *MemoryDepChecker::Dependence::DepName[] = {
2343     "NoDep",
2344     "Unknown",
2345     "IndirectUnsafe",
2346     "Forward",
2347     "ForwardButPreventsForwarding",
2348     "Backward",
2349     "BackwardVectorizable",
2350     "BackwardVectorizableButPreventsForwarding"};
2351 
2352 void MemoryDepChecker::Dependence::print(
2353     raw_ostream &OS, unsigned Depth,
2354     const SmallVectorImpl<Instruction *> &Instrs) const {
2355   OS.indent(Depth) << DepName[Type] << ":\n";
2356   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2357   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2358 }
2359 
2360 bool LoopAccessInfo::canAnalyzeLoop() {
2361   // We need to have a loop header.
2362   LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2363                     << TheLoop->getHeader()->getParent()->getName() << "' from "
2364                     << TheLoop->getLocStr() << "\n");
2365 
2366   // We can only analyze innermost loops.
2367   if (!TheLoop->isInnermost()) {
2368     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2369     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2370     return false;
2371   }
2372 
2373   // We must have a single backedge.
2374   if (TheLoop->getNumBackEdges() != 1) {
2375     LLVM_DEBUG(
2376         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2377     recordAnalysis("CFGNotUnderstood")
2378         << "loop control flow is not understood by analyzer";
2379     return false;
2380   }
2381 
2382   // ScalarEvolution needs to be able to find the symbolic max backedge taken
2383   // count, which is an upper bound on the number of loop iterations. The loop
2384   // may execute fewer iterations, if it exits via an uncountable exit.
2385   const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2386   if (isa<SCEVCouldNotCompute>(ExitCount)) {
2387     recordAnalysis("CantComputeNumberOfIterations")
2388         << "could not determine number of loop iterations";
2389     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2390     return false;
2391   }
2392 
2393   LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2394                     << TheLoop->getHeader()->getName() << "\n");
2395   return true;
2396 }
2397 
2398 bool LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2399                                  const TargetLibraryInfo *TLI,
2400                                  DominatorTree *DT) {
2401   // Holds the Load and Store instructions.
2402   SmallVector<LoadInst *, 16> Loads;
2403   SmallVector<StoreInst *, 16> Stores;
2404   SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2405 
2406   // Holds all the different accesses in the loop.
2407   unsigned NumReads = 0;
2408   unsigned NumReadWrites = 0;
2409 
2410   bool HasComplexMemInst = false;
2411 
2412   // A runtime check is only legal to insert if there are no convergent calls.
2413   HasConvergentOp = false;
2414 
2415   PtrRtChecking->Pointers.clear();
2416   PtrRtChecking->Need = false;
2417 
2418   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2419 
2420   const bool EnableMemAccessVersioningOfLoop =
2421       EnableMemAccessVersioning &&
2422       !TheLoop->getHeader()->getParent()->hasOptSize();
2423 
2424   // Traverse blocks in fixed RPOT order, regardless of their storage in the
2425   // loop info, as it may be arbitrary.
2426   LoopBlocksRPO RPOT(TheLoop);
2427   RPOT.perform(LI);
2428   for (BasicBlock *BB : RPOT) {
2429     // Scan the BB and collect legal loads and stores. Also detect any
2430     // convergent instructions.
2431     for (Instruction &I : *BB) {
2432       if (auto *Call = dyn_cast<CallBase>(&I)) {
2433         if (Call->isConvergent())
2434           HasConvergentOp = true;
2435       }
2436 
2437       // With both a non-vectorizable memory instruction and a convergent
2438       // operation, found in this loop, no reason to continue the search.
2439       if (HasComplexMemInst && HasConvergentOp)
2440         return false;
2441 
2442       // Avoid hitting recordAnalysis multiple times.
2443       if (HasComplexMemInst)
2444         continue;
2445 
2446       // Record alias scopes defined inside the loop.
2447       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2448         for (Metadata *Op : Decl->getScopeList()->operands())
2449           LoopAliasScopes.insert(cast<MDNode>(Op));
2450 
2451       // Many math library functions read the rounding mode. We will only
2452       // vectorize a loop if it contains known function calls that don't set
2453       // the flag. Therefore, it is safe to ignore this read from memory.
2454       auto *Call = dyn_cast<CallInst>(&I);
2455       if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2456         continue;
2457 
2458       // If this is a load, save it. If this instruction can read from memory
2459       // but is not a load, then we quit. Notice that we don't handle function
2460       // calls that read or write.
2461       if (I.mayReadFromMemory()) {
2462         // If the function has an explicit vectorized counterpart, we can safely
2463         // assume that it can be vectorized.
2464         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2465             !VFDatabase::getMappings(*Call).empty())
2466           continue;
2467 
2468         auto *Ld = dyn_cast<LoadInst>(&I);
2469         if (!Ld) {
2470           recordAnalysis("CantVectorizeInstruction", Ld)
2471             << "instruction cannot be vectorized";
2472           HasComplexMemInst = true;
2473           continue;
2474         }
2475         if (!Ld->isSimple() && !IsAnnotatedParallel) {
2476           recordAnalysis("NonSimpleLoad", Ld)
2477               << "read with atomic ordering or volatile read";
2478           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2479           HasComplexMemInst = true;
2480           continue;
2481         }
2482         NumLoads++;
2483         Loads.push_back(Ld);
2484         DepChecker->addAccess(Ld);
2485         if (EnableMemAccessVersioningOfLoop)
2486           collectStridedAccess(Ld);
2487         continue;
2488       }
2489 
2490       // Save 'store' instructions. Abort if other instructions write to memory.
2491       if (I.mayWriteToMemory()) {
2492         auto *St = dyn_cast<StoreInst>(&I);
2493         if (!St) {
2494           recordAnalysis("CantVectorizeInstruction", St)
2495               << "instruction cannot be vectorized";
2496           HasComplexMemInst = true;
2497           continue;
2498         }
2499         if (!St->isSimple() && !IsAnnotatedParallel) {
2500           recordAnalysis("NonSimpleStore", St)
2501               << "write with atomic ordering or volatile write";
2502           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2503           HasComplexMemInst = true;
2504           continue;
2505         }
2506         NumStores++;
2507         Stores.push_back(St);
2508         DepChecker->addAccess(St);
2509         if (EnableMemAccessVersioningOfLoop)
2510           collectStridedAccess(St);
2511       }
2512     } // Next instr.
2513   } // Next block.
2514 
2515   if (HasComplexMemInst)
2516     return false;
2517 
2518   // Now we have two lists that hold the loads and the stores.
2519   // Next, we find the pointers that they use.
2520 
2521   // Check if we see any stores. If there are no stores, then we don't
2522   // care if the pointers are *restrict*.
2523   if (!Stores.size()) {
2524     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2525     return true;
2526   }
2527 
2528   MemoryDepChecker::DepCandidates DependentAccesses;
2529   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2530                           LoopAliasScopes);
2531 
2532   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2533   // multiple times on the same object. If the ptr is accessed twice, once
2534   // for read and once for write, it will only appear once (on the write
2535   // list). This is okay, since we are going to check for conflicts between
2536   // writes and between reads and writes, but not between reads and reads.
2537   SmallSet<std::pair<Value *, Type *>, 16> Seen;
2538 
2539   // Record uniform store addresses to identify if we have multiple stores
2540   // to the same address.
2541   SmallPtrSet<Value *, 16> UniformStores;
2542 
2543   for (StoreInst *ST : Stores) {
2544     Value *Ptr = ST->getPointerOperand();
2545 
2546     if (isInvariant(Ptr)) {
2547       // Record store instructions to loop invariant addresses
2548       StoresToInvariantAddresses.push_back(ST);
2549       HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2550           !UniformStores.insert(Ptr).second;
2551     }
2552 
2553     // If we did *not* see this pointer before, insert it to  the read-write
2554     // list. At this phase it is only a 'write' list.
2555     Type *AccessTy = getLoadStoreType(ST);
2556     if (Seen.insert({Ptr, AccessTy}).second) {
2557       ++NumReadWrites;
2558 
2559       MemoryLocation Loc = MemoryLocation::get(ST);
2560       // The TBAA metadata could have a control dependency on the predication
2561       // condition, so we cannot rely on it when determining whether or not we
2562       // need runtime pointer checks.
2563       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2564         Loc.AATags.TBAA = nullptr;
2565 
2566       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2567                     [&Accesses, AccessTy, Loc](Value *Ptr) {
2568                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2569                       Accesses.addStore(NewLoc, AccessTy);
2570                     });
2571     }
2572   }
2573 
2574   if (IsAnnotatedParallel) {
2575     LLVM_DEBUG(
2576         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2577                << "checks.\n");
2578     return true;
2579   }
2580 
2581   for (LoadInst *LD : Loads) {
2582     Value *Ptr = LD->getPointerOperand();
2583     // If we did *not* see this pointer before, insert it to the
2584     // read list. If we *did* see it before, then it is already in
2585     // the read-write list. This allows us to vectorize expressions
2586     // such as A[i] += x;  Because the address of A[i] is a read-write
2587     // pointer. This only works if the index of A[i] is consecutive.
2588     // If the address of i is unknown (for example A[B[i]]) then we may
2589     // read a few words, modify, and write a few words, and some of the
2590     // words may be written to the same address.
2591     bool IsReadOnlyPtr = false;
2592     Type *AccessTy = getLoadStoreType(LD);
2593     if (Seen.insert({Ptr, AccessTy}).second ||
2594         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2595       ++NumReads;
2596       IsReadOnlyPtr = true;
2597     }
2598 
2599     // See if there is an unsafe dependency between a load to a uniform address and
2600     // store to the same uniform address.
2601     if (UniformStores.count(Ptr)) {
2602       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2603                            "load and uniform store to the same address!\n");
2604       HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2605     }
2606 
2607     MemoryLocation Loc = MemoryLocation::get(LD);
2608     // The TBAA metadata could have a control dependency on the predication
2609     // condition, so we cannot rely on it when determining whether or not we
2610     // need runtime pointer checks.
2611     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2612       Loc.AATags.TBAA = nullptr;
2613 
2614     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2615                   [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2616                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2617                     Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2618                   });
2619   }
2620 
2621   // If we write (or read-write) to a single destination and there are no
2622   // other reads in this loop then is it safe to vectorize.
2623   if (NumReadWrites == 1 && NumReads == 0) {
2624     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2625     return true;
2626   }
2627 
2628   // Build dependence sets and check whether we need a runtime pointer bounds
2629   // check.
2630   Accesses.buildDependenceSets();
2631 
2632   // Find pointers with computable bounds. We are going to use this information
2633   // to place a runtime bound check.
2634   Value *UncomputablePtr = nullptr;
2635   bool CanDoRTIfNeeded =
2636       Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2637                                SymbolicStrides, UncomputablePtr, false);
2638   if (!CanDoRTIfNeeded) {
2639     auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2640     recordAnalysis("CantIdentifyArrayBounds", I)
2641         << "cannot identify array bounds";
2642     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2643                       << "the array bounds.\n");
2644     return false;
2645   }
2646 
2647   LLVM_DEBUG(
2648     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2649 
2650   bool DepsAreSafe = true;
2651   if (Accesses.isDependencyCheckNeeded()) {
2652     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2653     DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses,
2654                                           Accesses.getDependenciesToCheck(),
2655                                           Accesses.getUnderlyingObjects());
2656 
2657     if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) {
2658       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2659 
2660       // Clear the dependency checks. We assume they are not needed.
2661       Accesses.resetDepChecks(*DepChecker);
2662 
2663       PtrRtChecking->reset();
2664       PtrRtChecking->Need = true;
2665 
2666       auto *SE = PSE->getSE();
2667       UncomputablePtr = nullptr;
2668       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2669           *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2670 
2671       // Check that we found the bounds for the pointer.
2672       if (!CanDoRTIfNeeded) {
2673         auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2674         recordAnalysis("CantCheckMemDepsAtRunTime", I)
2675             << "cannot check memory dependencies at runtime";
2676         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2677         return false;
2678       }
2679       DepsAreSafe = true;
2680     }
2681   }
2682 
2683   if (HasConvergentOp) {
2684     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2685         << "cannot add control dependency to convergent operation";
2686     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2687                          "would be needed with a convergent operation\n");
2688     return false;
2689   }
2690 
2691   if (DepsAreSafe) {
2692     LLVM_DEBUG(
2693         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2694                << (PtrRtChecking->Need ? "" : " don't")
2695                << " need runtime memory checks.\n");
2696     return true;
2697   }
2698 
2699   emitUnsafeDependenceRemark();
2700   return false;
2701 }
2702 
2703 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2704   const auto *Deps = getDepChecker().getDependences();
2705   if (!Deps)
2706     return;
2707   const auto *Found =
2708       llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2709         return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2710                MemoryDepChecker::VectorizationSafetyStatus::Safe;
2711       });
2712   if (Found == Deps->end())
2713     return;
2714   MemoryDepChecker::Dependence Dep = *Found;
2715 
2716   LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2717 
2718   // Emit remark for first unsafe dependence
2719   bool HasForcedDistribution = false;
2720   std::optional<const MDOperand *> Value =
2721       findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2722   if (Value) {
2723     const MDOperand *Op = *Value;
2724     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2725     HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2726   }
2727 
2728   const std::string Info =
2729       HasForcedDistribution
2730           ? "unsafe dependent memory operations in loop."
2731           : "unsafe dependent memory operations in loop. Use "
2732             "#pragma clang loop distribute(enable) to allow loop distribution "
2733             "to attempt to isolate the offending operations into a separate "
2734             "loop";
2735   OptimizationRemarkAnalysis &R =
2736       recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2737 
2738   switch (Dep.Type) {
2739   case MemoryDepChecker::Dependence::NoDep:
2740   case MemoryDepChecker::Dependence::Forward:
2741   case MemoryDepChecker::Dependence::BackwardVectorizable:
2742     llvm_unreachable("Unexpected dependence");
2743   case MemoryDepChecker::Dependence::Backward:
2744     R << "\nBackward loop carried data dependence.";
2745     break;
2746   case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2747     R << "\nForward loop carried data dependence that prevents "
2748          "store-to-load forwarding.";
2749     break;
2750   case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2751     R << "\nBackward loop carried data dependence that prevents "
2752          "store-to-load forwarding.";
2753     break;
2754   case MemoryDepChecker::Dependence::IndirectUnsafe:
2755     R << "\nUnsafe indirect dependence.";
2756     break;
2757   case MemoryDepChecker::Dependence::Unknown:
2758     R << "\nUnknown data dependence.";
2759     break;
2760   }
2761 
2762   if (Instruction *I = Dep.getSource(getDepChecker())) {
2763     DebugLoc SourceLoc = I->getDebugLoc();
2764     if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2765       SourceLoc = DD->getDebugLoc();
2766     if (SourceLoc)
2767       R << " Memory location is the same as accessed at "
2768         << ore::NV("Location", SourceLoc);
2769   }
2770 }
2771 
2772 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2773                                            DominatorTree *DT)  {
2774   assert(TheLoop->contains(BB) && "Unknown block used");
2775 
2776   // Blocks that do not dominate the latch need predication.
2777   BasicBlock* Latch = TheLoop->getLoopLatch();
2778   return !DT->dominates(BB, Latch);
2779 }
2780 
2781 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2782                                                            Instruction *I) {
2783   assert(!Report && "Multiple reports generated");
2784 
2785   Value *CodeRegion = TheLoop->getHeader();
2786   DebugLoc DL = TheLoop->getStartLoc();
2787 
2788   if (I) {
2789     CodeRegion = I->getParent();
2790     // If there is no debug location attached to the instruction, revert back to
2791     // using the loop's.
2792     if (I->getDebugLoc())
2793       DL = I->getDebugLoc();
2794   }
2795 
2796   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2797                                                    CodeRegion);
2798   return *Report;
2799 }
2800 
2801 bool LoopAccessInfo::isInvariant(Value *V) const {
2802   auto *SE = PSE->getSE();
2803   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2804   // trivially loop-invariant FP values to be considered invariant.
2805   if (!SE->isSCEVable(V->getType()))
2806     return false;
2807   const SCEV *S = SE->getSCEV(V);
2808   return SE->isLoopInvariant(S, TheLoop);
2809 }
2810 
2811 /// Find the operand of the GEP that should be checked for consecutive
2812 /// stores. This ignores trailing indices that have no effect on the final
2813 /// pointer.
2814 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2815   const DataLayout &DL = Gep->getDataLayout();
2816   unsigned LastOperand = Gep->getNumOperands() - 1;
2817   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2818 
2819   // Walk backwards and try to peel off zeros.
2820   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2821     // Find the type we're currently indexing into.
2822     gep_type_iterator GEPTI = gep_type_begin(Gep);
2823     std::advance(GEPTI, LastOperand - 2);
2824 
2825     // If it's a type with the same allocation size as the result of the GEP we
2826     // can peel off the zero index.
2827     TypeSize ElemSize = GEPTI.isStruct()
2828                             ? DL.getTypeAllocSize(GEPTI.getIndexedType())
2829                             : GEPTI.getSequentialElementStride(DL);
2830     if (ElemSize != GEPAllocSize)
2831       break;
2832     --LastOperand;
2833   }
2834 
2835   return LastOperand;
2836 }
2837 
2838 /// If the argument is a GEP, then returns the operand identified by
2839 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2840 /// operand, it returns that instead.
2841 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2842   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2843   if (!GEP)
2844     return Ptr;
2845 
2846   unsigned InductionOperand = getGEPInductionOperand(GEP);
2847 
2848   // Check that all of the gep indices are uniform except for our induction
2849   // operand.
2850   for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I)
2851     if (I != InductionOperand &&
2852         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp))
2853       return Ptr;
2854   return GEP->getOperand(InductionOperand);
2855 }
2856 
2857 /// Get the stride of a pointer access in a loop. Looks for symbolic
2858 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2859 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2860   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2861   if (!PtrTy || PtrTy->isAggregateType())
2862     return nullptr;
2863 
2864   // Try to remove a gep instruction to make the pointer (actually index at this
2865   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2866   // pointer, otherwise, we are analyzing the index.
2867   Value *OrigPtr = Ptr;
2868 
2869   // The size of the pointer access.
2870   int64_t PtrAccessSize = 1;
2871 
2872   Ptr = stripGetElementPtr(Ptr, SE, Lp);
2873   const SCEV *V = SE->getSCEV(Ptr);
2874 
2875   if (Ptr != OrigPtr)
2876     // Strip off casts.
2877     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
2878       V = C->getOperand();
2879 
2880   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
2881   if (!S)
2882     return nullptr;
2883 
2884   // If the pointer is invariant then there is no stride and it makes no
2885   // sense to add it here.
2886   if (Lp != S->getLoop())
2887     return nullptr;
2888 
2889   V = S->getStepRecurrence(*SE);
2890   if (!V)
2891     return nullptr;
2892 
2893   // Strip off the size of access multiplication if we are still analyzing the
2894   // pointer.
2895   if (OrigPtr == Ptr) {
2896     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2897       if (M->getOperand(0)->getSCEVType() != scConstant)
2898         return nullptr;
2899 
2900       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2901 
2902       // Huge step value - give up.
2903       if (APStepVal.getBitWidth() > 64)
2904         return nullptr;
2905 
2906       int64_t StepVal = APStepVal.getSExtValue();
2907       if (PtrAccessSize != StepVal)
2908         return nullptr;
2909       V = M->getOperand(1);
2910     }
2911   }
2912 
2913   // Note that the restriction after this loop invariant check are only
2914   // profitability restrictions.
2915   if (!SE->isLoopInvariant(V, Lp))
2916     return nullptr;
2917 
2918   // Look for the loop invariant symbolic value.
2919   if (isa<SCEVUnknown>(V))
2920     return V;
2921 
2922   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2923     if (isa<SCEVUnknown>(C->getOperand()))
2924       return V;
2925 
2926   return nullptr;
2927 }
2928 
2929 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2930   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2931   if (!Ptr)
2932     return;
2933 
2934   // Note: getStrideFromPointer is a *profitability* heuristic.  We
2935   // could broaden the scope of values returned here - to anything
2936   // which happens to be loop invariant and contributes to the
2937   // computation of an interesting IV - but we chose not to as we
2938   // don't have a cost model here, and broadening the scope exposes
2939   // far too many unprofitable cases.
2940   const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2941   if (!StrideExpr)
2942     return;
2943 
2944   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2945                        "versioning:");
2946   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2947 
2948   if (!SpeculateUnitStride) {
2949     LLVM_DEBUG(dbgs() << "  Chose not to due to -laa-speculate-unit-stride\n");
2950     return;
2951   }
2952 
2953   // Avoid adding the "Stride == 1" predicate when we know that
2954   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2955   // or zero iteration loop, as Trip-Count <= Stride == 1.
2956   //
2957   // TODO: We are currently not making a very informed decision on when it is
2958   // beneficial to apply stride versioning. It might make more sense that the
2959   // users of this analysis (such as the vectorizer) will trigger it, based on
2960   // their specific cost considerations; For example, in cases where stride
2961   // versioning does  not help resolving memory accesses/dependences, the
2962   // vectorizer should evaluate the cost of the runtime test, and the benefit
2963   // of various possible stride specializations, considering the alternatives
2964   // of using gather/scatters (if available).
2965 
2966   const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
2967 
2968   // Match the types so we can compare the stride and the MaxBTC.
2969   // The Stride can be positive/negative, so we sign extend Stride;
2970   // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2971   const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
2972   uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2973   uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
2974   const SCEV *CastedStride = StrideExpr;
2975   const SCEV *CastedBECount = MaxBTC;
2976   ScalarEvolution *SE = PSE->getSE();
2977   if (BETypeSizeBits >= StrideTypeSizeBits)
2978     CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
2979   else
2980     CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
2981   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2982   // Since TripCount == BackEdgeTakenCount + 1, checking:
2983   // "Stride >= TripCount" is equivalent to checking:
2984   // Stride - MaxBTC> 0
2985   if (SE->isKnownPositive(StrideMinusBETaken)) {
2986     LLVM_DEBUG(
2987         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2988                   "Stride==1 predicate will imply that the loop executes "
2989                   "at most once.\n");
2990     return;
2991   }
2992   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2993 
2994   // Strip back off the integer cast, and check that our result is a
2995   // SCEVUnknown as we expect.
2996   const SCEV *StrideBase = StrideExpr;
2997   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2998     StrideBase = C->getOperand();
2999   SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
3000 }
3001 
3002 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
3003                                const TargetTransformInfo *TTI,
3004                                const TargetLibraryInfo *TLI, AAResults *AA,
3005                                DominatorTree *DT, LoopInfo *LI)
3006     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3007       PtrRtChecking(nullptr), TheLoop(L) {
3008   unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3009   if (TTI) {
3010     TypeSize FixedWidth =
3011         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
3012     if (FixedWidth.isNonZero()) {
3013       // Scale the vector width by 2 as rough estimate to also consider
3014       // interleaving.
3015       MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2;
3016     }
3017 
3018     TypeSize ScalableWidth =
3019         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector);
3020     if (ScalableWidth.isNonZero())
3021       MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3022   }
3023   DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3024                                                   MaxTargetVectorWidthInBits);
3025   PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3026   if (canAnalyzeLoop())
3027     CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3028 }
3029 
3030 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
3031   if (CanVecMem) {
3032     OS.indent(Depth) << "Memory dependences are safe";
3033     const MemoryDepChecker &DC = getDepChecker();
3034     if (!DC.isSafeForAnyVectorWidth())
3035       OS << " with a maximum safe vector width of "
3036          << DC.getMaxSafeVectorWidthInBits() << " bits";
3037     if (PtrRtChecking->Need)
3038       OS << " with run-time checks";
3039     OS << "\n";
3040   }
3041 
3042   if (HasConvergentOp)
3043     OS.indent(Depth) << "Has convergent operation in loop\n";
3044 
3045   if (Report)
3046     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3047 
3048   if (auto *Dependences = DepChecker->getDependences()) {
3049     OS.indent(Depth) << "Dependences:\n";
3050     for (const auto &Dep : *Dependences) {
3051       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3052       OS << "\n";
3053     }
3054   } else
3055     OS.indent(Depth) << "Too many dependences, not recorded\n";
3056 
3057   // List the pair of accesses need run-time checks to prove independence.
3058   PtrRtChecking->print(OS, Depth);
3059   OS << "\n";
3060 
3061   OS.indent(Depth)
3062       << "Non vectorizable stores to invariant address were "
3063       << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3064                   HasLoadStoreDependenceInvolvingLoopInvariantAddress
3065               ? ""
3066               : "not ")
3067       << "found in loop.\n";
3068 
3069   OS.indent(Depth) << "SCEV assumptions:\n";
3070   PSE->getPredicate().print(OS, Depth);
3071 
3072   OS << "\n";
3073 
3074   OS.indent(Depth) << "Expressions re-written:\n";
3075   PSE->print(OS, Depth);
3076 }
3077 
3078 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
3079   auto [It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr});
3080 
3081   if (Inserted)
3082     It->second =
3083         std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI);
3084 
3085   return *It->second;
3086 }
3087 void LoopAccessInfoManager::clear() {
3088   SmallVector<Loop *> ToRemove;
3089   // Collect LoopAccessInfo entries that may keep references to IR outside the
3090   // analyzed loop or SCEVs that may have been modified or invalidated. At the
3091   // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3092   // SCEVs, e.g. for pointer expressions.
3093   for (const auto &[L, LAI] : LoopAccessInfoMap) {
3094     if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3095         LAI->getPSE().getPredicate().isAlwaysTrue())
3096       continue;
3097     ToRemove.push_back(L);
3098   }
3099 
3100   for (Loop *L : ToRemove)
3101     LoopAccessInfoMap.erase(L);
3102 }
3103 
3104 bool LoopAccessInfoManager::invalidate(
3105     Function &F, const PreservedAnalyses &PA,
3106     FunctionAnalysisManager::Invalidator &Inv) {
3107   // Check whether our analysis is preserved.
3108   auto PAC = PA.getChecker<LoopAccessAnalysis>();
3109   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3110     // If not, give up now.
3111     return true;
3112 
3113   // Check whether the analyses we depend on became invalid for any reason.
3114   // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3115   // invalid.
3116   return Inv.invalidate<AAManager>(F, PA) ||
3117          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3118          Inv.invalidate<LoopAnalysis>(F, PA) ||
3119          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3120 }
3121 
3122 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
3123                                               FunctionAnalysisManager &FAM) {
3124   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3125   auto &AA = FAM.getResult<AAManager>(F);
3126   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3127   auto &LI = FAM.getResult<LoopAnalysis>(F);
3128   auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
3129   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3130   return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
3131 }
3132 
3133 AnalysisKey LoopAccessAnalysis::Key;
3134