1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopIterator.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <utility> 65 #include <variant> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> MaxForkedSCEVDepth( 134 "max-forked-scev-depth", cl::Hidden, 135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 136 cl::init(5)); 137 138 static cl::opt<bool> SpeculateUnitStride( 139 "laa-speculate-unit-stride", cl::Hidden, 140 cl::desc("Speculate that non-constant strides are unit in LAA"), 141 cl::init(true)); 142 143 static cl::opt<bool, true> HoistRuntimeChecks( 144 "hoist-runtime-checks", cl::Hidden, 145 cl::desc( 146 "Hoist inner loop runtime memory checks to outer loop if possible"), 147 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true)); 148 bool VectorizerParams::HoistRuntimeChecks; 149 150 bool VectorizerParams::isInterleaveForced() { 151 return ::VectorizationInterleave.getNumOccurrences() > 0; 152 } 153 154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 155 const DenseMap<Value *, const SCEV *> &PtrToStride, 156 Value *Ptr) { 157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 158 159 // If there is an entry in the map return the SCEV of the pointer with the 160 // symbolic stride replaced by one. 161 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr); 162 if (SI == PtrToStride.end()) 163 // For a non-symbolic stride, just return the original expression. 164 return OrigSCEV; 165 166 const SCEV *StrideSCEV = SI->second; 167 // Note: This assert is both overly strong and overly weak. The actual 168 // invariant here is that StrideSCEV should be loop invariant. The only 169 // such invariant strides we happen to speculate right now are unknowns 170 // and thus this is a reasonable proxy of the actual invariant. 171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map"); 172 173 ScalarEvolution *SE = PSE.getSE(); 174 const auto *CT = SE->getOne(StrideSCEV->getType()); 175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT)); 176 auto *Expr = PSE.getSCEV(Ptr); 177 178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 179 << " by: " << *Expr << "\n"); 180 return Expr; 181 } 182 183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 184 unsigned Index, RuntimePointerChecking &RtCheck) 185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 186 AddressSpace(RtCheck.Pointers[Index] 187 .PointerValue->getType() 188 ->getPointerAddressSpace()), 189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 190 Members.push_back(Index); 191 } 192 193 /// Calculate Start and End points of memory access. 194 /// Let's assume A is the first access and B is a memory access on N-th loop 195 /// iteration. Then B is calculated as: 196 /// B = A + Step*N . 197 /// Step value may be positive or negative. 198 /// N is a calculated back-edge taken count: 199 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 200 /// Start and End points are calculated in the following way: 201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 202 /// where SizeOfElt is the size of single memory access in bytes. 203 /// 204 /// There is no conflict when the intervals are disjoint: 205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess( 207 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, 208 PredicatedScalarEvolution &PSE, 209 DenseMap<const SCEV *, std::pair<const SCEV *, const SCEV *>> 210 &PointerBounds) { 211 ScalarEvolution *SE = PSE.getSE(); 212 213 auto [Iter, Ins] = PointerBounds.insert( 214 {PtrExpr, {SE->getCouldNotCompute(), SE->getCouldNotCompute()}}); 215 if (!Ins) 216 return Iter->second; 217 218 const SCEV *ScStart; 219 const SCEV *ScEnd; 220 221 if (SE->isLoopInvariant(PtrExpr, Lp)) { 222 ScStart = ScEnd = PtrExpr; 223 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) { 224 const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount(); 225 226 ScStart = AR->getStart(); 227 ScEnd = AR->evaluateAtIteration(Ex, *SE); 228 const SCEV *Step = AR->getStepRecurrence(*SE); 229 230 // For expressions with negative step, the upper bound is ScStart and the 231 // lower bound is ScEnd. 232 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 233 if (CStep->getValue()->isNegative()) 234 std::swap(ScStart, ScEnd); 235 } else { 236 // Fallback case: the step is not constant, but we can still 237 // get the upper and lower bounds of the interval by using min/max 238 // expressions. 239 ScStart = SE->getUMinExpr(ScStart, ScEnd); 240 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 241 } 242 } else 243 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()}; 244 245 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant"); 246 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant"); 247 248 // Add the size of the pointed element to ScEnd. 249 auto &DL = Lp->getHeader()->getDataLayout(); 250 Type *IdxTy = DL.getIndexType(PtrExpr->getType()); 251 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 252 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 253 254 Iter->second = {ScStart, ScEnd}; 255 return Iter->second; 256 } 257 258 /// Calculate Start and End points of memory access using 259 /// getStartAndEndForAccess. 260 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 261 Type *AccessTy, bool WritePtr, 262 unsigned DepSetId, unsigned ASId, 263 PredicatedScalarEvolution &PSE, 264 bool NeedsFreeze) { 265 const auto &[ScStart, ScEnd] = getStartAndEndForAccess( 266 Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds()); 267 assert(!isa<SCEVCouldNotCompute>(ScStart) && 268 !isa<SCEVCouldNotCompute>(ScEnd) && 269 "must be able to compute both start and end expressions"); 270 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 271 NeedsFreeze); 272 } 273 274 bool RuntimePointerChecking::tryToCreateDiffCheck( 275 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 276 // If either group contains multiple different pointers, bail out. 277 // TODO: Support multiple pointers by using the minimum or maximum pointer, 278 // depending on src & sink. 279 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) 280 return false; 281 282 PointerInfo *Src = &Pointers[CGI.Members[0]]; 283 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 284 285 // If either pointer is read and written, multiple checks may be needed. Bail 286 // out. 287 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 288 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) 289 return false; 290 291 ArrayRef<unsigned> AccSrc = 292 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 293 ArrayRef<unsigned> AccSink = 294 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 295 // If either pointer is accessed multiple times, there may not be a clear 296 // src/sink relation. Bail out for now. 297 if (AccSrc.size() != 1 || AccSink.size() != 1) 298 return false; 299 300 // If the sink is accessed before src, swap src/sink. 301 if (AccSink[0] < AccSrc[0]) 302 std::swap(Src, Sink); 303 304 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 305 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 306 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 307 SinkAR->getLoop() != DC.getInnermostLoop()) 308 return false; 309 310 SmallVector<Instruction *, 4> SrcInsts = 311 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 312 SmallVector<Instruction *, 4> SinkInsts = 313 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 314 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 315 Type *DstTy = getLoadStoreType(SinkInsts[0]); 316 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 317 return false; 318 319 const DataLayout &DL = 320 SinkAR->getLoop()->getHeader()->getDataLayout(); 321 unsigned AllocSize = 322 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 323 324 // Only matching constant steps matching the AllocSize are supported at the 325 // moment. This simplifies the difference computation. Can be extended in the 326 // future. 327 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 328 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 329 Step->getAPInt().abs() != AllocSize) 330 return false; 331 332 IntegerType *IntTy = 333 IntegerType::get(Src->PointerValue->getContext(), 334 DL.getPointerSizeInBits(CGI.AddressSpace)); 335 336 // When counting down, the dependence distance needs to be swapped. 337 if (Step->getValue()->isNegative()) 338 std::swap(SinkAR, SrcAR); 339 340 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 341 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 342 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 343 isa<SCEVCouldNotCompute>(SrcStartInt)) 344 return false; 345 346 const Loop *InnerLoop = SrcAR->getLoop(); 347 // If the start values for both Src and Sink also vary according to an outer 348 // loop, then it's probably better to avoid creating diff checks because 349 // they may not be hoisted. We should instead let llvm::addRuntimeChecks 350 // do the expanded full range overlap checks, which can be hoisted. 351 if (HoistRuntimeChecks && InnerLoop->getParentLoop() && 352 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) { 353 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt); 354 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt); 355 const Loop *StartARLoop = SrcStartAR->getLoop(); 356 if (StartARLoop == SinkStartAR->getLoop() && 357 StartARLoop == InnerLoop->getParentLoop() && 358 // If the diff check would already be loop invariant (due to the 359 // recurrences being the same), then we prefer to keep the diff checks 360 // because they are cheaper. 361 SrcStartAR->getStepRecurrence(*SE) != 362 SinkStartAR->getStepRecurrence(*SE)) { 363 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these " 364 "cannot be hoisted out of the outer loop\n"); 365 return false; 366 } 367 } 368 369 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n" 370 << "SrcStart: " << *SrcStartInt << '\n' 371 << "SinkStartInt: " << *SinkStartInt << '\n'); 372 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 373 Src->NeedsFreeze || Sink->NeedsFreeze); 374 return true; 375 } 376 377 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 378 SmallVector<RuntimePointerCheck, 4> Checks; 379 380 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 381 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 382 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 383 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 384 385 if (needsChecking(CGI, CGJ)) { 386 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ); 387 Checks.push_back(std::make_pair(&CGI, &CGJ)); 388 } 389 } 390 } 391 return Checks; 392 } 393 394 void RuntimePointerChecking::generateChecks( 395 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 396 assert(Checks.empty() && "Checks is not empty"); 397 groupChecks(DepCands, UseDependencies); 398 Checks = generateChecks(); 399 } 400 401 bool RuntimePointerChecking::needsChecking( 402 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 403 for (const auto &I : M.Members) 404 for (const auto &J : N.Members) 405 if (needsChecking(I, J)) 406 return true; 407 return false; 408 } 409 410 /// Compare \p I and \p J and return the minimum. 411 /// Return nullptr in case we couldn't find an answer. 412 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 413 ScalarEvolution *SE) { 414 const SCEV *Diff = SE->getMinusSCEV(J, I); 415 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 416 417 if (!C) 418 return nullptr; 419 return C->getValue()->isNegative() ? J : I; 420 } 421 422 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 423 RuntimePointerChecking &RtCheck) { 424 return addPointer( 425 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 426 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 427 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 428 } 429 430 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 431 const SCEV *End, unsigned AS, 432 bool NeedsFreeze, 433 ScalarEvolution &SE) { 434 assert(AddressSpace == AS && 435 "all pointers in a checking group must be in the same address space"); 436 437 // Compare the starts and ends with the known minimum and maximum 438 // of this set. We need to know how we compare against the min/max 439 // of the set in order to be able to emit memchecks. 440 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 441 if (!Min0) 442 return false; 443 444 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 445 if (!Min1) 446 return false; 447 448 // Update the low bound expression if we've found a new min value. 449 if (Min0 == Start) 450 Low = Start; 451 452 // Update the high bound expression if we've found a new max value. 453 if (Min1 != End) 454 High = End; 455 456 Members.push_back(Index); 457 this->NeedsFreeze |= NeedsFreeze; 458 return true; 459 } 460 461 void RuntimePointerChecking::groupChecks( 462 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 463 // We build the groups from dependency candidates equivalence classes 464 // because: 465 // - We know that pointers in the same equivalence class share 466 // the same underlying object and therefore there is a chance 467 // that we can compare pointers 468 // - We wouldn't be able to merge two pointers for which we need 469 // to emit a memcheck. The classes in DepCands are already 470 // conveniently built such that no two pointers in the same 471 // class need checking against each other. 472 473 // We use the following (greedy) algorithm to construct the groups 474 // For every pointer in the equivalence class: 475 // For each existing group: 476 // - if the difference between this pointer and the min/max bounds 477 // of the group is a constant, then make the pointer part of the 478 // group and update the min/max bounds of that group as required. 479 480 CheckingGroups.clear(); 481 482 // If we need to check two pointers to the same underlying object 483 // with a non-constant difference, we shouldn't perform any pointer 484 // grouping with those pointers. This is because we can easily get 485 // into cases where the resulting check would return false, even when 486 // the accesses are safe. 487 // 488 // The following example shows this: 489 // for (i = 0; i < 1000; ++i) 490 // a[5000 + i * m] = a[i] + a[i + 9000] 491 // 492 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 493 // (0, 10000) which is always false. However, if m is 1, there is no 494 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 495 // us to perform an accurate check in this case. 496 // 497 // The above case requires that we have an UnknownDependence between 498 // accesses to the same underlying object. This cannot happen unless 499 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 500 // is also false. In this case we will use the fallback path and create 501 // separate checking groups for all pointers. 502 503 // If we don't have the dependency partitions, construct a new 504 // checking pointer group for each pointer. This is also required 505 // for correctness, because in this case we can have checking between 506 // pointers to the same underlying object. 507 if (!UseDependencies) { 508 for (unsigned I = 0; I < Pointers.size(); ++I) 509 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 510 return; 511 } 512 513 unsigned TotalComparisons = 0; 514 515 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 516 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 517 auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}}); 518 It->second.push_back(Index); 519 } 520 521 // We need to keep track of what pointers we've already seen so we 522 // don't process them twice. 523 SmallSet<unsigned, 2> Seen; 524 525 // Go through all equivalence classes, get the "pointer check groups" 526 // and add them to the overall solution. We use the order in which accesses 527 // appear in 'Pointers' to enforce determinism. 528 for (unsigned I = 0; I < Pointers.size(); ++I) { 529 // We've seen this pointer before, and therefore already processed 530 // its equivalence class. 531 if (Seen.count(I)) 532 continue; 533 534 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 535 Pointers[I].IsWritePtr); 536 537 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 538 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 539 540 // Because DepCands is constructed by visiting accesses in the order in 541 // which they appear in alias sets (which is deterministic) and the 542 // iteration order within an equivalence class member is only dependent on 543 // the order in which unions and insertions are performed on the 544 // equivalence class, the iteration order is deterministic. 545 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 546 MI != ME; ++MI) { 547 auto PointerI = PositionMap.find(MI->getPointer()); 548 assert(PointerI != PositionMap.end() && 549 "pointer in equivalence class not found in PositionMap"); 550 for (unsigned Pointer : PointerI->second) { 551 bool Merged = false; 552 // Mark this pointer as seen. 553 Seen.insert(Pointer); 554 555 // Go through all the existing sets and see if we can find one 556 // which can include this pointer. 557 for (RuntimeCheckingPtrGroup &Group : Groups) { 558 // Don't perform more than a certain amount of comparisons. 559 // This should limit the cost of grouping the pointers to something 560 // reasonable. If we do end up hitting this threshold, the algorithm 561 // will create separate groups for all remaining pointers. 562 if (TotalComparisons > MemoryCheckMergeThreshold) 563 break; 564 565 TotalComparisons++; 566 567 if (Group.addPointer(Pointer, *this)) { 568 Merged = true; 569 break; 570 } 571 } 572 573 if (!Merged) 574 // We couldn't add this pointer to any existing set or the threshold 575 // for the number of comparisons has been reached. Create a new group 576 // to hold the current pointer. 577 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 578 } 579 } 580 581 // We've computed the grouped checks for this partition. 582 // Save the results and continue with the next one. 583 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 584 } 585 } 586 587 bool RuntimePointerChecking::arePointersInSamePartition( 588 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 589 unsigned PtrIdx2) { 590 return (PtrToPartition[PtrIdx1] != -1 && 591 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 592 } 593 594 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 595 const PointerInfo &PointerI = Pointers[I]; 596 const PointerInfo &PointerJ = Pointers[J]; 597 598 // No need to check if two readonly pointers intersect. 599 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 600 return false; 601 602 // Only need to check pointers between two different dependency sets. 603 if (PointerI.DependencySetId == PointerJ.DependencySetId) 604 return false; 605 606 // Only need to check pointers in the same alias set. 607 if (PointerI.AliasSetId != PointerJ.AliasSetId) 608 return false; 609 610 return true; 611 } 612 613 void RuntimePointerChecking::printChecks( 614 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 615 unsigned Depth) const { 616 unsigned N = 0; 617 for (const auto &[Check1, Check2] : Checks) { 618 const auto &First = Check1->Members, &Second = Check2->Members; 619 620 OS.indent(Depth) << "Check " << N++ << ":\n"; 621 622 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n"; 623 for (unsigned K : First) 624 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 625 626 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n"; 627 for (unsigned K : Second) 628 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 629 } 630 } 631 632 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 633 634 OS.indent(Depth) << "Run-time memory checks:\n"; 635 printChecks(OS, Checks, Depth); 636 637 OS.indent(Depth) << "Grouped accesses:\n"; 638 for (const auto &CG : CheckingGroups) { 639 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 640 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 641 << ")\n"; 642 for (unsigned Member : CG.Members) { 643 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n"; 644 } 645 } 646 } 647 648 namespace { 649 650 /// Analyses memory accesses in a loop. 651 /// 652 /// Checks whether run time pointer checks are needed and builds sets for data 653 /// dependence checking. 654 class AccessAnalysis { 655 public: 656 /// Read or write access location. 657 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 658 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 659 660 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 661 MemoryDepChecker::DepCandidates &DA, 662 PredicatedScalarEvolution &PSE, 663 SmallPtrSetImpl<MDNode *> &LoopAliasScopes) 664 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE), 665 LoopAliasScopes(LoopAliasScopes) { 666 // We're analyzing dependences across loop iterations. 667 BAA.enableCrossIterationMode(); 668 } 669 670 /// Register a load and whether it is only read from. 671 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 672 Value *Ptr = const_cast<Value *>(Loc.Ptr); 673 AST.add(adjustLoc(Loc)); 674 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 675 if (IsReadOnly) 676 ReadOnlyPtr.insert(Ptr); 677 } 678 679 /// Register a store. 680 void addStore(MemoryLocation &Loc, Type *AccessTy) { 681 Value *Ptr = const_cast<Value *>(Loc.Ptr); 682 AST.add(adjustLoc(Loc)); 683 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 684 } 685 686 /// Check if we can emit a run-time no-alias check for \p Access. 687 /// 688 /// Returns true if we can emit a run-time no alias check for \p Access. 689 /// If we can check this access, this also adds it to a dependence set and 690 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 691 /// we will attempt to use additional run-time checks in order to get 692 /// the bounds of the pointer. 693 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 694 MemAccessInfo Access, Type *AccessTy, 695 const DenseMap<Value *, const SCEV *> &Strides, 696 DenseMap<Value *, unsigned> &DepSetId, 697 Loop *TheLoop, unsigned &RunningDepId, 698 unsigned ASId, bool ShouldCheckStride, bool Assume); 699 700 /// Check whether we can check the pointers at runtime for 701 /// non-intersection. 702 /// 703 /// Returns true if we need no check or if we do and we can generate them 704 /// (i.e. the pointers have computable bounds). 705 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 706 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides, 707 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 708 709 /// Goes over all memory accesses, checks whether a RT check is needed 710 /// and builds sets of dependent accesses. 711 void buildDependenceSets() { 712 processMemAccesses(); 713 } 714 715 /// Initial processing of memory accesses determined that we need to 716 /// perform dependency checking. 717 /// 718 /// Note that this can later be cleared if we retry memcheck analysis without 719 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 720 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 721 722 /// We decided that no dependence analysis would be used. Reset the state. 723 void resetDepChecks(MemoryDepChecker &DepChecker) { 724 CheckDeps.clear(); 725 DepChecker.clearDependences(); 726 } 727 728 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 729 730 const DenseMap<Value *, SmallVector<const Value *, 16>> & 731 getUnderlyingObjects() { 732 return UnderlyingObjects; 733 } 734 735 private: 736 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 737 738 /// Adjust the MemoryLocation so that it represents accesses to this 739 /// location across all iterations, rather than a single one. 740 MemoryLocation adjustLoc(MemoryLocation Loc) const { 741 // The accessed location varies within the loop, but remains within the 742 // underlying object. 743 Loc.Size = LocationSize::beforeOrAfterPointer(); 744 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope); 745 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias); 746 return Loc; 747 } 748 749 /// Drop alias scopes that are only valid within a single loop iteration. 750 MDNode *adjustAliasScopeList(MDNode *ScopeList) const { 751 if (!ScopeList) 752 return nullptr; 753 754 // For the sake of simplicity, drop the whole scope list if any scope is 755 // iteration-local. 756 if (any_of(ScopeList->operands(), [&](Metadata *Scope) { 757 return LoopAliasScopes.contains(cast<MDNode>(Scope)); 758 })) 759 return nullptr; 760 761 return ScopeList; 762 } 763 764 /// Go over all memory access and check whether runtime pointer checks 765 /// are needed and build sets of dependency check candidates. 766 void processMemAccesses(); 767 768 /// Map of all accesses. Values are the types used to access memory pointed to 769 /// by the pointer. 770 PtrAccessMap Accesses; 771 772 /// The loop being checked. 773 const Loop *TheLoop; 774 775 /// List of accesses that need a further dependence check. 776 MemAccessInfoList CheckDeps; 777 778 /// Set of pointers that are read only. 779 SmallPtrSet<Value*, 16> ReadOnlyPtr; 780 781 /// Batched alias analysis results. 782 BatchAAResults BAA; 783 784 /// An alias set tracker to partition the access set by underlying object and 785 //intrinsic property (such as TBAA metadata). 786 AliasSetTracker AST; 787 788 LoopInfo *LI; 789 790 /// Sets of potentially dependent accesses - members of one set share an 791 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 792 /// dependence check. 793 MemoryDepChecker::DepCandidates &DepCands; 794 795 /// Initial processing of memory accesses determined that we may need 796 /// to add memchecks. Perform the analysis to determine the necessary checks. 797 /// 798 /// Note that, this is different from isDependencyCheckNeeded. When we retry 799 /// memcheck analysis without dependency checking 800 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 801 /// cleared while this remains set if we have potentially dependent accesses. 802 bool IsRTCheckAnalysisNeeded = false; 803 804 /// The SCEV predicate containing all the SCEV-related assumptions. 805 PredicatedScalarEvolution &PSE; 806 807 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects; 808 809 /// Alias scopes that are declared inside the loop, and as such not valid 810 /// across iterations. 811 SmallPtrSetImpl<MDNode *> &LoopAliasScopes; 812 }; 813 814 } // end anonymous namespace 815 816 /// Check whether a pointer can participate in a runtime bounds check. 817 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 818 /// by adding run-time checks (overflow checks) if necessary. 819 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 820 const SCEV *PtrScev, Loop *L, bool Assume) { 821 // The bounds for loop-invariant pointer is trivial. 822 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 823 return true; 824 825 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 826 827 if (!AR && Assume) 828 AR = PSE.getAsAddRec(Ptr); 829 830 if (!AR) 831 return false; 832 833 return AR->isAffine(); 834 } 835 836 /// Check whether a pointer address cannot wrap. 837 static bool isNoWrap(PredicatedScalarEvolution &PSE, 838 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy, 839 Loop *L) { 840 const SCEV *PtrScev = PSE.getSCEV(Ptr); 841 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 842 return true; 843 844 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0); 845 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 846 return true; 847 848 return false; 849 } 850 851 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 852 function_ref<void(Value *)> AddPointer) { 853 SmallPtrSet<Value *, 8> Visited; 854 SmallVector<Value *> WorkList; 855 WorkList.push_back(StartPtr); 856 857 while (!WorkList.empty()) { 858 Value *Ptr = WorkList.pop_back_val(); 859 if (!Visited.insert(Ptr).second) 860 continue; 861 auto *PN = dyn_cast<PHINode>(Ptr); 862 // SCEV does not look through non-header PHIs inside the loop. Such phis 863 // can be analyzed by adding separate accesses for each incoming pointer 864 // value. 865 if (PN && InnermostLoop.contains(PN->getParent()) && 866 PN->getParent() != InnermostLoop.getHeader()) { 867 for (const Use &Inc : PN->incoming_values()) 868 WorkList.push_back(Inc); 869 } else 870 AddPointer(Ptr); 871 } 872 } 873 874 // Walk back through the IR for a pointer, looking for a select like the 875 // following: 876 // 877 // %offset = select i1 %cmp, i64 %a, i64 %b 878 // %addr = getelementptr double, double* %base, i64 %offset 879 // %ld = load double, double* %addr, align 8 880 // 881 // We won't be able to form a single SCEVAddRecExpr from this since the 882 // address for each loop iteration depends on %cmp. We could potentially 883 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 884 // memory safety/aliasing if needed. 885 // 886 // If we encounter some IR we don't yet handle, or something obviously fine 887 // like a constant, then we just add the SCEV for that term to the list passed 888 // in by the caller. If we have a node that may potentially yield a valid 889 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 890 // ourselves before adding to the list. 891 static void findForkedSCEVs( 892 ScalarEvolution *SE, const Loop *L, Value *Ptr, 893 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 894 unsigned Depth) { 895 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 896 // we've exceeded our limit on recursion, just return whatever we have 897 // regardless of whether it can be used for a forked pointer or not, along 898 // with an indication of whether it might be a poison or undef value. 899 const SCEV *Scev = SE->getSCEV(Ptr); 900 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 901 !isa<Instruction>(Ptr) || Depth == 0) { 902 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 903 return; 904 } 905 906 Depth--; 907 908 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 909 return get<1>(S); 910 }; 911 912 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 913 switch (Opcode) { 914 case Instruction::Add: 915 return SE->getAddExpr(L, R); 916 case Instruction::Sub: 917 return SE->getMinusSCEV(L, R); 918 default: 919 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 920 } 921 }; 922 923 Instruction *I = cast<Instruction>(Ptr); 924 unsigned Opcode = I->getOpcode(); 925 switch (Opcode) { 926 case Instruction::GetElementPtr: { 927 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 928 Type *SourceTy = GEP->getSourceElementType(); 929 // We only handle base + single offset GEPs here for now. 930 // Not dealing with preexisting gathers yet, so no vectors. 931 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 932 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 933 break; 934 } 935 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 936 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 937 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 938 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 939 940 // See if we need to freeze our fork... 941 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 942 any_of(OffsetScevs, UndefPoisonCheck); 943 944 // Check that we only have a single fork, on either the base or the offset. 945 // Copy the SCEV across for the one without a fork in order to generate 946 // the full SCEV for both sides of the GEP. 947 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 948 BaseScevs.push_back(BaseScevs[0]); 949 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 950 OffsetScevs.push_back(OffsetScevs[0]); 951 else { 952 ScevList.emplace_back(Scev, NeedsFreeze); 953 break; 954 } 955 956 // Find the pointer type we need to extend to. 957 Type *IntPtrTy = SE->getEffectiveSCEVType( 958 SE->getSCEV(GEP->getPointerOperand())->getType()); 959 960 // Find the size of the type being pointed to. We only have a single 961 // index term (guarded above) so we don't need to index into arrays or 962 // structures, just get the size of the scalar value. 963 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 964 965 // Scale up the offsets by the size of the type, then add to the bases. 966 const SCEV *Scaled1 = SE->getMulExpr( 967 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 968 const SCEV *Scaled2 = SE->getMulExpr( 969 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 970 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 971 NeedsFreeze); 972 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 973 NeedsFreeze); 974 break; 975 } 976 case Instruction::Select: { 977 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 978 // A select means we've found a forked pointer, but we currently only 979 // support a single select per pointer so if there's another behind this 980 // then we just bail out and return the generic SCEV. 981 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 982 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 983 if (ChildScevs.size() == 2) { 984 ScevList.push_back(ChildScevs[0]); 985 ScevList.push_back(ChildScevs[1]); 986 } else 987 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 988 break; 989 } 990 case Instruction::PHI: { 991 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 992 // A phi means we've found a forked pointer, but we currently only 993 // support a single phi per pointer so if there's another behind this 994 // then we just bail out and return the generic SCEV. 995 if (I->getNumOperands() == 2) { 996 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth); 997 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 998 } 999 if (ChildScevs.size() == 2) { 1000 ScevList.push_back(ChildScevs[0]); 1001 ScevList.push_back(ChildScevs[1]); 1002 } else 1003 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1004 break; 1005 } 1006 case Instruction::Add: 1007 case Instruction::Sub: { 1008 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 1009 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 1010 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 1011 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 1012 1013 // See if we need to freeze our fork... 1014 bool NeedsFreeze = 1015 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 1016 1017 // Check that we only have a single fork, on either the left or right side. 1018 // Copy the SCEV across for the one without a fork in order to generate 1019 // the full SCEV for both sides of the BinOp. 1020 if (LScevs.size() == 2 && RScevs.size() == 1) 1021 RScevs.push_back(RScevs[0]); 1022 else if (RScevs.size() == 2 && LScevs.size() == 1) 1023 LScevs.push_back(LScevs[0]); 1024 else { 1025 ScevList.emplace_back(Scev, NeedsFreeze); 1026 break; 1027 } 1028 1029 ScevList.emplace_back( 1030 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 1031 NeedsFreeze); 1032 ScevList.emplace_back( 1033 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 1034 NeedsFreeze); 1035 break; 1036 } 1037 default: 1038 // Just return the current SCEV if we haven't handled the instruction yet. 1039 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 1040 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1041 break; 1042 } 1043 } 1044 1045 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 1046 findForkedPointer(PredicatedScalarEvolution &PSE, 1047 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr, 1048 const Loop *L) { 1049 ScalarEvolution *SE = PSE.getSE(); 1050 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 1051 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 1052 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 1053 1054 // For now, we will only accept a forked pointer with two possible SCEVs 1055 // that are either SCEVAddRecExprs or loop invariant. 1056 if (Scevs.size() == 2 && 1057 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 1058 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 1059 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 1060 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 1061 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 1062 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 1063 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 1064 return Scevs; 1065 } 1066 1067 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 1068 } 1069 1070 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 1071 MemAccessInfo Access, Type *AccessTy, 1072 const DenseMap<Value *, const SCEV *> &StridesMap, 1073 DenseMap<Value *, unsigned> &DepSetId, 1074 Loop *TheLoop, unsigned &RunningDepId, 1075 unsigned ASId, bool ShouldCheckWrap, 1076 bool Assume) { 1077 Value *Ptr = Access.getPointer(); 1078 1079 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 1080 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 1081 1082 for (auto &P : TranslatedPtrs) { 1083 const SCEV *PtrExpr = get<0>(P); 1084 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 1085 return false; 1086 1087 // When we run after a failing dependency check we have to make sure 1088 // we don't have wrapping pointers. 1089 if (ShouldCheckWrap) { 1090 // Skip wrap checking when translating pointers. 1091 if (TranslatedPtrs.size() > 1) 1092 return false; 1093 1094 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 1095 auto *Expr = PSE.getSCEV(Ptr); 1096 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 1097 return false; 1098 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1099 } 1100 } 1101 // If there's only one option for Ptr, look it up after bounds and wrap 1102 // checking, because assumptions might have been added to PSE. 1103 if (TranslatedPtrs.size() == 1) 1104 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1105 false}; 1106 } 1107 1108 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1109 // The id of the dependence set. 1110 unsigned DepId; 1111 1112 if (isDependencyCheckNeeded()) { 1113 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1114 unsigned &LeaderId = DepSetId[Leader]; 1115 if (!LeaderId) 1116 LeaderId = RunningDepId++; 1117 DepId = LeaderId; 1118 } else 1119 // Each access has its own dependence set. 1120 DepId = RunningDepId++; 1121 1122 bool IsWrite = Access.getInt(); 1123 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1124 NeedsFreeze); 1125 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1126 } 1127 1128 return true; 1129 } 1130 1131 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1132 ScalarEvolution *SE, Loop *TheLoop, 1133 const DenseMap<Value *, const SCEV *> &StridesMap, 1134 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1135 // Find pointers with computable bounds. We are going to use this information 1136 // to place a runtime bound check. 1137 bool CanDoRT = true; 1138 1139 bool MayNeedRTCheck = false; 1140 if (!IsRTCheckAnalysisNeeded) return true; 1141 1142 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1143 1144 // We assign a consecutive id to access from different alias sets. 1145 // Accesses between different groups doesn't need to be checked. 1146 unsigned ASId = 0; 1147 for (auto &AS : AST) { 1148 int NumReadPtrChecks = 0; 1149 int NumWritePtrChecks = 0; 1150 bool CanDoAliasSetRT = true; 1151 ++ASId; 1152 auto ASPointers = AS.getPointers(); 1153 1154 // We assign consecutive id to access from different dependence sets. 1155 // Accesses within the same set don't need a runtime check. 1156 unsigned RunningDepId = 1; 1157 DenseMap<Value *, unsigned> DepSetId; 1158 1159 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1160 1161 // First, count how many write and read accesses are in the alias set. Also 1162 // collect MemAccessInfos for later. 1163 SmallVector<MemAccessInfo, 4> AccessInfos; 1164 for (const Value *ConstPtr : ASPointers) { 1165 Value *Ptr = const_cast<Value *>(ConstPtr); 1166 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1167 if (IsWrite) 1168 ++NumWritePtrChecks; 1169 else 1170 ++NumReadPtrChecks; 1171 AccessInfos.emplace_back(Ptr, IsWrite); 1172 } 1173 1174 // We do not need runtime checks for this alias set, if there are no writes 1175 // or a single write and no reads. 1176 if (NumWritePtrChecks == 0 || 1177 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1178 assert((ASPointers.size() <= 1 || 1179 all_of(ASPointers, 1180 [this](const Value *Ptr) { 1181 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr), 1182 true); 1183 return DepCands.findValue(AccessWrite) == DepCands.end(); 1184 })) && 1185 "Can only skip updating CanDoRT below, if all entries in AS " 1186 "are reads or there is at most 1 entry"); 1187 continue; 1188 } 1189 1190 for (auto &Access : AccessInfos) { 1191 for (const auto &AccessTy : Accesses[Access]) { 1192 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1193 DepSetId, TheLoop, RunningDepId, ASId, 1194 ShouldCheckWrap, false)) { 1195 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1196 << *Access.getPointer() << '\n'); 1197 Retries.push_back({Access, AccessTy}); 1198 CanDoAliasSetRT = false; 1199 } 1200 } 1201 } 1202 1203 // Note that this function computes CanDoRT and MayNeedRTCheck 1204 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1205 // we have a pointer for which we couldn't find the bounds but we don't 1206 // actually need to emit any checks so it does not matter. 1207 // 1208 // We need runtime checks for this alias set, if there are at least 2 1209 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1210 // any bound checks (because in that case the number of dependence sets is 1211 // incomplete). 1212 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1213 1214 // We need to perform run-time alias checks, but some pointers had bounds 1215 // that couldn't be checked. 1216 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1217 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1218 // We know that we need these checks, so we can now be more aggressive 1219 // and add further checks if required (overflow checks). 1220 CanDoAliasSetRT = true; 1221 for (const auto &[Access, AccessTy] : Retries) { 1222 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1223 DepSetId, TheLoop, RunningDepId, ASId, 1224 ShouldCheckWrap, /*Assume=*/true)) { 1225 CanDoAliasSetRT = false; 1226 UncomputablePtr = Access.getPointer(); 1227 break; 1228 } 1229 } 1230 } 1231 1232 CanDoRT &= CanDoAliasSetRT; 1233 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1234 ++ASId; 1235 } 1236 1237 // If the pointers that we would use for the bounds comparison have different 1238 // address spaces, assume the values aren't directly comparable, so we can't 1239 // use them for the runtime check. We also have to assume they could 1240 // overlap. In the future there should be metadata for whether address spaces 1241 // are disjoint. 1242 unsigned NumPointers = RtCheck.Pointers.size(); 1243 for (unsigned i = 0; i < NumPointers; ++i) { 1244 for (unsigned j = i + 1; j < NumPointers; ++j) { 1245 // Only need to check pointers between two different dependency sets. 1246 if (RtCheck.Pointers[i].DependencySetId == 1247 RtCheck.Pointers[j].DependencySetId) 1248 continue; 1249 // Only need to check pointers in the same alias set. 1250 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1251 continue; 1252 1253 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1254 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1255 1256 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1257 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1258 if (ASi != ASj) { 1259 LLVM_DEBUG( 1260 dbgs() << "LAA: Runtime check would require comparison between" 1261 " different address spaces\n"); 1262 return false; 1263 } 1264 } 1265 } 1266 1267 if (MayNeedRTCheck && CanDoRT) 1268 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1269 1270 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1271 << " pointer comparisons.\n"); 1272 1273 // If we can do run-time checks, but there are no checks, no runtime checks 1274 // are needed. This can happen when all pointers point to the same underlying 1275 // object for example. 1276 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1277 1278 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1279 if (!CanDoRTIfNeeded) 1280 RtCheck.reset(); 1281 return CanDoRTIfNeeded; 1282 } 1283 1284 void AccessAnalysis::processMemAccesses() { 1285 // We process the set twice: first we process read-write pointers, last we 1286 // process read-only pointers. This allows us to skip dependence tests for 1287 // read-only pointers. 1288 1289 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1290 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1291 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1292 LLVM_DEBUG({ 1293 for (const auto &[A, _] : Accesses) 1294 dbgs() << "\t" << *A.getPointer() << " (" 1295 << (A.getInt() ? "write" 1296 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only" 1297 : "read")) 1298 << ")\n"; 1299 }); 1300 1301 // The AliasSetTracker has nicely partitioned our pointers by metadata 1302 // compatibility and potential for underlying-object overlap. As a result, we 1303 // only need to check for potential pointer dependencies within each alias 1304 // set. 1305 for (const auto &AS : AST) { 1306 // Note that both the alias-set tracker and the alias sets themselves used 1307 // ordered collections internally and so the iteration order here is 1308 // deterministic. 1309 auto ASPointers = AS.getPointers(); 1310 1311 bool SetHasWrite = false; 1312 1313 // Map of pointers to last access encountered. 1314 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1315 UnderlyingObjToAccessMap ObjToLastAccess; 1316 1317 // Set of access to check after all writes have been processed. 1318 PtrAccessMap DeferredAccesses; 1319 1320 // Iterate over each alias set twice, once to process read/write pointers, 1321 // and then to process read-only pointers. 1322 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1323 bool UseDeferred = SetIteration > 0; 1324 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1325 1326 for (const Value *ConstPtr : ASPointers) { 1327 Value *Ptr = const_cast<Value *>(ConstPtr); 1328 1329 // For a single memory access in AliasSetTracker, Accesses may contain 1330 // both read and write, and they both need to be handled for CheckDeps. 1331 for (const auto &[AC, _] : S) { 1332 if (AC.getPointer() != Ptr) 1333 continue; 1334 1335 bool IsWrite = AC.getInt(); 1336 1337 // If we're using the deferred access set, then it contains only 1338 // reads. 1339 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1340 if (UseDeferred && !IsReadOnlyPtr) 1341 continue; 1342 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1343 // read or a write. 1344 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1345 S.count(MemAccessInfo(Ptr, false))) && 1346 "Alias-set pointer not in the access set?"); 1347 1348 MemAccessInfo Access(Ptr, IsWrite); 1349 DepCands.insert(Access); 1350 1351 // Memorize read-only pointers for later processing and skip them in 1352 // the first round (they need to be checked after we have seen all 1353 // write pointers). Note: we also mark pointer that are not 1354 // consecutive as "read-only" pointers (so that we check 1355 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1356 if (!UseDeferred && IsReadOnlyPtr) { 1357 // We only use the pointer keys, the types vector values don't 1358 // matter. 1359 DeferredAccesses.insert({Access, {}}); 1360 continue; 1361 } 1362 1363 // If this is a write - check other reads and writes for conflicts. If 1364 // this is a read only check other writes for conflicts (but only if 1365 // there is no other write to the ptr - this is an optimization to 1366 // catch "a[i] = a[i] + " without having to do a dependence check). 1367 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1368 CheckDeps.push_back(Access); 1369 IsRTCheckAnalysisNeeded = true; 1370 } 1371 1372 if (IsWrite) 1373 SetHasWrite = true; 1374 1375 // Create sets of pointers connected by a shared alias set and 1376 // underlying object. 1377 typedef SmallVector<const Value *, 16> ValueVector; 1378 ValueVector TempObjects; 1379 1380 UnderlyingObjects[Ptr] = {}; 1381 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr]; 1382 ::getUnderlyingObjects(Ptr, UOs, LI); 1383 LLVM_DEBUG(dbgs() 1384 << "Underlying objects for pointer " << *Ptr << "\n"); 1385 for (const Value *UnderlyingObj : UOs) { 1386 // nullptr never alias, don't join sets for pointer that have "null" 1387 // in their UnderlyingObjects list. 1388 if (isa<ConstantPointerNull>(UnderlyingObj) && 1389 !NullPointerIsDefined( 1390 TheLoop->getHeader()->getParent(), 1391 UnderlyingObj->getType()->getPointerAddressSpace())) 1392 continue; 1393 1394 UnderlyingObjToAccessMap::iterator Prev = 1395 ObjToLastAccess.find(UnderlyingObj); 1396 if (Prev != ObjToLastAccess.end()) 1397 DepCands.unionSets(Access, Prev->second); 1398 1399 ObjToLastAccess[UnderlyingObj] = Access; 1400 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1401 } 1402 } 1403 } 1404 } 1405 } 1406 } 1407 1408 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1409 /// i.e. monotonically increasing/decreasing. 1410 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1411 PredicatedScalarEvolution &PSE, const Loop *L) { 1412 1413 // FIXME: This should probably only return true for NUW. 1414 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1415 return true; 1416 1417 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 1418 return true; 1419 1420 // Scalar evolution does not propagate the non-wrapping flags to values that 1421 // are derived from a non-wrapping induction variable because non-wrapping 1422 // could be flow-sensitive. 1423 // 1424 // Look through the potentially overflowing instruction to try to prove 1425 // non-wrapping for the *specific* value of Ptr. 1426 1427 // The arithmetic implied by an inbounds GEP can't overflow. 1428 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1429 if (!GEP || !GEP->isInBounds()) 1430 return false; 1431 1432 // Make sure there is only one non-const index and analyze that. 1433 Value *NonConstIndex = nullptr; 1434 for (Value *Index : GEP->indices()) 1435 if (!isa<ConstantInt>(Index)) { 1436 if (NonConstIndex) 1437 return false; 1438 NonConstIndex = Index; 1439 } 1440 if (!NonConstIndex) 1441 // The recurrence is on the pointer, ignore for now. 1442 return false; 1443 1444 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1445 // AddRec using a NSW operation. 1446 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1447 if (OBO->hasNoSignedWrap() && 1448 // Assume constant for other the operand so that the AddRec can be 1449 // easily found. 1450 isa<ConstantInt>(OBO->getOperand(1))) { 1451 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1452 1453 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1454 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1455 } 1456 1457 return false; 1458 } 1459 1460 /// Check whether the access through \p Ptr has a constant stride. 1461 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE, 1462 Type *AccessTy, Value *Ptr, 1463 const Loop *Lp, 1464 const DenseMap<Value *, const SCEV *> &StridesMap, 1465 bool Assume, bool ShouldCheckWrap) { 1466 Type *Ty = Ptr->getType(); 1467 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1468 1469 if (isa<ScalableVectorType>(AccessTy)) { 1470 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1471 << "\n"); 1472 return std::nullopt; 1473 } 1474 1475 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1476 1477 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1478 if (Assume && !AR) 1479 AR = PSE.getAsAddRec(Ptr); 1480 1481 if (!AR) { 1482 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1483 << " SCEV: " << *PtrScev << "\n"); 1484 return std::nullopt; 1485 } 1486 1487 // The access function must stride over the innermost loop. 1488 if (Lp != AR->getLoop()) { 1489 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1490 << *Ptr << " SCEV: " << *AR << "\n"); 1491 return std::nullopt; 1492 } 1493 1494 // Check the step is constant. 1495 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1496 1497 // Calculate the pointer stride and check if it is constant. 1498 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1499 if (!C) { 1500 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1501 << " SCEV: " << *AR << "\n"); 1502 return std::nullopt; 1503 } 1504 1505 auto &DL = Lp->getHeader()->getDataLayout(); 1506 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1507 int64_t Size = AllocSize.getFixedValue(); 1508 const APInt &APStepVal = C->getAPInt(); 1509 1510 // Huge step value - give up. 1511 if (APStepVal.getBitWidth() > 64) 1512 return std::nullopt; 1513 1514 int64_t StepVal = APStepVal.getSExtValue(); 1515 1516 // Strided access. 1517 int64_t Stride = StepVal / Size; 1518 int64_t Rem = StepVal % Size; 1519 if (Rem) 1520 return std::nullopt; 1521 1522 if (!ShouldCheckWrap) 1523 return Stride; 1524 1525 // The address calculation must not wrap. Otherwise, a dependence could be 1526 // inverted. 1527 if (isNoWrapAddRec(Ptr, AR, PSE, Lp)) 1528 return Stride; 1529 1530 // An inbounds getelementptr that is a AddRec with a unit stride 1531 // cannot wrap per definition. If it did, the result would be poison 1532 // and any memory access dependent on it would be immediate UB 1533 // when executed. 1534 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1535 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1)) 1536 return Stride; 1537 1538 // If the null pointer is undefined, then a access sequence which would 1539 // otherwise access it can be assumed not to unsigned wrap. Note that this 1540 // assumes the object in memory is aligned to the natural alignment. 1541 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1542 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) && 1543 (Stride == 1 || Stride == -1)) 1544 return Stride; 1545 1546 if (Assume) { 1547 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1548 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n" 1549 << "LAA: Pointer: " << *Ptr << "\n" 1550 << "LAA: SCEV: " << *AR << "\n" 1551 << "LAA: Added an overflow assumption\n"); 1552 return Stride; 1553 } 1554 LLVM_DEBUG( 1555 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1556 << *Ptr << " SCEV: " << *AR << "\n"); 1557 return std::nullopt; 1558 } 1559 1560 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1561 Type *ElemTyB, Value *PtrB, 1562 const DataLayout &DL, 1563 ScalarEvolution &SE, bool StrictCheck, 1564 bool CheckType) { 1565 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1566 1567 // Make sure that A and B are different pointers. 1568 if (PtrA == PtrB) 1569 return 0; 1570 1571 // Make sure that the element types are the same if required. 1572 if (CheckType && ElemTyA != ElemTyB) 1573 return std::nullopt; 1574 1575 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1576 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1577 1578 // Check that the address spaces match. 1579 if (ASA != ASB) 1580 return std::nullopt; 1581 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1582 1583 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1584 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1585 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1586 1587 int Val; 1588 if (PtrA1 == PtrB1) { 1589 // Retrieve the address space again as pointer stripping now tracks through 1590 // `addrspacecast`. 1591 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1592 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1593 // Check that the address spaces match and that the pointers are valid. 1594 if (ASA != ASB) 1595 return std::nullopt; 1596 1597 IdxWidth = DL.getIndexSizeInBits(ASA); 1598 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1599 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1600 1601 OffsetB -= OffsetA; 1602 Val = OffsetB.getSExtValue(); 1603 } else { 1604 // Otherwise compute the distance with SCEV between the base pointers. 1605 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1606 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1607 const auto *Diff = 1608 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1609 if (!Diff) 1610 return std::nullopt; 1611 Val = Diff->getAPInt().getSExtValue(); 1612 } 1613 int Size = DL.getTypeStoreSize(ElemTyA); 1614 int Dist = Val / Size; 1615 1616 // Ensure that the calculated distance matches the type-based one after all 1617 // the bitcasts removal in the provided pointers. 1618 if (!StrictCheck || Dist * Size == Val) 1619 return Dist; 1620 return std::nullopt; 1621 } 1622 1623 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1624 const DataLayout &DL, ScalarEvolution &SE, 1625 SmallVectorImpl<unsigned> &SortedIndices) { 1626 assert(llvm::all_of( 1627 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1628 "Expected list of pointer operands."); 1629 // Walk over the pointers, and map each of them to an offset relative to 1630 // first pointer in the array. 1631 Value *Ptr0 = VL[0]; 1632 1633 using DistOrdPair = std::pair<int64_t, int>; 1634 auto Compare = llvm::less_first(); 1635 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1636 Offsets.emplace(0, 0); 1637 bool IsConsecutive = true; 1638 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) { 1639 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1640 /*StrictCheck=*/true); 1641 if (!Diff) 1642 return false; 1643 1644 // Check if the pointer with the same offset is found. 1645 int64_t Offset = *Diff; 1646 auto [It, IsInserted] = Offsets.emplace(Offset, Idx); 1647 if (!IsInserted) 1648 return false; 1649 // Consecutive order if the inserted element is the last one. 1650 IsConsecutive &= std::next(It) == Offsets.end(); 1651 } 1652 SortedIndices.clear(); 1653 if (!IsConsecutive) { 1654 // Fill SortedIndices array only if it is non-consecutive. 1655 SortedIndices.resize(VL.size()); 1656 for (auto [Idx, Off] : enumerate(Offsets)) 1657 SortedIndices[Idx] = Off.second; 1658 } 1659 return true; 1660 } 1661 1662 /// Returns true if the memory operations \p A and \p B are consecutive. 1663 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1664 ScalarEvolution &SE, bool CheckType) { 1665 Value *PtrA = getLoadStorePointerOperand(A); 1666 Value *PtrB = getLoadStorePointerOperand(B); 1667 if (!PtrA || !PtrB) 1668 return false; 1669 Type *ElemTyA = getLoadStoreType(A); 1670 Type *ElemTyB = getLoadStoreType(B); 1671 std::optional<int> Diff = 1672 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1673 /*StrictCheck=*/true, CheckType); 1674 return Diff && *Diff == 1; 1675 } 1676 1677 void MemoryDepChecker::addAccess(StoreInst *SI) { 1678 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1679 [this, SI](Value *Ptr) { 1680 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1681 InstMap.push_back(SI); 1682 ++AccessIdx; 1683 }); 1684 } 1685 1686 void MemoryDepChecker::addAccess(LoadInst *LI) { 1687 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1688 [this, LI](Value *Ptr) { 1689 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1690 InstMap.push_back(LI); 1691 ++AccessIdx; 1692 }); 1693 } 1694 1695 MemoryDepChecker::VectorizationSafetyStatus 1696 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1697 switch (Type) { 1698 case NoDep: 1699 case Forward: 1700 case BackwardVectorizable: 1701 return VectorizationSafetyStatus::Safe; 1702 1703 case Unknown: 1704 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1705 case ForwardButPreventsForwarding: 1706 case Backward: 1707 case BackwardVectorizableButPreventsForwarding: 1708 case IndirectUnsafe: 1709 return VectorizationSafetyStatus::Unsafe; 1710 } 1711 llvm_unreachable("unexpected DepType!"); 1712 } 1713 1714 bool MemoryDepChecker::Dependence::isBackward() const { 1715 switch (Type) { 1716 case NoDep: 1717 case Forward: 1718 case ForwardButPreventsForwarding: 1719 case Unknown: 1720 case IndirectUnsafe: 1721 return false; 1722 1723 case BackwardVectorizable: 1724 case Backward: 1725 case BackwardVectorizableButPreventsForwarding: 1726 return true; 1727 } 1728 llvm_unreachable("unexpected DepType!"); 1729 } 1730 1731 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1732 return isBackward() || Type == Unknown; 1733 } 1734 1735 bool MemoryDepChecker::Dependence::isForward() const { 1736 switch (Type) { 1737 case Forward: 1738 case ForwardButPreventsForwarding: 1739 return true; 1740 1741 case NoDep: 1742 case Unknown: 1743 case BackwardVectorizable: 1744 case Backward: 1745 case BackwardVectorizableButPreventsForwarding: 1746 case IndirectUnsafe: 1747 return false; 1748 } 1749 llvm_unreachable("unexpected DepType!"); 1750 } 1751 1752 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1753 uint64_t TypeByteSize) { 1754 // If loads occur at a distance that is not a multiple of a feasible vector 1755 // factor store-load forwarding does not take place. 1756 // Positive dependences might cause troubles because vectorizing them might 1757 // prevent store-load forwarding making vectorized code run a lot slower. 1758 // a[i] = a[i-3] ^ a[i-8]; 1759 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1760 // hence on your typical architecture store-load forwarding does not take 1761 // place. Vectorizing in such cases does not make sense. 1762 // Store-load forwarding distance. 1763 1764 // After this many iterations store-to-load forwarding conflicts should not 1765 // cause any slowdowns. 1766 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1767 // Maximum vector factor. 1768 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1769 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes); 1770 1771 // Compute the smallest VF at which the store and load would be misaligned. 1772 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1773 VF *= 2) { 1774 // If the number of vector iteration between the store and the load are 1775 // small we could incur conflicts. 1776 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1777 MaxVFWithoutSLForwardIssues = (VF >> 1); 1778 break; 1779 } 1780 } 1781 1782 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1783 LLVM_DEBUG( 1784 dbgs() << "LAA: Distance " << Distance 1785 << " that could cause a store-load forwarding conflict\n"); 1786 return true; 1787 } 1788 1789 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes && 1790 MaxVFWithoutSLForwardIssues != 1791 VectorizerParams::MaxVectorWidth * TypeByteSize) 1792 MinDepDistBytes = MaxVFWithoutSLForwardIssues; 1793 return false; 1794 } 1795 1796 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1797 if (Status < S) 1798 Status = S; 1799 } 1800 1801 /// Given a dependence-distance \p Dist between two 1802 /// memory accesses, that have strides in the same direction whose absolute 1803 /// value of the maximum stride is given in \p MaxStride, and that have the same 1804 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is 1805 /// \p MaxBTC, check if it is possible to prove statically that the dependence 1806 /// distance is larger than the range that the accesses will travel through the 1807 /// execution of the loop. If so, return true; false otherwise. This is useful 1808 /// for example in loops such as the following (PR31098): 1809 /// for (i = 0; i < D; ++i) { 1810 /// = out[i]; 1811 /// out[i+D] = 1812 /// } 1813 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1814 const SCEV &MaxBTC, const SCEV &Dist, 1815 uint64_t MaxStride, 1816 uint64_t TypeByteSize) { 1817 1818 // If we can prove that 1819 // (**) |Dist| > MaxBTC * Step 1820 // where Step is the absolute stride of the memory accesses in bytes, 1821 // then there is no dependence. 1822 // 1823 // Rationale: 1824 // We basically want to check if the absolute distance (|Dist/Step|) 1825 // is >= the loop iteration count (or > MaxBTC). 1826 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1827 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1828 // that the dependence distance is >= VF; This is checked elsewhere. 1829 // But in some cases we can prune dependence distances early, and 1830 // even before selecting the VF, and without a runtime test, by comparing 1831 // the distance against the loop iteration count. Since the vectorized code 1832 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1833 // also guarantees that distance >= VF. 1834 // 1835 const uint64_t ByteStride = MaxStride * TypeByteSize; 1836 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride); 1837 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step); 1838 1839 const SCEV *CastedDist = &Dist; 1840 const SCEV *CastedProduct = Product; 1841 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1842 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1843 1844 // The dependence distance can be positive/negative, so we sign extend Dist; 1845 // The multiplication of the absolute stride in bytes and the 1846 // backedgeTakenCount is non-negative, so we zero extend Product. 1847 if (DistTypeSizeBits > ProductTypeSizeBits) 1848 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1849 else 1850 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1851 1852 // Is Dist - (MaxBTC * Step) > 0 ? 1853 // (If so, then we have proven (**) because |Dist| >= Dist) 1854 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1855 if (SE.isKnownPositive(Minus)) 1856 return true; 1857 1858 // Second try: Is -Dist - (MaxBTC * Step) > 0 ? 1859 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1860 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1861 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1862 return SE.isKnownPositive(Minus); 1863 } 1864 1865 /// Check the dependence for two accesses with the same stride \p Stride. 1866 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1867 /// bytes. 1868 /// 1869 /// \returns true if they are independent. 1870 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1871 uint64_t TypeByteSize) { 1872 assert(Stride > 1 && "The stride must be greater than 1"); 1873 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1874 assert(Distance > 0 && "The distance must be non-zero"); 1875 1876 // Skip if the distance is not multiple of type byte size. 1877 if (Distance % TypeByteSize) 1878 return false; 1879 1880 uint64_t ScaledDist = Distance / TypeByteSize; 1881 1882 // No dependence if the scaled distance is not multiple of the stride. 1883 // E.g. 1884 // for (i = 0; i < 1024 ; i += 4) 1885 // A[i+2] = A[i] + 1; 1886 // 1887 // Two accesses in memory (scaled distance is 2, stride is 4): 1888 // | A[0] | | | | A[4] | | | | 1889 // | | | A[2] | | | | A[6] | | 1890 // 1891 // E.g. 1892 // for (i = 0; i < 1024 ; i += 3) 1893 // A[i+4] = A[i] + 1; 1894 // 1895 // Two accesses in memory (scaled distance is 4, stride is 3): 1896 // | A[0] | | | A[3] | | | A[6] | | | 1897 // | | | | | A[4] | | | A[7] | | 1898 return ScaledDist % Stride; 1899 } 1900 1901 /// Returns true if any of the underlying objects has a loop varying address, 1902 /// i.e. may change in \p L. 1903 static bool 1904 isLoopVariantIndirectAddress(ArrayRef<const Value *> UnderlyingObjects, 1905 ScalarEvolution &SE, const Loop *L) { 1906 return any_of(UnderlyingObjects, [&SE, L](const Value *UO) { 1907 return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L); 1908 }); 1909 } 1910 1911 std::variant<MemoryDepChecker::Dependence::DepType, 1912 MemoryDepChecker::DepDistanceStrideAndSizeInfo> 1913 MemoryDepChecker::getDependenceDistanceStrideAndSize( 1914 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst, 1915 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst, 1916 const DenseMap<Value *, SmallVector<const Value *, 16>> 1917 &UnderlyingObjects) { 1918 auto &DL = InnermostLoop->getHeader()->getDataLayout(); 1919 auto &SE = *PSE.getSE(); 1920 auto [APtr, AIsWrite] = A; 1921 auto [BPtr, BIsWrite] = B; 1922 1923 // Two reads are independent. 1924 if (!AIsWrite && !BIsWrite) 1925 return MemoryDepChecker::Dependence::NoDep; 1926 1927 Type *ATy = getLoadStoreType(AInst); 1928 Type *BTy = getLoadStoreType(BInst); 1929 1930 // We cannot check pointers in different address spaces. 1931 if (APtr->getType()->getPointerAddressSpace() != 1932 BPtr->getType()->getPointerAddressSpace()) 1933 return MemoryDepChecker::Dependence::Unknown; 1934 1935 int64_t StrideAPtr = 1936 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true) 1937 .value_or(0); 1938 int64_t StrideBPtr = 1939 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true) 1940 .value_or(0); 1941 1942 const SCEV *Src = PSE.getSCEV(APtr); 1943 const SCEV *Sink = PSE.getSCEV(BPtr); 1944 1945 // If the induction step is negative we have to invert source and sink of the 1946 // dependence when measuring the distance between them. We should not swap 1947 // AIsWrite with BIsWrite, as their uses expect them in program order. 1948 if (StrideAPtr < 0) { 1949 std::swap(Src, Sink); 1950 std::swap(AInst, BInst); 1951 } 1952 1953 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1954 1955 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1956 << "(Induction step: " << StrideAPtr << ")\n"); 1957 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst 1958 << ": " << *Dist << "\n"); 1959 1960 // Needs accesses where the addresses of the accessed underlying objects do 1961 // not change within the loop. 1962 if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE, 1963 InnermostLoop) || 1964 isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE, 1965 InnermostLoop)) 1966 return MemoryDepChecker::Dependence::IndirectUnsafe; 1967 1968 // Check if we can prove that Sink only accesses memory after Src's end or 1969 // vice versa. At the moment this is limited to cases where either source or 1970 // sink are loop invariant to avoid compile-time increases. This is not 1971 // required for correctness. 1972 if (SE.isLoopInvariant(Src, InnermostLoop) || 1973 SE.isLoopInvariant(Sink, InnermostLoop)) { 1974 const auto &[SrcStart, SrcEnd] = 1975 getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds); 1976 const auto &[SinkStart, SinkEnd] = 1977 getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds); 1978 if (!isa<SCEVCouldNotCompute>(SrcStart) && 1979 !isa<SCEVCouldNotCompute>(SrcEnd) && 1980 !isa<SCEVCouldNotCompute>(SinkStart) && 1981 !isa<SCEVCouldNotCompute>(SinkEnd)) { 1982 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart)) 1983 return MemoryDepChecker::Dependence::NoDep; 1984 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart)) 1985 return MemoryDepChecker::Dependence::NoDep; 1986 } 1987 } 1988 1989 // Need accesses with constant strides and the same direction. We don't want 1990 // to vectorize "A[B[i]] += ..." and similar code or pointer arithmetic that 1991 // could wrap in the address space. 1992 if (!StrideAPtr || !StrideBPtr || (StrideAPtr > 0 && StrideBPtr < 0) || 1993 (StrideAPtr < 0 && StrideBPtr > 0)) { 1994 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1995 return MemoryDepChecker::Dependence::Unknown; 1996 } 1997 1998 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 1999 bool HasSameSize = 2000 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 2001 if (!HasSameSize) 2002 TypeByteSize = 0; 2003 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtr), 2004 std::abs(StrideBPtr), TypeByteSize, 2005 AIsWrite, BIsWrite); 2006 } 2007 2008 MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent( 2009 const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B, 2010 unsigned BIdx, 2011 const DenseMap<Value *, SmallVector<const Value *, 16>> 2012 &UnderlyingObjects) { 2013 assert(AIdx < BIdx && "Must pass arguments in program order"); 2014 2015 // Get the dependence distance, stride, type size and what access writes for 2016 // the dependence between A and B. 2017 auto Res = getDependenceDistanceStrideAndSize( 2018 A, InstMap[AIdx], B, InstMap[BIdx], UnderlyingObjects); 2019 if (std::holds_alternative<Dependence::DepType>(Res)) 2020 return std::get<Dependence::DepType>(Res); 2021 2022 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] = 2023 std::get<DepDistanceStrideAndSizeInfo>(Res); 2024 bool HasSameSize = TypeByteSize > 0; 2025 2026 std::optional<uint64_t> CommonStride = 2027 StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt; 2028 if (isa<SCEVCouldNotCompute>(Dist)) { 2029 // TODO: Relax requirement that there is a common stride to retry with 2030 // non-constant distance dependencies. 2031 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2032 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n"); 2033 return Dependence::Unknown; 2034 } 2035 2036 ScalarEvolution &SE = *PSE.getSE(); 2037 auto &DL = InnermostLoop->getHeader()->getDataLayout(); 2038 uint64_t MaxStride = std::max(StrideA, StrideB); 2039 2040 // If the distance between the acecsses is larger than their maximum absolute 2041 // stride multiplied by the symbolic maximum backedge taken count (which is an 2042 // upper bound of the number of iterations), the accesses are independet, i.e. 2043 // they are far enough appart that accesses won't access the same location 2044 // across all loop ierations. 2045 if (HasSameSize && isSafeDependenceDistance( 2046 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), 2047 *Dist, MaxStride, TypeByteSize)) 2048 return Dependence::NoDep; 2049 2050 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 2051 2052 // Attempt to prove strided accesses independent. 2053 if (C) { 2054 const APInt &Val = C->getAPInt(); 2055 int64_t Distance = Val.getSExtValue(); 2056 2057 // If the distance between accesses and their strides are known constants, 2058 // check whether the accesses interlace each other. 2059 if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 && 2060 HasSameSize && 2061 areStridedAccessesIndependent(std::abs(Distance), *CommonStride, 2062 TypeByteSize)) { 2063 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 2064 return Dependence::NoDep; 2065 } 2066 } else 2067 Dist = SE.applyLoopGuards(Dist, InnermostLoop); 2068 2069 // Negative distances are not plausible dependencies. 2070 if (SE.isKnownNonPositive(Dist)) { 2071 if (SE.isKnownNonNegative(Dist)) { 2072 if (HasSameSize) { 2073 // Write to the same location with the same size. 2074 return Dependence::Forward; 2075 } 2076 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but " 2077 "different type sizes\n"); 2078 return Dependence::Unknown; 2079 } 2080 2081 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 2082 // Check if the first access writes to a location that is read in a later 2083 // iteration, where the distance between them is not a multiple of a vector 2084 // factor and relatively small. 2085 // 2086 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to 2087 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a 2088 // forward dependency will allow vectorization using any width. 2089 2090 if (IsTrueDataDependence && EnableForwardingConflictDetection) { 2091 if (!C) { 2092 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2093 // condition to consider retrying with runtime checks. Historically, we 2094 // did not set it when strides were different but there is no inherent 2095 // reason to. 2096 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2097 return Dependence::Unknown; 2098 } 2099 if (!HasSameSize || 2100 couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(), 2101 TypeByteSize)) { 2102 LLVM_DEBUG( 2103 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 2104 return Dependence::ForwardButPreventsForwarding; 2105 } 2106 } 2107 2108 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 2109 return Dependence::Forward; 2110 } 2111 2112 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue(); 2113 // Below we only handle strictly positive distances. 2114 if (MinDistance <= 0) { 2115 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2116 return Dependence::Unknown; 2117 } 2118 2119 if (!isa<SCEVConstant>(Dist)) { 2120 // Previously this case would be treated as Unknown, possibly setting 2121 // FoundNonConstantDistanceDependence to force re-trying with runtime 2122 // checks. Until the TODO below is addressed, set it here to preserve 2123 // original behavior w.r.t. re-trying with runtime checks. 2124 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2125 // condition to consider retrying with runtime checks. Historically, we 2126 // did not set it when strides were different but there is no inherent 2127 // reason to. 2128 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2129 } 2130 2131 if (!HasSameSize) { 2132 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 2133 "different type sizes\n"); 2134 return Dependence::Unknown; 2135 } 2136 2137 if (!CommonStride) 2138 return Dependence::Unknown; 2139 2140 // Bail out early if passed-in parameters make vectorization not feasible. 2141 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 2142 VectorizerParams::VectorizationFactor : 1); 2143 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 2144 VectorizerParams::VectorizationInterleave : 1); 2145 // The minimum number of iterations for a vectorized/unrolled version. 2146 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 2147 2148 // It's not vectorizable if the distance is smaller than the minimum distance 2149 // needed for a vectroized/unrolled version. Vectorizing one iteration in 2150 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 2151 // TypeByteSize (No need to plus the last gap distance). 2152 // 2153 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2154 // foo(int *A) { 2155 // int *B = (int *)((char *)A + 14); 2156 // for (i = 0 ; i < 1024 ; i += 2) 2157 // B[i] = A[i] + 1; 2158 // } 2159 // 2160 // Two accesses in memory (stride is 2): 2161 // | A[0] | | A[2] | | A[4] | | A[6] | | 2162 // | B[0] | | B[2] | | B[4] | 2163 // 2164 // MinDistance needs for vectorizing iterations except the last iteration: 2165 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4. 2166 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 2167 // 2168 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 2169 // 12, which is less than distance. 2170 // 2171 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 2172 // the minimum distance needed is 28, which is greater than distance. It is 2173 // not safe to do vectorization. 2174 2175 // We know that Dist is positive, but it may not be constant. Use the signed 2176 // minimum for computations below, as this ensures we compute the closest 2177 // possible dependence distance. 2178 uint64_t MinDistanceNeeded = 2179 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize; 2180 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) { 2181 if (!isa<SCEVConstant>(Dist)) { 2182 // For non-constant distances, we checked the lower bound of the 2183 // dependence distance and the distance may be larger at runtime (and safe 2184 // for vectorization). Classify it as Unknown, so we re-try with runtime 2185 // checks. 2186 return Dependence::Unknown; 2187 } 2188 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance " 2189 << MinDistance << '\n'); 2190 return Dependence::Backward; 2191 } 2192 2193 // Unsafe if the minimum distance needed is greater than smallest dependence 2194 // distance distance. 2195 if (MinDistanceNeeded > MinDepDistBytes) { 2196 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 2197 << MinDistanceNeeded << " size in bytes\n"); 2198 return Dependence::Backward; 2199 } 2200 2201 // Positive distance bigger than max vectorization factor. 2202 // FIXME: Should use max factor instead of max distance in bytes, which could 2203 // not handle different types. 2204 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2205 // void foo (int *A, char *B) { 2206 // for (unsigned i = 0; i < 1024; i++) { 2207 // A[i+2] = A[i] + 1; 2208 // B[i+2] = B[i] + 1; 2209 // } 2210 // } 2211 // 2212 // This case is currently unsafe according to the max safe distance. If we 2213 // analyze the two accesses on array B, the max safe dependence distance 2214 // is 2. Then we analyze the accesses on array A, the minimum distance needed 2215 // is 8, which is less than 2 and forbidden vectorization, But actually 2216 // both A and B could be vectorized by 2 iterations. 2217 MinDepDistBytes = 2218 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes); 2219 2220 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 2221 uint64_t MinDepDistBytesOld = MinDepDistBytes; 2222 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2223 isa<SCEVConstant>(Dist) && 2224 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) { 2225 // Sanity check that we didn't update MinDepDistBytes when calling 2226 // couldPreventStoreLoadForward 2227 assert(MinDepDistBytes == MinDepDistBytesOld && 2228 "An update to MinDepDistBytes requires an update to " 2229 "MaxSafeVectorWidthInBits"); 2230 (void)MinDepDistBytesOld; 2231 return Dependence::BackwardVectorizableButPreventsForwarding; 2232 } 2233 2234 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits 2235 // since there is a backwards dependency. 2236 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride); 2237 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance 2238 << " with max VF = " << MaxVF << '\n'); 2239 2240 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2241 if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) { 2242 // For non-constant distances, we checked the lower bound of the dependence 2243 // distance and the distance may be larger at runtime (and safe for 2244 // vectorization). Classify it as Unknown, so we re-try with runtime checks. 2245 return Dependence::Unknown; 2246 } 2247 2248 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2249 return Dependence::BackwardVectorizable; 2250 } 2251 2252 bool MemoryDepChecker::areDepsSafe( 2253 DepCandidates &AccessSets, MemAccessInfoList &CheckDeps, 2254 const DenseMap<Value *, SmallVector<const Value *, 16>> 2255 &UnderlyingObjects) { 2256 2257 MinDepDistBytes = -1; 2258 SmallPtrSet<MemAccessInfo, 8> Visited; 2259 for (MemAccessInfo CurAccess : CheckDeps) { 2260 if (Visited.count(CurAccess)) 2261 continue; 2262 2263 // Get the relevant memory access set. 2264 EquivalenceClasses<MemAccessInfo>::iterator I = 2265 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2266 2267 // Check accesses within this set. 2268 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2269 AccessSets.member_begin(I); 2270 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2271 AccessSets.member_end(); 2272 2273 // Check every access pair. 2274 while (AI != AE) { 2275 Visited.insert(*AI); 2276 bool AIIsWrite = AI->getInt(); 2277 // Check loads only against next equivalent class, but stores also against 2278 // other stores in the same equivalence class - to the same address. 2279 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2280 (AIIsWrite ? AI : std::next(AI)); 2281 while (OI != AE) { 2282 // Check every accessing instruction pair in program order. 2283 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2284 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2285 // Scan all accesses of another equivalence class, but only the next 2286 // accesses of the same equivalent class. 2287 for (std::vector<unsigned>::iterator 2288 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2289 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2290 I2 != I2E; ++I2) { 2291 auto A = std::make_pair(&*AI, *I1); 2292 auto B = std::make_pair(&*OI, *I2); 2293 2294 assert(*I1 != *I2); 2295 if (*I1 > *I2) 2296 std::swap(A, B); 2297 2298 Dependence::DepType Type = isDependent(*A.first, A.second, *B.first, 2299 B.second, UnderlyingObjects); 2300 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2301 2302 // Gather dependences unless we accumulated MaxDependences 2303 // dependences. In that case return as soon as we find the first 2304 // unsafe dependence. This puts a limit on this quadratic 2305 // algorithm. 2306 if (RecordDependences) { 2307 if (Type != Dependence::NoDep) 2308 Dependences.push_back(Dependence(A.second, B.second, Type)); 2309 2310 if (Dependences.size() >= MaxDependences) { 2311 RecordDependences = false; 2312 Dependences.clear(); 2313 LLVM_DEBUG(dbgs() 2314 << "Too many dependences, stopped recording\n"); 2315 } 2316 } 2317 if (!RecordDependences && !isSafeForVectorization()) 2318 return false; 2319 } 2320 ++OI; 2321 } 2322 ++AI; 2323 } 2324 } 2325 2326 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2327 return isSafeForVectorization(); 2328 } 2329 2330 SmallVector<Instruction *, 4> 2331 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const { 2332 MemAccessInfo Access(Ptr, IsWrite); 2333 auto &IndexVector = Accesses.find(Access)->second; 2334 2335 SmallVector<Instruction *, 4> Insts; 2336 transform(IndexVector, 2337 std::back_inserter(Insts), 2338 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2339 return Insts; 2340 } 2341 2342 const char *MemoryDepChecker::Dependence::DepName[] = { 2343 "NoDep", 2344 "Unknown", 2345 "IndirectUnsafe", 2346 "Forward", 2347 "ForwardButPreventsForwarding", 2348 "Backward", 2349 "BackwardVectorizable", 2350 "BackwardVectorizableButPreventsForwarding"}; 2351 2352 void MemoryDepChecker::Dependence::print( 2353 raw_ostream &OS, unsigned Depth, 2354 const SmallVectorImpl<Instruction *> &Instrs) const { 2355 OS.indent(Depth) << DepName[Type] << ":\n"; 2356 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2357 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2358 } 2359 2360 bool LoopAccessInfo::canAnalyzeLoop() { 2361 // We need to have a loop header. 2362 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '" 2363 << TheLoop->getHeader()->getParent()->getName() << "' from " 2364 << TheLoop->getLocStr() << "\n"); 2365 2366 // We can only analyze innermost loops. 2367 if (!TheLoop->isInnermost()) { 2368 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2369 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2370 return false; 2371 } 2372 2373 // We must have a single backedge. 2374 if (TheLoop->getNumBackEdges() != 1) { 2375 LLVM_DEBUG( 2376 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2377 recordAnalysis("CFGNotUnderstood") 2378 << "loop control flow is not understood by analyzer"; 2379 return false; 2380 } 2381 2382 // ScalarEvolution needs to be able to find the symbolic max backedge taken 2383 // count, which is an upper bound on the number of loop iterations. The loop 2384 // may execute fewer iterations, if it exits via an uncountable exit. 2385 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount(); 2386 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2387 recordAnalysis("CantComputeNumberOfIterations") 2388 << "could not determine number of loop iterations"; 2389 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2390 return false; 2391 } 2392 2393 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: " 2394 << TheLoop->getHeader()->getName() << "\n"); 2395 return true; 2396 } 2397 2398 bool LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 2399 const TargetLibraryInfo *TLI, 2400 DominatorTree *DT) { 2401 // Holds the Load and Store instructions. 2402 SmallVector<LoadInst *, 16> Loads; 2403 SmallVector<StoreInst *, 16> Stores; 2404 SmallPtrSet<MDNode *, 8> LoopAliasScopes; 2405 2406 // Holds all the different accesses in the loop. 2407 unsigned NumReads = 0; 2408 unsigned NumReadWrites = 0; 2409 2410 bool HasComplexMemInst = false; 2411 2412 // A runtime check is only legal to insert if there are no convergent calls. 2413 HasConvergentOp = false; 2414 2415 PtrRtChecking->Pointers.clear(); 2416 PtrRtChecking->Need = false; 2417 2418 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2419 2420 const bool EnableMemAccessVersioningOfLoop = 2421 EnableMemAccessVersioning && 2422 !TheLoop->getHeader()->getParent()->hasOptSize(); 2423 2424 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2425 // loop info, as it may be arbitrary. 2426 LoopBlocksRPO RPOT(TheLoop); 2427 RPOT.perform(LI); 2428 for (BasicBlock *BB : RPOT) { 2429 // Scan the BB and collect legal loads and stores. Also detect any 2430 // convergent instructions. 2431 for (Instruction &I : *BB) { 2432 if (auto *Call = dyn_cast<CallBase>(&I)) { 2433 if (Call->isConvergent()) 2434 HasConvergentOp = true; 2435 } 2436 2437 // With both a non-vectorizable memory instruction and a convergent 2438 // operation, found in this loop, no reason to continue the search. 2439 if (HasComplexMemInst && HasConvergentOp) 2440 return false; 2441 2442 // Avoid hitting recordAnalysis multiple times. 2443 if (HasComplexMemInst) 2444 continue; 2445 2446 // Record alias scopes defined inside the loop. 2447 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 2448 for (Metadata *Op : Decl->getScopeList()->operands()) 2449 LoopAliasScopes.insert(cast<MDNode>(Op)); 2450 2451 // Many math library functions read the rounding mode. We will only 2452 // vectorize a loop if it contains known function calls that don't set 2453 // the flag. Therefore, it is safe to ignore this read from memory. 2454 auto *Call = dyn_cast<CallInst>(&I); 2455 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2456 continue; 2457 2458 // If this is a load, save it. If this instruction can read from memory 2459 // but is not a load, then we quit. Notice that we don't handle function 2460 // calls that read or write. 2461 if (I.mayReadFromMemory()) { 2462 // If the function has an explicit vectorized counterpart, we can safely 2463 // assume that it can be vectorized. 2464 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2465 !VFDatabase::getMappings(*Call).empty()) 2466 continue; 2467 2468 auto *Ld = dyn_cast<LoadInst>(&I); 2469 if (!Ld) { 2470 recordAnalysis("CantVectorizeInstruction", Ld) 2471 << "instruction cannot be vectorized"; 2472 HasComplexMemInst = true; 2473 continue; 2474 } 2475 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2476 recordAnalysis("NonSimpleLoad", Ld) 2477 << "read with atomic ordering or volatile read"; 2478 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2479 HasComplexMemInst = true; 2480 continue; 2481 } 2482 NumLoads++; 2483 Loads.push_back(Ld); 2484 DepChecker->addAccess(Ld); 2485 if (EnableMemAccessVersioningOfLoop) 2486 collectStridedAccess(Ld); 2487 continue; 2488 } 2489 2490 // Save 'store' instructions. Abort if other instructions write to memory. 2491 if (I.mayWriteToMemory()) { 2492 auto *St = dyn_cast<StoreInst>(&I); 2493 if (!St) { 2494 recordAnalysis("CantVectorizeInstruction", St) 2495 << "instruction cannot be vectorized"; 2496 HasComplexMemInst = true; 2497 continue; 2498 } 2499 if (!St->isSimple() && !IsAnnotatedParallel) { 2500 recordAnalysis("NonSimpleStore", St) 2501 << "write with atomic ordering or volatile write"; 2502 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2503 HasComplexMemInst = true; 2504 continue; 2505 } 2506 NumStores++; 2507 Stores.push_back(St); 2508 DepChecker->addAccess(St); 2509 if (EnableMemAccessVersioningOfLoop) 2510 collectStridedAccess(St); 2511 } 2512 } // Next instr. 2513 } // Next block. 2514 2515 if (HasComplexMemInst) 2516 return false; 2517 2518 // Now we have two lists that hold the loads and the stores. 2519 // Next, we find the pointers that they use. 2520 2521 // Check if we see any stores. If there are no stores, then we don't 2522 // care if the pointers are *restrict*. 2523 if (!Stores.size()) { 2524 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2525 return true; 2526 } 2527 2528 MemoryDepChecker::DepCandidates DependentAccesses; 2529 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE, 2530 LoopAliasScopes); 2531 2532 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2533 // multiple times on the same object. If the ptr is accessed twice, once 2534 // for read and once for write, it will only appear once (on the write 2535 // list). This is okay, since we are going to check for conflicts between 2536 // writes and between reads and writes, but not between reads and reads. 2537 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2538 2539 // Record uniform store addresses to identify if we have multiple stores 2540 // to the same address. 2541 SmallPtrSet<Value *, 16> UniformStores; 2542 2543 for (StoreInst *ST : Stores) { 2544 Value *Ptr = ST->getPointerOperand(); 2545 2546 if (isInvariant(Ptr)) { 2547 // Record store instructions to loop invariant addresses 2548 StoresToInvariantAddresses.push_back(ST); 2549 HasStoreStoreDependenceInvolvingLoopInvariantAddress |= 2550 !UniformStores.insert(Ptr).second; 2551 } 2552 2553 // If we did *not* see this pointer before, insert it to the read-write 2554 // list. At this phase it is only a 'write' list. 2555 Type *AccessTy = getLoadStoreType(ST); 2556 if (Seen.insert({Ptr, AccessTy}).second) { 2557 ++NumReadWrites; 2558 2559 MemoryLocation Loc = MemoryLocation::get(ST); 2560 // The TBAA metadata could have a control dependency on the predication 2561 // condition, so we cannot rely on it when determining whether or not we 2562 // need runtime pointer checks. 2563 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2564 Loc.AATags.TBAA = nullptr; 2565 2566 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2567 [&Accesses, AccessTy, Loc](Value *Ptr) { 2568 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2569 Accesses.addStore(NewLoc, AccessTy); 2570 }); 2571 } 2572 } 2573 2574 if (IsAnnotatedParallel) { 2575 LLVM_DEBUG( 2576 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2577 << "checks.\n"); 2578 return true; 2579 } 2580 2581 for (LoadInst *LD : Loads) { 2582 Value *Ptr = LD->getPointerOperand(); 2583 // If we did *not* see this pointer before, insert it to the 2584 // read list. If we *did* see it before, then it is already in 2585 // the read-write list. This allows us to vectorize expressions 2586 // such as A[i] += x; Because the address of A[i] is a read-write 2587 // pointer. This only works if the index of A[i] is consecutive. 2588 // If the address of i is unknown (for example A[B[i]]) then we may 2589 // read a few words, modify, and write a few words, and some of the 2590 // words may be written to the same address. 2591 bool IsReadOnlyPtr = false; 2592 Type *AccessTy = getLoadStoreType(LD); 2593 if (Seen.insert({Ptr, AccessTy}).second || 2594 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2595 ++NumReads; 2596 IsReadOnlyPtr = true; 2597 } 2598 2599 // See if there is an unsafe dependency between a load to a uniform address and 2600 // store to the same uniform address. 2601 if (UniformStores.count(Ptr)) { 2602 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2603 "load and uniform store to the same address!\n"); 2604 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true; 2605 } 2606 2607 MemoryLocation Loc = MemoryLocation::get(LD); 2608 // The TBAA metadata could have a control dependency on the predication 2609 // condition, so we cannot rely on it when determining whether or not we 2610 // need runtime pointer checks. 2611 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2612 Loc.AATags.TBAA = nullptr; 2613 2614 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2615 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2616 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2617 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2618 }); 2619 } 2620 2621 // If we write (or read-write) to a single destination and there are no 2622 // other reads in this loop then is it safe to vectorize. 2623 if (NumReadWrites == 1 && NumReads == 0) { 2624 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2625 return true; 2626 } 2627 2628 // Build dependence sets and check whether we need a runtime pointer bounds 2629 // check. 2630 Accesses.buildDependenceSets(); 2631 2632 // Find pointers with computable bounds. We are going to use this information 2633 // to place a runtime bound check. 2634 Value *UncomputablePtr = nullptr; 2635 bool CanDoRTIfNeeded = 2636 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2637 SymbolicStrides, UncomputablePtr, false); 2638 if (!CanDoRTIfNeeded) { 2639 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2640 recordAnalysis("CantIdentifyArrayBounds", I) 2641 << "cannot identify array bounds"; 2642 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2643 << "the array bounds.\n"); 2644 return false; 2645 } 2646 2647 LLVM_DEBUG( 2648 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2649 2650 bool DepsAreSafe = true; 2651 if (Accesses.isDependencyCheckNeeded()) { 2652 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2653 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses, 2654 Accesses.getDependenciesToCheck(), 2655 Accesses.getUnderlyingObjects()); 2656 2657 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) { 2658 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2659 2660 // Clear the dependency checks. We assume they are not needed. 2661 Accesses.resetDepChecks(*DepChecker); 2662 2663 PtrRtChecking->reset(); 2664 PtrRtChecking->Need = true; 2665 2666 auto *SE = PSE->getSE(); 2667 UncomputablePtr = nullptr; 2668 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2669 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2670 2671 // Check that we found the bounds for the pointer. 2672 if (!CanDoRTIfNeeded) { 2673 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2674 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2675 << "cannot check memory dependencies at runtime"; 2676 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2677 return false; 2678 } 2679 DepsAreSafe = true; 2680 } 2681 } 2682 2683 if (HasConvergentOp) { 2684 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2685 << "cannot add control dependency to convergent operation"; 2686 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2687 "would be needed with a convergent operation\n"); 2688 return false; 2689 } 2690 2691 if (DepsAreSafe) { 2692 LLVM_DEBUG( 2693 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2694 << (PtrRtChecking->Need ? "" : " don't") 2695 << " need runtime memory checks.\n"); 2696 return true; 2697 } 2698 2699 emitUnsafeDependenceRemark(); 2700 return false; 2701 } 2702 2703 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2704 const auto *Deps = getDepChecker().getDependences(); 2705 if (!Deps) 2706 return; 2707 const auto *Found = 2708 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2709 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2710 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2711 }); 2712 if (Found == Deps->end()) 2713 return; 2714 MemoryDepChecker::Dependence Dep = *Found; 2715 2716 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2717 2718 // Emit remark for first unsafe dependence 2719 bool HasForcedDistribution = false; 2720 std::optional<const MDOperand *> Value = 2721 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable"); 2722 if (Value) { 2723 const MDOperand *Op = *Value; 2724 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 2725 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 2726 } 2727 2728 const std::string Info = 2729 HasForcedDistribution 2730 ? "unsafe dependent memory operations in loop." 2731 : "unsafe dependent memory operations in loop. Use " 2732 "#pragma clang loop distribute(enable) to allow loop distribution " 2733 "to attempt to isolate the offending operations into a separate " 2734 "loop"; 2735 OptimizationRemarkAnalysis &R = 2736 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info; 2737 2738 switch (Dep.Type) { 2739 case MemoryDepChecker::Dependence::NoDep: 2740 case MemoryDepChecker::Dependence::Forward: 2741 case MemoryDepChecker::Dependence::BackwardVectorizable: 2742 llvm_unreachable("Unexpected dependence"); 2743 case MemoryDepChecker::Dependence::Backward: 2744 R << "\nBackward loop carried data dependence."; 2745 break; 2746 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2747 R << "\nForward loop carried data dependence that prevents " 2748 "store-to-load forwarding."; 2749 break; 2750 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2751 R << "\nBackward loop carried data dependence that prevents " 2752 "store-to-load forwarding."; 2753 break; 2754 case MemoryDepChecker::Dependence::IndirectUnsafe: 2755 R << "\nUnsafe indirect dependence."; 2756 break; 2757 case MemoryDepChecker::Dependence::Unknown: 2758 R << "\nUnknown data dependence."; 2759 break; 2760 } 2761 2762 if (Instruction *I = Dep.getSource(getDepChecker())) { 2763 DebugLoc SourceLoc = I->getDebugLoc(); 2764 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2765 SourceLoc = DD->getDebugLoc(); 2766 if (SourceLoc) 2767 R << " Memory location is the same as accessed at " 2768 << ore::NV("Location", SourceLoc); 2769 } 2770 } 2771 2772 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2773 DominatorTree *DT) { 2774 assert(TheLoop->contains(BB) && "Unknown block used"); 2775 2776 // Blocks that do not dominate the latch need predication. 2777 BasicBlock* Latch = TheLoop->getLoopLatch(); 2778 return !DT->dominates(BB, Latch); 2779 } 2780 2781 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2782 Instruction *I) { 2783 assert(!Report && "Multiple reports generated"); 2784 2785 Value *CodeRegion = TheLoop->getHeader(); 2786 DebugLoc DL = TheLoop->getStartLoc(); 2787 2788 if (I) { 2789 CodeRegion = I->getParent(); 2790 // If there is no debug location attached to the instruction, revert back to 2791 // using the loop's. 2792 if (I->getDebugLoc()) 2793 DL = I->getDebugLoc(); 2794 } 2795 2796 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2797 CodeRegion); 2798 return *Report; 2799 } 2800 2801 bool LoopAccessInfo::isInvariant(Value *V) const { 2802 auto *SE = PSE->getSE(); 2803 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2804 // trivially loop-invariant FP values to be considered invariant. 2805 if (!SE->isSCEVable(V->getType())) 2806 return false; 2807 const SCEV *S = SE->getSCEV(V); 2808 return SE->isLoopInvariant(S, TheLoop); 2809 } 2810 2811 /// Find the operand of the GEP that should be checked for consecutive 2812 /// stores. This ignores trailing indices that have no effect on the final 2813 /// pointer. 2814 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 2815 const DataLayout &DL = Gep->getDataLayout(); 2816 unsigned LastOperand = Gep->getNumOperands() - 1; 2817 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 2818 2819 // Walk backwards and try to peel off zeros. 2820 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 2821 // Find the type we're currently indexing into. 2822 gep_type_iterator GEPTI = gep_type_begin(Gep); 2823 std::advance(GEPTI, LastOperand - 2); 2824 2825 // If it's a type with the same allocation size as the result of the GEP we 2826 // can peel off the zero index. 2827 TypeSize ElemSize = GEPTI.isStruct() 2828 ? DL.getTypeAllocSize(GEPTI.getIndexedType()) 2829 : GEPTI.getSequentialElementStride(DL); 2830 if (ElemSize != GEPAllocSize) 2831 break; 2832 --LastOperand; 2833 } 2834 2835 return LastOperand; 2836 } 2837 2838 /// If the argument is a GEP, then returns the operand identified by 2839 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 2840 /// operand, it returns that instead. 2841 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2842 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 2843 if (!GEP) 2844 return Ptr; 2845 2846 unsigned InductionOperand = getGEPInductionOperand(GEP); 2847 2848 // Check that all of the gep indices are uniform except for our induction 2849 // operand. 2850 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I) 2851 if (I != InductionOperand && 2852 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp)) 2853 return Ptr; 2854 return GEP->getOperand(InductionOperand); 2855 } 2856 2857 /// Get the stride of a pointer access in a loop. Looks for symbolic 2858 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 2859 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2860 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 2861 if (!PtrTy || PtrTy->isAggregateType()) 2862 return nullptr; 2863 2864 // Try to remove a gep instruction to make the pointer (actually index at this 2865 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 2866 // pointer, otherwise, we are analyzing the index. 2867 Value *OrigPtr = Ptr; 2868 2869 // The size of the pointer access. 2870 int64_t PtrAccessSize = 1; 2871 2872 Ptr = stripGetElementPtr(Ptr, SE, Lp); 2873 const SCEV *V = SE->getSCEV(Ptr); 2874 2875 if (Ptr != OrigPtr) 2876 // Strip off casts. 2877 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2878 V = C->getOperand(); 2879 2880 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 2881 if (!S) 2882 return nullptr; 2883 2884 // If the pointer is invariant then there is no stride and it makes no 2885 // sense to add it here. 2886 if (Lp != S->getLoop()) 2887 return nullptr; 2888 2889 V = S->getStepRecurrence(*SE); 2890 if (!V) 2891 return nullptr; 2892 2893 // Strip off the size of access multiplication if we are still analyzing the 2894 // pointer. 2895 if (OrigPtr == Ptr) { 2896 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 2897 if (M->getOperand(0)->getSCEVType() != scConstant) 2898 return nullptr; 2899 2900 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 2901 2902 // Huge step value - give up. 2903 if (APStepVal.getBitWidth() > 64) 2904 return nullptr; 2905 2906 int64_t StepVal = APStepVal.getSExtValue(); 2907 if (PtrAccessSize != StepVal) 2908 return nullptr; 2909 V = M->getOperand(1); 2910 } 2911 } 2912 2913 // Note that the restriction after this loop invariant check are only 2914 // profitability restrictions. 2915 if (!SE->isLoopInvariant(V, Lp)) 2916 return nullptr; 2917 2918 // Look for the loop invariant symbolic value. 2919 if (isa<SCEVUnknown>(V)) 2920 return V; 2921 2922 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2923 if (isa<SCEVUnknown>(C->getOperand())) 2924 return V; 2925 2926 return nullptr; 2927 } 2928 2929 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2930 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2931 if (!Ptr) 2932 return; 2933 2934 // Note: getStrideFromPointer is a *profitability* heuristic. We 2935 // could broaden the scope of values returned here - to anything 2936 // which happens to be loop invariant and contributes to the 2937 // computation of an interesting IV - but we chose not to as we 2938 // don't have a cost model here, and broadening the scope exposes 2939 // far too many unprofitable cases. 2940 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2941 if (!StrideExpr) 2942 return; 2943 2944 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2945 "versioning:"); 2946 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n"); 2947 2948 if (!SpeculateUnitStride) { 2949 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n"); 2950 return; 2951 } 2952 2953 // Avoid adding the "Stride == 1" predicate when we know that 2954 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2955 // or zero iteration loop, as Trip-Count <= Stride == 1. 2956 // 2957 // TODO: We are currently not making a very informed decision on when it is 2958 // beneficial to apply stride versioning. It might make more sense that the 2959 // users of this analysis (such as the vectorizer) will trigger it, based on 2960 // their specific cost considerations; For example, in cases where stride 2961 // versioning does not help resolving memory accesses/dependences, the 2962 // vectorizer should evaluate the cost of the runtime test, and the benefit 2963 // of various possible stride specializations, considering the alternatives 2964 // of using gather/scatters (if available). 2965 2966 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount(); 2967 2968 // Match the types so we can compare the stride and the MaxBTC. 2969 // The Stride can be positive/negative, so we sign extend Stride; 2970 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC. 2971 const DataLayout &DL = TheLoop->getHeader()->getDataLayout(); 2972 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2973 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType()); 2974 const SCEV *CastedStride = StrideExpr; 2975 const SCEV *CastedBECount = MaxBTC; 2976 ScalarEvolution *SE = PSE->getSE(); 2977 if (BETypeSizeBits >= StrideTypeSizeBits) 2978 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType()); 2979 else 2980 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType()); 2981 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2982 // Since TripCount == BackEdgeTakenCount + 1, checking: 2983 // "Stride >= TripCount" is equivalent to checking: 2984 // Stride - MaxBTC> 0 2985 if (SE->isKnownPositive(StrideMinusBETaken)) { 2986 LLVM_DEBUG( 2987 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2988 "Stride==1 predicate will imply that the loop executes " 2989 "at most once.\n"); 2990 return; 2991 } 2992 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2993 2994 // Strip back off the integer cast, and check that our result is a 2995 // SCEVUnknown as we expect. 2996 const SCEV *StrideBase = StrideExpr; 2997 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase)) 2998 StrideBase = C->getOperand(); 2999 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase); 3000 } 3001 3002 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 3003 const TargetTransformInfo *TTI, 3004 const TargetLibraryInfo *TLI, AAResults *AA, 3005 DominatorTree *DT, LoopInfo *LI) 3006 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 3007 PtrRtChecking(nullptr), TheLoop(L) { 3008 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3009 if (TTI) { 3010 TypeSize FixedWidth = 3011 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); 3012 if (FixedWidth.isNonZero()) { 3013 // Scale the vector width by 2 as rough estimate to also consider 3014 // interleaving. 3015 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2; 3016 } 3017 3018 TypeSize ScalableWidth = 3019 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector); 3020 if (ScalableWidth.isNonZero()) 3021 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3022 } 3023 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides, 3024 MaxTargetVectorWidthInBits); 3025 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 3026 if (canAnalyzeLoop()) 3027 CanVecMem = analyzeLoop(AA, LI, TLI, DT); 3028 } 3029 3030 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 3031 if (CanVecMem) { 3032 OS.indent(Depth) << "Memory dependences are safe"; 3033 const MemoryDepChecker &DC = getDepChecker(); 3034 if (!DC.isSafeForAnyVectorWidth()) 3035 OS << " with a maximum safe vector width of " 3036 << DC.getMaxSafeVectorWidthInBits() << " bits"; 3037 if (PtrRtChecking->Need) 3038 OS << " with run-time checks"; 3039 OS << "\n"; 3040 } 3041 3042 if (HasConvergentOp) 3043 OS.indent(Depth) << "Has convergent operation in loop\n"; 3044 3045 if (Report) 3046 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 3047 3048 if (auto *Dependences = DepChecker->getDependences()) { 3049 OS.indent(Depth) << "Dependences:\n"; 3050 for (const auto &Dep : *Dependences) { 3051 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 3052 OS << "\n"; 3053 } 3054 } else 3055 OS.indent(Depth) << "Too many dependences, not recorded\n"; 3056 3057 // List the pair of accesses need run-time checks to prove independence. 3058 PtrRtChecking->print(OS, Depth); 3059 OS << "\n"; 3060 3061 OS.indent(Depth) 3062 << "Non vectorizable stores to invariant address were " 3063 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress || 3064 HasLoadStoreDependenceInvolvingLoopInvariantAddress 3065 ? "" 3066 : "not ") 3067 << "found in loop.\n"; 3068 3069 OS.indent(Depth) << "SCEV assumptions:\n"; 3070 PSE->getPredicate().print(OS, Depth); 3071 3072 OS << "\n"; 3073 3074 OS.indent(Depth) << "Expressions re-written:\n"; 3075 PSE->print(OS, Depth); 3076 } 3077 3078 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 3079 auto [It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr}); 3080 3081 if (Inserted) 3082 It->second = 3083 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI); 3084 3085 return *It->second; 3086 } 3087 void LoopAccessInfoManager::clear() { 3088 SmallVector<Loop *> ToRemove; 3089 // Collect LoopAccessInfo entries that may keep references to IR outside the 3090 // analyzed loop or SCEVs that may have been modified or invalidated. At the 3091 // moment, that is loops requiring memory or SCEV runtime checks, as those cache 3092 // SCEVs, e.g. for pointer expressions. 3093 for (const auto &[L, LAI] : LoopAccessInfoMap) { 3094 if (LAI->getRuntimePointerChecking()->getChecks().empty() && 3095 LAI->getPSE().getPredicate().isAlwaysTrue()) 3096 continue; 3097 ToRemove.push_back(L); 3098 } 3099 3100 for (Loop *L : ToRemove) 3101 LoopAccessInfoMap.erase(L); 3102 } 3103 3104 bool LoopAccessInfoManager::invalidate( 3105 Function &F, const PreservedAnalyses &PA, 3106 FunctionAnalysisManager::Invalidator &Inv) { 3107 // Check whether our analysis is preserved. 3108 auto PAC = PA.getChecker<LoopAccessAnalysis>(); 3109 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 3110 // If not, give up now. 3111 return true; 3112 3113 // Check whether the analyses we depend on became invalid for any reason. 3114 // Skip checking TargetLibraryAnalysis as it is immutable and can't become 3115 // invalid. 3116 return Inv.invalidate<AAManager>(F, PA) || 3117 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 3118 Inv.invalidate<LoopAnalysis>(F, PA) || 3119 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 3120 } 3121 3122 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 3123 FunctionAnalysisManager &FAM) { 3124 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 3125 auto &AA = FAM.getResult<AAManager>(F); 3126 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 3127 auto &LI = FAM.getResult<LoopAnalysis>(F); 3128 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 3129 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 3130 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI); 3131 } 3132 3133 AnalysisKey LoopAccessAnalysis::Key; 3134