xref: /llvm-project/llvm/lib/Analysis/LoopAccessAnalysis.cpp (revision 19c9a1c2fd2c3849439bca2ba5084dada4d1f47f)
1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The implementation for the loop memory dependence that was originally
10 // developed for the loop vectorizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Analysis/LoopAccessAnalysis.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AliasSetTracker.h"
26 #include "llvm/Analysis/LoopAnalysisManager.h"
27 #include "llvm/Analysis/LoopInfo.h"
28 #include "llvm/Analysis/LoopIterator.h"
29 #include "llvm/Analysis/MemoryLocation.h"
30 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
31 #include "llvm/Analysis/ScalarEvolution.h"
32 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/TargetTransformInfo.h"
35 #include "llvm/Analysis/ValueTracking.h"
36 #include "llvm/Analysis/VectorUtils.h"
37 #include "llvm/IR/BasicBlock.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugLoc.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/DiagnosticInfo.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GetElementPtrTypeIterator.h"
46 #include "llvm/IR/InstrTypes.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/Operator.h"
50 #include "llvm/IR/PassManager.h"
51 #include "llvm/IR/PatternMatch.h"
52 #include "llvm/IR/Type.h"
53 #include "llvm/IR/Value.h"
54 #include "llvm/IR/ValueHandle.h"
55 #include "llvm/Support/Casting.h"
56 #include "llvm/Support/CommandLine.h"
57 #include "llvm/Support/Debug.h"
58 #include "llvm/Support/ErrorHandling.h"
59 #include "llvm/Support/raw_ostream.h"
60 #include <algorithm>
61 #include <cassert>
62 #include <cstdint>
63 #include <iterator>
64 #include <utility>
65 #include <variant>
66 #include <vector>
67 
68 using namespace llvm;
69 using namespace llvm::PatternMatch;
70 
71 #define DEBUG_TYPE "loop-accesses"
72 
73 static cl::opt<unsigned, true>
74 VectorizationFactor("force-vector-width", cl::Hidden,
75                     cl::desc("Sets the SIMD width. Zero is autoselect."),
76                     cl::location(VectorizerParams::VectorizationFactor));
77 unsigned VectorizerParams::VectorizationFactor;
78 
79 static cl::opt<unsigned, true>
80 VectorizationInterleave("force-vector-interleave", cl::Hidden,
81                         cl::desc("Sets the vectorization interleave count. "
82                                  "Zero is autoselect."),
83                         cl::location(
84                             VectorizerParams::VectorizationInterleave));
85 unsigned VectorizerParams::VectorizationInterleave;
86 
87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold(
88     "runtime-memory-check-threshold", cl::Hidden,
89     cl::desc("When performing memory disambiguation checks at runtime do not "
90              "generate more than this number of comparisons (default = 8)."),
91     cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8));
92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold;
93 
94 /// The maximum iterations used to merge memory checks
95 static cl::opt<unsigned> MemoryCheckMergeThreshold(
96     "memory-check-merge-threshold", cl::Hidden,
97     cl::desc("Maximum number of comparisons done when trying to merge "
98              "runtime memory checks. (default = 100)"),
99     cl::init(100));
100 
101 /// Maximum SIMD width.
102 const unsigned VectorizerParams::MaxVectorWidth = 64;
103 
104 /// We collect dependences up to this threshold.
105 static cl::opt<unsigned>
106     MaxDependences("max-dependences", cl::Hidden,
107                    cl::desc("Maximum number of dependences collected by "
108                             "loop-access analysis (default = 100)"),
109                    cl::init(100));
110 
111 /// This enables versioning on the strides of symbolically striding memory
112 /// accesses in code like the following.
113 ///   for (i = 0; i < N; ++i)
114 ///     A[i * Stride1] += B[i * Stride2] ...
115 ///
116 /// Will be roughly translated to
117 ///    if (Stride1 == 1 && Stride2 == 1) {
118 ///      for (i = 0; i < N; i+=4)
119 ///       A[i:i+3] += ...
120 ///    } else
121 ///      ...
122 static cl::opt<bool> EnableMemAccessVersioning(
123     "enable-mem-access-versioning", cl::init(true), cl::Hidden,
124     cl::desc("Enable symbolic stride memory access versioning"));
125 
126 /// Enable store-to-load forwarding conflict detection. This option can
127 /// be disabled for correctness testing.
128 static cl::opt<bool> EnableForwardingConflictDetection(
129     "store-to-load-forwarding-conflict-detection", cl::Hidden,
130     cl::desc("Enable conflict detection in loop-access analysis"),
131     cl::init(true));
132 
133 static cl::opt<unsigned> MaxForkedSCEVDepth(
134     "max-forked-scev-depth", cl::Hidden,
135     cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"),
136     cl::init(5));
137 
138 static cl::opt<bool> SpeculateUnitStride(
139     "laa-speculate-unit-stride", cl::Hidden,
140     cl::desc("Speculate that non-constant strides are unit in LAA"),
141     cl::init(true));
142 
143 static cl::opt<bool, true> HoistRuntimeChecks(
144     "hoist-runtime-checks", cl::Hidden,
145     cl::desc(
146         "Hoist inner loop runtime memory checks to outer loop if possible"),
147     cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true));
148 bool VectorizerParams::HoistRuntimeChecks;
149 
150 bool VectorizerParams::isInterleaveForced() {
151   return ::VectorizationInterleave.getNumOccurrences() > 0;
152 }
153 
154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE,
155                                             const DenseMap<Value *, const SCEV *> &PtrToStride,
156                                             Value *Ptr) {
157   const SCEV *OrigSCEV = PSE.getSCEV(Ptr);
158 
159   // If there is an entry in the map return the SCEV of the pointer with the
160   // symbolic stride replaced by one.
161   DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr);
162   if (SI == PtrToStride.end())
163     // For a non-symbolic stride, just return the original expression.
164     return OrigSCEV;
165 
166   const SCEV *StrideSCEV = SI->second;
167   // Note: This assert is both overly strong and overly weak.  The actual
168   // invariant here is that StrideSCEV should be loop invariant.  The only
169   // such invariant strides we happen to speculate right now are unknowns
170   // and thus this is a reasonable proxy of the actual invariant.
171   assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map");
172 
173   ScalarEvolution *SE = PSE.getSE();
174   const auto *CT = SE->getOne(StrideSCEV->getType());
175   PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT));
176   auto *Expr = PSE.getSCEV(Ptr);
177 
178   LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV
179 	     << " by: " << *Expr << "\n");
180   return Expr;
181 }
182 
183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup(
184     unsigned Index, RuntimePointerChecking &RtCheck)
185     : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start),
186       AddressSpace(RtCheck.Pointers[Index]
187                        .PointerValue->getType()
188                        ->getPointerAddressSpace()),
189       NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) {
190   Members.push_back(Index);
191 }
192 
193 /// Calculate Start and End points of memory access.
194 /// Let's assume A is the first access and B is a memory access on N-th loop
195 /// iteration. Then B is calculated as:
196 ///   B = A + Step*N .
197 /// Step value may be positive or negative.
198 /// N is a calculated back-edge taken count:
199 ///     N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0
200 /// Start and End points are calculated in the following way:
201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt,
202 /// where SizeOfElt is the size of single memory access in bytes.
203 ///
204 /// There is no conflict when the intervals are disjoint:
205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End)
206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess(
207     const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy,
208     PredicatedScalarEvolution &PSE,
209     DenseMap<std::pair<const SCEV *, Type *>,
210              std::pair<const SCEV *, const SCEV *>> &PointerBounds) {
211   ScalarEvolution *SE = PSE.getSE();
212 
213   auto [Iter, Ins] = PointerBounds.insert(
214       {{PtrExpr, AccessTy},
215        {SE->getCouldNotCompute(), SE->getCouldNotCompute()}});
216   if (!Ins)
217     return Iter->second;
218 
219   const SCEV *ScStart;
220   const SCEV *ScEnd;
221 
222   if (SE->isLoopInvariant(PtrExpr, Lp)) {
223     ScStart = ScEnd = PtrExpr;
224   } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) {
225     const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount();
226 
227     ScStart = AR->getStart();
228     ScEnd = AR->evaluateAtIteration(Ex, *SE);
229     const SCEV *Step = AR->getStepRecurrence(*SE);
230 
231     // For expressions with negative step, the upper bound is ScStart and the
232     // lower bound is ScEnd.
233     if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) {
234       if (CStep->getValue()->isNegative())
235         std::swap(ScStart, ScEnd);
236     } else {
237       // Fallback case: the step is not constant, but we can still
238       // get the upper and lower bounds of the interval by using min/max
239       // expressions.
240       ScStart = SE->getUMinExpr(ScStart, ScEnd);
241       ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd);
242     }
243   } else
244     return {SE->getCouldNotCompute(), SE->getCouldNotCompute()};
245 
246   assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant");
247   assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant");
248 
249   // Add the size of the pointed element to ScEnd.
250   auto &DL = Lp->getHeader()->getDataLayout();
251   Type *IdxTy = DL.getIndexType(PtrExpr->getType());
252   const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy);
253   ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV);
254 
255   Iter->second = {ScStart, ScEnd};
256   return Iter->second;
257 }
258 
259 /// Calculate Start and End points of memory access using
260 /// getStartAndEndForAccess.
261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr,
262                                     Type *AccessTy, bool WritePtr,
263                                     unsigned DepSetId, unsigned ASId,
264                                     PredicatedScalarEvolution &PSE,
265                                     bool NeedsFreeze) {
266   const auto &[ScStart, ScEnd] = getStartAndEndForAccess(
267       Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds());
268   assert(!isa<SCEVCouldNotCompute>(ScStart) &&
269          !isa<SCEVCouldNotCompute>(ScEnd) &&
270          "must be able to compute both start and end expressions");
271   Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr,
272                         NeedsFreeze);
273 }
274 
275 bool RuntimePointerChecking::tryToCreateDiffCheck(
276     const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) {
277   // If either group contains multiple different pointers, bail out.
278   // TODO: Support multiple pointers by using the minimum or maximum pointer,
279   // depending on src & sink.
280   if (CGI.Members.size() != 1 || CGJ.Members.size() != 1)
281     return false;
282 
283   PointerInfo *Src = &Pointers[CGI.Members[0]];
284   PointerInfo *Sink = &Pointers[CGJ.Members[0]];
285 
286   // If either pointer is read and written, multiple checks may be needed. Bail
287   // out.
288   if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() ||
289       !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty())
290     return false;
291 
292   ArrayRef<unsigned> AccSrc =
293       DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr);
294   ArrayRef<unsigned> AccSink =
295       DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr);
296   // If either pointer is accessed multiple times, there may not be a clear
297   // src/sink relation. Bail out for now.
298   if (AccSrc.size() != 1 || AccSink.size() != 1)
299     return false;
300 
301   // If the sink is accessed before src, swap src/sink.
302   if (AccSink[0] < AccSrc[0])
303     std::swap(Src, Sink);
304 
305   auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr);
306   auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr);
307   if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() ||
308       SinkAR->getLoop() != DC.getInnermostLoop())
309     return false;
310 
311   SmallVector<Instruction *, 4> SrcInsts =
312       DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr);
313   SmallVector<Instruction *, 4> SinkInsts =
314       DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr);
315   Type *SrcTy = getLoadStoreType(SrcInsts[0]);
316   Type *DstTy = getLoadStoreType(SinkInsts[0]);
317   if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy))
318     return false;
319 
320   const DataLayout &DL =
321       SinkAR->getLoop()->getHeader()->getDataLayout();
322   unsigned AllocSize =
323       std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy));
324 
325   // Only matching constant steps matching the AllocSize are supported at the
326   // moment. This simplifies the difference computation. Can be extended in the
327   // future.
328   auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE));
329   if (!Step || Step != SrcAR->getStepRecurrence(*SE) ||
330       Step->getAPInt().abs() != AllocSize)
331     return false;
332 
333   IntegerType *IntTy =
334       IntegerType::get(Src->PointerValue->getContext(),
335                        DL.getPointerSizeInBits(CGI.AddressSpace));
336 
337   // When counting down, the dependence distance needs to be swapped.
338   if (Step->getValue()->isNegative())
339     std::swap(SinkAR, SrcAR);
340 
341   const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy);
342   const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy);
343   if (isa<SCEVCouldNotCompute>(SinkStartInt) ||
344       isa<SCEVCouldNotCompute>(SrcStartInt))
345     return false;
346 
347   const Loop *InnerLoop = SrcAR->getLoop();
348   // If the start values for both Src and Sink also vary according to an outer
349   // loop, then it's probably better to avoid creating diff checks because
350   // they may not be hoisted. We should instead let llvm::addRuntimeChecks
351   // do the expanded full range overlap checks, which can be hoisted.
352   if (HoistRuntimeChecks && InnerLoop->getParentLoop() &&
353       isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) {
354     auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt);
355     auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt);
356     const Loop *StartARLoop = SrcStartAR->getLoop();
357     if (StartARLoop == SinkStartAR->getLoop() &&
358         StartARLoop == InnerLoop->getParentLoop() &&
359         // If the diff check would already be loop invariant (due to the
360         // recurrences being the same), then we prefer to keep the diff checks
361         // because they are cheaper.
362         SrcStartAR->getStepRecurrence(*SE) !=
363             SinkStartAR->getStepRecurrence(*SE)) {
364       LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these "
365                            "cannot be hoisted out of the outer loop\n");
366       return false;
367     }
368   }
369 
370   LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n"
371                     << "SrcStart: " << *SrcStartInt << '\n'
372                     << "SinkStartInt: " << *SinkStartInt << '\n');
373   DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize,
374                           Src->NeedsFreeze || Sink->NeedsFreeze);
375   return true;
376 }
377 
378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() {
379   SmallVector<RuntimePointerCheck, 4> Checks;
380 
381   for (unsigned I = 0; I < CheckingGroups.size(); ++I) {
382     for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) {
383       const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I];
384       const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J];
385 
386       if (needsChecking(CGI, CGJ)) {
387         CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ);
388         Checks.push_back(std::make_pair(&CGI, &CGJ));
389       }
390     }
391   }
392   return Checks;
393 }
394 
395 void RuntimePointerChecking::generateChecks(
396     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
397   assert(Checks.empty() && "Checks is not empty");
398   groupChecks(DepCands, UseDependencies);
399   Checks = generateChecks();
400 }
401 
402 bool RuntimePointerChecking::needsChecking(
403     const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const {
404   for (const auto &I : M.Members)
405     for (const auto &J : N.Members)
406       if (needsChecking(I, J))
407         return true;
408   return false;
409 }
410 
411 /// Compare \p I and \p J and return the minimum.
412 /// Return nullptr in case we couldn't find an answer.
413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J,
414                                    ScalarEvolution *SE) {
415   const SCEV *Diff = SE->getMinusSCEV(J, I);
416   const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff);
417 
418   if (!C)
419     return nullptr;
420   return C->getValue()->isNegative() ? J : I;
421 }
422 
423 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index,
424                                          RuntimePointerChecking &RtCheck) {
425   return addPointer(
426       Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End,
427       RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(),
428       RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE);
429 }
430 
431 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start,
432                                          const SCEV *End, unsigned AS,
433                                          bool NeedsFreeze,
434                                          ScalarEvolution &SE) {
435   assert(AddressSpace == AS &&
436          "all pointers in a checking group must be in the same address space");
437 
438   // Compare the starts and ends with the known minimum and maximum
439   // of this set. We need to know how we compare against the min/max
440   // of the set in order to be able to emit memchecks.
441   const SCEV *Min0 = getMinFromExprs(Start, Low, &SE);
442   if (!Min0)
443     return false;
444 
445   const SCEV *Min1 = getMinFromExprs(End, High, &SE);
446   if (!Min1)
447     return false;
448 
449   // Update the low bound  expression if we've found a new min value.
450   if (Min0 == Start)
451     Low = Start;
452 
453   // Update the high bound expression if we've found a new max value.
454   if (Min1 != End)
455     High = End;
456 
457   Members.push_back(Index);
458   this->NeedsFreeze |= NeedsFreeze;
459   return true;
460 }
461 
462 void RuntimePointerChecking::groupChecks(
463     MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) {
464   // We build the groups from dependency candidates equivalence classes
465   // because:
466   //    - We know that pointers in the same equivalence class share
467   //      the same underlying object and therefore there is a chance
468   //      that we can compare pointers
469   //    - We wouldn't be able to merge two pointers for which we need
470   //      to emit a memcheck. The classes in DepCands are already
471   //      conveniently built such that no two pointers in the same
472   //      class need checking against each other.
473 
474   // We use the following (greedy) algorithm to construct the groups
475   // For every pointer in the equivalence class:
476   //   For each existing group:
477   //   - if the difference between this pointer and the min/max bounds
478   //     of the group is a constant, then make the pointer part of the
479   //     group and update the min/max bounds of that group as required.
480 
481   CheckingGroups.clear();
482 
483   // If we need to check two pointers to the same underlying object
484   // with a non-constant difference, we shouldn't perform any pointer
485   // grouping with those pointers. This is because we can easily get
486   // into cases where the resulting check would return false, even when
487   // the accesses are safe.
488   //
489   // The following example shows this:
490   // for (i = 0; i < 1000; ++i)
491   //   a[5000 + i * m] = a[i] + a[i + 9000]
492   //
493   // Here grouping gives a check of (5000, 5000 + 1000 * m) against
494   // (0, 10000) which is always false. However, if m is 1, there is no
495   // dependence. Not grouping the checks for a[i] and a[i + 9000] allows
496   // us to perform an accurate check in this case.
497   //
498   // The above case requires that we have an UnknownDependence between
499   // accesses to the same underlying object. This cannot happen unless
500   // FoundNonConstantDistanceDependence is set, and therefore UseDependencies
501   // is also false. In this case we will use the fallback path and create
502   // separate checking groups for all pointers.
503 
504   // If we don't have the dependency partitions, construct a new
505   // checking pointer group for each pointer. This is also required
506   // for correctness, because in this case we can have checking between
507   // pointers to the same underlying object.
508   if (!UseDependencies) {
509     for (unsigned I = 0; I < Pointers.size(); ++I)
510       CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this));
511     return;
512   }
513 
514   unsigned TotalComparisons = 0;
515 
516   DenseMap<Value *, SmallVector<unsigned>> PositionMap;
517   for (unsigned Index = 0; Index < Pointers.size(); ++Index) {
518     auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}});
519     It->second.push_back(Index);
520   }
521 
522   // We need to keep track of what pointers we've already seen so we
523   // don't process them twice.
524   SmallSet<unsigned, 2> Seen;
525 
526   // Go through all equivalence classes, get the "pointer check groups"
527   // and add them to the overall solution. We use the order in which accesses
528   // appear in 'Pointers' to enforce determinism.
529   for (unsigned I = 0; I < Pointers.size(); ++I) {
530     // We've seen this pointer before, and therefore already processed
531     // its equivalence class.
532     if (Seen.count(I))
533       continue;
534 
535     MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue,
536                                            Pointers[I].IsWritePtr);
537 
538     SmallVector<RuntimeCheckingPtrGroup, 2> Groups;
539     auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access));
540 
541     // Because DepCands is constructed by visiting accesses in the order in
542     // which they appear in alias sets (which is deterministic) and the
543     // iteration order within an equivalence class member is only dependent on
544     // the order in which unions and insertions are performed on the
545     // equivalence class, the iteration order is deterministic.
546     for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end();
547          MI != ME; ++MI) {
548       auto PointerI = PositionMap.find(MI->getPointer());
549       assert(PointerI != PositionMap.end() &&
550              "pointer in equivalence class not found in PositionMap");
551       for (unsigned Pointer : PointerI->second) {
552         bool Merged = false;
553         // Mark this pointer as seen.
554         Seen.insert(Pointer);
555 
556         // Go through all the existing sets and see if we can find one
557         // which can include this pointer.
558         for (RuntimeCheckingPtrGroup &Group : Groups) {
559           // Don't perform more than a certain amount of comparisons.
560           // This should limit the cost of grouping the pointers to something
561           // reasonable.  If we do end up hitting this threshold, the algorithm
562           // will create separate groups for all remaining pointers.
563           if (TotalComparisons > MemoryCheckMergeThreshold)
564             break;
565 
566           TotalComparisons++;
567 
568           if (Group.addPointer(Pointer, *this)) {
569             Merged = true;
570             break;
571           }
572         }
573 
574         if (!Merged)
575           // We couldn't add this pointer to any existing set or the threshold
576           // for the number of comparisons has been reached. Create a new group
577           // to hold the current pointer.
578           Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this));
579       }
580     }
581 
582     // We've computed the grouped checks for this partition.
583     // Save the results and continue with the next one.
584     llvm::copy(Groups, std::back_inserter(CheckingGroups));
585   }
586 }
587 
588 bool RuntimePointerChecking::arePointersInSamePartition(
589     const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1,
590     unsigned PtrIdx2) {
591   return (PtrToPartition[PtrIdx1] != -1 &&
592           PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]);
593 }
594 
595 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const {
596   const PointerInfo &PointerI = Pointers[I];
597   const PointerInfo &PointerJ = Pointers[J];
598 
599   // No need to check if two readonly pointers intersect.
600   if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr)
601     return false;
602 
603   // Only need to check pointers between two different dependency sets.
604   if (PointerI.DependencySetId == PointerJ.DependencySetId)
605     return false;
606 
607   // Only need to check pointers in the same alias set.
608   if (PointerI.AliasSetId != PointerJ.AliasSetId)
609     return false;
610 
611   return true;
612 }
613 
614 void RuntimePointerChecking::printChecks(
615     raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks,
616     unsigned Depth) const {
617   unsigned N = 0;
618   for (const auto &[Check1, Check2] : Checks) {
619     const auto &First = Check1->Members, &Second = Check2->Members;
620 
621     OS.indent(Depth) << "Check " << N++ << ":\n";
622 
623     OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n";
624     for (unsigned K : First)
625       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
626 
627     OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n";
628     for (unsigned K : Second)
629       OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n";
630   }
631 }
632 
633 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const {
634 
635   OS.indent(Depth) << "Run-time memory checks:\n";
636   printChecks(OS, Checks, Depth);
637 
638   OS.indent(Depth) << "Grouped accesses:\n";
639   for (const auto &CG : CheckingGroups) {
640     OS.indent(Depth + 2) << "Group " << &CG << ":\n";
641     OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High
642                          << ")\n";
643     for (unsigned Member : CG.Members) {
644       OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n";
645     }
646   }
647 }
648 
649 namespace {
650 
651 /// Analyses memory accesses in a loop.
652 ///
653 /// Checks whether run time pointer checks are needed and builds sets for data
654 /// dependence checking.
655 class AccessAnalysis {
656 public:
657   /// Read or write access location.
658   typedef PointerIntPair<Value *, 1, bool> MemAccessInfo;
659   typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList;
660 
661   AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI,
662                  MemoryDepChecker::DepCandidates &DA,
663                  PredicatedScalarEvolution &PSE,
664                  SmallPtrSetImpl<MDNode *> &LoopAliasScopes)
665       : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE),
666         LoopAliasScopes(LoopAliasScopes) {
667     // We're analyzing dependences across loop iterations.
668     BAA.enableCrossIterationMode();
669   }
670 
671   /// Register a load  and whether it is only read from.
672   void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) {
673     Value *Ptr = const_cast<Value *>(Loc.Ptr);
674     AST.add(adjustLoc(Loc));
675     Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy);
676     if (IsReadOnly)
677       ReadOnlyPtr.insert(Ptr);
678   }
679 
680   /// Register a store.
681   void addStore(MemoryLocation &Loc, Type *AccessTy) {
682     Value *Ptr = const_cast<Value *>(Loc.Ptr);
683     AST.add(adjustLoc(Loc));
684     Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy);
685   }
686 
687   /// Check if we can emit a run-time no-alias check for \p Access.
688   ///
689   /// Returns true if we can emit a run-time no alias check for \p Access.
690   /// If we can check this access, this also adds it to a dependence set and
691   /// adds a run-time to check for it to \p RtCheck. If \p Assume is true,
692   /// we will attempt to use additional run-time checks in order to get
693   /// the bounds of the pointer.
694   bool createCheckForAccess(RuntimePointerChecking &RtCheck,
695                             MemAccessInfo Access, Type *AccessTy,
696                             const DenseMap<Value *, const SCEV *> &Strides,
697                             DenseMap<Value *, unsigned> &DepSetId,
698                             Loop *TheLoop, unsigned &RunningDepId,
699                             unsigned ASId, bool ShouldCheckStride, bool Assume);
700 
701   /// Check whether we can check the pointers at runtime for
702   /// non-intersection.
703   ///
704   /// Returns true if we need no check or if we do and we can generate them
705   /// (i.e. the pointers have computable bounds).
706   bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE,
707                        Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides,
708                        Value *&UncomputablePtr, bool ShouldCheckWrap = false);
709 
710   /// Goes over all memory accesses, checks whether a RT check is needed
711   /// and builds sets of dependent accesses.
712   void buildDependenceSets() {
713     processMemAccesses();
714   }
715 
716   /// Initial processing of memory accesses determined that we need to
717   /// perform dependency checking.
718   ///
719   /// Note that this can later be cleared if we retry memcheck analysis without
720   /// dependency checking (i.e. FoundNonConstantDistanceDependence).
721   bool isDependencyCheckNeeded() { return !CheckDeps.empty(); }
722 
723   /// We decided that no dependence analysis would be used.  Reset the state.
724   void resetDepChecks(MemoryDepChecker &DepChecker) {
725     CheckDeps.clear();
726     DepChecker.clearDependences();
727   }
728 
729   MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; }
730 
731   const DenseMap<Value *, SmallVector<const Value *, 16>> &
732   getUnderlyingObjects() {
733     return UnderlyingObjects;
734   }
735 
736 private:
737   typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap;
738 
739   /// Adjust the MemoryLocation so that it represents accesses to this
740   /// location across all iterations, rather than a single one.
741   MemoryLocation adjustLoc(MemoryLocation Loc) const {
742     // The accessed location varies within the loop, but remains within the
743     // underlying object.
744     Loc.Size = LocationSize::beforeOrAfterPointer();
745     Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope);
746     Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias);
747     return Loc;
748   }
749 
750   /// Drop alias scopes that are only valid within a single loop iteration.
751   MDNode *adjustAliasScopeList(MDNode *ScopeList) const {
752     if (!ScopeList)
753       return nullptr;
754 
755     // For the sake of simplicity, drop the whole scope list if any scope is
756     // iteration-local.
757     if (any_of(ScopeList->operands(), [&](Metadata *Scope) {
758           return LoopAliasScopes.contains(cast<MDNode>(Scope));
759         }))
760       return nullptr;
761 
762     return ScopeList;
763   }
764 
765   /// Go over all memory access and check whether runtime pointer checks
766   /// are needed and build sets of dependency check candidates.
767   void processMemAccesses();
768 
769   /// Map of all accesses. Values are the types used to access memory pointed to
770   /// by the pointer.
771   PtrAccessMap Accesses;
772 
773   /// The loop being checked.
774   const Loop *TheLoop;
775 
776   /// List of accesses that need a further dependence check.
777   MemAccessInfoList CheckDeps;
778 
779   /// Set of pointers that are read only.
780   SmallPtrSet<Value*, 16> ReadOnlyPtr;
781 
782   /// Batched alias analysis results.
783   BatchAAResults BAA;
784 
785   /// An alias set tracker to partition the access set by underlying object and
786   //intrinsic property (such as TBAA metadata).
787   AliasSetTracker AST;
788 
789   LoopInfo *LI;
790 
791   /// Sets of potentially dependent accesses - members of one set share an
792   /// underlying pointer. The set "CheckDeps" identfies which sets really need a
793   /// dependence check.
794   MemoryDepChecker::DepCandidates &DepCands;
795 
796   /// Initial processing of memory accesses determined that we may need
797   /// to add memchecks.  Perform the analysis to determine the necessary checks.
798   ///
799   /// Note that, this is different from isDependencyCheckNeeded.  When we retry
800   /// memcheck analysis without dependency checking
801   /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is
802   /// cleared while this remains set if we have potentially dependent accesses.
803   bool IsRTCheckAnalysisNeeded = false;
804 
805   /// The SCEV predicate containing all the SCEV-related assumptions.
806   PredicatedScalarEvolution &PSE;
807 
808   DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects;
809 
810   /// Alias scopes that are declared inside the loop, and as such not valid
811   /// across iterations.
812   SmallPtrSetImpl<MDNode *> &LoopAliasScopes;
813 };
814 
815 } // end anonymous namespace
816 
817 /// Check whether a pointer can participate in a runtime bounds check.
818 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr
819 /// by adding run-time checks (overflow checks) if necessary.
820 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr,
821                                 const SCEV *PtrScev, Loop *L, bool Assume) {
822   // The bounds for loop-invariant pointer is trivial.
823   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
824     return true;
825 
826   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
827 
828   if (!AR && Assume)
829     AR = PSE.getAsAddRec(Ptr);
830 
831   if (!AR)
832     return false;
833 
834   return AR->isAffine();
835 }
836 
837 /// Check whether a pointer address cannot wrap.
838 static bool isNoWrap(PredicatedScalarEvolution &PSE,
839                      const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy,
840                      Loop *L) {
841   const SCEV *PtrScev = PSE.getSCEV(Ptr);
842   if (PSE.getSE()->isLoopInvariant(PtrScev, L))
843     return true;
844 
845   int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0);
846   if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
847     return true;
848 
849   return false;
850 }
851 
852 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop,
853                           function_ref<void(Value *)> AddPointer) {
854   SmallPtrSet<Value *, 8> Visited;
855   SmallVector<Value *> WorkList;
856   WorkList.push_back(StartPtr);
857 
858   while (!WorkList.empty()) {
859     Value *Ptr = WorkList.pop_back_val();
860     if (!Visited.insert(Ptr).second)
861       continue;
862     auto *PN = dyn_cast<PHINode>(Ptr);
863     // SCEV does not look through non-header PHIs inside the loop. Such phis
864     // can be analyzed by adding separate accesses for each incoming pointer
865     // value.
866     if (PN && InnermostLoop.contains(PN->getParent()) &&
867         PN->getParent() != InnermostLoop.getHeader()) {
868       for (const Use &Inc : PN->incoming_values())
869         WorkList.push_back(Inc);
870     } else
871       AddPointer(Ptr);
872   }
873 }
874 
875 // Walk back through the IR for a pointer, looking for a select like the
876 // following:
877 //
878 //  %offset = select i1 %cmp, i64 %a, i64 %b
879 //  %addr = getelementptr double, double* %base, i64 %offset
880 //  %ld = load double, double* %addr, align 8
881 //
882 // We won't be able to form a single SCEVAddRecExpr from this since the
883 // address for each loop iteration depends on %cmp. We could potentially
884 // produce multiple valid SCEVAddRecExprs, though, and check all of them for
885 // memory safety/aliasing if needed.
886 //
887 // If we encounter some IR we don't yet handle, or something obviously fine
888 // like a constant, then we just add the SCEV for that term to the list passed
889 // in by the caller. If we have a node that may potentially yield a valid
890 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms
891 // ourselves before adding to the list.
892 static void findForkedSCEVs(
893     ScalarEvolution *SE, const Loop *L, Value *Ptr,
894     SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList,
895     unsigned Depth) {
896   // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or
897   // we've exceeded our limit on recursion, just return whatever we have
898   // regardless of whether it can be used for a forked pointer or not, along
899   // with an indication of whether it might be a poison or undef value.
900   const SCEV *Scev = SE->getSCEV(Ptr);
901   if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) ||
902       !isa<Instruction>(Ptr) || Depth == 0) {
903     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
904     return;
905   }
906 
907   Depth--;
908 
909   auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) {
910     return get<1>(S);
911   };
912 
913   auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) {
914     switch (Opcode) {
915     case Instruction::Add:
916       return SE->getAddExpr(L, R);
917     case Instruction::Sub:
918       return SE->getMinusSCEV(L, R);
919     default:
920       llvm_unreachable("Unexpected binary operator when walking ForkedPtrs");
921     }
922   };
923 
924   Instruction *I = cast<Instruction>(Ptr);
925   unsigned Opcode = I->getOpcode();
926   switch (Opcode) {
927   case Instruction::GetElementPtr: {
928     GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
929     Type *SourceTy = GEP->getSourceElementType();
930     // We only handle base + single offset GEPs here for now.
931     // Not dealing with preexisting gathers yet, so no vectors.
932     if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) {
933       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP));
934       break;
935     }
936     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs;
937     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs;
938     findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth);
939     findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth);
940 
941     // See if we need to freeze our fork...
942     bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) ||
943                        any_of(OffsetScevs, UndefPoisonCheck);
944 
945     // Check that we only have a single fork, on either the base or the offset.
946     // Copy the SCEV across for the one without a fork in order to generate
947     // the full SCEV for both sides of the GEP.
948     if (OffsetScevs.size() == 2 && BaseScevs.size() == 1)
949       BaseScevs.push_back(BaseScevs[0]);
950     else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1)
951       OffsetScevs.push_back(OffsetScevs[0]);
952     else {
953       ScevList.emplace_back(Scev, NeedsFreeze);
954       break;
955     }
956 
957     // Find the pointer type we need to extend to.
958     Type *IntPtrTy = SE->getEffectiveSCEVType(
959         SE->getSCEV(GEP->getPointerOperand())->getType());
960 
961     // Find the size of the type being pointed to. We only have a single
962     // index term (guarded above) so we don't need to index into arrays or
963     // structures, just get the size of the scalar value.
964     const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy);
965 
966     // Scale up the offsets by the size of the type, then add to the bases.
967     const SCEV *Scaled1 = SE->getMulExpr(
968         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy));
969     const SCEV *Scaled2 = SE->getMulExpr(
970         Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy));
971     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1),
972                           NeedsFreeze);
973     ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2),
974                           NeedsFreeze);
975     break;
976   }
977   case Instruction::Select: {
978     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
979     // A select means we've found a forked pointer, but we currently only
980     // support a single select per pointer so if there's another behind this
981     // then we just bail out and return the generic SCEV.
982     findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
983     findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth);
984     if (ChildScevs.size() == 2) {
985       ScevList.push_back(ChildScevs[0]);
986       ScevList.push_back(ChildScevs[1]);
987     } else
988       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
989     break;
990   }
991   case Instruction::PHI: {
992     SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs;
993     // A phi means we've found a forked pointer, but we currently only
994     // support a single phi per pointer so if there's another behind this
995     // then we just bail out and return the generic SCEV.
996     if (I->getNumOperands() == 2) {
997       findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth);
998       findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth);
999     }
1000     if (ChildScevs.size() == 2) {
1001       ScevList.push_back(ChildScevs[0]);
1002       ScevList.push_back(ChildScevs[1]);
1003     } else
1004       ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1005     break;
1006   }
1007   case Instruction::Add:
1008   case Instruction::Sub: {
1009     SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs;
1010     SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs;
1011     findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth);
1012     findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth);
1013 
1014     // See if we need to freeze our fork...
1015     bool NeedsFreeze =
1016         any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck);
1017 
1018     // Check that we only have a single fork, on either the left or right side.
1019     // Copy the SCEV across for the one without a fork in order to generate
1020     // the full SCEV for both sides of the BinOp.
1021     if (LScevs.size() == 2 && RScevs.size() == 1)
1022       RScevs.push_back(RScevs[0]);
1023     else if (RScevs.size() == 2 && LScevs.size() == 1)
1024       LScevs.push_back(LScevs[0]);
1025     else {
1026       ScevList.emplace_back(Scev, NeedsFreeze);
1027       break;
1028     }
1029 
1030     ScevList.emplace_back(
1031         GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])),
1032         NeedsFreeze);
1033     ScevList.emplace_back(
1034         GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])),
1035         NeedsFreeze);
1036     break;
1037   }
1038   default:
1039     // Just return the current SCEV if we haven't handled the instruction yet.
1040     LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n");
1041     ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr));
1042     break;
1043   }
1044 }
1045 
1046 static SmallVector<PointerIntPair<const SCEV *, 1, bool>>
1047 findForkedPointer(PredicatedScalarEvolution &PSE,
1048                   const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr,
1049                   const Loop *L) {
1050   ScalarEvolution *SE = PSE.getSE();
1051   assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!");
1052   SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs;
1053   findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth);
1054 
1055   // For now, we will only accept a forked pointer with two possible SCEVs
1056   // that are either SCEVAddRecExprs or loop invariant.
1057   if (Scevs.size() == 2 &&
1058       (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) ||
1059        SE->isLoopInvariant(get<0>(Scevs[0]), L)) &&
1060       (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) ||
1061        SE->isLoopInvariant(get<0>(Scevs[1]), L))) {
1062     LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n");
1063     LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n");
1064     LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n");
1065     return Scevs;
1066   }
1067 
1068   return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}};
1069 }
1070 
1071 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck,
1072                                           MemAccessInfo Access, Type *AccessTy,
1073                                           const DenseMap<Value *, const SCEV *> &StridesMap,
1074                                           DenseMap<Value *, unsigned> &DepSetId,
1075                                           Loop *TheLoop, unsigned &RunningDepId,
1076                                           unsigned ASId, bool ShouldCheckWrap,
1077                                           bool Assume) {
1078   Value *Ptr = Access.getPointer();
1079 
1080   SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs =
1081       findForkedPointer(PSE, StridesMap, Ptr, TheLoop);
1082 
1083   for (auto &P : TranslatedPtrs) {
1084     const SCEV *PtrExpr = get<0>(P);
1085     if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume))
1086       return false;
1087 
1088     // When we run after a failing dependency check we have to make sure
1089     // we don't have wrapping pointers.
1090     if (ShouldCheckWrap) {
1091       // Skip wrap checking when translating pointers.
1092       if (TranslatedPtrs.size() > 1)
1093         return false;
1094 
1095       if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) {
1096         auto *Expr = PSE.getSCEV(Ptr);
1097         if (!Assume || !isa<SCEVAddRecExpr>(Expr))
1098           return false;
1099         PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1100       }
1101     }
1102     // If there's only one option for Ptr, look it up after bounds and wrap
1103     // checking, because assumptions might have been added to PSE.
1104     if (TranslatedPtrs.size() == 1)
1105       TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr),
1106                            false};
1107   }
1108 
1109   for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) {
1110     // The id of the dependence set.
1111     unsigned DepId;
1112 
1113     if (isDependencyCheckNeeded()) {
1114       Value *Leader = DepCands.getLeaderValue(Access).getPointer();
1115       unsigned &LeaderId = DepSetId[Leader];
1116       if (!LeaderId)
1117         LeaderId = RunningDepId++;
1118       DepId = LeaderId;
1119     } else
1120       // Each access has its own dependence set.
1121       DepId = RunningDepId++;
1122 
1123     bool IsWrite = Access.getInt();
1124     RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE,
1125                    NeedsFreeze);
1126     LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n');
1127   }
1128 
1129   return true;
1130 }
1131 
1132 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck,
1133                                      ScalarEvolution *SE, Loop *TheLoop,
1134                                      const DenseMap<Value *, const SCEV *> &StridesMap,
1135                                      Value *&UncomputablePtr, bool ShouldCheckWrap) {
1136   // Find pointers with computable bounds. We are going to use this information
1137   // to place a runtime bound check.
1138   bool CanDoRT = true;
1139 
1140   bool MayNeedRTCheck = false;
1141   if (!IsRTCheckAnalysisNeeded) return true;
1142 
1143   bool IsDepCheckNeeded = isDependencyCheckNeeded();
1144 
1145   // We assign a consecutive id to access from different alias sets.
1146   // Accesses between different groups doesn't need to be checked.
1147   unsigned ASId = 0;
1148   for (auto &AS : AST) {
1149     int NumReadPtrChecks = 0;
1150     int NumWritePtrChecks = 0;
1151     bool CanDoAliasSetRT = true;
1152     ++ASId;
1153     auto ASPointers = AS.getPointers();
1154 
1155     // We assign consecutive id to access from different dependence sets.
1156     // Accesses within the same set don't need a runtime check.
1157     unsigned RunningDepId = 1;
1158     DenseMap<Value *, unsigned> DepSetId;
1159 
1160     SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries;
1161 
1162     // First, count how many write and read accesses are in the alias set. Also
1163     // collect MemAccessInfos for later.
1164     SmallVector<MemAccessInfo, 4> AccessInfos;
1165     for (const Value *ConstPtr : ASPointers) {
1166       Value *Ptr = const_cast<Value *>(ConstPtr);
1167       bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true));
1168       if (IsWrite)
1169         ++NumWritePtrChecks;
1170       else
1171         ++NumReadPtrChecks;
1172       AccessInfos.emplace_back(Ptr, IsWrite);
1173     }
1174 
1175     // We do not need runtime checks for this alias set, if there are no writes
1176     // or a single write and no reads.
1177     if (NumWritePtrChecks == 0 ||
1178         (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) {
1179       assert((ASPointers.size() <= 1 ||
1180               all_of(ASPointers,
1181                      [this](const Value *Ptr) {
1182                        MemAccessInfo AccessWrite(const_cast<Value *>(Ptr),
1183                                                  true);
1184                        return DepCands.findValue(AccessWrite) == DepCands.end();
1185                      })) &&
1186              "Can only skip updating CanDoRT below, if all entries in AS "
1187              "are reads or there is at most 1 entry");
1188       continue;
1189     }
1190 
1191     for (auto &Access : AccessInfos) {
1192       for (const auto &AccessTy : Accesses[Access]) {
1193         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1194                                   DepSetId, TheLoop, RunningDepId, ASId,
1195                                   ShouldCheckWrap, false)) {
1196           LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:"
1197                             << *Access.getPointer() << '\n');
1198           Retries.push_back({Access, AccessTy});
1199           CanDoAliasSetRT = false;
1200         }
1201       }
1202     }
1203 
1204     // Note that this function computes CanDoRT and MayNeedRTCheck
1205     // independently. For example CanDoRT=false, MayNeedRTCheck=false means that
1206     // we have a pointer for which we couldn't find the bounds but we don't
1207     // actually need to emit any checks so it does not matter.
1208     //
1209     // We need runtime checks for this alias set, if there are at least 2
1210     // dependence sets (in which case RunningDepId > 2) or if we need to re-try
1211     // any bound checks (because in that case the number of dependence sets is
1212     // incomplete).
1213     bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty();
1214 
1215     // We need to perform run-time alias checks, but some pointers had bounds
1216     // that couldn't be checked.
1217     if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) {
1218       // Reset the CanDoSetRt flag and retry all accesses that have failed.
1219       // We know that we need these checks, so we can now be more aggressive
1220       // and add further checks if required (overflow checks).
1221       CanDoAliasSetRT = true;
1222       for (const auto &[Access, AccessTy] : Retries) {
1223         if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap,
1224                                   DepSetId, TheLoop, RunningDepId, ASId,
1225                                   ShouldCheckWrap, /*Assume=*/true)) {
1226           CanDoAliasSetRT = false;
1227           UncomputablePtr = Access.getPointer();
1228           break;
1229         }
1230       }
1231     }
1232 
1233     CanDoRT &= CanDoAliasSetRT;
1234     MayNeedRTCheck |= NeedsAliasSetRTCheck;
1235     ++ASId;
1236   }
1237 
1238   // If the pointers that we would use for the bounds comparison have different
1239   // address spaces, assume the values aren't directly comparable, so we can't
1240   // use them for the runtime check. We also have to assume they could
1241   // overlap. In the future there should be metadata for whether address spaces
1242   // are disjoint.
1243   unsigned NumPointers = RtCheck.Pointers.size();
1244   for (unsigned i = 0; i < NumPointers; ++i) {
1245     for (unsigned j = i + 1; j < NumPointers; ++j) {
1246       // Only need to check pointers between two different dependency sets.
1247       if (RtCheck.Pointers[i].DependencySetId ==
1248           RtCheck.Pointers[j].DependencySetId)
1249        continue;
1250       // Only need to check pointers in the same alias set.
1251       if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId)
1252         continue;
1253 
1254       Value *PtrI = RtCheck.Pointers[i].PointerValue;
1255       Value *PtrJ = RtCheck.Pointers[j].PointerValue;
1256 
1257       unsigned ASi = PtrI->getType()->getPointerAddressSpace();
1258       unsigned ASj = PtrJ->getType()->getPointerAddressSpace();
1259       if (ASi != ASj) {
1260         LLVM_DEBUG(
1261             dbgs() << "LAA: Runtime check would require comparison between"
1262                       " different address spaces\n");
1263         return false;
1264       }
1265     }
1266   }
1267 
1268   if (MayNeedRTCheck && CanDoRT)
1269     RtCheck.generateChecks(DepCands, IsDepCheckNeeded);
1270 
1271   LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks()
1272                     << " pointer comparisons.\n");
1273 
1274   // If we can do run-time checks, but there are no checks, no runtime checks
1275   // are needed. This can happen when all pointers point to the same underlying
1276   // object for example.
1277   RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck;
1278 
1279   bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT;
1280   if (!CanDoRTIfNeeded)
1281     RtCheck.reset();
1282   return CanDoRTIfNeeded;
1283 }
1284 
1285 void AccessAnalysis::processMemAccesses() {
1286   // We process the set twice: first we process read-write pointers, last we
1287   // process read-only pointers. This allows us to skip dependence tests for
1288   // read-only pointers.
1289 
1290   LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n");
1291   LLVM_DEBUG(dbgs() << "  AST: "; AST.dump());
1292   LLVM_DEBUG(dbgs() << "LAA:   Accesses(" << Accesses.size() << "):\n");
1293   LLVM_DEBUG({
1294     for (const auto &[A, _] : Accesses)
1295       dbgs() << "\t" << *A.getPointer() << " ("
1296              << (A.getInt() ? "write"
1297                             : (ReadOnlyPtr.count(A.getPointer()) ? "read-only"
1298                                                                  : "read"))
1299              << ")\n";
1300   });
1301 
1302   // The AliasSetTracker has nicely partitioned our pointers by metadata
1303   // compatibility and potential for underlying-object overlap. As a result, we
1304   // only need to check for potential pointer dependencies within each alias
1305   // set.
1306   for (const auto &AS : AST) {
1307     // Note that both the alias-set tracker and the alias sets themselves used
1308     // ordered collections internally and so the iteration order here is
1309     // deterministic.
1310     auto ASPointers = AS.getPointers();
1311 
1312     bool SetHasWrite = false;
1313 
1314     // Map of pointers to last access encountered.
1315     typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap;
1316     UnderlyingObjToAccessMap ObjToLastAccess;
1317 
1318     // Set of access to check after all writes have been processed.
1319     PtrAccessMap DeferredAccesses;
1320 
1321     // Iterate over each alias set twice, once to process read/write pointers,
1322     // and then to process read-only pointers.
1323     for (int SetIteration = 0; SetIteration < 2; ++SetIteration) {
1324       bool UseDeferred = SetIteration > 0;
1325       PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses;
1326 
1327       for (const Value *ConstPtr : ASPointers) {
1328         Value *Ptr = const_cast<Value *>(ConstPtr);
1329 
1330         // For a single memory access in AliasSetTracker, Accesses may contain
1331         // both read and write, and they both need to be handled for CheckDeps.
1332         for (const auto &[AC, _] : S) {
1333           if (AC.getPointer() != Ptr)
1334             continue;
1335 
1336           bool IsWrite = AC.getInt();
1337 
1338           // If we're using the deferred access set, then it contains only
1339           // reads.
1340           bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite;
1341           if (UseDeferred && !IsReadOnlyPtr)
1342             continue;
1343           // Otherwise, the pointer must be in the PtrAccessSet, either as a
1344           // read or a write.
1345           assert(((IsReadOnlyPtr && UseDeferred) || IsWrite ||
1346                   S.count(MemAccessInfo(Ptr, false))) &&
1347                  "Alias-set pointer not in the access set?");
1348 
1349           MemAccessInfo Access(Ptr, IsWrite);
1350           DepCands.insert(Access);
1351 
1352           // Memorize read-only pointers for later processing and skip them in
1353           // the first round (they need to be checked after we have seen all
1354           // write pointers). Note: we also mark pointer that are not
1355           // consecutive as "read-only" pointers (so that we check
1356           // "a[b[i]] +="). Hence, we need the second check for "!IsWrite".
1357           if (!UseDeferred && IsReadOnlyPtr) {
1358             // We only use the pointer keys, the types vector values don't
1359             // matter.
1360             DeferredAccesses.insert({Access, {}});
1361             continue;
1362           }
1363 
1364           // If this is a write - check other reads and writes for conflicts. If
1365           // this is a read only check other writes for conflicts (but only if
1366           // there is no other write to the ptr - this is an optimization to
1367           // catch "a[i] = a[i] + " without having to do a dependence check).
1368           if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) {
1369             CheckDeps.push_back(Access);
1370             IsRTCheckAnalysisNeeded = true;
1371           }
1372 
1373           if (IsWrite)
1374             SetHasWrite = true;
1375 
1376           // Create sets of pointers connected by a shared alias set and
1377           // underlying object.
1378           typedef SmallVector<const Value *, 16> ValueVector;
1379           ValueVector TempObjects;
1380 
1381           UnderlyingObjects[Ptr] = {};
1382           SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr];
1383           ::getUnderlyingObjects(Ptr, UOs, LI);
1384           LLVM_DEBUG(dbgs()
1385                      << "Underlying objects for pointer " << *Ptr << "\n");
1386           for (const Value *UnderlyingObj : UOs) {
1387             // nullptr never alias, don't join sets for pointer that have "null"
1388             // in their UnderlyingObjects list.
1389             if (isa<ConstantPointerNull>(UnderlyingObj) &&
1390                 !NullPointerIsDefined(
1391                     TheLoop->getHeader()->getParent(),
1392                     UnderlyingObj->getType()->getPointerAddressSpace()))
1393               continue;
1394 
1395             UnderlyingObjToAccessMap::iterator Prev =
1396                 ObjToLastAccess.find(UnderlyingObj);
1397             if (Prev != ObjToLastAccess.end())
1398               DepCands.unionSets(Access, Prev->second);
1399 
1400             ObjToLastAccess[UnderlyingObj] = Access;
1401             LLVM_DEBUG(dbgs() << "  " << *UnderlyingObj << "\n");
1402           }
1403         }
1404       }
1405     }
1406   }
1407 }
1408 
1409 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping,
1410 /// i.e. monotonically increasing/decreasing.
1411 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR,
1412                            PredicatedScalarEvolution &PSE, const Loop *L) {
1413 
1414   // FIXME: This should probably only return true for NUW.
1415   if (AR->getNoWrapFlags(SCEV::NoWrapMask))
1416     return true;
1417 
1418   if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW))
1419     return true;
1420 
1421   // Scalar evolution does not propagate the non-wrapping flags to values that
1422   // are derived from a non-wrapping induction variable because non-wrapping
1423   // could be flow-sensitive.
1424   //
1425   // Look through the potentially overflowing instruction to try to prove
1426   // non-wrapping for the *specific* value of Ptr.
1427 
1428   // The arithmetic implied by an inbounds GEP can't overflow.
1429   auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1430   if (!GEP || !GEP->isInBounds())
1431     return false;
1432 
1433   // Make sure there is only one non-const index and analyze that.
1434   Value *NonConstIndex = nullptr;
1435   for (Value *Index : GEP->indices())
1436     if (!isa<ConstantInt>(Index)) {
1437       if (NonConstIndex)
1438         return false;
1439       NonConstIndex = Index;
1440     }
1441   if (!NonConstIndex)
1442     // The recurrence is on the pointer, ignore for now.
1443     return false;
1444 
1445   // The index in GEP is signed.  It is non-wrapping if it's derived from a NSW
1446   // AddRec using a NSW operation.
1447   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex))
1448     if (OBO->hasNoSignedWrap() &&
1449         // Assume constant for other the operand so that the AddRec can be
1450         // easily found.
1451         isa<ConstantInt>(OBO->getOperand(1))) {
1452       auto *OpScev = PSE.getSCEV(OBO->getOperand(0));
1453 
1454       if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev))
1455         return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW);
1456     }
1457 
1458   return false;
1459 }
1460 
1461 /// Check whether the access through \p Ptr has a constant stride.
1462 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE,
1463                                           Type *AccessTy, Value *Ptr,
1464                                           const Loop *Lp,
1465                                           const DenseMap<Value *, const SCEV *> &StridesMap,
1466                                           bool Assume, bool ShouldCheckWrap) {
1467   Type *Ty = Ptr->getType();
1468   assert(Ty->isPointerTy() && "Unexpected non-ptr");
1469 
1470   if (isa<ScalableVectorType>(AccessTy)) {
1471     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy
1472                       << "\n");
1473     return std::nullopt;
1474   }
1475 
1476   const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr);
1477 
1478   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev);
1479   if (Assume && !AR)
1480     AR = PSE.getAsAddRec(Ptr);
1481 
1482   if (!AR) {
1483     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr
1484                       << " SCEV: " << *PtrScev << "\n");
1485     return std::nullopt;
1486   }
1487 
1488   // The access function must stride over the innermost loop.
1489   if (Lp != AR->getLoop()) {
1490     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop "
1491                       << *Ptr << " SCEV: " << *AR << "\n");
1492     return std::nullopt;
1493   }
1494 
1495   // Check the step is constant.
1496   const SCEV *Step = AR->getStepRecurrence(*PSE.getSE());
1497 
1498   // Calculate the pointer stride and check if it is constant.
1499   const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
1500   if (!C) {
1501     LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr
1502                       << " SCEV: " << *AR << "\n");
1503     return std::nullopt;
1504   }
1505 
1506   auto &DL = Lp->getHeader()->getDataLayout();
1507   TypeSize AllocSize = DL.getTypeAllocSize(AccessTy);
1508   int64_t Size = AllocSize.getFixedValue();
1509   const APInt &APStepVal = C->getAPInt();
1510 
1511   // Huge step value - give up.
1512   if (APStepVal.getBitWidth() > 64)
1513     return std::nullopt;
1514 
1515   int64_t StepVal = APStepVal.getSExtValue();
1516 
1517   // Strided access.
1518   int64_t Stride = StepVal / Size;
1519   int64_t Rem = StepVal % Size;
1520   if (Rem)
1521     return std::nullopt;
1522 
1523   if (!ShouldCheckWrap)
1524     return Stride;
1525 
1526   // The address calculation must not wrap. Otherwise, a dependence could be
1527   // inverted.
1528   if (isNoWrapAddRec(Ptr, AR, PSE, Lp))
1529     return Stride;
1530 
1531   // An inbounds getelementptr that is a AddRec with a unit stride
1532   // cannot wrap per definition.  If it did, the result would be poison
1533   // and any memory access dependent on it would be immediate UB
1534   // when executed.
1535   if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr);
1536       GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1))
1537     return Stride;
1538 
1539   // If the null pointer is undefined, then a access sequence which would
1540   // otherwise access it can be assumed not to unsigned wrap.  Note that this
1541   // assumes the object in memory is aligned to the natural alignment.
1542   unsigned AddrSpace = Ty->getPointerAddressSpace();
1543   if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) &&
1544       (Stride == 1 || Stride == -1))
1545     return Stride;
1546 
1547   if (Assume) {
1548     PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW);
1549     LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n"
1550                       << "LAA:   Pointer: " << *Ptr << "\n"
1551                       << "LAA:   SCEV: " << *AR << "\n"
1552                       << "LAA:   Added an overflow assumption\n");
1553     return Stride;
1554   }
1555   LLVM_DEBUG(
1556       dbgs() << "LAA: Bad stride - Pointer may wrap in the address space "
1557              << *Ptr << " SCEV: " << *AR << "\n");
1558   return std::nullopt;
1559 }
1560 
1561 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA,
1562                                          Type *ElemTyB, Value *PtrB,
1563                                          const DataLayout &DL,
1564                                          ScalarEvolution &SE, bool StrictCheck,
1565                                          bool CheckType) {
1566   assert(PtrA && PtrB && "Expected non-nullptr pointers.");
1567 
1568   // Make sure that A and B are different pointers.
1569   if (PtrA == PtrB)
1570     return 0;
1571 
1572   // Make sure that the element types are the same if required.
1573   if (CheckType && ElemTyA != ElemTyB)
1574     return std::nullopt;
1575 
1576   unsigned ASA = PtrA->getType()->getPointerAddressSpace();
1577   unsigned ASB = PtrB->getType()->getPointerAddressSpace();
1578 
1579   // Check that the address spaces match.
1580   if (ASA != ASB)
1581     return std::nullopt;
1582   unsigned IdxWidth = DL.getIndexSizeInBits(ASA);
1583 
1584   APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0);
1585   Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1586   Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1587 
1588   int Val;
1589   if (PtrA1 == PtrB1) {
1590     // Retrieve the address space again as pointer stripping now tracks through
1591     // `addrspacecast`.
1592     ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace();
1593     ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace();
1594     // Check that the address spaces match and that the pointers are valid.
1595     if (ASA != ASB)
1596       return std::nullopt;
1597 
1598     IdxWidth = DL.getIndexSizeInBits(ASA);
1599     OffsetA = OffsetA.sextOrTrunc(IdxWidth);
1600     OffsetB = OffsetB.sextOrTrunc(IdxWidth);
1601 
1602     OffsetB -= OffsetA;
1603     Val = OffsetB.getSExtValue();
1604   } else {
1605     // Otherwise compute the distance with SCEV between the base pointers.
1606     const SCEV *PtrSCEVA = SE.getSCEV(PtrA);
1607     const SCEV *PtrSCEVB = SE.getSCEV(PtrB);
1608     const auto *Diff =
1609         dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA));
1610     if (!Diff)
1611       return std::nullopt;
1612     Val = Diff->getAPInt().getSExtValue();
1613   }
1614   int Size = DL.getTypeStoreSize(ElemTyA);
1615   int Dist = Val / Size;
1616 
1617   // Ensure that the calculated distance matches the type-based one after all
1618   // the bitcasts removal in the provided pointers.
1619   if (!StrictCheck || Dist * Size == Val)
1620     return Dist;
1621   return std::nullopt;
1622 }
1623 
1624 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy,
1625                            const DataLayout &DL, ScalarEvolution &SE,
1626                            SmallVectorImpl<unsigned> &SortedIndices) {
1627   assert(llvm::all_of(
1628              VL, [](const Value *V) { return V->getType()->isPointerTy(); }) &&
1629          "Expected list of pointer operands.");
1630   // Walk over the pointers, and map each of them to an offset relative to
1631   // first pointer in the array.
1632   Value *Ptr0 = VL[0];
1633 
1634   using DistOrdPair = std::pair<int64_t, int>;
1635   auto Compare = llvm::less_first();
1636   std::set<DistOrdPair, decltype(Compare)> Offsets(Compare);
1637   Offsets.emplace(0, 0);
1638   bool IsConsecutive = true;
1639   for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) {
1640     std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE,
1641                                               /*StrictCheck=*/true);
1642     if (!Diff)
1643       return false;
1644 
1645     // Check if the pointer with the same offset is found.
1646     int64_t Offset = *Diff;
1647     auto [It, IsInserted] = Offsets.emplace(Offset, Idx);
1648     if (!IsInserted)
1649       return false;
1650     // Consecutive order if the inserted element is the last one.
1651     IsConsecutive &= std::next(It) == Offsets.end();
1652   }
1653   SortedIndices.clear();
1654   if (!IsConsecutive) {
1655     // Fill SortedIndices array only if it is non-consecutive.
1656     SortedIndices.resize(VL.size());
1657     for (auto [Idx, Off] : enumerate(Offsets))
1658       SortedIndices[Idx] = Off.second;
1659   }
1660   return true;
1661 }
1662 
1663 /// Returns true if the memory operations \p A and \p B are consecutive.
1664 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL,
1665                                ScalarEvolution &SE, bool CheckType) {
1666   Value *PtrA = getLoadStorePointerOperand(A);
1667   Value *PtrB = getLoadStorePointerOperand(B);
1668   if (!PtrA || !PtrB)
1669     return false;
1670   Type *ElemTyA = getLoadStoreType(A);
1671   Type *ElemTyB = getLoadStoreType(B);
1672   std::optional<int> Diff =
1673       getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE,
1674                       /*StrictCheck=*/true, CheckType);
1675   return Diff && *Diff == 1;
1676 }
1677 
1678 void MemoryDepChecker::addAccess(StoreInst *SI) {
1679   visitPointers(SI->getPointerOperand(), *InnermostLoop,
1680                 [this, SI](Value *Ptr) {
1681                   Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx);
1682                   InstMap.push_back(SI);
1683                   ++AccessIdx;
1684                 });
1685 }
1686 
1687 void MemoryDepChecker::addAccess(LoadInst *LI) {
1688   visitPointers(LI->getPointerOperand(), *InnermostLoop,
1689                 [this, LI](Value *Ptr) {
1690                   Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx);
1691                   InstMap.push_back(LI);
1692                   ++AccessIdx;
1693                 });
1694 }
1695 
1696 MemoryDepChecker::VectorizationSafetyStatus
1697 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) {
1698   switch (Type) {
1699   case NoDep:
1700   case Forward:
1701   case BackwardVectorizable:
1702     return VectorizationSafetyStatus::Safe;
1703 
1704   case Unknown:
1705     return VectorizationSafetyStatus::PossiblySafeWithRtChecks;
1706   case ForwardButPreventsForwarding:
1707   case Backward:
1708   case BackwardVectorizableButPreventsForwarding:
1709   case IndirectUnsafe:
1710     return VectorizationSafetyStatus::Unsafe;
1711   }
1712   llvm_unreachable("unexpected DepType!");
1713 }
1714 
1715 bool MemoryDepChecker::Dependence::isBackward() const {
1716   switch (Type) {
1717   case NoDep:
1718   case Forward:
1719   case ForwardButPreventsForwarding:
1720   case Unknown:
1721   case IndirectUnsafe:
1722     return false;
1723 
1724   case BackwardVectorizable:
1725   case Backward:
1726   case BackwardVectorizableButPreventsForwarding:
1727     return true;
1728   }
1729   llvm_unreachable("unexpected DepType!");
1730 }
1731 
1732 bool MemoryDepChecker::Dependence::isPossiblyBackward() const {
1733   return isBackward() || Type == Unknown || Type == IndirectUnsafe;
1734 }
1735 
1736 bool MemoryDepChecker::Dependence::isForward() const {
1737   switch (Type) {
1738   case Forward:
1739   case ForwardButPreventsForwarding:
1740     return true;
1741 
1742   case NoDep:
1743   case Unknown:
1744   case BackwardVectorizable:
1745   case Backward:
1746   case BackwardVectorizableButPreventsForwarding:
1747   case IndirectUnsafe:
1748     return false;
1749   }
1750   llvm_unreachable("unexpected DepType!");
1751 }
1752 
1753 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance,
1754                                                     uint64_t TypeByteSize) {
1755   // If loads occur at a distance that is not a multiple of a feasible vector
1756   // factor store-load forwarding does not take place.
1757   // Positive dependences might cause troubles because vectorizing them might
1758   // prevent store-load forwarding making vectorized code run a lot slower.
1759   //   a[i] = a[i-3] ^ a[i-8];
1760   //   The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and
1761   //   hence on your typical architecture store-load forwarding does not take
1762   //   place. Vectorizing in such cases does not make sense.
1763   // Store-load forwarding distance.
1764 
1765   // After this many iterations store-to-load forwarding conflicts should not
1766   // cause any slowdowns.
1767   const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize;
1768   // Maximum vector factor.
1769   uint64_t MaxVFWithoutSLForwardIssues = std::min(
1770       VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes);
1771 
1772   // Compute the smallest VF at which the store and load would be misaligned.
1773   for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues;
1774        VF *= 2) {
1775     // If the number of vector iteration between the store and the load are
1776     // small we could incur conflicts.
1777     if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) {
1778       MaxVFWithoutSLForwardIssues = (VF >> 1);
1779       break;
1780     }
1781   }
1782 
1783   if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) {
1784     LLVM_DEBUG(
1785         dbgs() << "LAA: Distance " << Distance
1786                << " that could cause a store-load forwarding conflict\n");
1787     return true;
1788   }
1789 
1790   if (MaxVFWithoutSLForwardIssues < MinDepDistBytes &&
1791       MaxVFWithoutSLForwardIssues !=
1792           VectorizerParams::MaxVectorWidth * TypeByteSize)
1793     MinDepDistBytes = MaxVFWithoutSLForwardIssues;
1794   return false;
1795 }
1796 
1797 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) {
1798   if (Status < S)
1799     Status = S;
1800 }
1801 
1802 /// Given a dependence-distance \p Dist between two
1803 /// memory accesses, that have strides in the same direction whose absolute
1804 /// value of the maximum stride is given in \p MaxStride, and that have the same
1805 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is
1806 /// \p MaxBTC, check if it is possible to prove statically that the dependence
1807 /// distance is larger than the range that the accesses will travel through the
1808 /// execution of the loop. If so, return true; false otherwise. This is useful
1809 /// for example in loops such as the following (PR31098):
1810 ///     for (i = 0; i < D; ++i) {
1811 ///                = out[i];
1812 ///       out[i+D] =
1813 ///     }
1814 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE,
1815                                      const SCEV &MaxBTC, const SCEV &Dist,
1816                                      uint64_t MaxStride,
1817                                      uint64_t TypeByteSize) {
1818 
1819   // If we can prove that
1820   //      (**) |Dist| > MaxBTC * Step
1821   // where Step is the absolute stride of the memory accesses in bytes,
1822   // then there is no dependence.
1823   //
1824   // Rationale:
1825   // We basically want to check if the absolute distance (|Dist/Step|)
1826   // is >= the loop iteration count (or > MaxBTC).
1827   // This is equivalent to the Strong SIV Test (Practical Dependence Testing,
1828   // Section 4.2.1); Note, that for vectorization it is sufficient to prove
1829   // that the dependence distance is >= VF; This is checked elsewhere.
1830   // But in some cases we can prune dependence distances early, and
1831   // even before selecting the VF, and without a runtime test, by comparing
1832   // the distance against the loop iteration count. Since the vectorized code
1833   // will be executed only if LoopCount >= VF, proving distance >= LoopCount
1834   // also guarantees that distance >= VF.
1835   //
1836   const uint64_t ByteStride = MaxStride * TypeByteSize;
1837   const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride);
1838   const SCEV *Product = SE.getMulExpr(&MaxBTC, Step);
1839 
1840   const SCEV *CastedDist = &Dist;
1841   const SCEV *CastedProduct = Product;
1842   uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType());
1843   uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType());
1844 
1845   // The dependence distance can be positive/negative, so we sign extend Dist;
1846   // The multiplication of the absolute stride in bytes and the
1847   // backedgeTakenCount is non-negative, so we zero extend Product.
1848   if (DistTypeSizeBits > ProductTypeSizeBits)
1849     CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType());
1850   else
1851     CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType());
1852 
1853   // Is  Dist - (MaxBTC * Step) > 0 ?
1854   // (If so, then we have proven (**) because |Dist| >= Dist)
1855   const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct);
1856   if (SE.isKnownPositive(Minus))
1857     return true;
1858 
1859   // Second try: Is  -Dist - (MaxBTC * Step) > 0 ?
1860   // (If so, then we have proven (**) because |Dist| >= -1*Dist)
1861   const SCEV *NegDist = SE.getNegativeSCEV(CastedDist);
1862   Minus = SE.getMinusSCEV(NegDist, CastedProduct);
1863   return SE.isKnownPositive(Minus);
1864 }
1865 
1866 /// Check the dependence for two accesses with the same stride \p Stride.
1867 /// \p Distance is the positive distance and \p TypeByteSize is type size in
1868 /// bytes.
1869 ///
1870 /// \returns true if they are independent.
1871 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride,
1872                                           uint64_t TypeByteSize) {
1873   assert(Stride > 1 && "The stride must be greater than 1");
1874   assert(TypeByteSize > 0 && "The type size in byte must be non-zero");
1875   assert(Distance > 0 && "The distance must be non-zero");
1876 
1877   // Skip if the distance is not multiple of type byte size.
1878   if (Distance % TypeByteSize)
1879     return false;
1880 
1881   uint64_t ScaledDist = Distance / TypeByteSize;
1882 
1883   // No dependence if the scaled distance is not multiple of the stride.
1884   // E.g.
1885   //      for (i = 0; i < 1024 ; i += 4)
1886   //        A[i+2] = A[i] + 1;
1887   //
1888   // Two accesses in memory (scaled distance is 2, stride is 4):
1889   //     | A[0] |      |      |      | A[4] |      |      |      |
1890   //     |      |      | A[2] |      |      |      | A[6] |      |
1891   //
1892   // E.g.
1893   //      for (i = 0; i < 1024 ; i += 3)
1894   //        A[i+4] = A[i] + 1;
1895   //
1896   // Two accesses in memory (scaled distance is 4, stride is 3):
1897   //     | A[0] |      |      | A[3] |      |      | A[6] |      |      |
1898   //     |      |      |      |      | A[4] |      |      | A[7] |      |
1899   return ScaledDist % Stride;
1900 }
1901 
1902 /// Returns true if any of the underlying objects has a loop varying address,
1903 /// i.e. may change in \p L.
1904 static bool
1905 isLoopVariantIndirectAddress(ArrayRef<const Value *> UnderlyingObjects,
1906                              ScalarEvolution &SE, const Loop *L) {
1907   return any_of(UnderlyingObjects, [&SE, L](const Value *UO) {
1908     return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L);
1909   });
1910 }
1911 
1912 std::variant<MemoryDepChecker::Dependence::DepType,
1913              MemoryDepChecker::DepDistanceStrideAndSizeInfo>
1914 MemoryDepChecker::getDependenceDistanceStrideAndSize(
1915     const AccessAnalysis::MemAccessInfo &A, Instruction *AInst,
1916     const AccessAnalysis::MemAccessInfo &B, Instruction *BInst,
1917     const DenseMap<Value *, SmallVector<const Value *, 16>>
1918         &UnderlyingObjects) {
1919   auto &DL = InnermostLoop->getHeader()->getDataLayout();
1920   auto &SE = *PSE.getSE();
1921   auto [APtr, AIsWrite] = A;
1922   auto [BPtr, BIsWrite] = B;
1923 
1924   // Two reads are independent.
1925   if (!AIsWrite && !BIsWrite)
1926     return MemoryDepChecker::Dependence::NoDep;
1927 
1928   Type *ATy = getLoadStoreType(AInst);
1929   Type *BTy = getLoadStoreType(BInst);
1930 
1931   // We cannot check pointers in different address spaces.
1932   if (APtr->getType()->getPointerAddressSpace() !=
1933       BPtr->getType()->getPointerAddressSpace())
1934     return MemoryDepChecker::Dependence::Unknown;
1935 
1936   int64_t StrideAPtr =
1937       getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true)
1938           .value_or(0);
1939   int64_t StrideBPtr =
1940       getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true)
1941           .value_or(0);
1942 
1943   const SCEV *Src = PSE.getSCEV(APtr);
1944   const SCEV *Sink = PSE.getSCEV(BPtr);
1945 
1946   // If the induction step is negative we have to invert source and sink of the
1947   // dependence when measuring the distance between them. We should not swap
1948   // AIsWrite with BIsWrite, as their uses expect them in program order.
1949   if (StrideAPtr < 0) {
1950     std::swap(Src, Sink);
1951     std::swap(AInst, BInst);
1952   }
1953 
1954   const SCEV *Dist = SE.getMinusSCEV(Sink, Src);
1955 
1956   LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink
1957                     << "(Induction step: " << StrideAPtr << ")\n");
1958   LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst
1959                     << ": " << *Dist << "\n");
1960 
1961   // Needs accesses where the addresses of the accessed underlying objects do
1962   // not change within the loop.
1963   if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE,
1964                                    InnermostLoop) ||
1965       isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE,
1966                                    InnermostLoop))
1967     return MemoryDepChecker::Dependence::IndirectUnsafe;
1968 
1969   // Check if we can prove that Sink only accesses memory after Src's end or
1970   // vice versa. At the moment this is limited to cases where either source or
1971   // sink are loop invariant to avoid compile-time increases. This is not
1972   // required for correctness.
1973   if (SE.isLoopInvariant(Src, InnermostLoop) ||
1974       SE.isLoopInvariant(Sink, InnermostLoop)) {
1975     const auto &[SrcStart, SrcEnd] =
1976         getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds);
1977     const auto &[SinkStart, SinkEnd] =
1978         getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds);
1979     if (!isa<SCEVCouldNotCompute>(SrcStart) &&
1980         !isa<SCEVCouldNotCompute>(SrcEnd) &&
1981         !isa<SCEVCouldNotCompute>(SinkStart) &&
1982         !isa<SCEVCouldNotCompute>(SinkEnd)) {
1983       if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart))
1984         return MemoryDepChecker::Dependence::NoDep;
1985       if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart))
1986         return MemoryDepChecker::Dependence::NoDep;
1987     }
1988   }
1989 
1990   // Need accesses with constant strides and the same direction. We don't want
1991   // to vectorize "A[B[i]] += ..." and similar code or pointer arithmetic that
1992   // could wrap in the address space.
1993   if (!StrideAPtr || !StrideBPtr || (StrideAPtr > 0 && StrideBPtr < 0) ||
1994       (StrideAPtr < 0 && StrideBPtr > 0)) {
1995     LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n");
1996     return MemoryDepChecker::Dependence::Unknown;
1997   }
1998 
1999   uint64_t TypeByteSize = DL.getTypeAllocSize(ATy);
2000   bool HasSameSize =
2001       DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy);
2002   if (!HasSameSize)
2003     TypeByteSize = 0;
2004   return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtr),
2005                                       std::abs(StrideBPtr), TypeByteSize,
2006                                       AIsWrite, BIsWrite);
2007 }
2008 
2009 MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent(
2010     const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B,
2011     unsigned BIdx,
2012     const DenseMap<Value *, SmallVector<const Value *, 16>>
2013         &UnderlyingObjects) {
2014   assert(AIdx < BIdx && "Must pass arguments in program order");
2015 
2016   // Get the dependence distance, stride, type size and what access writes for
2017   // the dependence between A and B.
2018   auto Res = getDependenceDistanceStrideAndSize(
2019       A, InstMap[AIdx], B, InstMap[BIdx], UnderlyingObjects);
2020   if (std::holds_alternative<Dependence::DepType>(Res))
2021     return std::get<Dependence::DepType>(Res);
2022 
2023   auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] =
2024       std::get<DepDistanceStrideAndSizeInfo>(Res);
2025   bool HasSameSize = TypeByteSize > 0;
2026 
2027   std::optional<uint64_t> CommonStride =
2028       StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt;
2029   if (isa<SCEVCouldNotCompute>(Dist)) {
2030     // TODO: Relax requirement that there is a common stride to retry with
2031     // non-constant distance dependencies.
2032     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2033     LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n");
2034     return Dependence::Unknown;
2035   }
2036 
2037   ScalarEvolution &SE = *PSE.getSE();
2038   auto &DL = InnermostLoop->getHeader()->getDataLayout();
2039   uint64_t MaxStride = std::max(StrideA, StrideB);
2040 
2041   // If the distance between the acecsses is larger than their maximum absolute
2042   // stride multiplied by the symbolic maximum backedge taken count (which is an
2043   // upper bound of the number of iterations), the accesses are independet, i.e.
2044   // they are far enough appart that accesses won't access the same location
2045   // across all loop ierations.
2046   if (HasSameSize && isSafeDependenceDistance(
2047                          DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()),
2048                          *Dist, MaxStride, TypeByteSize))
2049     return Dependence::NoDep;
2050 
2051   const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist);
2052 
2053   // Attempt to prove strided accesses independent.
2054   if (C) {
2055     const APInt &Val = C->getAPInt();
2056     int64_t Distance = Val.getSExtValue();
2057 
2058     // If the distance between accesses and their strides are known constants,
2059     // check whether the accesses interlace each other.
2060     if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 &&
2061         HasSameSize &&
2062         areStridedAccessesIndependent(std::abs(Distance), *CommonStride,
2063                                       TypeByteSize)) {
2064       LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n");
2065       return Dependence::NoDep;
2066     }
2067   } else
2068     Dist = SE.applyLoopGuards(Dist, InnermostLoop);
2069 
2070   // Negative distances are not plausible dependencies.
2071   if (SE.isKnownNonPositive(Dist)) {
2072     if (SE.isKnownNonNegative(Dist)) {
2073       if (HasSameSize) {
2074         // Write to the same location with the same size.
2075         return Dependence::Forward;
2076       }
2077       LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but "
2078                            "different type sizes\n");
2079       return Dependence::Unknown;
2080     }
2081 
2082     bool IsTrueDataDependence = (AIsWrite && !BIsWrite);
2083     // Check if the first access writes to a location that is read in a later
2084     // iteration, where the distance between them is not a multiple of a vector
2085     // factor and relatively small.
2086     //
2087     // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to
2088     // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a
2089     // forward dependency will allow vectorization using any width.
2090 
2091     if (IsTrueDataDependence && EnableForwardingConflictDetection) {
2092       if (!C) {
2093         // TODO: FoundNonConstantDistanceDependence is used as a necessary
2094         // condition to consider retrying with runtime checks. Historically, we
2095         // did not set it when strides were different but there is no inherent
2096         // reason to.
2097         FoundNonConstantDistanceDependence |= CommonStride.has_value();
2098         return Dependence::Unknown;
2099       }
2100       if (!HasSameSize ||
2101           couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(),
2102                                        TypeByteSize)) {
2103         LLVM_DEBUG(
2104             dbgs() << "LAA: Forward but may prevent st->ld forwarding\n");
2105         return Dependence::ForwardButPreventsForwarding;
2106       }
2107     }
2108 
2109     LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n");
2110     return Dependence::Forward;
2111   }
2112 
2113   int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue();
2114   // Below we only handle strictly positive distances.
2115   if (MinDistance <= 0) {
2116     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2117     return Dependence::Unknown;
2118   }
2119 
2120   if (!isa<SCEVConstant>(Dist)) {
2121     // Previously this case would be treated as Unknown, possibly setting
2122     // FoundNonConstantDistanceDependence to force re-trying with runtime
2123     // checks. Until the TODO below is addressed, set it here to preserve
2124     // original behavior w.r.t. re-trying with runtime checks.
2125     // TODO: FoundNonConstantDistanceDependence is used as a necessary
2126     // condition to consider retrying with runtime checks. Historically, we
2127     // did not set it when strides were different but there is no inherent
2128     // reason to.
2129     FoundNonConstantDistanceDependence |= CommonStride.has_value();
2130   }
2131 
2132   if (!HasSameSize) {
2133     LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with "
2134                          "different type sizes\n");
2135     return Dependence::Unknown;
2136   }
2137 
2138   if (!CommonStride)
2139     return Dependence::Unknown;
2140 
2141   // Bail out early if passed-in parameters make vectorization not feasible.
2142   unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ?
2143                            VectorizerParams::VectorizationFactor : 1);
2144   unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ?
2145                            VectorizerParams::VectorizationInterleave : 1);
2146   // The minimum number of iterations for a vectorized/unrolled version.
2147   unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U);
2148 
2149   // It's not vectorizable if the distance is smaller than the minimum distance
2150   // needed for a vectroized/unrolled version. Vectorizing one iteration in
2151   // front needs TypeByteSize * Stride. Vectorizing the last iteration needs
2152   // TypeByteSize (No need to plus the last gap distance).
2153   //
2154   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2155   //      foo(int *A) {
2156   //        int *B = (int *)((char *)A + 14);
2157   //        for (i = 0 ; i < 1024 ; i += 2)
2158   //          B[i] = A[i] + 1;
2159   //      }
2160   //
2161   // Two accesses in memory (stride is 2):
2162   //     | A[0] |      | A[2] |      | A[4] |      | A[6] |      |
2163   //                              | B[0] |      | B[2] |      | B[4] |
2164   //
2165   // MinDistance needs for vectorizing iterations except the last iteration:
2166   // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4.
2167   // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4.
2168   //
2169   // If MinNumIter is 2, it is vectorizable as the minimum distance needed is
2170   // 12, which is less than distance.
2171   //
2172   // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4),
2173   // the minimum distance needed is 28, which is greater than distance. It is
2174   // not safe to do vectorization.
2175 
2176   // We know that Dist is positive, but it may not be constant. Use the signed
2177   // minimum for computations below, as this ensures we compute the closest
2178   // possible dependence distance.
2179   uint64_t MinDistanceNeeded =
2180       TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize;
2181   if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) {
2182     if (!isa<SCEVConstant>(Dist)) {
2183       // For non-constant distances, we checked the lower bound of the
2184       // dependence distance and the distance may be larger at runtime (and safe
2185       // for vectorization). Classify it as Unknown, so we re-try with runtime
2186       // checks.
2187       return Dependence::Unknown;
2188     }
2189     LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance "
2190                       << MinDistance << '\n');
2191     return Dependence::Backward;
2192   }
2193 
2194   // Unsafe if the minimum distance needed is greater than smallest dependence
2195   // distance distance.
2196   if (MinDistanceNeeded > MinDepDistBytes) {
2197     LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least "
2198                       << MinDistanceNeeded << " size in bytes\n");
2199     return Dependence::Backward;
2200   }
2201 
2202   // Positive distance bigger than max vectorization factor.
2203   // FIXME: Should use max factor instead of max distance in bytes, which could
2204   // not handle different types.
2205   // E.g. Assume one char is 1 byte in memory and one int is 4 bytes.
2206   //      void foo (int *A, char *B) {
2207   //        for (unsigned i = 0; i < 1024; i++) {
2208   //          A[i+2] = A[i] + 1;
2209   //          B[i+2] = B[i] + 1;
2210   //        }
2211   //      }
2212   //
2213   // This case is currently unsafe according to the max safe distance. If we
2214   // analyze the two accesses on array B, the max safe dependence distance
2215   // is 2. Then we analyze the accesses on array A, the minimum distance needed
2216   // is 8, which is less than 2 and forbidden vectorization, But actually
2217   // both A and B could be vectorized by 2 iterations.
2218   MinDepDistBytes =
2219       std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes);
2220 
2221   bool IsTrueDataDependence = (!AIsWrite && BIsWrite);
2222   uint64_t MinDepDistBytesOld = MinDepDistBytes;
2223   if (IsTrueDataDependence && EnableForwardingConflictDetection &&
2224       isa<SCEVConstant>(Dist) &&
2225       couldPreventStoreLoadForward(MinDistance, TypeByteSize)) {
2226     // Sanity check that we didn't update MinDepDistBytes when calling
2227     // couldPreventStoreLoadForward
2228     assert(MinDepDistBytes == MinDepDistBytesOld &&
2229            "An update to MinDepDistBytes requires an update to "
2230            "MaxSafeVectorWidthInBits");
2231     (void)MinDepDistBytesOld;
2232     return Dependence::BackwardVectorizableButPreventsForwarding;
2233   }
2234 
2235   // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits
2236   // since there is a backwards dependency.
2237   uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride);
2238   LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance
2239                     << " with max VF = " << MaxVF << '\n');
2240 
2241   uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8;
2242   if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) {
2243     // For non-constant distances, we checked the lower bound of the dependence
2244     // distance and the distance may be larger at runtime (and safe for
2245     // vectorization). Classify it as Unknown, so we re-try with runtime checks.
2246     return Dependence::Unknown;
2247   }
2248 
2249   MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits);
2250   return Dependence::BackwardVectorizable;
2251 }
2252 
2253 bool MemoryDepChecker::areDepsSafe(
2254     DepCandidates &AccessSets, MemAccessInfoList &CheckDeps,
2255     const DenseMap<Value *, SmallVector<const Value *, 16>>
2256         &UnderlyingObjects) {
2257 
2258   MinDepDistBytes = -1;
2259   SmallPtrSet<MemAccessInfo, 8> Visited;
2260   for (MemAccessInfo CurAccess : CheckDeps) {
2261     if (Visited.count(CurAccess))
2262       continue;
2263 
2264     // Get the relevant memory access set.
2265     EquivalenceClasses<MemAccessInfo>::iterator I =
2266       AccessSets.findValue(AccessSets.getLeaderValue(CurAccess));
2267 
2268     // Check accesses within this set.
2269     EquivalenceClasses<MemAccessInfo>::member_iterator AI =
2270         AccessSets.member_begin(I);
2271     EquivalenceClasses<MemAccessInfo>::member_iterator AE =
2272         AccessSets.member_end();
2273 
2274     // Check every access pair.
2275     while (AI != AE) {
2276       Visited.insert(*AI);
2277       bool AIIsWrite = AI->getInt();
2278       // Check loads only against next equivalent class, but stores also against
2279       // other stores in the same equivalence class - to the same address.
2280       EquivalenceClasses<MemAccessInfo>::member_iterator OI =
2281           (AIIsWrite ? AI : std::next(AI));
2282       while (OI != AE) {
2283         // Check every accessing instruction pair in program order.
2284         for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(),
2285              I1E = Accesses[*AI].end(); I1 != I1E; ++I1)
2286           // Scan all accesses of another equivalence class, but only the next
2287           // accesses of the same equivalent class.
2288           for (std::vector<unsigned>::iterator
2289                    I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()),
2290                    I2E = (OI == AI ? I1E : Accesses[*OI].end());
2291                I2 != I2E; ++I2) {
2292             auto A = std::make_pair(&*AI, *I1);
2293             auto B = std::make_pair(&*OI, *I2);
2294 
2295             assert(*I1 != *I2);
2296             if (*I1 > *I2)
2297               std::swap(A, B);
2298 
2299             Dependence::DepType Type = isDependent(*A.first, A.second, *B.first,
2300                                                    B.second, UnderlyingObjects);
2301             mergeInStatus(Dependence::isSafeForVectorization(Type));
2302 
2303             // Gather dependences unless we accumulated MaxDependences
2304             // dependences.  In that case return as soon as we find the first
2305             // unsafe dependence.  This puts a limit on this quadratic
2306             // algorithm.
2307             if (RecordDependences) {
2308               if (Type != Dependence::NoDep)
2309                 Dependences.push_back(Dependence(A.second, B.second, Type));
2310 
2311               if (Dependences.size() >= MaxDependences) {
2312                 RecordDependences = false;
2313                 Dependences.clear();
2314                 LLVM_DEBUG(dbgs()
2315                            << "Too many dependences, stopped recording\n");
2316               }
2317             }
2318             if (!RecordDependences && !isSafeForVectorization())
2319               return false;
2320           }
2321         ++OI;
2322       }
2323       ++AI;
2324     }
2325   }
2326 
2327   LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n");
2328   return isSafeForVectorization();
2329 }
2330 
2331 SmallVector<Instruction *, 4>
2332 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const {
2333   MemAccessInfo Access(Ptr, IsWrite);
2334   auto &IndexVector = Accesses.find(Access)->second;
2335 
2336   SmallVector<Instruction *, 4> Insts;
2337   transform(IndexVector,
2338                  std::back_inserter(Insts),
2339                  [&](unsigned Idx) { return this->InstMap[Idx]; });
2340   return Insts;
2341 }
2342 
2343 const char *MemoryDepChecker::Dependence::DepName[] = {
2344     "NoDep",
2345     "Unknown",
2346     "IndirectUnsafe",
2347     "Forward",
2348     "ForwardButPreventsForwarding",
2349     "Backward",
2350     "BackwardVectorizable",
2351     "BackwardVectorizableButPreventsForwarding"};
2352 
2353 void MemoryDepChecker::Dependence::print(
2354     raw_ostream &OS, unsigned Depth,
2355     const SmallVectorImpl<Instruction *> &Instrs) const {
2356   OS.indent(Depth) << DepName[Type] << ":\n";
2357   OS.indent(Depth + 2) << *Instrs[Source] << " -> \n";
2358   OS.indent(Depth + 2) << *Instrs[Destination] << "\n";
2359 }
2360 
2361 bool LoopAccessInfo::canAnalyzeLoop() {
2362   // We need to have a loop header.
2363   LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '"
2364                     << TheLoop->getHeader()->getParent()->getName() << "' from "
2365                     << TheLoop->getLocStr() << "\n");
2366 
2367   // We can only analyze innermost loops.
2368   if (!TheLoop->isInnermost()) {
2369     LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n");
2370     recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop";
2371     return false;
2372   }
2373 
2374   // We must have a single backedge.
2375   if (TheLoop->getNumBackEdges() != 1) {
2376     LLVM_DEBUG(
2377         dbgs() << "LAA: loop control flow is not understood by analyzer\n");
2378     recordAnalysis("CFGNotUnderstood")
2379         << "loop control flow is not understood by analyzer";
2380     return false;
2381   }
2382 
2383   // ScalarEvolution needs to be able to find the symbolic max backedge taken
2384   // count, which is an upper bound on the number of loop iterations. The loop
2385   // may execute fewer iterations, if it exits via an uncountable exit.
2386   const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount();
2387   if (isa<SCEVCouldNotCompute>(ExitCount)) {
2388     recordAnalysis("CantComputeNumberOfIterations")
2389         << "could not determine number of loop iterations";
2390     LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n");
2391     return false;
2392   }
2393 
2394   LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: "
2395                     << TheLoop->getHeader()->getName() << "\n");
2396   return true;
2397 }
2398 
2399 bool LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI,
2400                                  const TargetLibraryInfo *TLI,
2401                                  DominatorTree *DT) {
2402   // Holds the Load and Store instructions.
2403   SmallVector<LoadInst *, 16> Loads;
2404   SmallVector<StoreInst *, 16> Stores;
2405   SmallPtrSet<MDNode *, 8> LoopAliasScopes;
2406 
2407   // Holds all the different accesses in the loop.
2408   unsigned NumReads = 0;
2409   unsigned NumReadWrites = 0;
2410 
2411   bool HasComplexMemInst = false;
2412 
2413   // A runtime check is only legal to insert if there are no convergent calls.
2414   HasConvergentOp = false;
2415 
2416   PtrRtChecking->Pointers.clear();
2417   PtrRtChecking->Need = false;
2418 
2419   const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel();
2420 
2421   const bool EnableMemAccessVersioningOfLoop =
2422       EnableMemAccessVersioning &&
2423       !TheLoop->getHeader()->getParent()->hasOptSize();
2424 
2425   // Traverse blocks in fixed RPOT order, regardless of their storage in the
2426   // loop info, as it may be arbitrary.
2427   LoopBlocksRPO RPOT(TheLoop);
2428   RPOT.perform(LI);
2429   for (BasicBlock *BB : RPOT) {
2430     // Scan the BB and collect legal loads and stores. Also detect any
2431     // convergent instructions.
2432     for (Instruction &I : *BB) {
2433       if (auto *Call = dyn_cast<CallBase>(&I)) {
2434         if (Call->isConvergent())
2435           HasConvergentOp = true;
2436       }
2437 
2438       // With both a non-vectorizable memory instruction and a convergent
2439       // operation, found in this loop, no reason to continue the search.
2440       if (HasComplexMemInst && HasConvergentOp)
2441         return false;
2442 
2443       // Avoid hitting recordAnalysis multiple times.
2444       if (HasComplexMemInst)
2445         continue;
2446 
2447       // Record alias scopes defined inside the loop.
2448       if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I))
2449         for (Metadata *Op : Decl->getScopeList()->operands())
2450           LoopAliasScopes.insert(cast<MDNode>(Op));
2451 
2452       // Many math library functions read the rounding mode. We will only
2453       // vectorize a loop if it contains known function calls that don't set
2454       // the flag. Therefore, it is safe to ignore this read from memory.
2455       auto *Call = dyn_cast<CallInst>(&I);
2456       if (Call && getVectorIntrinsicIDForCall(Call, TLI))
2457         continue;
2458 
2459       // If this is a load, save it. If this instruction can read from memory
2460       // but is not a load, then we quit. Notice that we don't handle function
2461       // calls that read or write.
2462       if (I.mayReadFromMemory()) {
2463         // If the function has an explicit vectorized counterpart, we can safely
2464         // assume that it can be vectorized.
2465         if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() &&
2466             !VFDatabase::getMappings(*Call).empty())
2467           continue;
2468 
2469         auto *Ld = dyn_cast<LoadInst>(&I);
2470         if (!Ld) {
2471           recordAnalysis("CantVectorizeInstruction", Ld)
2472             << "instruction cannot be vectorized";
2473           HasComplexMemInst = true;
2474           continue;
2475         }
2476         if (!Ld->isSimple() && !IsAnnotatedParallel) {
2477           recordAnalysis("NonSimpleLoad", Ld)
2478               << "read with atomic ordering or volatile read";
2479           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n");
2480           HasComplexMemInst = true;
2481           continue;
2482         }
2483         NumLoads++;
2484         Loads.push_back(Ld);
2485         DepChecker->addAccess(Ld);
2486         if (EnableMemAccessVersioningOfLoop)
2487           collectStridedAccess(Ld);
2488         continue;
2489       }
2490 
2491       // Save 'store' instructions. Abort if other instructions write to memory.
2492       if (I.mayWriteToMemory()) {
2493         auto *St = dyn_cast<StoreInst>(&I);
2494         if (!St) {
2495           recordAnalysis("CantVectorizeInstruction", St)
2496               << "instruction cannot be vectorized";
2497           HasComplexMemInst = true;
2498           continue;
2499         }
2500         if (!St->isSimple() && !IsAnnotatedParallel) {
2501           recordAnalysis("NonSimpleStore", St)
2502               << "write with atomic ordering or volatile write";
2503           LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n");
2504           HasComplexMemInst = true;
2505           continue;
2506         }
2507         NumStores++;
2508         Stores.push_back(St);
2509         DepChecker->addAccess(St);
2510         if (EnableMemAccessVersioningOfLoop)
2511           collectStridedAccess(St);
2512       }
2513     } // Next instr.
2514   } // Next block.
2515 
2516   if (HasComplexMemInst)
2517     return false;
2518 
2519   // Now we have two lists that hold the loads and the stores.
2520   // Next, we find the pointers that they use.
2521 
2522   // Check if we see any stores. If there are no stores, then we don't
2523   // care if the pointers are *restrict*.
2524   if (!Stores.size()) {
2525     LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n");
2526     return true;
2527   }
2528 
2529   MemoryDepChecker::DepCandidates DependentAccesses;
2530   AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE,
2531                           LoopAliasScopes);
2532 
2533   // Holds the analyzed pointers. We don't want to call getUnderlyingObjects
2534   // multiple times on the same object. If the ptr is accessed twice, once
2535   // for read and once for write, it will only appear once (on the write
2536   // list). This is okay, since we are going to check for conflicts between
2537   // writes and between reads and writes, but not between reads and reads.
2538   SmallSet<std::pair<Value *, Type *>, 16> Seen;
2539 
2540   // Record uniform store addresses to identify if we have multiple stores
2541   // to the same address.
2542   SmallPtrSet<Value *, 16> UniformStores;
2543 
2544   for (StoreInst *ST : Stores) {
2545     Value *Ptr = ST->getPointerOperand();
2546 
2547     if (isInvariant(Ptr)) {
2548       // Record store instructions to loop invariant addresses
2549       StoresToInvariantAddresses.push_back(ST);
2550       HasStoreStoreDependenceInvolvingLoopInvariantAddress |=
2551           !UniformStores.insert(Ptr).second;
2552     }
2553 
2554     // If we did *not* see this pointer before, insert it to  the read-write
2555     // list. At this phase it is only a 'write' list.
2556     Type *AccessTy = getLoadStoreType(ST);
2557     if (Seen.insert({Ptr, AccessTy}).second) {
2558       ++NumReadWrites;
2559 
2560       MemoryLocation Loc = MemoryLocation::get(ST);
2561       // The TBAA metadata could have a control dependency on the predication
2562       // condition, so we cannot rely on it when determining whether or not we
2563       // need runtime pointer checks.
2564       if (blockNeedsPredication(ST->getParent(), TheLoop, DT))
2565         Loc.AATags.TBAA = nullptr;
2566 
2567       visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2568                     [&Accesses, AccessTy, Loc](Value *Ptr) {
2569                       MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2570                       Accesses.addStore(NewLoc, AccessTy);
2571                     });
2572     }
2573   }
2574 
2575   if (IsAnnotatedParallel) {
2576     LLVM_DEBUG(
2577         dbgs() << "LAA: A loop annotated parallel, ignore memory dependency "
2578                << "checks.\n");
2579     return true;
2580   }
2581 
2582   for (LoadInst *LD : Loads) {
2583     Value *Ptr = LD->getPointerOperand();
2584     // If we did *not* see this pointer before, insert it to the
2585     // read list. If we *did* see it before, then it is already in
2586     // the read-write list. This allows us to vectorize expressions
2587     // such as A[i] += x;  Because the address of A[i] is a read-write
2588     // pointer. This only works if the index of A[i] is consecutive.
2589     // If the address of i is unknown (for example A[B[i]]) then we may
2590     // read a few words, modify, and write a few words, and some of the
2591     // words may be written to the same address.
2592     bool IsReadOnlyPtr = false;
2593     Type *AccessTy = getLoadStoreType(LD);
2594     if (Seen.insert({Ptr, AccessTy}).second ||
2595         !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) {
2596       ++NumReads;
2597       IsReadOnlyPtr = true;
2598     }
2599 
2600     // See if there is an unsafe dependency between a load to a uniform address and
2601     // store to the same uniform address.
2602     if (UniformStores.count(Ptr)) {
2603       LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform "
2604                            "load and uniform store to the same address!\n");
2605       HasLoadStoreDependenceInvolvingLoopInvariantAddress = true;
2606     }
2607 
2608     MemoryLocation Loc = MemoryLocation::get(LD);
2609     // The TBAA metadata could have a control dependency on the predication
2610     // condition, so we cannot rely on it when determining whether or not we
2611     // need runtime pointer checks.
2612     if (blockNeedsPredication(LD->getParent(), TheLoop, DT))
2613       Loc.AATags.TBAA = nullptr;
2614 
2615     visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop,
2616                   [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) {
2617                     MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr);
2618                     Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr);
2619                   });
2620   }
2621 
2622   // If we write (or read-write) to a single destination and there are no
2623   // other reads in this loop then is it safe to vectorize.
2624   if (NumReadWrites == 1 && NumReads == 0) {
2625     LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n");
2626     return true;
2627   }
2628 
2629   // Build dependence sets and check whether we need a runtime pointer bounds
2630   // check.
2631   Accesses.buildDependenceSets();
2632 
2633   // Find pointers with computable bounds. We are going to use this information
2634   // to place a runtime bound check.
2635   Value *UncomputablePtr = nullptr;
2636   bool CanDoRTIfNeeded =
2637       Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop,
2638                                SymbolicStrides, UncomputablePtr, false);
2639   if (!CanDoRTIfNeeded) {
2640     auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2641     recordAnalysis("CantIdentifyArrayBounds", I)
2642         << "cannot identify array bounds";
2643     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find "
2644                       << "the array bounds.\n");
2645     return false;
2646   }
2647 
2648   LLVM_DEBUG(
2649     dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n");
2650 
2651   bool DepsAreSafe = true;
2652   if (Accesses.isDependencyCheckNeeded()) {
2653     LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n");
2654     DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses,
2655                                           Accesses.getDependenciesToCheck(),
2656                                           Accesses.getUnderlyingObjects());
2657 
2658     if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) {
2659       LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n");
2660 
2661       // Clear the dependency checks. We assume they are not needed.
2662       Accesses.resetDepChecks(*DepChecker);
2663 
2664       PtrRtChecking->reset();
2665       PtrRtChecking->Need = true;
2666 
2667       auto *SE = PSE->getSE();
2668       UncomputablePtr = nullptr;
2669       CanDoRTIfNeeded = Accesses.canCheckPtrAtRT(
2670           *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true);
2671 
2672       // Check that we found the bounds for the pointer.
2673       if (!CanDoRTIfNeeded) {
2674         auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr);
2675         recordAnalysis("CantCheckMemDepsAtRunTime", I)
2676             << "cannot check memory dependencies at runtime";
2677         LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n");
2678         return false;
2679       }
2680       DepsAreSafe = true;
2681     }
2682   }
2683 
2684   if (HasConvergentOp) {
2685     recordAnalysis("CantInsertRuntimeCheckWithConvergent")
2686         << "cannot add control dependency to convergent operation";
2687     LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check "
2688                          "would be needed with a convergent operation\n");
2689     return false;
2690   }
2691 
2692   if (DepsAreSafe) {
2693     LLVM_DEBUG(
2694         dbgs() << "LAA: No unsafe dependent memory operations in loop.  We"
2695                << (PtrRtChecking->Need ? "" : " don't")
2696                << " need runtime memory checks.\n");
2697     return true;
2698   }
2699 
2700   emitUnsafeDependenceRemark();
2701   return false;
2702 }
2703 
2704 void LoopAccessInfo::emitUnsafeDependenceRemark() {
2705   const auto *Deps = getDepChecker().getDependences();
2706   if (!Deps)
2707     return;
2708   const auto *Found =
2709       llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) {
2710         return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) !=
2711                MemoryDepChecker::VectorizationSafetyStatus::Safe;
2712       });
2713   if (Found == Deps->end())
2714     return;
2715   MemoryDepChecker::Dependence Dep = *Found;
2716 
2717   LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n");
2718 
2719   // Emit remark for first unsafe dependence
2720   bool HasForcedDistribution = false;
2721   std::optional<const MDOperand *> Value =
2722       findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable");
2723   if (Value) {
2724     const MDOperand *Op = *Value;
2725     assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata");
2726     HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue();
2727   }
2728 
2729   const std::string Info =
2730       HasForcedDistribution
2731           ? "unsafe dependent memory operations in loop."
2732           : "unsafe dependent memory operations in loop. Use "
2733             "#pragma clang loop distribute(enable) to allow loop distribution "
2734             "to attempt to isolate the offending operations into a separate "
2735             "loop";
2736   OptimizationRemarkAnalysis &R =
2737       recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info;
2738 
2739   switch (Dep.Type) {
2740   case MemoryDepChecker::Dependence::NoDep:
2741   case MemoryDepChecker::Dependence::Forward:
2742   case MemoryDepChecker::Dependence::BackwardVectorizable:
2743     llvm_unreachable("Unexpected dependence");
2744   case MemoryDepChecker::Dependence::Backward:
2745     R << "\nBackward loop carried data dependence.";
2746     break;
2747   case MemoryDepChecker::Dependence::ForwardButPreventsForwarding:
2748     R << "\nForward loop carried data dependence that prevents "
2749          "store-to-load forwarding.";
2750     break;
2751   case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding:
2752     R << "\nBackward loop carried data dependence that prevents "
2753          "store-to-load forwarding.";
2754     break;
2755   case MemoryDepChecker::Dependence::IndirectUnsafe:
2756     R << "\nUnsafe indirect dependence.";
2757     break;
2758   case MemoryDepChecker::Dependence::Unknown:
2759     R << "\nUnknown data dependence.";
2760     break;
2761   }
2762 
2763   if (Instruction *I = Dep.getSource(getDepChecker())) {
2764     DebugLoc SourceLoc = I->getDebugLoc();
2765     if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I)))
2766       SourceLoc = DD->getDebugLoc();
2767     if (SourceLoc)
2768       R << " Memory location is the same as accessed at "
2769         << ore::NV("Location", SourceLoc);
2770   }
2771 }
2772 
2773 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop,
2774                                            DominatorTree *DT)  {
2775   assert(TheLoop->contains(BB) && "Unknown block used");
2776 
2777   // Blocks that do not dominate the latch need predication.
2778   BasicBlock* Latch = TheLoop->getLoopLatch();
2779   return !DT->dominates(BB, Latch);
2780 }
2781 
2782 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName,
2783                                                            Instruction *I) {
2784   assert(!Report && "Multiple reports generated");
2785 
2786   Value *CodeRegion = TheLoop->getHeader();
2787   DebugLoc DL = TheLoop->getStartLoc();
2788 
2789   if (I) {
2790     CodeRegion = I->getParent();
2791     // If there is no debug location attached to the instruction, revert back to
2792     // using the loop's.
2793     if (I->getDebugLoc())
2794       DL = I->getDebugLoc();
2795   }
2796 
2797   Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL,
2798                                                    CodeRegion);
2799   return *Report;
2800 }
2801 
2802 bool LoopAccessInfo::isInvariant(Value *V) const {
2803   auto *SE = PSE->getSE();
2804   // TODO: Is this really what we want? Even without FP SCEV, we may want some
2805   // trivially loop-invariant FP values to be considered invariant.
2806   if (!SE->isSCEVable(V->getType()))
2807     return false;
2808   const SCEV *S = SE->getSCEV(V);
2809   return SE->isLoopInvariant(S, TheLoop);
2810 }
2811 
2812 /// Find the operand of the GEP that should be checked for consecutive
2813 /// stores. This ignores trailing indices that have no effect on the final
2814 /// pointer.
2815 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) {
2816   const DataLayout &DL = Gep->getDataLayout();
2817   unsigned LastOperand = Gep->getNumOperands() - 1;
2818   TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType());
2819 
2820   // Walk backwards and try to peel off zeros.
2821   while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) {
2822     // Find the type we're currently indexing into.
2823     gep_type_iterator GEPTI = gep_type_begin(Gep);
2824     std::advance(GEPTI, LastOperand - 2);
2825 
2826     // If it's a type with the same allocation size as the result of the GEP we
2827     // can peel off the zero index.
2828     TypeSize ElemSize = GEPTI.isStruct()
2829                             ? DL.getTypeAllocSize(GEPTI.getIndexedType())
2830                             : GEPTI.getSequentialElementStride(DL);
2831     if (ElemSize != GEPAllocSize)
2832       break;
2833     --LastOperand;
2834   }
2835 
2836   return LastOperand;
2837 }
2838 
2839 /// If the argument is a GEP, then returns the operand identified by
2840 /// getGEPInductionOperand. However, if there is some other non-loop-invariant
2841 /// operand, it returns that instead.
2842 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2843   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
2844   if (!GEP)
2845     return Ptr;
2846 
2847   unsigned InductionOperand = getGEPInductionOperand(GEP);
2848 
2849   // Check that all of the gep indices are uniform except for our induction
2850   // operand.
2851   for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I)
2852     if (I != InductionOperand &&
2853         !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp))
2854       return Ptr;
2855   return GEP->getOperand(InductionOperand);
2856 }
2857 
2858 /// Get the stride of a pointer access in a loop. Looks for symbolic
2859 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise.
2860 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) {
2861   auto *PtrTy = dyn_cast<PointerType>(Ptr->getType());
2862   if (!PtrTy || PtrTy->isAggregateType())
2863     return nullptr;
2864 
2865   // Try to remove a gep instruction to make the pointer (actually index at this
2866   // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the
2867   // pointer, otherwise, we are analyzing the index.
2868   Value *OrigPtr = Ptr;
2869 
2870   // The size of the pointer access.
2871   int64_t PtrAccessSize = 1;
2872 
2873   Ptr = stripGetElementPtr(Ptr, SE, Lp);
2874   const SCEV *V = SE->getSCEV(Ptr);
2875 
2876   if (Ptr != OrigPtr)
2877     // Strip off casts.
2878     while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V))
2879       V = C->getOperand();
2880 
2881   const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V);
2882   if (!S)
2883     return nullptr;
2884 
2885   // If the pointer is invariant then there is no stride and it makes no
2886   // sense to add it here.
2887   if (Lp != S->getLoop())
2888     return nullptr;
2889 
2890   V = S->getStepRecurrence(*SE);
2891   if (!V)
2892     return nullptr;
2893 
2894   // Strip off the size of access multiplication if we are still analyzing the
2895   // pointer.
2896   if (OrigPtr == Ptr) {
2897     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) {
2898       if (M->getOperand(0)->getSCEVType() != scConstant)
2899         return nullptr;
2900 
2901       const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt();
2902 
2903       // Huge step value - give up.
2904       if (APStepVal.getBitWidth() > 64)
2905         return nullptr;
2906 
2907       int64_t StepVal = APStepVal.getSExtValue();
2908       if (PtrAccessSize != StepVal)
2909         return nullptr;
2910       V = M->getOperand(1);
2911     }
2912   }
2913 
2914   // Note that the restriction after this loop invariant check are only
2915   // profitability restrictions.
2916   if (!SE->isLoopInvariant(V, Lp))
2917     return nullptr;
2918 
2919   // Look for the loop invariant symbolic value.
2920   if (isa<SCEVUnknown>(V))
2921     return V;
2922 
2923   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V))
2924     if (isa<SCEVUnknown>(C->getOperand()))
2925       return V;
2926 
2927   return nullptr;
2928 }
2929 
2930 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) {
2931   Value *Ptr = getLoadStorePointerOperand(MemAccess);
2932   if (!Ptr)
2933     return;
2934 
2935   // Note: getStrideFromPointer is a *profitability* heuristic.  We
2936   // could broaden the scope of values returned here - to anything
2937   // which happens to be loop invariant and contributes to the
2938   // computation of an interesting IV - but we chose not to as we
2939   // don't have a cost model here, and broadening the scope exposes
2940   // far too many unprofitable cases.
2941   const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop);
2942   if (!StrideExpr)
2943     return;
2944 
2945   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for "
2946                        "versioning:");
2947   LLVM_DEBUG(dbgs() << "  Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n");
2948 
2949   if (!SpeculateUnitStride) {
2950     LLVM_DEBUG(dbgs() << "  Chose not to due to -laa-speculate-unit-stride\n");
2951     return;
2952   }
2953 
2954   // Avoid adding the "Stride == 1" predicate when we know that
2955   // Stride >= Trip-Count. Such a predicate will effectively optimize a single
2956   // or zero iteration loop, as Trip-Count <= Stride == 1.
2957   //
2958   // TODO: We are currently not making a very informed decision on when it is
2959   // beneficial to apply stride versioning. It might make more sense that the
2960   // users of this analysis (such as the vectorizer) will trigger it, based on
2961   // their specific cost considerations; For example, in cases where stride
2962   // versioning does  not help resolving memory accesses/dependences, the
2963   // vectorizer should evaluate the cost of the runtime test, and the benefit
2964   // of various possible stride specializations, considering the alternatives
2965   // of using gather/scatters (if available).
2966 
2967   const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount();
2968 
2969   // Match the types so we can compare the stride and the MaxBTC.
2970   // The Stride can be positive/negative, so we sign extend Stride;
2971   // The backedgeTakenCount is non-negative, so we zero extend MaxBTC.
2972   const DataLayout &DL = TheLoop->getHeader()->getDataLayout();
2973   uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType());
2974   uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType());
2975   const SCEV *CastedStride = StrideExpr;
2976   const SCEV *CastedBECount = MaxBTC;
2977   ScalarEvolution *SE = PSE->getSE();
2978   if (BETypeSizeBits >= StrideTypeSizeBits)
2979     CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType());
2980   else
2981     CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType());
2982   const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount);
2983   // Since TripCount == BackEdgeTakenCount + 1, checking:
2984   // "Stride >= TripCount" is equivalent to checking:
2985   // Stride - MaxBTC> 0
2986   if (SE->isKnownPositive(StrideMinusBETaken)) {
2987     LLVM_DEBUG(
2988         dbgs() << "LAA: Stride>=TripCount; No point in versioning as the "
2989                   "Stride==1 predicate will imply that the loop executes "
2990                   "at most once.\n");
2991     return;
2992   }
2993   LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n");
2994 
2995   // Strip back off the integer cast, and check that our result is a
2996   // SCEVUnknown as we expect.
2997   const SCEV *StrideBase = StrideExpr;
2998   if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase))
2999     StrideBase = C->getOperand();
3000   SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase);
3001 }
3002 
3003 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE,
3004                                const TargetTransformInfo *TTI,
3005                                const TargetLibraryInfo *TLI, AAResults *AA,
3006                                DominatorTree *DT, LoopInfo *LI)
3007     : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)),
3008       PtrRtChecking(nullptr), TheLoop(L) {
3009   unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3010   if (TTI) {
3011     TypeSize FixedWidth =
3012         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector);
3013     if (FixedWidth.isNonZero()) {
3014       // Scale the vector width by 2 as rough estimate to also consider
3015       // interleaving.
3016       MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2;
3017     }
3018 
3019     TypeSize ScalableWidth =
3020         TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector);
3021     if (ScalableWidth.isNonZero())
3022       MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max();
3023   }
3024   DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides,
3025                                                   MaxTargetVectorWidthInBits);
3026   PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE);
3027   if (canAnalyzeLoop())
3028     CanVecMem = analyzeLoop(AA, LI, TLI, DT);
3029 }
3030 
3031 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const {
3032   if (CanVecMem) {
3033     OS.indent(Depth) << "Memory dependences are safe";
3034     const MemoryDepChecker &DC = getDepChecker();
3035     if (!DC.isSafeForAnyVectorWidth())
3036       OS << " with a maximum safe vector width of "
3037          << DC.getMaxSafeVectorWidthInBits() << " bits";
3038     if (PtrRtChecking->Need)
3039       OS << " with run-time checks";
3040     OS << "\n";
3041   }
3042 
3043   if (HasConvergentOp)
3044     OS.indent(Depth) << "Has convergent operation in loop\n";
3045 
3046   if (Report)
3047     OS.indent(Depth) << "Report: " << Report->getMsg() << "\n";
3048 
3049   if (auto *Dependences = DepChecker->getDependences()) {
3050     OS.indent(Depth) << "Dependences:\n";
3051     for (const auto &Dep : *Dependences) {
3052       Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions());
3053       OS << "\n";
3054     }
3055   } else
3056     OS.indent(Depth) << "Too many dependences, not recorded\n";
3057 
3058   // List the pair of accesses need run-time checks to prove independence.
3059   PtrRtChecking->print(OS, Depth);
3060   OS << "\n";
3061 
3062   OS.indent(Depth)
3063       << "Non vectorizable stores to invariant address were "
3064       << (HasStoreStoreDependenceInvolvingLoopInvariantAddress ||
3065                   HasLoadStoreDependenceInvolvingLoopInvariantAddress
3066               ? ""
3067               : "not ")
3068       << "found in loop.\n";
3069 
3070   OS.indent(Depth) << "SCEV assumptions:\n";
3071   PSE->getPredicate().print(OS, Depth);
3072 
3073   OS << "\n";
3074 
3075   OS.indent(Depth) << "Expressions re-written:\n";
3076   PSE->print(OS, Depth);
3077 }
3078 
3079 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) {
3080   auto [It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr});
3081 
3082   if (Inserted)
3083     It->second =
3084         std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI);
3085 
3086   return *It->second;
3087 }
3088 void LoopAccessInfoManager::clear() {
3089   SmallVector<Loop *> ToRemove;
3090   // Collect LoopAccessInfo entries that may keep references to IR outside the
3091   // analyzed loop or SCEVs that may have been modified or invalidated. At the
3092   // moment, that is loops requiring memory or SCEV runtime checks, as those cache
3093   // SCEVs, e.g. for pointer expressions.
3094   for (const auto &[L, LAI] : LoopAccessInfoMap) {
3095     if (LAI->getRuntimePointerChecking()->getChecks().empty() &&
3096         LAI->getPSE().getPredicate().isAlwaysTrue())
3097       continue;
3098     ToRemove.push_back(L);
3099   }
3100 
3101   for (Loop *L : ToRemove)
3102     LoopAccessInfoMap.erase(L);
3103 }
3104 
3105 bool LoopAccessInfoManager::invalidate(
3106     Function &F, const PreservedAnalyses &PA,
3107     FunctionAnalysisManager::Invalidator &Inv) {
3108   // Check whether our analysis is preserved.
3109   auto PAC = PA.getChecker<LoopAccessAnalysis>();
3110   if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3111     // If not, give up now.
3112     return true;
3113 
3114   // Check whether the analyses we depend on became invalid for any reason.
3115   // Skip checking TargetLibraryAnalysis as it is immutable and can't become
3116   // invalid.
3117   return Inv.invalidate<AAManager>(F, PA) ||
3118          Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3119          Inv.invalidate<LoopAnalysis>(F, PA) ||
3120          Inv.invalidate<DominatorTreeAnalysis>(F, PA);
3121 }
3122 
3123 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F,
3124                                               FunctionAnalysisManager &FAM) {
3125   auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
3126   auto &AA = FAM.getResult<AAManager>(F);
3127   auto &DT = FAM.getResult<DominatorTreeAnalysis>(F);
3128   auto &LI = FAM.getResult<LoopAnalysis>(F);
3129   auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
3130   auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
3131   return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI);
3132 }
3133 
3134 AnalysisKey LoopAccessAnalysis::Key;
3135