1 //===- LoopAccessAnalysis.cpp - Loop Access Analysis Implementation --------==// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // The implementation for the loop memory dependence that was originally 10 // developed for the loop vectorizer. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Analysis/LoopAccessAnalysis.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/EquivalenceClasses.h" 18 #include "llvm/ADT/PointerIntPair.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AliasSetTracker.h" 26 #include "llvm/Analysis/LoopAnalysisManager.h" 27 #include "llvm/Analysis/LoopInfo.h" 28 #include "llvm/Analysis/LoopIterator.h" 29 #include "llvm/Analysis/MemoryLocation.h" 30 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 31 #include "llvm/Analysis/ScalarEvolution.h" 32 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/TargetTransformInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/IR/BasicBlock.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/DebugLoc.h" 41 #include "llvm/IR/DerivedTypes.h" 42 #include "llvm/IR/DiagnosticInfo.h" 43 #include "llvm/IR/Dominators.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GetElementPtrTypeIterator.h" 46 #include "llvm/IR/InstrTypes.h" 47 #include "llvm/IR/Instruction.h" 48 #include "llvm/IR/Instructions.h" 49 #include "llvm/IR/Operator.h" 50 #include "llvm/IR/PassManager.h" 51 #include "llvm/IR/PatternMatch.h" 52 #include "llvm/IR/Type.h" 53 #include "llvm/IR/Value.h" 54 #include "llvm/IR/ValueHandle.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 #include <cassert> 62 #include <cstdint> 63 #include <iterator> 64 #include <utility> 65 #include <variant> 66 #include <vector> 67 68 using namespace llvm; 69 using namespace llvm::PatternMatch; 70 71 #define DEBUG_TYPE "loop-accesses" 72 73 static cl::opt<unsigned, true> 74 VectorizationFactor("force-vector-width", cl::Hidden, 75 cl::desc("Sets the SIMD width. Zero is autoselect."), 76 cl::location(VectorizerParams::VectorizationFactor)); 77 unsigned VectorizerParams::VectorizationFactor; 78 79 static cl::opt<unsigned, true> 80 VectorizationInterleave("force-vector-interleave", cl::Hidden, 81 cl::desc("Sets the vectorization interleave count. " 82 "Zero is autoselect."), 83 cl::location( 84 VectorizerParams::VectorizationInterleave)); 85 unsigned VectorizerParams::VectorizationInterleave; 86 87 static cl::opt<unsigned, true> RuntimeMemoryCheckThreshold( 88 "runtime-memory-check-threshold", cl::Hidden, 89 cl::desc("When performing memory disambiguation checks at runtime do not " 90 "generate more than this number of comparisons (default = 8)."), 91 cl::location(VectorizerParams::RuntimeMemoryCheckThreshold), cl::init(8)); 92 unsigned VectorizerParams::RuntimeMemoryCheckThreshold; 93 94 /// The maximum iterations used to merge memory checks 95 static cl::opt<unsigned> MemoryCheckMergeThreshold( 96 "memory-check-merge-threshold", cl::Hidden, 97 cl::desc("Maximum number of comparisons done when trying to merge " 98 "runtime memory checks. (default = 100)"), 99 cl::init(100)); 100 101 /// Maximum SIMD width. 102 const unsigned VectorizerParams::MaxVectorWidth = 64; 103 104 /// We collect dependences up to this threshold. 105 static cl::opt<unsigned> 106 MaxDependences("max-dependences", cl::Hidden, 107 cl::desc("Maximum number of dependences collected by " 108 "loop-access analysis (default = 100)"), 109 cl::init(100)); 110 111 /// This enables versioning on the strides of symbolically striding memory 112 /// accesses in code like the following. 113 /// for (i = 0; i < N; ++i) 114 /// A[i * Stride1] += B[i * Stride2] ... 115 /// 116 /// Will be roughly translated to 117 /// if (Stride1 == 1 && Stride2 == 1) { 118 /// for (i = 0; i < N; i+=4) 119 /// A[i:i+3] += ... 120 /// } else 121 /// ... 122 static cl::opt<bool> EnableMemAccessVersioning( 123 "enable-mem-access-versioning", cl::init(true), cl::Hidden, 124 cl::desc("Enable symbolic stride memory access versioning")); 125 126 /// Enable store-to-load forwarding conflict detection. This option can 127 /// be disabled for correctness testing. 128 static cl::opt<bool> EnableForwardingConflictDetection( 129 "store-to-load-forwarding-conflict-detection", cl::Hidden, 130 cl::desc("Enable conflict detection in loop-access analysis"), 131 cl::init(true)); 132 133 static cl::opt<unsigned> MaxForkedSCEVDepth( 134 "max-forked-scev-depth", cl::Hidden, 135 cl::desc("Maximum recursion depth when finding forked SCEVs (default = 5)"), 136 cl::init(5)); 137 138 static cl::opt<bool> SpeculateUnitStride( 139 "laa-speculate-unit-stride", cl::Hidden, 140 cl::desc("Speculate that non-constant strides are unit in LAA"), 141 cl::init(true)); 142 143 static cl::opt<bool, true> HoistRuntimeChecks( 144 "hoist-runtime-checks", cl::Hidden, 145 cl::desc( 146 "Hoist inner loop runtime memory checks to outer loop if possible"), 147 cl::location(VectorizerParams::HoistRuntimeChecks), cl::init(true)); 148 bool VectorizerParams::HoistRuntimeChecks; 149 150 bool VectorizerParams::isInterleaveForced() { 151 return ::VectorizationInterleave.getNumOccurrences() > 0; 152 } 153 154 const SCEV *llvm::replaceSymbolicStrideSCEV(PredicatedScalarEvolution &PSE, 155 const DenseMap<Value *, const SCEV *> &PtrToStride, 156 Value *Ptr) { 157 const SCEV *OrigSCEV = PSE.getSCEV(Ptr); 158 159 // If there is an entry in the map return the SCEV of the pointer with the 160 // symbolic stride replaced by one. 161 DenseMap<Value *, const SCEV *>::const_iterator SI = PtrToStride.find(Ptr); 162 if (SI == PtrToStride.end()) 163 // For a non-symbolic stride, just return the original expression. 164 return OrigSCEV; 165 166 const SCEV *StrideSCEV = SI->second; 167 // Note: This assert is both overly strong and overly weak. The actual 168 // invariant here is that StrideSCEV should be loop invariant. The only 169 // such invariant strides we happen to speculate right now are unknowns 170 // and thus this is a reasonable proxy of the actual invariant. 171 assert(isa<SCEVUnknown>(StrideSCEV) && "shouldn't be in map"); 172 173 ScalarEvolution *SE = PSE.getSE(); 174 const auto *CT = SE->getOne(StrideSCEV->getType()); 175 PSE.addPredicate(*SE->getEqualPredicate(StrideSCEV, CT)); 176 auto *Expr = PSE.getSCEV(Ptr); 177 178 LLVM_DEBUG(dbgs() << "LAA: Replacing SCEV: " << *OrigSCEV 179 << " by: " << *Expr << "\n"); 180 return Expr; 181 } 182 183 RuntimeCheckingPtrGroup::RuntimeCheckingPtrGroup( 184 unsigned Index, RuntimePointerChecking &RtCheck) 185 : High(RtCheck.Pointers[Index].End), Low(RtCheck.Pointers[Index].Start), 186 AddressSpace(RtCheck.Pointers[Index] 187 .PointerValue->getType() 188 ->getPointerAddressSpace()), 189 NeedsFreeze(RtCheck.Pointers[Index].NeedsFreeze) { 190 Members.push_back(Index); 191 } 192 193 /// Calculate Start and End points of memory access. 194 /// Let's assume A is the first access and B is a memory access on N-th loop 195 /// iteration. Then B is calculated as: 196 /// B = A + Step*N . 197 /// Step value may be positive or negative. 198 /// N is a calculated back-edge taken count: 199 /// N = (TripCount > 0) ? RoundDown(TripCount -1 , VF) : 0 200 /// Start and End points are calculated in the following way: 201 /// Start = UMIN(A, B) ; End = UMAX(A, B) + SizeOfElt, 202 /// where SizeOfElt is the size of single memory access in bytes. 203 /// 204 /// There is no conflict when the intervals are disjoint: 205 /// NoConflict = (P2.Start >= P1.End) || (P1.Start >= P2.End) 206 static std::pair<const SCEV *, const SCEV *> getStartAndEndForAccess( 207 const Loop *Lp, const SCEV *PtrExpr, Type *AccessTy, 208 PredicatedScalarEvolution &PSE, 209 DenseMap<std::pair<const SCEV *, Type *>, 210 std::pair<const SCEV *, const SCEV *>> &PointerBounds) { 211 ScalarEvolution *SE = PSE.getSE(); 212 213 auto [Iter, Ins] = PointerBounds.insert( 214 {{PtrExpr, AccessTy}, 215 {SE->getCouldNotCompute(), SE->getCouldNotCompute()}}); 216 if (!Ins) 217 return Iter->second; 218 219 const SCEV *ScStart; 220 const SCEV *ScEnd; 221 222 if (SE->isLoopInvariant(PtrExpr, Lp)) { 223 ScStart = ScEnd = PtrExpr; 224 } else if (auto *AR = dyn_cast<SCEVAddRecExpr>(PtrExpr)) { 225 const SCEV *Ex = PSE.getSymbolicMaxBackedgeTakenCount(); 226 227 ScStart = AR->getStart(); 228 ScEnd = AR->evaluateAtIteration(Ex, *SE); 229 const SCEV *Step = AR->getStepRecurrence(*SE); 230 231 // For expressions with negative step, the upper bound is ScStart and the 232 // lower bound is ScEnd. 233 if (const auto *CStep = dyn_cast<SCEVConstant>(Step)) { 234 if (CStep->getValue()->isNegative()) 235 std::swap(ScStart, ScEnd); 236 } else { 237 // Fallback case: the step is not constant, but we can still 238 // get the upper and lower bounds of the interval by using min/max 239 // expressions. 240 ScStart = SE->getUMinExpr(ScStart, ScEnd); 241 ScEnd = SE->getUMaxExpr(AR->getStart(), ScEnd); 242 } 243 } else 244 return {SE->getCouldNotCompute(), SE->getCouldNotCompute()}; 245 246 assert(SE->isLoopInvariant(ScStart, Lp) && "ScStart needs to be invariant"); 247 assert(SE->isLoopInvariant(ScEnd, Lp)&& "ScEnd needs to be invariant"); 248 249 // Add the size of the pointed element to ScEnd. 250 auto &DL = Lp->getHeader()->getDataLayout(); 251 Type *IdxTy = DL.getIndexType(PtrExpr->getType()); 252 const SCEV *EltSizeSCEV = SE->getStoreSizeOfExpr(IdxTy, AccessTy); 253 ScEnd = SE->getAddExpr(ScEnd, EltSizeSCEV); 254 255 Iter->second = {ScStart, ScEnd}; 256 return Iter->second; 257 } 258 259 /// Calculate Start and End points of memory access using 260 /// getStartAndEndForAccess. 261 void RuntimePointerChecking::insert(Loop *Lp, Value *Ptr, const SCEV *PtrExpr, 262 Type *AccessTy, bool WritePtr, 263 unsigned DepSetId, unsigned ASId, 264 PredicatedScalarEvolution &PSE, 265 bool NeedsFreeze) { 266 const auto &[ScStart, ScEnd] = getStartAndEndForAccess( 267 Lp, PtrExpr, AccessTy, PSE, DC.getPointerBounds()); 268 assert(!isa<SCEVCouldNotCompute>(ScStart) && 269 !isa<SCEVCouldNotCompute>(ScEnd) && 270 "must be able to compute both start and end expressions"); 271 Pointers.emplace_back(Ptr, ScStart, ScEnd, WritePtr, DepSetId, ASId, PtrExpr, 272 NeedsFreeze); 273 } 274 275 bool RuntimePointerChecking::tryToCreateDiffCheck( 276 const RuntimeCheckingPtrGroup &CGI, const RuntimeCheckingPtrGroup &CGJ) { 277 // If either group contains multiple different pointers, bail out. 278 // TODO: Support multiple pointers by using the minimum or maximum pointer, 279 // depending on src & sink. 280 if (CGI.Members.size() != 1 || CGJ.Members.size() != 1) 281 return false; 282 283 PointerInfo *Src = &Pointers[CGI.Members[0]]; 284 PointerInfo *Sink = &Pointers[CGJ.Members[0]]; 285 286 // If either pointer is read and written, multiple checks may be needed. Bail 287 // out. 288 if (!DC.getOrderForAccess(Src->PointerValue, !Src->IsWritePtr).empty() || 289 !DC.getOrderForAccess(Sink->PointerValue, !Sink->IsWritePtr).empty()) 290 return false; 291 292 ArrayRef<unsigned> AccSrc = 293 DC.getOrderForAccess(Src->PointerValue, Src->IsWritePtr); 294 ArrayRef<unsigned> AccSink = 295 DC.getOrderForAccess(Sink->PointerValue, Sink->IsWritePtr); 296 // If either pointer is accessed multiple times, there may not be a clear 297 // src/sink relation. Bail out for now. 298 if (AccSrc.size() != 1 || AccSink.size() != 1) 299 return false; 300 301 // If the sink is accessed before src, swap src/sink. 302 if (AccSink[0] < AccSrc[0]) 303 std::swap(Src, Sink); 304 305 auto *SrcAR = dyn_cast<SCEVAddRecExpr>(Src->Expr); 306 auto *SinkAR = dyn_cast<SCEVAddRecExpr>(Sink->Expr); 307 if (!SrcAR || !SinkAR || SrcAR->getLoop() != DC.getInnermostLoop() || 308 SinkAR->getLoop() != DC.getInnermostLoop()) 309 return false; 310 311 SmallVector<Instruction *, 4> SrcInsts = 312 DC.getInstructionsForAccess(Src->PointerValue, Src->IsWritePtr); 313 SmallVector<Instruction *, 4> SinkInsts = 314 DC.getInstructionsForAccess(Sink->PointerValue, Sink->IsWritePtr); 315 Type *SrcTy = getLoadStoreType(SrcInsts[0]); 316 Type *DstTy = getLoadStoreType(SinkInsts[0]); 317 if (isa<ScalableVectorType>(SrcTy) || isa<ScalableVectorType>(DstTy)) 318 return false; 319 320 const DataLayout &DL = 321 SinkAR->getLoop()->getHeader()->getDataLayout(); 322 unsigned AllocSize = 323 std::max(DL.getTypeAllocSize(SrcTy), DL.getTypeAllocSize(DstTy)); 324 325 // Only matching constant steps matching the AllocSize are supported at the 326 // moment. This simplifies the difference computation. Can be extended in the 327 // future. 328 auto *Step = dyn_cast<SCEVConstant>(SinkAR->getStepRecurrence(*SE)); 329 if (!Step || Step != SrcAR->getStepRecurrence(*SE) || 330 Step->getAPInt().abs() != AllocSize) 331 return false; 332 333 IntegerType *IntTy = 334 IntegerType::get(Src->PointerValue->getContext(), 335 DL.getPointerSizeInBits(CGI.AddressSpace)); 336 337 // When counting down, the dependence distance needs to be swapped. 338 if (Step->getValue()->isNegative()) 339 std::swap(SinkAR, SrcAR); 340 341 const SCEV *SinkStartInt = SE->getPtrToIntExpr(SinkAR->getStart(), IntTy); 342 const SCEV *SrcStartInt = SE->getPtrToIntExpr(SrcAR->getStart(), IntTy); 343 if (isa<SCEVCouldNotCompute>(SinkStartInt) || 344 isa<SCEVCouldNotCompute>(SrcStartInt)) 345 return false; 346 347 const Loop *InnerLoop = SrcAR->getLoop(); 348 // If the start values for both Src and Sink also vary according to an outer 349 // loop, then it's probably better to avoid creating diff checks because 350 // they may not be hoisted. We should instead let llvm::addRuntimeChecks 351 // do the expanded full range overlap checks, which can be hoisted. 352 if (HoistRuntimeChecks && InnerLoop->getParentLoop() && 353 isa<SCEVAddRecExpr>(SinkStartInt) && isa<SCEVAddRecExpr>(SrcStartInt)) { 354 auto *SrcStartAR = cast<SCEVAddRecExpr>(SrcStartInt); 355 auto *SinkStartAR = cast<SCEVAddRecExpr>(SinkStartInt); 356 const Loop *StartARLoop = SrcStartAR->getLoop(); 357 if (StartARLoop == SinkStartAR->getLoop() && 358 StartARLoop == InnerLoop->getParentLoop() && 359 // If the diff check would already be loop invariant (due to the 360 // recurrences being the same), then we prefer to keep the diff checks 361 // because they are cheaper. 362 SrcStartAR->getStepRecurrence(*SE) != 363 SinkStartAR->getStepRecurrence(*SE)) { 364 LLVM_DEBUG(dbgs() << "LAA: Not creating diff runtime check, since these " 365 "cannot be hoisted out of the outer loop\n"); 366 return false; 367 } 368 } 369 370 LLVM_DEBUG(dbgs() << "LAA: Creating diff runtime check for:\n" 371 << "SrcStart: " << *SrcStartInt << '\n' 372 << "SinkStartInt: " << *SinkStartInt << '\n'); 373 DiffChecks.emplace_back(SrcStartInt, SinkStartInt, AllocSize, 374 Src->NeedsFreeze || Sink->NeedsFreeze); 375 return true; 376 } 377 378 SmallVector<RuntimePointerCheck, 4> RuntimePointerChecking::generateChecks() { 379 SmallVector<RuntimePointerCheck, 4> Checks; 380 381 for (unsigned I = 0; I < CheckingGroups.size(); ++I) { 382 for (unsigned J = I + 1; J < CheckingGroups.size(); ++J) { 383 const RuntimeCheckingPtrGroup &CGI = CheckingGroups[I]; 384 const RuntimeCheckingPtrGroup &CGJ = CheckingGroups[J]; 385 386 if (needsChecking(CGI, CGJ)) { 387 CanUseDiffCheck = CanUseDiffCheck && tryToCreateDiffCheck(CGI, CGJ); 388 Checks.push_back(std::make_pair(&CGI, &CGJ)); 389 } 390 } 391 } 392 return Checks; 393 } 394 395 void RuntimePointerChecking::generateChecks( 396 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 397 assert(Checks.empty() && "Checks is not empty"); 398 groupChecks(DepCands, UseDependencies); 399 Checks = generateChecks(); 400 } 401 402 bool RuntimePointerChecking::needsChecking( 403 const RuntimeCheckingPtrGroup &M, const RuntimeCheckingPtrGroup &N) const { 404 for (const auto &I : M.Members) 405 for (const auto &J : N.Members) 406 if (needsChecking(I, J)) 407 return true; 408 return false; 409 } 410 411 /// Compare \p I and \p J and return the minimum. 412 /// Return nullptr in case we couldn't find an answer. 413 static const SCEV *getMinFromExprs(const SCEV *I, const SCEV *J, 414 ScalarEvolution *SE) { 415 const SCEV *Diff = SE->getMinusSCEV(J, I); 416 const SCEVConstant *C = dyn_cast<const SCEVConstant>(Diff); 417 418 if (!C) 419 return nullptr; 420 return C->getValue()->isNegative() ? J : I; 421 } 422 423 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, 424 RuntimePointerChecking &RtCheck) { 425 return addPointer( 426 Index, RtCheck.Pointers[Index].Start, RtCheck.Pointers[Index].End, 427 RtCheck.Pointers[Index].PointerValue->getType()->getPointerAddressSpace(), 428 RtCheck.Pointers[Index].NeedsFreeze, *RtCheck.SE); 429 } 430 431 bool RuntimeCheckingPtrGroup::addPointer(unsigned Index, const SCEV *Start, 432 const SCEV *End, unsigned AS, 433 bool NeedsFreeze, 434 ScalarEvolution &SE) { 435 assert(AddressSpace == AS && 436 "all pointers in a checking group must be in the same address space"); 437 438 // Compare the starts and ends with the known minimum and maximum 439 // of this set. We need to know how we compare against the min/max 440 // of the set in order to be able to emit memchecks. 441 const SCEV *Min0 = getMinFromExprs(Start, Low, &SE); 442 if (!Min0) 443 return false; 444 445 const SCEV *Min1 = getMinFromExprs(End, High, &SE); 446 if (!Min1) 447 return false; 448 449 // Update the low bound expression if we've found a new min value. 450 if (Min0 == Start) 451 Low = Start; 452 453 // Update the high bound expression if we've found a new max value. 454 if (Min1 != End) 455 High = End; 456 457 Members.push_back(Index); 458 this->NeedsFreeze |= NeedsFreeze; 459 return true; 460 } 461 462 void RuntimePointerChecking::groupChecks( 463 MemoryDepChecker::DepCandidates &DepCands, bool UseDependencies) { 464 // We build the groups from dependency candidates equivalence classes 465 // because: 466 // - We know that pointers in the same equivalence class share 467 // the same underlying object and therefore there is a chance 468 // that we can compare pointers 469 // - We wouldn't be able to merge two pointers for which we need 470 // to emit a memcheck. The classes in DepCands are already 471 // conveniently built such that no two pointers in the same 472 // class need checking against each other. 473 474 // We use the following (greedy) algorithm to construct the groups 475 // For every pointer in the equivalence class: 476 // For each existing group: 477 // - if the difference between this pointer and the min/max bounds 478 // of the group is a constant, then make the pointer part of the 479 // group and update the min/max bounds of that group as required. 480 481 CheckingGroups.clear(); 482 483 // If we need to check two pointers to the same underlying object 484 // with a non-constant difference, we shouldn't perform any pointer 485 // grouping with those pointers. This is because we can easily get 486 // into cases where the resulting check would return false, even when 487 // the accesses are safe. 488 // 489 // The following example shows this: 490 // for (i = 0; i < 1000; ++i) 491 // a[5000 + i * m] = a[i] + a[i + 9000] 492 // 493 // Here grouping gives a check of (5000, 5000 + 1000 * m) against 494 // (0, 10000) which is always false. However, if m is 1, there is no 495 // dependence. Not grouping the checks for a[i] and a[i + 9000] allows 496 // us to perform an accurate check in this case. 497 // 498 // The above case requires that we have an UnknownDependence between 499 // accesses to the same underlying object. This cannot happen unless 500 // FoundNonConstantDistanceDependence is set, and therefore UseDependencies 501 // is also false. In this case we will use the fallback path and create 502 // separate checking groups for all pointers. 503 504 // If we don't have the dependency partitions, construct a new 505 // checking pointer group for each pointer. This is also required 506 // for correctness, because in this case we can have checking between 507 // pointers to the same underlying object. 508 if (!UseDependencies) { 509 for (unsigned I = 0; I < Pointers.size(); ++I) 510 CheckingGroups.push_back(RuntimeCheckingPtrGroup(I, *this)); 511 return; 512 } 513 514 unsigned TotalComparisons = 0; 515 516 DenseMap<Value *, SmallVector<unsigned>> PositionMap; 517 for (unsigned Index = 0; Index < Pointers.size(); ++Index) { 518 auto [It, _] = PositionMap.insert({Pointers[Index].PointerValue, {}}); 519 It->second.push_back(Index); 520 } 521 522 // We need to keep track of what pointers we've already seen so we 523 // don't process them twice. 524 SmallSet<unsigned, 2> Seen; 525 526 // Go through all equivalence classes, get the "pointer check groups" 527 // and add them to the overall solution. We use the order in which accesses 528 // appear in 'Pointers' to enforce determinism. 529 for (unsigned I = 0; I < Pointers.size(); ++I) { 530 // We've seen this pointer before, and therefore already processed 531 // its equivalence class. 532 if (Seen.count(I)) 533 continue; 534 535 MemoryDepChecker::MemAccessInfo Access(Pointers[I].PointerValue, 536 Pointers[I].IsWritePtr); 537 538 SmallVector<RuntimeCheckingPtrGroup, 2> Groups; 539 auto LeaderI = DepCands.findValue(DepCands.getLeaderValue(Access)); 540 541 // Because DepCands is constructed by visiting accesses in the order in 542 // which they appear in alias sets (which is deterministic) and the 543 // iteration order within an equivalence class member is only dependent on 544 // the order in which unions and insertions are performed on the 545 // equivalence class, the iteration order is deterministic. 546 for (auto MI = DepCands.member_begin(LeaderI), ME = DepCands.member_end(); 547 MI != ME; ++MI) { 548 auto PointerI = PositionMap.find(MI->getPointer()); 549 assert(PointerI != PositionMap.end() && 550 "pointer in equivalence class not found in PositionMap"); 551 for (unsigned Pointer : PointerI->second) { 552 bool Merged = false; 553 // Mark this pointer as seen. 554 Seen.insert(Pointer); 555 556 // Go through all the existing sets and see if we can find one 557 // which can include this pointer. 558 for (RuntimeCheckingPtrGroup &Group : Groups) { 559 // Don't perform more than a certain amount of comparisons. 560 // This should limit the cost of grouping the pointers to something 561 // reasonable. If we do end up hitting this threshold, the algorithm 562 // will create separate groups for all remaining pointers. 563 if (TotalComparisons > MemoryCheckMergeThreshold) 564 break; 565 566 TotalComparisons++; 567 568 if (Group.addPointer(Pointer, *this)) { 569 Merged = true; 570 break; 571 } 572 } 573 574 if (!Merged) 575 // We couldn't add this pointer to any existing set or the threshold 576 // for the number of comparisons has been reached. Create a new group 577 // to hold the current pointer. 578 Groups.push_back(RuntimeCheckingPtrGroup(Pointer, *this)); 579 } 580 } 581 582 // We've computed the grouped checks for this partition. 583 // Save the results and continue with the next one. 584 llvm::copy(Groups, std::back_inserter(CheckingGroups)); 585 } 586 } 587 588 bool RuntimePointerChecking::arePointersInSamePartition( 589 const SmallVectorImpl<int> &PtrToPartition, unsigned PtrIdx1, 590 unsigned PtrIdx2) { 591 return (PtrToPartition[PtrIdx1] != -1 && 592 PtrToPartition[PtrIdx1] == PtrToPartition[PtrIdx2]); 593 } 594 595 bool RuntimePointerChecking::needsChecking(unsigned I, unsigned J) const { 596 const PointerInfo &PointerI = Pointers[I]; 597 const PointerInfo &PointerJ = Pointers[J]; 598 599 // No need to check if two readonly pointers intersect. 600 if (!PointerI.IsWritePtr && !PointerJ.IsWritePtr) 601 return false; 602 603 // Only need to check pointers between two different dependency sets. 604 if (PointerI.DependencySetId == PointerJ.DependencySetId) 605 return false; 606 607 // Only need to check pointers in the same alias set. 608 if (PointerI.AliasSetId != PointerJ.AliasSetId) 609 return false; 610 611 return true; 612 } 613 614 void RuntimePointerChecking::printChecks( 615 raw_ostream &OS, const SmallVectorImpl<RuntimePointerCheck> &Checks, 616 unsigned Depth) const { 617 unsigned N = 0; 618 for (const auto &[Check1, Check2] : Checks) { 619 const auto &First = Check1->Members, &Second = Check2->Members; 620 621 OS.indent(Depth) << "Check " << N++ << ":\n"; 622 623 OS.indent(Depth + 2) << "Comparing group (" << Check1 << "):\n"; 624 for (unsigned K : First) 625 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 626 627 OS.indent(Depth + 2) << "Against group (" << Check2 << "):\n"; 628 for (unsigned K : Second) 629 OS.indent(Depth + 2) << *Pointers[K].PointerValue << "\n"; 630 } 631 } 632 633 void RuntimePointerChecking::print(raw_ostream &OS, unsigned Depth) const { 634 635 OS.indent(Depth) << "Run-time memory checks:\n"; 636 printChecks(OS, Checks, Depth); 637 638 OS.indent(Depth) << "Grouped accesses:\n"; 639 for (const auto &CG : CheckingGroups) { 640 OS.indent(Depth + 2) << "Group " << &CG << ":\n"; 641 OS.indent(Depth + 4) << "(Low: " << *CG.Low << " High: " << *CG.High 642 << ")\n"; 643 for (unsigned Member : CG.Members) { 644 OS.indent(Depth + 6) << "Member: " << *Pointers[Member].Expr << "\n"; 645 } 646 } 647 } 648 649 namespace { 650 651 /// Analyses memory accesses in a loop. 652 /// 653 /// Checks whether run time pointer checks are needed and builds sets for data 654 /// dependence checking. 655 class AccessAnalysis { 656 public: 657 /// Read or write access location. 658 typedef PointerIntPair<Value *, 1, bool> MemAccessInfo; 659 typedef SmallVector<MemAccessInfo, 8> MemAccessInfoList; 660 661 AccessAnalysis(Loop *TheLoop, AAResults *AA, LoopInfo *LI, 662 MemoryDepChecker::DepCandidates &DA, 663 PredicatedScalarEvolution &PSE, 664 SmallPtrSetImpl<MDNode *> &LoopAliasScopes) 665 : TheLoop(TheLoop), BAA(*AA), AST(BAA), LI(LI), DepCands(DA), PSE(PSE), 666 LoopAliasScopes(LoopAliasScopes) { 667 // We're analyzing dependences across loop iterations. 668 BAA.enableCrossIterationMode(); 669 } 670 671 /// Register a load and whether it is only read from. 672 void addLoad(MemoryLocation &Loc, Type *AccessTy, bool IsReadOnly) { 673 Value *Ptr = const_cast<Value *>(Loc.Ptr); 674 AST.add(adjustLoc(Loc)); 675 Accesses[MemAccessInfo(Ptr, false)].insert(AccessTy); 676 if (IsReadOnly) 677 ReadOnlyPtr.insert(Ptr); 678 } 679 680 /// Register a store. 681 void addStore(MemoryLocation &Loc, Type *AccessTy) { 682 Value *Ptr = const_cast<Value *>(Loc.Ptr); 683 AST.add(adjustLoc(Loc)); 684 Accesses[MemAccessInfo(Ptr, true)].insert(AccessTy); 685 } 686 687 /// Check if we can emit a run-time no-alias check for \p Access. 688 /// 689 /// Returns true if we can emit a run-time no alias check for \p Access. 690 /// If we can check this access, this also adds it to a dependence set and 691 /// adds a run-time to check for it to \p RtCheck. If \p Assume is true, 692 /// we will attempt to use additional run-time checks in order to get 693 /// the bounds of the pointer. 694 bool createCheckForAccess(RuntimePointerChecking &RtCheck, 695 MemAccessInfo Access, Type *AccessTy, 696 const DenseMap<Value *, const SCEV *> &Strides, 697 DenseMap<Value *, unsigned> &DepSetId, 698 Loop *TheLoop, unsigned &RunningDepId, 699 unsigned ASId, bool ShouldCheckStride, bool Assume); 700 701 /// Check whether we can check the pointers at runtime for 702 /// non-intersection. 703 /// 704 /// Returns true if we need no check or if we do and we can generate them 705 /// (i.e. the pointers have computable bounds). 706 bool canCheckPtrAtRT(RuntimePointerChecking &RtCheck, ScalarEvolution *SE, 707 Loop *TheLoop, const DenseMap<Value *, const SCEV *> &Strides, 708 Value *&UncomputablePtr, bool ShouldCheckWrap = false); 709 710 /// Goes over all memory accesses, checks whether a RT check is needed 711 /// and builds sets of dependent accesses. 712 void buildDependenceSets() { 713 processMemAccesses(); 714 } 715 716 /// Initial processing of memory accesses determined that we need to 717 /// perform dependency checking. 718 /// 719 /// Note that this can later be cleared if we retry memcheck analysis without 720 /// dependency checking (i.e. FoundNonConstantDistanceDependence). 721 bool isDependencyCheckNeeded() { return !CheckDeps.empty(); } 722 723 /// We decided that no dependence analysis would be used. Reset the state. 724 void resetDepChecks(MemoryDepChecker &DepChecker) { 725 CheckDeps.clear(); 726 DepChecker.clearDependences(); 727 } 728 729 MemAccessInfoList &getDependenciesToCheck() { return CheckDeps; } 730 731 const DenseMap<Value *, SmallVector<const Value *, 16>> & 732 getUnderlyingObjects() { 733 return UnderlyingObjects; 734 } 735 736 private: 737 typedef MapVector<MemAccessInfo, SmallSetVector<Type *, 1>> PtrAccessMap; 738 739 /// Adjust the MemoryLocation so that it represents accesses to this 740 /// location across all iterations, rather than a single one. 741 MemoryLocation adjustLoc(MemoryLocation Loc) const { 742 // The accessed location varies within the loop, but remains within the 743 // underlying object. 744 Loc.Size = LocationSize::beforeOrAfterPointer(); 745 Loc.AATags.Scope = adjustAliasScopeList(Loc.AATags.Scope); 746 Loc.AATags.NoAlias = adjustAliasScopeList(Loc.AATags.NoAlias); 747 return Loc; 748 } 749 750 /// Drop alias scopes that are only valid within a single loop iteration. 751 MDNode *adjustAliasScopeList(MDNode *ScopeList) const { 752 if (!ScopeList) 753 return nullptr; 754 755 // For the sake of simplicity, drop the whole scope list if any scope is 756 // iteration-local. 757 if (any_of(ScopeList->operands(), [&](Metadata *Scope) { 758 return LoopAliasScopes.contains(cast<MDNode>(Scope)); 759 })) 760 return nullptr; 761 762 return ScopeList; 763 } 764 765 /// Go over all memory access and check whether runtime pointer checks 766 /// are needed and build sets of dependency check candidates. 767 void processMemAccesses(); 768 769 /// Map of all accesses. Values are the types used to access memory pointed to 770 /// by the pointer. 771 PtrAccessMap Accesses; 772 773 /// The loop being checked. 774 const Loop *TheLoop; 775 776 /// List of accesses that need a further dependence check. 777 MemAccessInfoList CheckDeps; 778 779 /// Set of pointers that are read only. 780 SmallPtrSet<Value*, 16> ReadOnlyPtr; 781 782 /// Batched alias analysis results. 783 BatchAAResults BAA; 784 785 /// An alias set tracker to partition the access set by underlying object and 786 //intrinsic property (such as TBAA metadata). 787 AliasSetTracker AST; 788 789 LoopInfo *LI; 790 791 /// Sets of potentially dependent accesses - members of one set share an 792 /// underlying pointer. The set "CheckDeps" identfies which sets really need a 793 /// dependence check. 794 MemoryDepChecker::DepCandidates &DepCands; 795 796 /// Initial processing of memory accesses determined that we may need 797 /// to add memchecks. Perform the analysis to determine the necessary checks. 798 /// 799 /// Note that, this is different from isDependencyCheckNeeded. When we retry 800 /// memcheck analysis without dependency checking 801 /// (i.e. FoundNonConstantDistanceDependence), isDependencyCheckNeeded is 802 /// cleared while this remains set if we have potentially dependent accesses. 803 bool IsRTCheckAnalysisNeeded = false; 804 805 /// The SCEV predicate containing all the SCEV-related assumptions. 806 PredicatedScalarEvolution &PSE; 807 808 DenseMap<Value *, SmallVector<const Value *, 16>> UnderlyingObjects; 809 810 /// Alias scopes that are declared inside the loop, and as such not valid 811 /// across iterations. 812 SmallPtrSetImpl<MDNode *> &LoopAliasScopes; 813 }; 814 815 } // end anonymous namespace 816 817 /// Check whether a pointer can participate in a runtime bounds check. 818 /// If \p Assume, try harder to prove that we can compute the bounds of \p Ptr 819 /// by adding run-time checks (overflow checks) if necessary. 820 static bool hasComputableBounds(PredicatedScalarEvolution &PSE, Value *Ptr, 821 const SCEV *PtrScev, Loop *L, bool Assume) { 822 // The bounds for loop-invariant pointer is trivial. 823 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 824 return true; 825 826 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 827 828 if (!AR && Assume) 829 AR = PSE.getAsAddRec(Ptr); 830 831 if (!AR) 832 return false; 833 834 return AR->isAffine(); 835 } 836 837 /// Check whether a pointer address cannot wrap. 838 static bool isNoWrap(PredicatedScalarEvolution &PSE, 839 const DenseMap<Value *, const SCEV *> &Strides, Value *Ptr, Type *AccessTy, 840 Loop *L) { 841 const SCEV *PtrScev = PSE.getSCEV(Ptr); 842 if (PSE.getSE()->isLoopInvariant(PtrScev, L)) 843 return true; 844 845 int64_t Stride = getPtrStride(PSE, AccessTy, Ptr, L, Strides).value_or(0); 846 if (Stride == 1 || PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 847 return true; 848 849 return false; 850 } 851 852 static void visitPointers(Value *StartPtr, const Loop &InnermostLoop, 853 function_ref<void(Value *)> AddPointer) { 854 SmallPtrSet<Value *, 8> Visited; 855 SmallVector<Value *> WorkList; 856 WorkList.push_back(StartPtr); 857 858 while (!WorkList.empty()) { 859 Value *Ptr = WorkList.pop_back_val(); 860 if (!Visited.insert(Ptr).second) 861 continue; 862 auto *PN = dyn_cast<PHINode>(Ptr); 863 // SCEV does not look through non-header PHIs inside the loop. Such phis 864 // can be analyzed by adding separate accesses for each incoming pointer 865 // value. 866 if (PN && InnermostLoop.contains(PN->getParent()) && 867 PN->getParent() != InnermostLoop.getHeader()) { 868 for (const Use &Inc : PN->incoming_values()) 869 WorkList.push_back(Inc); 870 } else 871 AddPointer(Ptr); 872 } 873 } 874 875 // Walk back through the IR for a pointer, looking for a select like the 876 // following: 877 // 878 // %offset = select i1 %cmp, i64 %a, i64 %b 879 // %addr = getelementptr double, double* %base, i64 %offset 880 // %ld = load double, double* %addr, align 8 881 // 882 // We won't be able to form a single SCEVAddRecExpr from this since the 883 // address for each loop iteration depends on %cmp. We could potentially 884 // produce multiple valid SCEVAddRecExprs, though, and check all of them for 885 // memory safety/aliasing if needed. 886 // 887 // If we encounter some IR we don't yet handle, or something obviously fine 888 // like a constant, then we just add the SCEV for that term to the list passed 889 // in by the caller. If we have a node that may potentially yield a valid 890 // SCEVAddRecExpr then we decompose it into parts and build the SCEV terms 891 // ourselves before adding to the list. 892 static void findForkedSCEVs( 893 ScalarEvolution *SE, const Loop *L, Value *Ptr, 894 SmallVectorImpl<PointerIntPair<const SCEV *, 1, bool>> &ScevList, 895 unsigned Depth) { 896 // If our Value is a SCEVAddRecExpr, loop invariant, not an instruction, or 897 // we've exceeded our limit on recursion, just return whatever we have 898 // regardless of whether it can be used for a forked pointer or not, along 899 // with an indication of whether it might be a poison or undef value. 900 const SCEV *Scev = SE->getSCEV(Ptr); 901 if (isa<SCEVAddRecExpr>(Scev) || L->isLoopInvariant(Ptr) || 902 !isa<Instruction>(Ptr) || Depth == 0) { 903 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 904 return; 905 } 906 907 Depth--; 908 909 auto UndefPoisonCheck = [](PointerIntPair<const SCEV *, 1, bool> S) { 910 return get<1>(S); 911 }; 912 913 auto GetBinOpExpr = [&SE](unsigned Opcode, const SCEV *L, const SCEV *R) { 914 switch (Opcode) { 915 case Instruction::Add: 916 return SE->getAddExpr(L, R); 917 case Instruction::Sub: 918 return SE->getMinusSCEV(L, R); 919 default: 920 llvm_unreachable("Unexpected binary operator when walking ForkedPtrs"); 921 } 922 }; 923 924 Instruction *I = cast<Instruction>(Ptr); 925 unsigned Opcode = I->getOpcode(); 926 switch (Opcode) { 927 case Instruction::GetElementPtr: { 928 GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 929 Type *SourceTy = GEP->getSourceElementType(); 930 // We only handle base + single offset GEPs here for now. 931 // Not dealing with preexisting gathers yet, so no vectors. 932 if (I->getNumOperands() != 2 || SourceTy->isVectorTy()) { 933 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(GEP)); 934 break; 935 } 936 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> BaseScevs; 937 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> OffsetScevs; 938 findForkedSCEVs(SE, L, I->getOperand(0), BaseScevs, Depth); 939 findForkedSCEVs(SE, L, I->getOperand(1), OffsetScevs, Depth); 940 941 // See if we need to freeze our fork... 942 bool NeedsFreeze = any_of(BaseScevs, UndefPoisonCheck) || 943 any_of(OffsetScevs, UndefPoisonCheck); 944 945 // Check that we only have a single fork, on either the base or the offset. 946 // Copy the SCEV across for the one without a fork in order to generate 947 // the full SCEV for both sides of the GEP. 948 if (OffsetScevs.size() == 2 && BaseScevs.size() == 1) 949 BaseScevs.push_back(BaseScevs[0]); 950 else if (BaseScevs.size() == 2 && OffsetScevs.size() == 1) 951 OffsetScevs.push_back(OffsetScevs[0]); 952 else { 953 ScevList.emplace_back(Scev, NeedsFreeze); 954 break; 955 } 956 957 // Find the pointer type we need to extend to. 958 Type *IntPtrTy = SE->getEffectiveSCEVType( 959 SE->getSCEV(GEP->getPointerOperand())->getType()); 960 961 // Find the size of the type being pointed to. We only have a single 962 // index term (guarded above) so we don't need to index into arrays or 963 // structures, just get the size of the scalar value. 964 const SCEV *Size = SE->getSizeOfExpr(IntPtrTy, SourceTy); 965 966 // Scale up the offsets by the size of the type, then add to the bases. 967 const SCEV *Scaled1 = SE->getMulExpr( 968 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[0]), IntPtrTy)); 969 const SCEV *Scaled2 = SE->getMulExpr( 970 Size, SE->getTruncateOrSignExtend(get<0>(OffsetScevs[1]), IntPtrTy)); 971 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[0]), Scaled1), 972 NeedsFreeze); 973 ScevList.emplace_back(SE->getAddExpr(get<0>(BaseScevs[1]), Scaled2), 974 NeedsFreeze); 975 break; 976 } 977 case Instruction::Select: { 978 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 979 // A select means we've found a forked pointer, but we currently only 980 // support a single select per pointer so if there's another behind this 981 // then we just bail out and return the generic SCEV. 982 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 983 findForkedSCEVs(SE, L, I->getOperand(2), ChildScevs, Depth); 984 if (ChildScevs.size() == 2) { 985 ScevList.push_back(ChildScevs[0]); 986 ScevList.push_back(ChildScevs[1]); 987 } else 988 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 989 break; 990 } 991 case Instruction::PHI: { 992 SmallVector<PointerIntPair<const SCEV *, 1, bool>, 2> ChildScevs; 993 // A phi means we've found a forked pointer, but we currently only 994 // support a single phi per pointer so if there's another behind this 995 // then we just bail out and return the generic SCEV. 996 if (I->getNumOperands() == 2) { 997 findForkedSCEVs(SE, L, I->getOperand(0), ChildScevs, Depth); 998 findForkedSCEVs(SE, L, I->getOperand(1), ChildScevs, Depth); 999 } 1000 if (ChildScevs.size() == 2) { 1001 ScevList.push_back(ChildScevs[0]); 1002 ScevList.push_back(ChildScevs[1]); 1003 } else 1004 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1005 break; 1006 } 1007 case Instruction::Add: 1008 case Instruction::Sub: { 1009 SmallVector<PointerIntPair<const SCEV *, 1, bool>> LScevs; 1010 SmallVector<PointerIntPair<const SCEV *, 1, bool>> RScevs; 1011 findForkedSCEVs(SE, L, I->getOperand(0), LScevs, Depth); 1012 findForkedSCEVs(SE, L, I->getOperand(1), RScevs, Depth); 1013 1014 // See if we need to freeze our fork... 1015 bool NeedsFreeze = 1016 any_of(LScevs, UndefPoisonCheck) || any_of(RScevs, UndefPoisonCheck); 1017 1018 // Check that we only have a single fork, on either the left or right side. 1019 // Copy the SCEV across for the one without a fork in order to generate 1020 // the full SCEV for both sides of the BinOp. 1021 if (LScevs.size() == 2 && RScevs.size() == 1) 1022 RScevs.push_back(RScevs[0]); 1023 else if (RScevs.size() == 2 && LScevs.size() == 1) 1024 LScevs.push_back(LScevs[0]); 1025 else { 1026 ScevList.emplace_back(Scev, NeedsFreeze); 1027 break; 1028 } 1029 1030 ScevList.emplace_back( 1031 GetBinOpExpr(Opcode, get<0>(LScevs[0]), get<0>(RScevs[0])), 1032 NeedsFreeze); 1033 ScevList.emplace_back( 1034 GetBinOpExpr(Opcode, get<0>(LScevs[1]), get<0>(RScevs[1])), 1035 NeedsFreeze); 1036 break; 1037 } 1038 default: 1039 // Just return the current SCEV if we haven't handled the instruction yet. 1040 LLVM_DEBUG(dbgs() << "ForkedPtr unhandled instruction: " << *I << "\n"); 1041 ScevList.emplace_back(Scev, !isGuaranteedNotToBeUndefOrPoison(Ptr)); 1042 break; 1043 } 1044 } 1045 1046 static SmallVector<PointerIntPair<const SCEV *, 1, bool>> 1047 findForkedPointer(PredicatedScalarEvolution &PSE, 1048 const DenseMap<Value *, const SCEV *> &StridesMap, Value *Ptr, 1049 const Loop *L) { 1050 ScalarEvolution *SE = PSE.getSE(); 1051 assert(SE->isSCEVable(Ptr->getType()) && "Value is not SCEVable!"); 1052 SmallVector<PointerIntPair<const SCEV *, 1, bool>> Scevs; 1053 findForkedSCEVs(SE, L, Ptr, Scevs, MaxForkedSCEVDepth); 1054 1055 // For now, we will only accept a forked pointer with two possible SCEVs 1056 // that are either SCEVAddRecExprs or loop invariant. 1057 if (Scevs.size() == 2 && 1058 (isa<SCEVAddRecExpr>(get<0>(Scevs[0])) || 1059 SE->isLoopInvariant(get<0>(Scevs[0]), L)) && 1060 (isa<SCEVAddRecExpr>(get<0>(Scevs[1])) || 1061 SE->isLoopInvariant(get<0>(Scevs[1]), L))) { 1062 LLVM_DEBUG(dbgs() << "LAA: Found forked pointer: " << *Ptr << "\n"); 1063 LLVM_DEBUG(dbgs() << "\t(1) " << *get<0>(Scevs[0]) << "\n"); 1064 LLVM_DEBUG(dbgs() << "\t(2) " << *get<0>(Scevs[1]) << "\n"); 1065 return Scevs; 1066 } 1067 1068 return {{replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), false}}; 1069 } 1070 1071 bool AccessAnalysis::createCheckForAccess(RuntimePointerChecking &RtCheck, 1072 MemAccessInfo Access, Type *AccessTy, 1073 const DenseMap<Value *, const SCEV *> &StridesMap, 1074 DenseMap<Value *, unsigned> &DepSetId, 1075 Loop *TheLoop, unsigned &RunningDepId, 1076 unsigned ASId, bool ShouldCheckWrap, 1077 bool Assume) { 1078 Value *Ptr = Access.getPointer(); 1079 1080 SmallVector<PointerIntPair<const SCEV *, 1, bool>> TranslatedPtrs = 1081 findForkedPointer(PSE, StridesMap, Ptr, TheLoop); 1082 1083 for (auto &P : TranslatedPtrs) { 1084 const SCEV *PtrExpr = get<0>(P); 1085 if (!hasComputableBounds(PSE, Ptr, PtrExpr, TheLoop, Assume)) 1086 return false; 1087 1088 // When we run after a failing dependency check we have to make sure 1089 // we don't have wrapping pointers. 1090 if (ShouldCheckWrap) { 1091 // Skip wrap checking when translating pointers. 1092 if (TranslatedPtrs.size() > 1) 1093 return false; 1094 1095 if (!isNoWrap(PSE, StridesMap, Ptr, AccessTy, TheLoop)) { 1096 auto *Expr = PSE.getSCEV(Ptr); 1097 if (!Assume || !isa<SCEVAddRecExpr>(Expr)) 1098 return false; 1099 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1100 } 1101 } 1102 // If there's only one option for Ptr, look it up after bounds and wrap 1103 // checking, because assumptions might have been added to PSE. 1104 if (TranslatedPtrs.size() == 1) 1105 TranslatedPtrs[0] = {replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr), 1106 false}; 1107 } 1108 1109 for (auto [PtrExpr, NeedsFreeze] : TranslatedPtrs) { 1110 // The id of the dependence set. 1111 unsigned DepId; 1112 1113 if (isDependencyCheckNeeded()) { 1114 Value *Leader = DepCands.getLeaderValue(Access).getPointer(); 1115 unsigned &LeaderId = DepSetId[Leader]; 1116 if (!LeaderId) 1117 LeaderId = RunningDepId++; 1118 DepId = LeaderId; 1119 } else 1120 // Each access has its own dependence set. 1121 DepId = RunningDepId++; 1122 1123 bool IsWrite = Access.getInt(); 1124 RtCheck.insert(TheLoop, Ptr, PtrExpr, AccessTy, IsWrite, DepId, ASId, PSE, 1125 NeedsFreeze); 1126 LLVM_DEBUG(dbgs() << "LAA: Found a runtime check ptr:" << *Ptr << '\n'); 1127 } 1128 1129 return true; 1130 } 1131 1132 bool AccessAnalysis::canCheckPtrAtRT(RuntimePointerChecking &RtCheck, 1133 ScalarEvolution *SE, Loop *TheLoop, 1134 const DenseMap<Value *, const SCEV *> &StridesMap, 1135 Value *&UncomputablePtr, bool ShouldCheckWrap) { 1136 // Find pointers with computable bounds. We are going to use this information 1137 // to place a runtime bound check. 1138 bool CanDoRT = true; 1139 1140 bool MayNeedRTCheck = false; 1141 if (!IsRTCheckAnalysisNeeded) return true; 1142 1143 bool IsDepCheckNeeded = isDependencyCheckNeeded(); 1144 1145 // We assign a consecutive id to access from different alias sets. 1146 // Accesses between different groups doesn't need to be checked. 1147 unsigned ASId = 0; 1148 for (auto &AS : AST) { 1149 int NumReadPtrChecks = 0; 1150 int NumWritePtrChecks = 0; 1151 bool CanDoAliasSetRT = true; 1152 ++ASId; 1153 auto ASPointers = AS.getPointers(); 1154 1155 // We assign consecutive id to access from different dependence sets. 1156 // Accesses within the same set don't need a runtime check. 1157 unsigned RunningDepId = 1; 1158 DenseMap<Value *, unsigned> DepSetId; 1159 1160 SmallVector<std::pair<MemAccessInfo, Type *>, 4> Retries; 1161 1162 // First, count how many write and read accesses are in the alias set. Also 1163 // collect MemAccessInfos for later. 1164 SmallVector<MemAccessInfo, 4> AccessInfos; 1165 for (const Value *ConstPtr : ASPointers) { 1166 Value *Ptr = const_cast<Value *>(ConstPtr); 1167 bool IsWrite = Accesses.count(MemAccessInfo(Ptr, true)); 1168 if (IsWrite) 1169 ++NumWritePtrChecks; 1170 else 1171 ++NumReadPtrChecks; 1172 AccessInfos.emplace_back(Ptr, IsWrite); 1173 } 1174 1175 // We do not need runtime checks for this alias set, if there are no writes 1176 // or a single write and no reads. 1177 if (NumWritePtrChecks == 0 || 1178 (NumWritePtrChecks == 1 && NumReadPtrChecks == 0)) { 1179 assert((ASPointers.size() <= 1 || 1180 all_of(ASPointers, 1181 [this](const Value *Ptr) { 1182 MemAccessInfo AccessWrite(const_cast<Value *>(Ptr), 1183 true); 1184 return DepCands.findValue(AccessWrite) == DepCands.end(); 1185 })) && 1186 "Can only skip updating CanDoRT below, if all entries in AS " 1187 "are reads or there is at most 1 entry"); 1188 continue; 1189 } 1190 1191 for (auto &Access : AccessInfos) { 1192 for (const auto &AccessTy : Accesses[Access]) { 1193 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1194 DepSetId, TheLoop, RunningDepId, ASId, 1195 ShouldCheckWrap, false)) { 1196 LLVM_DEBUG(dbgs() << "LAA: Can't find bounds for ptr:" 1197 << *Access.getPointer() << '\n'); 1198 Retries.push_back({Access, AccessTy}); 1199 CanDoAliasSetRT = false; 1200 } 1201 } 1202 } 1203 1204 // Note that this function computes CanDoRT and MayNeedRTCheck 1205 // independently. For example CanDoRT=false, MayNeedRTCheck=false means that 1206 // we have a pointer for which we couldn't find the bounds but we don't 1207 // actually need to emit any checks so it does not matter. 1208 // 1209 // We need runtime checks for this alias set, if there are at least 2 1210 // dependence sets (in which case RunningDepId > 2) or if we need to re-try 1211 // any bound checks (because in that case the number of dependence sets is 1212 // incomplete). 1213 bool NeedsAliasSetRTCheck = RunningDepId > 2 || !Retries.empty(); 1214 1215 // We need to perform run-time alias checks, but some pointers had bounds 1216 // that couldn't be checked. 1217 if (NeedsAliasSetRTCheck && !CanDoAliasSetRT) { 1218 // Reset the CanDoSetRt flag and retry all accesses that have failed. 1219 // We know that we need these checks, so we can now be more aggressive 1220 // and add further checks if required (overflow checks). 1221 CanDoAliasSetRT = true; 1222 for (const auto &[Access, AccessTy] : Retries) { 1223 if (!createCheckForAccess(RtCheck, Access, AccessTy, StridesMap, 1224 DepSetId, TheLoop, RunningDepId, ASId, 1225 ShouldCheckWrap, /*Assume=*/true)) { 1226 CanDoAliasSetRT = false; 1227 UncomputablePtr = Access.getPointer(); 1228 break; 1229 } 1230 } 1231 } 1232 1233 CanDoRT &= CanDoAliasSetRT; 1234 MayNeedRTCheck |= NeedsAliasSetRTCheck; 1235 ++ASId; 1236 } 1237 1238 // If the pointers that we would use for the bounds comparison have different 1239 // address spaces, assume the values aren't directly comparable, so we can't 1240 // use them for the runtime check. We also have to assume they could 1241 // overlap. In the future there should be metadata for whether address spaces 1242 // are disjoint. 1243 unsigned NumPointers = RtCheck.Pointers.size(); 1244 for (unsigned i = 0; i < NumPointers; ++i) { 1245 for (unsigned j = i + 1; j < NumPointers; ++j) { 1246 // Only need to check pointers between two different dependency sets. 1247 if (RtCheck.Pointers[i].DependencySetId == 1248 RtCheck.Pointers[j].DependencySetId) 1249 continue; 1250 // Only need to check pointers in the same alias set. 1251 if (RtCheck.Pointers[i].AliasSetId != RtCheck.Pointers[j].AliasSetId) 1252 continue; 1253 1254 Value *PtrI = RtCheck.Pointers[i].PointerValue; 1255 Value *PtrJ = RtCheck.Pointers[j].PointerValue; 1256 1257 unsigned ASi = PtrI->getType()->getPointerAddressSpace(); 1258 unsigned ASj = PtrJ->getType()->getPointerAddressSpace(); 1259 if (ASi != ASj) { 1260 LLVM_DEBUG( 1261 dbgs() << "LAA: Runtime check would require comparison between" 1262 " different address spaces\n"); 1263 return false; 1264 } 1265 } 1266 } 1267 1268 if (MayNeedRTCheck && CanDoRT) 1269 RtCheck.generateChecks(DepCands, IsDepCheckNeeded); 1270 1271 LLVM_DEBUG(dbgs() << "LAA: We need to do " << RtCheck.getNumberOfChecks() 1272 << " pointer comparisons.\n"); 1273 1274 // If we can do run-time checks, but there are no checks, no runtime checks 1275 // are needed. This can happen when all pointers point to the same underlying 1276 // object for example. 1277 RtCheck.Need = CanDoRT ? RtCheck.getNumberOfChecks() != 0 : MayNeedRTCheck; 1278 1279 bool CanDoRTIfNeeded = !RtCheck.Need || CanDoRT; 1280 if (!CanDoRTIfNeeded) 1281 RtCheck.reset(); 1282 return CanDoRTIfNeeded; 1283 } 1284 1285 void AccessAnalysis::processMemAccesses() { 1286 // We process the set twice: first we process read-write pointers, last we 1287 // process read-only pointers. This allows us to skip dependence tests for 1288 // read-only pointers. 1289 1290 LLVM_DEBUG(dbgs() << "LAA: Processing memory accesses...\n"); 1291 LLVM_DEBUG(dbgs() << " AST: "; AST.dump()); 1292 LLVM_DEBUG(dbgs() << "LAA: Accesses(" << Accesses.size() << "):\n"); 1293 LLVM_DEBUG({ 1294 for (const auto &[A, _] : Accesses) 1295 dbgs() << "\t" << *A.getPointer() << " (" 1296 << (A.getInt() ? "write" 1297 : (ReadOnlyPtr.count(A.getPointer()) ? "read-only" 1298 : "read")) 1299 << ")\n"; 1300 }); 1301 1302 // The AliasSetTracker has nicely partitioned our pointers by metadata 1303 // compatibility and potential for underlying-object overlap. As a result, we 1304 // only need to check for potential pointer dependencies within each alias 1305 // set. 1306 for (const auto &AS : AST) { 1307 // Note that both the alias-set tracker and the alias sets themselves used 1308 // ordered collections internally and so the iteration order here is 1309 // deterministic. 1310 auto ASPointers = AS.getPointers(); 1311 1312 bool SetHasWrite = false; 1313 1314 // Map of pointers to last access encountered. 1315 typedef DenseMap<const Value*, MemAccessInfo> UnderlyingObjToAccessMap; 1316 UnderlyingObjToAccessMap ObjToLastAccess; 1317 1318 // Set of access to check after all writes have been processed. 1319 PtrAccessMap DeferredAccesses; 1320 1321 // Iterate over each alias set twice, once to process read/write pointers, 1322 // and then to process read-only pointers. 1323 for (int SetIteration = 0; SetIteration < 2; ++SetIteration) { 1324 bool UseDeferred = SetIteration > 0; 1325 PtrAccessMap &S = UseDeferred ? DeferredAccesses : Accesses; 1326 1327 for (const Value *ConstPtr : ASPointers) { 1328 Value *Ptr = const_cast<Value *>(ConstPtr); 1329 1330 // For a single memory access in AliasSetTracker, Accesses may contain 1331 // both read and write, and they both need to be handled for CheckDeps. 1332 for (const auto &[AC, _] : S) { 1333 if (AC.getPointer() != Ptr) 1334 continue; 1335 1336 bool IsWrite = AC.getInt(); 1337 1338 // If we're using the deferred access set, then it contains only 1339 // reads. 1340 bool IsReadOnlyPtr = ReadOnlyPtr.count(Ptr) && !IsWrite; 1341 if (UseDeferred && !IsReadOnlyPtr) 1342 continue; 1343 // Otherwise, the pointer must be in the PtrAccessSet, either as a 1344 // read or a write. 1345 assert(((IsReadOnlyPtr && UseDeferred) || IsWrite || 1346 S.count(MemAccessInfo(Ptr, false))) && 1347 "Alias-set pointer not in the access set?"); 1348 1349 MemAccessInfo Access(Ptr, IsWrite); 1350 DepCands.insert(Access); 1351 1352 // Memorize read-only pointers for later processing and skip them in 1353 // the first round (they need to be checked after we have seen all 1354 // write pointers). Note: we also mark pointer that are not 1355 // consecutive as "read-only" pointers (so that we check 1356 // "a[b[i]] +="). Hence, we need the second check for "!IsWrite". 1357 if (!UseDeferred && IsReadOnlyPtr) { 1358 // We only use the pointer keys, the types vector values don't 1359 // matter. 1360 DeferredAccesses.insert({Access, {}}); 1361 continue; 1362 } 1363 1364 // If this is a write - check other reads and writes for conflicts. If 1365 // this is a read only check other writes for conflicts (but only if 1366 // there is no other write to the ptr - this is an optimization to 1367 // catch "a[i] = a[i] + " without having to do a dependence check). 1368 if ((IsWrite || IsReadOnlyPtr) && SetHasWrite) { 1369 CheckDeps.push_back(Access); 1370 IsRTCheckAnalysisNeeded = true; 1371 } 1372 1373 if (IsWrite) 1374 SetHasWrite = true; 1375 1376 // Create sets of pointers connected by a shared alias set and 1377 // underlying object. 1378 typedef SmallVector<const Value *, 16> ValueVector; 1379 ValueVector TempObjects; 1380 1381 UnderlyingObjects[Ptr] = {}; 1382 SmallVector<const Value *, 16> &UOs = UnderlyingObjects[Ptr]; 1383 ::getUnderlyingObjects(Ptr, UOs, LI); 1384 LLVM_DEBUG(dbgs() 1385 << "Underlying objects for pointer " << *Ptr << "\n"); 1386 for (const Value *UnderlyingObj : UOs) { 1387 // nullptr never alias, don't join sets for pointer that have "null" 1388 // in their UnderlyingObjects list. 1389 if (isa<ConstantPointerNull>(UnderlyingObj) && 1390 !NullPointerIsDefined( 1391 TheLoop->getHeader()->getParent(), 1392 UnderlyingObj->getType()->getPointerAddressSpace())) 1393 continue; 1394 1395 UnderlyingObjToAccessMap::iterator Prev = 1396 ObjToLastAccess.find(UnderlyingObj); 1397 if (Prev != ObjToLastAccess.end()) 1398 DepCands.unionSets(Access, Prev->second); 1399 1400 ObjToLastAccess[UnderlyingObj] = Access; 1401 LLVM_DEBUG(dbgs() << " " << *UnderlyingObj << "\n"); 1402 } 1403 } 1404 } 1405 } 1406 } 1407 } 1408 1409 /// Return true if an AddRec pointer \p Ptr is unsigned non-wrapping, 1410 /// i.e. monotonically increasing/decreasing. 1411 static bool isNoWrapAddRec(Value *Ptr, const SCEVAddRecExpr *AR, 1412 PredicatedScalarEvolution &PSE, const Loop *L) { 1413 1414 // FIXME: This should probably only return true for NUW. 1415 if (AR->getNoWrapFlags(SCEV::NoWrapMask)) 1416 return true; 1417 1418 if (PSE.hasNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW)) 1419 return true; 1420 1421 // Scalar evolution does not propagate the non-wrapping flags to values that 1422 // are derived from a non-wrapping induction variable because non-wrapping 1423 // could be flow-sensitive. 1424 // 1425 // Look through the potentially overflowing instruction to try to prove 1426 // non-wrapping for the *specific* value of Ptr. 1427 1428 // The arithmetic implied by an inbounds GEP can't overflow. 1429 auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1430 if (!GEP || !GEP->isInBounds()) 1431 return false; 1432 1433 // Make sure there is only one non-const index and analyze that. 1434 Value *NonConstIndex = nullptr; 1435 for (Value *Index : GEP->indices()) 1436 if (!isa<ConstantInt>(Index)) { 1437 if (NonConstIndex) 1438 return false; 1439 NonConstIndex = Index; 1440 } 1441 if (!NonConstIndex) 1442 // The recurrence is on the pointer, ignore for now. 1443 return false; 1444 1445 // The index in GEP is signed. It is non-wrapping if it's derived from a NSW 1446 // AddRec using a NSW operation. 1447 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(NonConstIndex)) 1448 if (OBO->hasNoSignedWrap() && 1449 // Assume constant for other the operand so that the AddRec can be 1450 // easily found. 1451 isa<ConstantInt>(OBO->getOperand(1))) { 1452 auto *OpScev = PSE.getSCEV(OBO->getOperand(0)); 1453 1454 if (auto *OpAR = dyn_cast<SCEVAddRecExpr>(OpScev)) 1455 return OpAR->getLoop() == L && OpAR->getNoWrapFlags(SCEV::FlagNSW); 1456 } 1457 1458 return false; 1459 } 1460 1461 /// Check whether the access through \p Ptr has a constant stride. 1462 std::optional<int64_t> llvm::getPtrStride(PredicatedScalarEvolution &PSE, 1463 Type *AccessTy, Value *Ptr, 1464 const Loop *Lp, 1465 const DenseMap<Value *, const SCEV *> &StridesMap, 1466 bool Assume, bool ShouldCheckWrap) { 1467 Type *Ty = Ptr->getType(); 1468 assert(Ty->isPointerTy() && "Unexpected non-ptr"); 1469 1470 if (isa<ScalableVectorType>(AccessTy)) { 1471 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Scalable object: " << *AccessTy 1472 << "\n"); 1473 return std::nullopt; 1474 } 1475 1476 const SCEV *PtrScev = replaceSymbolicStrideSCEV(PSE, StridesMap, Ptr); 1477 1478 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PtrScev); 1479 if (Assume && !AR) 1480 AR = PSE.getAsAddRec(Ptr); 1481 1482 if (!AR) { 1483 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not an AddRecExpr pointer " << *Ptr 1484 << " SCEV: " << *PtrScev << "\n"); 1485 return std::nullopt; 1486 } 1487 1488 // The access function must stride over the innermost loop. 1489 if (Lp != AR->getLoop()) { 1490 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not striding over innermost loop " 1491 << *Ptr << " SCEV: " << *AR << "\n"); 1492 return std::nullopt; 1493 } 1494 1495 // Check the step is constant. 1496 const SCEV *Step = AR->getStepRecurrence(*PSE.getSE()); 1497 1498 // Calculate the pointer stride and check if it is constant. 1499 const SCEVConstant *C = dyn_cast<SCEVConstant>(Step); 1500 if (!C) { 1501 LLVM_DEBUG(dbgs() << "LAA: Bad stride - Not a constant strided " << *Ptr 1502 << " SCEV: " << *AR << "\n"); 1503 return std::nullopt; 1504 } 1505 1506 auto &DL = Lp->getHeader()->getDataLayout(); 1507 TypeSize AllocSize = DL.getTypeAllocSize(AccessTy); 1508 int64_t Size = AllocSize.getFixedValue(); 1509 const APInt &APStepVal = C->getAPInt(); 1510 1511 // Huge step value - give up. 1512 if (APStepVal.getBitWidth() > 64) 1513 return std::nullopt; 1514 1515 int64_t StepVal = APStepVal.getSExtValue(); 1516 1517 // Strided access. 1518 int64_t Stride = StepVal / Size; 1519 int64_t Rem = StepVal % Size; 1520 if (Rem) 1521 return std::nullopt; 1522 1523 if (!ShouldCheckWrap) 1524 return Stride; 1525 1526 // The address calculation must not wrap. Otherwise, a dependence could be 1527 // inverted. 1528 if (isNoWrapAddRec(Ptr, AR, PSE, Lp)) 1529 return Stride; 1530 1531 // An inbounds getelementptr that is a AddRec with a unit stride 1532 // cannot wrap per definition. If it did, the result would be poison 1533 // and any memory access dependent on it would be immediate UB 1534 // when executed. 1535 if (auto *GEP = dyn_cast<GetElementPtrInst>(Ptr); 1536 GEP && GEP->isInBounds() && (Stride == 1 || Stride == -1)) 1537 return Stride; 1538 1539 // If the null pointer is undefined, then a access sequence which would 1540 // otherwise access it can be assumed not to unsigned wrap. Note that this 1541 // assumes the object in memory is aligned to the natural alignment. 1542 unsigned AddrSpace = Ty->getPointerAddressSpace(); 1543 if (!NullPointerIsDefined(Lp->getHeader()->getParent(), AddrSpace) && 1544 (Stride == 1 || Stride == -1)) 1545 return Stride; 1546 1547 if (Assume) { 1548 PSE.setNoOverflow(Ptr, SCEVWrapPredicate::IncrementNUSW); 1549 LLVM_DEBUG(dbgs() << "LAA: Pointer may wrap:\n" 1550 << "LAA: Pointer: " << *Ptr << "\n" 1551 << "LAA: SCEV: " << *AR << "\n" 1552 << "LAA: Added an overflow assumption\n"); 1553 return Stride; 1554 } 1555 LLVM_DEBUG( 1556 dbgs() << "LAA: Bad stride - Pointer may wrap in the address space " 1557 << *Ptr << " SCEV: " << *AR << "\n"); 1558 return std::nullopt; 1559 } 1560 1561 std::optional<int> llvm::getPointersDiff(Type *ElemTyA, Value *PtrA, 1562 Type *ElemTyB, Value *PtrB, 1563 const DataLayout &DL, 1564 ScalarEvolution &SE, bool StrictCheck, 1565 bool CheckType) { 1566 assert(PtrA && PtrB && "Expected non-nullptr pointers."); 1567 1568 // Make sure that A and B are different pointers. 1569 if (PtrA == PtrB) 1570 return 0; 1571 1572 // Make sure that the element types are the same if required. 1573 if (CheckType && ElemTyA != ElemTyB) 1574 return std::nullopt; 1575 1576 unsigned ASA = PtrA->getType()->getPointerAddressSpace(); 1577 unsigned ASB = PtrB->getType()->getPointerAddressSpace(); 1578 1579 // Check that the address spaces match. 1580 if (ASA != ASB) 1581 return std::nullopt; 1582 unsigned IdxWidth = DL.getIndexSizeInBits(ASA); 1583 1584 APInt OffsetA(IdxWidth, 0), OffsetB(IdxWidth, 0); 1585 Value *PtrA1 = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA); 1586 Value *PtrB1 = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB); 1587 1588 int Val; 1589 if (PtrA1 == PtrB1) { 1590 // Retrieve the address space again as pointer stripping now tracks through 1591 // `addrspacecast`. 1592 ASA = cast<PointerType>(PtrA1->getType())->getAddressSpace(); 1593 ASB = cast<PointerType>(PtrB1->getType())->getAddressSpace(); 1594 // Check that the address spaces match and that the pointers are valid. 1595 if (ASA != ASB) 1596 return std::nullopt; 1597 1598 IdxWidth = DL.getIndexSizeInBits(ASA); 1599 OffsetA = OffsetA.sextOrTrunc(IdxWidth); 1600 OffsetB = OffsetB.sextOrTrunc(IdxWidth); 1601 1602 OffsetB -= OffsetA; 1603 Val = OffsetB.getSExtValue(); 1604 } else { 1605 // Otherwise compute the distance with SCEV between the base pointers. 1606 const SCEV *PtrSCEVA = SE.getSCEV(PtrA); 1607 const SCEV *PtrSCEVB = SE.getSCEV(PtrB); 1608 const auto *Diff = 1609 dyn_cast<SCEVConstant>(SE.getMinusSCEV(PtrSCEVB, PtrSCEVA)); 1610 if (!Diff) 1611 return std::nullopt; 1612 Val = Diff->getAPInt().getSExtValue(); 1613 } 1614 int Size = DL.getTypeStoreSize(ElemTyA); 1615 int Dist = Val / Size; 1616 1617 // Ensure that the calculated distance matches the type-based one after all 1618 // the bitcasts removal in the provided pointers. 1619 if (!StrictCheck || Dist * Size == Val) 1620 return Dist; 1621 return std::nullopt; 1622 } 1623 1624 bool llvm::sortPtrAccesses(ArrayRef<Value *> VL, Type *ElemTy, 1625 const DataLayout &DL, ScalarEvolution &SE, 1626 SmallVectorImpl<unsigned> &SortedIndices) { 1627 assert(llvm::all_of( 1628 VL, [](const Value *V) { return V->getType()->isPointerTy(); }) && 1629 "Expected list of pointer operands."); 1630 // Walk over the pointers, and map each of them to an offset relative to 1631 // first pointer in the array. 1632 Value *Ptr0 = VL[0]; 1633 1634 using DistOrdPair = std::pair<int64_t, int>; 1635 auto Compare = llvm::less_first(); 1636 std::set<DistOrdPair, decltype(Compare)> Offsets(Compare); 1637 Offsets.emplace(0, 0); 1638 bool IsConsecutive = true; 1639 for (auto [Idx, Ptr] : drop_begin(enumerate(VL))) { 1640 std::optional<int> Diff = getPointersDiff(ElemTy, Ptr0, ElemTy, Ptr, DL, SE, 1641 /*StrictCheck=*/true); 1642 if (!Diff) 1643 return false; 1644 1645 // Check if the pointer with the same offset is found. 1646 int64_t Offset = *Diff; 1647 auto [It, IsInserted] = Offsets.emplace(Offset, Idx); 1648 if (!IsInserted) 1649 return false; 1650 // Consecutive order if the inserted element is the last one. 1651 IsConsecutive &= std::next(It) == Offsets.end(); 1652 } 1653 SortedIndices.clear(); 1654 if (!IsConsecutive) { 1655 // Fill SortedIndices array only if it is non-consecutive. 1656 SortedIndices.resize(VL.size()); 1657 for (auto [Idx, Off] : enumerate(Offsets)) 1658 SortedIndices[Idx] = Off.second; 1659 } 1660 return true; 1661 } 1662 1663 /// Returns true if the memory operations \p A and \p B are consecutive. 1664 bool llvm::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL, 1665 ScalarEvolution &SE, bool CheckType) { 1666 Value *PtrA = getLoadStorePointerOperand(A); 1667 Value *PtrB = getLoadStorePointerOperand(B); 1668 if (!PtrA || !PtrB) 1669 return false; 1670 Type *ElemTyA = getLoadStoreType(A); 1671 Type *ElemTyB = getLoadStoreType(B); 1672 std::optional<int> Diff = 1673 getPointersDiff(ElemTyA, PtrA, ElemTyB, PtrB, DL, SE, 1674 /*StrictCheck=*/true, CheckType); 1675 return Diff && *Diff == 1; 1676 } 1677 1678 void MemoryDepChecker::addAccess(StoreInst *SI) { 1679 visitPointers(SI->getPointerOperand(), *InnermostLoop, 1680 [this, SI](Value *Ptr) { 1681 Accesses[MemAccessInfo(Ptr, true)].push_back(AccessIdx); 1682 InstMap.push_back(SI); 1683 ++AccessIdx; 1684 }); 1685 } 1686 1687 void MemoryDepChecker::addAccess(LoadInst *LI) { 1688 visitPointers(LI->getPointerOperand(), *InnermostLoop, 1689 [this, LI](Value *Ptr) { 1690 Accesses[MemAccessInfo(Ptr, false)].push_back(AccessIdx); 1691 InstMap.push_back(LI); 1692 ++AccessIdx; 1693 }); 1694 } 1695 1696 MemoryDepChecker::VectorizationSafetyStatus 1697 MemoryDepChecker::Dependence::isSafeForVectorization(DepType Type) { 1698 switch (Type) { 1699 case NoDep: 1700 case Forward: 1701 case BackwardVectorizable: 1702 return VectorizationSafetyStatus::Safe; 1703 1704 case Unknown: 1705 return VectorizationSafetyStatus::PossiblySafeWithRtChecks; 1706 case ForwardButPreventsForwarding: 1707 case Backward: 1708 case BackwardVectorizableButPreventsForwarding: 1709 case IndirectUnsafe: 1710 return VectorizationSafetyStatus::Unsafe; 1711 } 1712 llvm_unreachable("unexpected DepType!"); 1713 } 1714 1715 bool MemoryDepChecker::Dependence::isBackward() const { 1716 switch (Type) { 1717 case NoDep: 1718 case Forward: 1719 case ForwardButPreventsForwarding: 1720 case Unknown: 1721 case IndirectUnsafe: 1722 return false; 1723 1724 case BackwardVectorizable: 1725 case Backward: 1726 case BackwardVectorizableButPreventsForwarding: 1727 return true; 1728 } 1729 llvm_unreachable("unexpected DepType!"); 1730 } 1731 1732 bool MemoryDepChecker::Dependence::isPossiblyBackward() const { 1733 return isBackward() || Type == Unknown || Type == IndirectUnsafe; 1734 } 1735 1736 bool MemoryDepChecker::Dependence::isForward() const { 1737 switch (Type) { 1738 case Forward: 1739 case ForwardButPreventsForwarding: 1740 return true; 1741 1742 case NoDep: 1743 case Unknown: 1744 case BackwardVectorizable: 1745 case Backward: 1746 case BackwardVectorizableButPreventsForwarding: 1747 case IndirectUnsafe: 1748 return false; 1749 } 1750 llvm_unreachable("unexpected DepType!"); 1751 } 1752 1753 bool MemoryDepChecker::couldPreventStoreLoadForward(uint64_t Distance, 1754 uint64_t TypeByteSize) { 1755 // If loads occur at a distance that is not a multiple of a feasible vector 1756 // factor store-load forwarding does not take place. 1757 // Positive dependences might cause troubles because vectorizing them might 1758 // prevent store-load forwarding making vectorized code run a lot slower. 1759 // a[i] = a[i-3] ^ a[i-8]; 1760 // The stores to a[i:i+1] don't align with the stores to a[i-3:i-2] and 1761 // hence on your typical architecture store-load forwarding does not take 1762 // place. Vectorizing in such cases does not make sense. 1763 // Store-load forwarding distance. 1764 1765 // After this many iterations store-to-load forwarding conflicts should not 1766 // cause any slowdowns. 1767 const uint64_t NumItersForStoreLoadThroughMemory = 8 * TypeByteSize; 1768 // Maximum vector factor. 1769 uint64_t MaxVFWithoutSLForwardIssues = std::min( 1770 VectorizerParams::MaxVectorWidth * TypeByteSize, MinDepDistBytes); 1771 1772 // Compute the smallest VF at which the store and load would be misaligned. 1773 for (uint64_t VF = 2 * TypeByteSize; VF <= MaxVFWithoutSLForwardIssues; 1774 VF *= 2) { 1775 // If the number of vector iteration between the store and the load are 1776 // small we could incur conflicts. 1777 if (Distance % VF && Distance / VF < NumItersForStoreLoadThroughMemory) { 1778 MaxVFWithoutSLForwardIssues = (VF >> 1); 1779 break; 1780 } 1781 } 1782 1783 if (MaxVFWithoutSLForwardIssues < 2 * TypeByteSize) { 1784 LLVM_DEBUG( 1785 dbgs() << "LAA: Distance " << Distance 1786 << " that could cause a store-load forwarding conflict\n"); 1787 return true; 1788 } 1789 1790 if (MaxVFWithoutSLForwardIssues < MinDepDistBytes && 1791 MaxVFWithoutSLForwardIssues != 1792 VectorizerParams::MaxVectorWidth * TypeByteSize) 1793 MinDepDistBytes = MaxVFWithoutSLForwardIssues; 1794 return false; 1795 } 1796 1797 void MemoryDepChecker::mergeInStatus(VectorizationSafetyStatus S) { 1798 if (Status < S) 1799 Status = S; 1800 } 1801 1802 /// Given a dependence-distance \p Dist between two 1803 /// memory accesses, that have strides in the same direction whose absolute 1804 /// value of the maximum stride is given in \p MaxStride, and that have the same 1805 /// type size \p TypeByteSize, in a loop whose maximum backedge taken count is 1806 /// \p MaxBTC, check if it is possible to prove statically that the dependence 1807 /// distance is larger than the range that the accesses will travel through the 1808 /// execution of the loop. If so, return true; false otherwise. This is useful 1809 /// for example in loops such as the following (PR31098): 1810 /// for (i = 0; i < D; ++i) { 1811 /// = out[i]; 1812 /// out[i+D] = 1813 /// } 1814 static bool isSafeDependenceDistance(const DataLayout &DL, ScalarEvolution &SE, 1815 const SCEV &MaxBTC, const SCEV &Dist, 1816 uint64_t MaxStride, 1817 uint64_t TypeByteSize) { 1818 1819 // If we can prove that 1820 // (**) |Dist| > MaxBTC * Step 1821 // where Step is the absolute stride of the memory accesses in bytes, 1822 // then there is no dependence. 1823 // 1824 // Rationale: 1825 // We basically want to check if the absolute distance (|Dist/Step|) 1826 // is >= the loop iteration count (or > MaxBTC). 1827 // This is equivalent to the Strong SIV Test (Practical Dependence Testing, 1828 // Section 4.2.1); Note, that for vectorization it is sufficient to prove 1829 // that the dependence distance is >= VF; This is checked elsewhere. 1830 // But in some cases we can prune dependence distances early, and 1831 // even before selecting the VF, and without a runtime test, by comparing 1832 // the distance against the loop iteration count. Since the vectorized code 1833 // will be executed only if LoopCount >= VF, proving distance >= LoopCount 1834 // also guarantees that distance >= VF. 1835 // 1836 const uint64_t ByteStride = MaxStride * TypeByteSize; 1837 const SCEV *Step = SE.getConstant(MaxBTC.getType(), ByteStride); 1838 const SCEV *Product = SE.getMulExpr(&MaxBTC, Step); 1839 1840 const SCEV *CastedDist = &Dist; 1841 const SCEV *CastedProduct = Product; 1842 uint64_t DistTypeSizeBits = DL.getTypeSizeInBits(Dist.getType()); 1843 uint64_t ProductTypeSizeBits = DL.getTypeSizeInBits(Product->getType()); 1844 1845 // The dependence distance can be positive/negative, so we sign extend Dist; 1846 // The multiplication of the absolute stride in bytes and the 1847 // backedgeTakenCount is non-negative, so we zero extend Product. 1848 if (DistTypeSizeBits > ProductTypeSizeBits) 1849 CastedProduct = SE.getZeroExtendExpr(Product, Dist.getType()); 1850 else 1851 CastedDist = SE.getNoopOrSignExtend(&Dist, Product->getType()); 1852 1853 // Is Dist - (MaxBTC * Step) > 0 ? 1854 // (If so, then we have proven (**) because |Dist| >= Dist) 1855 const SCEV *Minus = SE.getMinusSCEV(CastedDist, CastedProduct); 1856 if (SE.isKnownPositive(Minus)) 1857 return true; 1858 1859 // Second try: Is -Dist - (MaxBTC * Step) > 0 ? 1860 // (If so, then we have proven (**) because |Dist| >= -1*Dist) 1861 const SCEV *NegDist = SE.getNegativeSCEV(CastedDist); 1862 Minus = SE.getMinusSCEV(NegDist, CastedProduct); 1863 return SE.isKnownPositive(Minus); 1864 } 1865 1866 /// Check the dependence for two accesses with the same stride \p Stride. 1867 /// \p Distance is the positive distance and \p TypeByteSize is type size in 1868 /// bytes. 1869 /// 1870 /// \returns true if they are independent. 1871 static bool areStridedAccessesIndependent(uint64_t Distance, uint64_t Stride, 1872 uint64_t TypeByteSize) { 1873 assert(Stride > 1 && "The stride must be greater than 1"); 1874 assert(TypeByteSize > 0 && "The type size in byte must be non-zero"); 1875 assert(Distance > 0 && "The distance must be non-zero"); 1876 1877 // Skip if the distance is not multiple of type byte size. 1878 if (Distance % TypeByteSize) 1879 return false; 1880 1881 uint64_t ScaledDist = Distance / TypeByteSize; 1882 1883 // No dependence if the scaled distance is not multiple of the stride. 1884 // E.g. 1885 // for (i = 0; i < 1024 ; i += 4) 1886 // A[i+2] = A[i] + 1; 1887 // 1888 // Two accesses in memory (scaled distance is 2, stride is 4): 1889 // | A[0] | | | | A[4] | | | | 1890 // | | | A[2] | | | | A[6] | | 1891 // 1892 // E.g. 1893 // for (i = 0; i < 1024 ; i += 3) 1894 // A[i+4] = A[i] + 1; 1895 // 1896 // Two accesses in memory (scaled distance is 4, stride is 3): 1897 // | A[0] | | | A[3] | | | A[6] | | | 1898 // | | | | | A[4] | | | A[7] | | 1899 return ScaledDist % Stride; 1900 } 1901 1902 /// Returns true if any of the underlying objects has a loop varying address, 1903 /// i.e. may change in \p L. 1904 static bool 1905 isLoopVariantIndirectAddress(ArrayRef<const Value *> UnderlyingObjects, 1906 ScalarEvolution &SE, const Loop *L) { 1907 return any_of(UnderlyingObjects, [&SE, L](const Value *UO) { 1908 return !SE.isLoopInvariant(SE.getSCEV(const_cast<Value *>(UO)), L); 1909 }); 1910 } 1911 1912 std::variant<MemoryDepChecker::Dependence::DepType, 1913 MemoryDepChecker::DepDistanceStrideAndSizeInfo> 1914 MemoryDepChecker::getDependenceDistanceStrideAndSize( 1915 const AccessAnalysis::MemAccessInfo &A, Instruction *AInst, 1916 const AccessAnalysis::MemAccessInfo &B, Instruction *BInst, 1917 const DenseMap<Value *, SmallVector<const Value *, 16>> 1918 &UnderlyingObjects) { 1919 auto &DL = InnermostLoop->getHeader()->getDataLayout(); 1920 auto &SE = *PSE.getSE(); 1921 auto [APtr, AIsWrite] = A; 1922 auto [BPtr, BIsWrite] = B; 1923 1924 // Two reads are independent. 1925 if (!AIsWrite && !BIsWrite) 1926 return MemoryDepChecker::Dependence::NoDep; 1927 1928 Type *ATy = getLoadStoreType(AInst); 1929 Type *BTy = getLoadStoreType(BInst); 1930 1931 // We cannot check pointers in different address spaces. 1932 if (APtr->getType()->getPointerAddressSpace() != 1933 BPtr->getType()->getPointerAddressSpace()) 1934 return MemoryDepChecker::Dependence::Unknown; 1935 1936 int64_t StrideAPtr = 1937 getPtrStride(PSE, ATy, APtr, InnermostLoop, SymbolicStrides, true) 1938 .value_or(0); 1939 int64_t StrideBPtr = 1940 getPtrStride(PSE, BTy, BPtr, InnermostLoop, SymbolicStrides, true) 1941 .value_or(0); 1942 1943 const SCEV *Src = PSE.getSCEV(APtr); 1944 const SCEV *Sink = PSE.getSCEV(BPtr); 1945 1946 // If the induction step is negative we have to invert source and sink of the 1947 // dependence when measuring the distance between them. We should not swap 1948 // AIsWrite with BIsWrite, as their uses expect them in program order. 1949 if (StrideAPtr < 0) { 1950 std::swap(Src, Sink); 1951 std::swap(AInst, BInst); 1952 } 1953 1954 const SCEV *Dist = SE.getMinusSCEV(Sink, Src); 1955 1956 LLVM_DEBUG(dbgs() << "LAA: Src Scev: " << *Src << "Sink Scev: " << *Sink 1957 << "(Induction step: " << StrideAPtr << ")\n"); 1958 LLVM_DEBUG(dbgs() << "LAA: Distance for " << *AInst << " to " << *BInst 1959 << ": " << *Dist << "\n"); 1960 1961 // Needs accesses where the addresses of the accessed underlying objects do 1962 // not change within the loop. 1963 if (isLoopVariantIndirectAddress(UnderlyingObjects.find(APtr)->second, SE, 1964 InnermostLoop) || 1965 isLoopVariantIndirectAddress(UnderlyingObjects.find(BPtr)->second, SE, 1966 InnermostLoop)) 1967 return MemoryDepChecker::Dependence::IndirectUnsafe; 1968 1969 // Check if we can prove that Sink only accesses memory after Src's end or 1970 // vice versa. At the moment this is limited to cases where either source or 1971 // sink are loop invariant to avoid compile-time increases. This is not 1972 // required for correctness. 1973 if (SE.isLoopInvariant(Src, InnermostLoop) || 1974 SE.isLoopInvariant(Sink, InnermostLoop)) { 1975 const auto &[SrcStart, SrcEnd] = 1976 getStartAndEndForAccess(InnermostLoop, Src, ATy, PSE, PointerBounds); 1977 const auto &[SinkStart, SinkEnd] = 1978 getStartAndEndForAccess(InnermostLoop, Sink, BTy, PSE, PointerBounds); 1979 if (!isa<SCEVCouldNotCompute>(SrcStart) && 1980 !isa<SCEVCouldNotCompute>(SrcEnd) && 1981 !isa<SCEVCouldNotCompute>(SinkStart) && 1982 !isa<SCEVCouldNotCompute>(SinkEnd)) { 1983 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SrcEnd, SinkStart)) 1984 return MemoryDepChecker::Dependence::NoDep; 1985 if (SE.isKnownPredicate(CmpInst::ICMP_ULE, SinkEnd, SrcStart)) 1986 return MemoryDepChecker::Dependence::NoDep; 1987 } 1988 } 1989 1990 // Need accesses with constant strides and the same direction. We don't want 1991 // to vectorize "A[B[i]] += ..." and similar code or pointer arithmetic that 1992 // could wrap in the address space. 1993 if (!StrideAPtr || !StrideBPtr || (StrideAPtr > 0 && StrideBPtr < 0) || 1994 (StrideAPtr < 0 && StrideBPtr > 0)) { 1995 LLVM_DEBUG(dbgs() << "Pointer access with non-constant stride\n"); 1996 return MemoryDepChecker::Dependence::Unknown; 1997 } 1998 1999 uint64_t TypeByteSize = DL.getTypeAllocSize(ATy); 2000 bool HasSameSize = 2001 DL.getTypeStoreSizeInBits(ATy) == DL.getTypeStoreSizeInBits(BTy); 2002 if (!HasSameSize) 2003 TypeByteSize = 0; 2004 return DepDistanceStrideAndSizeInfo(Dist, std::abs(StrideAPtr), 2005 std::abs(StrideBPtr), TypeByteSize, 2006 AIsWrite, BIsWrite); 2007 } 2008 2009 MemoryDepChecker::Dependence::DepType MemoryDepChecker::isDependent( 2010 const MemAccessInfo &A, unsigned AIdx, const MemAccessInfo &B, 2011 unsigned BIdx, 2012 const DenseMap<Value *, SmallVector<const Value *, 16>> 2013 &UnderlyingObjects) { 2014 assert(AIdx < BIdx && "Must pass arguments in program order"); 2015 2016 // Get the dependence distance, stride, type size and what access writes for 2017 // the dependence between A and B. 2018 auto Res = getDependenceDistanceStrideAndSize( 2019 A, InstMap[AIdx], B, InstMap[BIdx], UnderlyingObjects); 2020 if (std::holds_alternative<Dependence::DepType>(Res)) 2021 return std::get<Dependence::DepType>(Res); 2022 2023 auto &[Dist, StrideA, StrideB, TypeByteSize, AIsWrite, BIsWrite] = 2024 std::get<DepDistanceStrideAndSizeInfo>(Res); 2025 bool HasSameSize = TypeByteSize > 0; 2026 2027 std::optional<uint64_t> CommonStride = 2028 StrideA == StrideB ? std::make_optional(StrideA) : std::nullopt; 2029 if (isa<SCEVCouldNotCompute>(Dist)) { 2030 // TODO: Relax requirement that there is a common stride to retry with 2031 // non-constant distance dependencies. 2032 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2033 LLVM_DEBUG(dbgs() << "LAA: Dependence because of uncomputable distance.\n"); 2034 return Dependence::Unknown; 2035 } 2036 2037 ScalarEvolution &SE = *PSE.getSE(); 2038 auto &DL = InnermostLoop->getHeader()->getDataLayout(); 2039 uint64_t MaxStride = std::max(StrideA, StrideB); 2040 2041 // If the distance between the acecsses is larger than their maximum absolute 2042 // stride multiplied by the symbolic maximum backedge taken count (which is an 2043 // upper bound of the number of iterations), the accesses are independet, i.e. 2044 // they are far enough appart that accesses won't access the same location 2045 // across all loop ierations. 2046 if (HasSameSize && isSafeDependenceDistance( 2047 DL, SE, *(PSE.getSymbolicMaxBackedgeTakenCount()), 2048 *Dist, MaxStride, TypeByteSize)) 2049 return Dependence::NoDep; 2050 2051 const SCEVConstant *C = dyn_cast<SCEVConstant>(Dist); 2052 2053 // Attempt to prove strided accesses independent. 2054 if (C) { 2055 const APInt &Val = C->getAPInt(); 2056 int64_t Distance = Val.getSExtValue(); 2057 2058 // If the distance between accesses and their strides are known constants, 2059 // check whether the accesses interlace each other. 2060 if (std::abs(Distance) > 0 && CommonStride && *CommonStride > 1 && 2061 HasSameSize && 2062 areStridedAccessesIndependent(std::abs(Distance), *CommonStride, 2063 TypeByteSize)) { 2064 LLVM_DEBUG(dbgs() << "LAA: Strided accesses are independent\n"); 2065 return Dependence::NoDep; 2066 } 2067 } else 2068 Dist = SE.applyLoopGuards(Dist, InnermostLoop); 2069 2070 // Negative distances are not plausible dependencies. 2071 if (SE.isKnownNonPositive(Dist)) { 2072 if (SE.isKnownNonNegative(Dist)) { 2073 if (HasSameSize) { 2074 // Write to the same location with the same size. 2075 return Dependence::Forward; 2076 } 2077 LLVM_DEBUG(dbgs() << "LAA: possibly zero dependence difference but " 2078 "different type sizes\n"); 2079 return Dependence::Unknown; 2080 } 2081 2082 bool IsTrueDataDependence = (AIsWrite && !BIsWrite); 2083 // Check if the first access writes to a location that is read in a later 2084 // iteration, where the distance between them is not a multiple of a vector 2085 // factor and relatively small. 2086 // 2087 // NOTE: There is no need to update MaxSafeVectorWidthInBits after call to 2088 // couldPreventStoreLoadForward, even if it changed MinDepDistBytes, since a 2089 // forward dependency will allow vectorization using any width. 2090 2091 if (IsTrueDataDependence && EnableForwardingConflictDetection) { 2092 if (!C) { 2093 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2094 // condition to consider retrying with runtime checks. Historically, we 2095 // did not set it when strides were different but there is no inherent 2096 // reason to. 2097 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2098 return Dependence::Unknown; 2099 } 2100 if (!HasSameSize || 2101 couldPreventStoreLoadForward(C->getAPInt().abs().getZExtValue(), 2102 TypeByteSize)) { 2103 LLVM_DEBUG( 2104 dbgs() << "LAA: Forward but may prevent st->ld forwarding\n"); 2105 return Dependence::ForwardButPreventsForwarding; 2106 } 2107 } 2108 2109 LLVM_DEBUG(dbgs() << "LAA: Dependence is negative\n"); 2110 return Dependence::Forward; 2111 } 2112 2113 int64_t MinDistance = SE.getSignedRangeMin(Dist).getSExtValue(); 2114 // Below we only handle strictly positive distances. 2115 if (MinDistance <= 0) { 2116 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2117 return Dependence::Unknown; 2118 } 2119 2120 if (!isa<SCEVConstant>(Dist)) { 2121 // Previously this case would be treated as Unknown, possibly setting 2122 // FoundNonConstantDistanceDependence to force re-trying with runtime 2123 // checks. Until the TODO below is addressed, set it here to preserve 2124 // original behavior w.r.t. re-trying with runtime checks. 2125 // TODO: FoundNonConstantDistanceDependence is used as a necessary 2126 // condition to consider retrying with runtime checks. Historically, we 2127 // did not set it when strides were different but there is no inherent 2128 // reason to. 2129 FoundNonConstantDistanceDependence |= CommonStride.has_value(); 2130 } 2131 2132 if (!HasSameSize) { 2133 LLVM_DEBUG(dbgs() << "LAA: ReadWrite-Write positive dependency with " 2134 "different type sizes\n"); 2135 return Dependence::Unknown; 2136 } 2137 2138 if (!CommonStride) 2139 return Dependence::Unknown; 2140 2141 // Bail out early if passed-in parameters make vectorization not feasible. 2142 unsigned ForcedFactor = (VectorizerParams::VectorizationFactor ? 2143 VectorizerParams::VectorizationFactor : 1); 2144 unsigned ForcedUnroll = (VectorizerParams::VectorizationInterleave ? 2145 VectorizerParams::VectorizationInterleave : 1); 2146 // The minimum number of iterations for a vectorized/unrolled version. 2147 unsigned MinNumIter = std::max(ForcedFactor * ForcedUnroll, 2U); 2148 2149 // It's not vectorizable if the distance is smaller than the minimum distance 2150 // needed for a vectroized/unrolled version. Vectorizing one iteration in 2151 // front needs TypeByteSize * Stride. Vectorizing the last iteration needs 2152 // TypeByteSize (No need to plus the last gap distance). 2153 // 2154 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2155 // foo(int *A) { 2156 // int *B = (int *)((char *)A + 14); 2157 // for (i = 0 ; i < 1024 ; i += 2) 2158 // B[i] = A[i] + 1; 2159 // } 2160 // 2161 // Two accesses in memory (stride is 2): 2162 // | A[0] | | A[2] | | A[4] | | A[6] | | 2163 // | B[0] | | B[2] | | B[4] | 2164 // 2165 // MinDistance needs for vectorizing iterations except the last iteration: 2166 // 4 * 2 * (MinNumIter - 1). MinDistance needs for the last iteration: 4. 2167 // So the minimum distance needed is: 4 * 2 * (MinNumIter - 1) + 4. 2168 // 2169 // If MinNumIter is 2, it is vectorizable as the minimum distance needed is 2170 // 12, which is less than distance. 2171 // 2172 // If MinNumIter is 4 (Say if a user forces the vectorization factor to be 4), 2173 // the minimum distance needed is 28, which is greater than distance. It is 2174 // not safe to do vectorization. 2175 2176 // We know that Dist is positive, but it may not be constant. Use the signed 2177 // minimum for computations below, as this ensures we compute the closest 2178 // possible dependence distance. 2179 uint64_t MinDistanceNeeded = 2180 TypeByteSize * *CommonStride * (MinNumIter - 1) + TypeByteSize; 2181 if (MinDistanceNeeded > static_cast<uint64_t>(MinDistance)) { 2182 if (!isa<SCEVConstant>(Dist)) { 2183 // For non-constant distances, we checked the lower bound of the 2184 // dependence distance and the distance may be larger at runtime (and safe 2185 // for vectorization). Classify it as Unknown, so we re-try with runtime 2186 // checks. 2187 return Dependence::Unknown; 2188 } 2189 LLVM_DEBUG(dbgs() << "LAA: Failure because of positive minimum distance " 2190 << MinDistance << '\n'); 2191 return Dependence::Backward; 2192 } 2193 2194 // Unsafe if the minimum distance needed is greater than smallest dependence 2195 // distance distance. 2196 if (MinDistanceNeeded > MinDepDistBytes) { 2197 LLVM_DEBUG(dbgs() << "LAA: Failure because it needs at least " 2198 << MinDistanceNeeded << " size in bytes\n"); 2199 return Dependence::Backward; 2200 } 2201 2202 // Positive distance bigger than max vectorization factor. 2203 // FIXME: Should use max factor instead of max distance in bytes, which could 2204 // not handle different types. 2205 // E.g. Assume one char is 1 byte in memory and one int is 4 bytes. 2206 // void foo (int *A, char *B) { 2207 // for (unsigned i = 0; i < 1024; i++) { 2208 // A[i+2] = A[i] + 1; 2209 // B[i+2] = B[i] + 1; 2210 // } 2211 // } 2212 // 2213 // This case is currently unsafe according to the max safe distance. If we 2214 // analyze the two accesses on array B, the max safe dependence distance 2215 // is 2. Then we analyze the accesses on array A, the minimum distance needed 2216 // is 8, which is less than 2 and forbidden vectorization, But actually 2217 // both A and B could be vectorized by 2 iterations. 2218 MinDepDistBytes = 2219 std::min(static_cast<uint64_t>(MinDistance), MinDepDistBytes); 2220 2221 bool IsTrueDataDependence = (!AIsWrite && BIsWrite); 2222 uint64_t MinDepDistBytesOld = MinDepDistBytes; 2223 if (IsTrueDataDependence && EnableForwardingConflictDetection && 2224 isa<SCEVConstant>(Dist) && 2225 couldPreventStoreLoadForward(MinDistance, TypeByteSize)) { 2226 // Sanity check that we didn't update MinDepDistBytes when calling 2227 // couldPreventStoreLoadForward 2228 assert(MinDepDistBytes == MinDepDistBytesOld && 2229 "An update to MinDepDistBytes requires an update to " 2230 "MaxSafeVectorWidthInBits"); 2231 (void)MinDepDistBytesOld; 2232 return Dependence::BackwardVectorizableButPreventsForwarding; 2233 } 2234 2235 // An update to MinDepDistBytes requires an update to MaxSafeVectorWidthInBits 2236 // since there is a backwards dependency. 2237 uint64_t MaxVF = MinDepDistBytes / (TypeByteSize * *CommonStride); 2238 LLVM_DEBUG(dbgs() << "LAA: Positive min distance " << MinDistance 2239 << " with max VF = " << MaxVF << '\n'); 2240 2241 uint64_t MaxVFInBits = MaxVF * TypeByteSize * 8; 2242 if (!isa<SCEVConstant>(Dist) && MaxVFInBits < MaxTargetVectorWidthInBits) { 2243 // For non-constant distances, we checked the lower bound of the dependence 2244 // distance and the distance may be larger at runtime (and safe for 2245 // vectorization). Classify it as Unknown, so we re-try with runtime checks. 2246 return Dependence::Unknown; 2247 } 2248 2249 MaxSafeVectorWidthInBits = std::min(MaxSafeVectorWidthInBits, MaxVFInBits); 2250 return Dependence::BackwardVectorizable; 2251 } 2252 2253 bool MemoryDepChecker::areDepsSafe( 2254 DepCandidates &AccessSets, MemAccessInfoList &CheckDeps, 2255 const DenseMap<Value *, SmallVector<const Value *, 16>> 2256 &UnderlyingObjects) { 2257 2258 MinDepDistBytes = -1; 2259 SmallPtrSet<MemAccessInfo, 8> Visited; 2260 for (MemAccessInfo CurAccess : CheckDeps) { 2261 if (Visited.count(CurAccess)) 2262 continue; 2263 2264 // Get the relevant memory access set. 2265 EquivalenceClasses<MemAccessInfo>::iterator I = 2266 AccessSets.findValue(AccessSets.getLeaderValue(CurAccess)); 2267 2268 // Check accesses within this set. 2269 EquivalenceClasses<MemAccessInfo>::member_iterator AI = 2270 AccessSets.member_begin(I); 2271 EquivalenceClasses<MemAccessInfo>::member_iterator AE = 2272 AccessSets.member_end(); 2273 2274 // Check every access pair. 2275 while (AI != AE) { 2276 Visited.insert(*AI); 2277 bool AIIsWrite = AI->getInt(); 2278 // Check loads only against next equivalent class, but stores also against 2279 // other stores in the same equivalence class - to the same address. 2280 EquivalenceClasses<MemAccessInfo>::member_iterator OI = 2281 (AIIsWrite ? AI : std::next(AI)); 2282 while (OI != AE) { 2283 // Check every accessing instruction pair in program order. 2284 for (std::vector<unsigned>::iterator I1 = Accesses[*AI].begin(), 2285 I1E = Accesses[*AI].end(); I1 != I1E; ++I1) 2286 // Scan all accesses of another equivalence class, but only the next 2287 // accesses of the same equivalent class. 2288 for (std::vector<unsigned>::iterator 2289 I2 = (OI == AI ? std::next(I1) : Accesses[*OI].begin()), 2290 I2E = (OI == AI ? I1E : Accesses[*OI].end()); 2291 I2 != I2E; ++I2) { 2292 auto A = std::make_pair(&*AI, *I1); 2293 auto B = std::make_pair(&*OI, *I2); 2294 2295 assert(*I1 != *I2); 2296 if (*I1 > *I2) 2297 std::swap(A, B); 2298 2299 Dependence::DepType Type = isDependent(*A.first, A.second, *B.first, 2300 B.second, UnderlyingObjects); 2301 mergeInStatus(Dependence::isSafeForVectorization(Type)); 2302 2303 // Gather dependences unless we accumulated MaxDependences 2304 // dependences. In that case return as soon as we find the first 2305 // unsafe dependence. This puts a limit on this quadratic 2306 // algorithm. 2307 if (RecordDependences) { 2308 if (Type != Dependence::NoDep) 2309 Dependences.push_back(Dependence(A.second, B.second, Type)); 2310 2311 if (Dependences.size() >= MaxDependences) { 2312 RecordDependences = false; 2313 Dependences.clear(); 2314 LLVM_DEBUG(dbgs() 2315 << "Too many dependences, stopped recording\n"); 2316 } 2317 } 2318 if (!RecordDependences && !isSafeForVectorization()) 2319 return false; 2320 } 2321 ++OI; 2322 } 2323 ++AI; 2324 } 2325 } 2326 2327 LLVM_DEBUG(dbgs() << "Total Dependences: " << Dependences.size() << "\n"); 2328 return isSafeForVectorization(); 2329 } 2330 2331 SmallVector<Instruction *, 4> 2332 MemoryDepChecker::getInstructionsForAccess(Value *Ptr, bool IsWrite) const { 2333 MemAccessInfo Access(Ptr, IsWrite); 2334 auto &IndexVector = Accesses.find(Access)->second; 2335 2336 SmallVector<Instruction *, 4> Insts; 2337 transform(IndexVector, 2338 std::back_inserter(Insts), 2339 [&](unsigned Idx) { return this->InstMap[Idx]; }); 2340 return Insts; 2341 } 2342 2343 const char *MemoryDepChecker::Dependence::DepName[] = { 2344 "NoDep", 2345 "Unknown", 2346 "IndirectUnsafe", 2347 "Forward", 2348 "ForwardButPreventsForwarding", 2349 "Backward", 2350 "BackwardVectorizable", 2351 "BackwardVectorizableButPreventsForwarding"}; 2352 2353 void MemoryDepChecker::Dependence::print( 2354 raw_ostream &OS, unsigned Depth, 2355 const SmallVectorImpl<Instruction *> &Instrs) const { 2356 OS.indent(Depth) << DepName[Type] << ":\n"; 2357 OS.indent(Depth + 2) << *Instrs[Source] << " -> \n"; 2358 OS.indent(Depth + 2) << *Instrs[Destination] << "\n"; 2359 } 2360 2361 bool LoopAccessInfo::canAnalyzeLoop() { 2362 // We need to have a loop header. 2363 LLVM_DEBUG(dbgs() << "\nLAA: Checking a loop in '" 2364 << TheLoop->getHeader()->getParent()->getName() << "' from " 2365 << TheLoop->getLocStr() << "\n"); 2366 2367 // We can only analyze innermost loops. 2368 if (!TheLoop->isInnermost()) { 2369 LLVM_DEBUG(dbgs() << "LAA: loop is not the innermost loop\n"); 2370 recordAnalysis("NotInnerMostLoop") << "loop is not the innermost loop"; 2371 return false; 2372 } 2373 2374 // We must have a single backedge. 2375 if (TheLoop->getNumBackEdges() != 1) { 2376 LLVM_DEBUG( 2377 dbgs() << "LAA: loop control flow is not understood by analyzer\n"); 2378 recordAnalysis("CFGNotUnderstood") 2379 << "loop control flow is not understood by analyzer"; 2380 return false; 2381 } 2382 2383 // ScalarEvolution needs to be able to find the symbolic max backedge taken 2384 // count, which is an upper bound on the number of loop iterations. The loop 2385 // may execute fewer iterations, if it exits via an uncountable exit. 2386 const SCEV *ExitCount = PSE->getSymbolicMaxBackedgeTakenCount(); 2387 if (isa<SCEVCouldNotCompute>(ExitCount)) { 2388 recordAnalysis("CantComputeNumberOfIterations") 2389 << "could not determine number of loop iterations"; 2390 LLVM_DEBUG(dbgs() << "LAA: SCEV could not compute the loop exit count.\n"); 2391 return false; 2392 } 2393 2394 LLVM_DEBUG(dbgs() << "LAA: Found an analyzable loop: " 2395 << TheLoop->getHeader()->getName() << "\n"); 2396 return true; 2397 } 2398 2399 bool LoopAccessInfo::analyzeLoop(AAResults *AA, LoopInfo *LI, 2400 const TargetLibraryInfo *TLI, 2401 DominatorTree *DT) { 2402 // Holds the Load and Store instructions. 2403 SmallVector<LoadInst *, 16> Loads; 2404 SmallVector<StoreInst *, 16> Stores; 2405 SmallPtrSet<MDNode *, 8> LoopAliasScopes; 2406 2407 // Holds all the different accesses in the loop. 2408 unsigned NumReads = 0; 2409 unsigned NumReadWrites = 0; 2410 2411 bool HasComplexMemInst = false; 2412 2413 // A runtime check is only legal to insert if there are no convergent calls. 2414 HasConvergentOp = false; 2415 2416 PtrRtChecking->Pointers.clear(); 2417 PtrRtChecking->Need = false; 2418 2419 const bool IsAnnotatedParallel = TheLoop->isAnnotatedParallel(); 2420 2421 const bool EnableMemAccessVersioningOfLoop = 2422 EnableMemAccessVersioning && 2423 !TheLoop->getHeader()->getParent()->hasOptSize(); 2424 2425 // Traverse blocks in fixed RPOT order, regardless of their storage in the 2426 // loop info, as it may be arbitrary. 2427 LoopBlocksRPO RPOT(TheLoop); 2428 RPOT.perform(LI); 2429 for (BasicBlock *BB : RPOT) { 2430 // Scan the BB and collect legal loads and stores. Also detect any 2431 // convergent instructions. 2432 for (Instruction &I : *BB) { 2433 if (auto *Call = dyn_cast<CallBase>(&I)) { 2434 if (Call->isConvergent()) 2435 HasConvergentOp = true; 2436 } 2437 2438 // With both a non-vectorizable memory instruction and a convergent 2439 // operation, found in this loop, no reason to continue the search. 2440 if (HasComplexMemInst && HasConvergentOp) 2441 return false; 2442 2443 // Avoid hitting recordAnalysis multiple times. 2444 if (HasComplexMemInst) 2445 continue; 2446 2447 // Record alias scopes defined inside the loop. 2448 if (auto *Decl = dyn_cast<NoAliasScopeDeclInst>(&I)) 2449 for (Metadata *Op : Decl->getScopeList()->operands()) 2450 LoopAliasScopes.insert(cast<MDNode>(Op)); 2451 2452 // Many math library functions read the rounding mode. We will only 2453 // vectorize a loop if it contains known function calls that don't set 2454 // the flag. Therefore, it is safe to ignore this read from memory. 2455 auto *Call = dyn_cast<CallInst>(&I); 2456 if (Call && getVectorIntrinsicIDForCall(Call, TLI)) 2457 continue; 2458 2459 // If this is a load, save it. If this instruction can read from memory 2460 // but is not a load, then we quit. Notice that we don't handle function 2461 // calls that read or write. 2462 if (I.mayReadFromMemory()) { 2463 // If the function has an explicit vectorized counterpart, we can safely 2464 // assume that it can be vectorized. 2465 if (Call && !Call->isNoBuiltin() && Call->getCalledFunction() && 2466 !VFDatabase::getMappings(*Call).empty()) 2467 continue; 2468 2469 auto *Ld = dyn_cast<LoadInst>(&I); 2470 if (!Ld) { 2471 recordAnalysis("CantVectorizeInstruction", Ld) 2472 << "instruction cannot be vectorized"; 2473 HasComplexMemInst = true; 2474 continue; 2475 } 2476 if (!Ld->isSimple() && !IsAnnotatedParallel) { 2477 recordAnalysis("NonSimpleLoad", Ld) 2478 << "read with atomic ordering or volatile read"; 2479 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple load.\n"); 2480 HasComplexMemInst = true; 2481 continue; 2482 } 2483 NumLoads++; 2484 Loads.push_back(Ld); 2485 DepChecker->addAccess(Ld); 2486 if (EnableMemAccessVersioningOfLoop) 2487 collectStridedAccess(Ld); 2488 continue; 2489 } 2490 2491 // Save 'store' instructions. Abort if other instructions write to memory. 2492 if (I.mayWriteToMemory()) { 2493 auto *St = dyn_cast<StoreInst>(&I); 2494 if (!St) { 2495 recordAnalysis("CantVectorizeInstruction", St) 2496 << "instruction cannot be vectorized"; 2497 HasComplexMemInst = true; 2498 continue; 2499 } 2500 if (!St->isSimple() && !IsAnnotatedParallel) { 2501 recordAnalysis("NonSimpleStore", St) 2502 << "write with atomic ordering or volatile write"; 2503 LLVM_DEBUG(dbgs() << "LAA: Found a non-simple store.\n"); 2504 HasComplexMemInst = true; 2505 continue; 2506 } 2507 NumStores++; 2508 Stores.push_back(St); 2509 DepChecker->addAccess(St); 2510 if (EnableMemAccessVersioningOfLoop) 2511 collectStridedAccess(St); 2512 } 2513 } // Next instr. 2514 } // Next block. 2515 2516 if (HasComplexMemInst) 2517 return false; 2518 2519 // Now we have two lists that hold the loads and the stores. 2520 // Next, we find the pointers that they use. 2521 2522 // Check if we see any stores. If there are no stores, then we don't 2523 // care if the pointers are *restrict*. 2524 if (!Stores.size()) { 2525 LLVM_DEBUG(dbgs() << "LAA: Found a read-only loop!\n"); 2526 return true; 2527 } 2528 2529 MemoryDepChecker::DepCandidates DependentAccesses; 2530 AccessAnalysis Accesses(TheLoop, AA, LI, DependentAccesses, *PSE, 2531 LoopAliasScopes); 2532 2533 // Holds the analyzed pointers. We don't want to call getUnderlyingObjects 2534 // multiple times on the same object. If the ptr is accessed twice, once 2535 // for read and once for write, it will only appear once (on the write 2536 // list). This is okay, since we are going to check for conflicts between 2537 // writes and between reads and writes, but not between reads and reads. 2538 SmallSet<std::pair<Value *, Type *>, 16> Seen; 2539 2540 // Record uniform store addresses to identify if we have multiple stores 2541 // to the same address. 2542 SmallPtrSet<Value *, 16> UniformStores; 2543 2544 for (StoreInst *ST : Stores) { 2545 Value *Ptr = ST->getPointerOperand(); 2546 2547 if (isInvariant(Ptr)) { 2548 // Record store instructions to loop invariant addresses 2549 StoresToInvariantAddresses.push_back(ST); 2550 HasStoreStoreDependenceInvolvingLoopInvariantAddress |= 2551 !UniformStores.insert(Ptr).second; 2552 } 2553 2554 // If we did *not* see this pointer before, insert it to the read-write 2555 // list. At this phase it is only a 'write' list. 2556 Type *AccessTy = getLoadStoreType(ST); 2557 if (Seen.insert({Ptr, AccessTy}).second) { 2558 ++NumReadWrites; 2559 2560 MemoryLocation Loc = MemoryLocation::get(ST); 2561 // The TBAA metadata could have a control dependency on the predication 2562 // condition, so we cannot rely on it when determining whether or not we 2563 // need runtime pointer checks. 2564 if (blockNeedsPredication(ST->getParent(), TheLoop, DT)) 2565 Loc.AATags.TBAA = nullptr; 2566 2567 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2568 [&Accesses, AccessTy, Loc](Value *Ptr) { 2569 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2570 Accesses.addStore(NewLoc, AccessTy); 2571 }); 2572 } 2573 } 2574 2575 if (IsAnnotatedParallel) { 2576 LLVM_DEBUG( 2577 dbgs() << "LAA: A loop annotated parallel, ignore memory dependency " 2578 << "checks.\n"); 2579 return true; 2580 } 2581 2582 for (LoadInst *LD : Loads) { 2583 Value *Ptr = LD->getPointerOperand(); 2584 // If we did *not* see this pointer before, insert it to the 2585 // read list. If we *did* see it before, then it is already in 2586 // the read-write list. This allows us to vectorize expressions 2587 // such as A[i] += x; Because the address of A[i] is a read-write 2588 // pointer. This only works if the index of A[i] is consecutive. 2589 // If the address of i is unknown (for example A[B[i]]) then we may 2590 // read a few words, modify, and write a few words, and some of the 2591 // words may be written to the same address. 2592 bool IsReadOnlyPtr = false; 2593 Type *AccessTy = getLoadStoreType(LD); 2594 if (Seen.insert({Ptr, AccessTy}).second || 2595 !getPtrStride(*PSE, LD->getType(), Ptr, TheLoop, SymbolicStrides).value_or(0)) { 2596 ++NumReads; 2597 IsReadOnlyPtr = true; 2598 } 2599 2600 // See if there is an unsafe dependency between a load to a uniform address and 2601 // store to the same uniform address. 2602 if (UniformStores.count(Ptr)) { 2603 LLVM_DEBUG(dbgs() << "LAA: Found an unsafe dependency between a uniform " 2604 "load and uniform store to the same address!\n"); 2605 HasLoadStoreDependenceInvolvingLoopInvariantAddress = true; 2606 } 2607 2608 MemoryLocation Loc = MemoryLocation::get(LD); 2609 // The TBAA metadata could have a control dependency on the predication 2610 // condition, so we cannot rely on it when determining whether or not we 2611 // need runtime pointer checks. 2612 if (blockNeedsPredication(LD->getParent(), TheLoop, DT)) 2613 Loc.AATags.TBAA = nullptr; 2614 2615 visitPointers(const_cast<Value *>(Loc.Ptr), *TheLoop, 2616 [&Accesses, AccessTy, Loc, IsReadOnlyPtr](Value *Ptr) { 2617 MemoryLocation NewLoc = Loc.getWithNewPtr(Ptr); 2618 Accesses.addLoad(NewLoc, AccessTy, IsReadOnlyPtr); 2619 }); 2620 } 2621 2622 // If we write (or read-write) to a single destination and there are no 2623 // other reads in this loop then is it safe to vectorize. 2624 if (NumReadWrites == 1 && NumReads == 0) { 2625 LLVM_DEBUG(dbgs() << "LAA: Found a write-only loop!\n"); 2626 return true; 2627 } 2628 2629 // Build dependence sets and check whether we need a runtime pointer bounds 2630 // check. 2631 Accesses.buildDependenceSets(); 2632 2633 // Find pointers with computable bounds. We are going to use this information 2634 // to place a runtime bound check. 2635 Value *UncomputablePtr = nullptr; 2636 bool CanDoRTIfNeeded = 2637 Accesses.canCheckPtrAtRT(*PtrRtChecking, PSE->getSE(), TheLoop, 2638 SymbolicStrides, UncomputablePtr, false); 2639 if (!CanDoRTIfNeeded) { 2640 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2641 recordAnalysis("CantIdentifyArrayBounds", I) 2642 << "cannot identify array bounds"; 2643 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because we can't find " 2644 << "the array bounds.\n"); 2645 return false; 2646 } 2647 2648 LLVM_DEBUG( 2649 dbgs() << "LAA: May be able to perform a memory runtime check if needed.\n"); 2650 2651 bool DepsAreSafe = true; 2652 if (Accesses.isDependencyCheckNeeded()) { 2653 LLVM_DEBUG(dbgs() << "LAA: Checking memory dependencies\n"); 2654 DepsAreSafe = DepChecker->areDepsSafe(DependentAccesses, 2655 Accesses.getDependenciesToCheck(), 2656 Accesses.getUnderlyingObjects()); 2657 2658 if (!DepsAreSafe && DepChecker->shouldRetryWithRuntimeCheck()) { 2659 LLVM_DEBUG(dbgs() << "LAA: Retrying with memory checks\n"); 2660 2661 // Clear the dependency checks. We assume they are not needed. 2662 Accesses.resetDepChecks(*DepChecker); 2663 2664 PtrRtChecking->reset(); 2665 PtrRtChecking->Need = true; 2666 2667 auto *SE = PSE->getSE(); 2668 UncomputablePtr = nullptr; 2669 CanDoRTIfNeeded = Accesses.canCheckPtrAtRT( 2670 *PtrRtChecking, SE, TheLoop, SymbolicStrides, UncomputablePtr, true); 2671 2672 // Check that we found the bounds for the pointer. 2673 if (!CanDoRTIfNeeded) { 2674 auto *I = dyn_cast_or_null<Instruction>(UncomputablePtr); 2675 recordAnalysis("CantCheckMemDepsAtRunTime", I) 2676 << "cannot check memory dependencies at runtime"; 2677 LLVM_DEBUG(dbgs() << "LAA: Can't vectorize with memory checks\n"); 2678 return false; 2679 } 2680 DepsAreSafe = true; 2681 } 2682 } 2683 2684 if (HasConvergentOp) { 2685 recordAnalysis("CantInsertRuntimeCheckWithConvergent") 2686 << "cannot add control dependency to convergent operation"; 2687 LLVM_DEBUG(dbgs() << "LAA: We can't vectorize because a runtime check " 2688 "would be needed with a convergent operation\n"); 2689 return false; 2690 } 2691 2692 if (DepsAreSafe) { 2693 LLVM_DEBUG( 2694 dbgs() << "LAA: No unsafe dependent memory operations in loop. We" 2695 << (PtrRtChecking->Need ? "" : " don't") 2696 << " need runtime memory checks.\n"); 2697 return true; 2698 } 2699 2700 emitUnsafeDependenceRemark(); 2701 return false; 2702 } 2703 2704 void LoopAccessInfo::emitUnsafeDependenceRemark() { 2705 const auto *Deps = getDepChecker().getDependences(); 2706 if (!Deps) 2707 return; 2708 const auto *Found = 2709 llvm::find_if(*Deps, [](const MemoryDepChecker::Dependence &D) { 2710 return MemoryDepChecker::Dependence::isSafeForVectorization(D.Type) != 2711 MemoryDepChecker::VectorizationSafetyStatus::Safe; 2712 }); 2713 if (Found == Deps->end()) 2714 return; 2715 MemoryDepChecker::Dependence Dep = *Found; 2716 2717 LLVM_DEBUG(dbgs() << "LAA: unsafe dependent memory operations in loop\n"); 2718 2719 // Emit remark for first unsafe dependence 2720 bool HasForcedDistribution = false; 2721 std::optional<const MDOperand *> Value = 2722 findStringMetadataForLoop(TheLoop, "llvm.loop.distribute.enable"); 2723 if (Value) { 2724 const MDOperand *Op = *Value; 2725 assert(Op && mdconst::hasa<ConstantInt>(*Op) && "invalid metadata"); 2726 HasForcedDistribution = mdconst::extract<ConstantInt>(*Op)->getZExtValue(); 2727 } 2728 2729 const std::string Info = 2730 HasForcedDistribution 2731 ? "unsafe dependent memory operations in loop." 2732 : "unsafe dependent memory operations in loop. Use " 2733 "#pragma clang loop distribute(enable) to allow loop distribution " 2734 "to attempt to isolate the offending operations into a separate " 2735 "loop"; 2736 OptimizationRemarkAnalysis &R = 2737 recordAnalysis("UnsafeDep", Dep.getDestination(getDepChecker())) << Info; 2738 2739 switch (Dep.Type) { 2740 case MemoryDepChecker::Dependence::NoDep: 2741 case MemoryDepChecker::Dependence::Forward: 2742 case MemoryDepChecker::Dependence::BackwardVectorizable: 2743 llvm_unreachable("Unexpected dependence"); 2744 case MemoryDepChecker::Dependence::Backward: 2745 R << "\nBackward loop carried data dependence."; 2746 break; 2747 case MemoryDepChecker::Dependence::ForwardButPreventsForwarding: 2748 R << "\nForward loop carried data dependence that prevents " 2749 "store-to-load forwarding."; 2750 break; 2751 case MemoryDepChecker::Dependence::BackwardVectorizableButPreventsForwarding: 2752 R << "\nBackward loop carried data dependence that prevents " 2753 "store-to-load forwarding."; 2754 break; 2755 case MemoryDepChecker::Dependence::IndirectUnsafe: 2756 R << "\nUnsafe indirect dependence."; 2757 break; 2758 case MemoryDepChecker::Dependence::Unknown: 2759 R << "\nUnknown data dependence."; 2760 break; 2761 } 2762 2763 if (Instruction *I = Dep.getSource(getDepChecker())) { 2764 DebugLoc SourceLoc = I->getDebugLoc(); 2765 if (auto *DD = dyn_cast_or_null<Instruction>(getPointerOperand(I))) 2766 SourceLoc = DD->getDebugLoc(); 2767 if (SourceLoc) 2768 R << " Memory location is the same as accessed at " 2769 << ore::NV("Location", SourceLoc); 2770 } 2771 } 2772 2773 bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB, Loop *TheLoop, 2774 DominatorTree *DT) { 2775 assert(TheLoop->contains(BB) && "Unknown block used"); 2776 2777 // Blocks that do not dominate the latch need predication. 2778 BasicBlock* Latch = TheLoop->getLoopLatch(); 2779 return !DT->dominates(BB, Latch); 2780 } 2781 2782 OptimizationRemarkAnalysis &LoopAccessInfo::recordAnalysis(StringRef RemarkName, 2783 Instruction *I) { 2784 assert(!Report && "Multiple reports generated"); 2785 2786 Value *CodeRegion = TheLoop->getHeader(); 2787 DebugLoc DL = TheLoop->getStartLoc(); 2788 2789 if (I) { 2790 CodeRegion = I->getParent(); 2791 // If there is no debug location attached to the instruction, revert back to 2792 // using the loop's. 2793 if (I->getDebugLoc()) 2794 DL = I->getDebugLoc(); 2795 } 2796 2797 Report = std::make_unique<OptimizationRemarkAnalysis>(DEBUG_TYPE, RemarkName, DL, 2798 CodeRegion); 2799 return *Report; 2800 } 2801 2802 bool LoopAccessInfo::isInvariant(Value *V) const { 2803 auto *SE = PSE->getSE(); 2804 // TODO: Is this really what we want? Even without FP SCEV, we may want some 2805 // trivially loop-invariant FP values to be considered invariant. 2806 if (!SE->isSCEVable(V->getType())) 2807 return false; 2808 const SCEV *S = SE->getSCEV(V); 2809 return SE->isLoopInvariant(S, TheLoop); 2810 } 2811 2812 /// Find the operand of the GEP that should be checked for consecutive 2813 /// stores. This ignores trailing indices that have no effect on the final 2814 /// pointer. 2815 static unsigned getGEPInductionOperand(const GetElementPtrInst *Gep) { 2816 const DataLayout &DL = Gep->getDataLayout(); 2817 unsigned LastOperand = Gep->getNumOperands() - 1; 2818 TypeSize GEPAllocSize = DL.getTypeAllocSize(Gep->getResultElementType()); 2819 2820 // Walk backwards and try to peel off zeros. 2821 while (LastOperand > 1 && match(Gep->getOperand(LastOperand), m_Zero())) { 2822 // Find the type we're currently indexing into. 2823 gep_type_iterator GEPTI = gep_type_begin(Gep); 2824 std::advance(GEPTI, LastOperand - 2); 2825 2826 // If it's a type with the same allocation size as the result of the GEP we 2827 // can peel off the zero index. 2828 TypeSize ElemSize = GEPTI.isStruct() 2829 ? DL.getTypeAllocSize(GEPTI.getIndexedType()) 2830 : GEPTI.getSequentialElementStride(DL); 2831 if (ElemSize != GEPAllocSize) 2832 break; 2833 --LastOperand; 2834 } 2835 2836 return LastOperand; 2837 } 2838 2839 /// If the argument is a GEP, then returns the operand identified by 2840 /// getGEPInductionOperand. However, if there is some other non-loop-invariant 2841 /// operand, it returns that instead. 2842 static Value *stripGetElementPtr(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2843 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 2844 if (!GEP) 2845 return Ptr; 2846 2847 unsigned InductionOperand = getGEPInductionOperand(GEP); 2848 2849 // Check that all of the gep indices are uniform except for our induction 2850 // operand. 2851 for (unsigned I = 0, E = GEP->getNumOperands(); I != E; ++I) 2852 if (I != InductionOperand && 2853 !SE->isLoopInvariant(SE->getSCEV(GEP->getOperand(I)), Lp)) 2854 return Ptr; 2855 return GEP->getOperand(InductionOperand); 2856 } 2857 2858 /// Get the stride of a pointer access in a loop. Looks for symbolic 2859 /// strides "a[i*stride]". Returns the symbolic stride, or null otherwise. 2860 static const SCEV *getStrideFromPointer(Value *Ptr, ScalarEvolution *SE, Loop *Lp) { 2861 auto *PtrTy = dyn_cast<PointerType>(Ptr->getType()); 2862 if (!PtrTy || PtrTy->isAggregateType()) 2863 return nullptr; 2864 2865 // Try to remove a gep instruction to make the pointer (actually index at this 2866 // point) easier analyzable. If OrigPtr is equal to Ptr we are analyzing the 2867 // pointer, otherwise, we are analyzing the index. 2868 Value *OrigPtr = Ptr; 2869 2870 // The size of the pointer access. 2871 int64_t PtrAccessSize = 1; 2872 2873 Ptr = stripGetElementPtr(Ptr, SE, Lp); 2874 const SCEV *V = SE->getSCEV(Ptr); 2875 2876 if (Ptr != OrigPtr) 2877 // Strip off casts. 2878 while (const SCEVIntegralCastExpr *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2879 V = C->getOperand(); 2880 2881 const SCEVAddRecExpr *S = dyn_cast<SCEVAddRecExpr>(V); 2882 if (!S) 2883 return nullptr; 2884 2885 // If the pointer is invariant then there is no stride and it makes no 2886 // sense to add it here. 2887 if (Lp != S->getLoop()) 2888 return nullptr; 2889 2890 V = S->getStepRecurrence(*SE); 2891 if (!V) 2892 return nullptr; 2893 2894 // Strip off the size of access multiplication if we are still analyzing the 2895 // pointer. 2896 if (OrigPtr == Ptr) { 2897 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(V)) { 2898 if (M->getOperand(0)->getSCEVType() != scConstant) 2899 return nullptr; 2900 2901 const APInt &APStepVal = cast<SCEVConstant>(M->getOperand(0))->getAPInt(); 2902 2903 // Huge step value - give up. 2904 if (APStepVal.getBitWidth() > 64) 2905 return nullptr; 2906 2907 int64_t StepVal = APStepVal.getSExtValue(); 2908 if (PtrAccessSize != StepVal) 2909 return nullptr; 2910 V = M->getOperand(1); 2911 } 2912 } 2913 2914 // Note that the restriction after this loop invariant check are only 2915 // profitability restrictions. 2916 if (!SE->isLoopInvariant(V, Lp)) 2917 return nullptr; 2918 2919 // Look for the loop invariant symbolic value. 2920 if (isa<SCEVUnknown>(V)) 2921 return V; 2922 2923 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(V)) 2924 if (isa<SCEVUnknown>(C->getOperand())) 2925 return V; 2926 2927 return nullptr; 2928 } 2929 2930 void LoopAccessInfo::collectStridedAccess(Value *MemAccess) { 2931 Value *Ptr = getLoadStorePointerOperand(MemAccess); 2932 if (!Ptr) 2933 return; 2934 2935 // Note: getStrideFromPointer is a *profitability* heuristic. We 2936 // could broaden the scope of values returned here - to anything 2937 // which happens to be loop invariant and contributes to the 2938 // computation of an interesting IV - but we chose not to as we 2939 // don't have a cost model here, and broadening the scope exposes 2940 // far too many unprofitable cases. 2941 const SCEV *StrideExpr = getStrideFromPointer(Ptr, PSE->getSE(), TheLoop); 2942 if (!StrideExpr) 2943 return; 2944 2945 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that is a candidate for " 2946 "versioning:"); 2947 LLVM_DEBUG(dbgs() << " Ptr: " << *Ptr << " Stride: " << *StrideExpr << "\n"); 2948 2949 if (!SpeculateUnitStride) { 2950 LLVM_DEBUG(dbgs() << " Chose not to due to -laa-speculate-unit-stride\n"); 2951 return; 2952 } 2953 2954 // Avoid adding the "Stride == 1" predicate when we know that 2955 // Stride >= Trip-Count. Such a predicate will effectively optimize a single 2956 // or zero iteration loop, as Trip-Count <= Stride == 1. 2957 // 2958 // TODO: We are currently not making a very informed decision on when it is 2959 // beneficial to apply stride versioning. It might make more sense that the 2960 // users of this analysis (such as the vectorizer) will trigger it, based on 2961 // their specific cost considerations; For example, in cases where stride 2962 // versioning does not help resolving memory accesses/dependences, the 2963 // vectorizer should evaluate the cost of the runtime test, and the benefit 2964 // of various possible stride specializations, considering the alternatives 2965 // of using gather/scatters (if available). 2966 2967 const SCEV *MaxBTC = PSE->getSymbolicMaxBackedgeTakenCount(); 2968 2969 // Match the types so we can compare the stride and the MaxBTC. 2970 // The Stride can be positive/negative, so we sign extend Stride; 2971 // The backedgeTakenCount is non-negative, so we zero extend MaxBTC. 2972 const DataLayout &DL = TheLoop->getHeader()->getDataLayout(); 2973 uint64_t StrideTypeSizeBits = DL.getTypeSizeInBits(StrideExpr->getType()); 2974 uint64_t BETypeSizeBits = DL.getTypeSizeInBits(MaxBTC->getType()); 2975 const SCEV *CastedStride = StrideExpr; 2976 const SCEV *CastedBECount = MaxBTC; 2977 ScalarEvolution *SE = PSE->getSE(); 2978 if (BETypeSizeBits >= StrideTypeSizeBits) 2979 CastedStride = SE->getNoopOrSignExtend(StrideExpr, MaxBTC->getType()); 2980 else 2981 CastedBECount = SE->getZeroExtendExpr(MaxBTC, StrideExpr->getType()); 2982 const SCEV *StrideMinusBETaken = SE->getMinusSCEV(CastedStride, CastedBECount); 2983 // Since TripCount == BackEdgeTakenCount + 1, checking: 2984 // "Stride >= TripCount" is equivalent to checking: 2985 // Stride - MaxBTC> 0 2986 if (SE->isKnownPositive(StrideMinusBETaken)) { 2987 LLVM_DEBUG( 2988 dbgs() << "LAA: Stride>=TripCount; No point in versioning as the " 2989 "Stride==1 predicate will imply that the loop executes " 2990 "at most once.\n"); 2991 return; 2992 } 2993 LLVM_DEBUG(dbgs() << "LAA: Found a strided access that we can version.\n"); 2994 2995 // Strip back off the integer cast, and check that our result is a 2996 // SCEVUnknown as we expect. 2997 const SCEV *StrideBase = StrideExpr; 2998 if (const auto *C = dyn_cast<SCEVIntegralCastExpr>(StrideBase)) 2999 StrideBase = C->getOperand(); 3000 SymbolicStrides[Ptr] = cast<SCEVUnknown>(StrideBase); 3001 } 3002 3003 LoopAccessInfo::LoopAccessInfo(Loop *L, ScalarEvolution *SE, 3004 const TargetTransformInfo *TTI, 3005 const TargetLibraryInfo *TLI, AAResults *AA, 3006 DominatorTree *DT, LoopInfo *LI) 3007 : PSE(std::make_unique<PredicatedScalarEvolution>(*SE, *L)), 3008 PtrRtChecking(nullptr), TheLoop(L) { 3009 unsigned MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3010 if (TTI) { 3011 TypeSize FixedWidth = 3012 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector); 3013 if (FixedWidth.isNonZero()) { 3014 // Scale the vector width by 2 as rough estimate to also consider 3015 // interleaving. 3016 MaxTargetVectorWidthInBits = FixedWidth.getFixedValue() * 2; 3017 } 3018 3019 TypeSize ScalableWidth = 3020 TTI->getRegisterBitWidth(TargetTransformInfo::RGK_ScalableVector); 3021 if (ScalableWidth.isNonZero()) 3022 MaxTargetVectorWidthInBits = std::numeric_limits<unsigned>::max(); 3023 } 3024 DepChecker = std::make_unique<MemoryDepChecker>(*PSE, L, SymbolicStrides, 3025 MaxTargetVectorWidthInBits); 3026 PtrRtChecking = std::make_unique<RuntimePointerChecking>(*DepChecker, SE); 3027 if (canAnalyzeLoop()) 3028 CanVecMem = analyzeLoop(AA, LI, TLI, DT); 3029 } 3030 3031 void LoopAccessInfo::print(raw_ostream &OS, unsigned Depth) const { 3032 if (CanVecMem) { 3033 OS.indent(Depth) << "Memory dependences are safe"; 3034 const MemoryDepChecker &DC = getDepChecker(); 3035 if (!DC.isSafeForAnyVectorWidth()) 3036 OS << " with a maximum safe vector width of " 3037 << DC.getMaxSafeVectorWidthInBits() << " bits"; 3038 if (PtrRtChecking->Need) 3039 OS << " with run-time checks"; 3040 OS << "\n"; 3041 } 3042 3043 if (HasConvergentOp) 3044 OS.indent(Depth) << "Has convergent operation in loop\n"; 3045 3046 if (Report) 3047 OS.indent(Depth) << "Report: " << Report->getMsg() << "\n"; 3048 3049 if (auto *Dependences = DepChecker->getDependences()) { 3050 OS.indent(Depth) << "Dependences:\n"; 3051 for (const auto &Dep : *Dependences) { 3052 Dep.print(OS, Depth + 2, DepChecker->getMemoryInstructions()); 3053 OS << "\n"; 3054 } 3055 } else 3056 OS.indent(Depth) << "Too many dependences, not recorded\n"; 3057 3058 // List the pair of accesses need run-time checks to prove independence. 3059 PtrRtChecking->print(OS, Depth); 3060 OS << "\n"; 3061 3062 OS.indent(Depth) 3063 << "Non vectorizable stores to invariant address were " 3064 << (HasStoreStoreDependenceInvolvingLoopInvariantAddress || 3065 HasLoadStoreDependenceInvolvingLoopInvariantAddress 3066 ? "" 3067 : "not ") 3068 << "found in loop.\n"; 3069 3070 OS.indent(Depth) << "SCEV assumptions:\n"; 3071 PSE->getPredicate().print(OS, Depth); 3072 3073 OS << "\n"; 3074 3075 OS.indent(Depth) << "Expressions re-written:\n"; 3076 PSE->print(OS, Depth); 3077 } 3078 3079 const LoopAccessInfo &LoopAccessInfoManager::getInfo(Loop &L) { 3080 auto [It, Inserted] = LoopAccessInfoMap.insert({&L, nullptr}); 3081 3082 if (Inserted) 3083 It->second = 3084 std::make_unique<LoopAccessInfo>(&L, &SE, TTI, TLI, &AA, &DT, &LI); 3085 3086 return *It->second; 3087 } 3088 void LoopAccessInfoManager::clear() { 3089 SmallVector<Loop *> ToRemove; 3090 // Collect LoopAccessInfo entries that may keep references to IR outside the 3091 // analyzed loop or SCEVs that may have been modified or invalidated. At the 3092 // moment, that is loops requiring memory or SCEV runtime checks, as those cache 3093 // SCEVs, e.g. for pointer expressions. 3094 for (const auto &[L, LAI] : LoopAccessInfoMap) { 3095 if (LAI->getRuntimePointerChecking()->getChecks().empty() && 3096 LAI->getPSE().getPredicate().isAlwaysTrue()) 3097 continue; 3098 ToRemove.push_back(L); 3099 } 3100 3101 for (Loop *L : ToRemove) 3102 LoopAccessInfoMap.erase(L); 3103 } 3104 3105 bool LoopAccessInfoManager::invalidate( 3106 Function &F, const PreservedAnalyses &PA, 3107 FunctionAnalysisManager::Invalidator &Inv) { 3108 // Check whether our analysis is preserved. 3109 auto PAC = PA.getChecker<LoopAccessAnalysis>(); 3110 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>()) 3111 // If not, give up now. 3112 return true; 3113 3114 // Check whether the analyses we depend on became invalid for any reason. 3115 // Skip checking TargetLibraryAnalysis as it is immutable and can't become 3116 // invalid. 3117 return Inv.invalidate<AAManager>(F, PA) || 3118 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) || 3119 Inv.invalidate<LoopAnalysis>(F, PA) || 3120 Inv.invalidate<DominatorTreeAnalysis>(F, PA); 3121 } 3122 3123 LoopAccessInfoManager LoopAccessAnalysis::run(Function &F, 3124 FunctionAnalysisManager &FAM) { 3125 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F); 3126 auto &AA = FAM.getResult<AAManager>(F); 3127 auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); 3128 auto &LI = FAM.getResult<LoopAnalysis>(F); 3129 auto &TTI = FAM.getResult<TargetIRAnalysis>(F); 3130 auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); 3131 return LoopAccessInfoManager(SE, AA, DT, LI, &TTI, &TLI); 3132 } 3133 3134 AnalysisKey LoopAccessAnalysis::Key; 3135