xref: /llvm-project/llvm/lib/Analysis/InstructionSimplify.cpp (revision c31ac810910ac87531de636ea508abec6e29e8ff)
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/CmpInstAnalysis.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/InstSimplifyFolder.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/IR/Statepoint.h"
43 #include "llvm/Support/KnownBits.h"
44 #include <algorithm>
45 #include <optional>
46 using namespace llvm;
47 using namespace llvm::PatternMatch;
48 
49 #define DEBUG_TYPE "instsimplify"
50 
51 enum { RecursionLimit = 3 };
52 
53 STATISTIC(NumExpand, "Number of expansions");
54 STATISTIC(NumReassoc, "Number of reassociations");
55 
56 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &,
57                               unsigned);
58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
60                              const SimplifyQuery &, unsigned);
61 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
62                             unsigned);
63 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
64                             const SimplifyQuery &, unsigned);
65 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &,
66                               unsigned);
67 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
68                                const SimplifyQuery &Q, unsigned MaxRecurse);
69 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
70 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &,
71                               unsigned);
72 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &,
73                                unsigned);
74 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>,
75                               GEPNoWrapFlags, const SimplifyQuery &, unsigned);
76 static Value *simplifySelectInst(Value *, Value *, Value *,
77                                  const SimplifyQuery &, unsigned);
78 static Value *simplifyInstructionWithOperands(Instruction *I,
79                                               ArrayRef<Value *> NewOps,
80                                               const SimplifyQuery &SQ,
81                                               unsigned MaxRecurse);
82 
83 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal,
84                                      Value *FalseVal) {
85   BinaryOperator::BinaryOps BinOpCode;
86   if (auto *BO = dyn_cast<BinaryOperator>(Cond))
87     BinOpCode = BO->getOpcode();
88   else
89     return nullptr;
90 
91   CmpInst::Predicate ExpectedPred;
92   if (BinOpCode == BinaryOperator::Or) {
93     ExpectedPred = ICmpInst::ICMP_NE;
94   } else if (BinOpCode == BinaryOperator::And) {
95     ExpectedPred = ICmpInst::ICMP_EQ;
96   } else
97     return nullptr;
98 
99   // %A = icmp eq %TV, %FV
100   // %B = icmp eq %X, %Y (and one of these is a select operand)
101   // %C = and %A, %B
102   // %D = select %C, %TV, %FV
103   // -->
104   // %FV
105 
106   // %A = icmp ne %TV, %FV
107   // %B = icmp ne %X, %Y (and one of these is a select operand)
108   // %C = or %A, %B
109   // %D = select %C, %TV, %FV
110   // -->
111   // %TV
112   Value *X, *Y;
113   if (!match(Cond,
114              m_c_BinOp(m_c_SpecificICmp(ExpectedPred, m_Specific(TrueVal),
115                                         m_Specific(FalseVal)),
116                        m_SpecificICmp(ExpectedPred, m_Value(X), m_Value(Y)))))
117     return nullptr;
118 
119   if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal)
120     return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal;
121 
122   return nullptr;
123 }
124 
125 /// For a boolean type or a vector of boolean type, return false or a vector
126 /// with every element false.
127 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); }
128 
129 /// For a boolean type or a vector of boolean type, return true or a vector
130 /// with every element true.
131 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); }
132 
133 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
134 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
135                           Value *RHS) {
136   CmpInst *Cmp = dyn_cast<CmpInst>(V);
137   if (!Cmp)
138     return false;
139   CmpInst::Predicate CPred = Cmp->getPredicate();
140   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
141   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
142     return true;
143   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
144          CRHS == LHS;
145 }
146 
147 /// Simplify comparison with true or false branch of select:
148 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
149 ///  %cmp = icmp sle i32 %sel, %rhs
150 /// Compose new comparison by substituting %sel with either %tv or %fv
151 /// and see if it simplifies.
152 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS,
153                                  Value *RHS, Value *Cond,
154                                  const SimplifyQuery &Q, unsigned MaxRecurse,
155                                  Constant *TrueOrFalse) {
156   Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
157   if (SimplifiedCmp == Cond) {
158     // %cmp simplified to the select condition (%cond).
159     return TrueOrFalse;
160   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
161     // It didn't simplify. However, if composed comparison is equivalent
162     // to the select condition (%cond) then we can replace it.
163     return TrueOrFalse;
164   }
165   return SimplifiedCmp;
166 }
167 
168 /// Simplify comparison with true branch of select
169 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS,
170                                      Value *RHS, Value *Cond,
171                                      const SimplifyQuery &Q,
172                                      unsigned MaxRecurse) {
173   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
174                             getTrue(Cond->getType()));
175 }
176 
177 /// Simplify comparison with false branch of select
178 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS,
179                                       Value *RHS, Value *Cond,
180                                       const SimplifyQuery &Q,
181                                       unsigned MaxRecurse) {
182   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
183                             getFalse(Cond->getType()));
184 }
185 
186 /// We know comparison with both branches of select can be simplified, but they
187 /// are not equal. This routine handles some logical simplifications.
188 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
189                                                Value *Cond,
190                                                const SimplifyQuery &Q,
191                                                unsigned MaxRecurse) {
192   // If the false value simplified to false, then the result of the compare
193   // is equal to "Cond && TCmp".  This also catches the case when the false
194   // value simplified to false and the true value to true, returning "Cond".
195   // Folding select to and/or isn't poison-safe in general; impliesPoison
196   // checks whether folding it does not convert a well-defined value into
197   // poison.
198   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
199     if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse))
200       return V;
201   // If the true value simplified to true, then the result of the compare
202   // is equal to "Cond || FCmp".
203   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
204     if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse))
205       return V;
206   // Finally, if the false value simplified to true and the true value to
207   // false, then the result of the compare is equal to "!Cond".
208   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
209     if (Value *V = simplifyXorInst(
210             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
211       return V;
212   return nullptr;
213 }
214 
215 /// Does the given value dominate the specified phi node?
216 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
217   Instruction *I = dyn_cast<Instruction>(V);
218   if (!I)
219     // Arguments and constants dominate all instructions.
220     return true;
221 
222   // If we have a DominatorTree then do a precise test.
223   if (DT)
224     return DT->dominates(I, P);
225 
226   // Otherwise, if the instruction is in the entry block and is not an invoke,
227   // then it obviously dominates all phi nodes.
228   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
229       !isa<CallBrInst>(I))
230     return true;
231 
232   return false;
233 }
234 
235 /// Try to simplify a binary operator of form "V op OtherOp" where V is
236 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
237 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
238 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
239                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
240                           const SimplifyQuery &Q, unsigned MaxRecurse) {
241   auto *B = dyn_cast<BinaryOperator>(V);
242   if (!B || B->getOpcode() != OpcodeToExpand)
243     return nullptr;
244   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
245   Value *L =
246       simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse);
247   if (!L)
248     return nullptr;
249   Value *R =
250       simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse);
251   if (!R)
252     return nullptr;
253 
254   // Does the expanded pair of binops simplify to the existing binop?
255   if ((L == B0 && R == B1) ||
256       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
257     ++NumExpand;
258     return B;
259   }
260 
261   // Otherwise, return "L op' R" if it simplifies.
262   Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
263   if (!S)
264     return nullptr;
265 
266   ++NumExpand;
267   return S;
268 }
269 
270 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
271 /// distributing op over op'.
272 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L,
273                                      Value *R,
274                                      Instruction::BinaryOps OpcodeToExpand,
275                                      const SimplifyQuery &Q,
276                                      unsigned MaxRecurse) {
277   // Recursion is always used, so bail out at once if we already hit the limit.
278   if (!MaxRecurse--)
279     return nullptr;
280 
281   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
282     return V;
283   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
284     return V;
285   return nullptr;
286 }
287 
288 /// Generic simplifications for associative binary operations.
289 /// Returns the simpler value, or null if none was found.
290 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
291                                        Value *LHS, Value *RHS,
292                                        const SimplifyQuery &Q,
293                                        unsigned MaxRecurse) {
294   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
295 
296   // Recursion is always used, so bail out at once if we already hit the limit.
297   if (!MaxRecurse--)
298     return nullptr;
299 
300   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
301   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
302 
303   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
304   if (Op0 && Op0->getOpcode() == Opcode) {
305     Value *A = Op0->getOperand(0);
306     Value *B = Op0->getOperand(1);
307     Value *C = RHS;
308 
309     // Does "B op C" simplify?
310     if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
311       // It does!  Return "A op V" if it simplifies or is already available.
312       // If V equals B then "A op V" is just the LHS.
313       if (V == B)
314         return LHS;
315       // Otherwise return "A op V" if it simplifies.
316       if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
317         ++NumReassoc;
318         return W;
319       }
320     }
321   }
322 
323   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
324   if (Op1 && Op1->getOpcode() == Opcode) {
325     Value *A = LHS;
326     Value *B = Op1->getOperand(0);
327     Value *C = Op1->getOperand(1);
328 
329     // Does "A op B" simplify?
330     if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
331       // It does!  Return "V op C" if it simplifies or is already available.
332       // If V equals B then "V op C" is just the RHS.
333       if (V == B)
334         return RHS;
335       // Otherwise return "V op C" if it simplifies.
336       if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
337         ++NumReassoc;
338         return W;
339       }
340     }
341   }
342 
343   // The remaining transforms require commutativity as well as associativity.
344   if (!Instruction::isCommutative(Opcode))
345     return nullptr;
346 
347   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
348   if (Op0 && Op0->getOpcode() == Opcode) {
349     Value *A = Op0->getOperand(0);
350     Value *B = Op0->getOperand(1);
351     Value *C = RHS;
352 
353     // Does "C op A" simplify?
354     if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
355       // It does!  Return "V op B" if it simplifies or is already available.
356       // If V equals A then "V op B" is just the LHS.
357       if (V == A)
358         return LHS;
359       // Otherwise return "V op B" if it simplifies.
360       if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
361         ++NumReassoc;
362         return W;
363       }
364     }
365   }
366 
367   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
368   if (Op1 && Op1->getOpcode() == Opcode) {
369     Value *A = LHS;
370     Value *B = Op1->getOperand(0);
371     Value *C = Op1->getOperand(1);
372 
373     // Does "C op A" simplify?
374     if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
375       // It does!  Return "B op V" if it simplifies or is already available.
376       // If V equals C then "B op V" is just the RHS.
377       if (V == C)
378         return RHS;
379       // Otherwise return "B op V" if it simplifies.
380       if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
381         ++NumReassoc;
382         return W;
383       }
384     }
385   }
386 
387   return nullptr;
388 }
389 
390 /// In the case of a binary operation with a select instruction as an operand,
391 /// try to simplify the binop by seeing whether evaluating it on both branches
392 /// of the select results in the same value. Returns the common value if so,
393 /// otherwise returns null.
394 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
395                                     Value *RHS, const SimplifyQuery &Q,
396                                     unsigned MaxRecurse) {
397   // Recursion is always used, so bail out at once if we already hit the limit.
398   if (!MaxRecurse--)
399     return nullptr;
400 
401   SelectInst *SI;
402   if (isa<SelectInst>(LHS)) {
403     SI = cast<SelectInst>(LHS);
404   } else {
405     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
406     SI = cast<SelectInst>(RHS);
407   }
408 
409   // Evaluate the BinOp on the true and false branches of the select.
410   Value *TV;
411   Value *FV;
412   if (SI == LHS) {
413     TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
414     FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
415   } else {
416     TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
417     FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
418   }
419 
420   // If they simplified to the same value, then return the common value.
421   // If they both failed to simplify then return null.
422   if (TV == FV)
423     return TV;
424 
425   // If one branch simplified to undef, return the other one.
426   if (TV && Q.isUndefValue(TV))
427     return FV;
428   if (FV && Q.isUndefValue(FV))
429     return TV;
430 
431   // If applying the operation did not change the true and false select values,
432   // then the result of the binop is the select itself.
433   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
434     return SI;
435 
436   // If one branch simplified and the other did not, and the simplified
437   // value is equal to the unsimplified one, return the simplified value.
438   // For example, select (cond, X, X & Z) & Z -> X & Z.
439   if ((FV && !TV) || (TV && !FV)) {
440     // Check that the simplified value has the form "X op Y" where "op" is the
441     // same as the original operation.
442     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
443     if (Simplified && Simplified->getOpcode() == unsigned(Opcode) &&
444         !Simplified->hasPoisonGeneratingFlags()) {
445       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
446       // We already know that "op" is the same as for the simplified value.  See
447       // if the operands match too.  If so, return the simplified value.
448       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
449       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
450       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
451       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
452           Simplified->getOperand(1) == UnsimplifiedRHS)
453         return Simplified;
454       if (Simplified->isCommutative() &&
455           Simplified->getOperand(1) == UnsimplifiedLHS &&
456           Simplified->getOperand(0) == UnsimplifiedRHS)
457         return Simplified;
458     }
459   }
460 
461   return nullptr;
462 }
463 
464 /// In the case of a comparison with a select instruction, try to simplify the
465 /// comparison by seeing whether both branches of the select result in the same
466 /// value. Returns the common value if so, otherwise returns null.
467 /// For example, if we have:
468 ///  %tmp = select i1 %cmp, i32 1, i32 2
469 ///  %cmp1 = icmp sle i32 %tmp, 3
470 /// We can simplify %cmp1 to true, because both branches of select are
471 /// less than 3. We compose new comparison by substituting %tmp with both
472 /// branches of select and see if it can be simplified.
473 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
474                                   Value *RHS, const SimplifyQuery &Q,
475                                   unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   // Make sure the select is on the LHS.
481   if (!isa<SelectInst>(LHS)) {
482     std::swap(LHS, RHS);
483     Pred = CmpInst::getSwappedPredicate(Pred);
484   }
485   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
486   SelectInst *SI = cast<SelectInst>(LHS);
487   Value *Cond = SI->getCondition();
488   Value *TV = SI->getTrueValue();
489   Value *FV = SI->getFalseValue();
490 
491   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
492   // Does "cmp TV, RHS" simplify?
493   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
494   if (!TCmp)
495     return nullptr;
496 
497   // Does "cmp FV, RHS" simplify?
498   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
499   if (!FCmp)
500     return nullptr;
501 
502   // If both sides simplified to the same value, then use it as the result of
503   // the original comparison.
504   if (TCmp == FCmp)
505     return TCmp;
506 
507   // The remaining cases only make sense if the select condition has the same
508   // type as the result of the comparison, so bail out if this is not so.
509   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
510     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
511 
512   return nullptr;
513 }
514 
515 /// In the case of a binary operation with an operand that is a PHI instruction,
516 /// try to simplify the binop by seeing whether evaluating it on the incoming
517 /// phi values yields the same result for every value. If so returns the common
518 /// value, otherwise returns null.
519 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
520                                  Value *RHS, const SimplifyQuery &Q,
521                                  unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   PHINode *PI;
527   if (isa<PHINode>(LHS)) {
528     PI = cast<PHINode>(LHS);
529     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
530     if (!valueDominatesPHI(RHS, PI, Q.DT))
531       return nullptr;
532   } else {
533     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
534     PI = cast<PHINode>(RHS);
535     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
536     if (!valueDominatesPHI(LHS, PI, Q.DT))
537       return nullptr;
538   }
539 
540   // Evaluate the BinOp on the incoming phi values.
541   Value *CommonValue = nullptr;
542   for (Use &Incoming : PI->incoming_values()) {
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI)
545       continue;
546     Instruction *InTI = PI->getIncomingBlock(Incoming)->getTerminator();
547     Value *V = PI == LHS
548                    ? simplifyBinOp(Opcode, Incoming, RHS,
549                                    Q.getWithInstruction(InTI), MaxRecurse)
550                    : simplifyBinOp(Opcode, LHS, Incoming,
551                                    Q.getWithInstruction(InTI), MaxRecurse);
552     // If the operation failed to simplify, or simplified to a different value
553     // to previously, then give up.
554     if (!V || (CommonValue && V != CommonValue))
555       return nullptr;
556     CommonValue = V;
557   }
558 
559   return CommonValue;
560 }
561 
562 /// In the case of a comparison with a PHI instruction, try to simplify the
563 /// comparison by seeing whether comparing with all of the incoming phi values
564 /// yields the same result every time. If so returns the common result,
565 /// otherwise returns null.
566 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
567                                const SimplifyQuery &Q, unsigned MaxRecurse) {
568   // Recursion is always used, so bail out at once if we already hit the limit.
569   if (!MaxRecurse--)
570     return nullptr;
571 
572   // Make sure the phi is on the LHS.
573   if (!isa<PHINode>(LHS)) {
574     std::swap(LHS, RHS);
575     Pred = CmpInst::getSwappedPredicate(Pred);
576   }
577   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
578   PHINode *PI = cast<PHINode>(LHS);
579 
580   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
581   if (!valueDominatesPHI(RHS, PI, Q.DT))
582     return nullptr;
583 
584   // Evaluate the BinOp on the incoming phi values.
585   Value *CommonValue = nullptr;
586   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
587     Value *Incoming = PI->getIncomingValue(u);
588     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
589     // If the incoming value is the phi node itself, it can safely be skipped.
590     if (Incoming == PI)
591       continue;
592     // Change the context instruction to the "edge" that flows into the phi.
593     // This is important because that is where incoming is actually "evaluated"
594     // even though it is used later somewhere else.
595     Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
596                                MaxRecurse);
597     // If the operation failed to simplify, or simplified to a different value
598     // to previously, then give up.
599     if (!V || (CommonValue && V != CommonValue))
600       return nullptr;
601     CommonValue = V;
602   }
603 
604   return CommonValue;
605 }
606 
607 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
608                                        Value *&Op0, Value *&Op1,
609                                        const SimplifyQuery &Q) {
610   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
611     if (auto *CRHS = dyn_cast<Constant>(Op1)) {
612       switch (Opcode) {
613       default:
614         break;
615       case Instruction::FAdd:
616       case Instruction::FSub:
617       case Instruction::FMul:
618       case Instruction::FDiv:
619       case Instruction::FRem:
620         if (Q.CxtI != nullptr)
621           return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI);
622       }
623       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
624     }
625 
626     // Canonicalize the constant to the RHS if this is a commutative operation.
627     if (Instruction::isCommutative(Opcode))
628       std::swap(Op0, Op1);
629   }
630   return nullptr;
631 }
632 
633 /// Given operands for an Add, see if we can fold the result.
634 /// If not, this returns null.
635 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
636                               const SimplifyQuery &Q, unsigned MaxRecurse) {
637   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
638     return C;
639 
640   // X + poison -> poison
641   if (isa<PoisonValue>(Op1))
642     return Op1;
643 
644   // X + undef -> undef
645   if (Q.isUndefValue(Op1))
646     return Op1;
647 
648   // X + 0 -> X
649   if (match(Op1, m_Zero()))
650     return Op0;
651 
652   // If two operands are negative, return 0.
653   if (isKnownNegation(Op0, Op1))
654     return Constant::getNullValue(Op0->getType());
655 
656   // X + (Y - X) -> Y
657   // (Y - X) + X -> Y
658   // Eg: X + -X -> 0
659   Value *Y = nullptr;
660   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
661       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
662     return Y;
663 
664   // X + ~X -> -1   since   ~X = -X-1
665   Type *Ty = Op0->getType();
666   if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
667     return Constant::getAllOnesValue(Ty);
668 
669   // add nsw/nuw (xor Y, signmask), signmask --> Y
670   // The no-wrapping add guarantees that the top bit will be set by the add.
671   // Therefore, the xor must be clearing the already set sign bit of Y.
672   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
673       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
674     return Y;
675 
676   // add nuw %x, -1  ->  -1, because %x can only be 0.
677   if (IsNUW && match(Op1, m_AllOnes()))
678     return Op1; // Which is -1.
679 
680   /// i1 add -> xor.
681   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
682     if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
683       return V;
684 
685   // Try some generic simplifications for associative operations.
686   if (Value *V =
687           simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse))
688     return V;
689 
690   // Threading Add over selects and phi nodes is pointless, so don't bother.
691   // Threading over the select in "A + select(cond, B, C)" means evaluating
692   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
693   // only if B and C are equal.  If B and C are equal then (since we assume
694   // that operands have already been simplified) "select(cond, B, C)" should
695   // have been simplified to the common value of B and C already.  Analysing
696   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
697   // for threading over phi nodes.
698 
699   return nullptr;
700 }
701 
702 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
703                              const SimplifyQuery &Query) {
704   return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
705 }
706 
707 /// Compute the base pointer and cumulative constant offsets for V.
708 ///
709 /// This strips all constant offsets off of V, leaving it the base pointer, and
710 /// accumulates the total constant offset applied in the returned constant.
711 /// It returns zero if there are no constant offsets applied.
712 ///
713 /// This is very similar to stripAndAccumulateConstantOffsets(), except it
714 /// normalizes the offset bitwidth to the stripped pointer type, not the
715 /// original pointer type.
716 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
717                                             bool AllowNonInbounds = false) {
718   assert(V->getType()->isPtrOrPtrVectorTy());
719 
720   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
721   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
722   // As that strip may trace through `addrspacecast`, need to sext or trunc
723   // the offset calculated.
724   return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType()));
725 }
726 
727 /// Compute the constant difference between two pointer values.
728 /// If the difference is not a constant, returns zero.
729 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
730                                           Value *RHS) {
731   APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
732   APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
733 
734   // If LHS and RHS are not related via constant offsets to the same base
735   // value, there is nothing we can do here.
736   if (LHS != RHS)
737     return nullptr;
738 
739   // Otherwise, the difference of LHS - RHS can be computed as:
740   //    LHS - RHS
741   //  = (LHSOffset + Base) - (RHSOffset + Base)
742   //  = LHSOffset - RHSOffset
743   Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset);
744   if (auto *VecTy = dyn_cast<VectorType>(LHS->getType()))
745     Res = ConstantVector::getSplat(VecTy->getElementCount(), Res);
746   return Res;
747 }
748 
749 /// Test if there is a dominating equivalence condition for the
750 /// two operands. If there is, try to reduce the binary operation
751 /// between the two operands.
752 /// Example: Op0 - Op1 --> 0 when Op0 == Op1
753 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1,
754                               const SimplifyQuery &Q, unsigned MaxRecurse) {
755   // Recursive run it can not get any benefit
756   if (MaxRecurse != RecursionLimit)
757     return nullptr;
758 
759   std::optional<bool> Imp =
760       isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL);
761   if (Imp && *Imp) {
762     Type *Ty = Op0->getType();
763     switch (Opcode) {
764     case Instruction::Sub:
765     case Instruction::Xor:
766     case Instruction::URem:
767     case Instruction::SRem:
768       return Constant::getNullValue(Ty);
769 
770     case Instruction::SDiv:
771     case Instruction::UDiv:
772       return ConstantInt::get(Ty, 1);
773 
774     case Instruction::And:
775     case Instruction::Or:
776       // Could be either one - choose Op1 since that's more likely a constant.
777       return Op1;
778     default:
779       break;
780     }
781   }
782   return nullptr;
783 }
784 
785 /// Given operands for a Sub, see if we can fold the result.
786 /// If not, this returns null.
787 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
788                               const SimplifyQuery &Q, unsigned MaxRecurse) {
789   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
790     return C;
791 
792   // X - poison -> poison
793   // poison - X -> poison
794   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
795     return PoisonValue::get(Op0->getType());
796 
797   // X - undef -> undef
798   // undef - X -> undef
799   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
800     return UndefValue::get(Op0->getType());
801 
802   // X - 0 -> X
803   if (match(Op1, m_Zero()))
804     return Op0;
805 
806   // X - X -> 0
807   if (Op0 == Op1)
808     return Constant::getNullValue(Op0->getType());
809 
810   // Is this a negation?
811   if (match(Op0, m_Zero())) {
812     // 0 - X -> 0 if the sub is NUW.
813     if (IsNUW)
814       return Constant::getNullValue(Op0->getType());
815 
816     KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q);
817     if (Known.Zero.isMaxSignedValue()) {
818       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
819       // Op1 must be 0 because negating the minimum signed value is undefined.
820       if (IsNSW)
821         return Constant::getNullValue(Op0->getType());
822 
823       // 0 - X -> X if X is 0 or the minimum signed value.
824       return Op1;
825     }
826   }
827 
828   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
829   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
830   Value *X = nullptr, *Y = nullptr, *Z = Op1;
831   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
832     // See if "V === Y - Z" simplifies.
833     if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1))
834       // It does!  Now see if "X + V" simplifies.
835       if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) {
836         // It does, we successfully reassociated!
837         ++NumReassoc;
838         return W;
839       }
840     // See if "V === X - Z" simplifies.
841     if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
842       // It does!  Now see if "Y + V" simplifies.
843       if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) {
844         // It does, we successfully reassociated!
845         ++NumReassoc;
846         return W;
847       }
848   }
849 
850   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
851   // For example, X - (X + 1) -> -1
852   X = Op0;
853   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
854     // See if "V === X - Y" simplifies.
855     if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
856       // It does!  Now see if "V - Z" simplifies.
857       if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) {
858         // It does, we successfully reassociated!
859         ++NumReassoc;
860         return W;
861       }
862     // See if "V === X - Z" simplifies.
863     if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
864       // It does!  Now see if "V - Y" simplifies.
865       if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) {
866         // It does, we successfully reassociated!
867         ++NumReassoc;
868         return W;
869       }
870   }
871 
872   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
873   // For example, X - (X - Y) -> Y.
874   Z = Op0;
875   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
876     // See if "V === Z - X" simplifies.
877     if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1))
878       // It does!  Now see if "V + Y" simplifies.
879       if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) {
880         // It does, we successfully reassociated!
881         ++NumReassoc;
882         return W;
883       }
884 
885   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
886   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
887       match(Op1, m_Trunc(m_Value(Y))))
888     if (X->getType() == Y->getType())
889       // See if "V === X - Y" simplifies.
890       if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
891         // It does!  Now see if "trunc V" simplifies.
892         if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(),
893                                         Q, MaxRecurse - 1))
894           // It does, return the simplified "trunc V".
895           return W;
896 
897   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
898   if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y))))
899     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
900       return ConstantFoldIntegerCast(Result, Op0->getType(), /*IsSigned*/ true,
901                                      Q.DL);
902 
903   // i1 sub -> xor.
904   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
905     if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
906       return V;
907 
908   // Threading Sub over selects and phi nodes is pointless, so don't bother.
909   // Threading over the select in "A - select(cond, B, C)" means evaluating
910   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
911   // only if B and C are equal.  If B and C are equal then (since we assume
912   // that operands have already been simplified) "select(cond, B, C)" should
913   // have been simplified to the common value of B and C already.  Analysing
914   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
915   // for threading over phi nodes.
916 
917   if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse))
918     return V;
919 
920   return nullptr;
921 }
922 
923 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
924                              const SimplifyQuery &Q) {
925   return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
926 }
927 
928 /// Given operands for a Mul, see if we can fold the result.
929 /// If not, this returns null.
930 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
931                               const SimplifyQuery &Q, unsigned MaxRecurse) {
932   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
933     return C;
934 
935   // X * poison -> poison
936   if (isa<PoisonValue>(Op1))
937     return Op1;
938 
939   // X * undef -> 0
940   // X * 0 -> 0
941   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
942     return Constant::getNullValue(Op0->getType());
943 
944   // X * 1 -> X
945   if (match(Op1, m_One()))
946     return Op0;
947 
948   // (X / Y) * Y -> X if the division is exact.
949   Value *X = nullptr;
950   if (Q.IIQ.UseInstrInfo &&
951       (match(Op0,
952              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
953        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
954     return X;
955 
956    if (Op0->getType()->isIntOrIntVectorTy(1)) {
957     // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not
958     // representable). All other cases reduce to 0, so just return 0.
959     if (IsNSW)
960       return ConstantInt::getNullValue(Op0->getType());
961 
962     // Treat "mul i1" as "and i1".
963     if (MaxRecurse)
964       if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1))
965         return V;
966   }
967 
968   // Try some generic simplifications for associative operations.
969   if (Value *V =
970           simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
971     return V;
972 
973   // Mul distributes over Add. Try some generic simplifications based on this.
974   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
975                                         Instruction::Add, Q, MaxRecurse))
976     return V;
977 
978   // If the operation is with the result of a select instruction, check whether
979   // operating on either branch of the select always yields the same value.
980   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
981     if (Value *V =
982             threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
983       return V;
984 
985   // If the operation is with the result of a phi instruction, check whether
986   // operating on all incoming values of the phi always yields the same value.
987   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
988     if (Value *V =
989             threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
990       return V;
991 
992   return nullptr;
993 }
994 
995 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
996                              const SimplifyQuery &Q) {
997   return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
998 }
999 
1000 /// Given a predicate and two operands, return true if the comparison is true.
1001 /// This is a helper for div/rem simplification where we return some other value
1002 /// when we can prove a relationship between the operands.
1003 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS,
1004                        const SimplifyQuery &Q, unsigned MaxRecurse) {
1005   Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
1006   Constant *C = dyn_cast_or_null<Constant>(V);
1007   return (C && C->isAllOnesValue());
1008 }
1009 
1010 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1011 /// to simplify X % Y to X.
1012 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
1013                       unsigned MaxRecurse, bool IsSigned) {
1014   // Recursion is always used, so bail out at once if we already hit the limit.
1015   if (!MaxRecurse--)
1016     return false;
1017 
1018   if (IsSigned) {
1019     // (X srem Y) sdiv Y --> 0
1020     if (match(X, m_SRem(m_Value(), m_Specific(Y))))
1021       return true;
1022 
1023     // |X| / |Y| --> 0
1024     //
1025     // We require that 1 operand is a simple constant. That could be extended to
1026     // 2 variables if we computed the sign bit for each.
1027     //
1028     // Make sure that a constant is not the minimum signed value because taking
1029     // the abs() of that is undefined.
1030     Type *Ty = X->getType();
1031     const APInt *C;
1032     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
1033       // Is the variable divisor magnitude always greater than the constant
1034       // dividend magnitude?
1035       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1036       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
1037       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
1038       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
1039           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
1040         return true;
1041     }
1042     if (match(Y, m_APInt(C))) {
1043       // Special-case: we can't take the abs() of a minimum signed value. If
1044       // that's the divisor, then all we have to do is prove that the dividend
1045       // is also not the minimum signed value.
1046       if (C->isMinSignedValue())
1047         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1048 
1049       // Is the variable dividend magnitude always less than the constant
1050       // divisor magnitude?
1051       // |X| < |C| --> X > -abs(C) and X < abs(C)
1052       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1053       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1054       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1055           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1056         return true;
1057     }
1058     return false;
1059   }
1060 
1061   // IsSigned == false.
1062 
1063   // Is the unsigned dividend known to be less than a constant divisor?
1064   // TODO: Convert this (and above) to range analysis
1065   //      ("computeConstantRangeIncludingKnownBits")?
1066   const APInt *C;
1067   if (match(Y, m_APInt(C)) &&
1068       computeKnownBits(X, /* Depth */ 0, Q).getMaxValue().ult(*C))
1069     return true;
1070 
1071   // Try again for any divisor:
1072   // Is the dividend unsigned less than the divisor?
1073   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1074 }
1075 
1076 /// Check for common or similar folds of integer division or integer remainder.
1077 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
1078 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
1079                              Value *Op1, const SimplifyQuery &Q,
1080                              unsigned MaxRecurse) {
1081   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
1082   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
1083 
1084   Type *Ty = Op0->getType();
1085 
1086   // X / undef -> poison
1087   // X % undef -> poison
1088   if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1))
1089     return PoisonValue::get(Ty);
1090 
1091   // X / 0 -> poison
1092   // X % 0 -> poison
1093   // We don't need to preserve faults!
1094   if (match(Op1, m_Zero()))
1095     return PoisonValue::get(Ty);
1096 
1097   // If any element of a constant divisor fixed width vector is zero or undef
1098   // the behavior is undefined and we can fold the whole op to poison.
1099   auto *Op1C = dyn_cast<Constant>(Op1);
1100   auto *VTy = dyn_cast<FixedVectorType>(Ty);
1101   if (Op1C && VTy) {
1102     unsigned NumElts = VTy->getNumElements();
1103     for (unsigned i = 0; i != NumElts; ++i) {
1104       Constant *Elt = Op1C->getAggregateElement(i);
1105       if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt)))
1106         return PoisonValue::get(Ty);
1107     }
1108   }
1109 
1110   // poison / X -> poison
1111   // poison % X -> poison
1112   if (isa<PoisonValue>(Op0))
1113     return Op0;
1114 
1115   // undef / X -> 0
1116   // undef % X -> 0
1117   if (Q.isUndefValue(Op0))
1118     return Constant::getNullValue(Ty);
1119 
1120   // 0 / X -> 0
1121   // 0 % X -> 0
1122   if (match(Op0, m_Zero()))
1123     return Constant::getNullValue(Op0->getType());
1124 
1125   // X / X -> 1
1126   // X % X -> 0
1127   if (Op0 == Op1)
1128     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
1129 
1130   KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q);
1131   // X / 0 -> poison
1132   // X % 0 -> poison
1133   // If the divisor is known to be zero, just return poison. This can happen in
1134   // some cases where its provable indirectly the denominator is zero but it's
1135   // not trivially simplifiable (i.e known zero through a phi node).
1136   if (Known.isZero())
1137     return PoisonValue::get(Ty);
1138 
1139   // X / 1 -> X
1140   // X % 1 -> 0
1141   // If the divisor can only be zero or one, we can't have division-by-zero
1142   // or remainder-by-zero, so assume the divisor is 1.
1143   //   e.g. 1, zext (i8 X), sdiv X (Y and 1)
1144   if (Known.countMinLeadingZeros() == Known.getBitWidth() - 1)
1145     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1146 
1147   // If X * Y does not overflow, then:
1148   //   X * Y / Y -> X
1149   //   X * Y % Y -> 0
1150   Value *X;
1151   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1152     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1153     // The multiplication can't overflow if it is defined not to, or if
1154     // X == A / Y for some A.
1155     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1156         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1157         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1158         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1159       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1160     }
1161   }
1162 
1163   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1164     return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0;
1165 
1166   if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse))
1167     return V;
1168 
1169   // If the operation is with the result of a select instruction, check whether
1170   // operating on either branch of the select always yields the same value.
1171   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1172     if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1173       return V;
1174 
1175   // If the operation is with the result of a phi instruction, check whether
1176   // operating on all incoming values of the phi always yields the same value.
1177   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1178     if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1179       return V;
1180 
1181   return nullptr;
1182 }
1183 
1184 /// These are simplifications common to SDiv and UDiv.
1185 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1186                           bool IsExact, const SimplifyQuery &Q,
1187                           unsigned MaxRecurse) {
1188   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1189     return C;
1190 
1191   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
1192     return V;
1193 
1194   const APInt *DivC;
1195   if (IsExact && match(Op1, m_APInt(DivC))) {
1196     // If this is an exact divide by a constant, then the dividend (Op0) must
1197     // have at least as many trailing zeros as the divisor to divide evenly. If
1198     // it has less trailing zeros, then the result must be poison.
1199     if (DivC->countr_zero()) {
1200       KnownBits KnownOp0 = computeKnownBits(Op0, /* Depth */ 0, Q);
1201       if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero())
1202         return PoisonValue::get(Op0->getType());
1203     }
1204 
1205     // udiv exact (mul nsw X, C), C --> X
1206     // sdiv exact (mul nuw X, C), C --> X
1207     // where C is not a power of 2.
1208     Value *X;
1209     if (!DivC->isPowerOf2() &&
1210         (Opcode == Instruction::UDiv
1211              ? match(Op0, m_NSWMul(m_Value(X), m_Specific(Op1)))
1212              : match(Op0, m_NUWMul(m_Value(X), m_Specific(Op1)))))
1213       return X;
1214   }
1215 
1216   return nullptr;
1217 }
1218 
1219 /// These are simplifications common to SRem and URem.
1220 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1221                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1222   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1223     return C;
1224 
1225   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
1226     return V;
1227 
1228   // (X << Y) % X -> 0
1229   if (Q.IIQ.UseInstrInfo) {
1230     if ((Opcode == Instruction::SRem &&
1231          match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1232         (Opcode == Instruction::URem &&
1233          match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))
1234       return Constant::getNullValue(Op0->getType());
1235 
1236     const APInt *C0;
1237     if (match(Op1, m_APInt(C0))) {
1238       // (srem (mul nsw X, C1), C0) -> 0 if C1 s% C0 == 0
1239       // (urem (mul nuw X, C1), C0) -> 0 if C1 u% C0 == 0
1240       if (Opcode == Instruction::SRem
1241               ? match(Op0,
1242                       m_NSWMul(m_Value(), m_CheckedInt([C0](const APInt &C) {
1243                                  return C.srem(*C0).isZero();
1244                                })))
1245               : match(Op0,
1246                       m_NUWMul(m_Value(), m_CheckedInt([C0](const APInt &C) {
1247                                  return C.urem(*C0).isZero();
1248                                }))))
1249         return Constant::getNullValue(Op0->getType());
1250     }
1251   }
1252   return nullptr;
1253 }
1254 
1255 /// Given operands for an SDiv, see if we can fold the result.
1256 /// If not, this returns null.
1257 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact,
1258                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1259   // If two operands are negated and no signed overflow, return -1.
1260   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1261     return Constant::getAllOnesValue(Op0->getType());
1262 
1263   return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1264 }
1265 
1266 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact,
1267                               const SimplifyQuery &Q) {
1268   return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit);
1269 }
1270 
1271 /// Given operands for a UDiv, see if we can fold the result.
1272 /// If not, this returns null.
1273 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact,
1274                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1275   return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1276 }
1277 
1278 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact,
1279                               const SimplifyQuery &Q) {
1280   return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit);
1281 }
1282 
1283 /// Given operands for an SRem, see if we can fold the result.
1284 /// If not, this returns null.
1285 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1286                                unsigned MaxRecurse) {
1287   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1288   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1289   Value *X;
1290   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1291     return ConstantInt::getNullValue(Op0->getType());
1292 
1293   // If the two operands are negated, return 0.
1294   if (isKnownNegation(Op0, Op1))
1295     return ConstantInt::getNullValue(Op0->getType());
1296 
1297   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1298 }
1299 
1300 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1301   return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit);
1302 }
1303 
1304 /// Given operands for a URem, see if we can fold the result.
1305 /// If not, this returns null.
1306 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1307                                unsigned MaxRecurse) {
1308   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1309 }
1310 
1311 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1312   return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit);
1313 }
1314 
1315 /// Returns true if a shift by \c Amount always yields poison.
1316 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1317   Constant *C = dyn_cast<Constant>(Amount);
1318   if (!C)
1319     return false;
1320 
1321   // X shift by undef -> poison because it may shift by the bitwidth.
1322   if (Q.isUndefValue(C))
1323     return true;
1324 
1325   // Shifting by the bitwidth or more is poison. This covers scalars and
1326   // fixed/scalable vectors with splat constants.
1327   const APInt *AmountC;
1328   if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth()))
1329     return true;
1330 
1331   // Try harder for fixed-length vectors:
1332   // If all lanes of a vector shift are poison, the whole shift is poison.
1333   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1334     for (unsigned I = 0,
1335                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1336          I != E; ++I)
1337       if (!isPoisonShift(C->getAggregateElement(I), Q))
1338         return false;
1339     return true;
1340   }
1341 
1342   return false;
1343 }
1344 
1345 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1346 /// If not, this returns null.
1347 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1348                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1349                             unsigned MaxRecurse) {
1350   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1351     return C;
1352 
1353   // poison shift by X -> poison
1354   if (isa<PoisonValue>(Op0))
1355     return Op0;
1356 
1357   // 0 shift by X -> 0
1358   if (match(Op0, m_Zero()))
1359     return Constant::getNullValue(Op0->getType());
1360 
1361   // X shift by 0 -> X
1362   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1363   // would be poison.
1364   Value *X;
1365   if (match(Op1, m_Zero()) ||
1366       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1367     return Op0;
1368 
1369   // Fold undefined shifts.
1370   if (isPoisonShift(Op1, Q))
1371     return PoisonValue::get(Op0->getType());
1372 
1373   // If the operation is with the result of a select instruction, check whether
1374   // operating on either branch of the select always yields the same value.
1375   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1376     if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1377       return V;
1378 
1379   // If the operation is with the result of a phi instruction, check whether
1380   // operating on all incoming values of the phi always yields the same value.
1381   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1382     if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1383       return V;
1384 
1385   // If any bits in the shift amount make that value greater than or equal to
1386   // the number of bits in the type, the shift is undefined.
1387   KnownBits KnownAmt = computeKnownBits(Op1, /* Depth */ 0, Q);
1388   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1389     return PoisonValue::get(Op0->getType());
1390 
1391   // If all valid bits in the shift amount are known zero, the first operand is
1392   // unchanged.
1393   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1394   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1395     return Op0;
1396 
1397   // Check for nsw shl leading to a poison value.
1398   if (IsNSW) {
1399     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1400     KnownBits KnownVal = computeKnownBits(Op0, /* Depth */ 0, Q);
1401     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1402 
1403     if (KnownVal.Zero.isSignBitSet())
1404       KnownShl.Zero.setSignBit();
1405     if (KnownVal.One.isSignBitSet())
1406       KnownShl.One.setSignBit();
1407 
1408     if (KnownShl.hasConflict())
1409       return PoisonValue::get(Op0->getType());
1410   }
1411 
1412   return nullptr;
1413 }
1414 
1415 /// Given operands for an LShr or AShr, see if we can fold the result.  If not,
1416 /// this returns null.
1417 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1418                                  Value *Op1, bool IsExact,
1419                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
1420   if (Value *V =
1421           simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1422     return V;
1423 
1424   // X >> X -> 0
1425   if (Op0 == Op1)
1426     return Constant::getNullValue(Op0->getType());
1427 
1428   // undef >> X -> 0
1429   // undef >> X -> undef (if it's exact)
1430   if (Q.isUndefValue(Op0))
1431     return IsExact ? Op0 : Constant::getNullValue(Op0->getType());
1432 
1433   // The low bit cannot be shifted out of an exact shift if it is set.
1434   // TODO: Generalize by counting trailing zeros (see fold for exact division).
1435   if (IsExact) {
1436     KnownBits Op0Known = computeKnownBits(Op0, /* Depth */ 0, Q);
1437     if (Op0Known.One[0])
1438       return Op0;
1439   }
1440 
1441   return nullptr;
1442 }
1443 
1444 /// Given operands for an Shl, see if we can fold the result.
1445 /// If not, this returns null.
1446 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
1447                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1448   if (Value *V =
1449           simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
1450     return V;
1451 
1452   Type *Ty = Op0->getType();
1453   // undef << X -> 0
1454   // undef << X -> undef if (if it's NSW/NUW)
1455   if (Q.isUndefValue(Op0))
1456     return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Ty);
1457 
1458   // (X >> A) << A -> X
1459   Value *X;
1460   if (Q.IIQ.UseInstrInfo &&
1461       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1462     return X;
1463 
1464   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1465   if (IsNUW && match(Op0, m_Negative()))
1466     return Op0;
1467   // NOTE: could use computeKnownBits() / LazyValueInfo,
1468   // but the cost-benefit analysis suggests it isn't worth it.
1469 
1470   // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees
1471   // that the sign-bit does not change, so the only input that does not
1472   // produce poison is 0, and "0 << (bitwidth-1) --> 0".
1473   if (IsNSW && IsNUW &&
1474       match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1)))
1475     return Constant::getNullValue(Ty);
1476 
1477   return nullptr;
1478 }
1479 
1480 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
1481                              const SimplifyQuery &Q) {
1482   return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
1483 }
1484 
1485 /// Given operands for an LShr, see if we can fold the result.
1486 /// If not, this returns null.
1487 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
1488                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1489   if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q,
1490                                     MaxRecurse))
1491     return V;
1492 
1493   // (X << A) >> A -> X
1494   Value *X;
1495   if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1496     return X;
1497 
1498   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1499   // We can return X as we do in the above case since OR alters no bits in X.
1500   // SimplifyDemandedBits in InstCombine can do more general optimization for
1501   // bit manipulation. This pattern aims to provide opportunities for other
1502   // optimizers by supporting a simple but common case in InstSimplify.
1503   Value *Y;
1504   const APInt *ShRAmt, *ShLAmt;
1505   if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(ShRAmt)) &&
1506       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1507       *ShRAmt == *ShLAmt) {
1508     const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q);
1509     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1510     if (ShRAmt->uge(EffWidthY))
1511       return X;
1512   }
1513 
1514   return nullptr;
1515 }
1516 
1517 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
1518                               const SimplifyQuery &Q) {
1519   return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit);
1520 }
1521 
1522 /// Given operands for an AShr, see if we can fold the result.
1523 /// If not, this returns null.
1524 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
1525                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1526   if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q,
1527                                     MaxRecurse))
1528     return V;
1529 
1530   // -1 >>a X --> -1
1531   // (-1 << X) a>> X --> -1
1532   // We could return the original -1 constant to preserve poison elements.
1533   if (match(Op0, m_AllOnes()) ||
1534       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1535     return Constant::getAllOnesValue(Op0->getType());
1536 
1537   // (X << A) >> A -> X
1538   Value *X;
1539   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1540     return X;
1541 
1542   // Arithmetic shifting an all-sign-bit value is a no-op.
1543   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1544   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1545     return Op0;
1546 
1547   return nullptr;
1548 }
1549 
1550 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
1551                               const SimplifyQuery &Q) {
1552   return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit);
1553 }
1554 
1555 /// Commuted variants are assumed to be handled by calling this function again
1556 /// with the parameters swapped.
1557 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1558                                          ICmpInst *UnsignedICmp, bool IsAnd,
1559                                          const SimplifyQuery &Q) {
1560   Value *X, *Y;
1561 
1562   ICmpInst::Predicate EqPred;
1563   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1564       !ICmpInst::isEquality(EqPred))
1565     return nullptr;
1566 
1567   ICmpInst::Predicate UnsignedPred;
1568 
1569   Value *A, *B;
1570   // Y = (A - B);
1571   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1572     if (match(UnsignedICmp,
1573               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1574         ICmpInst::isUnsigned(UnsignedPred)) {
1575       // A >=/<= B || (A - B) != 0  <-->  true
1576       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1577            UnsignedPred == ICmpInst::ICMP_ULE) &&
1578           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1579         return ConstantInt::getTrue(UnsignedICmp->getType());
1580       // A </> B && (A - B) == 0  <-->  false
1581       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1582            UnsignedPred == ICmpInst::ICMP_UGT) &&
1583           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1584         return ConstantInt::getFalse(UnsignedICmp->getType());
1585 
1586       // A </> B && (A - B) != 0  <-->  A </> B
1587       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1588       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1589                                           UnsignedPred == ICmpInst::ICMP_UGT))
1590         return IsAnd ? UnsignedICmp : ZeroICmp;
1591 
1592       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1593       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1594       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1595                                           UnsignedPred == ICmpInst::ICMP_UGE))
1596         return IsAnd ? ZeroICmp : UnsignedICmp;
1597     }
1598 
1599     // Given  Y = (A - B)
1600     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1601     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1602     if (match(UnsignedICmp,
1603               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1604       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1605           EqPred == ICmpInst::ICMP_NE && isKnownNonZero(B, Q))
1606         return UnsignedICmp;
1607       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1608           EqPred == ICmpInst::ICMP_EQ && isKnownNonZero(B, Q))
1609         return UnsignedICmp;
1610     }
1611   }
1612 
1613   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1614       ICmpInst::isUnsigned(UnsignedPred))
1615     ;
1616   else if (match(UnsignedICmp,
1617                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1618            ICmpInst::isUnsigned(UnsignedPred))
1619     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1620   else
1621     return nullptr;
1622 
1623   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1624   // X > Y || Y == 0  -->  X > Y   iff X != 0
1625   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1626       isKnownNonZero(X, Q))
1627     return IsAnd ? ZeroICmp : UnsignedICmp;
1628 
1629   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1630   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1631   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1632       isKnownNonZero(X, Q))
1633     return IsAnd ? UnsignedICmp : ZeroICmp;
1634 
1635   // The transforms below here are expected to be handled more generally with
1636   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1637   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1638   // these are candidates for removal.
1639 
1640   // X < Y && Y != 0  -->  X < Y
1641   // X < Y || Y != 0  -->  Y != 0
1642   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1643     return IsAnd ? UnsignedICmp : ZeroICmp;
1644 
1645   // X >= Y && Y == 0  -->  Y == 0
1646   // X >= Y || Y == 0  -->  X >= Y
1647   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1648     return IsAnd ? ZeroICmp : UnsignedICmp;
1649 
1650   // X < Y && Y == 0  -->  false
1651   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1652       IsAnd)
1653     return getFalse(UnsignedICmp->getType());
1654 
1655   // X >= Y || Y != 0  -->  true
1656   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1657       !IsAnd)
1658     return getTrue(UnsignedICmp->getType());
1659 
1660   return nullptr;
1661 }
1662 
1663 /// Test if a pair of compares with a shared operand and 2 constants has an
1664 /// empty set intersection, full set union, or if one compare is a superset of
1665 /// the other.
1666 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1667                                                 bool IsAnd) {
1668   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1669   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1670     return nullptr;
1671 
1672   const APInt *C0, *C1;
1673   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1674       !match(Cmp1->getOperand(1), m_APInt(C1)))
1675     return nullptr;
1676 
1677   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1678   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1679 
1680   // For and-of-compares, check if the intersection is empty:
1681   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1682   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1683     return getFalse(Cmp0->getType());
1684 
1685   // For or-of-compares, check if the union is full:
1686   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1687   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1688     return getTrue(Cmp0->getType());
1689 
1690   // Is one range a superset of the other?
1691   // If this is and-of-compares, take the smaller set:
1692   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1693   // If this is or-of-compares, take the larger set:
1694   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1695   if (Range0.contains(Range1))
1696     return IsAnd ? Cmp1 : Cmp0;
1697   if (Range1.contains(Range0))
1698     return IsAnd ? Cmp0 : Cmp1;
1699 
1700   return nullptr;
1701 }
1702 
1703 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1704                                         const InstrInfoQuery &IIQ) {
1705   // (icmp (add V, C0), C1) & (icmp V, C0)
1706   ICmpInst::Predicate Pred0, Pred1;
1707   const APInt *C0, *C1;
1708   Value *V;
1709   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1710     return nullptr;
1711 
1712   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1713     return nullptr;
1714 
1715   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1716   if (AddInst->getOperand(1) != Op1->getOperand(1))
1717     return nullptr;
1718 
1719   Type *ITy = Op0->getType();
1720   bool IsNSW = IIQ.hasNoSignedWrap(AddInst);
1721   bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst);
1722 
1723   const APInt Delta = *C1 - *C0;
1724   if (C0->isStrictlyPositive()) {
1725     if (Delta == 2) {
1726       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1727         return getFalse(ITy);
1728       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
1729         return getFalse(ITy);
1730     }
1731     if (Delta == 1) {
1732       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1733         return getFalse(ITy);
1734       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
1735         return getFalse(ITy);
1736     }
1737   }
1738   if (C0->getBoolValue() && IsNUW) {
1739     if (Delta == 2)
1740       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1741         return getFalse(ITy);
1742     if (Delta == 1)
1743       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1744         return getFalse(ITy);
1745   }
1746 
1747   return nullptr;
1748 }
1749 
1750 /// Try to simplify and/or of icmp with ctpop intrinsic.
1751 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1,
1752                                             bool IsAnd) {
1753   ICmpInst::Predicate Pred0, Pred1;
1754   Value *X;
1755   const APInt *C;
1756   if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
1757                           m_APInt(C))) ||
1758       !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero())
1759     return nullptr;
1760 
1761   // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0
1762   if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE)
1763     return Cmp1;
1764   // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0
1765   if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ)
1766     return Cmp1;
1767 
1768   return nullptr;
1769 }
1770 
1771 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1772                                  const SimplifyQuery &Q) {
1773   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1774     return X;
1775   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1776     return X;
1777 
1778   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1779     return X;
1780 
1781   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true))
1782     return X;
1783   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true))
1784     return X;
1785 
1786   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1787     return X;
1788   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1789     return X;
1790 
1791   return nullptr;
1792 }
1793 
1794 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1795                                        const InstrInfoQuery &IIQ) {
1796   // (icmp (add V, C0), C1) | (icmp V, C0)
1797   ICmpInst::Predicate Pred0, Pred1;
1798   const APInt *C0, *C1;
1799   Value *V;
1800   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1801     return nullptr;
1802 
1803   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1804     return nullptr;
1805 
1806   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1807   if (AddInst->getOperand(1) != Op1->getOperand(1))
1808     return nullptr;
1809 
1810   Type *ITy = Op0->getType();
1811   bool IsNSW = IIQ.hasNoSignedWrap(AddInst);
1812   bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst);
1813 
1814   const APInt Delta = *C1 - *C0;
1815   if (C0->isStrictlyPositive()) {
1816     if (Delta == 2) {
1817       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1818         return getTrue(ITy);
1819       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
1820         return getTrue(ITy);
1821     }
1822     if (Delta == 1) {
1823       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1824         return getTrue(ITy);
1825       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
1826         return getTrue(ITy);
1827     }
1828   }
1829   if (C0->getBoolValue() && IsNUW) {
1830     if (Delta == 2)
1831       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1832         return getTrue(ITy);
1833     if (Delta == 1)
1834       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1835         return getTrue(ITy);
1836   }
1837 
1838   return nullptr;
1839 }
1840 
1841 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1842                                 const SimplifyQuery &Q) {
1843   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1844     return X;
1845   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1846     return X;
1847 
1848   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1849     return X;
1850 
1851   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false))
1852     return X;
1853   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false))
1854     return X;
1855 
1856   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1857     return X;
1858   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1859     return X;
1860 
1861   return nullptr;
1862 }
1863 
1864 static Value *simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS,
1865                                    FCmpInst *RHS, bool IsAnd) {
1866   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1867   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1868   if (LHS0->getType() != RHS0->getType())
1869     return nullptr;
1870 
1871   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1872   if ((PredL == FCmpInst::FCMP_ORD || PredL == FCmpInst::FCMP_UNO) &&
1873       ((FCmpInst::isOrdered(PredR) && IsAnd) ||
1874        (FCmpInst::isUnordered(PredR) && !IsAnd))) {
1875     // (fcmp ord X, 0) & (fcmp o** X, Y) --> fcmp o** X, Y
1876     // (fcmp uno X, 0) & (fcmp o** X, Y) --> false
1877     // (fcmp uno X, 0) | (fcmp u** X, Y) --> fcmp u** X, Y
1878     // (fcmp ord X, 0) | (fcmp u** X, Y) --> true
1879     if ((LHS0 == RHS0 || LHS0 == RHS1) && match(LHS1, m_PosZeroFP()))
1880       return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR)
1881                  ? static_cast<Value *>(RHS)
1882                  : ConstantInt::getBool(LHS->getType(), !IsAnd);
1883   }
1884 
1885   if ((PredR == FCmpInst::FCMP_ORD || PredR == FCmpInst::FCMP_UNO) &&
1886       ((FCmpInst::isOrdered(PredL) && IsAnd) ||
1887        (FCmpInst::isUnordered(PredL) && !IsAnd))) {
1888     // (fcmp o** X, Y) & (fcmp ord X, 0) --> fcmp o** X, Y
1889     // (fcmp o** X, Y) & (fcmp uno X, 0) --> false
1890     // (fcmp u** X, Y) | (fcmp uno X, 0) --> fcmp u** X, Y
1891     // (fcmp u** X, Y) | (fcmp ord X, 0) --> true
1892     if ((RHS0 == LHS0 || RHS0 == LHS1) && match(RHS1, m_PosZeroFP()))
1893       return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR)
1894                  ? static_cast<Value *>(LHS)
1895                  : ConstantInt::getBool(LHS->getType(), !IsAnd);
1896   }
1897 
1898   return nullptr;
1899 }
1900 
1901 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0,
1902                                   Value *Op1, bool IsAnd) {
1903   // Look through casts of the 'and' operands to find compares.
1904   auto *Cast0 = dyn_cast<CastInst>(Op0);
1905   auto *Cast1 = dyn_cast<CastInst>(Op1);
1906   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1907       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1908     Op0 = Cast0->getOperand(0);
1909     Op1 = Cast1->getOperand(0);
1910   }
1911 
1912   Value *V = nullptr;
1913   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1914   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1915   if (ICmp0 && ICmp1)
1916     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1917               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1918 
1919   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1920   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1921   if (FCmp0 && FCmp1)
1922     V = simplifyAndOrOfFCmps(Q, FCmp0, FCmp1, IsAnd);
1923 
1924   if (!V)
1925     return nullptr;
1926   if (!Cast0)
1927     return V;
1928 
1929   // If we looked through casts, we can only handle a constant simplification
1930   // because we are not allowed to create a cast instruction here.
1931   if (auto *C = dyn_cast<Constant>(V))
1932     return ConstantFoldCastOperand(Cast0->getOpcode(), C, Cast0->getType(),
1933                                    Q.DL);
1934 
1935   return nullptr;
1936 }
1937 
1938 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
1939                                      const SimplifyQuery &Q,
1940                                      bool AllowRefinement,
1941                                      SmallVectorImpl<Instruction *> *DropFlags,
1942                                      unsigned MaxRecurse);
1943 
1944 static Value *simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1,
1945                                       const SimplifyQuery &Q,
1946                                       unsigned MaxRecurse) {
1947   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1948          "Must be and/or");
1949   ICmpInst::Predicate Pred;
1950   Value *A, *B;
1951   if (!match(Op0, m_ICmp(Pred, m_Value(A), m_Value(B))) ||
1952       !ICmpInst::isEquality(Pred))
1953     return nullptr;
1954 
1955   auto Simplify = [&](Value *Res) -> Value * {
1956     Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, Res->getType());
1957 
1958     // and (icmp eq a, b), x implies (a==b) inside x.
1959     // or (icmp ne a, b), x implies (a==b) inside x.
1960     // If x simplifies to true/false, we can simplify the and/or.
1961     if (Pred ==
1962         (Opcode == Instruction::And ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
1963       if (Res == Absorber)
1964         return Absorber;
1965       if (Res == ConstantExpr::getBinOpIdentity(Opcode, Res->getType()))
1966         return Op0;
1967       return nullptr;
1968     }
1969 
1970     // If we have and (icmp ne a, b), x and for a==b we can simplify x to false,
1971     // then we can drop the icmp, as x will already be false in the case where
1972     // the icmp is false. Similar for or and true.
1973     if (Res == Absorber)
1974       return Op1;
1975     return nullptr;
1976   };
1977 
1978   // In the final case (Res == Absorber with inverted predicate), it is safe to
1979   // refine poison during simplification, but not undef. For simplicity always
1980   // disable undef-based folds here.
1981   if (Value *Res = simplifyWithOpReplaced(Op1, A, B, Q.getWithoutUndef(),
1982                                           /* AllowRefinement */ true,
1983                                           /* DropFlags */ nullptr, MaxRecurse))
1984     return Simplify(Res);
1985   if (Value *Res = simplifyWithOpReplaced(Op1, B, A, Q.getWithoutUndef(),
1986                                           /* AllowRefinement */ true,
1987                                           /* DropFlags */ nullptr, MaxRecurse))
1988     return Simplify(Res);
1989 
1990   return nullptr;
1991 }
1992 
1993 /// Given a bitwise logic op, check if the operands are add/sub with a common
1994 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1995 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1996                                     Instruction::BinaryOps Opcode) {
1997   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1998   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1999   Value *X;
2000   Constant *C1, *C2;
2001   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
2002        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
2003       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
2004        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
2005     if (ConstantExpr::getNot(C1) == C2) {
2006       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
2007       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
2008       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
2009       Type *Ty = Op0->getType();
2010       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
2011                                         : ConstantInt::getAllOnesValue(Ty);
2012     }
2013   }
2014   return nullptr;
2015 }
2016 
2017 // Commutative patterns for and that will be tried with both operand orders.
2018 static Value *simplifyAndCommutative(Value *Op0, Value *Op1,
2019                                      const SimplifyQuery &Q,
2020                                      unsigned MaxRecurse) {
2021   // ~A & A =  0
2022   if (match(Op0, m_Not(m_Specific(Op1))))
2023     return Constant::getNullValue(Op0->getType());
2024 
2025   // (A | ?) & A = A
2026   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
2027     return Op1;
2028 
2029   // (X | ~Y) & (X | Y) --> X
2030   Value *X, *Y;
2031   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
2032       match(Op1, m_c_Or(m_Specific(X), m_Specific(Y))))
2033     return X;
2034 
2035   // If we have a multiplication overflow check that is being 'and'ed with a
2036   // check that one of the multipliers is not zero, we can omit the 'and', and
2037   // only keep the overflow check.
2038   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
2039     return Op1;
2040 
2041   // -A & A = A if A is a power of two or zero.
2042   if (match(Op0, m_Neg(m_Specific(Op1))) &&
2043       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2044     return Op1;
2045 
2046   // This is a similar pattern used for checking if a value is a power-of-2:
2047   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2048   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
2049       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
2050     return Constant::getNullValue(Op1->getType());
2051 
2052   // (x << N) & ((x << M) - 1) --> 0, where x is known to be a power of 2 and
2053   // M <= N.
2054   const APInt *Shift1, *Shift2;
2055   if (match(Op0, m_Shl(m_Value(X), m_APInt(Shift1))) &&
2056       match(Op1, m_Add(m_Shl(m_Specific(X), m_APInt(Shift2)), m_AllOnes())) &&
2057       isKnownToBeAPowerOfTwo(X, Q.DL, /*OrZero*/ true, /*Depth*/ 0, Q.AC,
2058                              Q.CxtI) &&
2059       Shift1->uge(*Shift2))
2060     return Constant::getNullValue(Op0->getType());
2061 
2062   if (Value *V =
2063           simplifyAndOrWithICmpEq(Instruction::And, Op0, Op1, Q, MaxRecurse))
2064     return V;
2065 
2066   return nullptr;
2067 }
2068 
2069 /// Given operands for an And, see if we can fold the result.
2070 /// If not, this returns null.
2071 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2072                               unsigned MaxRecurse) {
2073   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2074     return C;
2075 
2076   // X & poison -> poison
2077   if (isa<PoisonValue>(Op1))
2078     return Op1;
2079 
2080   // X & undef -> 0
2081   if (Q.isUndefValue(Op1))
2082     return Constant::getNullValue(Op0->getType());
2083 
2084   // X & X = X
2085   if (Op0 == Op1)
2086     return Op0;
2087 
2088   // X & 0 = 0
2089   if (match(Op1, m_Zero()))
2090     return Constant::getNullValue(Op0->getType());
2091 
2092   // X & -1 = X
2093   if (match(Op1, m_AllOnes()))
2094     return Op0;
2095 
2096   if (Value *Res = simplifyAndCommutative(Op0, Op1, Q, MaxRecurse))
2097     return Res;
2098   if (Value *Res = simplifyAndCommutative(Op1, Op0, Q, MaxRecurse))
2099     return Res;
2100 
2101   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2102     return V;
2103 
2104   // A mask that only clears known zeros of a shifted value is a no-op.
2105   const APInt *Mask;
2106   const APInt *ShAmt;
2107   Value *X, *Y;
2108   if (match(Op1, m_APInt(Mask))) {
2109     // If all bits in the inverted and shifted mask are clear:
2110     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2111     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2112         (~(*Mask)).lshr(*ShAmt).isZero())
2113       return Op0;
2114 
2115     // If all bits in the inverted and shifted mask are clear:
2116     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2117     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2118         (~(*Mask)).shl(*ShAmt).isZero())
2119       return Op0;
2120   }
2121 
2122   // and 2^x-1, 2^C --> 0 where x <= C.
2123   const APInt *PowerC;
2124   Value *Shift;
2125   if (match(Op1, m_Power2(PowerC)) &&
2126       match(Op0, m_Add(m_Value(Shift), m_AllOnes())) &&
2127       isKnownToBeAPowerOfTwo(Shift, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI,
2128                              Q.DT)) {
2129     KnownBits Known = computeKnownBits(Shift, /* Depth */ 0, Q);
2130     // Use getActiveBits() to make use of the additional power of two knowledge
2131     if (PowerC->getActiveBits() >= Known.getMaxValue().getActiveBits())
2132       return ConstantInt::getNullValue(Op1->getType());
2133   }
2134 
2135   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2136     return V;
2137 
2138   // Try some generic simplifications for associative operations.
2139   if (Value *V =
2140           simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse))
2141     return V;
2142 
2143   // And distributes over Or.  Try some generic simplifications based on this.
2144   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2145                                         Instruction::Or, Q, MaxRecurse))
2146     return V;
2147 
2148   // And distributes over Xor.  Try some generic simplifications based on this.
2149   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2150                                         Instruction::Xor, Q, MaxRecurse))
2151     return V;
2152 
2153   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2154     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2155       // A & (A && B) -> A && B
2156       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2157         return Op1;
2158       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2159         return Op0;
2160     }
2161     // If the operation is with the result of a select instruction, check
2162     // whether operating on either branch of the select always yields the same
2163     // value.
2164     if (Value *V =
2165             threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse))
2166       return V;
2167   }
2168 
2169   // If the operation is with the result of a phi instruction, check whether
2170   // operating on all incoming values of the phi always yields the same value.
2171   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2172     if (Value *V =
2173             threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse))
2174       return V;
2175 
2176   // Assuming the effective width of Y is not larger than A, i.e. all bits
2177   // from X and Y are disjoint in (X << A) | Y,
2178   // if the mask of this AND op covers all bits of X or Y, while it covers
2179   // no bits from the other, we can bypass this AND op. E.g.,
2180   // ((X << A) | Y) & Mask -> Y,
2181   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2182   // ((X << A) | Y) & Mask -> X << A,
2183   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2184   // SimplifyDemandedBits in InstCombine can optimize the general case.
2185   // This pattern aims to help other passes for a common case.
2186   Value *XShifted;
2187   if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(Mask)) &&
2188       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2189                                      m_Value(XShifted)),
2190                         m_Value(Y)))) {
2191     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2192     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2193     const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q);
2194     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2195     if (EffWidthY <= ShftCnt) {
2196       const KnownBits XKnown = computeKnownBits(X, /* Depth */ 0, Q);
2197       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2198       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2199       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2200       // If the mask is extracting all bits from X or Y as is, we can skip
2201       // this AND op.
2202       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2203         return Y;
2204       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2205         return XShifted;
2206     }
2207   }
2208 
2209   // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2210   // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2211   BinaryOperator *Or;
2212   if (match(Op0, m_c_Xor(m_Value(X),
2213                          m_CombineAnd(m_BinOp(Or),
2214                                       m_c_Or(m_Deferred(X), m_Value(Y))))) &&
2215       match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
2216     return Constant::getNullValue(Op0->getType());
2217 
2218   const APInt *C1;
2219   Value *A;
2220   // (A ^ C) & (A ^ ~C) -> 0
2221   if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) &&
2222       match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1))))
2223     return Constant::getNullValue(Op0->getType());
2224 
2225   if (Op0->getType()->isIntOrIntVectorTy(1)) {
2226     if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) {
2227       // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1.
2228       if (*Implied == true)
2229         return Op0;
2230       // If Op0 is true implies Op1 is false, then they are not true together.
2231       if (*Implied == false)
2232         return ConstantInt::getFalse(Op0->getType());
2233     }
2234     if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) {
2235       // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0.
2236       if (*Implied)
2237         return Op1;
2238       // If Op1 is true implies Op0 is false, then they are not true together.
2239       if (!*Implied)
2240         return ConstantInt::getFalse(Op1->getType());
2241     }
2242   }
2243 
2244   if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse))
2245     return V;
2246 
2247   return nullptr;
2248 }
2249 
2250 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2251   return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit);
2252 }
2253 
2254 // TODO: Many of these folds could use LogicalAnd/LogicalOr.
2255 static Value *simplifyOrLogic(Value *X, Value *Y) {
2256   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2257   Type *Ty = X->getType();
2258 
2259   // X | ~X --> -1
2260   if (match(Y, m_Not(m_Specific(X))))
2261     return ConstantInt::getAllOnesValue(Ty);
2262 
2263   // X | ~(X & ?) = -1
2264   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2265     return ConstantInt::getAllOnesValue(Ty);
2266 
2267   // X | (X & ?) --> X
2268   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2269     return X;
2270 
2271   Value *A, *B;
2272 
2273   // (A ^ B) | (A | B) --> A | B
2274   // (A ^ B) | (B | A) --> B | A
2275   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2276       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2277     return Y;
2278 
2279   // ~(A ^ B) | (A | B) --> -1
2280   // ~(A ^ B) | (B | A) --> -1
2281   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2282       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2283     return ConstantInt::getAllOnesValue(Ty);
2284 
2285   // (A & ~B) | (A ^ B) --> A ^ B
2286   // (~B & A) | (A ^ B) --> A ^ B
2287   // (A & ~B) | (B ^ A) --> B ^ A
2288   // (~B & A) | (B ^ A) --> B ^ A
2289   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2290       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2291     return Y;
2292 
2293   // (~A ^ B) | (A & B) --> ~A ^ B
2294   // (B ^ ~A) | (A & B) --> B ^ ~A
2295   // (~A ^ B) | (B & A) --> ~A ^ B
2296   // (B ^ ~A) | (B & A) --> B ^ ~A
2297   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2298       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2299     return X;
2300 
2301   // (~A | B) | (A ^ B) --> -1
2302   // (~A | B) | (B ^ A) --> -1
2303   // (B | ~A) | (A ^ B) --> -1
2304   // (B | ~A) | (B ^ A) --> -1
2305   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2306       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2307     return ConstantInt::getAllOnesValue(Ty);
2308 
2309   // (~A & B) | ~(A | B) --> ~A
2310   // (~A & B) | ~(B | A) --> ~A
2311   // (B & ~A) | ~(A | B) --> ~A
2312   // (B & ~A) | ~(B | A) --> ~A
2313   Value *NotA;
2314   if (match(X, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2315                        m_Value(B))) &&
2316       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2317     return NotA;
2318   // The same is true of Logical And
2319   // TODO: This could share the logic of the version above if there was a
2320   // version of LogicalAnd that allowed more than just i1 types.
2321   if (match(X, m_c_LogicalAnd(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2322                               m_Value(B))) &&
2323       match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B)))))
2324     return NotA;
2325 
2326   // ~(A ^ B) | (A & B) --> ~(A ^ B)
2327   // ~(A ^ B) | (B & A) --> ~(A ^ B)
2328   Value *NotAB;
2329   if (match(X, m_CombineAnd(m_Not(m_Xor(m_Value(A), m_Value(B))),
2330                             m_Value(NotAB))) &&
2331       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2332     return NotAB;
2333 
2334   // ~(A & B) | (A ^ B) --> ~(A & B)
2335   // ~(A & B) | (B ^ A) --> ~(A & B)
2336   if (match(X, m_CombineAnd(m_Not(m_And(m_Value(A), m_Value(B))),
2337                             m_Value(NotAB))) &&
2338       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2339     return NotAB;
2340 
2341   return nullptr;
2342 }
2343 
2344 /// Given operands for an Or, see if we can fold the result.
2345 /// If not, this returns null.
2346 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2347                              unsigned MaxRecurse) {
2348   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2349     return C;
2350 
2351   // X | poison -> poison
2352   if (isa<PoisonValue>(Op1))
2353     return Op1;
2354 
2355   // X | undef -> -1
2356   // X | -1 = -1
2357   // Do not return Op1 because it may contain undef elements if it's a vector.
2358   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2359     return Constant::getAllOnesValue(Op0->getType());
2360 
2361   // X | X = X
2362   // X | 0 = X
2363   if (Op0 == Op1 || match(Op1, m_Zero()))
2364     return Op0;
2365 
2366   if (Value *R = simplifyOrLogic(Op0, Op1))
2367     return R;
2368   if (Value *R = simplifyOrLogic(Op1, Op0))
2369     return R;
2370 
2371   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2372     return V;
2373 
2374   // Rotated -1 is still -1:
2375   // (-1 << X) | (-1 >> (C - X)) --> -1
2376   // (-1 >> X) | (-1 << (C - X)) --> -1
2377   // ...with C <= bitwidth (and commuted variants).
2378   Value *X, *Y;
2379   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2380        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2381       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2382        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2383     const APInt *C;
2384     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2385          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2386         C->ule(X->getType()->getScalarSizeInBits())) {
2387       return ConstantInt::getAllOnesValue(X->getType());
2388     }
2389   }
2390 
2391   // A funnel shift (rotate) can be decomposed into simpler shifts. See if we
2392   // are mixing in another shift that is redundant with the funnel shift.
2393 
2394   // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
2395   // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y
2396   if (match(Op0,
2397             m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
2398       match(Op1, m_Shl(m_Specific(X), m_Specific(Y))))
2399     return Op0;
2400   if (match(Op1,
2401             m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
2402       match(Op0, m_Shl(m_Specific(X), m_Specific(Y))))
2403     return Op1;
2404 
2405   // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y
2406   // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y
2407   if (match(Op0,
2408             m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
2409       match(Op1, m_LShr(m_Specific(X), m_Specific(Y))))
2410     return Op0;
2411   if (match(Op1,
2412             m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
2413       match(Op0, m_LShr(m_Specific(X), m_Specific(Y))))
2414     return Op1;
2415 
2416   if (Value *V =
2417           simplifyAndOrWithICmpEq(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2418     return V;
2419   if (Value *V =
2420           simplifyAndOrWithICmpEq(Instruction::Or, Op1, Op0, Q, MaxRecurse))
2421     return V;
2422 
2423   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2424     return V;
2425 
2426   // If we have a multiplication overflow check that is being 'and'ed with a
2427   // check that one of the multipliers is not zero, we can omit the 'and', and
2428   // only keep the overflow check.
2429   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2430     return Op1;
2431   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2432     return Op0;
2433 
2434   // Try some generic simplifications for associative operations.
2435   if (Value *V =
2436           simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2437     return V;
2438 
2439   // Or distributes over And.  Try some generic simplifications based on this.
2440   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2441                                         Instruction::And, Q, MaxRecurse))
2442     return V;
2443 
2444   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2445     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2446       // A | (A || B) -> A || B
2447       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2448         return Op1;
2449       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2450         return Op0;
2451     }
2452     // If the operation is with the result of a select instruction, check
2453     // whether operating on either branch of the select always yields the same
2454     // value.
2455     if (Value *V =
2456             threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2457       return V;
2458   }
2459 
2460   // (A & C1)|(B & C2)
2461   Value *A, *B;
2462   const APInt *C1, *C2;
2463   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2464       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2465     if (*C1 == ~*C2) {
2466       // (A & C1)|(B & C2)
2467       // If we have: ((V + N) & C1) | (V & C2)
2468       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2469       // replace with V+N.
2470       Value *N;
2471       if (C2->isMask() && // C2 == 0+1+
2472           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2473         // Add commutes, try both ways.
2474         if (MaskedValueIsZero(N, *C2, Q))
2475           return A;
2476       }
2477       // Or commutes, try both ways.
2478       if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2479         // Add commutes, try both ways.
2480         if (MaskedValueIsZero(N, *C1, Q))
2481           return B;
2482       }
2483     }
2484   }
2485 
2486   // If the operation is with the result of a phi instruction, check whether
2487   // operating on all incoming values of the phi always yields the same value.
2488   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2489     if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2490       return V;
2491 
2492   // (A ^ C) | (A ^ ~C) -> -1, i.e. all bits set to one.
2493   if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) &&
2494       match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1))))
2495     return Constant::getAllOnesValue(Op0->getType());
2496 
2497   if (Op0->getType()->isIntOrIntVectorTy(1)) {
2498     if (std::optional<bool> Implied =
2499             isImpliedCondition(Op0, Op1, Q.DL, false)) {
2500       // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0.
2501       if (*Implied == false)
2502         return Op0;
2503       // If Op0 is false implies Op1 is true, then at least one is always true.
2504       if (*Implied == true)
2505         return ConstantInt::getTrue(Op0->getType());
2506     }
2507     if (std::optional<bool> Implied =
2508             isImpliedCondition(Op1, Op0, Q.DL, false)) {
2509       // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1.
2510       if (*Implied == false)
2511         return Op1;
2512       // If Op1 is false implies Op0 is true, then at least one is always true.
2513       if (*Implied == true)
2514         return ConstantInt::getTrue(Op1->getType());
2515     }
2516   }
2517 
2518   if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2519     return V;
2520 
2521   return nullptr;
2522 }
2523 
2524 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2525   return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit);
2526 }
2527 
2528 /// Given operands for a Xor, see if we can fold the result.
2529 /// If not, this returns null.
2530 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2531                               unsigned MaxRecurse) {
2532   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2533     return C;
2534 
2535   // X ^ poison -> poison
2536   if (isa<PoisonValue>(Op1))
2537     return Op1;
2538 
2539   // A ^ undef -> undef
2540   if (Q.isUndefValue(Op1))
2541     return Op1;
2542 
2543   // A ^ 0 = A
2544   if (match(Op1, m_Zero()))
2545     return Op0;
2546 
2547   // A ^ A = 0
2548   if (Op0 == Op1)
2549     return Constant::getNullValue(Op0->getType());
2550 
2551   // A ^ ~A  =  ~A ^ A  =  -1
2552   if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
2553     return Constant::getAllOnesValue(Op0->getType());
2554 
2555   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2556     Value *A, *B;
2557     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2558     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2559         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2560       return A;
2561 
2562     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2563     // The 'not' op must contain a complete -1 operand (no undef elements for
2564     // vector) for the transform to be safe.
2565     Value *NotA;
2566     if (match(X, m_c_Or(m_CombineAnd(m_Not(m_Value(A)), m_Value(NotA)),
2567                         m_Value(B))) &&
2568         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2569       return NotA;
2570 
2571     return nullptr;
2572   };
2573   if (Value *R = foldAndOrNot(Op0, Op1))
2574     return R;
2575   if (Value *R = foldAndOrNot(Op1, Op0))
2576     return R;
2577 
2578   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2579     return V;
2580 
2581   // Try some generic simplifications for associative operations.
2582   if (Value *V =
2583           simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
2584     return V;
2585 
2586   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2587   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2588   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2589   // only if B and C are equal.  If B and C are equal then (since we assume
2590   // that operands have already been simplified) "select(cond, B, C)" should
2591   // have been simplified to the common value of B and C already.  Analysing
2592   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2593   // for threading over phi nodes.
2594 
2595   if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
2596     return V;
2597 
2598   return nullptr;
2599 }
2600 
2601 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2602   return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit);
2603 }
2604 
2605 static Type *getCompareTy(Value *Op) {
2606   return CmpInst::makeCmpResultType(Op->getType());
2607 }
2608 
2609 /// Rummage around inside V looking for something equivalent to the comparison
2610 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2611 /// Helper function for analyzing max/min idioms.
2612 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
2613                                          Value *LHS, Value *RHS) {
2614   SelectInst *SI = dyn_cast<SelectInst>(V);
2615   if (!SI)
2616     return nullptr;
2617   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2618   if (!Cmp)
2619     return nullptr;
2620   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2621   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2622     return Cmp;
2623   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2624       LHS == CmpRHS && RHS == CmpLHS)
2625     return Cmp;
2626   return nullptr;
2627 }
2628 
2629 /// Return true if the underlying object (storage) must be disjoint from
2630 /// storage returned by any noalias return call.
2631 static bool isAllocDisjoint(const Value *V) {
2632   // For allocas, we consider only static ones (dynamic
2633   // allocas might be transformed into calls to malloc not simultaneously
2634   // live with the compared-to allocation). For globals, we exclude symbols
2635   // that might be resolve lazily to symbols in another dynamically-loaded
2636   // library (and, thus, could be malloc'ed by the implementation).
2637   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2638     return AI->isStaticAlloca();
2639   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2640     return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2641             GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2642            !GV->isThreadLocal();
2643   if (const Argument *A = dyn_cast<Argument>(V))
2644     return A->hasByValAttr();
2645   return false;
2646 }
2647 
2648 /// Return true if V1 and V2 are each the base of some distict storage region
2649 /// [V, object_size(V)] which do not overlap.  Note that zero sized regions
2650 /// *are* possible, and that zero sized regions do not overlap with any other.
2651 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) {
2652   // Global variables always exist, so they always exist during the lifetime
2653   // of each other and all allocas.  Global variables themselves usually have
2654   // non-overlapping storage, but since their addresses are constants, the
2655   // case involving two globals does not reach here and is instead handled in
2656   // constant folding.
2657   //
2658   // Two different allocas usually have different addresses...
2659   //
2660   // However, if there's an @llvm.stackrestore dynamically in between two
2661   // allocas, they may have the same address. It's tempting to reduce the
2662   // scope of the problem by only looking at *static* allocas here. That would
2663   // cover the majority of allocas while significantly reducing the likelihood
2664   // of having an @llvm.stackrestore pop up in the middle. However, it's not
2665   // actually impossible for an @llvm.stackrestore to pop up in the middle of
2666   // an entry block. Also, if we have a block that's not attached to a
2667   // function, we can't tell if it's "static" under the current definition.
2668   // Theoretically, this problem could be fixed by creating a new kind of
2669   // instruction kind specifically for static allocas. Such a new instruction
2670   // could be required to be at the top of the entry block, thus preventing it
2671   // from being subject to a @llvm.stackrestore. Instcombine could even
2672   // convert regular allocas into these special allocas. It'd be nifty.
2673   // However, until then, this problem remains open.
2674   //
2675   // So, we'll assume that two non-empty allocas have different addresses
2676   // for now.
2677   auto isByValArg = [](const Value *V) {
2678     const Argument *A = dyn_cast<Argument>(V);
2679     return A && A->hasByValAttr();
2680   };
2681 
2682   // Byval args are backed by store which does not overlap with each other,
2683   // allocas, or globals.
2684   if (isByValArg(V1))
2685     return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2);
2686   if (isByValArg(V2))
2687     return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1);
2688 
2689   return isa<AllocaInst>(V1) &&
2690          (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2));
2691 }
2692 
2693 // A significant optimization not implemented here is assuming that alloca
2694 // addresses are not equal to incoming argument values. They don't *alias*,
2695 // as we say, but that doesn't mean they aren't equal, so we take a
2696 // conservative approach.
2697 //
2698 // This is inspired in part by C++11 5.10p1:
2699 //   "Two pointers of the same type compare equal if and only if they are both
2700 //    null, both point to the same function, or both represent the same
2701 //    address."
2702 //
2703 // This is pretty permissive.
2704 //
2705 // It's also partly due to C11 6.5.9p6:
2706 //   "Two pointers compare equal if and only if both are null pointers, both are
2707 //    pointers to the same object (including a pointer to an object and a
2708 //    subobject at its beginning) or function, both are pointers to one past the
2709 //    last element of the same array object, or one is a pointer to one past the
2710 //    end of one array object and the other is a pointer to the start of a
2711 //    different array object that happens to immediately follow the first array
2712 //    object in the address space.)
2713 //
2714 // C11's version is more restrictive, however there's no reason why an argument
2715 // couldn't be a one-past-the-end value for a stack object in the caller and be
2716 // equal to the beginning of a stack object in the callee.
2717 //
2718 // If the C and C++ standards are ever made sufficiently restrictive in this
2719 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2720 // this optimization.
2721 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS,
2722                                     Value *RHS, const SimplifyQuery &Q) {
2723   assert(LHS->getType() == RHS->getType() && "Must have same types");
2724   const DataLayout &DL = Q.DL;
2725   const TargetLibraryInfo *TLI = Q.TLI;
2726 
2727   // We can only fold certain predicates on pointer comparisons.
2728   switch (Pred) {
2729   default:
2730     return nullptr;
2731 
2732     // Equality comparisons are easy to fold.
2733   case CmpInst::ICMP_EQ:
2734   case CmpInst::ICMP_NE:
2735     break;
2736 
2737     // We can only handle unsigned relational comparisons because 'inbounds' on
2738     // a GEP only protects against unsigned wrapping.
2739   case CmpInst::ICMP_UGT:
2740   case CmpInst::ICMP_UGE:
2741   case CmpInst::ICMP_ULT:
2742   case CmpInst::ICMP_ULE:
2743     // However, we have to switch them to their signed variants to handle
2744     // negative indices from the base pointer.
2745     Pred = ICmpInst::getSignedPredicate(Pred);
2746     break;
2747   }
2748 
2749   // Strip off any constant offsets so that we can reason about them.
2750   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2751   // here and compare base addresses like AliasAnalysis does, however there are
2752   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2753   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2754   // doesn't need to guarantee pointer inequality when it says NoAlias.
2755 
2756   // Even if an non-inbounds GEP occurs along the path we can still optimize
2757   // equality comparisons concerning the result.
2758   bool AllowNonInbounds = ICmpInst::isEquality(Pred);
2759   unsigned IndexSize = DL.getIndexTypeSizeInBits(LHS->getType());
2760   APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0);
2761   LHS = LHS->stripAndAccumulateConstantOffsets(DL, LHSOffset, AllowNonInbounds);
2762   RHS = RHS->stripAndAccumulateConstantOffsets(DL, RHSOffset, AllowNonInbounds);
2763 
2764   // If LHS and RHS are related via constant offsets to the same base
2765   // value, we can replace it with an icmp which just compares the offsets.
2766   if (LHS == RHS)
2767     return ConstantInt::get(getCompareTy(LHS),
2768                             ICmpInst::compare(LHSOffset, RHSOffset, Pred));
2769 
2770   // Various optimizations for (in)equality comparisons.
2771   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2772     // Different non-empty allocations that exist at the same time have
2773     // different addresses (if the program can tell). If the offsets are
2774     // within the bounds of their allocations (and not one-past-the-end!
2775     // so we can't use inbounds!), and their allocations aren't the same,
2776     // the pointers are not equal.
2777     if (haveNonOverlappingStorage(LHS, RHS)) {
2778       uint64_t LHSSize, RHSSize;
2779       ObjectSizeOpts Opts;
2780       Opts.EvalMode = ObjectSizeOpts::Mode::Min;
2781       auto *F = [](Value *V) -> Function * {
2782         if (auto *I = dyn_cast<Instruction>(V))
2783           return I->getFunction();
2784         if (auto *A = dyn_cast<Argument>(V))
2785           return A->getParent();
2786         return nullptr;
2787       }(LHS);
2788       Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true;
2789       if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) &&
2790           getObjectSize(RHS, RHSSize, DL, TLI, Opts)) {
2791         APInt Dist = LHSOffset - RHSOffset;
2792         if (Dist.isNonNegative() ? Dist.ult(LHSSize) : (-Dist).ult(RHSSize))
2793           return ConstantInt::get(getCompareTy(LHS),
2794                                   !CmpInst::isTrueWhenEqual(Pred));
2795       }
2796     }
2797 
2798     // If one side of the equality comparison must come from a noalias call
2799     // (meaning a system memory allocation function), and the other side must
2800     // come from a pointer that cannot overlap with dynamically-allocated
2801     // memory within the lifetime of the current function (allocas, byval
2802     // arguments, globals), then determine the comparison result here.
2803     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2804     getUnderlyingObjects(LHS, LHSUObjs);
2805     getUnderlyingObjects(RHS, RHSUObjs);
2806 
2807     // Is the set of underlying objects all noalias calls?
2808     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2809       return all_of(Objects, isNoAliasCall);
2810     };
2811 
2812     // Is the set of underlying objects all things which must be disjoint from
2813     // noalias calls.  We assume that indexing from such disjoint storage
2814     // into the heap is undefined, and thus offsets can be safely ignored.
2815     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2816       return all_of(Objects, ::isAllocDisjoint);
2817     };
2818 
2819     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2820         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2821       return ConstantInt::get(getCompareTy(LHS),
2822                               !CmpInst::isTrueWhenEqual(Pred));
2823 
2824     // Fold comparisons for non-escaping pointer even if the allocation call
2825     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2826     // dynamic allocation call could be either of the operands.  Note that
2827     // the other operand can not be based on the alloc - if it were, then
2828     // the cmp itself would be a capture.
2829     Value *MI = nullptr;
2830     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonZero(RHS, Q))
2831       MI = LHS;
2832     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonZero(LHS, Q))
2833       MI = RHS;
2834     if (MI) {
2835       // FIXME: This is incorrect, see PR54002. While we can assume that the
2836       // allocation is at an address that makes the comparison false, this
2837       // requires that *all* comparisons to that address be false, which
2838       // InstSimplify cannot guarantee.
2839       struct CustomCaptureTracker : public CaptureTracker {
2840         bool Captured = false;
2841         void tooManyUses() override { Captured = true; }
2842         bool captured(const Use *U) override {
2843           if (auto *ICmp = dyn_cast<ICmpInst>(U->getUser())) {
2844             // Comparison against value stored in global variable. Given the
2845             // pointer does not escape, its value cannot be guessed and stored
2846             // separately in a global variable.
2847             unsigned OtherIdx = 1 - U->getOperandNo();
2848             auto *LI = dyn_cast<LoadInst>(ICmp->getOperand(OtherIdx));
2849             if (LI && isa<GlobalVariable>(LI->getPointerOperand()))
2850               return false;
2851           }
2852 
2853           Captured = true;
2854           return true;
2855         }
2856       };
2857       CustomCaptureTracker Tracker;
2858       PointerMayBeCaptured(MI, &Tracker);
2859       if (!Tracker.Captured)
2860         return ConstantInt::get(getCompareTy(LHS),
2861                                 CmpInst::isFalseWhenEqual(Pred));
2862     }
2863   }
2864 
2865   // Otherwise, fail.
2866   return nullptr;
2867 }
2868 
2869 /// Fold an icmp when its operands have i1 scalar type.
2870 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS,
2871                                   Value *RHS, const SimplifyQuery &Q) {
2872   Type *ITy = getCompareTy(LHS); // The return type.
2873   Type *OpTy = LHS->getType();   // The operand type.
2874   if (!OpTy->isIntOrIntVectorTy(1))
2875     return nullptr;
2876 
2877   // A boolean compared to true/false can be reduced in 14 out of the 20
2878   // (10 predicates * 2 constants) possible combinations. The other
2879   // 6 cases require a 'not' of the LHS.
2880 
2881   auto ExtractNotLHS = [](Value *V) -> Value * {
2882     Value *X;
2883     if (match(V, m_Not(m_Value(X))))
2884       return X;
2885     return nullptr;
2886   };
2887 
2888   if (match(RHS, m_Zero())) {
2889     switch (Pred) {
2890     case CmpInst::ICMP_NE:  // X !=  0 -> X
2891     case CmpInst::ICMP_UGT: // X >u  0 -> X
2892     case CmpInst::ICMP_SLT: // X <s  0 -> X
2893       return LHS;
2894 
2895     case CmpInst::ICMP_EQ:  // not(X) ==  0 -> X != 0 -> X
2896     case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
2897     case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
2898       if (Value *X = ExtractNotLHS(LHS))
2899         return X;
2900       break;
2901 
2902     case CmpInst::ICMP_ULT: // X <u  0 -> false
2903     case CmpInst::ICMP_SGT: // X >s  0 -> false
2904       return getFalse(ITy);
2905 
2906     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2907     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2908       return getTrue(ITy);
2909 
2910     default:
2911       break;
2912     }
2913   } else if (match(RHS, m_One())) {
2914     switch (Pred) {
2915     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2916     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2917     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2918       return LHS;
2919 
2920     case CmpInst::ICMP_NE:  // not(X) !=  1 -> X ==   1 -> X
2921     case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u  1 -> X
2922     case CmpInst::ICMP_SGT: // not(X) >s  1 -> X <=s -1 -> X
2923       if (Value *X = ExtractNotLHS(LHS))
2924         return X;
2925       break;
2926 
2927     case CmpInst::ICMP_UGT: // X >u   1 -> false
2928     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2929       return getFalse(ITy);
2930 
2931     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2932     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2933       return getTrue(ITy);
2934 
2935     default:
2936       break;
2937     }
2938   }
2939 
2940   switch (Pred) {
2941   default:
2942     break;
2943   case ICmpInst::ICMP_UGE:
2944     if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
2945       return getTrue(ITy);
2946     break;
2947   case ICmpInst::ICMP_SGE:
2948     /// For signed comparison, the values for an i1 are 0 and -1
2949     /// respectively. This maps into a truth table of:
2950     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2951     ///  0  |  0  |  1 (0 >= 0)   |  1
2952     ///  0  |  1  |  1 (0 >= -1)  |  1
2953     ///  1  |  0  |  0 (-1 >= 0)  |  0
2954     ///  1  |  1  |  1 (-1 >= -1) |  1
2955     if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
2956       return getTrue(ITy);
2957     break;
2958   case ICmpInst::ICMP_ULE:
2959     if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
2960       return getTrue(ITy);
2961     break;
2962   case ICmpInst::ICMP_SLE:
2963     /// SLE follows the same logic as SGE with the LHS and RHS swapped.
2964     if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
2965       return getTrue(ITy);
2966     break;
2967   }
2968 
2969   return nullptr;
2970 }
2971 
2972 /// Try hard to fold icmp with zero RHS because this is a common case.
2973 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS,
2974                                    Value *RHS, const SimplifyQuery &Q) {
2975   if (!match(RHS, m_Zero()))
2976     return nullptr;
2977 
2978   Type *ITy = getCompareTy(LHS); // The return type.
2979   switch (Pred) {
2980   default:
2981     llvm_unreachable("Unknown ICmp predicate!");
2982   case ICmpInst::ICMP_ULT:
2983     return getFalse(ITy);
2984   case ICmpInst::ICMP_UGE:
2985     return getTrue(ITy);
2986   case ICmpInst::ICMP_EQ:
2987   case ICmpInst::ICMP_ULE:
2988     if (isKnownNonZero(LHS, Q))
2989       return getFalse(ITy);
2990     break;
2991   case ICmpInst::ICMP_NE:
2992   case ICmpInst::ICMP_UGT:
2993     if (isKnownNonZero(LHS, Q))
2994       return getTrue(ITy);
2995     break;
2996   case ICmpInst::ICMP_SLT: {
2997     KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q);
2998     if (LHSKnown.isNegative())
2999       return getTrue(ITy);
3000     if (LHSKnown.isNonNegative())
3001       return getFalse(ITy);
3002     break;
3003   }
3004   case ICmpInst::ICMP_SLE: {
3005     KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q);
3006     if (LHSKnown.isNegative())
3007       return getTrue(ITy);
3008     if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q))
3009       return getFalse(ITy);
3010     break;
3011   }
3012   case ICmpInst::ICMP_SGE: {
3013     KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q);
3014     if (LHSKnown.isNegative())
3015       return getFalse(ITy);
3016     if (LHSKnown.isNonNegative())
3017       return getTrue(ITy);
3018     break;
3019   }
3020   case ICmpInst::ICMP_SGT: {
3021     KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q);
3022     if (LHSKnown.isNegative())
3023       return getFalse(ITy);
3024     if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q))
3025       return getTrue(ITy);
3026     break;
3027   }
3028   }
3029 
3030   return nullptr;
3031 }
3032 
3033 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS,
3034                                        Value *RHS, const InstrInfoQuery &IIQ) {
3035   Type *ITy = getCompareTy(RHS); // The return type.
3036 
3037   Value *X;
3038   const APInt *C;
3039   if (!match(RHS, m_APIntAllowPoison(C)))
3040     return nullptr;
3041 
3042   // Sign-bit checks can be optimized to true/false after unsigned
3043   // floating-point casts:
3044   // icmp slt (bitcast (uitofp X)),  0 --> false
3045   // icmp sgt (bitcast (uitofp X)), -1 --> true
3046   if (match(LHS, m_ElementWiseBitCast(m_UIToFP(m_Value(X))))) {
3047     bool TrueIfSigned;
3048     if (isSignBitCheck(Pred, *C, TrueIfSigned))
3049       return ConstantInt::getBool(ITy, !TrueIfSigned);
3050   }
3051 
3052   // Rule out tautological comparisons (eg., ult 0 or uge 0).
3053   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
3054   if (RHS_CR.isEmptySet())
3055     return ConstantInt::getFalse(ITy);
3056   if (RHS_CR.isFullSet())
3057     return ConstantInt::getTrue(ITy);
3058 
3059   ConstantRange LHS_CR =
3060       computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
3061   if (!LHS_CR.isFullSet()) {
3062     if (RHS_CR.contains(LHS_CR))
3063       return ConstantInt::getTrue(ITy);
3064     if (RHS_CR.inverse().contains(LHS_CR))
3065       return ConstantInt::getFalse(ITy);
3066   }
3067 
3068   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
3069   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
3070   const APInt *MulC;
3071   if (IIQ.UseInstrInfo && ICmpInst::isEquality(Pred) &&
3072       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowPoison(MulC))) &&
3073         *MulC != 0 && C->urem(*MulC) != 0) ||
3074        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowPoison(MulC))) &&
3075         *MulC != 0 && C->srem(*MulC) != 0)))
3076     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
3077 
3078   return nullptr;
3079 }
3080 
3081 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred,
3082                                          BinaryOperator *LBO, Value *RHS,
3083                                          const SimplifyQuery &Q,
3084                                          unsigned MaxRecurse) {
3085   Type *ITy = getCompareTy(RHS); // The return type.
3086 
3087   Value *Y = nullptr;
3088   // icmp pred (or X, Y), X
3089   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
3090     if (Pred == ICmpInst::ICMP_ULT)
3091       return getFalse(ITy);
3092     if (Pred == ICmpInst::ICMP_UGE)
3093       return getTrue(ITy);
3094 
3095     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
3096       KnownBits RHSKnown = computeKnownBits(RHS, /* Depth */ 0, Q);
3097       KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q);
3098       if (RHSKnown.isNonNegative() && YKnown.isNegative())
3099         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
3100       if (RHSKnown.isNegative() || YKnown.isNonNegative())
3101         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
3102     }
3103   }
3104 
3105   // icmp pred (and X, Y), X
3106   if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) {
3107     if (Pred == ICmpInst::ICMP_UGT)
3108       return getFalse(ITy);
3109     if (Pred == ICmpInst::ICMP_ULE)
3110       return getTrue(ITy);
3111   }
3112 
3113   // icmp pred (urem X, Y), Y
3114   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
3115     switch (Pred) {
3116     default:
3117       break;
3118     case ICmpInst::ICMP_SGT:
3119     case ICmpInst::ICMP_SGE: {
3120       KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q);
3121       if (!Known.isNonNegative())
3122         break;
3123       [[fallthrough]];
3124     }
3125     case ICmpInst::ICMP_EQ:
3126     case ICmpInst::ICMP_UGT:
3127     case ICmpInst::ICMP_UGE:
3128       return getFalse(ITy);
3129     case ICmpInst::ICMP_SLT:
3130     case ICmpInst::ICMP_SLE: {
3131       KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q);
3132       if (!Known.isNonNegative())
3133         break;
3134       [[fallthrough]];
3135     }
3136     case ICmpInst::ICMP_NE:
3137     case ICmpInst::ICMP_ULT:
3138     case ICmpInst::ICMP_ULE:
3139       return getTrue(ITy);
3140     }
3141   }
3142 
3143   // icmp pred (urem X, Y), X
3144   if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) {
3145     if (Pred == ICmpInst::ICMP_ULE)
3146       return getTrue(ITy);
3147     if (Pred == ICmpInst::ICMP_UGT)
3148       return getFalse(ITy);
3149   }
3150 
3151   // x >>u y <=u x --> true.
3152   // x >>u y >u  x --> false.
3153   // x udiv y <=u x --> true.
3154   // x udiv y >u  x --> false.
3155   if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) ||
3156       match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
3157     // icmp pred (X op Y), X
3158     if (Pred == ICmpInst::ICMP_UGT)
3159       return getFalse(ITy);
3160     if (Pred == ICmpInst::ICMP_ULE)
3161       return getTrue(ITy);
3162   }
3163 
3164   // If x is nonzero:
3165   // x >>u C <u  x --> true  for C != 0.
3166   // x >>u C !=  x --> true  for C != 0.
3167   // x >>u C >=u x --> false for C != 0.
3168   // x >>u C ==  x --> false for C != 0.
3169   // x udiv C <u  x --> true  for C != 1.
3170   // x udiv C !=  x --> true  for C != 1.
3171   // x udiv C >=u x --> false for C != 1.
3172   // x udiv C ==  x --> false for C != 1.
3173   // TODO: allow non-constant shift amount/divisor
3174   const APInt *C;
3175   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
3176       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
3177     if (isKnownNonZero(RHS, Q)) {
3178       switch (Pred) {
3179       default:
3180         break;
3181       case ICmpInst::ICMP_EQ:
3182       case ICmpInst::ICMP_UGE:
3183         return getFalse(ITy);
3184       case ICmpInst::ICMP_NE:
3185       case ICmpInst::ICMP_ULT:
3186         return getTrue(ITy);
3187       case ICmpInst::ICMP_UGT:
3188       case ICmpInst::ICMP_ULE:
3189         // UGT/ULE are handled by the more general case just above
3190         llvm_unreachable("Unexpected UGT/ULE, should have been handled");
3191       }
3192     }
3193   }
3194 
3195   // (x*C1)/C2 <= x for C1 <= C2.
3196   // This holds even if the multiplication overflows: Assume that x != 0 and
3197   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3198   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3199   //
3200   // Additionally, either the multiplication and division might be represented
3201   // as shifts:
3202   // (x*C1)>>C2 <= x for C1 < 2**C2.
3203   // (x<<C1)/C2 <= x for 2**C1 < C2.
3204   const APInt *C1, *C2;
3205   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3206        C1->ule(*C2)) ||
3207       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3208        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3209       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3210        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3211     if (Pred == ICmpInst::ICMP_UGT)
3212       return getFalse(ITy);
3213     if (Pred == ICmpInst::ICMP_ULE)
3214       return getTrue(ITy);
3215   }
3216 
3217   // (sub C, X) == X, C is odd  --> false
3218   // (sub C, X) != X, C is odd  --> true
3219   if (match(LBO, m_Sub(m_APIntAllowPoison(C), m_Specific(RHS))) &&
3220       (*C & 1) == 1 && ICmpInst::isEquality(Pred))
3221     return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy);
3222 
3223   return nullptr;
3224 }
3225 
3226 // If only one of the icmp's operands has NSW flags, try to prove that:
3227 //
3228 //   icmp slt (x + C1), (x +nsw C2)
3229 //
3230 // is equivalent to:
3231 //
3232 //   icmp slt C1, C2
3233 //
3234 // which is true if x + C2 has the NSW flags set and:
3235 // *) C1 < C2 && C1 >= 0, or
3236 // *) C2 < C1 && C1 <= 0.
3237 //
3238 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS,
3239                                     Value *RHS, const InstrInfoQuery &IIQ) {
3240   // TODO: only support icmp slt for now.
3241   if (Pred != CmpInst::ICMP_SLT || !IIQ.UseInstrInfo)
3242     return false;
3243 
3244   // Canonicalize nsw add as RHS.
3245   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3246     std::swap(LHS, RHS);
3247   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3248     return false;
3249 
3250   Value *X;
3251   const APInt *C1, *C2;
3252   if (!match(LHS, m_Add(m_Value(X), m_APInt(C1))) ||
3253       !match(RHS, m_Add(m_Specific(X), m_APInt(C2))))
3254     return false;
3255 
3256   return (C1->slt(*C2) && C1->isNonNegative()) ||
3257          (C2->slt(*C1) && C1->isNonPositive());
3258 }
3259 
3260 /// TODO: A large part of this logic is duplicated in InstCombine's
3261 /// foldICmpBinOp(). We should be able to share that and avoid the code
3262 /// duplication.
3263 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS,
3264                                     Value *RHS, const SimplifyQuery &Q,
3265                                     unsigned MaxRecurse) {
3266   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3267   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3268   if (MaxRecurse && (LBO || RBO)) {
3269     // Analyze the case when either LHS or RHS is an add instruction.
3270     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3271     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3272     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3273     if (LBO && LBO->getOpcode() == Instruction::Add) {
3274       A = LBO->getOperand(0);
3275       B = LBO->getOperand(1);
3276       NoLHSWrapProblem =
3277           ICmpInst::isEquality(Pred) ||
3278           (CmpInst::isUnsigned(Pred) &&
3279            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3280           (CmpInst::isSigned(Pred) &&
3281            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3282     }
3283     if (RBO && RBO->getOpcode() == Instruction::Add) {
3284       C = RBO->getOperand(0);
3285       D = RBO->getOperand(1);
3286       NoRHSWrapProblem =
3287           ICmpInst::isEquality(Pred) ||
3288           (CmpInst::isUnsigned(Pred) &&
3289            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3290           (CmpInst::isSigned(Pred) &&
3291            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3292     }
3293 
3294     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3295     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3296       if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A,
3297                                       Constant::getNullValue(RHS->getType()), Q,
3298                                       MaxRecurse - 1))
3299         return V;
3300 
3301     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3302     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3303       if (Value *V =
3304               simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3305                                C == LHS ? D : C, Q, MaxRecurse - 1))
3306         return V;
3307 
3308     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3309     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3310                        trySimplifyICmpWithAdds(Pred, LHS, RHS, Q.IIQ);
3311     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3312       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3313       Value *Y, *Z;
3314       if (A == C) {
3315         // C + B == C + D  ->  B == D
3316         Y = B;
3317         Z = D;
3318       } else if (A == D) {
3319         // D + B == C + D  ->  B == C
3320         Y = B;
3321         Z = C;
3322       } else if (B == C) {
3323         // A + C == C + D  ->  A == D
3324         Y = A;
3325         Z = D;
3326       } else {
3327         assert(B == D);
3328         // A + D == C + D  ->  A == C
3329         Y = A;
3330         Z = C;
3331       }
3332       if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3333         return V;
3334     }
3335   }
3336 
3337   if (LBO)
3338     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3339       return V;
3340 
3341   if (RBO)
3342     if (Value *V = simplifyICmpWithBinOpOnLHS(
3343             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3344       return V;
3345 
3346   // 0 - (zext X) pred C
3347   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3348     const APInt *C;
3349     if (match(RHS, m_APInt(C))) {
3350       if (C->isStrictlyPositive()) {
3351         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3352           return ConstantInt::getTrue(getCompareTy(RHS));
3353         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3354           return ConstantInt::getFalse(getCompareTy(RHS));
3355       }
3356       if (C->isNonNegative()) {
3357         if (Pred == ICmpInst::ICMP_SLE)
3358           return ConstantInt::getTrue(getCompareTy(RHS));
3359         if (Pred == ICmpInst::ICMP_SGT)
3360           return ConstantInt::getFalse(getCompareTy(RHS));
3361       }
3362     }
3363   }
3364 
3365   //   If C2 is a power-of-2 and C is not:
3366   //   (C2 << X) == C --> false
3367   //   (C2 << X) != C --> true
3368   const APInt *C;
3369   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3370       match(RHS, m_APIntAllowPoison(C)) && !C->isPowerOf2()) {
3371     // C2 << X can equal zero in some circumstances.
3372     // This simplification might be unsafe if C is zero.
3373     //
3374     // We know it is safe if:
3375     // - The shift is nsw. We can't shift out the one bit.
3376     // - The shift is nuw. We can't shift out the one bit.
3377     // - C2 is one.
3378     // - C isn't zero.
3379     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3380         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3381         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3382       if (Pred == ICmpInst::ICMP_EQ)
3383         return ConstantInt::getFalse(getCompareTy(RHS));
3384       if (Pred == ICmpInst::ICMP_NE)
3385         return ConstantInt::getTrue(getCompareTy(RHS));
3386     }
3387   }
3388 
3389   // If C is a power-of-2:
3390   // (C << X)  >u 0x8000 --> false
3391   // (C << X) <=u 0x8000 --> true
3392   if (match(LHS, m_Shl(m_Power2(), m_Value())) && match(RHS, m_SignMask())) {
3393     if (Pred == ICmpInst::ICMP_UGT)
3394       return ConstantInt::getFalse(getCompareTy(RHS));
3395     if (Pred == ICmpInst::ICMP_ULE)
3396       return ConstantInt::getTrue(getCompareTy(RHS));
3397   }
3398 
3399   if (!MaxRecurse || !LBO || !RBO || LBO->getOpcode() != RBO->getOpcode())
3400     return nullptr;
3401 
3402   if (LBO->getOperand(0) == RBO->getOperand(0)) {
3403     switch (LBO->getOpcode()) {
3404     default:
3405       break;
3406     case Instruction::Shl: {
3407       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3408       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3409       if (!NUW || (ICmpInst::isSigned(Pred) && !NSW) ||
3410           !isKnownNonZero(LBO->getOperand(0), Q))
3411         break;
3412       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(1),
3413                                       RBO->getOperand(1), Q, MaxRecurse - 1))
3414         return V;
3415       break;
3416     }
3417     // If C1 & C2 == C1, A = X and/or C1, B = X and/or C2:
3418     // icmp ule A, B -> true
3419     // icmp ugt A, B -> false
3420     // icmp sle A, B -> true (C1 and C2 are the same sign)
3421     // icmp sgt A, B -> false (C1 and C2 are the same sign)
3422     case Instruction::And:
3423     case Instruction::Or: {
3424       const APInt *C1, *C2;
3425       if (ICmpInst::isRelational(Pred) &&
3426           match(LBO->getOperand(1), m_APInt(C1)) &&
3427           match(RBO->getOperand(1), m_APInt(C2))) {
3428         if (!C1->isSubsetOf(*C2)) {
3429           std::swap(C1, C2);
3430           Pred = ICmpInst::getSwappedPredicate(Pred);
3431         }
3432         if (C1->isSubsetOf(*C2)) {
3433           if (Pred == ICmpInst::ICMP_ULE)
3434             return ConstantInt::getTrue(getCompareTy(LHS));
3435           if (Pred == ICmpInst::ICMP_UGT)
3436             return ConstantInt::getFalse(getCompareTy(LHS));
3437           if (C1->isNonNegative() == C2->isNonNegative()) {
3438             if (Pred == ICmpInst::ICMP_SLE)
3439               return ConstantInt::getTrue(getCompareTy(LHS));
3440             if (Pred == ICmpInst::ICMP_SGT)
3441               return ConstantInt::getFalse(getCompareTy(LHS));
3442           }
3443         }
3444       }
3445       break;
3446     }
3447     }
3448   }
3449 
3450   if (LBO->getOperand(1) == RBO->getOperand(1)) {
3451     switch (LBO->getOpcode()) {
3452     default:
3453       break;
3454     case Instruction::UDiv:
3455     case Instruction::LShr:
3456       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3457           !Q.IIQ.isExact(RBO))
3458         break;
3459       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3460                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3461         return V;
3462       break;
3463     case Instruction::SDiv:
3464       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3465           !Q.IIQ.isExact(RBO))
3466         break;
3467       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3468                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3469         return V;
3470       break;
3471     case Instruction::AShr:
3472       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3473         break;
3474       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3475                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3476         return V;
3477       break;
3478     case Instruction::Shl: {
3479       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3480       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3481       if (!NUW && !NSW)
3482         break;
3483       if (!NSW && ICmpInst::isSigned(Pred))
3484         break;
3485       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3486                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3487         return V;
3488       break;
3489     }
3490     }
3491   }
3492   return nullptr;
3493 }
3494 
3495 /// simplify integer comparisons where at least one operand of the compare
3496 /// matches an integer min/max idiom.
3497 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS,
3498                                      Value *RHS, const SimplifyQuery &Q,
3499                                      unsigned MaxRecurse) {
3500   Type *ITy = getCompareTy(LHS); // The return type.
3501   Value *A, *B;
3502   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3503   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3504 
3505   // Signed variants on "max(a,b)>=a -> true".
3506   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3507     if (A != RHS)
3508       std::swap(A, B);       // smax(A, B) pred A.
3509     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3510     // We analyze this as smax(A, B) pred A.
3511     P = Pred;
3512   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3513              (A == LHS || B == LHS)) {
3514     if (A != LHS)
3515       std::swap(A, B);       // A pred smax(A, B).
3516     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3517     // We analyze this as smax(A, B) swapped-pred A.
3518     P = CmpInst::getSwappedPredicate(Pred);
3519   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3520              (A == RHS || B == RHS)) {
3521     if (A != RHS)
3522       std::swap(A, B);       // smin(A, B) pred A.
3523     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3524     // We analyze this as smax(-A, -B) swapped-pred -A.
3525     // Note that we do not need to actually form -A or -B thanks to EqP.
3526     P = CmpInst::getSwappedPredicate(Pred);
3527   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3528              (A == LHS || B == LHS)) {
3529     if (A != LHS)
3530       std::swap(A, B);       // A pred smin(A, B).
3531     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3532     // We analyze this as smax(-A, -B) pred -A.
3533     // Note that we do not need to actually form -A or -B thanks to EqP.
3534     P = Pred;
3535   }
3536   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3537     // Cases correspond to "max(A, B) p A".
3538     switch (P) {
3539     default:
3540       break;
3541     case CmpInst::ICMP_EQ:
3542     case CmpInst::ICMP_SLE:
3543       // Equivalent to "A EqP B".  This may be the same as the condition tested
3544       // in the max/min; if so, we can just return that.
3545       if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
3546         return V;
3547       if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
3548         return V;
3549       // Otherwise, see if "A EqP B" simplifies.
3550       if (MaxRecurse)
3551         if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3552           return V;
3553       break;
3554     case CmpInst::ICMP_NE:
3555     case CmpInst::ICMP_SGT: {
3556       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3557       // Equivalent to "A InvEqP B".  This may be the same as the condition
3558       // tested in the max/min; if so, we can just return that.
3559       if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
3560         return V;
3561       if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
3562         return V;
3563       // Otherwise, see if "A InvEqP B" simplifies.
3564       if (MaxRecurse)
3565         if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3566           return V;
3567       break;
3568     }
3569     case CmpInst::ICMP_SGE:
3570       // Always true.
3571       return getTrue(ITy);
3572     case CmpInst::ICMP_SLT:
3573       // Always false.
3574       return getFalse(ITy);
3575     }
3576   }
3577 
3578   // Unsigned variants on "max(a,b)>=a -> true".
3579   P = CmpInst::BAD_ICMP_PREDICATE;
3580   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3581     if (A != RHS)
3582       std::swap(A, B);       // umax(A, B) pred A.
3583     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3584     // We analyze this as umax(A, B) pred A.
3585     P = Pred;
3586   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3587              (A == LHS || B == LHS)) {
3588     if (A != LHS)
3589       std::swap(A, B);       // A pred umax(A, B).
3590     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3591     // We analyze this as umax(A, B) swapped-pred A.
3592     P = CmpInst::getSwappedPredicate(Pred);
3593   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3594              (A == RHS || B == RHS)) {
3595     if (A != RHS)
3596       std::swap(A, B);       // umin(A, B) pred A.
3597     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3598     // We analyze this as umax(-A, -B) swapped-pred -A.
3599     // Note that we do not need to actually form -A or -B thanks to EqP.
3600     P = CmpInst::getSwappedPredicate(Pred);
3601   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3602              (A == LHS || B == LHS)) {
3603     if (A != LHS)
3604       std::swap(A, B);       // A pred umin(A, B).
3605     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3606     // We analyze this as umax(-A, -B) pred -A.
3607     // Note that we do not need to actually form -A or -B thanks to EqP.
3608     P = Pred;
3609   }
3610   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3611     // Cases correspond to "max(A, B) p A".
3612     switch (P) {
3613     default:
3614       break;
3615     case CmpInst::ICMP_EQ:
3616     case CmpInst::ICMP_ULE:
3617       // Equivalent to "A EqP B".  This may be the same as the condition tested
3618       // in the max/min; if so, we can just return that.
3619       if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
3620         return V;
3621       if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
3622         return V;
3623       // Otherwise, see if "A EqP B" simplifies.
3624       if (MaxRecurse)
3625         if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3626           return V;
3627       break;
3628     case CmpInst::ICMP_NE:
3629     case CmpInst::ICMP_UGT: {
3630       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3631       // Equivalent to "A InvEqP B".  This may be the same as the condition
3632       // tested in the max/min; if so, we can just return that.
3633       if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
3634         return V;
3635       if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
3636         return V;
3637       // Otherwise, see if "A InvEqP B" simplifies.
3638       if (MaxRecurse)
3639         if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3640           return V;
3641       break;
3642     }
3643     case CmpInst::ICMP_UGE:
3644       return getTrue(ITy);
3645     case CmpInst::ICMP_ULT:
3646       return getFalse(ITy);
3647     }
3648   }
3649 
3650   // Comparing 1 each of min/max with a common operand?
3651   // Canonicalize min operand to RHS.
3652   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3653       match(LHS, m_SMin(m_Value(), m_Value()))) {
3654     std::swap(LHS, RHS);
3655     Pred = ICmpInst::getSwappedPredicate(Pred);
3656   }
3657 
3658   Value *C, *D;
3659   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3660       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3661       (A == C || A == D || B == C || B == D)) {
3662     // smax(A, B) >=s smin(A, D) --> true
3663     if (Pred == CmpInst::ICMP_SGE)
3664       return getTrue(ITy);
3665     // smax(A, B) <s smin(A, D) --> false
3666     if (Pred == CmpInst::ICMP_SLT)
3667       return getFalse(ITy);
3668   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3669              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3670              (A == C || A == D || B == C || B == D)) {
3671     // umax(A, B) >=u umin(A, D) --> true
3672     if (Pred == CmpInst::ICMP_UGE)
3673       return getTrue(ITy);
3674     // umax(A, B) <u umin(A, D) --> false
3675     if (Pred == CmpInst::ICMP_ULT)
3676       return getFalse(ITy);
3677   }
3678 
3679   return nullptr;
3680 }
3681 
3682 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate,
3683                                                Value *LHS, Value *RHS,
3684                                                const SimplifyQuery &Q) {
3685   // Gracefully handle instructions that have not been inserted yet.
3686   if (!Q.AC || !Q.CxtI)
3687     return nullptr;
3688 
3689   for (Value *AssumeBaseOp : {LHS, RHS}) {
3690     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3691       if (!AssumeVH)
3692         continue;
3693 
3694       CallInst *Assume = cast<CallInst>(AssumeVH);
3695       if (std::optional<bool> Imp = isImpliedCondition(
3696               Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL))
3697         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3698           return ConstantInt::get(getCompareTy(LHS), *Imp);
3699     }
3700   }
3701 
3702   return nullptr;
3703 }
3704 
3705 static Value *simplifyICmpWithIntrinsicOnLHS(CmpInst::Predicate Pred,
3706                                              Value *LHS, Value *RHS) {
3707   auto *II = dyn_cast<IntrinsicInst>(LHS);
3708   if (!II)
3709     return nullptr;
3710 
3711   switch (II->getIntrinsicID()) {
3712   case Intrinsic::uadd_sat:
3713     // uadd.sat(X, Y) uge X, uadd.sat(X, Y) uge Y
3714     if (II->getArgOperand(0) == RHS || II->getArgOperand(1) == RHS) {
3715       if (Pred == ICmpInst::ICMP_UGE)
3716         return ConstantInt::getTrue(getCompareTy(II));
3717       if (Pred == ICmpInst::ICMP_ULT)
3718         return ConstantInt::getFalse(getCompareTy(II));
3719     }
3720     return nullptr;
3721   case Intrinsic::usub_sat:
3722     // usub.sat(X, Y) ule X
3723     if (II->getArgOperand(0) == RHS) {
3724       if (Pred == ICmpInst::ICMP_ULE)
3725         return ConstantInt::getTrue(getCompareTy(II));
3726       if (Pred == ICmpInst::ICMP_UGT)
3727         return ConstantInt::getFalse(getCompareTy(II));
3728     }
3729     return nullptr;
3730   default:
3731     return nullptr;
3732   }
3733 }
3734 
3735 /// Helper method to get range from metadata or attribute.
3736 static std::optional<ConstantRange> getRange(Value *V,
3737                                              const InstrInfoQuery &IIQ) {
3738   if (Instruction *I = dyn_cast<Instruction>(V))
3739     if (MDNode *MD = IIQ.getMetadata(I, LLVMContext::MD_range))
3740       return getConstantRangeFromMetadata(*MD);
3741 
3742   if (const Argument *A = dyn_cast<Argument>(V))
3743     return A->getRange();
3744   else if (const CallBase *CB = dyn_cast<CallBase>(V))
3745     return CB->getRange();
3746 
3747   return std::nullopt;
3748 }
3749 
3750 /// Given operands for an ICmpInst, see if we can fold the result.
3751 /// If not, this returns null.
3752 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
3753                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3754   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
3755   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3756 
3757   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3758     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3759       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3760 
3761     // If we have a constant, make sure it is on the RHS.
3762     std::swap(LHS, RHS);
3763     Pred = CmpInst::getSwappedPredicate(Pred);
3764   }
3765   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3766 
3767   Type *ITy = getCompareTy(LHS); // The return type.
3768 
3769   // icmp poison, X -> poison
3770   if (isa<PoisonValue>(RHS))
3771     return PoisonValue::get(ITy);
3772 
3773   // For EQ and NE, we can always pick a value for the undef to make the
3774   // predicate pass or fail, so we can return undef.
3775   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3776   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3777     return UndefValue::get(ITy);
3778 
3779   // icmp X, X -> true/false
3780   // icmp X, undef -> true/false because undef could be X.
3781   if (LHS == RHS || Q.isUndefValue(RHS))
3782     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3783 
3784   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3785     return V;
3786 
3787   // TODO: Sink/common this with other potentially expensive calls that use
3788   //       ValueTracking? See comment below for isKnownNonEqual().
3789   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3790     return V;
3791 
3792   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3793     return V;
3794 
3795   // If both operands have range metadata, use the metadata
3796   // to simplify the comparison.
3797   if (std::optional<ConstantRange> RhsCr = getRange(RHS, Q.IIQ))
3798     if (std::optional<ConstantRange> LhsCr = getRange(LHS, Q.IIQ)) {
3799       if (LhsCr->icmp(Pred, *RhsCr))
3800         return ConstantInt::getTrue(ITy);
3801 
3802       if (LhsCr->icmp(CmpInst::getInversePredicate(Pred), *RhsCr))
3803         return ConstantInt::getFalse(ITy);
3804     }
3805 
3806   // Compare of cast, for example (zext X) != 0 -> X != 0
3807   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3808     Instruction *LI = cast<CastInst>(LHS);
3809     Value *SrcOp = LI->getOperand(0);
3810     Type *SrcTy = SrcOp->getType();
3811     Type *DstTy = LI->getType();
3812 
3813     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3814     // if the integer type is the same size as the pointer type.
3815     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3816         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3817       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3818         // Transfer the cast to the constant.
3819         if (Value *V = simplifyICmpInst(Pred, SrcOp,
3820                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3821                                         Q, MaxRecurse - 1))
3822           return V;
3823       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3824         if (RI->getOperand(0)->getType() == SrcTy)
3825           // Compare without the cast.
3826           if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
3827                                           MaxRecurse - 1))
3828             return V;
3829       }
3830     }
3831 
3832     if (isa<ZExtInst>(LHS)) {
3833       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3834       // same type.
3835       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3836         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3837           // Compare X and Y.  Note that signed predicates become unsigned.
3838           if (Value *V =
3839                   simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp,
3840                                    RI->getOperand(0), Q, MaxRecurse - 1))
3841             return V;
3842       }
3843       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3844       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3845         if (SrcOp == RI->getOperand(0)) {
3846           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3847             return ConstantInt::getTrue(ITy);
3848           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3849             return ConstantInt::getFalse(ITy);
3850         }
3851       }
3852       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3853       // too.  If not, then try to deduce the result of the comparison.
3854       else if (match(RHS, m_ImmConstant())) {
3855         Constant *C = dyn_cast<Constant>(RHS);
3856         assert(C != nullptr);
3857 
3858         // Compute the constant that would happen if we truncated to SrcTy then
3859         // reextended to DstTy.
3860         Constant *Trunc =
3861             ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL);
3862         assert(Trunc && "Constant-fold of ImmConstant should not fail");
3863         Constant *RExt =
3864             ConstantFoldCastOperand(CastInst::ZExt, Trunc, DstTy, Q.DL);
3865         assert(RExt && "Constant-fold of ImmConstant should not fail");
3866         Constant *AnyEq =
3867             ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL);
3868         assert(AnyEq && "Constant-fold of ImmConstant should not fail");
3869 
3870         // If the re-extended constant didn't change any of the elements then
3871         // this is effectively also a case of comparing two zero-extended
3872         // values.
3873         if (AnyEq->isAllOnesValue() && MaxRecurse)
3874           if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3875                                           SrcOp, Trunc, Q, MaxRecurse - 1))
3876             return V;
3877 
3878         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3879         // there.  Use this to work out the result of the comparison.
3880         if (AnyEq->isNullValue()) {
3881           switch (Pred) {
3882           default:
3883             llvm_unreachable("Unknown ICmp predicate!");
3884           // LHS <u RHS.
3885           case ICmpInst::ICMP_EQ:
3886           case ICmpInst::ICMP_UGT:
3887           case ICmpInst::ICMP_UGE:
3888             return Constant::getNullValue(ITy);
3889 
3890           case ICmpInst::ICMP_NE:
3891           case ICmpInst::ICMP_ULT:
3892           case ICmpInst::ICMP_ULE:
3893             return Constant::getAllOnesValue(ITy);
3894 
3895           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3896           // is non-negative then LHS <s RHS.
3897           case ICmpInst::ICMP_SGT:
3898           case ICmpInst::ICMP_SGE:
3899             return ConstantFoldCompareInstOperands(
3900                 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()),
3901                 Q.DL);
3902           case ICmpInst::ICMP_SLT:
3903           case ICmpInst::ICMP_SLE:
3904             return ConstantFoldCompareInstOperands(
3905                 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()),
3906                 Q.DL);
3907           }
3908         }
3909       }
3910     }
3911 
3912     if (isa<SExtInst>(LHS)) {
3913       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3914       // same type.
3915       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3916         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3917           // Compare X and Y.  Note that the predicate does not change.
3918           if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
3919                                           MaxRecurse - 1))
3920             return V;
3921       }
3922       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3923       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3924         if (SrcOp == RI->getOperand(0)) {
3925           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3926             return ConstantInt::getTrue(ITy);
3927           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3928             return ConstantInt::getFalse(ITy);
3929         }
3930       }
3931       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3932       // too.  If not, then try to deduce the result of the comparison.
3933       else if (match(RHS, m_ImmConstant())) {
3934         Constant *C = cast<Constant>(RHS);
3935 
3936         // Compute the constant that would happen if we truncated to SrcTy then
3937         // reextended to DstTy.
3938         Constant *Trunc =
3939             ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL);
3940         assert(Trunc && "Constant-fold of ImmConstant should not fail");
3941         Constant *RExt =
3942             ConstantFoldCastOperand(CastInst::SExt, Trunc, DstTy, Q.DL);
3943         assert(RExt && "Constant-fold of ImmConstant should not fail");
3944         Constant *AnyEq =
3945             ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL);
3946         assert(AnyEq && "Constant-fold of ImmConstant should not fail");
3947 
3948         // If the re-extended constant didn't change then this is effectively
3949         // also a case of comparing two sign-extended values.
3950         if (AnyEq->isAllOnesValue() && MaxRecurse)
3951           if (Value *V =
3952                   simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1))
3953             return V;
3954 
3955         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3956         // bits there.  Use this to work out the result of the comparison.
3957         if (AnyEq->isNullValue()) {
3958           switch (Pred) {
3959           default:
3960             llvm_unreachable("Unknown ICmp predicate!");
3961           case ICmpInst::ICMP_EQ:
3962             return Constant::getNullValue(ITy);
3963           case ICmpInst::ICMP_NE:
3964             return Constant::getAllOnesValue(ITy);
3965 
3966           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3967           // LHS >s RHS.
3968           case ICmpInst::ICMP_SGT:
3969           case ICmpInst::ICMP_SGE:
3970             return ConstantFoldCompareInstOperands(
3971                 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()),
3972                 Q.DL);
3973           case ICmpInst::ICMP_SLT:
3974           case ICmpInst::ICMP_SLE:
3975             return ConstantFoldCompareInstOperands(
3976                 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()),
3977                 Q.DL);
3978 
3979           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3980           // LHS >u RHS.
3981           case ICmpInst::ICMP_UGT:
3982           case ICmpInst::ICMP_UGE:
3983             // Comparison is true iff the LHS <s 0.
3984             if (MaxRecurse)
3985               if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3986                                               Constant::getNullValue(SrcTy), Q,
3987                                               MaxRecurse - 1))
3988                 return V;
3989             break;
3990           case ICmpInst::ICMP_ULT:
3991           case ICmpInst::ICMP_ULE:
3992             // Comparison is true iff the LHS >=s 0.
3993             if (MaxRecurse)
3994               if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3995                                               Constant::getNullValue(SrcTy), Q,
3996                                               MaxRecurse - 1))
3997                 return V;
3998             break;
3999           }
4000         }
4001       }
4002     }
4003   }
4004 
4005   // icmp eq|ne X, Y -> false|true if X != Y
4006   // This is potentially expensive, and we have already computedKnownBits for
4007   // compares with 0 above here, so only try this for a non-zero compare.
4008   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
4009       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
4010     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
4011   }
4012 
4013   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
4014     return V;
4015 
4016   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
4017     return V;
4018 
4019   if (Value *V = simplifyICmpWithIntrinsicOnLHS(Pred, LHS, RHS))
4020     return V;
4021   if (Value *V = simplifyICmpWithIntrinsicOnLHS(
4022           ICmpInst::getSwappedPredicate(Pred), RHS, LHS))
4023     return V;
4024 
4025   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
4026     return V;
4027 
4028   if (std::optional<bool> Res =
4029           isImpliedByDomCondition(Pred, LHS, RHS, Q.CxtI, Q.DL))
4030     return ConstantInt::getBool(ITy, *Res);
4031 
4032   // Simplify comparisons of related pointers using a powerful, recursive
4033   // GEP-walk when we have target data available..
4034   if (LHS->getType()->isPointerTy())
4035     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
4036       return C;
4037   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
4038     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
4039       if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() &&
4040           Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
4041               Q.DL.getTypeSizeInBits(CLHS->getType()))
4042         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
4043                                          CRHS->getPointerOperand(), Q))
4044           return C;
4045 
4046   // If the comparison is with the result of a select instruction, check whether
4047   // comparing with either branch of the select always yields the same value.
4048   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
4049     if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
4050       return V;
4051 
4052   // If the comparison is with the result of a phi instruction, check whether
4053   // doing the compare with each incoming phi value yields a common result.
4054   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4055     if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
4056       return V;
4057 
4058   return nullptr;
4059 }
4060 
4061 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4062                               const SimplifyQuery &Q) {
4063   return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4064 }
4065 
4066 /// Given operands for an FCmpInst, see if we can fold the result.
4067 /// If not, this returns null.
4068 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4069                                FastMathFlags FMF, const SimplifyQuery &Q,
4070                                unsigned MaxRecurse) {
4071   CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
4072   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
4073 
4074   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
4075     if (Constant *CRHS = dyn_cast<Constant>(RHS))
4076       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI,
4077                                              Q.CxtI);
4078 
4079     // If we have a constant, make sure it is on the RHS.
4080     std::swap(LHS, RHS);
4081     Pred = CmpInst::getSwappedPredicate(Pred);
4082   }
4083 
4084   // Fold trivial predicates.
4085   Type *RetTy = getCompareTy(LHS);
4086   if (Pred == FCmpInst::FCMP_FALSE)
4087     return getFalse(RetTy);
4088   if (Pred == FCmpInst::FCMP_TRUE)
4089     return getTrue(RetTy);
4090 
4091   // fcmp pred x, poison and  fcmp pred poison, x
4092   // fold to poison
4093   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
4094     return PoisonValue::get(RetTy);
4095 
4096   // fcmp pred x, undef  and  fcmp pred undef, x
4097   // fold to true if unordered, false if ordered
4098   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
4099     // Choosing NaN for the undef will always make unordered comparison succeed
4100     // and ordered comparison fail.
4101     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
4102   }
4103 
4104   // fcmp x,x -> true/false.  Not all compares are foldable.
4105   if (LHS == RHS) {
4106     if (CmpInst::isTrueWhenEqual(Pred))
4107       return getTrue(RetTy);
4108     if (CmpInst::isFalseWhenEqual(Pred))
4109       return getFalse(RetTy);
4110   }
4111 
4112   // Fold (un)ordered comparison if we can determine there are no NaNs.
4113   //
4114   // This catches the 2 variable input case, constants are handled below as a
4115   // class-like compare.
4116   if (Pred == FCmpInst::FCMP_ORD || Pred == FCmpInst::FCMP_UNO) {
4117     KnownFPClass RHSClass =
4118         computeKnownFPClass(RHS, fcAllFlags, /*Depth=*/0, Q);
4119     KnownFPClass LHSClass =
4120         computeKnownFPClass(LHS, fcAllFlags, /*Depth=*/0, Q);
4121 
4122     if (FMF.noNaNs() ||
4123         (RHSClass.isKnownNeverNaN() && LHSClass.isKnownNeverNaN()))
4124       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
4125 
4126     if (RHSClass.isKnownAlwaysNaN() || LHSClass.isKnownAlwaysNaN())
4127       return ConstantInt::get(RetTy, Pred == CmpInst::FCMP_UNO);
4128   }
4129 
4130   const APFloat *C = nullptr;
4131   match(RHS, m_APFloatAllowPoison(C));
4132   std::optional<KnownFPClass> FullKnownClassLHS;
4133 
4134   // Lazily compute the possible classes for LHS. Avoid computing it twice if
4135   // RHS is a 0.
4136   auto computeLHSClass = [=, &FullKnownClassLHS](FPClassTest InterestedFlags =
4137                                                      fcAllFlags) {
4138     if (FullKnownClassLHS)
4139       return *FullKnownClassLHS;
4140     return computeKnownFPClass(LHS, FMF, InterestedFlags, 0, Q);
4141   };
4142 
4143   if (C && Q.CxtI) {
4144     // Fold out compares that express a class test.
4145     //
4146     // FIXME: Should be able to perform folds without context
4147     // instruction. Always pass in the context function?
4148 
4149     const Function *ParentF = Q.CxtI->getFunction();
4150     auto [ClassVal, ClassTest] = fcmpToClassTest(Pred, *ParentF, LHS, C);
4151     if (ClassVal) {
4152       FullKnownClassLHS = computeLHSClass();
4153       if ((FullKnownClassLHS->KnownFPClasses & ClassTest) == fcNone)
4154         return getFalse(RetTy);
4155       if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) == fcNone)
4156         return getTrue(RetTy);
4157     }
4158   }
4159 
4160   // Handle fcmp with constant RHS.
4161   if (C) {
4162     // TODO: If we always required a context function, we wouldn't need to
4163     // special case nans.
4164     if (C->isNaN())
4165       return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
4166 
4167     // TODO: Need version fcmpToClassTest which returns implied class when the
4168     // compare isn't a complete class test. e.g. > 1.0 implies fcPositive, but
4169     // isn't implementable as a class call.
4170     if (C->isNegative() && !C->isNegZero()) {
4171       FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask;
4172 
4173       // TODO: We can catch more cases by using a range check rather than
4174       //       relying on CannotBeOrderedLessThanZero.
4175       switch (Pred) {
4176       case FCmpInst::FCMP_UGE:
4177       case FCmpInst::FCMP_UGT:
4178       case FCmpInst::FCMP_UNE: {
4179         KnownFPClass KnownClass = computeLHSClass(Interested);
4180 
4181         // (X >= 0) implies (X > C) when (C < 0)
4182         if (KnownClass.cannotBeOrderedLessThanZero())
4183           return getTrue(RetTy);
4184         break;
4185       }
4186       case FCmpInst::FCMP_OEQ:
4187       case FCmpInst::FCMP_OLE:
4188       case FCmpInst::FCMP_OLT: {
4189         KnownFPClass KnownClass = computeLHSClass(Interested);
4190 
4191         // (X >= 0) implies !(X < C) when (C < 0)
4192         if (KnownClass.cannotBeOrderedLessThanZero())
4193           return getFalse(RetTy);
4194         break;
4195       }
4196       default:
4197         break;
4198       }
4199     }
4200     // Check comparison of [minnum/maxnum with constant] with other constant.
4201     const APFloat *C2;
4202     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
4203          *C2 < *C) ||
4204         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
4205          *C2 > *C)) {
4206       bool IsMaxNum =
4207           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
4208       // The ordered relationship and minnum/maxnum guarantee that we do not
4209       // have NaN constants, so ordered/unordered preds are handled the same.
4210       switch (Pred) {
4211       case FCmpInst::FCMP_OEQ:
4212       case FCmpInst::FCMP_UEQ:
4213         // minnum(X, LesserC)  == C --> false
4214         // maxnum(X, GreaterC) == C --> false
4215         return getFalse(RetTy);
4216       case FCmpInst::FCMP_ONE:
4217       case FCmpInst::FCMP_UNE:
4218         // minnum(X, LesserC)  != C --> true
4219         // maxnum(X, GreaterC) != C --> true
4220         return getTrue(RetTy);
4221       case FCmpInst::FCMP_OGE:
4222       case FCmpInst::FCMP_UGE:
4223       case FCmpInst::FCMP_OGT:
4224       case FCmpInst::FCMP_UGT:
4225         // minnum(X, LesserC)  >= C --> false
4226         // minnum(X, LesserC)  >  C --> false
4227         // maxnum(X, GreaterC) >= C --> true
4228         // maxnum(X, GreaterC) >  C --> true
4229         return ConstantInt::get(RetTy, IsMaxNum);
4230       case FCmpInst::FCMP_OLE:
4231       case FCmpInst::FCMP_ULE:
4232       case FCmpInst::FCMP_OLT:
4233       case FCmpInst::FCMP_ULT:
4234         // minnum(X, LesserC)  <= C --> true
4235         // minnum(X, LesserC)  <  C --> true
4236         // maxnum(X, GreaterC) <= C --> false
4237         // maxnum(X, GreaterC) <  C --> false
4238         return ConstantInt::get(RetTy, !IsMaxNum);
4239       default:
4240         // TRUE/FALSE/ORD/UNO should be handled before this.
4241         llvm_unreachable("Unexpected fcmp predicate");
4242       }
4243     }
4244   }
4245 
4246   // TODO: Could fold this with above if there were a matcher which returned all
4247   // classes in a non-splat vector.
4248   if (match(RHS, m_AnyZeroFP())) {
4249     switch (Pred) {
4250     case FCmpInst::FCMP_OGE:
4251     case FCmpInst::FCMP_ULT: {
4252       FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask;
4253       if (!FMF.noNaNs())
4254         Interested |= fcNan;
4255 
4256       KnownFPClass Known = computeLHSClass(Interested);
4257 
4258       // Positive or zero X >= 0.0 --> true
4259       // Positive or zero X <  0.0 --> false
4260       if ((FMF.noNaNs() || Known.isKnownNeverNaN()) &&
4261           Known.cannotBeOrderedLessThanZero())
4262         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
4263       break;
4264     }
4265     case FCmpInst::FCMP_UGE:
4266     case FCmpInst::FCMP_OLT: {
4267       FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask;
4268       KnownFPClass Known = computeLHSClass(Interested);
4269 
4270       // Positive or zero or nan X >= 0.0 --> true
4271       // Positive or zero or nan X <  0.0 --> false
4272       if (Known.cannotBeOrderedLessThanZero())
4273         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
4274       break;
4275     }
4276     default:
4277       break;
4278     }
4279   }
4280 
4281   // If the comparison is with the result of a select instruction, check whether
4282   // comparing with either branch of the select always yields the same value.
4283   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
4284     if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
4285       return V;
4286 
4287   // If the comparison is with the result of a phi instruction, check whether
4288   // doing the compare with each incoming phi value yields a common result.
4289   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4290     if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
4291       return V;
4292 
4293   return nullptr;
4294 }
4295 
4296 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
4297                               FastMathFlags FMF, const SimplifyQuery &Q) {
4298   return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
4299 }
4300 
4301 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4302                                      const SimplifyQuery &Q,
4303                                      bool AllowRefinement,
4304                                      SmallVectorImpl<Instruction *> *DropFlags,
4305                                      unsigned MaxRecurse) {
4306   assert((AllowRefinement || !Q.CanUseUndef) &&
4307          "If AllowRefinement=false then CanUseUndef=false");
4308 
4309   // Trivial replacement.
4310   if (V == Op)
4311     return RepOp;
4312 
4313   if (!MaxRecurse--)
4314     return nullptr;
4315 
4316   // We cannot replace a constant, and shouldn't even try.
4317   if (isa<Constant>(Op))
4318     return nullptr;
4319 
4320   auto *I = dyn_cast<Instruction>(V);
4321   if (!I)
4322     return nullptr;
4323 
4324   // The arguments of a phi node might refer to a value from a previous
4325   // cycle iteration.
4326   if (isa<PHINode>(I))
4327     return nullptr;
4328 
4329   if (Op->getType()->isVectorTy()) {
4330     // For vector types, the simplification must hold per-lane, so forbid
4331     // potentially cross-lane operations like shufflevector.
4332     if (!I->getType()->isVectorTy() || isa<ShuffleVectorInst>(I) ||
4333         isa<CallBase>(I) || isa<BitCastInst>(I))
4334       return nullptr;
4335   }
4336 
4337   // Don't fold away llvm.is.constant checks based on assumptions.
4338   if (match(I, m_Intrinsic<Intrinsic::is_constant>()))
4339     return nullptr;
4340 
4341   // Don't simplify freeze.
4342   if (isa<FreezeInst>(I))
4343     return nullptr;
4344 
4345   // Replace Op with RepOp in instruction operands.
4346   SmallVector<Value *, 8> NewOps;
4347   bool AnyReplaced = false;
4348   for (Value *InstOp : I->operands()) {
4349     if (Value *NewInstOp = simplifyWithOpReplaced(
4350             InstOp, Op, RepOp, Q, AllowRefinement, DropFlags, MaxRecurse)) {
4351       NewOps.push_back(NewInstOp);
4352       AnyReplaced = InstOp != NewInstOp;
4353     } else {
4354       NewOps.push_back(InstOp);
4355     }
4356 
4357     // Bail out if any operand is undef and SimplifyQuery disables undef
4358     // simplification. Constant folding currently doesn't respect this option.
4359     if (isa<UndefValue>(NewOps.back()) && !Q.CanUseUndef)
4360       return nullptr;
4361   }
4362 
4363   if (!AnyReplaced)
4364     return nullptr;
4365 
4366   if (!AllowRefinement) {
4367     // General InstSimplify functions may refine the result, e.g. by returning
4368     // a constant for a potentially poison value. To avoid this, implement only
4369     // a few non-refining but profitable transforms here.
4370 
4371     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4372       unsigned Opcode = BO->getOpcode();
4373       // id op x -> x, x op id -> x
4374       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
4375         return NewOps[1];
4376       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
4377                                                       /* RHS */ true))
4378         return NewOps[0];
4379 
4380       // x & x -> x, x | x -> x
4381       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4382           NewOps[0] == NewOps[1]) {
4383         // or disjoint x, x results in poison.
4384         if (auto *PDI = dyn_cast<PossiblyDisjointInst>(BO)) {
4385           if (PDI->isDisjoint()) {
4386             if (!DropFlags)
4387               return nullptr;
4388             DropFlags->push_back(BO);
4389           }
4390         }
4391         return NewOps[0];
4392       }
4393 
4394       // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison
4395       // by assumption and this case never wraps, so nowrap flags can be
4396       // ignored.
4397       if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) &&
4398           NewOps[0] == RepOp && NewOps[1] == RepOp)
4399         return Constant::getNullValue(I->getType());
4400 
4401       // If we are substituting an absorber constant into a binop and extra
4402       // poison can't leak if we remove the select -- because both operands of
4403       // the binop are based on the same value -- then it may be safe to replace
4404       // the value with the absorber constant. Examples:
4405       // (Op == 0) ? 0 : (Op & -Op)            --> Op & -Op
4406       // (Op == 0) ? 0 : (Op * (binop Op, C))  --> Op * (binop Op, C)
4407       // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op)
4408       Constant *Absorber =
4409           ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
4410       if ((NewOps[0] == Absorber || NewOps[1] == Absorber) &&
4411           impliesPoison(BO, Op))
4412         return Absorber;
4413     }
4414 
4415     if (isa<GetElementPtrInst>(I)) {
4416       // getelementptr x, 0 -> x.
4417       // This never returns poison, even if inbounds is set.
4418       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()))
4419         return NewOps[0];
4420     }
4421   } else {
4422     // The simplification queries below may return the original value. Consider:
4423     //   %div = udiv i32 %arg, %arg2
4424     //   %mul = mul nsw i32 %div, %arg2
4425     //   %cmp = icmp eq i32 %mul, %arg
4426     //   %sel = select i1 %cmp, i32 %div, i32 undef
4427     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4428     // simplifies back to %arg. This can only happen because %mul does not
4429     // dominate %div. To ensure a consistent return value contract, we make sure
4430     // that this case returns nullptr as well.
4431     auto PreventSelfSimplify = [V](Value *Simplified) {
4432       return Simplified != V ? Simplified : nullptr;
4433     };
4434 
4435     return PreventSelfSimplify(
4436         ::simplifyInstructionWithOperands(I, NewOps, Q, MaxRecurse));
4437   }
4438 
4439   // If all operands are constant after substituting Op for RepOp then we can
4440   // constant fold the instruction.
4441   SmallVector<Constant *, 8> ConstOps;
4442   for (Value *NewOp : NewOps) {
4443     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4444       ConstOps.push_back(ConstOp);
4445     else
4446       return nullptr;
4447   }
4448 
4449   // Consider:
4450   //   %cmp = icmp eq i32 %x, 2147483647
4451   //   %add = add nsw i32 %x, 1
4452   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4453   //
4454   // We can't replace %sel with %add unless we strip away the flags (which
4455   // will be done in InstCombine).
4456   // TODO: This may be unsound, because it only catches some forms of
4457   // refinement.
4458   if (!AllowRefinement) {
4459     if (canCreatePoison(cast<Operator>(I), !DropFlags)) {
4460       // abs cannot create poison if the value is known to never be int_min.
4461       if (auto *II = dyn_cast<IntrinsicInst>(I);
4462           II && II->getIntrinsicID() == Intrinsic::abs) {
4463         if (!ConstOps[0]->isNotMinSignedValue())
4464           return nullptr;
4465       } else
4466         return nullptr;
4467     }
4468     Constant *Res = ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4469     if (DropFlags && Res && I->hasPoisonGeneratingAnnotations())
4470       DropFlags->push_back(I);
4471     return Res;
4472   }
4473 
4474   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI);
4475 }
4476 
4477 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4478                                     const SimplifyQuery &Q,
4479                                     bool AllowRefinement,
4480                                     SmallVectorImpl<Instruction *> *DropFlags) {
4481   // If refinement is disabled, also disable undef simplifications (which are
4482   // always refinements) in SimplifyQuery.
4483   if (!AllowRefinement)
4484     return ::simplifyWithOpReplaced(V, Op, RepOp, Q.getWithoutUndef(),
4485                                     AllowRefinement, DropFlags, RecursionLimit);
4486   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, DropFlags,
4487                                   RecursionLimit);
4488 }
4489 
4490 /// Try to simplify a select instruction when its condition operand is an
4491 /// integer comparison where one operand of the compare is a constant.
4492 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4493                                     const APInt *Y, bool TrueWhenUnset) {
4494   const APInt *C;
4495 
4496   // (X & Y) == 0 ? X & ~Y : X  --> X
4497   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4498   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4499       *Y == ~*C)
4500     return TrueWhenUnset ? FalseVal : TrueVal;
4501 
4502   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4503   // (X & Y) != 0 ? X : X & ~Y  --> X
4504   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4505       *Y == ~*C)
4506     return TrueWhenUnset ? FalseVal : TrueVal;
4507 
4508   if (Y->isPowerOf2()) {
4509     // (X & Y) == 0 ? X | Y : X  --> X | Y
4510     // (X & Y) != 0 ? X | Y : X  --> X
4511     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4512         *Y == *C) {
4513       // We can't return the or if it has the disjoint flag.
4514       if (TrueWhenUnset && cast<PossiblyDisjointInst>(TrueVal)->isDisjoint())
4515         return nullptr;
4516       return TrueWhenUnset ? TrueVal : FalseVal;
4517     }
4518 
4519     // (X & Y) == 0 ? X : X | Y  --> X
4520     // (X & Y) != 0 ? X : X | Y  --> X | Y
4521     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4522         *Y == *C) {
4523       // We can't return the or if it has the disjoint flag.
4524       if (!TrueWhenUnset && cast<PossiblyDisjointInst>(FalseVal)->isDisjoint())
4525         return nullptr;
4526       return TrueWhenUnset ? TrueVal : FalseVal;
4527     }
4528   }
4529 
4530   return nullptr;
4531 }
4532 
4533 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS,
4534                                      ICmpInst::Predicate Pred, Value *TVal,
4535                                      Value *FVal) {
4536   // Canonicalize common cmp+sel operand as CmpLHS.
4537   if (CmpRHS == TVal || CmpRHS == FVal) {
4538     std::swap(CmpLHS, CmpRHS);
4539     Pred = ICmpInst::getSwappedPredicate(Pred);
4540   }
4541 
4542   // Canonicalize common cmp+sel operand as TVal.
4543   if (CmpLHS == FVal) {
4544     std::swap(TVal, FVal);
4545     Pred = ICmpInst::getInversePredicate(Pred);
4546   }
4547 
4548   // A vector select may be shuffling together elements that are equivalent
4549   // based on the max/min/select relationship.
4550   Value *X = CmpLHS, *Y = CmpRHS;
4551   bool PeekedThroughSelectShuffle = false;
4552   auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal);
4553   if (Shuf && Shuf->isSelect()) {
4554     if (Shuf->getOperand(0) == Y)
4555       FVal = Shuf->getOperand(1);
4556     else if (Shuf->getOperand(1) == Y)
4557       FVal = Shuf->getOperand(0);
4558     else
4559       return nullptr;
4560     PeekedThroughSelectShuffle = true;
4561   }
4562 
4563   // (X pred Y) ? X : max/min(X, Y)
4564   auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal);
4565   if (!MMI || TVal != X ||
4566       !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y))))
4567     return nullptr;
4568 
4569   // (X >  Y) ? X : max(X, Y) --> max(X, Y)
4570   // (X >= Y) ? X : max(X, Y) --> max(X, Y)
4571   // (X <  Y) ? X : min(X, Y) --> min(X, Y)
4572   // (X <= Y) ? X : min(X, Y) --> min(X, Y)
4573   //
4574   // The equivalence allows a vector select (shuffle) of max/min and Y. Ex:
4575   // (X > Y) ? X : (Z ? max(X, Y) : Y)
4576   // If Z is true, this reduces as above, and if Z is false:
4577   // (X > Y) ? X : Y --> max(X, Y)
4578   ICmpInst::Predicate MMPred = MMI->getPredicate();
4579   if (MMPred == CmpInst::getStrictPredicate(Pred))
4580     return MMI;
4581 
4582   // Other transforms are not valid with a shuffle.
4583   if (PeekedThroughSelectShuffle)
4584     return nullptr;
4585 
4586   // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y)
4587   if (Pred == CmpInst::ICMP_EQ)
4588     return MMI;
4589 
4590   // (X != Y) ? X : max/min(X, Y) --> X
4591   if (Pred == CmpInst::ICMP_NE)
4592     return X;
4593 
4594   // (X <  Y) ? X : max(X, Y) --> X
4595   // (X <= Y) ? X : max(X, Y) --> X
4596   // (X >  Y) ? X : min(X, Y) --> X
4597   // (X >= Y) ? X : min(X, Y) --> X
4598   ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred);
4599   if (MMPred == CmpInst::getStrictPredicate(InvPred))
4600     return X;
4601 
4602   return nullptr;
4603 }
4604 
4605 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4606 /// eq/ne.
4607 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4608                                            ICmpInst::Predicate Pred,
4609                                            Value *TrueVal, Value *FalseVal) {
4610   Value *X;
4611   APInt Mask;
4612   if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask))
4613     return nullptr;
4614 
4615   return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask,
4616                                Pred == ICmpInst::ICMP_EQ);
4617 }
4618 
4619 /// Try to simplify a select instruction when its condition operand is an
4620 /// integer equality comparison.
4621 static Value *simplifySelectWithICmpEq(Value *CmpLHS, Value *CmpRHS,
4622                                        Value *TrueVal, Value *FalseVal,
4623                                        const SimplifyQuery &Q,
4624                                        unsigned MaxRecurse) {
4625   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q.getWithoutUndef(),
4626                              /* AllowRefinement */ false,
4627                              /* DropFlags */ nullptr, MaxRecurse) == TrueVal)
4628     return FalseVal;
4629   if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4630                              /* AllowRefinement */ true,
4631                              /* DropFlags */ nullptr, MaxRecurse) == FalseVal)
4632     return FalseVal;
4633 
4634   return nullptr;
4635 }
4636 
4637 /// Try to simplify a select instruction when its condition operand is an
4638 /// integer comparison.
4639 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4640                                          Value *FalseVal,
4641                                          const SimplifyQuery &Q,
4642                                          unsigned MaxRecurse) {
4643   ICmpInst::Predicate Pred;
4644   Value *CmpLHS, *CmpRHS;
4645   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4646     return nullptr;
4647 
4648   if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
4649     return V;
4650 
4651   // Canonicalize ne to eq predicate.
4652   if (Pred == ICmpInst::ICMP_NE) {
4653     Pred = ICmpInst::ICMP_EQ;
4654     std::swap(TrueVal, FalseVal);
4655   }
4656 
4657   // Check for integer min/max with a limit constant:
4658   // X > MIN_INT ? X : MIN_INT --> X
4659   // X < MAX_INT ? X : MAX_INT --> X
4660   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4661     Value *X, *Y;
4662     SelectPatternFlavor SPF =
4663         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4664                                      X, Y)
4665             .Flavor;
4666     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4667       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4668                                     X->getType()->getScalarSizeInBits());
4669       if (match(Y, m_SpecificInt(LimitC)))
4670         return X;
4671     }
4672   }
4673 
4674   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4675     Value *X;
4676     const APInt *Y;
4677     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4678       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4679                                            /*TrueWhenUnset=*/true))
4680         return V;
4681 
4682     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4683     Value *ShAmt;
4684     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4685                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4686     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4687     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4688     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4689       return X;
4690 
4691     // Test for a zero-shift-guard-op around rotates. These are used to
4692     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4693     // intrinsics do not have that problem.
4694     // We do not allow this transform for the general funnel shift case because
4695     // that would not preserve the poison safety of the original code.
4696     auto isRotate =
4697         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4698                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4699     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4700     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4701     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4702         Pred == ICmpInst::ICMP_EQ)
4703       return FalseVal;
4704 
4705     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4706     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4707     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4708         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4709       return FalseVal;
4710     if (match(TrueVal,
4711               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4712         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4713       return FalseVal;
4714   }
4715 
4716   // Check for other compares that behave like bit test.
4717   if (Value *V =
4718           simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
4719     return V;
4720 
4721   // If we have a scalar equality comparison, then we know the value in one of
4722   // the arms of the select. See if substituting this value into the arm and
4723   // simplifying the result yields the same value as the other arm.
4724   if (Pred == ICmpInst::ICMP_EQ) {
4725     if (Value *V = simplifySelectWithICmpEq(CmpLHS, CmpRHS, TrueVal, FalseVal,
4726                                             Q, MaxRecurse))
4727       return V;
4728     if (Value *V = simplifySelectWithICmpEq(CmpRHS, CmpLHS, TrueVal, FalseVal,
4729                                             Q, MaxRecurse))
4730       return V;
4731 
4732     Value *X;
4733     Value *Y;
4734     // select((X | Y) == 0 ?  X : 0) --> 0 (commuted 2 ways)
4735     if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y))) &&
4736         match(CmpRHS, m_Zero())) {
4737       // (X | Y) == 0 implies X == 0 and Y == 0.
4738       if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q,
4739                                               MaxRecurse))
4740         return V;
4741       if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q,
4742                                               MaxRecurse))
4743         return V;
4744     }
4745 
4746     // select((X & Y) == -1 ?  X : -1) --> -1 (commuted 2 ways)
4747     if (match(CmpLHS, m_And(m_Value(X), m_Value(Y))) &&
4748         match(CmpRHS, m_AllOnes())) {
4749       // (X & Y) == -1 implies X == -1 and Y == -1.
4750       if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q,
4751                                               MaxRecurse))
4752         return V;
4753       if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q,
4754                                               MaxRecurse))
4755         return V;
4756     }
4757   }
4758 
4759   return nullptr;
4760 }
4761 
4762 /// Try to simplify a select instruction when its condition operand is a
4763 /// floating-point comparison.
4764 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4765                                      const SimplifyQuery &Q) {
4766   FCmpInst::Predicate Pred;
4767   if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) &&
4768       !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T))))
4769     return nullptr;
4770 
4771   // This transform is safe if we do not have (do not care about) -0.0 or if
4772   // at least one operand is known to not be -0.0. Otherwise, the select can
4773   // change the sign of a zero operand.
4774   bool HasNoSignedZeros =
4775       Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros();
4776   const APFloat *C;
4777   if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) ||
4778       (match(F, m_APFloat(C)) && C->isNonZero())) {
4779     // (T == F) ? T : F --> F
4780     // (F == T) ? T : F --> F
4781     if (Pred == FCmpInst::FCMP_OEQ)
4782       return F;
4783 
4784     // (T != F) ? T : F --> T
4785     // (F != T) ? T : F --> T
4786     if (Pred == FCmpInst::FCMP_UNE)
4787       return T;
4788   }
4789 
4790   return nullptr;
4791 }
4792 
4793 /// Given operands for a SelectInst, see if we can fold the result.
4794 /// If not, this returns null.
4795 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4796                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4797   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4798     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4799       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4800         if (Constant *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC))
4801           return C;
4802 
4803     // select poison, X, Y -> poison
4804     if (isa<PoisonValue>(CondC))
4805       return PoisonValue::get(TrueVal->getType());
4806 
4807     // select undef, X, Y -> X or Y
4808     if (Q.isUndefValue(CondC))
4809       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4810 
4811     // select true,  X, Y --> X
4812     // select false, X, Y --> Y
4813     // For vectors, allow undef/poison elements in the condition to match the
4814     // defined elements, so we can eliminate the select.
4815     if (match(CondC, m_One()))
4816       return TrueVal;
4817     if (match(CondC, m_Zero()))
4818       return FalseVal;
4819   }
4820 
4821   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4822          "Select must have bool or bool vector condition");
4823   assert(TrueVal->getType() == FalseVal->getType() &&
4824          "Select must have same types for true/false ops");
4825 
4826   if (Cond->getType() == TrueVal->getType()) {
4827     // select i1 Cond, i1 true, i1 false --> i1 Cond
4828     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4829       return Cond;
4830 
4831     // (X && Y) ? X : Y --> Y (commuted 2 ways)
4832     if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal))))
4833       return FalseVal;
4834 
4835     // (X || Y) ? X : Y --> X (commuted 2 ways)
4836     if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal))))
4837       return TrueVal;
4838 
4839     // (X || Y) ? false : X --> false (commuted 2 ways)
4840     if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) &&
4841         match(TrueVal, m_ZeroInt()))
4842       return ConstantInt::getFalse(Cond->getType());
4843 
4844     // Match patterns that end in logical-and.
4845     if (match(FalseVal, m_ZeroInt())) {
4846       // !(X || Y) && X --> false (commuted 2 ways)
4847       if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value()))))
4848         return ConstantInt::getFalse(Cond->getType());
4849       // X && !(X || Y) --> false (commuted 2 ways)
4850       if (match(TrueVal, m_Not(m_c_LogicalOr(m_Specific(Cond), m_Value()))))
4851         return ConstantInt::getFalse(Cond->getType());
4852 
4853       // (X || Y) && Y --> Y (commuted 2 ways)
4854       if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value())))
4855         return TrueVal;
4856       // Y && (X || Y) --> Y (commuted 2 ways)
4857       if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value())))
4858         return Cond;
4859 
4860       // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4861       Value *X, *Y;
4862       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4863           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4864         return X;
4865       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4866           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4867         return X;
4868     }
4869 
4870     // Match patterns that end in logical-or.
4871     if (match(TrueVal, m_One())) {
4872       // !(X && Y) || X --> true (commuted 2 ways)
4873       if (match(Cond, m_Not(m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))))
4874         return ConstantInt::getTrue(Cond->getType());
4875       // X || !(X && Y) --> true (commuted 2 ways)
4876       if (match(FalseVal, m_Not(m_c_LogicalAnd(m_Specific(Cond), m_Value()))))
4877         return ConstantInt::getTrue(Cond->getType());
4878 
4879       // (X && Y) || Y --> Y (commuted 2 ways)
4880       if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))
4881         return FalseVal;
4882       // Y || (X && Y) --> Y (commuted 2 ways)
4883       if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value())))
4884         return Cond;
4885     }
4886   }
4887 
4888   // select ?, X, X -> X
4889   if (TrueVal == FalseVal)
4890     return TrueVal;
4891 
4892   if (Cond == TrueVal) {
4893     // select i1 X, i1 X, i1 false --> X (logical-and)
4894     if (match(FalseVal, m_ZeroInt()))
4895       return Cond;
4896     // select i1 X, i1 X, i1 true --> true
4897     if (match(FalseVal, m_One()))
4898       return ConstantInt::getTrue(Cond->getType());
4899   }
4900   if (Cond == FalseVal) {
4901     // select i1 X, i1 true, i1 X --> X (logical-or)
4902     if (match(TrueVal, m_One()))
4903       return Cond;
4904     // select i1 X, i1 false, i1 X --> false
4905     if (match(TrueVal, m_ZeroInt()))
4906       return ConstantInt::getFalse(Cond->getType());
4907   }
4908 
4909   // If the true or false value is poison, we can fold to the other value.
4910   // If the true or false value is undef, we can fold to the other value as
4911   // long as the other value isn't poison.
4912   // select ?, poison, X -> X
4913   // select ?, undef,  X -> X
4914   if (isa<PoisonValue>(TrueVal) ||
4915       (Q.isUndefValue(TrueVal) && impliesPoison(FalseVal, Cond)))
4916     return FalseVal;
4917   // select ?, X, poison -> X
4918   // select ?, X, undef  -> X
4919   if (isa<PoisonValue>(FalseVal) ||
4920       (Q.isUndefValue(FalseVal) && impliesPoison(TrueVal, Cond)))
4921     return TrueVal;
4922 
4923   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4924   Constant *TrueC, *FalseC;
4925   if (isa<FixedVectorType>(TrueVal->getType()) &&
4926       match(TrueVal, m_Constant(TrueC)) &&
4927       match(FalseVal, m_Constant(FalseC))) {
4928     unsigned NumElts =
4929         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4930     SmallVector<Constant *, 16> NewC;
4931     for (unsigned i = 0; i != NumElts; ++i) {
4932       // Bail out on incomplete vector constants.
4933       Constant *TEltC = TrueC->getAggregateElement(i);
4934       Constant *FEltC = FalseC->getAggregateElement(i);
4935       if (!TEltC || !FEltC)
4936         break;
4937 
4938       // If the elements match (undef or not), that value is the result. If only
4939       // one element is undef, choose the defined element as the safe result.
4940       if (TEltC == FEltC)
4941         NewC.push_back(TEltC);
4942       else if (isa<PoisonValue>(TEltC) ||
4943                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4944         NewC.push_back(FEltC);
4945       else if (isa<PoisonValue>(FEltC) ||
4946                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4947         NewC.push_back(TEltC);
4948       else
4949         break;
4950     }
4951     if (NewC.size() == NumElts)
4952       return ConstantVector::get(NewC);
4953   }
4954 
4955   if (Value *V =
4956           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4957     return V;
4958 
4959   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q))
4960     return V;
4961 
4962   if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal))
4963     return V;
4964 
4965   std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4966   if (Imp)
4967     return *Imp ? TrueVal : FalseVal;
4968 
4969   return nullptr;
4970 }
4971 
4972 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4973                                 const SimplifyQuery &Q) {
4974   return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4975 }
4976 
4977 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4978 /// If not, this returns null.
4979 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr,
4980                               ArrayRef<Value *> Indices, GEPNoWrapFlags NW,
4981                               const SimplifyQuery &Q, unsigned) {
4982   // The type of the GEP pointer operand.
4983   unsigned AS =
4984       cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace();
4985 
4986   // getelementptr P -> P.
4987   if (Indices.empty())
4988     return Ptr;
4989 
4990   // Compute the (pointer) type returned by the GEP instruction.
4991   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices);
4992   Type *GEPTy = Ptr->getType();
4993   if (!GEPTy->isVectorTy()) {
4994     for (Value *Op : Indices) {
4995       // If one of the operands is a vector, the result type is a vector of
4996       // pointers. All vector operands must have the same number of elements.
4997       if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4998         GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4999         break;
5000       }
5001     }
5002   }
5003 
5004   // All-zero GEP is a no-op, unless it performs a vector splat.
5005   if (Ptr->getType() == GEPTy &&
5006       all_of(Indices, [](const auto *V) { return match(V, m_Zero()); }))
5007     return Ptr;
5008 
5009   // getelementptr poison, idx -> poison
5010   // getelementptr baseptr, poison -> poison
5011   if (isa<PoisonValue>(Ptr) ||
5012       any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); }))
5013     return PoisonValue::get(GEPTy);
5014 
5015   // getelementptr undef, idx -> undef
5016   if (Q.isUndefValue(Ptr))
5017     return UndefValue::get(GEPTy);
5018 
5019   bool IsScalableVec =
5020       SrcTy->isScalableTy() || any_of(Indices, [](const Value *V) {
5021         return isa<ScalableVectorType>(V->getType());
5022       });
5023 
5024   if (Indices.size() == 1) {
5025     Type *Ty = SrcTy;
5026     if (!IsScalableVec && Ty->isSized()) {
5027       Value *P;
5028       uint64_t C;
5029       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
5030       // getelementptr P, N -> P if P points to a type of zero size.
5031       if (TyAllocSize == 0 && Ptr->getType() == GEPTy)
5032         return Ptr;
5033 
5034       // The following transforms are only safe if the ptrtoint cast
5035       // doesn't truncate the pointers.
5036       if (Indices[0]->getType()->getScalarSizeInBits() ==
5037           Q.DL.getPointerSizeInBits(AS)) {
5038         auto CanSimplify = [GEPTy, &P, Ptr]() -> bool {
5039           return P->getType() == GEPTy &&
5040                  getUnderlyingObject(P) == getUnderlyingObject(Ptr);
5041         };
5042         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
5043         if (TyAllocSize == 1 &&
5044             match(Indices[0],
5045                   m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) &&
5046             CanSimplify())
5047           return P;
5048 
5049         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
5050         // size 1 << C.
5051         if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
5052                                            m_PtrToInt(m_Specific(Ptr))),
5053                                      m_ConstantInt(C))) &&
5054             TyAllocSize == 1ULL << C && CanSimplify())
5055           return P;
5056 
5057         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
5058         // size C.
5059         if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
5060                                            m_PtrToInt(m_Specific(Ptr))),
5061                                      m_SpecificInt(TyAllocSize))) &&
5062             CanSimplify())
5063           return P;
5064       }
5065     }
5066   }
5067 
5068   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
5069       all_of(Indices.drop_back(1),
5070              [](Value *Idx) { return match(Idx, m_Zero()); })) {
5071     unsigned IdxWidth =
5072         Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace());
5073     if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) {
5074       APInt BasePtrOffset(IdxWidth, 0);
5075       Value *StrippedBasePtr =
5076           Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset);
5077 
5078       // Avoid creating inttoptr of zero here: While LLVMs treatment of
5079       // inttoptr is generally conservative, this particular case is folded to
5080       // a null pointer, which will have incorrect provenance.
5081 
5082       // gep (gep V, C), (sub 0, V) -> C
5083       if (match(Indices.back(),
5084                 m_Neg(m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
5085           !BasePtrOffset.isZero()) {
5086         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
5087         return ConstantExpr::getIntToPtr(CI, GEPTy);
5088       }
5089       // gep (gep V, C), (xor V, -1) -> C-1
5090       if (match(Indices.back(),
5091                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
5092           !BasePtrOffset.isOne()) {
5093         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
5094         return ConstantExpr::getIntToPtr(CI, GEPTy);
5095       }
5096     }
5097   }
5098 
5099   // Check to see if this is constant foldable.
5100   if (!isa<Constant>(Ptr) ||
5101       !all_of(Indices, [](Value *V) { return isa<Constant>(V); }))
5102     return nullptr;
5103 
5104   if (!ConstantExpr::isSupportedGetElementPtr(SrcTy))
5105     return ConstantFoldGetElementPtr(SrcTy, cast<Constant>(Ptr), std::nullopt,
5106                                      Indices);
5107 
5108   auto *CE =
5109       ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, NW);
5110   return ConstantFoldConstant(CE, Q.DL);
5111 }
5112 
5113 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices,
5114                              GEPNoWrapFlags NW, const SimplifyQuery &Q) {
5115   return ::simplifyGEPInst(SrcTy, Ptr, Indices, NW, Q, RecursionLimit);
5116 }
5117 
5118 /// Given operands for an InsertValueInst, see if we can fold the result.
5119 /// If not, this returns null.
5120 static Value *simplifyInsertValueInst(Value *Agg, Value *Val,
5121                                       ArrayRef<unsigned> Idxs,
5122                                       const SimplifyQuery &Q, unsigned) {
5123   if (Constant *CAgg = dyn_cast<Constant>(Agg))
5124     if (Constant *CVal = dyn_cast<Constant>(Val))
5125       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
5126 
5127   // insertvalue x, poison, n -> x
5128   // insertvalue x, undef, n -> x if x cannot be poison
5129   if (isa<PoisonValue>(Val) ||
5130       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg)))
5131     return Agg;
5132 
5133   // insertvalue x, (extractvalue y, n), n
5134   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
5135     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
5136         EV->getIndices() == Idxs) {
5137       // insertvalue poison, (extractvalue y, n), n -> y
5138       // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison
5139       if (isa<PoisonValue>(Agg) ||
5140           (Q.isUndefValue(Agg) &&
5141            isGuaranteedNotToBePoison(EV->getAggregateOperand())))
5142         return EV->getAggregateOperand();
5143 
5144       // insertvalue y, (extractvalue y, n), n -> y
5145       if (Agg == EV->getAggregateOperand())
5146         return Agg;
5147     }
5148 
5149   return nullptr;
5150 }
5151 
5152 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val,
5153                                      ArrayRef<unsigned> Idxs,
5154                                      const SimplifyQuery &Q) {
5155   return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
5156 }
5157 
5158 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
5159                                        const SimplifyQuery &Q) {
5160   // Try to constant fold.
5161   auto *VecC = dyn_cast<Constant>(Vec);
5162   auto *ValC = dyn_cast<Constant>(Val);
5163   auto *IdxC = dyn_cast<Constant>(Idx);
5164   if (VecC && ValC && IdxC)
5165     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
5166 
5167   // For fixed-length vector, fold into poison if index is out of bounds.
5168   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
5169     if (isa<FixedVectorType>(Vec->getType()) &&
5170         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
5171       return PoisonValue::get(Vec->getType());
5172   }
5173 
5174   // If index is undef, it might be out of bounds (see above case)
5175   if (Q.isUndefValue(Idx))
5176     return PoisonValue::get(Vec->getType());
5177 
5178   // If the scalar is poison, or it is undef and there is no risk of
5179   // propagating poison from the vector value, simplify to the vector value.
5180   if (isa<PoisonValue>(Val) ||
5181       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
5182     return Vec;
5183 
5184   // Inserting the splatted value into a constant splat does nothing.
5185   if (VecC && ValC && VecC->getSplatValue() == ValC)
5186     return Vec;
5187 
5188   // If we are extracting a value from a vector, then inserting it into the same
5189   // place, that's the input vector:
5190   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
5191   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
5192     return Vec;
5193 
5194   return nullptr;
5195 }
5196 
5197 /// Given operands for an ExtractValueInst, see if we can fold the result.
5198 /// If not, this returns null.
5199 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
5200                                        const SimplifyQuery &, unsigned) {
5201   if (auto *CAgg = dyn_cast<Constant>(Agg))
5202     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
5203 
5204   // extractvalue x, (insertvalue y, elt, n), n -> elt
5205   unsigned NumIdxs = Idxs.size();
5206   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
5207        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
5208     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
5209     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
5210     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
5211     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
5212         Idxs.slice(0, NumCommonIdxs)) {
5213       if (NumIdxs == NumInsertValueIdxs)
5214         return IVI->getInsertedValueOperand();
5215       break;
5216     }
5217   }
5218 
5219   return nullptr;
5220 }
5221 
5222 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
5223                                       const SimplifyQuery &Q) {
5224   return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
5225 }
5226 
5227 /// Given operands for an ExtractElementInst, see if we can fold the result.
5228 /// If not, this returns null.
5229 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx,
5230                                          const SimplifyQuery &Q, unsigned) {
5231   auto *VecVTy = cast<VectorType>(Vec->getType());
5232   if (auto *CVec = dyn_cast<Constant>(Vec)) {
5233     if (auto *CIdx = dyn_cast<Constant>(Idx))
5234       return ConstantExpr::getExtractElement(CVec, CIdx);
5235 
5236     if (Q.isUndefValue(Vec))
5237       return UndefValue::get(VecVTy->getElementType());
5238   }
5239 
5240   // An undef extract index can be arbitrarily chosen to be an out-of-range
5241   // index value, which would result in the instruction being poison.
5242   if (Q.isUndefValue(Idx))
5243     return PoisonValue::get(VecVTy->getElementType());
5244 
5245   // If extracting a specified index from the vector, see if we can recursively
5246   // find a previously computed scalar that was inserted into the vector.
5247   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
5248     // For fixed-length vector, fold into undef if index is out of bounds.
5249     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
5250     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
5251       return PoisonValue::get(VecVTy->getElementType());
5252     // Handle case where an element is extracted from a splat.
5253     if (IdxC->getValue().ult(MinNumElts))
5254       if (auto *Splat = getSplatValue(Vec))
5255         return Splat;
5256     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
5257       return Elt;
5258   } else {
5259     // extractelt x, (insertelt y, elt, n), n -> elt
5260     // If the possibly-variable indices are trivially known to be equal
5261     // (because they are the same operand) then use the value that was
5262     // inserted directly.
5263     auto *IE = dyn_cast<InsertElementInst>(Vec);
5264     if (IE && IE->getOperand(2) == Idx)
5265       return IE->getOperand(1);
5266 
5267     // The index is not relevant if our vector is a splat.
5268     if (Value *Splat = getSplatValue(Vec))
5269       return Splat;
5270   }
5271   return nullptr;
5272 }
5273 
5274 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx,
5275                                         const SimplifyQuery &Q) {
5276   return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
5277 }
5278 
5279 /// See if we can fold the given phi. If not, returns null.
5280 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
5281                               const SimplifyQuery &Q) {
5282   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
5283   //          here, because the PHI we may succeed simplifying to was not
5284   //          def-reachable from the original PHI!
5285 
5286   // If all of the PHI's incoming values are the same then replace the PHI node
5287   // with the common value.
5288   Value *CommonValue = nullptr;
5289   bool HasPoisonInput = false;
5290   bool HasUndefInput = false;
5291   for (Value *Incoming : IncomingValues) {
5292     // If the incoming value is the phi node itself, it can safely be skipped.
5293     if (Incoming == PN)
5294       continue;
5295     if (isa<PoisonValue>(Incoming)) {
5296       HasPoisonInput = true;
5297       continue;
5298     }
5299     if (Q.isUndefValue(Incoming)) {
5300       // Remember that we saw an undef value, but otherwise ignore them.
5301       HasUndefInput = true;
5302       continue;
5303     }
5304     if (CommonValue && Incoming != CommonValue)
5305       return nullptr; // Not the same, bail out.
5306     CommonValue = Incoming;
5307   }
5308 
5309   // If CommonValue is null then all of the incoming values were either undef,
5310   // poison or equal to the phi node itself.
5311   if (!CommonValue)
5312     return HasUndefInput ? UndefValue::get(PN->getType())
5313                          : PoisonValue::get(PN->getType());
5314 
5315   if (HasPoisonInput || HasUndefInput) {
5316     // If we have a PHI node like phi(X, undef, X), where X is defined by some
5317     // instruction, we cannot return X as the result of the PHI node unless it
5318     // dominates the PHI block.
5319     return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr;
5320   }
5321 
5322   return CommonValue;
5323 }
5324 
5325 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
5326                                const SimplifyQuery &Q, unsigned MaxRecurse) {
5327   if (auto *C = dyn_cast<Constant>(Op))
5328     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
5329 
5330   if (auto *CI = dyn_cast<CastInst>(Op)) {
5331     auto *Src = CI->getOperand(0);
5332     Type *SrcTy = Src->getType();
5333     Type *MidTy = CI->getType();
5334     Type *DstTy = Ty;
5335     if (Src->getType() == Ty) {
5336       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
5337       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
5338       Type *SrcIntPtrTy =
5339           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
5340       Type *MidIntPtrTy =
5341           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
5342       Type *DstIntPtrTy =
5343           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
5344       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
5345                                          SrcIntPtrTy, MidIntPtrTy,
5346                                          DstIntPtrTy) == Instruction::BitCast)
5347         return Src;
5348     }
5349   }
5350 
5351   // bitcast x -> x
5352   if (CastOpc == Instruction::BitCast)
5353     if (Op->getType() == Ty)
5354       return Op;
5355 
5356   // ptrtoint (ptradd (Ptr, X - ptrtoint(Ptr))) -> X
5357   Value *Ptr, *X;
5358   if (CastOpc == Instruction::PtrToInt &&
5359       match(Op, m_PtrAdd(m_Value(Ptr),
5360                          m_Sub(m_Value(X), m_PtrToInt(m_Deferred(Ptr))))) &&
5361       X->getType() == Ty && Ty == Q.DL.getIndexType(Ptr->getType()))
5362     return X;
5363 
5364   return nullptr;
5365 }
5366 
5367 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
5368                               const SimplifyQuery &Q) {
5369   return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
5370 }
5371 
5372 /// For the given destination element of a shuffle, peek through shuffles to
5373 /// match a root vector source operand that contains that element in the same
5374 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
5375 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
5376                                    int MaskVal, Value *RootVec,
5377                                    unsigned MaxRecurse) {
5378   if (!MaxRecurse--)
5379     return nullptr;
5380 
5381   // Bail out if any mask value is undefined. That kind of shuffle may be
5382   // simplified further based on demanded bits or other folds.
5383   if (MaskVal == -1)
5384     return nullptr;
5385 
5386   // The mask value chooses which source operand we need to look at next.
5387   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
5388   int RootElt = MaskVal;
5389   Value *SourceOp = Op0;
5390   if (MaskVal >= InVecNumElts) {
5391     RootElt = MaskVal - InVecNumElts;
5392     SourceOp = Op1;
5393   }
5394 
5395   // If the source operand is a shuffle itself, look through it to find the
5396   // matching root vector.
5397   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
5398     return foldIdentityShuffles(
5399         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
5400         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
5401   }
5402 
5403   // The source operand is not a shuffle. Initialize the root vector value for
5404   // this shuffle if that has not been done yet.
5405   if (!RootVec)
5406     RootVec = SourceOp;
5407 
5408   // Give up as soon as a source operand does not match the existing root value.
5409   if (RootVec != SourceOp)
5410     return nullptr;
5411 
5412   // The element must be coming from the same lane in the source vector
5413   // (although it may have crossed lanes in intermediate shuffles).
5414   if (RootElt != DestElt)
5415     return nullptr;
5416 
5417   return RootVec;
5418 }
5419 
5420 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1,
5421                                         ArrayRef<int> Mask, Type *RetTy,
5422                                         const SimplifyQuery &Q,
5423                                         unsigned MaxRecurse) {
5424   if (all_of(Mask, [](int Elem) { return Elem == PoisonMaskElem; }))
5425     return PoisonValue::get(RetTy);
5426 
5427   auto *InVecTy = cast<VectorType>(Op0->getType());
5428   unsigned MaskNumElts = Mask.size();
5429   ElementCount InVecEltCount = InVecTy->getElementCount();
5430 
5431   bool Scalable = InVecEltCount.isScalable();
5432 
5433   SmallVector<int, 32> Indices;
5434   Indices.assign(Mask.begin(), Mask.end());
5435 
5436   // Canonicalization: If mask does not select elements from an input vector,
5437   // replace that input vector with poison.
5438   if (!Scalable) {
5439     bool MaskSelects0 = false, MaskSelects1 = false;
5440     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
5441     for (unsigned i = 0; i != MaskNumElts; ++i) {
5442       if (Indices[i] == -1)
5443         continue;
5444       if ((unsigned)Indices[i] < InVecNumElts)
5445         MaskSelects0 = true;
5446       else
5447         MaskSelects1 = true;
5448     }
5449     if (!MaskSelects0)
5450       Op0 = PoisonValue::get(InVecTy);
5451     if (!MaskSelects1)
5452       Op1 = PoisonValue::get(InVecTy);
5453   }
5454 
5455   auto *Op0Const = dyn_cast<Constant>(Op0);
5456   auto *Op1Const = dyn_cast<Constant>(Op1);
5457 
5458   // If all operands are constant, constant fold the shuffle. This
5459   // transformation depends on the value of the mask which is not known at
5460   // compile time for scalable vectors
5461   if (Op0Const && Op1Const)
5462     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
5463 
5464   // Canonicalization: if only one input vector is constant, it shall be the
5465   // second one. This transformation depends on the value of the mask which
5466   // is not known at compile time for scalable vectors
5467   if (!Scalable && Op0Const && !Op1Const) {
5468     std::swap(Op0, Op1);
5469     ShuffleVectorInst::commuteShuffleMask(Indices,
5470                                           InVecEltCount.getKnownMinValue());
5471   }
5472 
5473   // A splat of an inserted scalar constant becomes a vector constant:
5474   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
5475   // NOTE: We may have commuted above, so analyze the updated Indices, not the
5476   //       original mask constant.
5477   // NOTE: This transformation depends on the value of the mask which is not
5478   // known at compile time for scalable vectors
5479   Constant *C;
5480   ConstantInt *IndexC;
5481   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
5482                                           m_ConstantInt(IndexC)))) {
5483     // Match a splat shuffle mask of the insert index allowing undef elements.
5484     int InsertIndex = IndexC->getZExtValue();
5485     if (all_of(Indices, [InsertIndex](int MaskElt) {
5486           return MaskElt == InsertIndex || MaskElt == -1;
5487         })) {
5488       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
5489 
5490       // Shuffle mask poisons become poison constant result elements.
5491       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
5492       for (unsigned i = 0; i != MaskNumElts; ++i)
5493         if (Indices[i] == -1)
5494           VecC[i] = PoisonValue::get(C->getType());
5495       return ConstantVector::get(VecC);
5496     }
5497   }
5498 
5499   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
5500   // value type is same as the input vectors' type.
5501   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
5502     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
5503         all_equal(OpShuf->getShuffleMask()))
5504       return Op0;
5505 
5506   // All remaining transformation depend on the value of the mask, which is
5507   // not known at compile time for scalable vectors.
5508   if (Scalable)
5509     return nullptr;
5510 
5511   // Don't fold a shuffle with undef mask elements. This may get folded in a
5512   // better way using demanded bits or other analysis.
5513   // TODO: Should we allow this?
5514   if (is_contained(Indices, -1))
5515     return nullptr;
5516 
5517   // Check if every element of this shuffle can be mapped back to the
5518   // corresponding element of a single root vector. If so, we don't need this
5519   // shuffle. This handles simple identity shuffles as well as chains of
5520   // shuffles that may widen/narrow and/or move elements across lanes and back.
5521   Value *RootVec = nullptr;
5522   for (unsigned i = 0; i != MaskNumElts; ++i) {
5523     // Note that recursion is limited for each vector element, so if any element
5524     // exceeds the limit, this will fail to simplify.
5525     RootVec =
5526         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
5527 
5528     // We can't replace a widening/narrowing shuffle with one of its operands.
5529     if (!RootVec || RootVec->getType() != RetTy)
5530       return nullptr;
5531   }
5532   return RootVec;
5533 }
5534 
5535 /// Given operands for a ShuffleVectorInst, fold the result or return null.
5536 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1,
5537                                        ArrayRef<int> Mask, Type *RetTy,
5538                                        const SimplifyQuery &Q) {
5539   return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
5540 }
5541 
5542 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op,
5543                               const SimplifyQuery &Q) {
5544   if (auto *C = dyn_cast<Constant>(Op))
5545     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
5546   return nullptr;
5547 }
5548 
5549 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
5550 /// returns null.
5551 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
5552                                const SimplifyQuery &Q, unsigned MaxRecurse) {
5553   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
5554     return C;
5555 
5556   Value *X;
5557   // fneg (fneg X) ==> X
5558   if (match(Op, m_FNeg(m_Value(X))))
5559     return X;
5560 
5561   return nullptr;
5562 }
5563 
5564 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF,
5565                               const SimplifyQuery &Q) {
5566   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
5567 }
5568 
5569 /// Try to propagate existing NaN values when possible. If not, replace the
5570 /// constant or elements in the constant with a canonical NaN.
5571 static Constant *propagateNaN(Constant *In) {
5572   Type *Ty = In->getType();
5573   if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) {
5574     unsigned NumElts = VecTy->getNumElements();
5575     SmallVector<Constant *, 32> NewC(NumElts);
5576     for (unsigned i = 0; i != NumElts; ++i) {
5577       Constant *EltC = In->getAggregateElement(i);
5578       // Poison elements propagate. NaN propagates except signaling is quieted.
5579       // Replace unknown or undef elements with canonical NaN.
5580       if (EltC && isa<PoisonValue>(EltC))
5581         NewC[i] = EltC;
5582       else if (EltC && EltC->isNaN())
5583         NewC[i] = ConstantFP::get(
5584             EltC->getType(), cast<ConstantFP>(EltC)->getValue().makeQuiet());
5585       else
5586         NewC[i] = ConstantFP::getNaN(VecTy->getElementType());
5587     }
5588     return ConstantVector::get(NewC);
5589   }
5590 
5591   // If it is not a fixed vector, but not a simple NaN either, return a
5592   // canonical NaN.
5593   if (!In->isNaN())
5594     return ConstantFP::getNaN(Ty);
5595 
5596   // If we known this is a NaN, and it's scalable vector, we must have a splat
5597   // on our hands. Grab that before splatting a QNaN constant.
5598   if (isa<ScalableVectorType>(Ty)) {
5599     auto *Splat = In->getSplatValue();
5600     assert(Splat && Splat->isNaN() &&
5601            "Found a scalable-vector NaN but not a splat");
5602     In = Splat;
5603   }
5604 
5605   // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but
5606   // preserve the sign/payload.
5607   return ConstantFP::get(Ty, cast<ConstantFP>(In)->getValue().makeQuiet());
5608 }
5609 
5610 /// Perform folds that are common to any floating-point operation. This implies
5611 /// transforms based on poison/undef/NaN because the operation itself makes no
5612 /// difference to the result.
5613 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
5614                               const SimplifyQuery &Q,
5615                               fp::ExceptionBehavior ExBehavior,
5616                               RoundingMode Rounding) {
5617   // Poison is independent of anything else. It always propagates from an
5618   // operand to a math result.
5619   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
5620     return PoisonValue::get(Ops[0]->getType());
5621 
5622   for (Value *V : Ops) {
5623     bool IsNan = match(V, m_NaN());
5624     bool IsInf = match(V, m_Inf());
5625     bool IsUndef = Q.isUndefValue(V);
5626 
5627     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5628     // (an undef operand can be chosen to be Nan/Inf), then the result of
5629     // this operation is poison.
5630     if (FMF.noNaNs() && (IsNan || IsUndef))
5631       return PoisonValue::get(V->getType());
5632     if (FMF.noInfs() && (IsInf || IsUndef))
5633       return PoisonValue::get(V->getType());
5634 
5635     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
5636       // Undef does not propagate because undef means that all bits can take on
5637       // any value. If this is undef * NaN for example, then the result values
5638       // (at least the exponent bits) are limited. Assume the undef is a
5639       // canonical NaN and propagate that.
5640       if (IsUndef)
5641         return ConstantFP::getNaN(V->getType());
5642       if (IsNan)
5643         return propagateNaN(cast<Constant>(V));
5644     } else if (ExBehavior != fp::ebStrict) {
5645       if (IsNan)
5646         return propagateNaN(cast<Constant>(V));
5647     }
5648   }
5649   return nullptr;
5650 }
5651 
5652 /// Given operands for an FAdd, see if we can fold the result.  If not, this
5653 /// returns null.
5654 static Value *
5655 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5656                  const SimplifyQuery &Q, unsigned MaxRecurse,
5657                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5658                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5659   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5660     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5661       return C;
5662 
5663   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5664     return C;
5665 
5666   // fadd X, -0 ==> X
5667   // With strict/constrained FP, we have these possible edge cases that do
5668   // not simplify to Op0:
5669   // fadd SNaN, -0.0 --> QNaN
5670   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5671   if (canIgnoreSNaN(ExBehavior, FMF) &&
5672       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5673        FMF.noSignedZeros()))
5674     if (match(Op1, m_NegZeroFP()))
5675       return Op0;
5676 
5677   // fadd X, 0 ==> X, when we know X is not -0
5678   if (canIgnoreSNaN(ExBehavior, FMF))
5679     if (match(Op1, m_PosZeroFP()) &&
5680         (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q)))
5681       return Op0;
5682 
5683   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5684     return nullptr;
5685 
5686   if (FMF.noNaNs()) {
5687     // With nnan: X + {+/-}Inf --> {+/-}Inf
5688     if (match(Op1, m_Inf()))
5689       return Op1;
5690 
5691     // With nnan: -X + X --> 0.0 (and commuted variant)
5692     // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5693     // Negative zeros are allowed because we always end up with positive zero:
5694     // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5695     // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5696     // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5697     // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5698     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5699         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5700       return ConstantFP::getZero(Op0->getType());
5701 
5702     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5703         match(Op1, m_FNeg(m_Specific(Op0))))
5704       return ConstantFP::getZero(Op0->getType());
5705   }
5706 
5707   // (X - Y) + Y --> X
5708   // Y + (X - Y) --> X
5709   Value *X;
5710   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5711       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5712        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5713     return X;
5714 
5715   return nullptr;
5716 }
5717 
5718 /// Given operands for an FSub, see if we can fold the result.  If not, this
5719 /// returns null.
5720 static Value *
5721 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5722                  const SimplifyQuery &Q, unsigned MaxRecurse,
5723                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5724                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5725   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5726     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5727       return C;
5728 
5729   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5730     return C;
5731 
5732   // fsub X, +0 ==> X
5733   if (canIgnoreSNaN(ExBehavior, FMF) &&
5734       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5735        FMF.noSignedZeros()))
5736     if (match(Op1, m_PosZeroFP()))
5737       return Op0;
5738 
5739   // fsub X, -0 ==> X, when we know X is not -0
5740   if (canIgnoreSNaN(ExBehavior, FMF))
5741     if (match(Op1, m_NegZeroFP()) &&
5742         (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q)))
5743       return Op0;
5744 
5745   // fsub -0.0, (fsub -0.0, X) ==> X
5746   // fsub -0.0, (fneg X) ==> X
5747   Value *X;
5748   if (canIgnoreSNaN(ExBehavior, FMF))
5749     if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X))))
5750       return X;
5751 
5752   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5753   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5754   if (canIgnoreSNaN(ExBehavior, FMF))
5755     if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5756         (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5757          match(Op1, m_FNeg(m_Value(X)))))
5758       return X;
5759 
5760   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5761     return nullptr;
5762 
5763   if (FMF.noNaNs()) {
5764     // fsub nnan x, x ==> 0.0
5765     if (Op0 == Op1)
5766       return Constant::getNullValue(Op0->getType());
5767 
5768     // With nnan: {+/-}Inf - X --> {+/-}Inf
5769     if (match(Op0, m_Inf()))
5770       return Op0;
5771 
5772     // With nnan: X - {+/-}Inf --> {-/+}Inf
5773     if (match(Op1, m_Inf()))
5774       return foldConstant(Instruction::FNeg, Op1, Q);
5775   }
5776 
5777   // Y - (Y - X) --> X
5778   // (X + Y) - Y --> X
5779   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5780       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5781        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5782     return X;
5783 
5784   return nullptr;
5785 }
5786 
5787 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5788                               const SimplifyQuery &Q, unsigned MaxRecurse,
5789                               fp::ExceptionBehavior ExBehavior,
5790                               RoundingMode Rounding) {
5791   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5792     return C;
5793 
5794   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5795     return nullptr;
5796 
5797   // Canonicalize special constants as operand 1.
5798   if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP()))
5799     std::swap(Op0, Op1);
5800 
5801   // X * 1.0 --> X
5802   if (match(Op1, m_FPOne()))
5803     return Op0;
5804 
5805   if (match(Op1, m_AnyZeroFP())) {
5806     // X * 0.0 --> 0.0 (with nnan and nsz)
5807     if (FMF.noNaNs() && FMF.noSignedZeros())
5808       return ConstantFP::getZero(Op0->getType());
5809 
5810     KnownFPClass Known =
5811         computeKnownFPClass(Op0, FMF, fcInf | fcNan, /*Depth=*/0, Q);
5812     if (Known.isKnownNever(fcInf | fcNan)) {
5813       // +normal number * (-)0.0 --> (-)0.0
5814       if (Known.SignBit == false)
5815         return Op1;
5816       // -normal number * (-)0.0 --> -(-)0.0
5817       if (Known.SignBit == true)
5818         return foldConstant(Instruction::FNeg, Op1, Q);
5819     }
5820   }
5821 
5822   // sqrt(X) * sqrt(X) --> X, if we can:
5823   // 1. Remove the intermediate rounding (reassociate).
5824   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5825   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5826   Value *X;
5827   if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() &&
5828       FMF.noNaNs() && FMF.noSignedZeros())
5829     return X;
5830 
5831   return nullptr;
5832 }
5833 
5834 /// Given the operands for an FMul, see if we can fold the result
5835 static Value *
5836 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5837                  const SimplifyQuery &Q, unsigned MaxRecurse,
5838                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5839                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5840   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5841     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5842       return C;
5843 
5844   // Now apply simplifications that do not require rounding.
5845   return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5846 }
5847 
5848 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5849                               const SimplifyQuery &Q,
5850                               fp::ExceptionBehavior ExBehavior,
5851                               RoundingMode Rounding) {
5852   return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5853                             Rounding);
5854 }
5855 
5856 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5857                               const SimplifyQuery &Q,
5858                               fp::ExceptionBehavior ExBehavior,
5859                               RoundingMode Rounding) {
5860   return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5861                             Rounding);
5862 }
5863 
5864 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5865                               const SimplifyQuery &Q,
5866                               fp::ExceptionBehavior ExBehavior,
5867                               RoundingMode Rounding) {
5868   return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5869                             Rounding);
5870 }
5871 
5872 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5873                              const SimplifyQuery &Q,
5874                              fp::ExceptionBehavior ExBehavior,
5875                              RoundingMode Rounding) {
5876   return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5877                            Rounding);
5878 }
5879 
5880 static Value *
5881 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5882                  const SimplifyQuery &Q, unsigned,
5883                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5884                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5885   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5886     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5887       return C;
5888 
5889   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5890     return C;
5891 
5892   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5893     return nullptr;
5894 
5895   // X / 1.0 -> X
5896   if (match(Op1, m_FPOne()))
5897     return Op0;
5898 
5899   // 0 / X -> 0
5900   // Requires that NaNs are off (X could be zero) and signed zeroes are
5901   // ignored (X could be positive or negative, so the output sign is unknown).
5902   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5903     return ConstantFP::getZero(Op0->getType());
5904 
5905   if (FMF.noNaNs()) {
5906     // X / X -> 1.0 is legal when NaNs are ignored.
5907     // We can ignore infinities because INF/INF is NaN.
5908     if (Op0 == Op1)
5909       return ConstantFP::get(Op0->getType(), 1.0);
5910 
5911     // (X * Y) / Y --> X if we can reassociate to the above form.
5912     Value *X;
5913     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5914       return X;
5915 
5916     // -X /  X -> -1.0 and
5917     //  X / -X -> -1.0 are legal when NaNs are ignored.
5918     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5919     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5920         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5921       return ConstantFP::get(Op0->getType(), -1.0);
5922 
5923     // nnan ninf X / [-]0.0 -> poison
5924     if (FMF.noInfs() && match(Op1, m_AnyZeroFP()))
5925       return PoisonValue::get(Op1->getType());
5926   }
5927 
5928   return nullptr;
5929 }
5930 
5931 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5932                               const SimplifyQuery &Q,
5933                               fp::ExceptionBehavior ExBehavior,
5934                               RoundingMode Rounding) {
5935   return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5936                             Rounding);
5937 }
5938 
5939 static Value *
5940 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5941                  const SimplifyQuery &Q, unsigned,
5942                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5943                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5944   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5945     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5946       return C;
5947 
5948   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5949     return C;
5950 
5951   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5952     return nullptr;
5953 
5954   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5955   // The constant match may include undef elements in a vector, so return a full
5956   // zero constant as the result.
5957   if (FMF.noNaNs()) {
5958     // +0 % X -> 0
5959     if (match(Op0, m_PosZeroFP()))
5960       return ConstantFP::getZero(Op0->getType());
5961     // -0 % X -> -0
5962     if (match(Op0, m_NegZeroFP()))
5963       return ConstantFP::getNegativeZero(Op0->getType());
5964   }
5965 
5966   return nullptr;
5967 }
5968 
5969 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5970                               const SimplifyQuery &Q,
5971                               fp::ExceptionBehavior ExBehavior,
5972                               RoundingMode Rounding) {
5973   return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5974                             Rounding);
5975 }
5976 
5977 //=== Helper functions for higher up the class hierarchy.
5978 
5979 /// Given the operand for a UnaryOperator, see if we can fold the result.
5980 /// If not, this returns null.
5981 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5982                            unsigned MaxRecurse) {
5983   switch (Opcode) {
5984   case Instruction::FNeg:
5985     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5986   default:
5987     llvm_unreachable("Unexpected opcode");
5988   }
5989 }
5990 
5991 /// Given the operand for a UnaryOperator, see if we can fold the result.
5992 /// If not, this returns null.
5993 /// Try to use FastMathFlags when folding the result.
5994 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5995                              const FastMathFlags &FMF, const SimplifyQuery &Q,
5996                              unsigned MaxRecurse) {
5997   switch (Opcode) {
5998   case Instruction::FNeg:
5999     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
6000   default:
6001     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
6002   }
6003 }
6004 
6005 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
6006   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
6007 }
6008 
6009 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
6010                           const SimplifyQuery &Q) {
6011   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
6012 }
6013 
6014 /// Given operands for a BinaryOperator, see if we can fold the result.
6015 /// If not, this returns null.
6016 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
6017                             const SimplifyQuery &Q, unsigned MaxRecurse) {
6018   switch (Opcode) {
6019   case Instruction::Add:
6020     return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
6021                            MaxRecurse);
6022   case Instruction::Sub:
6023     return simplifySubInst(LHS, RHS,  /* IsNSW */ false, /* IsNUW */ false, Q,
6024                            MaxRecurse);
6025   case Instruction::Mul:
6026     return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
6027                            MaxRecurse);
6028   case Instruction::SDiv:
6029     return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
6030   case Instruction::UDiv:
6031     return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
6032   case Instruction::SRem:
6033     return simplifySRemInst(LHS, RHS, Q, MaxRecurse);
6034   case Instruction::URem:
6035     return simplifyURemInst(LHS, RHS, Q, MaxRecurse);
6036   case Instruction::Shl:
6037     return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
6038                            MaxRecurse);
6039   case Instruction::LShr:
6040     return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
6041   case Instruction::AShr:
6042     return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
6043   case Instruction::And:
6044     return simplifyAndInst(LHS, RHS, Q, MaxRecurse);
6045   case Instruction::Or:
6046     return simplifyOrInst(LHS, RHS, Q, MaxRecurse);
6047   case Instruction::Xor:
6048     return simplifyXorInst(LHS, RHS, Q, MaxRecurse);
6049   case Instruction::FAdd:
6050     return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6051   case Instruction::FSub:
6052     return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6053   case Instruction::FMul:
6054     return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6055   case Instruction::FDiv:
6056     return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6057   case Instruction::FRem:
6058     return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6059   default:
6060     llvm_unreachable("Unexpected opcode");
6061   }
6062 }
6063 
6064 /// Given operands for a BinaryOperator, see if we can fold the result.
6065 /// If not, this returns null.
6066 /// Try to use FastMathFlags when folding the result.
6067 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
6068                             const FastMathFlags &FMF, const SimplifyQuery &Q,
6069                             unsigned MaxRecurse) {
6070   switch (Opcode) {
6071   case Instruction::FAdd:
6072     return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
6073   case Instruction::FSub:
6074     return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
6075   case Instruction::FMul:
6076     return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
6077   case Instruction::FDiv:
6078     return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
6079   default:
6080     return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
6081   }
6082 }
6083 
6084 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
6085                            const SimplifyQuery &Q) {
6086   return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
6087 }
6088 
6089 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
6090                            FastMathFlags FMF, const SimplifyQuery &Q) {
6091   return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
6092 }
6093 
6094 /// Given operands for a CmpInst, see if we can fold the result.
6095 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
6096                               const SimplifyQuery &Q, unsigned MaxRecurse) {
6097   if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
6098     return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
6099   return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6100 }
6101 
6102 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
6103                              const SimplifyQuery &Q) {
6104   return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
6105 }
6106 
6107 static bool isIdempotent(Intrinsic::ID ID) {
6108   switch (ID) {
6109   default:
6110     return false;
6111 
6112   // Unary idempotent: f(f(x)) = f(x)
6113   case Intrinsic::fabs:
6114   case Intrinsic::floor:
6115   case Intrinsic::ceil:
6116   case Intrinsic::trunc:
6117   case Intrinsic::rint:
6118   case Intrinsic::nearbyint:
6119   case Intrinsic::round:
6120   case Intrinsic::roundeven:
6121   case Intrinsic::canonicalize:
6122   case Intrinsic::arithmetic_fence:
6123     return true;
6124   }
6125 }
6126 
6127 /// Return true if the intrinsic rounds a floating-point value to an integral
6128 /// floating-point value (not an integer type).
6129 static bool removesFPFraction(Intrinsic::ID ID) {
6130   switch (ID) {
6131   default:
6132     return false;
6133 
6134   case Intrinsic::floor:
6135   case Intrinsic::ceil:
6136   case Intrinsic::trunc:
6137   case Intrinsic::rint:
6138   case Intrinsic::nearbyint:
6139   case Intrinsic::round:
6140   case Intrinsic::roundeven:
6141     return true;
6142   }
6143 }
6144 
6145 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset,
6146                                    const DataLayout &DL) {
6147   GlobalValue *PtrSym;
6148   APInt PtrOffset;
6149   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
6150     return nullptr;
6151 
6152   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
6153 
6154   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
6155   if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64)
6156     return nullptr;
6157 
6158   APInt OffsetInt = OffsetConstInt->getValue().sextOrTrunc(
6159       DL.getIndexTypeSizeInBits(Ptr->getType()));
6160   if (OffsetInt.srem(4) != 0)
6161     return nullptr;
6162 
6163   Constant *Loaded =
6164       ConstantFoldLoadFromConstPtr(Ptr, Int32Ty, std::move(OffsetInt), DL);
6165   if (!Loaded)
6166     return nullptr;
6167 
6168   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
6169   if (!LoadedCE)
6170     return nullptr;
6171 
6172   if (LoadedCE->getOpcode() == Instruction::Trunc) {
6173     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
6174     if (!LoadedCE)
6175       return nullptr;
6176   }
6177 
6178   if (LoadedCE->getOpcode() != Instruction::Sub)
6179     return nullptr;
6180 
6181   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
6182   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
6183     return nullptr;
6184   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
6185 
6186   Constant *LoadedRHS = LoadedCE->getOperand(1);
6187   GlobalValue *LoadedRHSSym;
6188   APInt LoadedRHSOffset;
6189   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
6190                                   DL) ||
6191       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
6192     return nullptr;
6193 
6194   return LoadedLHSPtr;
6195 }
6196 
6197 // TODO: Need to pass in FastMathFlags
6198 static Value *simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q,
6199                             bool IsStrict) {
6200   // ldexp(poison, x) -> poison
6201   // ldexp(x, poison) -> poison
6202   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
6203     return Op0;
6204 
6205   // ldexp(undef, x) -> nan
6206   if (Q.isUndefValue(Op0))
6207     return ConstantFP::getNaN(Op0->getType());
6208 
6209   if (!IsStrict) {
6210     // TODO: Could insert a canonicalize for strict
6211 
6212     // ldexp(x, undef) -> x
6213     if (Q.isUndefValue(Op1))
6214       return Op0;
6215   }
6216 
6217   const APFloat *C = nullptr;
6218   match(Op0, PatternMatch::m_APFloat(C));
6219 
6220   // These cases should be safe, even with strictfp.
6221   // ldexp(0.0, x) -> 0.0
6222   // ldexp(-0.0, x) -> -0.0
6223   // ldexp(inf, x) -> inf
6224   // ldexp(-inf, x) -> -inf
6225   if (C && (C->isZero() || C->isInfinity()))
6226     return Op0;
6227 
6228   // These are canonicalization dropping, could do it if we knew how we could
6229   // ignore denormal flushes and target handling of nan payload bits.
6230   if (IsStrict)
6231     return nullptr;
6232 
6233   // TODO: Could quiet this with strictfp if the exception mode isn't strict.
6234   if (C && C->isNaN())
6235     return ConstantFP::get(Op0->getType(), C->makeQuiet());
6236 
6237   // ldexp(x, 0) -> x
6238 
6239   // TODO: Could fold this if we know the exception mode isn't
6240   // strict, we know the denormal mode and other target modes.
6241   if (match(Op1, PatternMatch::m_ZeroInt()))
6242     return Op0;
6243 
6244   return nullptr;
6245 }
6246 
6247 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
6248                                      const SimplifyQuery &Q,
6249                                      const CallBase *Call) {
6250   // Idempotent functions return the same result when called repeatedly.
6251   Intrinsic::ID IID = F->getIntrinsicID();
6252   if (isIdempotent(IID))
6253     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
6254       if (II->getIntrinsicID() == IID)
6255         return II;
6256 
6257   if (removesFPFraction(IID)) {
6258     // Converting from int or calling a rounding function always results in a
6259     // finite integral number or infinity. For those inputs, rounding functions
6260     // always return the same value, so the (2nd) rounding is eliminated. Ex:
6261     // floor (sitofp x) -> sitofp x
6262     // round (ceil x) -> ceil x
6263     auto *II = dyn_cast<IntrinsicInst>(Op0);
6264     if ((II && removesFPFraction(II->getIntrinsicID())) ||
6265         match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
6266       return Op0;
6267   }
6268 
6269   Value *X;
6270   switch (IID) {
6271   case Intrinsic::fabs:
6272     if (computeKnownFPSignBit(Op0, /*Depth=*/0, Q) == false)
6273       return Op0;
6274     break;
6275   case Intrinsic::bswap:
6276     // bswap(bswap(x)) -> x
6277     if (match(Op0, m_BSwap(m_Value(X))))
6278       return X;
6279     break;
6280   case Intrinsic::bitreverse:
6281     // bitreverse(bitreverse(x)) -> x
6282     if (match(Op0, m_BitReverse(m_Value(X))))
6283       return X;
6284     break;
6285   case Intrinsic::ctpop: {
6286     // ctpop(X) -> 1 iff X is non-zero power of 2.
6287     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI,
6288                                Q.DT))
6289       return ConstantInt::get(Op0->getType(), 1);
6290     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
6291     // ctpop(and X, 1) --> and X, 1
6292     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
6293     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
6294                           Q))
6295       return Op0;
6296     break;
6297   }
6298   case Intrinsic::exp:
6299     // exp(log(x)) -> x
6300     if (Call->hasAllowReassoc() &&
6301         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X))))
6302       return X;
6303     break;
6304   case Intrinsic::exp2:
6305     // exp2(log2(x)) -> x
6306     if (Call->hasAllowReassoc() &&
6307         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X))))
6308       return X;
6309     break;
6310   case Intrinsic::exp10:
6311     // exp10(log10(x)) -> x
6312     if (Call->hasAllowReassoc() &&
6313         match(Op0, m_Intrinsic<Intrinsic::log10>(m_Value(X))))
6314       return X;
6315     break;
6316   case Intrinsic::log:
6317     // log(exp(x)) -> x
6318     if (Call->hasAllowReassoc() &&
6319         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))))
6320       return X;
6321     break;
6322   case Intrinsic::log2:
6323     // log2(exp2(x)) -> x
6324     if (Call->hasAllowReassoc() &&
6325         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
6326          match(Op0,
6327                m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X)))))
6328       return X;
6329     break;
6330   case Intrinsic::log10:
6331     // log10(pow(10.0, x)) -> x
6332     // log10(exp10(x)) -> x
6333     if (Call->hasAllowReassoc() &&
6334         (match(Op0, m_Intrinsic<Intrinsic::exp10>(m_Value(X))) ||
6335          match(Op0,
6336                m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X)))))
6337       return X;
6338     break;
6339   case Intrinsic::vector_reverse:
6340     // vector.reverse(vector.reverse(x)) -> x
6341     if (match(Op0, m_VecReverse(m_Value(X))))
6342       return X;
6343     // vector.reverse(splat(X)) -> splat(X)
6344     if (isSplatValue(Op0))
6345       return Op0;
6346     break;
6347   case Intrinsic::frexp: {
6348     // Frexp is idempotent with the added complication of the struct return.
6349     if (match(Op0, m_ExtractValue<0>(m_Value(X)))) {
6350       if (match(X, m_Intrinsic<Intrinsic::frexp>(m_Value())))
6351         return X;
6352     }
6353 
6354     break;
6355   }
6356   default:
6357     break;
6358   }
6359 
6360   return nullptr;
6361 }
6362 
6363 /// Given a min/max intrinsic, see if it can be removed based on having an
6364 /// operand that is another min/max intrinsic with shared operand(s). The caller
6365 /// is expected to swap the operand arguments to handle commutation.
6366 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
6367   Value *X, *Y;
6368   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
6369     return nullptr;
6370 
6371   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
6372   if (!MM0)
6373     return nullptr;
6374   Intrinsic::ID IID0 = MM0->getIntrinsicID();
6375 
6376   if (Op1 == X || Op1 == Y ||
6377       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
6378     // max (max X, Y), X --> max X, Y
6379     if (IID0 == IID)
6380       return MM0;
6381     // max (min X, Y), X --> X
6382     if (IID0 == getInverseMinMaxIntrinsic(IID))
6383       return Op1;
6384   }
6385   return nullptr;
6386 }
6387 
6388 /// Given a min/max intrinsic, see if it can be removed based on having an
6389 /// operand that is another min/max intrinsic with shared operand(s). The caller
6390 /// is expected to swap the operand arguments to handle commutation.
6391 static Value *foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0,
6392                                          Value *Op1) {
6393   assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum ||
6394           IID == Intrinsic::maximum || IID == Intrinsic::minimum) &&
6395          "Unsupported intrinsic");
6396 
6397   auto *M0 = dyn_cast<IntrinsicInst>(Op0);
6398   // If Op0 is not the same intrinsic as IID, do not process.
6399   // This is a difference with integer min/max handling. We do not process the
6400   // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN.
6401   if (!M0 || M0->getIntrinsicID() != IID)
6402     return nullptr;
6403   Value *X0 = M0->getOperand(0);
6404   Value *Y0 = M0->getOperand(1);
6405   // Simple case, m(m(X,Y), X) => m(X, Y)
6406   //              m(m(X,Y), Y) => m(X, Y)
6407   // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN.
6408   // For minimum/maximum, Y is NaN => m(X, NaN) == NaN  and m(NaN, NaN) == NaN.
6409   // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y.
6410   // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X.
6411   if (X0 == Op1 || Y0 == Op1)
6412     return M0;
6413 
6414   auto *M1 = dyn_cast<IntrinsicInst>(Op1);
6415   if (!M1)
6416     return nullptr;
6417   Value *X1 = M1->getOperand(0);
6418   Value *Y1 = M1->getOperand(1);
6419   Intrinsic::ID IID1 = M1->getIntrinsicID();
6420   // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative.
6421   // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y).
6422   // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN.
6423   // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN.
6424   // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y.
6425   // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X.
6426   if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1))
6427     if (IID1 == IID || getInverseMinMaxIntrinsic(IID1) == IID)
6428       return M0;
6429 
6430   return nullptr;
6431 }
6432 
6433 Value *llvm::simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType,
6434                                      Value *Op0, Value *Op1,
6435                                      const SimplifyQuery &Q,
6436                                      const CallBase *Call) {
6437   unsigned BitWidth = ReturnType->getScalarSizeInBits();
6438   switch (IID) {
6439   case Intrinsic::abs:
6440     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
6441     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
6442     // on the outer abs.
6443     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
6444       return Op0;
6445     break;
6446 
6447   case Intrinsic::cttz: {
6448     Value *X;
6449     if (match(Op0, m_Shl(m_One(), m_Value(X))))
6450       return X;
6451     break;
6452   }
6453   case Intrinsic::ctlz: {
6454     Value *X;
6455     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
6456       return X;
6457     if (match(Op0, m_AShr(m_Negative(), m_Value())))
6458       return Constant::getNullValue(ReturnType);
6459     break;
6460   }
6461   case Intrinsic::ptrmask: {
6462     if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
6463       return PoisonValue::get(Op0->getType());
6464 
6465     // NOTE: We can't apply this simplifications based on the value of Op1
6466     // because we need to preserve provenance.
6467     if (Q.isUndefValue(Op0) || match(Op0, m_Zero()))
6468       return Constant::getNullValue(Op0->getType());
6469 
6470     assert(Op1->getType()->getScalarSizeInBits() ==
6471                Q.DL.getIndexTypeSizeInBits(Op0->getType()) &&
6472            "Invalid mask width");
6473     // If index-width (mask size) is less than pointer-size then mask is
6474     // 1-extended.
6475     if (match(Op1, m_PtrToInt(m_Specific(Op0))))
6476       return Op0;
6477 
6478     // NOTE: We may have attributes associated with the return value of the
6479     // llvm.ptrmask intrinsic that will be lost when we just return the
6480     // operand. We should try to preserve them.
6481     if (match(Op1, m_AllOnes()) || Q.isUndefValue(Op1))
6482       return Op0;
6483 
6484     Constant *C;
6485     if (match(Op1, m_ImmConstant(C))) {
6486       KnownBits PtrKnown = computeKnownBits(Op0, /*Depth=*/0, Q);
6487       // See if we only masking off bits we know are already zero due to
6488       // alignment.
6489       APInt IrrelevantPtrBits =
6490           PtrKnown.Zero.zextOrTrunc(C->getType()->getScalarSizeInBits());
6491       C = ConstantFoldBinaryOpOperands(
6492           Instruction::Or, C, ConstantInt::get(C->getType(), IrrelevantPtrBits),
6493           Q.DL);
6494       if (C != nullptr && C->isAllOnesValue())
6495         return Op0;
6496     }
6497     break;
6498   }
6499   case Intrinsic::smax:
6500   case Intrinsic::smin:
6501   case Intrinsic::umax:
6502   case Intrinsic::umin: {
6503     // If the arguments are the same, this is a no-op.
6504     if (Op0 == Op1)
6505       return Op0;
6506 
6507     // Canonicalize immediate constant operand as Op1.
6508     if (match(Op0, m_ImmConstant()))
6509       std::swap(Op0, Op1);
6510 
6511     // Assume undef is the limit value.
6512     if (Q.isUndefValue(Op1))
6513       return ConstantInt::get(
6514           ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth));
6515 
6516     const APInt *C;
6517     if (match(Op1, m_APIntAllowPoison(C))) {
6518       // Clamp to limit value. For example:
6519       // umax(i8 %x, i8 255) --> 255
6520       if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth))
6521         return ConstantInt::get(ReturnType, *C);
6522 
6523       // If the constant op is the opposite of the limit value, the other must
6524       // be larger/smaller or equal. For example:
6525       // umin(i8 %x, i8 255) --> %x
6526       if (*C == MinMaxIntrinsic::getSaturationPoint(
6527                     getInverseMinMaxIntrinsic(IID), BitWidth))
6528         return Op0;
6529 
6530       // Remove nested call if constant operands allow it. Example:
6531       // max (max X, 7), 5 -> max X, 7
6532       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
6533       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
6534         // TODO: loosen undef/splat restrictions for vector constants.
6535         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
6536         const APInt *InnerC;
6537         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
6538             ICmpInst::compare(*InnerC, *C,
6539                               ICmpInst::getNonStrictPredicate(
6540                                   MinMaxIntrinsic::getPredicate(IID))))
6541           return Op0;
6542       }
6543     }
6544 
6545     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
6546       return V;
6547     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
6548       return V;
6549 
6550     ICmpInst::Predicate Pred =
6551         ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
6552     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
6553       return Op0;
6554     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
6555       return Op1;
6556 
6557     break;
6558   }
6559   case Intrinsic::scmp:
6560   case Intrinsic::ucmp: {
6561     // Fold to a constant if the relationship between operands can be
6562     // established with certainty
6563     if (isICmpTrue(CmpInst::ICMP_EQ, Op0, Op1, Q, RecursionLimit))
6564       return Constant::getNullValue(ReturnType);
6565 
6566     ICmpInst::Predicate PredGT =
6567         IID == Intrinsic::scmp ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
6568     if (isICmpTrue(PredGT, Op0, Op1, Q, RecursionLimit))
6569       return ConstantInt::get(ReturnType, 1);
6570 
6571     ICmpInst::Predicate PredLT =
6572         IID == Intrinsic::scmp ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
6573     if (isICmpTrue(PredLT, Op0, Op1, Q, RecursionLimit))
6574       return ConstantInt::getSigned(ReturnType, -1);
6575 
6576     break;
6577   }
6578   case Intrinsic::usub_with_overflow:
6579   case Intrinsic::ssub_with_overflow:
6580     // X - X -> { 0, false }
6581     // X - undef -> { 0, false }
6582     // undef - X -> { 0, false }
6583     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6584       return Constant::getNullValue(ReturnType);
6585     break;
6586   case Intrinsic::uadd_with_overflow:
6587   case Intrinsic::sadd_with_overflow:
6588     // X + undef -> { -1, false }
6589     // undef + x -> { -1, false }
6590     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
6591       return ConstantStruct::get(
6592           cast<StructType>(ReturnType),
6593           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
6594            Constant::getNullValue(ReturnType->getStructElementType(1))});
6595     }
6596     break;
6597   case Intrinsic::umul_with_overflow:
6598   case Intrinsic::smul_with_overflow:
6599     // 0 * X -> { 0, false }
6600     // X * 0 -> { 0, false }
6601     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
6602       return Constant::getNullValue(ReturnType);
6603     // undef * X -> { 0, false }
6604     // X * undef -> { 0, false }
6605     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6606       return Constant::getNullValue(ReturnType);
6607     break;
6608   case Intrinsic::uadd_sat:
6609     // sat(MAX + X) -> MAX
6610     // sat(X + MAX) -> MAX
6611     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
6612       return Constant::getAllOnesValue(ReturnType);
6613     [[fallthrough]];
6614   case Intrinsic::sadd_sat:
6615     // sat(X + undef) -> -1
6616     // sat(undef + X) -> -1
6617     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
6618     // For signed: Assume undef is ~X, in which case X + ~X = -1.
6619     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6620       return Constant::getAllOnesValue(ReturnType);
6621 
6622     // X + 0 -> X
6623     if (match(Op1, m_Zero()))
6624       return Op0;
6625     // 0 + X -> X
6626     if (match(Op0, m_Zero()))
6627       return Op1;
6628     break;
6629   case Intrinsic::usub_sat:
6630     // sat(0 - X) -> 0, sat(X - MAX) -> 0
6631     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
6632       return Constant::getNullValue(ReturnType);
6633     [[fallthrough]];
6634   case Intrinsic::ssub_sat:
6635     // X - X -> 0, X - undef -> 0, undef - X -> 0
6636     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6637       return Constant::getNullValue(ReturnType);
6638     // X - 0 -> X
6639     if (match(Op1, m_Zero()))
6640       return Op0;
6641     break;
6642   case Intrinsic::load_relative:
6643     if (auto *C0 = dyn_cast<Constant>(Op0))
6644       if (auto *C1 = dyn_cast<Constant>(Op1))
6645         return simplifyRelativeLoad(C0, C1, Q.DL);
6646     break;
6647   case Intrinsic::powi:
6648     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
6649       // powi(x, 0) -> 1.0
6650       if (Power->isZero())
6651         return ConstantFP::get(Op0->getType(), 1.0);
6652       // powi(x, 1) -> x
6653       if (Power->isOne())
6654         return Op0;
6655     }
6656     break;
6657   case Intrinsic::ldexp:
6658     return simplifyLdexp(Op0, Op1, Q, false);
6659   case Intrinsic::copysign:
6660     // copysign X, X --> X
6661     if (Op0 == Op1)
6662       return Op0;
6663     // copysign -X, X --> X
6664     // copysign X, -X --> -X
6665     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
6666         match(Op1, m_FNeg(m_Specific(Op0))))
6667       return Op1;
6668     break;
6669   case Intrinsic::is_fpclass: {
6670     if (isa<PoisonValue>(Op0))
6671       return PoisonValue::get(ReturnType);
6672 
6673     uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue();
6674     // If all tests are made, it doesn't matter what the value is.
6675     if ((Mask & fcAllFlags) == fcAllFlags)
6676       return ConstantInt::get(ReturnType, true);
6677     if ((Mask & fcAllFlags) == 0)
6678       return ConstantInt::get(ReturnType, false);
6679     if (Q.isUndefValue(Op0))
6680       return UndefValue::get(ReturnType);
6681     break;
6682   }
6683   case Intrinsic::maxnum:
6684   case Intrinsic::minnum:
6685   case Intrinsic::maximum:
6686   case Intrinsic::minimum: {
6687     // If the arguments are the same, this is a no-op.
6688     if (Op0 == Op1)
6689       return Op0;
6690 
6691     // Canonicalize constant operand as Op1.
6692     if (isa<Constant>(Op0))
6693       std::swap(Op0, Op1);
6694 
6695     // If an argument is undef, return the other argument.
6696     if (Q.isUndefValue(Op1))
6697       return Op0;
6698 
6699     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
6700     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
6701 
6702     // minnum(X, nan) -> X
6703     // maxnum(X, nan) -> X
6704     // minimum(X, nan) -> nan
6705     // maximum(X, nan) -> nan
6706     if (match(Op1, m_NaN()))
6707       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
6708 
6709     // In the following folds, inf can be replaced with the largest finite
6710     // float, if the ninf flag is set.
6711     const APFloat *C;
6712     if (match(Op1, m_APFloat(C)) &&
6713         (C->isInfinity() || (Call && Call->hasNoInfs() && C->isLargest()))) {
6714       // minnum(X, -inf) -> -inf
6715       // maxnum(X, +inf) -> +inf
6716       // minimum(X, -inf) -> -inf if nnan
6717       // maximum(X, +inf) -> +inf if nnan
6718       if (C->isNegative() == IsMin &&
6719           (!PropagateNaN || (Call && Call->hasNoNaNs())))
6720         return ConstantFP::get(ReturnType, *C);
6721 
6722       // minnum(X, +inf) -> X if nnan
6723       // maxnum(X, -inf) -> X if nnan
6724       // minimum(X, +inf) -> X
6725       // maximum(X, -inf) -> X
6726       if (C->isNegative() != IsMin &&
6727           (PropagateNaN || (Call && Call->hasNoNaNs())))
6728         return Op0;
6729     }
6730 
6731     // Min/max of the same operation with common operand:
6732     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
6733     if (Value *V = foldMinimumMaximumSharedOp(IID, Op0, Op1))
6734       return V;
6735     if (Value *V = foldMinimumMaximumSharedOp(IID, Op1, Op0))
6736       return V;
6737 
6738     break;
6739   }
6740   case Intrinsic::vector_extract: {
6741     // (extract_vector (insert_vector _, X, 0), 0) -> X
6742     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
6743     Value *X = nullptr;
6744     if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X),
6745                                                          m_Zero())) &&
6746         IdxN == 0 && X->getType() == ReturnType)
6747       return X;
6748 
6749     break;
6750   }
6751   default:
6752     break;
6753   }
6754 
6755   return nullptr;
6756 }
6757 
6758 static Value *simplifyIntrinsic(CallBase *Call, Value *Callee,
6759                                 ArrayRef<Value *> Args,
6760                                 const SimplifyQuery &Q) {
6761   // Operand bundles should not be in Args.
6762   assert(Call->arg_size() == Args.size());
6763   unsigned NumOperands = Args.size();
6764   Function *F = cast<Function>(Callee);
6765   Intrinsic::ID IID = F->getIntrinsicID();
6766 
6767   // Most of the intrinsics with no operands have some kind of side effect.
6768   // Don't simplify.
6769   if (!NumOperands) {
6770     switch (IID) {
6771     case Intrinsic::vscale: {
6772       Type *RetTy = F->getReturnType();
6773       ConstantRange CR = getVScaleRange(Call->getFunction(), 64);
6774       if (const APInt *C = CR.getSingleElement())
6775         return ConstantInt::get(RetTy, C->getZExtValue());
6776       return nullptr;
6777     }
6778     default:
6779       return nullptr;
6780     }
6781   }
6782 
6783   if (NumOperands == 1)
6784     return simplifyUnaryIntrinsic(F, Args[0], Q, Call);
6785 
6786   if (NumOperands == 2)
6787     return simplifyBinaryIntrinsic(IID, F->getReturnType(), Args[0], Args[1], Q,
6788                                    Call);
6789 
6790   // Handle intrinsics with 3 or more arguments.
6791   switch (IID) {
6792   case Intrinsic::masked_load:
6793   case Intrinsic::masked_gather: {
6794     Value *MaskArg = Args[2];
6795     Value *PassthruArg = Args[3];
6796     // If the mask is all zeros or undef, the "passthru" argument is the result.
6797     if (maskIsAllZeroOrUndef(MaskArg))
6798       return PassthruArg;
6799     return nullptr;
6800   }
6801   case Intrinsic::fshl:
6802   case Intrinsic::fshr: {
6803     Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2];
6804 
6805     // If both operands are undef, the result is undef.
6806     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
6807       return UndefValue::get(F->getReturnType());
6808 
6809     // If shift amount is undef, assume it is zero.
6810     if (Q.isUndefValue(ShAmtArg))
6811       return Args[IID == Intrinsic::fshl ? 0 : 1];
6812 
6813     const APInt *ShAmtC;
6814     if (match(ShAmtArg, m_APInt(ShAmtC))) {
6815       // If there's effectively no shift, return the 1st arg or 2nd arg.
6816       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
6817       if (ShAmtC->urem(BitWidth).isZero())
6818         return Args[IID == Intrinsic::fshl ? 0 : 1];
6819     }
6820 
6821     // Rotating zero by anything is zero.
6822     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
6823       return ConstantInt::getNullValue(F->getReturnType());
6824 
6825     // Rotating -1 by anything is -1.
6826     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
6827       return ConstantInt::getAllOnesValue(F->getReturnType());
6828 
6829     return nullptr;
6830   }
6831   case Intrinsic::experimental_constrained_fma: {
6832     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6833     if (Value *V = simplifyFPOp(Args, {}, Q, *FPI->getExceptionBehavior(),
6834                                 *FPI->getRoundingMode()))
6835       return V;
6836     return nullptr;
6837   }
6838   case Intrinsic::fma:
6839   case Intrinsic::fmuladd: {
6840     if (Value *V = simplifyFPOp(Args, {}, Q, fp::ebIgnore,
6841                                 RoundingMode::NearestTiesToEven))
6842       return V;
6843     return nullptr;
6844   }
6845   case Intrinsic::smul_fix:
6846   case Intrinsic::smul_fix_sat: {
6847     Value *Op0 = Args[0];
6848     Value *Op1 = Args[1];
6849     Value *Op2 = Args[2];
6850     Type *ReturnType = F->getReturnType();
6851 
6852     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6853     // when both Op0 and Op1 are constant so we do not care about that special
6854     // case here).
6855     if (isa<Constant>(Op0))
6856       std::swap(Op0, Op1);
6857 
6858     // X * 0 -> 0
6859     if (match(Op1, m_Zero()))
6860       return Constant::getNullValue(ReturnType);
6861 
6862     // X * undef -> 0
6863     if (Q.isUndefValue(Op1))
6864       return Constant::getNullValue(ReturnType);
6865 
6866     // X * (1 << Scale) -> X
6867     APInt ScaledOne =
6868         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6869                             cast<ConstantInt>(Op2)->getZExtValue());
6870     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6871       return Op0;
6872 
6873     return nullptr;
6874   }
6875   case Intrinsic::vector_insert: {
6876     Value *Vec = Args[0];
6877     Value *SubVec = Args[1];
6878     Value *Idx = Args[2];
6879     Type *ReturnType = F->getReturnType();
6880 
6881     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6882     // where: Y is X, or Y is undef
6883     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6884     Value *X = nullptr;
6885     if (match(SubVec,
6886               m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) &&
6887         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6888         X->getType() == ReturnType)
6889       return X;
6890 
6891     return nullptr;
6892   }
6893   case Intrinsic::experimental_constrained_fadd: {
6894     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6895     return simplifyFAddInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6896                             *FPI->getExceptionBehavior(),
6897                             *FPI->getRoundingMode());
6898   }
6899   case Intrinsic::experimental_constrained_fsub: {
6900     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6901     return simplifyFSubInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6902                             *FPI->getExceptionBehavior(),
6903                             *FPI->getRoundingMode());
6904   }
6905   case Intrinsic::experimental_constrained_fmul: {
6906     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6907     return simplifyFMulInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6908                             *FPI->getExceptionBehavior(),
6909                             *FPI->getRoundingMode());
6910   }
6911   case Intrinsic::experimental_constrained_fdiv: {
6912     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6913     return simplifyFDivInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6914                             *FPI->getExceptionBehavior(),
6915                             *FPI->getRoundingMode());
6916   }
6917   case Intrinsic::experimental_constrained_frem: {
6918     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6919     return simplifyFRemInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6920                             *FPI->getExceptionBehavior(),
6921                             *FPI->getRoundingMode());
6922   }
6923   case Intrinsic::experimental_constrained_ldexp:
6924     return simplifyLdexp(Args[0], Args[1], Q, true);
6925   case Intrinsic::experimental_gc_relocate: {
6926     GCRelocateInst &GCR = *cast<GCRelocateInst>(Call);
6927     Value *DerivedPtr = GCR.getDerivedPtr();
6928     Value *BasePtr = GCR.getBasePtr();
6929 
6930     // Undef is undef, even after relocation.
6931     if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
6932       return UndefValue::get(GCR.getType());
6933     }
6934 
6935     if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
6936       // For now, the assumption is that the relocation of null will be null
6937       // for most any collector. If this ever changes, a corresponding hook
6938       // should be added to GCStrategy and this code should check it first.
6939       if (isa<ConstantPointerNull>(DerivedPtr)) {
6940         // Use null-pointer of gc_relocate's type to replace it.
6941         return ConstantPointerNull::get(PT);
6942       }
6943     }
6944     return nullptr;
6945   }
6946   default:
6947     return nullptr;
6948   }
6949 }
6950 
6951 static Value *tryConstantFoldCall(CallBase *Call, Value *Callee,
6952                                   ArrayRef<Value *> Args,
6953                                   const SimplifyQuery &Q) {
6954   auto *F = dyn_cast<Function>(Callee);
6955   if (!F || !canConstantFoldCallTo(Call, F))
6956     return nullptr;
6957 
6958   SmallVector<Constant *, 4> ConstantArgs;
6959   ConstantArgs.reserve(Args.size());
6960   for (Value *Arg : Args) {
6961     Constant *C = dyn_cast<Constant>(Arg);
6962     if (!C) {
6963       if (isa<MetadataAsValue>(Arg))
6964         continue;
6965       return nullptr;
6966     }
6967     ConstantArgs.push_back(C);
6968   }
6969 
6970   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6971 }
6972 
6973 Value *llvm::simplifyCall(CallBase *Call, Value *Callee, ArrayRef<Value *> Args,
6974                           const SimplifyQuery &Q) {
6975   // Args should not contain operand bundle operands.
6976   assert(Call->arg_size() == Args.size());
6977 
6978   // musttail calls can only be simplified if they are also DCEd.
6979   // As we can't guarantee this here, don't simplify them.
6980   if (Call->isMustTailCall())
6981     return nullptr;
6982 
6983   // call undef -> poison
6984   // call null -> poison
6985   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6986     return PoisonValue::get(Call->getType());
6987 
6988   if (Value *V = tryConstantFoldCall(Call, Callee, Args, Q))
6989     return V;
6990 
6991   auto *F = dyn_cast<Function>(Callee);
6992   if (F && F->isIntrinsic())
6993     if (Value *Ret = simplifyIntrinsic(Call, Callee, Args, Q))
6994       return Ret;
6995 
6996   return nullptr;
6997 }
6998 
6999 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) {
7000   assert(isa<ConstrainedFPIntrinsic>(Call));
7001   SmallVector<Value *, 4> Args(Call->args());
7002   if (Value *V = tryConstantFoldCall(Call, Call->getCalledOperand(), Args, Q))
7003     return V;
7004   if (Value *Ret = simplifyIntrinsic(Call, Call->getCalledOperand(), Args, Q))
7005     return Ret;
7006   return nullptr;
7007 }
7008 
7009 /// Given operands for a Freeze, see if we can fold the result.
7010 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
7011   // Use a utility function defined in ValueTracking.
7012   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
7013     return Op0;
7014   // We have room for improvement.
7015   return nullptr;
7016 }
7017 
7018 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
7019   return ::simplifyFreezeInst(Op0, Q);
7020 }
7021 
7022 Value *llvm::simplifyLoadInst(LoadInst *LI, Value *PtrOp,
7023                               const SimplifyQuery &Q) {
7024   if (LI->isVolatile())
7025     return nullptr;
7026 
7027   if (auto *PtrOpC = dyn_cast<Constant>(PtrOp))
7028     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL);
7029 
7030   // We can only fold the load if it is from a constant global with definitive
7031   // initializer. Skip expensive logic if this is not the case.
7032   auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp));
7033   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
7034     return nullptr;
7035 
7036   // If GlobalVariable's initializer is uniform, then return the constant
7037   // regardless of its offset.
7038   if (Constant *C = ConstantFoldLoadFromUniformValue(GV->getInitializer(),
7039                                                      LI->getType(), Q.DL))
7040     return C;
7041 
7042   // Try to convert operand into a constant by stripping offsets while looking
7043   // through invariant.group intrinsics.
7044   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
7045   PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
7046       Q.DL, Offset, /* AllowNonInbounts */ true,
7047       /* AllowInvariantGroup */ true);
7048   if (PtrOp == GV) {
7049     // Index size may have changed due to address space casts.
7050     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
7051     return ConstantFoldLoadFromConstPtr(GV, LI->getType(), std::move(Offset),
7052                                         Q.DL);
7053   }
7054 
7055   return nullptr;
7056 }
7057 
7058 /// See if we can compute a simplified version of this instruction.
7059 /// If not, this returns null.
7060 
7061 static Value *simplifyInstructionWithOperands(Instruction *I,
7062                                               ArrayRef<Value *> NewOps,
7063                                               const SimplifyQuery &SQ,
7064                                               unsigned MaxRecurse) {
7065   assert(I->getFunction() && "instruction should be inserted in a function");
7066   assert((!SQ.CxtI || SQ.CxtI->getFunction() == I->getFunction()) &&
7067          "context instruction should be in the same function");
7068 
7069   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
7070 
7071   switch (I->getOpcode()) {
7072   default:
7073     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
7074       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
7075       transform(NewOps, NewConstOps.begin(),
7076                 [](Value *V) { return cast<Constant>(V); });
7077       return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
7078     }
7079     return nullptr;
7080   case Instruction::FNeg:
7081     return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q, MaxRecurse);
7082   case Instruction::FAdd:
7083     return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7084                             MaxRecurse);
7085   case Instruction::Add:
7086     return simplifyAddInst(
7087         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
7088         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse);
7089   case Instruction::FSub:
7090     return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7091                             MaxRecurse);
7092   case Instruction::Sub:
7093     return simplifySubInst(
7094         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
7095         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse);
7096   case Instruction::FMul:
7097     return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7098                             MaxRecurse);
7099   case Instruction::Mul:
7100     return simplifyMulInst(
7101         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
7102         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse);
7103   case Instruction::SDiv:
7104     return simplifySDivInst(NewOps[0], NewOps[1],
7105                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q,
7106                             MaxRecurse);
7107   case Instruction::UDiv:
7108     return simplifyUDivInst(NewOps[0], NewOps[1],
7109                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q,
7110                             MaxRecurse);
7111   case Instruction::FDiv:
7112     return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7113                             MaxRecurse);
7114   case Instruction::SRem:
7115     return simplifySRemInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7116   case Instruction::URem:
7117     return simplifyURemInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7118   case Instruction::FRem:
7119     return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7120                             MaxRecurse);
7121   case Instruction::Shl:
7122     return simplifyShlInst(
7123         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
7124         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse);
7125   case Instruction::LShr:
7126     return simplifyLShrInst(NewOps[0], NewOps[1],
7127                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q,
7128                             MaxRecurse);
7129   case Instruction::AShr:
7130     return simplifyAShrInst(NewOps[0], NewOps[1],
7131                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q,
7132                             MaxRecurse);
7133   case Instruction::And:
7134     return simplifyAndInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7135   case Instruction::Or:
7136     return simplifyOrInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7137   case Instruction::Xor:
7138     return simplifyXorInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7139   case Instruction::ICmp:
7140     return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0],
7141                             NewOps[1], Q, MaxRecurse);
7142   case Instruction::FCmp:
7143     return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
7144                             NewOps[1], I->getFastMathFlags(), Q, MaxRecurse);
7145   case Instruction::Select:
7146     return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse);
7147     break;
7148   case Instruction::GetElementPtr: {
7149     auto *GEPI = cast<GetElementPtrInst>(I);
7150     return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0],
7151                            ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q,
7152                            MaxRecurse);
7153   }
7154   case Instruction::InsertValue: {
7155     InsertValueInst *IV = cast<InsertValueInst>(I);
7156     return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q,
7157                                    MaxRecurse);
7158   }
7159   case Instruction::InsertElement:
7160     return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
7161   case Instruction::ExtractValue: {
7162     auto *EVI = cast<ExtractValueInst>(I);
7163     return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q,
7164                                     MaxRecurse);
7165   }
7166   case Instruction::ExtractElement:
7167     return simplifyExtractElementInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7168   case Instruction::ShuffleVector: {
7169     auto *SVI = cast<ShuffleVectorInst>(I);
7170     return simplifyShuffleVectorInst(NewOps[0], NewOps[1],
7171                                      SVI->getShuffleMask(), SVI->getType(), Q,
7172                                      MaxRecurse);
7173   }
7174   case Instruction::PHI:
7175     return simplifyPHINode(cast<PHINode>(I), NewOps, Q);
7176   case Instruction::Call:
7177     return simplifyCall(
7178         cast<CallInst>(I), NewOps.back(),
7179         NewOps.drop_back(1 + cast<CallInst>(I)->getNumTotalBundleOperands()), Q);
7180   case Instruction::Freeze:
7181     return llvm::simplifyFreezeInst(NewOps[0], Q);
7182 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
7183 #include "llvm/IR/Instruction.def"
7184 #undef HANDLE_CAST_INST
7185     return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q,
7186                             MaxRecurse);
7187   case Instruction::Alloca:
7188     // No simplifications for Alloca and it can't be constant folded.
7189     return nullptr;
7190   case Instruction::Load:
7191     return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
7192   }
7193 }
7194 
7195 Value *llvm::simplifyInstructionWithOperands(Instruction *I,
7196                                              ArrayRef<Value *> NewOps,
7197                                              const SimplifyQuery &SQ) {
7198   assert(NewOps.size() == I->getNumOperands() &&
7199          "Number of operands should match the instruction!");
7200   return ::simplifyInstructionWithOperands(I, NewOps, SQ, RecursionLimit);
7201 }
7202 
7203 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ) {
7204   SmallVector<Value *, 8> Ops(I->operands());
7205   Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, RecursionLimit);
7206 
7207   /// If called on unreachable code, the instruction may simplify to itself.
7208   /// Make life easier for users by detecting that case here, and returning a
7209   /// safe value instead.
7210   return Result == I ? PoisonValue::get(I->getType()) : Result;
7211 }
7212 
7213 /// Implementation of recursive simplification through an instruction's
7214 /// uses.
7215 ///
7216 /// This is the common implementation of the recursive simplification routines.
7217 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
7218 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
7219 /// instructions to process and attempt to simplify it using
7220 /// InstructionSimplify. Recursively visited users which could not be
7221 /// simplified themselves are to the optional UnsimplifiedUsers set for
7222 /// further processing by the caller.
7223 ///
7224 /// This routine returns 'true' only when *it* simplifies something. The passed
7225 /// in simplified value does not count toward this.
7226 static bool replaceAndRecursivelySimplifyImpl(
7227     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
7228     const DominatorTree *DT, AssumptionCache *AC,
7229     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
7230   bool Simplified = false;
7231   SmallSetVector<Instruction *, 8> Worklist;
7232   const DataLayout &DL = I->getDataLayout();
7233 
7234   // If we have an explicit value to collapse to, do that round of the
7235   // simplification loop by hand initially.
7236   if (SimpleV) {
7237     for (User *U : I->users())
7238       if (U != I)
7239         Worklist.insert(cast<Instruction>(U));
7240 
7241     // Replace the instruction with its simplified value.
7242     I->replaceAllUsesWith(SimpleV);
7243 
7244     if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects())
7245       I->eraseFromParent();
7246   } else {
7247     Worklist.insert(I);
7248   }
7249 
7250   // Note that we must test the size on each iteration, the worklist can grow.
7251   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
7252     I = Worklist[Idx];
7253 
7254     // See if this instruction simplifies.
7255     SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC});
7256     if (!SimpleV) {
7257       if (UnsimplifiedUsers)
7258         UnsimplifiedUsers->insert(I);
7259       continue;
7260     }
7261 
7262     Simplified = true;
7263 
7264     // Stash away all the uses of the old instruction so we can check them for
7265     // recursive simplifications after a RAUW. This is cheaper than checking all
7266     // uses of To on the recursive step in most cases.
7267     for (User *U : I->users())
7268       Worklist.insert(cast<Instruction>(U));
7269 
7270     // Replace the instruction with its simplified value.
7271     I->replaceAllUsesWith(SimpleV);
7272 
7273     if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects())
7274       I->eraseFromParent();
7275   }
7276   return Simplified;
7277 }
7278 
7279 bool llvm::replaceAndRecursivelySimplify(
7280     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
7281     const DominatorTree *DT, AssumptionCache *AC,
7282     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
7283   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
7284   assert(SimpleV && "Must provide a simplified value.");
7285   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
7286                                            UnsimplifiedUsers);
7287 }
7288 
7289 namespace llvm {
7290 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
7291   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
7292   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
7293   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
7294   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
7295   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
7296   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
7297   return {F.getDataLayout(), TLI, DT, AC};
7298 }
7299 
7300 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
7301                                          const DataLayout &DL) {
7302   return {DL, &AR.TLI, &AR.DT, &AR.AC};
7303 }
7304 
7305 template <class T, class... TArgs>
7306 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
7307                                          Function &F) {
7308   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
7309   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
7310   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
7311   return {F.getDataLayout(), TLI, DT, AC};
7312 }
7313 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
7314                                                   Function &);
7315 
7316 bool SimplifyQuery::isUndefValue(Value *V) const {
7317   if (!CanUseUndef)
7318     return false;
7319 
7320   return match(V, m_Undef());
7321 }
7322 
7323 } // namespace llvm
7324 
7325 void InstSimplifyFolder::anchor() {}
7326