1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/ValueTracking.h" 34 #include "llvm/Analysis/VectorUtils.h" 35 #include "llvm/IR/ConstantRange.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/Dominators.h" 38 #include "llvm/IR/InstrTypes.h" 39 #include "llvm/IR/Instructions.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/PatternMatch.h" 42 #include "llvm/IR/Statepoint.h" 43 #include "llvm/Support/KnownBits.h" 44 #include <algorithm> 45 #include <optional> 46 using namespace llvm; 47 using namespace llvm::PatternMatch; 48 49 #define DEBUG_TYPE "instsimplify" 50 51 enum { RecursionLimit = 3 }; 52 53 STATISTIC(NumExpand, "Number of expansions"); 54 STATISTIC(NumReassoc, "Number of reassociations"); 55 56 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, 57 unsigned); 58 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 59 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 60 const SimplifyQuery &, unsigned); 61 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 62 unsigned); 63 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 64 const SimplifyQuery &, unsigned); 65 static Value *simplifyCmpInst(unsigned, Value *, Value *, const SimplifyQuery &, 66 unsigned); 67 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 68 const SimplifyQuery &Q, unsigned MaxRecurse); 69 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 70 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, 71 unsigned); 72 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, 73 unsigned); 74 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, 75 GEPNoWrapFlags, const SimplifyQuery &, unsigned); 76 static Value *simplifySelectInst(Value *, Value *, Value *, 77 const SimplifyQuery &, unsigned); 78 static Value *simplifyInstructionWithOperands(Instruction *I, 79 ArrayRef<Value *> NewOps, 80 const SimplifyQuery &SQ, 81 unsigned MaxRecurse); 82 83 static Value *foldSelectWithBinaryOp(Value *Cond, Value *TrueVal, 84 Value *FalseVal) { 85 BinaryOperator::BinaryOps BinOpCode; 86 if (auto *BO = dyn_cast<BinaryOperator>(Cond)) 87 BinOpCode = BO->getOpcode(); 88 else 89 return nullptr; 90 91 CmpInst::Predicate ExpectedPred, Pred1, Pred2; 92 if (BinOpCode == BinaryOperator::Or) { 93 ExpectedPred = ICmpInst::ICMP_NE; 94 } else if (BinOpCode == BinaryOperator::And) { 95 ExpectedPred = ICmpInst::ICMP_EQ; 96 } else 97 return nullptr; 98 99 // %A = icmp eq %TV, %FV 100 // %B = icmp eq %X, %Y (and one of these is a select operand) 101 // %C = and %A, %B 102 // %D = select %C, %TV, %FV 103 // --> 104 // %FV 105 106 // %A = icmp ne %TV, %FV 107 // %B = icmp ne %X, %Y (and one of these is a select operand) 108 // %C = or %A, %B 109 // %D = select %C, %TV, %FV 110 // --> 111 // %TV 112 Value *X, *Y; 113 if (!match(Cond, m_c_BinOp(m_c_ICmp(Pred1, m_Specific(TrueVal), 114 m_Specific(FalseVal)), 115 m_ICmp(Pred2, m_Value(X), m_Value(Y)))) || 116 Pred1 != Pred2 || Pred1 != ExpectedPred) 117 return nullptr; 118 119 if (X == TrueVal || X == FalseVal || Y == TrueVal || Y == FalseVal) 120 return BinOpCode == BinaryOperator::Or ? TrueVal : FalseVal; 121 122 return nullptr; 123 } 124 125 /// For a boolean type or a vector of boolean type, return false or a vector 126 /// with every element false. 127 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } 128 129 /// For a boolean type or a vector of boolean type, return true or a vector 130 /// with every element true. 131 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } 132 133 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 134 static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS, 135 Value *RHS) { 136 CmpInst *Cmp = dyn_cast<CmpInst>(V); 137 if (!Cmp) 138 return false; 139 CmpInst::Predicate CPred = Cmp->getPredicate(); 140 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 141 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 142 return true; 143 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 144 CRHS == LHS; 145 } 146 147 /// Simplify comparison with true or false branch of select: 148 /// %sel = select i1 %cond, i32 %tv, i32 %fv 149 /// %cmp = icmp sle i32 %sel, %rhs 150 /// Compose new comparison by substituting %sel with either %tv or %fv 151 /// and see if it simplifies. 152 static Value *simplifyCmpSelCase(CmpInst::Predicate Pred, Value *LHS, 153 Value *RHS, Value *Cond, 154 const SimplifyQuery &Q, unsigned MaxRecurse, 155 Constant *TrueOrFalse) { 156 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 157 if (SimplifiedCmp == Cond) { 158 // %cmp simplified to the select condition (%cond). 159 return TrueOrFalse; 160 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 161 // It didn't simplify. However, if composed comparison is equivalent 162 // to the select condition (%cond) then we can replace it. 163 return TrueOrFalse; 164 } 165 return SimplifiedCmp; 166 } 167 168 /// Simplify comparison with true branch of select 169 static Value *simplifyCmpSelTrueCase(CmpInst::Predicate Pred, Value *LHS, 170 Value *RHS, Value *Cond, 171 const SimplifyQuery &Q, 172 unsigned MaxRecurse) { 173 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 174 getTrue(Cond->getType())); 175 } 176 177 /// Simplify comparison with false branch of select 178 static Value *simplifyCmpSelFalseCase(CmpInst::Predicate Pred, Value *LHS, 179 Value *RHS, Value *Cond, 180 const SimplifyQuery &Q, 181 unsigned MaxRecurse) { 182 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 183 getFalse(Cond->getType())); 184 } 185 186 /// We know comparison with both branches of select can be simplified, but they 187 /// are not equal. This routine handles some logical simplifications. 188 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 189 Value *Cond, 190 const SimplifyQuery &Q, 191 unsigned MaxRecurse) { 192 // If the false value simplified to false, then the result of the compare 193 // is equal to "Cond && TCmp". This also catches the case when the false 194 // value simplified to false and the true value to true, returning "Cond". 195 // Folding select to and/or isn't poison-safe in general; impliesPoison 196 // checks whether folding it does not convert a well-defined value into 197 // poison. 198 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 199 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 200 return V; 201 // If the true value simplified to true, then the result of the compare 202 // is equal to "Cond || FCmp". 203 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 204 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 205 return V; 206 // Finally, if the false value simplified to true and the true value to 207 // false, then the result of the compare is equal to "!Cond". 208 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 209 if (Value *V = simplifyXorInst( 210 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 211 return V; 212 return nullptr; 213 } 214 215 /// Does the given value dominate the specified phi node? 216 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 217 Instruction *I = dyn_cast<Instruction>(V); 218 if (!I) 219 // Arguments and constants dominate all instructions. 220 return true; 221 222 // If we have a DominatorTree then do a precise test. 223 if (DT) 224 return DT->dominates(I, P); 225 226 // Otherwise, if the instruction is in the entry block and is not an invoke, 227 // then it obviously dominates all phi nodes. 228 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 229 !isa<CallBrInst>(I)) 230 return true; 231 232 return false; 233 } 234 235 /// Try to simplify a binary operator of form "V op OtherOp" where V is 236 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 237 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 238 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 239 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 240 const SimplifyQuery &Q, unsigned MaxRecurse) { 241 auto *B = dyn_cast<BinaryOperator>(V); 242 if (!B || B->getOpcode() != OpcodeToExpand) 243 return nullptr; 244 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 245 Value *L = 246 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); 247 if (!L) 248 return nullptr; 249 Value *R = 250 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); 251 if (!R) 252 return nullptr; 253 254 // Does the expanded pair of binops simplify to the existing binop? 255 if ((L == B0 && R == B1) || 256 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 257 ++NumExpand; 258 return B; 259 } 260 261 // Otherwise, return "L op' R" if it simplifies. 262 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 263 if (!S) 264 return nullptr; 265 266 ++NumExpand; 267 return S; 268 } 269 270 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 271 /// distributing op over op'. 272 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, 273 Value *R, 274 Instruction::BinaryOps OpcodeToExpand, 275 const SimplifyQuery &Q, 276 unsigned MaxRecurse) { 277 // Recursion is always used, so bail out at once if we already hit the limit. 278 if (!MaxRecurse--) 279 return nullptr; 280 281 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 282 return V; 283 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 284 return V; 285 return nullptr; 286 } 287 288 /// Generic simplifications for associative binary operations. 289 /// Returns the simpler value, or null if none was found. 290 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 291 Value *LHS, Value *RHS, 292 const SimplifyQuery &Q, 293 unsigned MaxRecurse) { 294 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 295 296 // Recursion is always used, so bail out at once if we already hit the limit. 297 if (!MaxRecurse--) 298 return nullptr; 299 300 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 301 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 302 303 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 304 if (Op0 && Op0->getOpcode() == Opcode) { 305 Value *A = Op0->getOperand(0); 306 Value *B = Op0->getOperand(1); 307 Value *C = RHS; 308 309 // Does "B op C" simplify? 310 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 311 // It does! Return "A op V" if it simplifies or is already available. 312 // If V equals B then "A op V" is just the LHS. 313 if (V == B) 314 return LHS; 315 // Otherwise return "A op V" if it simplifies. 316 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 317 ++NumReassoc; 318 return W; 319 } 320 } 321 } 322 323 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 324 if (Op1 && Op1->getOpcode() == Opcode) { 325 Value *A = LHS; 326 Value *B = Op1->getOperand(0); 327 Value *C = Op1->getOperand(1); 328 329 // Does "A op B" simplify? 330 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 331 // It does! Return "V op C" if it simplifies or is already available. 332 // If V equals B then "V op C" is just the RHS. 333 if (V == B) 334 return RHS; 335 // Otherwise return "V op C" if it simplifies. 336 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 337 ++NumReassoc; 338 return W; 339 } 340 } 341 } 342 343 // The remaining transforms require commutativity as well as associativity. 344 if (!Instruction::isCommutative(Opcode)) 345 return nullptr; 346 347 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 348 if (Op0 && Op0->getOpcode() == Opcode) { 349 Value *A = Op0->getOperand(0); 350 Value *B = Op0->getOperand(1); 351 Value *C = RHS; 352 353 // Does "C op A" simplify? 354 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 355 // It does! Return "V op B" if it simplifies or is already available. 356 // If V equals A then "V op B" is just the LHS. 357 if (V == A) 358 return LHS; 359 // Otherwise return "V op B" if it simplifies. 360 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 361 ++NumReassoc; 362 return W; 363 } 364 } 365 } 366 367 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 368 if (Op1 && Op1->getOpcode() == Opcode) { 369 Value *A = LHS; 370 Value *B = Op1->getOperand(0); 371 Value *C = Op1->getOperand(1); 372 373 // Does "C op A" simplify? 374 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 375 // It does! Return "B op V" if it simplifies or is already available. 376 // If V equals C then "B op V" is just the RHS. 377 if (V == C) 378 return RHS; 379 // Otherwise return "B op V" if it simplifies. 380 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 381 ++NumReassoc; 382 return W; 383 } 384 } 385 } 386 387 return nullptr; 388 } 389 390 /// In the case of a binary operation with a select instruction as an operand, 391 /// try to simplify the binop by seeing whether evaluating it on both branches 392 /// of the select results in the same value. Returns the common value if so, 393 /// otherwise returns null. 394 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 395 Value *RHS, const SimplifyQuery &Q, 396 unsigned MaxRecurse) { 397 // Recursion is always used, so bail out at once if we already hit the limit. 398 if (!MaxRecurse--) 399 return nullptr; 400 401 SelectInst *SI; 402 if (isa<SelectInst>(LHS)) { 403 SI = cast<SelectInst>(LHS); 404 } else { 405 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 406 SI = cast<SelectInst>(RHS); 407 } 408 409 // Evaluate the BinOp on the true and false branches of the select. 410 Value *TV; 411 Value *FV; 412 if (SI == LHS) { 413 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 414 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 415 } else { 416 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 417 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 418 } 419 420 // If they simplified to the same value, then return the common value. 421 // If they both failed to simplify then return null. 422 if (TV == FV) 423 return TV; 424 425 // If one branch simplified to undef, return the other one. 426 if (TV && Q.isUndefValue(TV)) 427 return FV; 428 if (FV && Q.isUndefValue(FV)) 429 return TV; 430 431 // If applying the operation did not change the true and false select values, 432 // then the result of the binop is the select itself. 433 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 434 return SI; 435 436 // If one branch simplified and the other did not, and the simplified 437 // value is equal to the unsimplified one, return the simplified value. 438 // For example, select (cond, X, X & Z) & Z -> X & Z. 439 if ((FV && !TV) || (TV && !FV)) { 440 // Check that the simplified value has the form "X op Y" where "op" is the 441 // same as the original operation. 442 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 443 if (Simplified && Simplified->getOpcode() == unsigned(Opcode) && 444 !Simplified->hasPoisonGeneratingFlags()) { 445 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 446 // We already know that "op" is the same as for the simplified value. See 447 // if the operands match too. If so, return the simplified value. 448 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 449 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 450 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 451 if (Simplified->getOperand(0) == UnsimplifiedLHS && 452 Simplified->getOperand(1) == UnsimplifiedRHS) 453 return Simplified; 454 if (Simplified->isCommutative() && 455 Simplified->getOperand(1) == UnsimplifiedLHS && 456 Simplified->getOperand(0) == UnsimplifiedRHS) 457 return Simplified; 458 } 459 } 460 461 return nullptr; 462 } 463 464 /// In the case of a comparison with a select instruction, try to simplify the 465 /// comparison by seeing whether both branches of the select result in the same 466 /// value. Returns the common value if so, otherwise returns null. 467 /// For example, if we have: 468 /// %tmp = select i1 %cmp, i32 1, i32 2 469 /// %cmp1 = icmp sle i32 %tmp, 3 470 /// We can simplify %cmp1 to true, because both branches of select are 471 /// less than 3. We compose new comparison by substituting %tmp with both 472 /// branches of select and see if it can be simplified. 473 static Value *threadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 // Make sure the select is on the LHS. 481 if (!isa<SelectInst>(LHS)) { 482 std::swap(LHS, RHS); 483 Pred = CmpInst::getSwappedPredicate(Pred); 484 } 485 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 486 SelectInst *SI = cast<SelectInst>(LHS); 487 Value *Cond = SI->getCondition(); 488 Value *TV = SI->getTrueValue(); 489 Value *FV = SI->getFalseValue(); 490 491 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 492 // Does "cmp TV, RHS" simplify? 493 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 494 if (!TCmp) 495 return nullptr; 496 497 // Does "cmp FV, RHS" simplify? 498 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 499 if (!FCmp) 500 return nullptr; 501 502 // If both sides simplified to the same value, then use it as the result of 503 // the original comparison. 504 if (TCmp == FCmp) 505 return TCmp; 506 507 // The remaining cases only make sense if the select condition has the same 508 // type as the result of the comparison, so bail out if this is not so. 509 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 510 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 511 512 return nullptr; 513 } 514 515 /// In the case of a binary operation with an operand that is a PHI instruction, 516 /// try to simplify the binop by seeing whether evaluating it on the incoming 517 /// phi values yields the same result for every value. If so returns the common 518 /// value, otherwise returns null. 519 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 520 Value *RHS, const SimplifyQuery &Q, 521 unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 PHINode *PI; 527 if (isa<PHINode>(LHS)) { 528 PI = cast<PHINode>(LHS); 529 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 530 if (!valueDominatesPHI(RHS, PI, Q.DT)) 531 return nullptr; 532 } else { 533 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 534 PI = cast<PHINode>(RHS); 535 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 536 if (!valueDominatesPHI(LHS, PI, Q.DT)) 537 return nullptr; 538 } 539 540 // Evaluate the BinOp on the incoming phi values. 541 Value *CommonValue = nullptr; 542 for (Use &Incoming : PI->incoming_values()) { 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) 545 continue; 546 Instruction *InTI = PI->getIncomingBlock(Incoming)->getTerminator(); 547 Value *V = PI == LHS 548 ? simplifyBinOp(Opcode, Incoming, RHS, 549 Q.getWithInstruction(InTI), MaxRecurse) 550 : simplifyBinOp(Opcode, LHS, Incoming, 551 Q.getWithInstruction(InTI), MaxRecurse); 552 // If the operation failed to simplify, or simplified to a different value 553 // to previously, then give up. 554 if (!V || (CommonValue && V != CommonValue)) 555 return nullptr; 556 CommonValue = V; 557 } 558 559 return CommonValue; 560 } 561 562 /// In the case of a comparison with a PHI instruction, try to simplify the 563 /// comparison by seeing whether comparing with all of the incoming phi values 564 /// yields the same result every time. If so returns the common result, 565 /// otherwise returns null. 566 static Value *threadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS, 567 const SimplifyQuery &Q, unsigned MaxRecurse) { 568 // Recursion is always used, so bail out at once if we already hit the limit. 569 if (!MaxRecurse--) 570 return nullptr; 571 572 // Make sure the phi is on the LHS. 573 if (!isa<PHINode>(LHS)) { 574 std::swap(LHS, RHS); 575 Pred = CmpInst::getSwappedPredicate(Pred); 576 } 577 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 578 PHINode *PI = cast<PHINode>(LHS); 579 580 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 581 if (!valueDominatesPHI(RHS, PI, Q.DT)) 582 return nullptr; 583 584 // Evaluate the BinOp on the incoming phi values. 585 Value *CommonValue = nullptr; 586 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 587 Value *Incoming = PI->getIncomingValue(u); 588 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 589 // If the incoming value is the phi node itself, it can safely be skipped. 590 if (Incoming == PI) 591 continue; 592 // Change the context instruction to the "edge" that flows into the phi. 593 // This is important because that is where incoming is actually "evaluated" 594 // even though it is used later somewhere else. 595 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 596 MaxRecurse); 597 // If the operation failed to simplify, or simplified to a different value 598 // to previously, then give up. 599 if (!V || (CommonValue && V != CommonValue)) 600 return nullptr; 601 CommonValue = V; 602 } 603 604 return CommonValue; 605 } 606 607 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 608 Value *&Op0, Value *&Op1, 609 const SimplifyQuery &Q) { 610 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 611 if (auto *CRHS = dyn_cast<Constant>(Op1)) { 612 switch (Opcode) { 613 default: 614 break; 615 case Instruction::FAdd: 616 case Instruction::FSub: 617 case Instruction::FMul: 618 case Instruction::FDiv: 619 case Instruction::FRem: 620 if (Q.CxtI != nullptr) 621 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); 622 } 623 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 624 } 625 626 // Canonicalize the constant to the RHS if this is a commutative operation. 627 if (Instruction::isCommutative(Opcode)) 628 std::swap(Op0, Op1); 629 } 630 return nullptr; 631 } 632 633 /// Given operands for an Add, see if we can fold the result. 634 /// If not, this returns null. 635 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 636 const SimplifyQuery &Q, unsigned MaxRecurse) { 637 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 638 return C; 639 640 // X + poison -> poison 641 if (isa<PoisonValue>(Op1)) 642 return Op1; 643 644 // X + undef -> undef 645 if (Q.isUndefValue(Op1)) 646 return Op1; 647 648 // X + 0 -> X 649 if (match(Op1, m_Zero())) 650 return Op0; 651 652 // If two operands are negative, return 0. 653 if (isKnownNegation(Op0, Op1)) 654 return Constant::getNullValue(Op0->getType()); 655 656 // X + (Y - X) -> Y 657 // (Y - X) + X -> Y 658 // Eg: X + -X -> 0 659 Value *Y = nullptr; 660 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 661 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 662 return Y; 663 664 // X + ~X -> -1 since ~X = -X-1 665 Type *Ty = Op0->getType(); 666 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 667 return Constant::getAllOnesValue(Ty); 668 669 // add nsw/nuw (xor Y, signmask), signmask --> Y 670 // The no-wrapping add guarantees that the top bit will be set by the add. 671 // Therefore, the xor must be clearing the already set sign bit of Y. 672 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 673 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 674 return Y; 675 676 // add nuw %x, -1 -> -1, because %x can only be 0. 677 if (IsNUW && match(Op1, m_AllOnes())) 678 return Op1; // Which is -1. 679 680 /// i1 add -> xor. 681 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 682 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 683 return V; 684 685 // Try some generic simplifications for associative operations. 686 if (Value *V = 687 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) 688 return V; 689 690 // Threading Add over selects and phi nodes is pointless, so don't bother. 691 // Threading over the select in "A + select(cond, B, C)" means evaluating 692 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 693 // only if B and C are equal. If B and C are equal then (since we assume 694 // that operands have already been simplified) "select(cond, B, C)" should 695 // have been simplified to the common value of B and C already. Analysing 696 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 697 // for threading over phi nodes. 698 699 return nullptr; 700 } 701 702 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 703 const SimplifyQuery &Query) { 704 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 705 } 706 707 /// Compute the base pointer and cumulative constant offsets for V. 708 /// 709 /// This strips all constant offsets off of V, leaving it the base pointer, and 710 /// accumulates the total constant offset applied in the returned constant. 711 /// It returns zero if there are no constant offsets applied. 712 /// 713 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 714 /// normalizes the offset bitwidth to the stripped pointer type, not the 715 /// original pointer type. 716 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 717 bool AllowNonInbounds = false) { 718 assert(V->getType()->isPtrOrPtrVectorTy()); 719 720 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 721 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 722 // As that strip may trace through `addrspacecast`, need to sext or trunc 723 // the offset calculated. 724 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 725 } 726 727 /// Compute the constant difference between two pointer values. 728 /// If the difference is not a constant, returns zero. 729 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 730 Value *RHS) { 731 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 732 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 733 734 // If LHS and RHS are not related via constant offsets to the same base 735 // value, there is nothing we can do here. 736 if (LHS != RHS) 737 return nullptr; 738 739 // Otherwise, the difference of LHS - RHS can be computed as: 740 // LHS - RHS 741 // = (LHSOffset + Base) - (RHSOffset + Base) 742 // = LHSOffset - RHSOffset 743 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 744 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 745 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 746 return Res; 747 } 748 749 /// Test if there is a dominating equivalence condition for the 750 /// two operands. If there is, try to reduce the binary operation 751 /// between the two operands. 752 /// Example: Op0 - Op1 --> 0 when Op0 == Op1 753 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, 754 const SimplifyQuery &Q, unsigned MaxRecurse) { 755 // Recursive run it can not get any benefit 756 if (MaxRecurse != RecursionLimit) 757 return nullptr; 758 759 std::optional<bool> Imp = 760 isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL); 761 if (Imp && *Imp) { 762 Type *Ty = Op0->getType(); 763 switch (Opcode) { 764 case Instruction::Sub: 765 case Instruction::Xor: 766 case Instruction::URem: 767 case Instruction::SRem: 768 return Constant::getNullValue(Ty); 769 770 case Instruction::SDiv: 771 case Instruction::UDiv: 772 return ConstantInt::get(Ty, 1); 773 774 case Instruction::And: 775 case Instruction::Or: 776 // Could be either one - choose Op1 since that's more likely a constant. 777 return Op1; 778 default: 779 break; 780 } 781 } 782 return nullptr; 783 } 784 785 /// Given operands for a Sub, see if we can fold the result. 786 /// If not, this returns null. 787 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 788 const SimplifyQuery &Q, unsigned MaxRecurse) { 789 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 790 return C; 791 792 // X - poison -> poison 793 // poison - X -> poison 794 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 795 return PoisonValue::get(Op0->getType()); 796 797 // X - undef -> undef 798 // undef - X -> undef 799 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 800 return UndefValue::get(Op0->getType()); 801 802 // X - 0 -> X 803 if (match(Op1, m_Zero())) 804 return Op0; 805 806 // X - X -> 0 807 if (Op0 == Op1) 808 return Constant::getNullValue(Op0->getType()); 809 810 // Is this a negation? 811 if (match(Op0, m_Zero())) { 812 // 0 - X -> 0 if the sub is NUW. 813 if (IsNUW) 814 return Constant::getNullValue(Op0->getType()); 815 816 KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q); 817 if (Known.Zero.isMaxSignedValue()) { 818 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 819 // Op1 must be 0 because negating the minimum signed value is undefined. 820 if (IsNSW) 821 return Constant::getNullValue(Op0->getType()); 822 823 // 0 - X -> X if X is 0 or the minimum signed value. 824 return Op1; 825 } 826 } 827 828 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 829 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 830 Value *X = nullptr, *Y = nullptr, *Z = Op1; 831 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 832 // See if "V === Y - Z" simplifies. 833 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) 834 // It does! Now see if "X + V" simplifies. 835 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { 836 // It does, we successfully reassociated! 837 ++NumReassoc; 838 return W; 839 } 840 // See if "V === X - Z" simplifies. 841 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 842 // It does! Now see if "Y + V" simplifies. 843 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { 844 // It does, we successfully reassociated! 845 ++NumReassoc; 846 return W; 847 } 848 } 849 850 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 851 // For example, X - (X + 1) -> -1 852 X = Op0; 853 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 854 // See if "V === X - Y" simplifies. 855 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 856 // It does! Now see if "V - Z" simplifies. 857 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { 858 // It does, we successfully reassociated! 859 ++NumReassoc; 860 return W; 861 } 862 // See if "V === X - Z" simplifies. 863 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 864 // It does! Now see if "V - Y" simplifies. 865 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { 866 // It does, we successfully reassociated! 867 ++NumReassoc; 868 return W; 869 } 870 } 871 872 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 873 // For example, X - (X - Y) -> Y. 874 Z = Op0; 875 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 876 // See if "V === Z - X" simplifies. 877 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) 878 // It does! Now see if "V + Y" simplifies. 879 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { 880 // It does, we successfully reassociated! 881 ++NumReassoc; 882 return W; 883 } 884 885 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 886 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 887 match(Op1, m_Trunc(m_Value(Y)))) 888 if (X->getType() == Y->getType()) 889 // See if "V === X - Y" simplifies. 890 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 891 // It does! Now see if "trunc V" simplifies. 892 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), 893 Q, MaxRecurse - 1)) 894 // It does, return the simplified "trunc V". 895 return W; 896 897 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 898 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) 899 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 900 return ConstantFoldIntegerCast(Result, Op0->getType(), /*IsSigned*/ true, 901 Q.DL); 902 903 // i1 sub -> xor. 904 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 905 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 906 return V; 907 908 // Threading Sub over selects and phi nodes is pointless, so don't bother. 909 // Threading over the select in "A - select(cond, B, C)" means evaluating 910 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 911 // only if B and C are equal. If B and C are equal then (since we assume 912 // that operands have already been simplified) "select(cond, B, C)" should 913 // have been simplified to the common value of B and C already. Analysing 914 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 915 // for threading over phi nodes. 916 917 if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse)) 918 return V; 919 920 return nullptr; 921 } 922 923 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 924 const SimplifyQuery &Q) { 925 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 926 } 927 928 /// Given operands for a Mul, see if we can fold the result. 929 /// If not, this returns null. 930 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 931 const SimplifyQuery &Q, unsigned MaxRecurse) { 932 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 933 return C; 934 935 // X * poison -> poison 936 if (isa<PoisonValue>(Op1)) 937 return Op1; 938 939 // X * undef -> 0 940 // X * 0 -> 0 941 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 942 return Constant::getNullValue(Op0->getType()); 943 944 // X * 1 -> X 945 if (match(Op1, m_One())) 946 return Op0; 947 948 // (X / Y) * Y -> X if the division is exact. 949 Value *X = nullptr; 950 if (Q.IIQ.UseInstrInfo && 951 (match(Op0, 952 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 953 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 954 return X; 955 956 if (Op0->getType()->isIntOrIntVectorTy(1)) { 957 // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not 958 // representable). All other cases reduce to 0, so just return 0. 959 if (IsNSW) 960 return ConstantInt::getNullValue(Op0->getType()); 961 962 // Treat "mul i1" as "and i1". 963 if (MaxRecurse) 964 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) 965 return V; 966 } 967 968 // Try some generic simplifications for associative operations. 969 if (Value *V = 970 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 971 return V; 972 973 // Mul distributes over Add. Try some generic simplifications based on this. 974 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 975 Instruction::Add, Q, MaxRecurse)) 976 return V; 977 978 // If the operation is with the result of a select instruction, check whether 979 // operating on either branch of the select always yields the same value. 980 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 981 if (Value *V = 982 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 983 return V; 984 985 // If the operation is with the result of a phi instruction, check whether 986 // operating on all incoming values of the phi always yields the same value. 987 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 988 if (Value *V = 989 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 990 return V; 991 992 return nullptr; 993 } 994 995 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 996 const SimplifyQuery &Q) { 997 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 998 } 999 1000 /// Given a predicate and two operands, return true if the comparison is true. 1001 /// This is a helper for div/rem simplification where we return some other value 1002 /// when we can prove a relationship between the operands. 1003 static bool isICmpTrue(ICmpInst::Predicate Pred, Value *LHS, Value *RHS, 1004 const SimplifyQuery &Q, unsigned MaxRecurse) { 1005 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 1006 Constant *C = dyn_cast_or_null<Constant>(V); 1007 return (C && C->isAllOnesValue()); 1008 } 1009 1010 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 1011 /// to simplify X % Y to X. 1012 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 1013 unsigned MaxRecurse, bool IsSigned) { 1014 // Recursion is always used, so bail out at once if we already hit the limit. 1015 if (!MaxRecurse--) 1016 return false; 1017 1018 if (IsSigned) { 1019 // (X srem Y) sdiv Y --> 0 1020 if (match(X, m_SRem(m_Value(), m_Specific(Y)))) 1021 return true; 1022 1023 // |X| / |Y| --> 0 1024 // 1025 // We require that 1 operand is a simple constant. That could be extended to 1026 // 2 variables if we computed the sign bit for each. 1027 // 1028 // Make sure that a constant is not the minimum signed value because taking 1029 // the abs() of that is undefined. 1030 Type *Ty = X->getType(); 1031 const APInt *C; 1032 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 1033 // Is the variable divisor magnitude always greater than the constant 1034 // dividend magnitude? 1035 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 1036 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 1037 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 1038 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 1039 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 1040 return true; 1041 } 1042 if (match(Y, m_APInt(C))) { 1043 // Special-case: we can't take the abs() of a minimum signed value. If 1044 // that's the divisor, then all we have to do is prove that the dividend 1045 // is also not the minimum signed value. 1046 if (C->isMinSignedValue()) 1047 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1048 1049 // Is the variable dividend magnitude always less than the constant 1050 // divisor magnitude? 1051 // |X| < |C| --> X > -abs(C) and X < abs(C) 1052 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1053 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1054 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1055 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1056 return true; 1057 } 1058 return false; 1059 } 1060 1061 // IsSigned == false. 1062 1063 // Is the unsigned dividend known to be less than a constant divisor? 1064 // TODO: Convert this (and above) to range analysis 1065 // ("computeConstantRangeIncludingKnownBits")? 1066 const APInt *C; 1067 if (match(Y, m_APInt(C)) && 1068 computeKnownBits(X, /* Depth */ 0, Q).getMaxValue().ult(*C)) 1069 return true; 1070 1071 // Try again for any divisor: 1072 // Is the dividend unsigned less than the divisor? 1073 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1074 } 1075 1076 /// Check for common or similar folds of integer division or integer remainder. 1077 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 1078 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 1079 Value *Op1, const SimplifyQuery &Q, 1080 unsigned MaxRecurse) { 1081 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 1082 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 1083 1084 Type *Ty = Op0->getType(); 1085 1086 // X / undef -> poison 1087 // X % undef -> poison 1088 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 1089 return PoisonValue::get(Ty); 1090 1091 // X / 0 -> poison 1092 // X % 0 -> poison 1093 // We don't need to preserve faults! 1094 if (match(Op1, m_Zero())) 1095 return PoisonValue::get(Ty); 1096 1097 // If any element of a constant divisor fixed width vector is zero or undef 1098 // the behavior is undefined and we can fold the whole op to poison. 1099 auto *Op1C = dyn_cast<Constant>(Op1); 1100 auto *VTy = dyn_cast<FixedVectorType>(Ty); 1101 if (Op1C && VTy) { 1102 unsigned NumElts = VTy->getNumElements(); 1103 for (unsigned i = 0; i != NumElts; ++i) { 1104 Constant *Elt = Op1C->getAggregateElement(i); 1105 if (Elt && (Elt->isNullValue() || Q.isUndefValue(Elt))) 1106 return PoisonValue::get(Ty); 1107 } 1108 } 1109 1110 // poison / X -> poison 1111 // poison % X -> poison 1112 if (isa<PoisonValue>(Op0)) 1113 return Op0; 1114 1115 // undef / X -> 0 1116 // undef % X -> 0 1117 if (Q.isUndefValue(Op0)) 1118 return Constant::getNullValue(Ty); 1119 1120 // 0 / X -> 0 1121 // 0 % X -> 0 1122 if (match(Op0, m_Zero())) 1123 return Constant::getNullValue(Op0->getType()); 1124 1125 // X / X -> 1 1126 // X % X -> 0 1127 if (Op0 == Op1) 1128 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1129 1130 KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q); 1131 // X / 0 -> poison 1132 // X % 0 -> poison 1133 // If the divisor is known to be zero, just return poison. This can happen in 1134 // some cases where its provable indirectly the denominator is zero but it's 1135 // not trivially simplifiable (i.e known zero through a phi node). 1136 if (Known.isZero()) 1137 return PoisonValue::get(Ty); 1138 1139 // X / 1 -> X 1140 // X % 1 -> 0 1141 // If the divisor can only be zero or one, we can't have division-by-zero 1142 // or remainder-by-zero, so assume the divisor is 1. 1143 // e.g. 1, zext (i8 X), sdiv X (Y and 1) 1144 if (Known.countMinLeadingZeros() == Known.getBitWidth() - 1) 1145 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1146 1147 // If X * Y does not overflow, then: 1148 // X * Y / Y -> X 1149 // X * Y % Y -> 0 1150 Value *X; 1151 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1152 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1153 // The multiplication can't overflow if it is defined not to, or if 1154 // X == A / Y for some A. 1155 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1156 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1157 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1158 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1159 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1160 } 1161 } 1162 1163 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1164 return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0; 1165 1166 if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse)) 1167 return V; 1168 1169 // If the operation is with the result of a select instruction, check whether 1170 // operating on either branch of the select always yields the same value. 1171 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1172 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1173 return V; 1174 1175 // If the operation is with the result of a phi instruction, check whether 1176 // operating on all incoming values of the phi always yields the same value. 1177 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1178 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1179 return V; 1180 1181 return nullptr; 1182 } 1183 1184 /// These are simplifications common to SDiv and UDiv. 1185 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1186 bool IsExact, const SimplifyQuery &Q, 1187 unsigned MaxRecurse) { 1188 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1189 return C; 1190 1191 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1192 return V; 1193 1194 const APInt *DivC; 1195 if (IsExact && match(Op1, m_APInt(DivC))) { 1196 // If this is an exact divide by a constant, then the dividend (Op0) must 1197 // have at least as many trailing zeros as the divisor to divide evenly. If 1198 // it has less trailing zeros, then the result must be poison. 1199 if (DivC->countr_zero()) { 1200 KnownBits KnownOp0 = computeKnownBits(Op0, /* Depth */ 0, Q); 1201 if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero()) 1202 return PoisonValue::get(Op0->getType()); 1203 } 1204 1205 // udiv exact (mul nsw X, C), C --> X 1206 // sdiv exact (mul nuw X, C), C --> X 1207 // where C is not a power of 2. 1208 Value *X; 1209 if (!DivC->isPowerOf2() && 1210 (Opcode == Instruction::UDiv 1211 ? match(Op0, m_NSWMul(m_Value(X), m_Specific(Op1))) 1212 : match(Op0, m_NUWMul(m_Value(X), m_Specific(Op1))))) 1213 return X; 1214 } 1215 1216 return nullptr; 1217 } 1218 1219 /// These are simplifications common to SRem and URem. 1220 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1221 const SimplifyQuery &Q, unsigned MaxRecurse) { 1222 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1223 return C; 1224 1225 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1226 return V; 1227 1228 // (X << Y) % X -> 0 1229 if (Q.IIQ.UseInstrInfo) { 1230 if ((Opcode == Instruction::SRem && 1231 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1232 (Opcode == Instruction::URem && 1233 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))) 1234 return Constant::getNullValue(Op0->getType()); 1235 1236 const APInt *C0; 1237 if (match(Op1, m_APInt(C0))) { 1238 // (srem (mul nsw X, C1), C0) -> 0 if C1 s% C0 == 0 1239 // (urem (mul nuw X, C1), C0) -> 0 if C1 u% C0 == 0 1240 if (Opcode == Instruction::SRem 1241 ? match(Op0, 1242 m_NSWMul(m_Value(), m_CheckedInt([C0](const APInt &C) { 1243 return C.srem(*C0).isZero(); 1244 }))) 1245 : match(Op0, 1246 m_NUWMul(m_Value(), m_CheckedInt([C0](const APInt &C) { 1247 return C.urem(*C0).isZero(); 1248 })))) 1249 return Constant::getNullValue(Op0->getType()); 1250 } 1251 } 1252 return nullptr; 1253 } 1254 1255 /// Given operands for an SDiv, see if we can fold the result. 1256 /// If not, this returns null. 1257 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1258 const SimplifyQuery &Q, unsigned MaxRecurse) { 1259 // If two operands are negated and no signed overflow, return -1. 1260 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1261 return Constant::getAllOnesValue(Op0->getType()); 1262 1263 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1264 } 1265 1266 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1267 const SimplifyQuery &Q) { 1268 return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1269 } 1270 1271 /// Given operands for a UDiv, see if we can fold the result. 1272 /// If not, this returns null. 1273 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1274 const SimplifyQuery &Q, unsigned MaxRecurse) { 1275 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1276 } 1277 1278 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1279 const SimplifyQuery &Q) { 1280 return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1281 } 1282 1283 /// Given operands for an SRem, see if we can fold the result. 1284 /// If not, this returns null. 1285 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1286 unsigned MaxRecurse) { 1287 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1288 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1289 Value *X; 1290 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1291 return ConstantInt::getNullValue(Op0->getType()); 1292 1293 // If the two operands are negated, return 0. 1294 if (isKnownNegation(Op0, Op1)) 1295 return ConstantInt::getNullValue(Op0->getType()); 1296 1297 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1298 } 1299 1300 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1301 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); 1302 } 1303 1304 /// Given operands for a URem, see if we can fold the result. 1305 /// If not, this returns null. 1306 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1307 unsigned MaxRecurse) { 1308 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1309 } 1310 1311 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1312 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); 1313 } 1314 1315 /// Returns true if a shift by \c Amount always yields poison. 1316 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1317 Constant *C = dyn_cast<Constant>(Amount); 1318 if (!C) 1319 return false; 1320 1321 // X shift by undef -> poison because it may shift by the bitwidth. 1322 if (Q.isUndefValue(C)) 1323 return true; 1324 1325 // Shifting by the bitwidth or more is poison. This covers scalars and 1326 // fixed/scalable vectors with splat constants. 1327 const APInt *AmountC; 1328 if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth())) 1329 return true; 1330 1331 // Try harder for fixed-length vectors: 1332 // If all lanes of a vector shift are poison, the whole shift is poison. 1333 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1334 for (unsigned I = 0, 1335 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1336 I != E; ++I) 1337 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1338 return false; 1339 return true; 1340 } 1341 1342 return false; 1343 } 1344 1345 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1346 /// If not, this returns null. 1347 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1348 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1349 unsigned MaxRecurse) { 1350 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1351 return C; 1352 1353 // poison shift by X -> poison 1354 if (isa<PoisonValue>(Op0)) 1355 return Op0; 1356 1357 // 0 shift by X -> 0 1358 if (match(Op0, m_Zero())) 1359 return Constant::getNullValue(Op0->getType()); 1360 1361 // X shift by 0 -> X 1362 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1363 // would be poison. 1364 Value *X; 1365 if (match(Op1, m_Zero()) || 1366 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1367 return Op0; 1368 1369 // Fold undefined shifts. 1370 if (isPoisonShift(Op1, Q)) 1371 return PoisonValue::get(Op0->getType()); 1372 1373 // If the operation is with the result of a select instruction, check whether 1374 // operating on either branch of the select always yields the same value. 1375 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1376 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1377 return V; 1378 1379 // If the operation is with the result of a phi instruction, check whether 1380 // operating on all incoming values of the phi always yields the same value. 1381 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1382 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1383 return V; 1384 1385 // If any bits in the shift amount make that value greater than or equal to 1386 // the number of bits in the type, the shift is undefined. 1387 KnownBits KnownAmt = computeKnownBits(Op1, /* Depth */ 0, Q); 1388 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1389 return PoisonValue::get(Op0->getType()); 1390 1391 // If all valid bits in the shift amount are known zero, the first operand is 1392 // unchanged. 1393 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1394 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1395 return Op0; 1396 1397 // Check for nsw shl leading to a poison value. 1398 if (IsNSW) { 1399 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1400 KnownBits KnownVal = computeKnownBits(Op0, /* Depth */ 0, Q); 1401 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1402 1403 if (KnownVal.Zero.isSignBitSet()) 1404 KnownShl.Zero.setSignBit(); 1405 if (KnownVal.One.isSignBitSet()) 1406 KnownShl.One.setSignBit(); 1407 1408 if (KnownShl.hasConflict()) 1409 return PoisonValue::get(Op0->getType()); 1410 } 1411 1412 return nullptr; 1413 } 1414 1415 /// Given operands for an LShr or AShr, see if we can fold the result. If not, 1416 /// this returns null. 1417 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1418 Value *Op1, bool IsExact, 1419 const SimplifyQuery &Q, unsigned MaxRecurse) { 1420 if (Value *V = 1421 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1422 return V; 1423 1424 // X >> X -> 0 1425 if (Op0 == Op1) 1426 return Constant::getNullValue(Op0->getType()); 1427 1428 // undef >> X -> 0 1429 // undef >> X -> undef (if it's exact) 1430 if (Q.isUndefValue(Op0)) 1431 return IsExact ? Op0 : Constant::getNullValue(Op0->getType()); 1432 1433 // The low bit cannot be shifted out of an exact shift if it is set. 1434 // TODO: Generalize by counting trailing zeros (see fold for exact division). 1435 if (IsExact) { 1436 KnownBits Op0Known = computeKnownBits(Op0, /* Depth */ 0, Q); 1437 if (Op0Known.One[0]) 1438 return Op0; 1439 } 1440 1441 return nullptr; 1442 } 1443 1444 /// Given operands for an Shl, see if we can fold the result. 1445 /// If not, this returns null. 1446 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1447 const SimplifyQuery &Q, unsigned MaxRecurse) { 1448 if (Value *V = 1449 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse)) 1450 return V; 1451 1452 Type *Ty = Op0->getType(); 1453 // undef << X -> 0 1454 // undef << X -> undef if (if it's NSW/NUW) 1455 if (Q.isUndefValue(Op0)) 1456 return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Ty); 1457 1458 // (X >> A) << A -> X 1459 Value *X; 1460 if (Q.IIQ.UseInstrInfo && 1461 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1462 return X; 1463 1464 // shl nuw i8 C, %x -> C iff C has sign bit set. 1465 if (IsNUW && match(Op0, m_Negative())) 1466 return Op0; 1467 // NOTE: could use computeKnownBits() / LazyValueInfo, 1468 // but the cost-benefit analysis suggests it isn't worth it. 1469 1470 // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees 1471 // that the sign-bit does not change, so the only input that does not 1472 // produce poison is 0, and "0 << (bitwidth-1) --> 0". 1473 if (IsNSW && IsNUW && 1474 match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1))) 1475 return Constant::getNullValue(Ty); 1476 1477 return nullptr; 1478 } 1479 1480 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1481 const SimplifyQuery &Q) { 1482 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 1483 } 1484 1485 /// Given operands for an LShr, see if we can fold the result. 1486 /// If not, this returns null. 1487 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1488 const SimplifyQuery &Q, unsigned MaxRecurse) { 1489 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q, 1490 MaxRecurse)) 1491 return V; 1492 1493 // (X << A) >> A -> X 1494 Value *X; 1495 if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1496 return X; 1497 1498 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1499 // We can return X as we do in the above case since OR alters no bits in X. 1500 // SimplifyDemandedBits in InstCombine can do more general optimization for 1501 // bit manipulation. This pattern aims to provide opportunities for other 1502 // optimizers by supporting a simple but common case in InstSimplify. 1503 Value *Y; 1504 const APInt *ShRAmt, *ShLAmt; 1505 if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(ShRAmt)) && 1506 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1507 *ShRAmt == *ShLAmt) { 1508 const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 1509 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1510 if (ShRAmt->uge(EffWidthY)) 1511 return X; 1512 } 1513 1514 return nullptr; 1515 } 1516 1517 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1518 const SimplifyQuery &Q) { 1519 return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1520 } 1521 1522 /// Given operands for an AShr, see if we can fold the result. 1523 /// If not, this returns null. 1524 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1525 const SimplifyQuery &Q, unsigned MaxRecurse) { 1526 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q, 1527 MaxRecurse)) 1528 return V; 1529 1530 // -1 >>a X --> -1 1531 // (-1 << X) a>> X --> -1 1532 // We could return the original -1 constant to preserve poison elements. 1533 if (match(Op0, m_AllOnes()) || 1534 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1535 return Constant::getAllOnesValue(Op0->getType()); 1536 1537 // (X << A) >> A -> X 1538 Value *X; 1539 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1540 return X; 1541 1542 // Arithmetic shifting an all-sign-bit value is a no-op. 1543 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1544 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1545 return Op0; 1546 1547 return nullptr; 1548 } 1549 1550 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1551 const SimplifyQuery &Q) { 1552 return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1553 } 1554 1555 /// Commuted variants are assumed to be handled by calling this function again 1556 /// with the parameters swapped. 1557 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1558 ICmpInst *UnsignedICmp, bool IsAnd, 1559 const SimplifyQuery &Q) { 1560 Value *X, *Y; 1561 1562 ICmpInst::Predicate EqPred; 1563 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1564 !ICmpInst::isEquality(EqPred)) 1565 return nullptr; 1566 1567 ICmpInst::Predicate UnsignedPred; 1568 1569 Value *A, *B; 1570 // Y = (A - B); 1571 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1572 if (match(UnsignedICmp, 1573 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1574 ICmpInst::isUnsigned(UnsignedPred)) { 1575 // A >=/<= B || (A - B) != 0 <--> true 1576 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1577 UnsignedPred == ICmpInst::ICMP_ULE) && 1578 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1579 return ConstantInt::getTrue(UnsignedICmp->getType()); 1580 // A </> B && (A - B) == 0 <--> false 1581 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1582 UnsignedPred == ICmpInst::ICMP_UGT) && 1583 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1584 return ConstantInt::getFalse(UnsignedICmp->getType()); 1585 1586 // A </> B && (A - B) != 0 <--> A </> B 1587 // A </> B || (A - B) != 0 <--> (A - B) != 0 1588 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1589 UnsignedPred == ICmpInst::ICMP_UGT)) 1590 return IsAnd ? UnsignedICmp : ZeroICmp; 1591 1592 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1593 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1594 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1595 UnsignedPred == ICmpInst::ICMP_UGE)) 1596 return IsAnd ? ZeroICmp : UnsignedICmp; 1597 } 1598 1599 // Given Y = (A - B) 1600 // Y >= A && Y != 0 --> Y >= A iff B != 0 1601 // Y < A || Y == 0 --> Y < A iff B != 0 1602 if (match(UnsignedICmp, 1603 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1604 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1605 EqPred == ICmpInst::ICMP_NE && isKnownNonZero(B, Q)) 1606 return UnsignedICmp; 1607 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1608 EqPred == ICmpInst::ICMP_EQ && isKnownNonZero(B, Q)) 1609 return UnsignedICmp; 1610 } 1611 } 1612 1613 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1614 ICmpInst::isUnsigned(UnsignedPred)) 1615 ; 1616 else if (match(UnsignedICmp, 1617 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1618 ICmpInst::isUnsigned(UnsignedPred)) 1619 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1620 else 1621 return nullptr; 1622 1623 // X > Y && Y == 0 --> Y == 0 iff X != 0 1624 // X > Y || Y == 0 --> X > Y iff X != 0 1625 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1626 isKnownNonZero(X, Q)) 1627 return IsAnd ? ZeroICmp : UnsignedICmp; 1628 1629 // X <= Y && Y != 0 --> X <= Y iff X != 0 1630 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1631 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1632 isKnownNonZero(X, Q)) 1633 return IsAnd ? UnsignedICmp : ZeroICmp; 1634 1635 // The transforms below here are expected to be handled more generally with 1636 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1637 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1638 // these are candidates for removal. 1639 1640 // X < Y && Y != 0 --> X < Y 1641 // X < Y || Y != 0 --> Y != 0 1642 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1643 return IsAnd ? UnsignedICmp : ZeroICmp; 1644 1645 // X >= Y && Y == 0 --> Y == 0 1646 // X >= Y || Y == 0 --> X >= Y 1647 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1648 return IsAnd ? ZeroICmp : UnsignedICmp; 1649 1650 // X < Y && Y == 0 --> false 1651 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1652 IsAnd) 1653 return getFalse(UnsignedICmp->getType()); 1654 1655 // X >= Y || Y != 0 --> true 1656 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1657 !IsAnd) 1658 return getTrue(UnsignedICmp->getType()); 1659 1660 return nullptr; 1661 } 1662 1663 /// Test if a pair of compares with a shared operand and 2 constants has an 1664 /// empty set intersection, full set union, or if one compare is a superset of 1665 /// the other. 1666 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1667 bool IsAnd) { 1668 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1669 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1670 return nullptr; 1671 1672 const APInt *C0, *C1; 1673 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1674 !match(Cmp1->getOperand(1), m_APInt(C1))) 1675 return nullptr; 1676 1677 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1678 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1679 1680 // For and-of-compares, check if the intersection is empty: 1681 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1682 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1683 return getFalse(Cmp0->getType()); 1684 1685 // For or-of-compares, check if the union is full: 1686 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1687 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1688 return getTrue(Cmp0->getType()); 1689 1690 // Is one range a superset of the other? 1691 // If this is and-of-compares, take the smaller set: 1692 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1693 // If this is or-of-compares, take the larger set: 1694 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1695 if (Range0.contains(Range1)) 1696 return IsAnd ? Cmp1 : Cmp0; 1697 if (Range1.contains(Range0)) 1698 return IsAnd ? Cmp0 : Cmp1; 1699 1700 return nullptr; 1701 } 1702 1703 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1704 const InstrInfoQuery &IIQ) { 1705 // (icmp (add V, C0), C1) & (icmp V, C0) 1706 ICmpInst::Predicate Pred0, Pred1; 1707 const APInt *C0, *C1; 1708 Value *V; 1709 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1710 return nullptr; 1711 1712 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1713 return nullptr; 1714 1715 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1716 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1717 return nullptr; 1718 1719 Type *ITy = Op0->getType(); 1720 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1721 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1722 1723 const APInt Delta = *C1 - *C0; 1724 if (C0->isStrictlyPositive()) { 1725 if (Delta == 2) { 1726 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1727 return getFalse(ITy); 1728 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1729 return getFalse(ITy); 1730 } 1731 if (Delta == 1) { 1732 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1733 return getFalse(ITy); 1734 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1735 return getFalse(ITy); 1736 } 1737 } 1738 if (C0->getBoolValue() && IsNUW) { 1739 if (Delta == 2) 1740 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1741 return getFalse(ITy); 1742 if (Delta == 1) 1743 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1744 return getFalse(ITy); 1745 } 1746 1747 return nullptr; 1748 } 1749 1750 /// Try to simplify and/or of icmp with ctpop intrinsic. 1751 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1752 bool IsAnd) { 1753 ICmpInst::Predicate Pred0, Pred1; 1754 Value *X; 1755 const APInt *C; 1756 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1757 m_APInt(C))) || 1758 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1759 return nullptr; 1760 1761 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1762 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1763 return Cmp1; 1764 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1765 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1766 return Cmp1; 1767 1768 return nullptr; 1769 } 1770 1771 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1772 const SimplifyQuery &Q) { 1773 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1774 return X; 1775 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1776 return X; 1777 1778 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1779 return X; 1780 1781 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1782 return X; 1783 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1784 return X; 1785 1786 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1787 return X; 1788 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1789 return X; 1790 1791 return nullptr; 1792 } 1793 1794 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1795 const InstrInfoQuery &IIQ) { 1796 // (icmp (add V, C0), C1) | (icmp V, C0) 1797 ICmpInst::Predicate Pred0, Pred1; 1798 const APInt *C0, *C1; 1799 Value *V; 1800 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1801 return nullptr; 1802 1803 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1804 return nullptr; 1805 1806 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1807 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1808 return nullptr; 1809 1810 Type *ITy = Op0->getType(); 1811 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1812 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1813 1814 const APInt Delta = *C1 - *C0; 1815 if (C0->isStrictlyPositive()) { 1816 if (Delta == 2) { 1817 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1818 return getTrue(ITy); 1819 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1820 return getTrue(ITy); 1821 } 1822 if (Delta == 1) { 1823 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1824 return getTrue(ITy); 1825 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1826 return getTrue(ITy); 1827 } 1828 } 1829 if (C0->getBoolValue() && IsNUW) { 1830 if (Delta == 2) 1831 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1832 return getTrue(ITy); 1833 if (Delta == 1) 1834 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1835 return getTrue(ITy); 1836 } 1837 1838 return nullptr; 1839 } 1840 1841 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1842 const SimplifyQuery &Q) { 1843 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1844 return X; 1845 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1846 return X; 1847 1848 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1849 return X; 1850 1851 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1852 return X; 1853 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1854 return X; 1855 1856 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1857 return X; 1858 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1859 return X; 1860 1861 return nullptr; 1862 } 1863 1864 static Value *simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, 1865 FCmpInst *RHS, bool IsAnd) { 1866 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1867 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1868 if (LHS0->getType() != RHS0->getType()) 1869 return nullptr; 1870 1871 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1872 if ((PredL == FCmpInst::FCMP_ORD || PredL == FCmpInst::FCMP_UNO) && 1873 ((FCmpInst::isOrdered(PredR) && IsAnd) || 1874 (FCmpInst::isUnordered(PredR) && !IsAnd))) { 1875 // (fcmp ord X, 0) & (fcmp o** X, Y) --> fcmp o** X, Y 1876 // (fcmp uno X, 0) & (fcmp o** X, Y) --> false 1877 // (fcmp uno X, 0) | (fcmp u** X, Y) --> fcmp u** X, Y 1878 // (fcmp ord X, 0) | (fcmp u** X, Y) --> true 1879 if ((LHS0 == RHS0 || LHS0 == RHS1) && match(LHS1, m_PosZeroFP())) 1880 return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR) 1881 ? static_cast<Value *>(RHS) 1882 : ConstantInt::getBool(LHS->getType(), !IsAnd); 1883 } 1884 1885 if ((PredR == FCmpInst::FCMP_ORD || PredR == FCmpInst::FCMP_UNO) && 1886 ((FCmpInst::isOrdered(PredL) && IsAnd) || 1887 (FCmpInst::isUnordered(PredL) && !IsAnd))) { 1888 // (fcmp o** X, Y) & (fcmp ord X, 0) --> fcmp o** X, Y 1889 // (fcmp o** X, Y) & (fcmp uno X, 0) --> false 1890 // (fcmp u** X, Y) | (fcmp uno X, 0) --> fcmp u** X, Y 1891 // (fcmp u** X, Y) | (fcmp ord X, 0) --> true 1892 if ((RHS0 == LHS0 || RHS0 == LHS1) && match(RHS1, m_PosZeroFP())) 1893 return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR) 1894 ? static_cast<Value *>(LHS) 1895 : ConstantInt::getBool(LHS->getType(), !IsAnd); 1896 } 1897 1898 return nullptr; 1899 } 1900 1901 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, 1902 Value *Op1, bool IsAnd) { 1903 // Look through casts of the 'and' operands to find compares. 1904 auto *Cast0 = dyn_cast<CastInst>(Op0); 1905 auto *Cast1 = dyn_cast<CastInst>(Op1); 1906 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1907 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1908 Op0 = Cast0->getOperand(0); 1909 Op1 = Cast1->getOperand(0); 1910 } 1911 1912 Value *V = nullptr; 1913 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1914 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1915 if (ICmp0 && ICmp1) 1916 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1917 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1918 1919 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1920 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1921 if (FCmp0 && FCmp1) 1922 V = simplifyAndOrOfFCmps(Q, FCmp0, FCmp1, IsAnd); 1923 1924 if (!V) 1925 return nullptr; 1926 if (!Cast0) 1927 return V; 1928 1929 // If we looked through casts, we can only handle a constant simplification 1930 // because we are not allowed to create a cast instruction here. 1931 if (auto *C = dyn_cast<Constant>(V)) 1932 return ConstantFoldCastOperand(Cast0->getOpcode(), C, Cast0->getType(), 1933 Q.DL); 1934 1935 return nullptr; 1936 } 1937 1938 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 1939 const SimplifyQuery &Q, 1940 bool AllowRefinement, 1941 SmallVectorImpl<Instruction *> *DropFlags, 1942 unsigned MaxRecurse); 1943 1944 static Value *simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, 1945 const SimplifyQuery &Q, 1946 unsigned MaxRecurse) { 1947 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1948 "Must be and/or"); 1949 ICmpInst::Predicate Pred; 1950 Value *A, *B; 1951 if (!match(Op0, m_ICmp(Pred, m_Value(A), m_Value(B))) || 1952 !ICmpInst::isEquality(Pred)) 1953 return nullptr; 1954 1955 auto Simplify = [&](Value *Res) -> Value * { 1956 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, Res->getType()); 1957 1958 // and (icmp eq a, b), x implies (a==b) inside x. 1959 // or (icmp ne a, b), x implies (a==b) inside x. 1960 // If x simplifies to true/false, we can simplify the and/or. 1961 if (Pred == 1962 (Opcode == Instruction::And ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 1963 if (Res == Absorber) 1964 return Absorber; 1965 if (Res == ConstantExpr::getBinOpIdentity(Opcode, Res->getType())) 1966 return Op0; 1967 return nullptr; 1968 } 1969 1970 // If we have and (icmp ne a, b), x and for a==b we can simplify x to false, 1971 // then we can drop the icmp, as x will already be false in the case where 1972 // the icmp is false. Similar for or and true. 1973 if (Res == Absorber) 1974 return Op1; 1975 return nullptr; 1976 }; 1977 1978 if (Value *Res = 1979 simplifyWithOpReplaced(Op1, A, B, Q, /* AllowRefinement */ true, 1980 /* DropFlags */ nullptr, MaxRecurse)) 1981 return Simplify(Res); 1982 if (Value *Res = 1983 simplifyWithOpReplaced(Op1, B, A, Q, /* AllowRefinement */ true, 1984 /* DropFlags */ nullptr, MaxRecurse)) 1985 return Simplify(Res); 1986 1987 return nullptr; 1988 } 1989 1990 /// Given a bitwise logic op, check if the operands are add/sub with a common 1991 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1992 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1993 Instruction::BinaryOps Opcode) { 1994 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1995 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1996 Value *X; 1997 Constant *C1, *C2; 1998 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1999 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 2000 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 2001 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 2002 if (ConstantExpr::getNot(C1) == C2) { 2003 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 2004 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 2005 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 2006 Type *Ty = Op0->getType(); 2007 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 2008 : ConstantInt::getAllOnesValue(Ty); 2009 } 2010 } 2011 return nullptr; 2012 } 2013 2014 // Commutative patterns for and that will be tried with both operand orders. 2015 static Value *simplifyAndCommutative(Value *Op0, Value *Op1, 2016 const SimplifyQuery &Q, 2017 unsigned MaxRecurse) { 2018 // ~A & A = 0 2019 if (match(Op0, m_Not(m_Specific(Op1)))) 2020 return Constant::getNullValue(Op0->getType()); 2021 2022 // (A | ?) & A = A 2023 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 2024 return Op1; 2025 2026 // (X | ~Y) & (X | Y) --> X 2027 Value *X, *Y; 2028 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 2029 match(Op1, m_c_Or(m_Specific(X), m_Specific(Y)))) 2030 return X; 2031 2032 // If we have a multiplication overflow check that is being 'and'ed with a 2033 // check that one of the multipliers is not zero, we can omit the 'and', and 2034 // only keep the overflow check. 2035 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 2036 return Op1; 2037 2038 // -A & A = A if A is a power of two or zero. 2039 if (match(Op0, m_Neg(m_Specific(Op1))) && 2040 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2041 return Op1; 2042 2043 // This is a similar pattern used for checking if a value is a power-of-2: 2044 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 2045 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 2046 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 2047 return Constant::getNullValue(Op1->getType()); 2048 2049 // (x << N) & ((x << M) - 1) --> 0, where x is known to be a power of 2 and 2050 // M <= N. 2051 const APInt *Shift1, *Shift2; 2052 if (match(Op0, m_Shl(m_Value(X), m_APInt(Shift1))) && 2053 match(Op1, m_Add(m_Shl(m_Specific(X), m_APInt(Shift2)), m_AllOnes())) && 2054 isKnownToBeAPowerOfTwo(X, Q.DL, /*OrZero*/ true, /*Depth*/ 0, Q.AC, 2055 Q.CxtI) && 2056 Shift1->uge(*Shift2)) 2057 return Constant::getNullValue(Op0->getType()); 2058 2059 if (Value *V = 2060 simplifyAndOrWithICmpEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2061 return V; 2062 2063 return nullptr; 2064 } 2065 2066 /// Given operands for an And, see if we can fold the result. 2067 /// If not, this returns null. 2068 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2069 unsigned MaxRecurse) { 2070 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2071 return C; 2072 2073 // X & poison -> poison 2074 if (isa<PoisonValue>(Op1)) 2075 return Op1; 2076 2077 // X & undef -> 0 2078 if (Q.isUndefValue(Op1)) 2079 return Constant::getNullValue(Op0->getType()); 2080 2081 // X & X = X 2082 if (Op0 == Op1) 2083 return Op0; 2084 2085 // X & 0 = 0 2086 if (match(Op1, m_Zero())) 2087 return Constant::getNullValue(Op0->getType()); 2088 2089 // X & -1 = X 2090 if (match(Op1, m_AllOnes())) 2091 return Op0; 2092 2093 if (Value *Res = simplifyAndCommutative(Op0, Op1, Q, MaxRecurse)) 2094 return Res; 2095 if (Value *Res = simplifyAndCommutative(Op1, Op0, Q, MaxRecurse)) 2096 return Res; 2097 2098 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2099 return V; 2100 2101 // A mask that only clears known zeros of a shifted value is a no-op. 2102 const APInt *Mask; 2103 const APInt *ShAmt; 2104 Value *X, *Y; 2105 if (match(Op1, m_APInt(Mask))) { 2106 // If all bits in the inverted and shifted mask are clear: 2107 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2108 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2109 (~(*Mask)).lshr(*ShAmt).isZero()) 2110 return Op0; 2111 2112 // If all bits in the inverted and shifted mask are clear: 2113 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2114 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2115 (~(*Mask)).shl(*ShAmt).isZero()) 2116 return Op0; 2117 } 2118 2119 // and 2^x-1, 2^C --> 0 where x <= C. 2120 const APInt *PowerC; 2121 Value *Shift; 2122 if (match(Op1, m_Power2(PowerC)) && 2123 match(Op0, m_Add(m_Value(Shift), m_AllOnes())) && 2124 isKnownToBeAPowerOfTwo(Shift, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 2125 Q.DT)) { 2126 KnownBits Known = computeKnownBits(Shift, /* Depth */ 0, Q); 2127 // Use getActiveBits() to make use of the additional power of two knowledge 2128 if (PowerC->getActiveBits() >= Known.getMaxValue().getActiveBits()) 2129 return ConstantInt::getNullValue(Op1->getType()); 2130 } 2131 2132 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2133 return V; 2134 2135 // Try some generic simplifications for associative operations. 2136 if (Value *V = 2137 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2138 return V; 2139 2140 // And distributes over Or. Try some generic simplifications based on this. 2141 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2142 Instruction::Or, Q, MaxRecurse)) 2143 return V; 2144 2145 // And distributes over Xor. Try some generic simplifications based on this. 2146 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2147 Instruction::Xor, Q, MaxRecurse)) 2148 return V; 2149 2150 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2151 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2152 // A & (A && B) -> A && B 2153 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2154 return Op1; 2155 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2156 return Op0; 2157 } 2158 // If the operation is with the result of a select instruction, check 2159 // whether operating on either branch of the select always yields the same 2160 // value. 2161 if (Value *V = 2162 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2163 return V; 2164 } 2165 2166 // If the operation is with the result of a phi instruction, check whether 2167 // operating on all incoming values of the phi always yields the same value. 2168 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2169 if (Value *V = 2170 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2171 return V; 2172 2173 // Assuming the effective width of Y is not larger than A, i.e. all bits 2174 // from X and Y are disjoint in (X << A) | Y, 2175 // if the mask of this AND op covers all bits of X or Y, while it covers 2176 // no bits from the other, we can bypass this AND op. E.g., 2177 // ((X << A) | Y) & Mask -> Y, 2178 // if Mask = ((1 << effective_width_of(Y)) - 1) 2179 // ((X << A) | Y) & Mask -> X << A, 2180 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2181 // SimplifyDemandedBits in InstCombine can optimize the general case. 2182 // This pattern aims to help other passes for a common case. 2183 Value *XShifted; 2184 if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(Mask)) && 2185 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2186 m_Value(XShifted)), 2187 m_Value(Y)))) { 2188 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2189 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2190 const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 2191 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2192 if (EffWidthY <= ShftCnt) { 2193 const KnownBits XKnown = computeKnownBits(X, /* Depth */ 0, Q); 2194 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2195 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2196 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2197 // If the mask is extracting all bits from X or Y as is, we can skip 2198 // this AND op. 2199 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2200 return Y; 2201 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2202 return XShifted; 2203 } 2204 } 2205 2206 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2207 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2208 BinaryOperator *Or; 2209 if (match(Op0, m_c_Xor(m_Value(X), 2210 m_CombineAnd(m_BinOp(Or), 2211 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2212 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2213 return Constant::getNullValue(Op0->getType()); 2214 2215 const APInt *C1; 2216 Value *A; 2217 // (A ^ C) & (A ^ ~C) -> 0 2218 if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) && 2219 match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1)))) 2220 return Constant::getNullValue(Op0->getType()); 2221 2222 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2223 if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) { 2224 // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1. 2225 if (*Implied == true) 2226 return Op0; 2227 // If Op0 is true implies Op1 is false, then they are not true together. 2228 if (*Implied == false) 2229 return ConstantInt::getFalse(Op0->getType()); 2230 } 2231 if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) { 2232 // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0. 2233 if (*Implied) 2234 return Op1; 2235 // If Op1 is true implies Op0 is false, then they are not true together. 2236 if (!*Implied) 2237 return ConstantInt::getFalse(Op1->getType()); 2238 } 2239 } 2240 2241 if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2242 return V; 2243 2244 return nullptr; 2245 } 2246 2247 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2248 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); 2249 } 2250 2251 // TODO: Many of these folds could use LogicalAnd/LogicalOr. 2252 static Value *simplifyOrLogic(Value *X, Value *Y) { 2253 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2254 Type *Ty = X->getType(); 2255 2256 // X | ~X --> -1 2257 if (match(Y, m_Not(m_Specific(X)))) 2258 return ConstantInt::getAllOnesValue(Ty); 2259 2260 // X | ~(X & ?) = -1 2261 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2262 return ConstantInt::getAllOnesValue(Ty); 2263 2264 // X | (X & ?) --> X 2265 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2266 return X; 2267 2268 Value *A, *B; 2269 2270 // (A ^ B) | (A | B) --> A | B 2271 // (A ^ B) | (B | A) --> B | A 2272 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2273 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2274 return Y; 2275 2276 // ~(A ^ B) | (A | B) --> -1 2277 // ~(A ^ B) | (B | A) --> -1 2278 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2279 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2280 return ConstantInt::getAllOnesValue(Ty); 2281 2282 // (A & ~B) | (A ^ B) --> A ^ B 2283 // (~B & A) | (A ^ B) --> A ^ B 2284 // (A & ~B) | (B ^ A) --> B ^ A 2285 // (~B & A) | (B ^ A) --> B ^ A 2286 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2287 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2288 return Y; 2289 2290 // (~A ^ B) | (A & B) --> ~A ^ B 2291 // (B ^ ~A) | (A & B) --> B ^ ~A 2292 // (~A ^ B) | (B & A) --> ~A ^ B 2293 // (B ^ ~A) | (B & A) --> B ^ ~A 2294 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2295 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2296 return X; 2297 2298 // (~A | B) | (A ^ B) --> -1 2299 // (~A | B) | (B ^ A) --> -1 2300 // (B | ~A) | (A ^ B) --> -1 2301 // (B | ~A) | (B ^ A) --> -1 2302 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2303 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2304 return ConstantInt::getAllOnesValue(Ty); 2305 2306 // (~A & B) | ~(A | B) --> ~A 2307 // (~A & B) | ~(B | A) --> ~A 2308 // (B & ~A) | ~(A | B) --> ~A 2309 // (B & ~A) | ~(B | A) --> ~A 2310 Value *NotA; 2311 if (match(X, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2312 m_Value(B))) && 2313 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2314 return NotA; 2315 // The same is true of Logical And 2316 // TODO: This could share the logic of the version above if there was a 2317 // version of LogicalAnd that allowed more than just i1 types. 2318 if (match(X, m_c_LogicalAnd(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2319 m_Value(B))) && 2320 match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B))))) 2321 return NotA; 2322 2323 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2324 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2325 Value *NotAB; 2326 if (match(X, m_CombineAnd(m_Not(m_Xor(m_Value(A), m_Value(B))), 2327 m_Value(NotAB))) && 2328 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2329 return NotAB; 2330 2331 // ~(A & B) | (A ^ B) --> ~(A & B) 2332 // ~(A & B) | (B ^ A) --> ~(A & B) 2333 if (match(X, m_CombineAnd(m_Not(m_And(m_Value(A), m_Value(B))), 2334 m_Value(NotAB))) && 2335 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2336 return NotAB; 2337 2338 return nullptr; 2339 } 2340 2341 /// Given operands for an Or, see if we can fold the result. 2342 /// If not, this returns null. 2343 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2344 unsigned MaxRecurse) { 2345 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2346 return C; 2347 2348 // X | poison -> poison 2349 if (isa<PoisonValue>(Op1)) 2350 return Op1; 2351 2352 // X | undef -> -1 2353 // X | -1 = -1 2354 // Do not return Op1 because it may contain undef elements if it's a vector. 2355 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2356 return Constant::getAllOnesValue(Op0->getType()); 2357 2358 // X | X = X 2359 // X | 0 = X 2360 if (Op0 == Op1 || match(Op1, m_Zero())) 2361 return Op0; 2362 2363 if (Value *R = simplifyOrLogic(Op0, Op1)) 2364 return R; 2365 if (Value *R = simplifyOrLogic(Op1, Op0)) 2366 return R; 2367 2368 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2369 return V; 2370 2371 // Rotated -1 is still -1: 2372 // (-1 << X) | (-1 >> (C - X)) --> -1 2373 // (-1 >> X) | (-1 << (C - X)) --> -1 2374 // ...with C <= bitwidth (and commuted variants). 2375 Value *X, *Y; 2376 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2377 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2378 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2379 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2380 const APInt *C; 2381 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2382 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2383 C->ule(X->getType()->getScalarSizeInBits())) { 2384 return ConstantInt::getAllOnesValue(X->getType()); 2385 } 2386 } 2387 2388 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2389 // are mixing in another shift that is redundant with the funnel shift. 2390 2391 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2392 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2393 if (match(Op0, 2394 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2395 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2396 return Op0; 2397 if (match(Op1, 2398 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2399 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2400 return Op1; 2401 2402 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2403 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2404 if (match(Op0, 2405 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2406 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2407 return Op0; 2408 if (match(Op1, 2409 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2410 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2411 return Op1; 2412 2413 if (Value *V = 2414 simplifyAndOrWithICmpEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2415 return V; 2416 if (Value *V = 2417 simplifyAndOrWithICmpEq(Instruction::Or, Op1, Op0, Q, MaxRecurse)) 2418 return V; 2419 2420 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2421 return V; 2422 2423 // If we have a multiplication overflow check that is being 'and'ed with a 2424 // check that one of the multipliers is not zero, we can omit the 'and', and 2425 // only keep the overflow check. 2426 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2427 return Op1; 2428 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2429 return Op0; 2430 2431 // Try some generic simplifications for associative operations. 2432 if (Value *V = 2433 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2434 return V; 2435 2436 // Or distributes over And. Try some generic simplifications based on this. 2437 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2438 Instruction::And, Q, MaxRecurse)) 2439 return V; 2440 2441 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2442 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2443 // A | (A || B) -> A || B 2444 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2445 return Op1; 2446 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2447 return Op0; 2448 } 2449 // If the operation is with the result of a select instruction, check 2450 // whether operating on either branch of the select always yields the same 2451 // value. 2452 if (Value *V = 2453 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2454 return V; 2455 } 2456 2457 // (A & C1)|(B & C2) 2458 Value *A, *B; 2459 const APInt *C1, *C2; 2460 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2461 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2462 if (*C1 == ~*C2) { 2463 // (A & C1)|(B & C2) 2464 // If we have: ((V + N) & C1) | (V & C2) 2465 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2466 // replace with V+N. 2467 Value *N; 2468 if (C2->isMask() && // C2 == 0+1+ 2469 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2470 // Add commutes, try both ways. 2471 if (MaskedValueIsZero(N, *C2, Q)) 2472 return A; 2473 } 2474 // Or commutes, try both ways. 2475 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2476 // Add commutes, try both ways. 2477 if (MaskedValueIsZero(N, *C1, Q)) 2478 return B; 2479 } 2480 } 2481 } 2482 2483 // If the operation is with the result of a phi instruction, check whether 2484 // operating on all incoming values of the phi always yields the same value. 2485 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2486 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2487 return V; 2488 2489 // (A ^ C) | (A ^ ~C) -> -1, i.e. all bits set to one. 2490 if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) && 2491 match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1)))) 2492 return Constant::getAllOnesValue(Op0->getType()); 2493 2494 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2495 if (std::optional<bool> Implied = 2496 isImpliedCondition(Op0, Op1, Q.DL, false)) { 2497 // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0. 2498 if (*Implied == false) 2499 return Op0; 2500 // If Op0 is false implies Op1 is true, then at least one is always true. 2501 if (*Implied == true) 2502 return ConstantInt::getTrue(Op0->getType()); 2503 } 2504 if (std::optional<bool> Implied = 2505 isImpliedCondition(Op1, Op0, Q.DL, false)) { 2506 // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1. 2507 if (*Implied == false) 2508 return Op1; 2509 // If Op1 is false implies Op0 is true, then at least one is always true. 2510 if (*Implied == true) 2511 return ConstantInt::getTrue(Op1->getType()); 2512 } 2513 } 2514 2515 if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2516 return V; 2517 2518 return nullptr; 2519 } 2520 2521 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2522 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); 2523 } 2524 2525 /// Given operands for a Xor, see if we can fold the result. 2526 /// If not, this returns null. 2527 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2528 unsigned MaxRecurse) { 2529 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2530 return C; 2531 2532 // X ^ poison -> poison 2533 if (isa<PoisonValue>(Op1)) 2534 return Op1; 2535 2536 // A ^ undef -> undef 2537 if (Q.isUndefValue(Op1)) 2538 return Op1; 2539 2540 // A ^ 0 = A 2541 if (match(Op1, m_Zero())) 2542 return Op0; 2543 2544 // A ^ A = 0 2545 if (Op0 == Op1) 2546 return Constant::getNullValue(Op0->getType()); 2547 2548 // A ^ ~A = ~A ^ A = -1 2549 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2550 return Constant::getAllOnesValue(Op0->getType()); 2551 2552 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2553 Value *A, *B; 2554 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2555 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2556 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2557 return A; 2558 2559 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2560 // The 'not' op must contain a complete -1 operand (no undef elements for 2561 // vector) for the transform to be safe. 2562 Value *NotA; 2563 if (match(X, m_c_Or(m_CombineAnd(m_Not(m_Value(A)), m_Value(NotA)), 2564 m_Value(B))) && 2565 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2566 return NotA; 2567 2568 return nullptr; 2569 }; 2570 if (Value *R = foldAndOrNot(Op0, Op1)) 2571 return R; 2572 if (Value *R = foldAndOrNot(Op1, Op0)) 2573 return R; 2574 2575 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2576 return V; 2577 2578 // Try some generic simplifications for associative operations. 2579 if (Value *V = 2580 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2581 return V; 2582 2583 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2584 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2585 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2586 // only if B and C are equal. If B and C are equal then (since we assume 2587 // that operands have already been simplified) "select(cond, B, C)" should 2588 // have been simplified to the common value of B and C already. Analysing 2589 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2590 // for threading over phi nodes. 2591 2592 if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2593 return V; 2594 2595 return nullptr; 2596 } 2597 2598 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2599 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); 2600 } 2601 2602 static Type *getCompareTy(Value *Op) { 2603 return CmpInst::makeCmpResultType(Op->getType()); 2604 } 2605 2606 /// Rummage around inside V looking for something equivalent to the comparison 2607 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2608 /// Helper function for analyzing max/min idioms. 2609 static Value *extractEquivalentCondition(Value *V, CmpInst::Predicate Pred, 2610 Value *LHS, Value *RHS) { 2611 SelectInst *SI = dyn_cast<SelectInst>(V); 2612 if (!SI) 2613 return nullptr; 2614 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2615 if (!Cmp) 2616 return nullptr; 2617 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2618 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2619 return Cmp; 2620 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2621 LHS == CmpRHS && RHS == CmpLHS) 2622 return Cmp; 2623 return nullptr; 2624 } 2625 2626 /// Return true if the underlying object (storage) must be disjoint from 2627 /// storage returned by any noalias return call. 2628 static bool isAllocDisjoint(const Value *V) { 2629 // For allocas, we consider only static ones (dynamic 2630 // allocas might be transformed into calls to malloc not simultaneously 2631 // live with the compared-to allocation). For globals, we exclude symbols 2632 // that might be resolve lazily to symbols in another dynamically-loaded 2633 // library (and, thus, could be malloc'ed by the implementation). 2634 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2635 return AI->isStaticAlloca(); 2636 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2637 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2638 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2639 !GV->isThreadLocal(); 2640 if (const Argument *A = dyn_cast<Argument>(V)) 2641 return A->hasByValAttr(); 2642 return false; 2643 } 2644 2645 /// Return true if V1 and V2 are each the base of some distict storage region 2646 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2647 /// *are* possible, and that zero sized regions do not overlap with any other. 2648 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { 2649 // Global variables always exist, so they always exist during the lifetime 2650 // of each other and all allocas. Global variables themselves usually have 2651 // non-overlapping storage, but since their addresses are constants, the 2652 // case involving two globals does not reach here and is instead handled in 2653 // constant folding. 2654 // 2655 // Two different allocas usually have different addresses... 2656 // 2657 // However, if there's an @llvm.stackrestore dynamically in between two 2658 // allocas, they may have the same address. It's tempting to reduce the 2659 // scope of the problem by only looking at *static* allocas here. That would 2660 // cover the majority of allocas while significantly reducing the likelihood 2661 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2662 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2663 // an entry block. Also, if we have a block that's not attached to a 2664 // function, we can't tell if it's "static" under the current definition. 2665 // Theoretically, this problem could be fixed by creating a new kind of 2666 // instruction kind specifically for static allocas. Such a new instruction 2667 // could be required to be at the top of the entry block, thus preventing it 2668 // from being subject to a @llvm.stackrestore. Instcombine could even 2669 // convert regular allocas into these special allocas. It'd be nifty. 2670 // However, until then, this problem remains open. 2671 // 2672 // So, we'll assume that two non-empty allocas have different addresses 2673 // for now. 2674 auto isByValArg = [](const Value *V) { 2675 const Argument *A = dyn_cast<Argument>(V); 2676 return A && A->hasByValAttr(); 2677 }; 2678 2679 // Byval args are backed by store which does not overlap with each other, 2680 // allocas, or globals. 2681 if (isByValArg(V1)) 2682 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2683 if (isByValArg(V2)) 2684 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2685 2686 return isa<AllocaInst>(V1) && 2687 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2688 } 2689 2690 // A significant optimization not implemented here is assuming that alloca 2691 // addresses are not equal to incoming argument values. They don't *alias*, 2692 // as we say, but that doesn't mean they aren't equal, so we take a 2693 // conservative approach. 2694 // 2695 // This is inspired in part by C++11 5.10p1: 2696 // "Two pointers of the same type compare equal if and only if they are both 2697 // null, both point to the same function, or both represent the same 2698 // address." 2699 // 2700 // This is pretty permissive. 2701 // 2702 // It's also partly due to C11 6.5.9p6: 2703 // "Two pointers compare equal if and only if both are null pointers, both are 2704 // pointers to the same object (including a pointer to an object and a 2705 // subobject at its beginning) or function, both are pointers to one past the 2706 // last element of the same array object, or one is a pointer to one past the 2707 // end of one array object and the other is a pointer to the start of a 2708 // different array object that happens to immediately follow the first array 2709 // object in the address space.) 2710 // 2711 // C11's version is more restrictive, however there's no reason why an argument 2712 // couldn't be a one-past-the-end value for a stack object in the caller and be 2713 // equal to the beginning of a stack object in the callee. 2714 // 2715 // If the C and C++ standards are ever made sufficiently restrictive in this 2716 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2717 // this optimization. 2718 static Constant *computePointerICmp(CmpInst::Predicate Pred, Value *LHS, 2719 Value *RHS, const SimplifyQuery &Q) { 2720 assert(LHS->getType() == RHS->getType() && "Must have same types"); 2721 const DataLayout &DL = Q.DL; 2722 const TargetLibraryInfo *TLI = Q.TLI; 2723 2724 // We can only fold certain predicates on pointer comparisons. 2725 switch (Pred) { 2726 default: 2727 return nullptr; 2728 2729 // Equality comparisons are easy to fold. 2730 case CmpInst::ICMP_EQ: 2731 case CmpInst::ICMP_NE: 2732 break; 2733 2734 // We can only handle unsigned relational comparisons because 'inbounds' on 2735 // a GEP only protects against unsigned wrapping. 2736 case CmpInst::ICMP_UGT: 2737 case CmpInst::ICMP_UGE: 2738 case CmpInst::ICMP_ULT: 2739 case CmpInst::ICMP_ULE: 2740 // However, we have to switch them to their signed variants to handle 2741 // negative indices from the base pointer. 2742 Pred = ICmpInst::getSignedPredicate(Pred); 2743 break; 2744 } 2745 2746 // Strip off any constant offsets so that we can reason about them. 2747 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2748 // here and compare base addresses like AliasAnalysis does, however there are 2749 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2750 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2751 // doesn't need to guarantee pointer inequality when it says NoAlias. 2752 2753 // Even if an non-inbounds GEP occurs along the path we can still optimize 2754 // equality comparisons concerning the result. 2755 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2756 unsigned IndexSize = DL.getIndexTypeSizeInBits(LHS->getType()); 2757 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0); 2758 LHS = LHS->stripAndAccumulateConstantOffsets(DL, LHSOffset, AllowNonInbounds); 2759 RHS = RHS->stripAndAccumulateConstantOffsets(DL, RHSOffset, AllowNonInbounds); 2760 2761 // If LHS and RHS are related via constant offsets to the same base 2762 // value, we can replace it with an icmp which just compares the offsets. 2763 if (LHS == RHS) 2764 return ConstantInt::get(getCompareTy(LHS), 2765 ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2766 2767 // Various optimizations for (in)equality comparisons. 2768 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2769 // Different non-empty allocations that exist at the same time have 2770 // different addresses (if the program can tell). If the offsets are 2771 // within the bounds of their allocations (and not one-past-the-end! 2772 // so we can't use inbounds!), and their allocations aren't the same, 2773 // the pointers are not equal. 2774 if (haveNonOverlappingStorage(LHS, RHS)) { 2775 uint64_t LHSSize, RHSSize; 2776 ObjectSizeOpts Opts; 2777 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2778 auto *F = [](Value *V) -> Function * { 2779 if (auto *I = dyn_cast<Instruction>(V)) 2780 return I->getFunction(); 2781 if (auto *A = dyn_cast<Argument>(V)) 2782 return A->getParent(); 2783 return nullptr; 2784 }(LHS); 2785 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2786 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && 2787 getObjectSize(RHS, RHSSize, DL, TLI, Opts)) { 2788 APInt Dist = LHSOffset - RHSOffset; 2789 if (Dist.isNonNegative() ? Dist.ult(LHSSize) : (-Dist).ult(RHSSize)) 2790 return ConstantInt::get(getCompareTy(LHS), 2791 !CmpInst::isTrueWhenEqual(Pred)); 2792 } 2793 } 2794 2795 // If one side of the equality comparison must come from a noalias call 2796 // (meaning a system memory allocation function), and the other side must 2797 // come from a pointer that cannot overlap with dynamically-allocated 2798 // memory within the lifetime of the current function (allocas, byval 2799 // arguments, globals), then determine the comparison result here. 2800 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2801 getUnderlyingObjects(LHS, LHSUObjs); 2802 getUnderlyingObjects(RHS, RHSUObjs); 2803 2804 // Is the set of underlying objects all noalias calls? 2805 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2806 return all_of(Objects, isNoAliasCall); 2807 }; 2808 2809 // Is the set of underlying objects all things which must be disjoint from 2810 // noalias calls. We assume that indexing from such disjoint storage 2811 // into the heap is undefined, and thus offsets can be safely ignored. 2812 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2813 return all_of(Objects, ::isAllocDisjoint); 2814 }; 2815 2816 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2817 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2818 return ConstantInt::get(getCompareTy(LHS), 2819 !CmpInst::isTrueWhenEqual(Pred)); 2820 2821 // Fold comparisons for non-escaping pointer even if the allocation call 2822 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2823 // dynamic allocation call could be either of the operands. Note that 2824 // the other operand can not be based on the alloc - if it were, then 2825 // the cmp itself would be a capture. 2826 Value *MI = nullptr; 2827 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonZero(RHS, Q)) 2828 MI = LHS; 2829 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonZero(LHS, Q)) 2830 MI = RHS; 2831 if (MI) { 2832 // FIXME: This is incorrect, see PR54002. While we can assume that the 2833 // allocation is at an address that makes the comparison false, this 2834 // requires that *all* comparisons to that address be false, which 2835 // InstSimplify cannot guarantee. 2836 struct CustomCaptureTracker : public CaptureTracker { 2837 bool Captured = false; 2838 void tooManyUses() override { Captured = true; } 2839 bool captured(const Use *U) override { 2840 if (auto *ICmp = dyn_cast<ICmpInst>(U->getUser())) { 2841 // Comparison against value stored in global variable. Given the 2842 // pointer does not escape, its value cannot be guessed and stored 2843 // separately in a global variable. 2844 unsigned OtherIdx = 1 - U->getOperandNo(); 2845 auto *LI = dyn_cast<LoadInst>(ICmp->getOperand(OtherIdx)); 2846 if (LI && isa<GlobalVariable>(LI->getPointerOperand())) 2847 return false; 2848 } 2849 2850 Captured = true; 2851 return true; 2852 } 2853 }; 2854 CustomCaptureTracker Tracker; 2855 PointerMayBeCaptured(MI, &Tracker); 2856 if (!Tracker.Captured) 2857 return ConstantInt::get(getCompareTy(LHS), 2858 CmpInst::isFalseWhenEqual(Pred)); 2859 } 2860 } 2861 2862 // Otherwise, fail. 2863 return nullptr; 2864 } 2865 2866 /// Fold an icmp when its operands have i1 scalar type. 2867 static Value *simplifyICmpOfBools(CmpInst::Predicate Pred, Value *LHS, 2868 Value *RHS, const SimplifyQuery &Q) { 2869 Type *ITy = getCompareTy(LHS); // The return type. 2870 Type *OpTy = LHS->getType(); // The operand type. 2871 if (!OpTy->isIntOrIntVectorTy(1)) 2872 return nullptr; 2873 2874 // A boolean compared to true/false can be reduced in 14 out of the 20 2875 // (10 predicates * 2 constants) possible combinations. The other 2876 // 6 cases require a 'not' of the LHS. 2877 2878 auto ExtractNotLHS = [](Value *V) -> Value * { 2879 Value *X; 2880 if (match(V, m_Not(m_Value(X)))) 2881 return X; 2882 return nullptr; 2883 }; 2884 2885 if (match(RHS, m_Zero())) { 2886 switch (Pred) { 2887 case CmpInst::ICMP_NE: // X != 0 -> X 2888 case CmpInst::ICMP_UGT: // X >u 0 -> X 2889 case CmpInst::ICMP_SLT: // X <s 0 -> X 2890 return LHS; 2891 2892 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2893 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2894 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2895 if (Value *X = ExtractNotLHS(LHS)) 2896 return X; 2897 break; 2898 2899 case CmpInst::ICMP_ULT: // X <u 0 -> false 2900 case CmpInst::ICMP_SGT: // X >s 0 -> false 2901 return getFalse(ITy); 2902 2903 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2904 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2905 return getTrue(ITy); 2906 2907 default: 2908 break; 2909 } 2910 } else if (match(RHS, m_One())) { 2911 switch (Pred) { 2912 case CmpInst::ICMP_EQ: // X == 1 -> X 2913 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2914 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2915 return LHS; 2916 2917 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2918 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2919 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2920 if (Value *X = ExtractNotLHS(LHS)) 2921 return X; 2922 break; 2923 2924 case CmpInst::ICMP_UGT: // X >u 1 -> false 2925 case CmpInst::ICMP_SLT: // X <s -1 -> false 2926 return getFalse(ITy); 2927 2928 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2929 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2930 return getTrue(ITy); 2931 2932 default: 2933 break; 2934 } 2935 } 2936 2937 switch (Pred) { 2938 default: 2939 break; 2940 case ICmpInst::ICMP_UGE: 2941 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2942 return getTrue(ITy); 2943 break; 2944 case ICmpInst::ICMP_SGE: 2945 /// For signed comparison, the values for an i1 are 0 and -1 2946 /// respectively. This maps into a truth table of: 2947 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2948 /// 0 | 0 | 1 (0 >= 0) | 1 2949 /// 0 | 1 | 1 (0 >= -1) | 1 2950 /// 1 | 0 | 0 (-1 >= 0) | 0 2951 /// 1 | 1 | 1 (-1 >= -1) | 1 2952 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2953 return getTrue(ITy); 2954 break; 2955 case ICmpInst::ICMP_ULE: 2956 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2957 return getTrue(ITy); 2958 break; 2959 case ICmpInst::ICMP_SLE: 2960 /// SLE follows the same logic as SGE with the LHS and RHS swapped. 2961 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2962 return getTrue(ITy); 2963 break; 2964 } 2965 2966 return nullptr; 2967 } 2968 2969 /// Try hard to fold icmp with zero RHS because this is a common case. 2970 static Value *simplifyICmpWithZero(CmpInst::Predicate Pred, Value *LHS, 2971 Value *RHS, const SimplifyQuery &Q) { 2972 if (!match(RHS, m_Zero())) 2973 return nullptr; 2974 2975 Type *ITy = getCompareTy(LHS); // The return type. 2976 switch (Pred) { 2977 default: 2978 llvm_unreachable("Unknown ICmp predicate!"); 2979 case ICmpInst::ICMP_ULT: 2980 return getFalse(ITy); 2981 case ICmpInst::ICMP_UGE: 2982 return getTrue(ITy); 2983 case ICmpInst::ICMP_EQ: 2984 case ICmpInst::ICMP_ULE: 2985 if (isKnownNonZero(LHS, Q)) 2986 return getFalse(ITy); 2987 break; 2988 case ICmpInst::ICMP_NE: 2989 case ICmpInst::ICMP_UGT: 2990 if (isKnownNonZero(LHS, Q)) 2991 return getTrue(ITy); 2992 break; 2993 case ICmpInst::ICMP_SLT: { 2994 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2995 if (LHSKnown.isNegative()) 2996 return getTrue(ITy); 2997 if (LHSKnown.isNonNegative()) 2998 return getFalse(ITy); 2999 break; 3000 } 3001 case ICmpInst::ICMP_SLE: { 3002 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 3003 if (LHSKnown.isNegative()) 3004 return getTrue(ITy); 3005 if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q)) 3006 return getFalse(ITy); 3007 break; 3008 } 3009 case ICmpInst::ICMP_SGE: { 3010 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 3011 if (LHSKnown.isNegative()) 3012 return getFalse(ITy); 3013 if (LHSKnown.isNonNegative()) 3014 return getTrue(ITy); 3015 break; 3016 } 3017 case ICmpInst::ICMP_SGT: { 3018 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 3019 if (LHSKnown.isNegative()) 3020 return getFalse(ITy); 3021 if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q)) 3022 return getTrue(ITy); 3023 break; 3024 } 3025 } 3026 3027 return nullptr; 3028 } 3029 3030 static Value *simplifyICmpWithConstant(CmpInst::Predicate Pred, Value *LHS, 3031 Value *RHS, const InstrInfoQuery &IIQ) { 3032 Type *ITy = getCompareTy(RHS); // The return type. 3033 3034 Value *X; 3035 const APInt *C; 3036 if (!match(RHS, m_APIntAllowPoison(C))) 3037 return nullptr; 3038 3039 // Sign-bit checks can be optimized to true/false after unsigned 3040 // floating-point casts: 3041 // icmp slt (bitcast (uitofp X)), 0 --> false 3042 // icmp sgt (bitcast (uitofp X)), -1 --> true 3043 if (match(LHS, m_ElementWiseBitCast(m_UIToFP(m_Value(X))))) { 3044 bool TrueIfSigned; 3045 if (isSignBitCheck(Pred, *C, TrueIfSigned)) 3046 return ConstantInt::getBool(ITy, !TrueIfSigned); 3047 } 3048 3049 // Rule out tautological comparisons (eg., ult 0 or uge 0). 3050 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 3051 if (RHS_CR.isEmptySet()) 3052 return ConstantInt::getFalse(ITy); 3053 if (RHS_CR.isFullSet()) 3054 return ConstantInt::getTrue(ITy); 3055 3056 ConstantRange LHS_CR = 3057 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 3058 if (!LHS_CR.isFullSet()) { 3059 if (RHS_CR.contains(LHS_CR)) 3060 return ConstantInt::getTrue(ITy); 3061 if (RHS_CR.inverse().contains(LHS_CR)) 3062 return ConstantInt::getFalse(ITy); 3063 } 3064 3065 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3066 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3067 const APInt *MulC; 3068 if (IIQ.UseInstrInfo && ICmpInst::isEquality(Pred) && 3069 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowPoison(MulC))) && 3070 *MulC != 0 && C->urem(*MulC) != 0) || 3071 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowPoison(MulC))) && 3072 *MulC != 0 && C->srem(*MulC) != 0))) 3073 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3074 3075 return nullptr; 3076 } 3077 3078 static Value *simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred, 3079 BinaryOperator *LBO, Value *RHS, 3080 const SimplifyQuery &Q, 3081 unsigned MaxRecurse) { 3082 Type *ITy = getCompareTy(RHS); // The return type. 3083 3084 Value *Y = nullptr; 3085 // icmp pred (or X, Y), X 3086 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3087 if (Pred == ICmpInst::ICMP_ULT) 3088 return getFalse(ITy); 3089 if (Pred == ICmpInst::ICMP_UGE) 3090 return getTrue(ITy); 3091 3092 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3093 KnownBits RHSKnown = computeKnownBits(RHS, /* Depth */ 0, Q); 3094 KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 3095 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3096 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3097 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3098 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3099 } 3100 } 3101 3102 // icmp pred (and X, Y), X 3103 if (match(LBO, m_c_And(m_Value(), m_Specific(RHS)))) { 3104 if (Pred == ICmpInst::ICMP_UGT) 3105 return getFalse(ITy); 3106 if (Pred == ICmpInst::ICMP_ULE) 3107 return getTrue(ITy); 3108 } 3109 3110 // icmp pred (urem X, Y), Y 3111 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3112 switch (Pred) { 3113 default: 3114 break; 3115 case ICmpInst::ICMP_SGT: 3116 case ICmpInst::ICMP_SGE: { 3117 KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q); 3118 if (!Known.isNonNegative()) 3119 break; 3120 [[fallthrough]]; 3121 } 3122 case ICmpInst::ICMP_EQ: 3123 case ICmpInst::ICMP_UGT: 3124 case ICmpInst::ICMP_UGE: 3125 return getFalse(ITy); 3126 case ICmpInst::ICMP_SLT: 3127 case ICmpInst::ICMP_SLE: { 3128 KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q); 3129 if (!Known.isNonNegative()) 3130 break; 3131 [[fallthrough]]; 3132 } 3133 case ICmpInst::ICMP_NE: 3134 case ICmpInst::ICMP_ULT: 3135 case ICmpInst::ICMP_ULE: 3136 return getTrue(ITy); 3137 } 3138 } 3139 3140 // icmp pred (urem X, Y), X 3141 if (match(LBO, m_URem(m_Specific(RHS), m_Value()))) { 3142 if (Pred == ICmpInst::ICMP_ULE) 3143 return getTrue(ITy); 3144 if (Pred == ICmpInst::ICMP_UGT) 3145 return getFalse(ITy); 3146 } 3147 3148 // x >>u y <=u x --> true. 3149 // x >>u y >u x --> false. 3150 // x udiv y <=u x --> true. 3151 // x udiv y >u x --> false. 3152 if (match(LBO, m_LShr(m_Specific(RHS), m_Value())) || 3153 match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) { 3154 // icmp pred (X op Y), X 3155 if (Pred == ICmpInst::ICMP_UGT) 3156 return getFalse(ITy); 3157 if (Pred == ICmpInst::ICMP_ULE) 3158 return getTrue(ITy); 3159 } 3160 3161 // If x is nonzero: 3162 // x >>u C <u x --> true for C != 0. 3163 // x >>u C != x --> true for C != 0. 3164 // x >>u C >=u x --> false for C != 0. 3165 // x >>u C == x --> false for C != 0. 3166 // x udiv C <u x --> true for C != 1. 3167 // x udiv C != x --> true for C != 1. 3168 // x udiv C >=u x --> false for C != 1. 3169 // x udiv C == x --> false for C != 1. 3170 // TODO: allow non-constant shift amount/divisor 3171 const APInt *C; 3172 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3173 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3174 if (isKnownNonZero(RHS, Q)) { 3175 switch (Pred) { 3176 default: 3177 break; 3178 case ICmpInst::ICMP_EQ: 3179 case ICmpInst::ICMP_UGE: 3180 return getFalse(ITy); 3181 case ICmpInst::ICMP_NE: 3182 case ICmpInst::ICMP_ULT: 3183 return getTrue(ITy); 3184 case ICmpInst::ICMP_UGT: 3185 case ICmpInst::ICMP_ULE: 3186 // UGT/ULE are handled by the more general case just above 3187 llvm_unreachable("Unexpected UGT/ULE, should have been handled"); 3188 } 3189 } 3190 } 3191 3192 // (x*C1)/C2 <= x for C1 <= C2. 3193 // This holds even if the multiplication overflows: Assume that x != 0 and 3194 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3195 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3196 // 3197 // Additionally, either the multiplication and division might be represented 3198 // as shifts: 3199 // (x*C1)>>C2 <= x for C1 < 2**C2. 3200 // (x<<C1)/C2 <= x for 2**C1 < C2. 3201 const APInt *C1, *C2; 3202 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3203 C1->ule(*C2)) || 3204 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3205 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3206 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3207 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3208 if (Pred == ICmpInst::ICMP_UGT) 3209 return getFalse(ITy); 3210 if (Pred == ICmpInst::ICMP_ULE) 3211 return getTrue(ITy); 3212 } 3213 3214 // (sub C, X) == X, C is odd --> false 3215 // (sub C, X) != X, C is odd --> true 3216 if (match(LBO, m_Sub(m_APIntAllowPoison(C), m_Specific(RHS))) && 3217 (*C & 1) == 1 && ICmpInst::isEquality(Pred)) 3218 return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy); 3219 3220 return nullptr; 3221 } 3222 3223 // If only one of the icmp's operands has NSW flags, try to prove that: 3224 // 3225 // icmp slt (x + C1), (x +nsw C2) 3226 // 3227 // is equivalent to: 3228 // 3229 // icmp slt C1, C2 3230 // 3231 // which is true if x + C2 has the NSW flags set and: 3232 // *) C1 < C2 && C1 >= 0, or 3233 // *) C2 < C1 && C1 <= 0. 3234 // 3235 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred, Value *LHS, 3236 Value *RHS, const InstrInfoQuery &IIQ) { 3237 // TODO: only support icmp slt for now. 3238 if (Pred != CmpInst::ICMP_SLT || !IIQ.UseInstrInfo) 3239 return false; 3240 3241 // Canonicalize nsw add as RHS. 3242 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3243 std::swap(LHS, RHS); 3244 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3245 return false; 3246 3247 Value *X; 3248 const APInt *C1, *C2; 3249 if (!match(LHS, m_Add(m_Value(X), m_APInt(C1))) || 3250 !match(RHS, m_Add(m_Specific(X), m_APInt(C2)))) 3251 return false; 3252 3253 return (C1->slt(*C2) && C1->isNonNegative()) || 3254 (C2->slt(*C1) && C1->isNonPositive()); 3255 } 3256 3257 /// TODO: A large part of this logic is duplicated in InstCombine's 3258 /// foldICmpBinOp(). We should be able to share that and avoid the code 3259 /// duplication. 3260 static Value *simplifyICmpWithBinOp(CmpInst::Predicate Pred, Value *LHS, 3261 Value *RHS, const SimplifyQuery &Q, 3262 unsigned MaxRecurse) { 3263 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3264 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3265 if (MaxRecurse && (LBO || RBO)) { 3266 // Analyze the case when either LHS or RHS is an add instruction. 3267 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3268 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3269 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3270 if (LBO && LBO->getOpcode() == Instruction::Add) { 3271 A = LBO->getOperand(0); 3272 B = LBO->getOperand(1); 3273 NoLHSWrapProblem = 3274 ICmpInst::isEquality(Pred) || 3275 (CmpInst::isUnsigned(Pred) && 3276 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3277 (CmpInst::isSigned(Pred) && 3278 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3279 } 3280 if (RBO && RBO->getOpcode() == Instruction::Add) { 3281 C = RBO->getOperand(0); 3282 D = RBO->getOperand(1); 3283 NoRHSWrapProblem = 3284 ICmpInst::isEquality(Pred) || 3285 (CmpInst::isUnsigned(Pred) && 3286 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3287 (CmpInst::isSigned(Pred) && 3288 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3289 } 3290 3291 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3292 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3293 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, 3294 Constant::getNullValue(RHS->getType()), Q, 3295 MaxRecurse - 1)) 3296 return V; 3297 3298 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3299 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3300 if (Value *V = 3301 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3302 C == LHS ? D : C, Q, MaxRecurse - 1)) 3303 return V; 3304 3305 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3306 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3307 trySimplifyICmpWithAdds(Pred, LHS, RHS, Q.IIQ); 3308 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3309 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3310 Value *Y, *Z; 3311 if (A == C) { 3312 // C + B == C + D -> B == D 3313 Y = B; 3314 Z = D; 3315 } else if (A == D) { 3316 // D + B == C + D -> B == C 3317 Y = B; 3318 Z = C; 3319 } else if (B == C) { 3320 // A + C == C + D -> A == D 3321 Y = A; 3322 Z = D; 3323 } else { 3324 assert(B == D); 3325 // A + D == C + D -> A == C 3326 Y = A; 3327 Z = C; 3328 } 3329 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3330 return V; 3331 } 3332 } 3333 3334 if (LBO) 3335 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3336 return V; 3337 3338 if (RBO) 3339 if (Value *V = simplifyICmpWithBinOpOnLHS( 3340 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3341 return V; 3342 3343 // 0 - (zext X) pred C 3344 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3345 const APInt *C; 3346 if (match(RHS, m_APInt(C))) { 3347 if (C->isStrictlyPositive()) { 3348 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3349 return ConstantInt::getTrue(getCompareTy(RHS)); 3350 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3351 return ConstantInt::getFalse(getCompareTy(RHS)); 3352 } 3353 if (C->isNonNegative()) { 3354 if (Pred == ICmpInst::ICMP_SLE) 3355 return ConstantInt::getTrue(getCompareTy(RHS)); 3356 if (Pred == ICmpInst::ICMP_SGT) 3357 return ConstantInt::getFalse(getCompareTy(RHS)); 3358 } 3359 } 3360 } 3361 3362 // If C2 is a power-of-2 and C is not: 3363 // (C2 << X) == C --> false 3364 // (C2 << X) != C --> true 3365 const APInt *C; 3366 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3367 match(RHS, m_APIntAllowPoison(C)) && !C->isPowerOf2()) { 3368 // C2 << X can equal zero in some circumstances. 3369 // This simplification might be unsafe if C is zero. 3370 // 3371 // We know it is safe if: 3372 // - The shift is nsw. We can't shift out the one bit. 3373 // - The shift is nuw. We can't shift out the one bit. 3374 // - C2 is one. 3375 // - C isn't zero. 3376 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3377 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3378 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3379 if (Pred == ICmpInst::ICMP_EQ) 3380 return ConstantInt::getFalse(getCompareTy(RHS)); 3381 if (Pred == ICmpInst::ICMP_NE) 3382 return ConstantInt::getTrue(getCompareTy(RHS)); 3383 } 3384 } 3385 3386 // If C is a power-of-2: 3387 // (C << X) >u 0x8000 --> false 3388 // (C << X) <=u 0x8000 --> true 3389 if (match(LHS, m_Shl(m_Power2(), m_Value())) && match(RHS, m_SignMask())) { 3390 if (Pred == ICmpInst::ICMP_UGT) 3391 return ConstantInt::getFalse(getCompareTy(RHS)); 3392 if (Pred == ICmpInst::ICMP_ULE) 3393 return ConstantInt::getTrue(getCompareTy(RHS)); 3394 } 3395 3396 if (!MaxRecurse || !LBO || !RBO || LBO->getOpcode() != RBO->getOpcode()) 3397 return nullptr; 3398 3399 if (LBO->getOperand(0) == RBO->getOperand(0)) { 3400 switch (LBO->getOpcode()) { 3401 default: 3402 break; 3403 case Instruction::Shl: { 3404 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3405 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3406 if (!NUW || (ICmpInst::isSigned(Pred) && !NSW) || 3407 !isKnownNonZero(LBO->getOperand(0), Q)) 3408 break; 3409 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(1), 3410 RBO->getOperand(1), Q, MaxRecurse - 1)) 3411 return V; 3412 break; 3413 } 3414 // If C1 & C2 == C1, A = X and/or C1, B = X and/or C2: 3415 // icmp ule A, B -> true 3416 // icmp ugt A, B -> false 3417 // icmp sle A, B -> true (C1 and C2 are the same sign) 3418 // icmp sgt A, B -> false (C1 and C2 are the same sign) 3419 case Instruction::And: 3420 case Instruction::Or: { 3421 const APInt *C1, *C2; 3422 if (ICmpInst::isRelational(Pred) && 3423 match(LBO->getOperand(1), m_APInt(C1)) && 3424 match(RBO->getOperand(1), m_APInt(C2))) { 3425 if (!C1->isSubsetOf(*C2)) { 3426 std::swap(C1, C2); 3427 Pred = ICmpInst::getSwappedPredicate(Pred); 3428 } 3429 if (C1->isSubsetOf(*C2)) { 3430 if (Pred == ICmpInst::ICMP_ULE) 3431 return ConstantInt::getTrue(getCompareTy(LHS)); 3432 if (Pred == ICmpInst::ICMP_UGT) 3433 return ConstantInt::getFalse(getCompareTy(LHS)); 3434 if (C1->isNonNegative() == C2->isNonNegative()) { 3435 if (Pred == ICmpInst::ICMP_SLE) 3436 return ConstantInt::getTrue(getCompareTy(LHS)); 3437 if (Pred == ICmpInst::ICMP_SGT) 3438 return ConstantInt::getFalse(getCompareTy(LHS)); 3439 } 3440 } 3441 } 3442 break; 3443 } 3444 } 3445 } 3446 3447 if (LBO->getOperand(1) == RBO->getOperand(1)) { 3448 switch (LBO->getOpcode()) { 3449 default: 3450 break; 3451 case Instruction::UDiv: 3452 case Instruction::LShr: 3453 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3454 !Q.IIQ.isExact(RBO)) 3455 break; 3456 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3457 RBO->getOperand(0), Q, MaxRecurse - 1)) 3458 return V; 3459 break; 3460 case Instruction::SDiv: 3461 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3462 !Q.IIQ.isExact(RBO)) 3463 break; 3464 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3465 RBO->getOperand(0), Q, MaxRecurse - 1)) 3466 return V; 3467 break; 3468 case Instruction::AShr: 3469 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3470 break; 3471 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3472 RBO->getOperand(0), Q, MaxRecurse - 1)) 3473 return V; 3474 break; 3475 case Instruction::Shl: { 3476 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3477 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3478 if (!NUW && !NSW) 3479 break; 3480 if (!NSW && ICmpInst::isSigned(Pred)) 3481 break; 3482 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3483 RBO->getOperand(0), Q, MaxRecurse - 1)) 3484 return V; 3485 break; 3486 } 3487 } 3488 } 3489 return nullptr; 3490 } 3491 3492 /// simplify integer comparisons where at least one operand of the compare 3493 /// matches an integer min/max idiom. 3494 static Value *simplifyICmpWithMinMax(CmpInst::Predicate Pred, Value *LHS, 3495 Value *RHS, const SimplifyQuery &Q, 3496 unsigned MaxRecurse) { 3497 Type *ITy = getCompareTy(LHS); // The return type. 3498 Value *A, *B; 3499 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3500 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3501 3502 // Signed variants on "max(a,b)>=a -> true". 3503 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3504 if (A != RHS) 3505 std::swap(A, B); // smax(A, B) pred A. 3506 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3507 // We analyze this as smax(A, B) pred A. 3508 P = Pred; 3509 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3510 (A == LHS || B == LHS)) { 3511 if (A != LHS) 3512 std::swap(A, B); // A pred smax(A, B). 3513 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3514 // We analyze this as smax(A, B) swapped-pred A. 3515 P = CmpInst::getSwappedPredicate(Pred); 3516 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3517 (A == RHS || B == RHS)) { 3518 if (A != RHS) 3519 std::swap(A, B); // smin(A, B) pred A. 3520 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3521 // We analyze this as smax(-A, -B) swapped-pred -A. 3522 // Note that we do not need to actually form -A or -B thanks to EqP. 3523 P = CmpInst::getSwappedPredicate(Pred); 3524 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3525 (A == LHS || B == LHS)) { 3526 if (A != LHS) 3527 std::swap(A, B); // A pred smin(A, B). 3528 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3529 // We analyze this as smax(-A, -B) pred -A. 3530 // Note that we do not need to actually form -A or -B thanks to EqP. 3531 P = Pred; 3532 } 3533 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3534 // Cases correspond to "max(A, B) p A". 3535 switch (P) { 3536 default: 3537 break; 3538 case CmpInst::ICMP_EQ: 3539 case CmpInst::ICMP_SLE: 3540 // Equivalent to "A EqP B". This may be the same as the condition tested 3541 // in the max/min; if so, we can just return that. 3542 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3543 return V; 3544 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3545 return V; 3546 // Otherwise, see if "A EqP B" simplifies. 3547 if (MaxRecurse) 3548 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3549 return V; 3550 break; 3551 case CmpInst::ICMP_NE: 3552 case CmpInst::ICMP_SGT: { 3553 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3554 // Equivalent to "A InvEqP B". This may be the same as the condition 3555 // tested in the max/min; if so, we can just return that. 3556 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3557 return V; 3558 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3559 return V; 3560 // Otherwise, see if "A InvEqP B" simplifies. 3561 if (MaxRecurse) 3562 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3563 return V; 3564 break; 3565 } 3566 case CmpInst::ICMP_SGE: 3567 // Always true. 3568 return getTrue(ITy); 3569 case CmpInst::ICMP_SLT: 3570 // Always false. 3571 return getFalse(ITy); 3572 } 3573 } 3574 3575 // Unsigned variants on "max(a,b)>=a -> true". 3576 P = CmpInst::BAD_ICMP_PREDICATE; 3577 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3578 if (A != RHS) 3579 std::swap(A, B); // umax(A, B) pred A. 3580 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3581 // We analyze this as umax(A, B) pred A. 3582 P = Pred; 3583 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3584 (A == LHS || B == LHS)) { 3585 if (A != LHS) 3586 std::swap(A, B); // A pred umax(A, B). 3587 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3588 // We analyze this as umax(A, B) swapped-pred A. 3589 P = CmpInst::getSwappedPredicate(Pred); 3590 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3591 (A == RHS || B == RHS)) { 3592 if (A != RHS) 3593 std::swap(A, B); // umin(A, B) pred A. 3594 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3595 // We analyze this as umax(-A, -B) swapped-pred -A. 3596 // Note that we do not need to actually form -A or -B thanks to EqP. 3597 P = CmpInst::getSwappedPredicate(Pred); 3598 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3599 (A == LHS || B == LHS)) { 3600 if (A != LHS) 3601 std::swap(A, B); // A pred umin(A, B). 3602 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3603 // We analyze this as umax(-A, -B) pred -A. 3604 // Note that we do not need to actually form -A or -B thanks to EqP. 3605 P = Pred; 3606 } 3607 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3608 // Cases correspond to "max(A, B) p A". 3609 switch (P) { 3610 default: 3611 break; 3612 case CmpInst::ICMP_EQ: 3613 case CmpInst::ICMP_ULE: 3614 // Equivalent to "A EqP B". This may be the same as the condition tested 3615 // in the max/min; if so, we can just return that. 3616 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3617 return V; 3618 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3619 return V; 3620 // Otherwise, see if "A EqP B" simplifies. 3621 if (MaxRecurse) 3622 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3623 return V; 3624 break; 3625 case CmpInst::ICMP_NE: 3626 case CmpInst::ICMP_UGT: { 3627 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3628 // Equivalent to "A InvEqP B". This may be the same as the condition 3629 // tested in the max/min; if so, we can just return that. 3630 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3631 return V; 3632 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3633 return V; 3634 // Otherwise, see if "A InvEqP B" simplifies. 3635 if (MaxRecurse) 3636 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3637 return V; 3638 break; 3639 } 3640 case CmpInst::ICMP_UGE: 3641 return getTrue(ITy); 3642 case CmpInst::ICMP_ULT: 3643 return getFalse(ITy); 3644 } 3645 } 3646 3647 // Comparing 1 each of min/max with a common operand? 3648 // Canonicalize min operand to RHS. 3649 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3650 match(LHS, m_SMin(m_Value(), m_Value()))) { 3651 std::swap(LHS, RHS); 3652 Pred = ICmpInst::getSwappedPredicate(Pred); 3653 } 3654 3655 Value *C, *D; 3656 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3657 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3658 (A == C || A == D || B == C || B == D)) { 3659 // smax(A, B) >=s smin(A, D) --> true 3660 if (Pred == CmpInst::ICMP_SGE) 3661 return getTrue(ITy); 3662 // smax(A, B) <s smin(A, D) --> false 3663 if (Pred == CmpInst::ICMP_SLT) 3664 return getFalse(ITy); 3665 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3666 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3667 (A == C || A == D || B == C || B == D)) { 3668 // umax(A, B) >=u umin(A, D) --> true 3669 if (Pred == CmpInst::ICMP_UGE) 3670 return getTrue(ITy); 3671 // umax(A, B) <u umin(A, D) --> false 3672 if (Pred == CmpInst::ICMP_ULT) 3673 return getFalse(ITy); 3674 } 3675 3676 return nullptr; 3677 } 3678 3679 static Value *simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate, 3680 Value *LHS, Value *RHS, 3681 const SimplifyQuery &Q) { 3682 // Gracefully handle instructions that have not been inserted yet. 3683 if (!Q.AC || !Q.CxtI) 3684 return nullptr; 3685 3686 for (Value *AssumeBaseOp : {LHS, RHS}) { 3687 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3688 if (!AssumeVH) 3689 continue; 3690 3691 CallInst *Assume = cast<CallInst>(AssumeVH); 3692 if (std::optional<bool> Imp = isImpliedCondition( 3693 Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL)) 3694 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3695 return ConstantInt::get(getCompareTy(LHS), *Imp); 3696 } 3697 } 3698 3699 return nullptr; 3700 } 3701 3702 static Value *simplifyICmpWithIntrinsicOnLHS(CmpInst::Predicate Pred, 3703 Value *LHS, Value *RHS) { 3704 auto *II = dyn_cast<IntrinsicInst>(LHS); 3705 if (!II) 3706 return nullptr; 3707 3708 switch (II->getIntrinsicID()) { 3709 case Intrinsic::uadd_sat: 3710 // uadd.sat(X, Y) uge X, uadd.sat(X, Y) uge Y 3711 if (II->getArgOperand(0) == RHS || II->getArgOperand(1) == RHS) { 3712 if (Pred == ICmpInst::ICMP_UGE) 3713 return ConstantInt::getTrue(getCompareTy(II)); 3714 if (Pred == ICmpInst::ICMP_ULT) 3715 return ConstantInt::getFalse(getCompareTy(II)); 3716 } 3717 return nullptr; 3718 case Intrinsic::usub_sat: 3719 // usub.sat(X, Y) ule X 3720 if (II->getArgOperand(0) == RHS) { 3721 if (Pred == ICmpInst::ICMP_ULE) 3722 return ConstantInt::getTrue(getCompareTy(II)); 3723 if (Pred == ICmpInst::ICMP_UGT) 3724 return ConstantInt::getFalse(getCompareTy(II)); 3725 } 3726 return nullptr; 3727 default: 3728 return nullptr; 3729 } 3730 } 3731 3732 /// Helper method to get range from metadata or attribute. 3733 static std::optional<ConstantRange> getRange(Value *V, 3734 const InstrInfoQuery &IIQ) { 3735 if (Instruction *I = dyn_cast<Instruction>(V)) 3736 if (MDNode *MD = IIQ.getMetadata(I, LLVMContext::MD_range)) 3737 return getConstantRangeFromMetadata(*MD); 3738 3739 if (const Argument *A = dyn_cast<Argument>(V)) 3740 return A->getRange(); 3741 else if (const CallBase *CB = dyn_cast<CallBase>(V)) 3742 return CB->getRange(); 3743 3744 return std::nullopt; 3745 } 3746 3747 /// Given operands for an ICmpInst, see if we can fold the result. 3748 /// If not, this returns null. 3749 static Value *simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 3750 const SimplifyQuery &Q, unsigned MaxRecurse) { 3751 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 3752 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3753 3754 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3755 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3756 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3757 3758 // If we have a constant, make sure it is on the RHS. 3759 std::swap(LHS, RHS); 3760 Pred = CmpInst::getSwappedPredicate(Pred); 3761 } 3762 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3763 3764 Type *ITy = getCompareTy(LHS); // The return type. 3765 3766 // icmp poison, X -> poison 3767 if (isa<PoisonValue>(RHS)) 3768 return PoisonValue::get(ITy); 3769 3770 // For EQ and NE, we can always pick a value for the undef to make the 3771 // predicate pass or fail, so we can return undef. 3772 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3773 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3774 return UndefValue::get(ITy); 3775 3776 // icmp X, X -> true/false 3777 // icmp X, undef -> true/false because undef could be X. 3778 if (LHS == RHS || Q.isUndefValue(RHS)) 3779 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3780 3781 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3782 return V; 3783 3784 // TODO: Sink/common this with other potentially expensive calls that use 3785 // ValueTracking? See comment below for isKnownNonEqual(). 3786 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3787 return V; 3788 3789 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3790 return V; 3791 3792 // If both operands have range metadata, use the metadata 3793 // to simplify the comparison. 3794 if (std::optional<ConstantRange> RhsCr = getRange(RHS, Q.IIQ)) 3795 if (std::optional<ConstantRange> LhsCr = getRange(LHS, Q.IIQ)) { 3796 if (LhsCr->icmp(Pred, *RhsCr)) 3797 return ConstantInt::getTrue(ITy); 3798 3799 if (LhsCr->icmp(CmpInst::getInversePredicate(Pred), *RhsCr)) 3800 return ConstantInt::getFalse(ITy); 3801 } 3802 3803 // Compare of cast, for example (zext X) != 0 -> X != 0 3804 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3805 Instruction *LI = cast<CastInst>(LHS); 3806 Value *SrcOp = LI->getOperand(0); 3807 Type *SrcTy = SrcOp->getType(); 3808 Type *DstTy = LI->getType(); 3809 3810 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3811 // if the integer type is the same size as the pointer type. 3812 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3813 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3814 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3815 // Transfer the cast to the constant. 3816 if (Value *V = simplifyICmpInst(Pred, SrcOp, 3817 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3818 Q, MaxRecurse - 1)) 3819 return V; 3820 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3821 if (RI->getOperand(0)->getType() == SrcTy) 3822 // Compare without the cast. 3823 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3824 MaxRecurse - 1)) 3825 return V; 3826 } 3827 } 3828 3829 if (isa<ZExtInst>(LHS)) { 3830 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3831 // same type. 3832 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3833 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3834 // Compare X and Y. Note that signed predicates become unsigned. 3835 if (Value *V = 3836 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, 3837 RI->getOperand(0), Q, MaxRecurse - 1)) 3838 return V; 3839 } 3840 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3841 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3842 if (SrcOp == RI->getOperand(0)) { 3843 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3844 return ConstantInt::getTrue(ITy); 3845 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3846 return ConstantInt::getFalse(ITy); 3847 } 3848 } 3849 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3850 // too. If not, then try to deduce the result of the comparison. 3851 else if (match(RHS, m_ImmConstant())) { 3852 Constant *C = dyn_cast<Constant>(RHS); 3853 assert(C != nullptr); 3854 3855 // Compute the constant that would happen if we truncated to SrcTy then 3856 // reextended to DstTy. 3857 Constant *Trunc = 3858 ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL); 3859 assert(Trunc && "Constant-fold of ImmConstant should not fail"); 3860 Constant *RExt = 3861 ConstantFoldCastOperand(CastInst::ZExt, Trunc, DstTy, Q.DL); 3862 assert(RExt && "Constant-fold of ImmConstant should not fail"); 3863 Constant *AnyEq = 3864 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL); 3865 assert(AnyEq && "Constant-fold of ImmConstant should not fail"); 3866 3867 // If the re-extended constant didn't change any of the elements then 3868 // this is effectively also a case of comparing two zero-extended 3869 // values. 3870 if (AnyEq->isAllOnesValue() && MaxRecurse) 3871 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3872 SrcOp, Trunc, Q, MaxRecurse - 1)) 3873 return V; 3874 3875 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3876 // there. Use this to work out the result of the comparison. 3877 if (AnyEq->isNullValue()) { 3878 switch (Pred) { 3879 default: 3880 llvm_unreachable("Unknown ICmp predicate!"); 3881 // LHS <u RHS. 3882 case ICmpInst::ICMP_EQ: 3883 case ICmpInst::ICMP_UGT: 3884 case ICmpInst::ICMP_UGE: 3885 return Constant::getNullValue(ITy); 3886 3887 case ICmpInst::ICMP_NE: 3888 case ICmpInst::ICMP_ULT: 3889 case ICmpInst::ICMP_ULE: 3890 return Constant::getAllOnesValue(ITy); 3891 3892 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3893 // is non-negative then LHS <s RHS. 3894 case ICmpInst::ICMP_SGT: 3895 case ICmpInst::ICMP_SGE: 3896 return ConstantFoldCompareInstOperands( 3897 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()), 3898 Q.DL); 3899 case ICmpInst::ICMP_SLT: 3900 case ICmpInst::ICMP_SLE: 3901 return ConstantFoldCompareInstOperands( 3902 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()), 3903 Q.DL); 3904 } 3905 } 3906 } 3907 } 3908 3909 if (isa<SExtInst>(LHS)) { 3910 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3911 // same type. 3912 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3913 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3914 // Compare X and Y. Note that the predicate does not change. 3915 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3916 MaxRecurse - 1)) 3917 return V; 3918 } 3919 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3920 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3921 if (SrcOp == RI->getOperand(0)) { 3922 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3923 return ConstantInt::getTrue(ITy); 3924 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3925 return ConstantInt::getFalse(ITy); 3926 } 3927 } 3928 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3929 // too. If not, then try to deduce the result of the comparison. 3930 else if (match(RHS, m_ImmConstant())) { 3931 Constant *C = cast<Constant>(RHS); 3932 3933 // Compute the constant that would happen if we truncated to SrcTy then 3934 // reextended to DstTy. 3935 Constant *Trunc = 3936 ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL); 3937 assert(Trunc && "Constant-fold of ImmConstant should not fail"); 3938 Constant *RExt = 3939 ConstantFoldCastOperand(CastInst::SExt, Trunc, DstTy, Q.DL); 3940 assert(RExt && "Constant-fold of ImmConstant should not fail"); 3941 Constant *AnyEq = 3942 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL); 3943 assert(AnyEq && "Constant-fold of ImmConstant should not fail"); 3944 3945 // If the re-extended constant didn't change then this is effectively 3946 // also a case of comparing two sign-extended values. 3947 if (AnyEq->isAllOnesValue() && MaxRecurse) 3948 if (Value *V = 3949 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) 3950 return V; 3951 3952 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3953 // bits there. Use this to work out the result of the comparison. 3954 if (AnyEq->isNullValue()) { 3955 switch (Pred) { 3956 default: 3957 llvm_unreachable("Unknown ICmp predicate!"); 3958 case ICmpInst::ICMP_EQ: 3959 return Constant::getNullValue(ITy); 3960 case ICmpInst::ICMP_NE: 3961 return Constant::getAllOnesValue(ITy); 3962 3963 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3964 // LHS >s RHS. 3965 case ICmpInst::ICMP_SGT: 3966 case ICmpInst::ICMP_SGE: 3967 return ConstantFoldCompareInstOperands( 3968 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()), 3969 Q.DL); 3970 case ICmpInst::ICMP_SLT: 3971 case ICmpInst::ICMP_SLE: 3972 return ConstantFoldCompareInstOperands( 3973 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()), 3974 Q.DL); 3975 3976 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3977 // LHS >u RHS. 3978 case ICmpInst::ICMP_UGT: 3979 case ICmpInst::ICMP_UGE: 3980 // Comparison is true iff the LHS <s 0. 3981 if (MaxRecurse) 3982 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3983 Constant::getNullValue(SrcTy), Q, 3984 MaxRecurse - 1)) 3985 return V; 3986 break; 3987 case ICmpInst::ICMP_ULT: 3988 case ICmpInst::ICMP_ULE: 3989 // Comparison is true iff the LHS >=s 0. 3990 if (MaxRecurse) 3991 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3992 Constant::getNullValue(SrcTy), Q, 3993 MaxRecurse - 1)) 3994 return V; 3995 break; 3996 } 3997 } 3998 } 3999 } 4000 } 4001 4002 // icmp eq|ne X, Y -> false|true if X != Y 4003 // This is potentially expensive, and we have already computedKnownBits for 4004 // compares with 0 above here, so only try this for a non-zero compare. 4005 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 4006 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 4007 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 4008 } 4009 4010 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 4011 return V; 4012 4013 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 4014 return V; 4015 4016 if (Value *V = simplifyICmpWithIntrinsicOnLHS(Pred, LHS, RHS)) 4017 return V; 4018 if (Value *V = simplifyICmpWithIntrinsicOnLHS( 4019 ICmpInst::getSwappedPredicate(Pred), RHS, LHS)) 4020 return V; 4021 4022 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 4023 return V; 4024 4025 if (std::optional<bool> Res = 4026 isImpliedByDomCondition(Pred, LHS, RHS, Q.CxtI, Q.DL)) 4027 return ConstantInt::getBool(ITy, *Res); 4028 4029 // Simplify comparisons of related pointers using a powerful, recursive 4030 // GEP-walk when we have target data available.. 4031 if (LHS->getType()->isPointerTy()) 4032 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 4033 return C; 4034 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 4035 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 4036 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() && 4037 Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 4038 Q.DL.getTypeSizeInBits(CLHS->getType())) 4039 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 4040 CRHS->getPointerOperand(), Q)) 4041 return C; 4042 4043 // If the comparison is with the result of a select instruction, check whether 4044 // comparing with either branch of the select always yields the same value. 4045 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4046 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4047 return V; 4048 4049 // If the comparison is with the result of a phi instruction, check whether 4050 // doing the compare with each incoming phi value yields a common result. 4051 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4052 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4053 return V; 4054 4055 return nullptr; 4056 } 4057 4058 Value *llvm::simplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4059 const SimplifyQuery &Q) { 4060 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4061 } 4062 4063 /// Given operands for an FCmpInst, see if we can fold the result. 4064 /// If not, this returns null. 4065 static Value *simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4066 FastMathFlags FMF, const SimplifyQuery &Q, 4067 unsigned MaxRecurse) { 4068 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate; 4069 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 4070 4071 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 4072 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4073 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, 4074 Q.CxtI); 4075 4076 // If we have a constant, make sure it is on the RHS. 4077 std::swap(LHS, RHS); 4078 Pred = CmpInst::getSwappedPredicate(Pred); 4079 } 4080 4081 // Fold trivial predicates. 4082 Type *RetTy = getCompareTy(LHS); 4083 if (Pred == FCmpInst::FCMP_FALSE) 4084 return getFalse(RetTy); 4085 if (Pred == FCmpInst::FCMP_TRUE) 4086 return getTrue(RetTy); 4087 4088 // fcmp pred x, poison and fcmp pred poison, x 4089 // fold to poison 4090 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 4091 return PoisonValue::get(RetTy); 4092 4093 // fcmp pred x, undef and fcmp pred undef, x 4094 // fold to true if unordered, false if ordered 4095 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 4096 // Choosing NaN for the undef will always make unordered comparison succeed 4097 // and ordered comparison fail. 4098 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4099 } 4100 4101 // fcmp x,x -> true/false. Not all compares are foldable. 4102 if (LHS == RHS) { 4103 if (CmpInst::isTrueWhenEqual(Pred)) 4104 return getTrue(RetTy); 4105 if (CmpInst::isFalseWhenEqual(Pred)) 4106 return getFalse(RetTy); 4107 } 4108 4109 // Fold (un)ordered comparison if we can determine there are no NaNs. 4110 // 4111 // This catches the 2 variable input case, constants are handled below as a 4112 // class-like compare. 4113 if (Pred == FCmpInst::FCMP_ORD || Pred == FCmpInst::FCMP_UNO) { 4114 KnownFPClass RHSClass = 4115 computeKnownFPClass(RHS, fcAllFlags, /*Depth=*/0, Q); 4116 KnownFPClass LHSClass = 4117 computeKnownFPClass(LHS, fcAllFlags, /*Depth=*/0, Q); 4118 4119 if (FMF.noNaNs() || 4120 (RHSClass.isKnownNeverNaN() && LHSClass.isKnownNeverNaN())) 4121 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 4122 4123 if (RHSClass.isKnownAlwaysNaN() || LHSClass.isKnownAlwaysNaN()) 4124 return ConstantInt::get(RetTy, Pred == CmpInst::FCMP_UNO); 4125 } 4126 4127 const APFloat *C = nullptr; 4128 match(RHS, m_APFloatAllowPoison(C)); 4129 std::optional<KnownFPClass> FullKnownClassLHS; 4130 4131 // Lazily compute the possible classes for LHS. Avoid computing it twice if 4132 // RHS is a 0. 4133 auto computeLHSClass = [=, &FullKnownClassLHS](FPClassTest InterestedFlags = 4134 fcAllFlags) { 4135 if (FullKnownClassLHS) 4136 return *FullKnownClassLHS; 4137 return computeKnownFPClass(LHS, FMF, InterestedFlags, 0, Q); 4138 }; 4139 4140 if (C && Q.CxtI) { 4141 // Fold out compares that express a class test. 4142 // 4143 // FIXME: Should be able to perform folds without context 4144 // instruction. Always pass in the context function? 4145 4146 const Function *ParentF = Q.CxtI->getFunction(); 4147 auto [ClassVal, ClassTest] = fcmpToClassTest(Pred, *ParentF, LHS, C); 4148 if (ClassVal) { 4149 FullKnownClassLHS = computeLHSClass(); 4150 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) == fcNone) 4151 return getFalse(RetTy); 4152 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) == fcNone) 4153 return getTrue(RetTy); 4154 } 4155 } 4156 4157 // Handle fcmp with constant RHS. 4158 if (C) { 4159 // TODO: If we always required a context function, we wouldn't need to 4160 // special case nans. 4161 if (C->isNaN()) 4162 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4163 4164 // TODO: Need version fcmpToClassTest which returns implied class when the 4165 // compare isn't a complete class test. e.g. > 1.0 implies fcPositive, but 4166 // isn't implementable as a class call. 4167 if (C->isNegative() && !C->isNegZero()) { 4168 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4169 4170 // TODO: We can catch more cases by using a range check rather than 4171 // relying on CannotBeOrderedLessThanZero. 4172 switch (Pred) { 4173 case FCmpInst::FCMP_UGE: 4174 case FCmpInst::FCMP_UGT: 4175 case FCmpInst::FCMP_UNE: { 4176 KnownFPClass KnownClass = computeLHSClass(Interested); 4177 4178 // (X >= 0) implies (X > C) when (C < 0) 4179 if (KnownClass.cannotBeOrderedLessThanZero()) 4180 return getTrue(RetTy); 4181 break; 4182 } 4183 case FCmpInst::FCMP_OEQ: 4184 case FCmpInst::FCMP_OLE: 4185 case FCmpInst::FCMP_OLT: { 4186 KnownFPClass KnownClass = computeLHSClass(Interested); 4187 4188 // (X >= 0) implies !(X < C) when (C < 0) 4189 if (KnownClass.cannotBeOrderedLessThanZero()) 4190 return getFalse(RetTy); 4191 break; 4192 } 4193 default: 4194 break; 4195 } 4196 } 4197 // Check comparison of [minnum/maxnum with constant] with other constant. 4198 const APFloat *C2; 4199 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4200 *C2 < *C) || 4201 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4202 *C2 > *C)) { 4203 bool IsMaxNum = 4204 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4205 // The ordered relationship and minnum/maxnum guarantee that we do not 4206 // have NaN constants, so ordered/unordered preds are handled the same. 4207 switch (Pred) { 4208 case FCmpInst::FCMP_OEQ: 4209 case FCmpInst::FCMP_UEQ: 4210 // minnum(X, LesserC) == C --> false 4211 // maxnum(X, GreaterC) == C --> false 4212 return getFalse(RetTy); 4213 case FCmpInst::FCMP_ONE: 4214 case FCmpInst::FCMP_UNE: 4215 // minnum(X, LesserC) != C --> true 4216 // maxnum(X, GreaterC) != C --> true 4217 return getTrue(RetTy); 4218 case FCmpInst::FCMP_OGE: 4219 case FCmpInst::FCMP_UGE: 4220 case FCmpInst::FCMP_OGT: 4221 case FCmpInst::FCMP_UGT: 4222 // minnum(X, LesserC) >= C --> false 4223 // minnum(X, LesserC) > C --> false 4224 // maxnum(X, GreaterC) >= C --> true 4225 // maxnum(X, GreaterC) > C --> true 4226 return ConstantInt::get(RetTy, IsMaxNum); 4227 case FCmpInst::FCMP_OLE: 4228 case FCmpInst::FCMP_ULE: 4229 case FCmpInst::FCMP_OLT: 4230 case FCmpInst::FCMP_ULT: 4231 // minnum(X, LesserC) <= C --> true 4232 // minnum(X, LesserC) < C --> true 4233 // maxnum(X, GreaterC) <= C --> false 4234 // maxnum(X, GreaterC) < C --> false 4235 return ConstantInt::get(RetTy, !IsMaxNum); 4236 default: 4237 // TRUE/FALSE/ORD/UNO should be handled before this. 4238 llvm_unreachable("Unexpected fcmp predicate"); 4239 } 4240 } 4241 } 4242 4243 // TODO: Could fold this with above if there were a matcher which returned all 4244 // classes in a non-splat vector. 4245 if (match(RHS, m_AnyZeroFP())) { 4246 switch (Pred) { 4247 case FCmpInst::FCMP_OGE: 4248 case FCmpInst::FCMP_ULT: { 4249 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4250 if (!FMF.noNaNs()) 4251 Interested |= fcNan; 4252 4253 KnownFPClass Known = computeLHSClass(Interested); 4254 4255 // Positive or zero X >= 0.0 --> true 4256 // Positive or zero X < 0.0 --> false 4257 if ((FMF.noNaNs() || Known.isKnownNeverNaN()) && 4258 Known.cannotBeOrderedLessThanZero()) 4259 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4260 break; 4261 } 4262 case FCmpInst::FCMP_UGE: 4263 case FCmpInst::FCMP_OLT: { 4264 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4265 KnownFPClass Known = computeLHSClass(Interested); 4266 4267 // Positive or zero or nan X >= 0.0 --> true 4268 // Positive or zero or nan X < 0.0 --> false 4269 if (Known.cannotBeOrderedLessThanZero()) 4270 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4271 break; 4272 } 4273 default: 4274 break; 4275 } 4276 } 4277 4278 // If the comparison is with the result of a select instruction, check whether 4279 // comparing with either branch of the select always yields the same value. 4280 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4281 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4282 return V; 4283 4284 // If the comparison is with the result of a phi instruction, check whether 4285 // doing the compare with each incoming phi value yields a common result. 4286 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4287 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4288 return V; 4289 4290 return nullptr; 4291 } 4292 4293 Value *llvm::simplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 4294 FastMathFlags FMF, const SimplifyQuery &Q) { 4295 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4296 } 4297 4298 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4299 const SimplifyQuery &Q, 4300 bool AllowRefinement, 4301 SmallVectorImpl<Instruction *> *DropFlags, 4302 unsigned MaxRecurse) { 4303 // Trivial replacement. 4304 if (V == Op) 4305 return RepOp; 4306 4307 if (!MaxRecurse--) 4308 return nullptr; 4309 4310 // We cannot replace a constant, and shouldn't even try. 4311 if (isa<Constant>(Op)) 4312 return nullptr; 4313 4314 auto *I = dyn_cast<Instruction>(V); 4315 if (!I) 4316 return nullptr; 4317 4318 // The arguments of a phi node might refer to a value from a previous 4319 // cycle iteration. 4320 if (isa<PHINode>(I)) 4321 return nullptr; 4322 4323 if (Op->getType()->isVectorTy()) { 4324 // For vector types, the simplification must hold per-lane, so forbid 4325 // potentially cross-lane operations like shufflevector. 4326 if (!I->getType()->isVectorTy() || isa<ShuffleVectorInst>(I) || 4327 isa<CallBase>(I) || isa<BitCastInst>(I)) 4328 return nullptr; 4329 } 4330 4331 // Don't fold away llvm.is.constant checks based on assumptions. 4332 if (match(I, m_Intrinsic<Intrinsic::is_constant>())) 4333 return nullptr; 4334 4335 // Don't simplify freeze. 4336 if (isa<FreezeInst>(I)) 4337 return nullptr; 4338 4339 // Replace Op with RepOp in instruction operands. 4340 SmallVector<Value *, 8> NewOps; 4341 bool AnyReplaced = false; 4342 for (Value *InstOp : I->operands()) { 4343 if (Value *NewInstOp = simplifyWithOpReplaced( 4344 InstOp, Op, RepOp, Q, AllowRefinement, DropFlags, MaxRecurse)) { 4345 NewOps.push_back(NewInstOp); 4346 AnyReplaced = InstOp != NewInstOp; 4347 } else { 4348 NewOps.push_back(InstOp); 4349 } 4350 } 4351 4352 if (!AnyReplaced) 4353 return nullptr; 4354 4355 if (!AllowRefinement) { 4356 // General InstSimplify functions may refine the result, e.g. by returning 4357 // a constant for a potentially poison value. To avoid this, implement only 4358 // a few non-refining but profitable transforms here. 4359 4360 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4361 unsigned Opcode = BO->getOpcode(); 4362 // id op x -> x, x op id -> x 4363 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4364 return NewOps[1]; 4365 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4366 /* RHS */ true)) 4367 return NewOps[0]; 4368 4369 // x & x -> x, x | x -> x 4370 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4371 NewOps[0] == NewOps[1]) { 4372 // or disjoint x, x results in poison. 4373 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(BO)) { 4374 if (PDI->isDisjoint()) { 4375 if (!DropFlags) 4376 return nullptr; 4377 DropFlags->push_back(BO); 4378 } 4379 } 4380 return NewOps[0]; 4381 } 4382 4383 // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison 4384 // by assumption and this case never wraps, so nowrap flags can be 4385 // ignored. 4386 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) && 4387 NewOps[0] == RepOp && NewOps[1] == RepOp) 4388 return Constant::getNullValue(I->getType()); 4389 4390 // If we are substituting an absorber constant into a binop and extra 4391 // poison can't leak if we remove the select -- because both operands of 4392 // the binop are based on the same value -- then it may be safe to replace 4393 // the value with the absorber constant. Examples: 4394 // (Op == 0) ? 0 : (Op & -Op) --> Op & -Op 4395 // (Op == 0) ? 0 : (Op * (binop Op, C)) --> Op * (binop Op, C) 4396 // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op) 4397 Constant *Absorber = 4398 ConstantExpr::getBinOpAbsorber(Opcode, I->getType()); 4399 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) && 4400 impliesPoison(BO, Op)) 4401 return Absorber; 4402 } 4403 4404 if (isa<GetElementPtrInst>(I)) { 4405 // getelementptr x, 0 -> x. 4406 // This never returns poison, even if inbounds is set. 4407 if (NewOps.size() == 2 && match(NewOps[1], m_Zero())) 4408 return NewOps[0]; 4409 } 4410 } else { 4411 // The simplification queries below may return the original value. Consider: 4412 // %div = udiv i32 %arg, %arg2 4413 // %mul = mul nsw i32 %div, %arg2 4414 // %cmp = icmp eq i32 %mul, %arg 4415 // %sel = select i1 %cmp, i32 %div, i32 undef 4416 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4417 // simplifies back to %arg. This can only happen because %mul does not 4418 // dominate %div. To ensure a consistent return value contract, we make sure 4419 // that this case returns nullptr as well. 4420 auto PreventSelfSimplify = [V](Value *Simplified) { 4421 return Simplified != V ? Simplified : nullptr; 4422 }; 4423 4424 return PreventSelfSimplify( 4425 ::simplifyInstructionWithOperands(I, NewOps, Q, MaxRecurse)); 4426 } 4427 4428 // If all operands are constant after substituting Op for RepOp then we can 4429 // constant fold the instruction. 4430 SmallVector<Constant *, 8> ConstOps; 4431 for (Value *NewOp : NewOps) { 4432 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4433 ConstOps.push_back(ConstOp); 4434 else 4435 return nullptr; 4436 } 4437 4438 // Consider: 4439 // %cmp = icmp eq i32 %x, 2147483647 4440 // %add = add nsw i32 %x, 1 4441 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4442 // 4443 // We can't replace %sel with %add unless we strip away the flags (which 4444 // will be done in InstCombine). 4445 // TODO: This may be unsound, because it only catches some forms of 4446 // refinement. 4447 if (!AllowRefinement) { 4448 if (canCreatePoison(cast<Operator>(I), !DropFlags)) { 4449 // abs cannot create poison if the value is known to never be int_min. 4450 if (auto *II = dyn_cast<IntrinsicInst>(I); 4451 II && II->getIntrinsicID() == Intrinsic::abs) { 4452 if (!ConstOps[0]->isNotMinSignedValue()) 4453 return nullptr; 4454 } else 4455 return nullptr; 4456 } 4457 Constant *Res = ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4458 if (DropFlags && Res && I->hasPoisonGeneratingAnnotations()) 4459 DropFlags->push_back(I); 4460 return Res; 4461 } 4462 4463 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI); 4464 } 4465 4466 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4467 const SimplifyQuery &Q, 4468 bool AllowRefinement, 4469 SmallVectorImpl<Instruction *> *DropFlags) { 4470 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, DropFlags, 4471 RecursionLimit); 4472 } 4473 4474 /// Try to simplify a select instruction when its condition operand is an 4475 /// integer comparison where one operand of the compare is a constant. 4476 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4477 const APInt *Y, bool TrueWhenUnset) { 4478 const APInt *C; 4479 4480 // (X & Y) == 0 ? X & ~Y : X --> X 4481 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4482 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4483 *Y == ~*C) 4484 return TrueWhenUnset ? FalseVal : TrueVal; 4485 4486 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4487 // (X & Y) != 0 ? X : X & ~Y --> X 4488 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4489 *Y == ~*C) 4490 return TrueWhenUnset ? FalseVal : TrueVal; 4491 4492 if (Y->isPowerOf2()) { 4493 // (X & Y) == 0 ? X | Y : X --> X | Y 4494 // (X & Y) != 0 ? X | Y : X --> X 4495 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4496 *Y == *C) { 4497 // We can't return the or if it has the disjoint flag. 4498 if (TrueWhenUnset && cast<PossiblyDisjointInst>(TrueVal)->isDisjoint()) 4499 return nullptr; 4500 return TrueWhenUnset ? TrueVal : FalseVal; 4501 } 4502 4503 // (X & Y) == 0 ? X : X | Y --> X 4504 // (X & Y) != 0 ? X : X | Y --> X | Y 4505 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4506 *Y == *C) { 4507 // We can't return the or if it has the disjoint flag. 4508 if (!TrueWhenUnset && cast<PossiblyDisjointInst>(FalseVal)->isDisjoint()) 4509 return nullptr; 4510 return TrueWhenUnset ? TrueVal : FalseVal; 4511 } 4512 } 4513 4514 return nullptr; 4515 } 4516 4517 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, 4518 ICmpInst::Predicate Pred, Value *TVal, 4519 Value *FVal) { 4520 // Canonicalize common cmp+sel operand as CmpLHS. 4521 if (CmpRHS == TVal || CmpRHS == FVal) { 4522 std::swap(CmpLHS, CmpRHS); 4523 Pred = ICmpInst::getSwappedPredicate(Pred); 4524 } 4525 4526 // Canonicalize common cmp+sel operand as TVal. 4527 if (CmpLHS == FVal) { 4528 std::swap(TVal, FVal); 4529 Pred = ICmpInst::getInversePredicate(Pred); 4530 } 4531 4532 // A vector select may be shuffling together elements that are equivalent 4533 // based on the max/min/select relationship. 4534 Value *X = CmpLHS, *Y = CmpRHS; 4535 bool PeekedThroughSelectShuffle = false; 4536 auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal); 4537 if (Shuf && Shuf->isSelect()) { 4538 if (Shuf->getOperand(0) == Y) 4539 FVal = Shuf->getOperand(1); 4540 else if (Shuf->getOperand(1) == Y) 4541 FVal = Shuf->getOperand(0); 4542 else 4543 return nullptr; 4544 PeekedThroughSelectShuffle = true; 4545 } 4546 4547 // (X pred Y) ? X : max/min(X, Y) 4548 auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal); 4549 if (!MMI || TVal != X || 4550 !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) 4551 return nullptr; 4552 4553 // (X > Y) ? X : max(X, Y) --> max(X, Y) 4554 // (X >= Y) ? X : max(X, Y) --> max(X, Y) 4555 // (X < Y) ? X : min(X, Y) --> min(X, Y) 4556 // (X <= Y) ? X : min(X, Y) --> min(X, Y) 4557 // 4558 // The equivalence allows a vector select (shuffle) of max/min and Y. Ex: 4559 // (X > Y) ? X : (Z ? max(X, Y) : Y) 4560 // If Z is true, this reduces as above, and if Z is false: 4561 // (X > Y) ? X : Y --> max(X, Y) 4562 ICmpInst::Predicate MMPred = MMI->getPredicate(); 4563 if (MMPred == CmpInst::getStrictPredicate(Pred)) 4564 return MMI; 4565 4566 // Other transforms are not valid with a shuffle. 4567 if (PeekedThroughSelectShuffle) 4568 return nullptr; 4569 4570 // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y) 4571 if (Pred == CmpInst::ICMP_EQ) 4572 return MMI; 4573 4574 // (X != Y) ? X : max/min(X, Y) --> X 4575 if (Pred == CmpInst::ICMP_NE) 4576 return X; 4577 4578 // (X < Y) ? X : max(X, Y) --> X 4579 // (X <= Y) ? X : max(X, Y) --> X 4580 // (X > Y) ? X : min(X, Y) --> X 4581 // (X >= Y) ? X : min(X, Y) --> X 4582 ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred); 4583 if (MMPred == CmpInst::getStrictPredicate(InvPred)) 4584 return X; 4585 4586 return nullptr; 4587 } 4588 4589 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4590 /// eq/ne. 4591 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4592 ICmpInst::Predicate Pred, 4593 Value *TrueVal, Value *FalseVal) { 4594 Value *X; 4595 APInt Mask; 4596 if (!decomposeBitTestICmp(CmpLHS, CmpRHS, Pred, X, Mask)) 4597 return nullptr; 4598 4599 return simplifySelectBitTest(TrueVal, FalseVal, X, &Mask, 4600 Pred == ICmpInst::ICMP_EQ); 4601 } 4602 4603 /// Try to simplify a select instruction when its condition operand is an 4604 /// integer equality comparison. 4605 static Value *simplifySelectWithICmpEq(Value *CmpLHS, Value *CmpRHS, 4606 Value *TrueVal, Value *FalseVal, 4607 const SimplifyQuery &Q, 4608 unsigned MaxRecurse) { 4609 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q, 4610 /* AllowRefinement */ false, 4611 /* DropFlags */ nullptr, MaxRecurse) == TrueVal) 4612 return FalseVal; 4613 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4614 /* AllowRefinement */ true, 4615 /* DropFlags */ nullptr, MaxRecurse) == FalseVal) 4616 return FalseVal; 4617 4618 return nullptr; 4619 } 4620 4621 /// Try to simplify a select instruction when its condition operand is an 4622 /// integer comparison. 4623 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4624 Value *FalseVal, 4625 const SimplifyQuery &Q, 4626 unsigned MaxRecurse) { 4627 ICmpInst::Predicate Pred; 4628 Value *CmpLHS, *CmpRHS; 4629 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4630 return nullptr; 4631 4632 if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4633 return V; 4634 4635 // Canonicalize ne to eq predicate. 4636 if (Pred == ICmpInst::ICMP_NE) { 4637 Pred = ICmpInst::ICMP_EQ; 4638 std::swap(TrueVal, FalseVal); 4639 } 4640 4641 // Check for integer min/max with a limit constant: 4642 // X > MIN_INT ? X : MIN_INT --> X 4643 // X < MAX_INT ? X : MAX_INT --> X 4644 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4645 Value *X, *Y; 4646 SelectPatternFlavor SPF = 4647 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4648 X, Y) 4649 .Flavor; 4650 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4651 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4652 X->getType()->getScalarSizeInBits()); 4653 if (match(Y, m_SpecificInt(LimitC))) 4654 return X; 4655 } 4656 } 4657 4658 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4659 Value *X; 4660 const APInt *Y; 4661 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4662 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4663 /*TrueWhenUnset=*/true)) 4664 return V; 4665 4666 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4667 Value *ShAmt; 4668 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4669 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4670 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4671 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4672 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4673 return X; 4674 4675 // Test for a zero-shift-guard-op around rotates. These are used to 4676 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4677 // intrinsics do not have that problem. 4678 // We do not allow this transform for the general funnel shift case because 4679 // that would not preserve the poison safety of the original code. 4680 auto isRotate = 4681 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4682 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4683 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4684 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4685 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4686 Pred == ICmpInst::ICMP_EQ) 4687 return FalseVal; 4688 4689 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4690 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4691 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4692 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4693 return FalseVal; 4694 if (match(TrueVal, 4695 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4696 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4697 return FalseVal; 4698 } 4699 4700 // Check for other compares that behave like bit test. 4701 if (Value *V = 4702 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4703 return V; 4704 4705 // If we have a scalar equality comparison, then we know the value in one of 4706 // the arms of the select. See if substituting this value into the arm and 4707 // simplifying the result yields the same value as the other arm. 4708 if (Pred == ICmpInst::ICMP_EQ) { 4709 if (Value *V = simplifySelectWithICmpEq(CmpLHS, CmpRHS, TrueVal, FalseVal, 4710 Q, MaxRecurse)) 4711 return V; 4712 if (Value *V = simplifySelectWithICmpEq(CmpRHS, CmpLHS, TrueVal, FalseVal, 4713 Q, MaxRecurse)) 4714 return V; 4715 4716 Value *X; 4717 Value *Y; 4718 // select((X | Y) == 0 ? X : 0) --> 0 (commuted 2 ways) 4719 if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y))) && 4720 match(CmpRHS, m_Zero())) { 4721 // (X | Y) == 0 implies X == 0 and Y == 0. 4722 if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q, 4723 MaxRecurse)) 4724 return V; 4725 if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q, 4726 MaxRecurse)) 4727 return V; 4728 } 4729 4730 // select((X & Y) == -1 ? X : -1) --> -1 (commuted 2 ways) 4731 if (match(CmpLHS, m_And(m_Value(X), m_Value(Y))) && 4732 match(CmpRHS, m_AllOnes())) { 4733 // (X & Y) == -1 implies X == -1 and Y == -1. 4734 if (Value *V = simplifySelectWithICmpEq(X, CmpRHS, TrueVal, FalseVal, Q, 4735 MaxRecurse)) 4736 return V; 4737 if (Value *V = simplifySelectWithICmpEq(Y, CmpRHS, TrueVal, FalseVal, Q, 4738 MaxRecurse)) 4739 return V; 4740 } 4741 } 4742 4743 return nullptr; 4744 } 4745 4746 /// Try to simplify a select instruction when its condition operand is a 4747 /// floating-point comparison. 4748 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4749 const SimplifyQuery &Q) { 4750 FCmpInst::Predicate Pred; 4751 if (!match(Cond, m_FCmp(Pred, m_Specific(T), m_Specific(F))) && 4752 !match(Cond, m_FCmp(Pred, m_Specific(F), m_Specific(T)))) 4753 return nullptr; 4754 4755 // This transform is safe if we do not have (do not care about) -0.0 or if 4756 // at least one operand is known to not be -0.0. Otherwise, the select can 4757 // change the sign of a zero operand. 4758 bool HasNoSignedZeros = 4759 Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros(); 4760 const APFloat *C; 4761 if (HasNoSignedZeros || (match(T, m_APFloat(C)) && C->isNonZero()) || 4762 (match(F, m_APFloat(C)) && C->isNonZero())) { 4763 // (T == F) ? T : F --> F 4764 // (F == T) ? T : F --> F 4765 if (Pred == FCmpInst::FCMP_OEQ) 4766 return F; 4767 4768 // (T != F) ? T : F --> T 4769 // (F != T) ? T : F --> T 4770 if (Pred == FCmpInst::FCMP_UNE) 4771 return T; 4772 } 4773 4774 return nullptr; 4775 } 4776 4777 /// Given operands for a SelectInst, see if we can fold the result. 4778 /// If not, this returns null. 4779 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4780 const SimplifyQuery &Q, unsigned MaxRecurse) { 4781 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4782 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4783 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4784 if (Constant *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) 4785 return C; 4786 4787 // select poison, X, Y -> poison 4788 if (isa<PoisonValue>(CondC)) 4789 return PoisonValue::get(TrueVal->getType()); 4790 4791 // select undef, X, Y -> X or Y 4792 if (Q.isUndefValue(CondC)) 4793 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4794 4795 // select true, X, Y --> X 4796 // select false, X, Y --> Y 4797 // For vectors, allow undef/poison elements in the condition to match the 4798 // defined elements, so we can eliminate the select. 4799 if (match(CondC, m_One())) 4800 return TrueVal; 4801 if (match(CondC, m_Zero())) 4802 return FalseVal; 4803 } 4804 4805 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4806 "Select must have bool or bool vector condition"); 4807 assert(TrueVal->getType() == FalseVal->getType() && 4808 "Select must have same types for true/false ops"); 4809 4810 if (Cond->getType() == TrueVal->getType()) { 4811 // select i1 Cond, i1 true, i1 false --> i1 Cond 4812 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4813 return Cond; 4814 4815 // (X && Y) ? X : Y --> Y (commuted 2 ways) 4816 if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal)))) 4817 return FalseVal; 4818 4819 // (X || Y) ? X : Y --> X (commuted 2 ways) 4820 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal)))) 4821 return TrueVal; 4822 4823 // (X || Y) ? false : X --> false (commuted 2 ways) 4824 if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) && 4825 match(TrueVal, m_ZeroInt())) 4826 return ConstantInt::getFalse(Cond->getType()); 4827 4828 // Match patterns that end in logical-and. 4829 if (match(FalseVal, m_ZeroInt())) { 4830 // !(X || Y) && X --> false (commuted 2 ways) 4831 if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value())))) 4832 return ConstantInt::getFalse(Cond->getType()); 4833 // X && !(X || Y) --> false (commuted 2 ways) 4834 if (match(TrueVal, m_Not(m_c_LogicalOr(m_Specific(Cond), m_Value())))) 4835 return ConstantInt::getFalse(Cond->getType()); 4836 4837 // (X || Y) && Y --> Y (commuted 2 ways) 4838 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value()))) 4839 return TrueVal; 4840 // Y && (X || Y) --> Y (commuted 2 ways) 4841 if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value()))) 4842 return Cond; 4843 4844 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4845 Value *X, *Y; 4846 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4847 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4848 return X; 4849 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4850 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4851 return X; 4852 } 4853 4854 // Match patterns that end in logical-or. 4855 if (match(TrueVal, m_One())) { 4856 // !(X && Y) || X --> true (commuted 2 ways) 4857 if (match(Cond, m_Not(m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))) 4858 return ConstantInt::getTrue(Cond->getType()); 4859 // X || !(X && Y) --> true (commuted 2 ways) 4860 if (match(FalseVal, m_Not(m_c_LogicalAnd(m_Specific(Cond), m_Value())))) 4861 return ConstantInt::getTrue(Cond->getType()); 4862 4863 // (X && Y) || Y --> Y (commuted 2 ways) 4864 if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))) 4865 return FalseVal; 4866 // Y || (X && Y) --> Y (commuted 2 ways) 4867 if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value()))) 4868 return Cond; 4869 } 4870 } 4871 4872 // select ?, X, X -> X 4873 if (TrueVal == FalseVal) 4874 return TrueVal; 4875 4876 if (Cond == TrueVal) { 4877 // select i1 X, i1 X, i1 false --> X (logical-and) 4878 if (match(FalseVal, m_ZeroInt())) 4879 return Cond; 4880 // select i1 X, i1 X, i1 true --> true 4881 if (match(FalseVal, m_One())) 4882 return ConstantInt::getTrue(Cond->getType()); 4883 } 4884 if (Cond == FalseVal) { 4885 // select i1 X, i1 true, i1 X --> X (logical-or) 4886 if (match(TrueVal, m_One())) 4887 return Cond; 4888 // select i1 X, i1 false, i1 X --> false 4889 if (match(TrueVal, m_ZeroInt())) 4890 return ConstantInt::getFalse(Cond->getType()); 4891 } 4892 4893 // If the true or false value is poison, we can fold to the other value. 4894 // If the true or false value is undef, we can fold to the other value as 4895 // long as the other value isn't poison. 4896 // select ?, poison, X -> X 4897 // select ?, undef, X -> X 4898 if (isa<PoisonValue>(TrueVal) || 4899 (Q.isUndefValue(TrueVal) && impliesPoison(FalseVal, Cond))) 4900 return FalseVal; 4901 // select ?, X, poison -> X 4902 // select ?, X, undef -> X 4903 if (isa<PoisonValue>(FalseVal) || 4904 (Q.isUndefValue(FalseVal) && impliesPoison(TrueVal, Cond))) 4905 return TrueVal; 4906 4907 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4908 Constant *TrueC, *FalseC; 4909 if (isa<FixedVectorType>(TrueVal->getType()) && 4910 match(TrueVal, m_Constant(TrueC)) && 4911 match(FalseVal, m_Constant(FalseC))) { 4912 unsigned NumElts = 4913 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4914 SmallVector<Constant *, 16> NewC; 4915 for (unsigned i = 0; i != NumElts; ++i) { 4916 // Bail out on incomplete vector constants. 4917 Constant *TEltC = TrueC->getAggregateElement(i); 4918 Constant *FEltC = FalseC->getAggregateElement(i); 4919 if (!TEltC || !FEltC) 4920 break; 4921 4922 // If the elements match (undef or not), that value is the result. If only 4923 // one element is undef, choose the defined element as the safe result. 4924 if (TEltC == FEltC) 4925 NewC.push_back(TEltC); 4926 else if (isa<PoisonValue>(TEltC) || 4927 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4928 NewC.push_back(FEltC); 4929 else if (isa<PoisonValue>(FEltC) || 4930 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4931 NewC.push_back(TEltC); 4932 else 4933 break; 4934 } 4935 if (NewC.size() == NumElts) 4936 return ConstantVector::get(NewC); 4937 } 4938 4939 if (Value *V = 4940 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4941 return V; 4942 4943 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q)) 4944 return V; 4945 4946 if (Value *V = foldSelectWithBinaryOp(Cond, TrueVal, FalseVal)) 4947 return V; 4948 4949 std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4950 if (Imp) 4951 return *Imp ? TrueVal : FalseVal; 4952 4953 return nullptr; 4954 } 4955 4956 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4957 const SimplifyQuery &Q) { 4958 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4959 } 4960 4961 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4962 /// If not, this returns null. 4963 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, 4964 ArrayRef<Value *> Indices, GEPNoWrapFlags NW, 4965 const SimplifyQuery &Q, unsigned) { 4966 // The type of the GEP pointer operand. 4967 unsigned AS = 4968 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4969 4970 // getelementptr P -> P. 4971 if (Indices.empty()) 4972 return Ptr; 4973 4974 // Compute the (pointer) type returned by the GEP instruction. 4975 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4976 Type *GEPTy = Ptr->getType(); 4977 if (!GEPTy->isVectorTy()) { 4978 for (Value *Op : Indices) { 4979 // If one of the operands is a vector, the result type is a vector of 4980 // pointers. All vector operands must have the same number of elements. 4981 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4982 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4983 break; 4984 } 4985 } 4986 } 4987 4988 // All-zero GEP is a no-op, unless it performs a vector splat. 4989 if (Ptr->getType() == GEPTy && 4990 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4991 return Ptr; 4992 4993 // getelementptr poison, idx -> poison 4994 // getelementptr baseptr, poison -> poison 4995 if (isa<PoisonValue>(Ptr) || 4996 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 4997 return PoisonValue::get(GEPTy); 4998 4999 // getelementptr undef, idx -> undef 5000 if (Q.isUndefValue(Ptr)) 5001 return UndefValue::get(GEPTy); 5002 5003 bool IsScalableVec = 5004 SrcTy->isScalableTy() || any_of(Indices, [](const Value *V) { 5005 return isa<ScalableVectorType>(V->getType()); 5006 }); 5007 5008 if (Indices.size() == 1) { 5009 Type *Ty = SrcTy; 5010 if (!IsScalableVec && Ty->isSized()) { 5011 Value *P; 5012 uint64_t C; 5013 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 5014 // getelementptr P, N -> P if P points to a type of zero size. 5015 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 5016 return Ptr; 5017 5018 // The following transforms are only safe if the ptrtoint cast 5019 // doesn't truncate the pointers. 5020 if (Indices[0]->getType()->getScalarSizeInBits() == 5021 Q.DL.getPointerSizeInBits(AS)) { 5022 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 5023 return P->getType() == GEPTy && 5024 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 5025 }; 5026 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 5027 if (TyAllocSize == 1 && 5028 match(Indices[0], 5029 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 5030 CanSimplify()) 5031 return P; 5032 5033 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 5034 // size 1 << C. 5035 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 5036 m_PtrToInt(m_Specific(Ptr))), 5037 m_ConstantInt(C))) && 5038 TyAllocSize == 1ULL << C && CanSimplify()) 5039 return P; 5040 5041 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 5042 // size C. 5043 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 5044 m_PtrToInt(m_Specific(Ptr))), 5045 m_SpecificInt(TyAllocSize))) && 5046 CanSimplify()) 5047 return P; 5048 } 5049 } 5050 } 5051 5052 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 5053 all_of(Indices.drop_back(1), 5054 [](Value *Idx) { return match(Idx, m_Zero()); })) { 5055 unsigned IdxWidth = 5056 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 5057 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 5058 APInt BasePtrOffset(IdxWidth, 0); 5059 Value *StrippedBasePtr = 5060 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 5061 5062 // Avoid creating inttoptr of zero here: While LLVMs treatment of 5063 // inttoptr is generally conservative, this particular case is folded to 5064 // a null pointer, which will have incorrect provenance. 5065 5066 // gep (gep V, C), (sub 0, V) -> C 5067 if (match(Indices.back(), 5068 m_Neg(m_PtrToInt(m_Specific(StrippedBasePtr)))) && 5069 !BasePtrOffset.isZero()) { 5070 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 5071 return ConstantExpr::getIntToPtr(CI, GEPTy); 5072 } 5073 // gep (gep V, C), (xor V, -1) -> C-1 5074 if (match(Indices.back(), 5075 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 5076 !BasePtrOffset.isOne()) { 5077 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 5078 return ConstantExpr::getIntToPtr(CI, GEPTy); 5079 } 5080 } 5081 } 5082 5083 // Check to see if this is constant foldable. 5084 if (!isa<Constant>(Ptr) || 5085 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 5086 return nullptr; 5087 5088 if (!ConstantExpr::isSupportedGetElementPtr(SrcTy)) 5089 return ConstantFoldGetElementPtr(SrcTy, cast<Constant>(Ptr), std::nullopt, 5090 Indices); 5091 5092 auto *CE = 5093 ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, NW); 5094 return ConstantFoldConstant(CE, Q.DL); 5095 } 5096 5097 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 5098 GEPNoWrapFlags NW, const SimplifyQuery &Q) { 5099 return ::simplifyGEPInst(SrcTy, Ptr, Indices, NW, Q, RecursionLimit); 5100 } 5101 5102 /// Given operands for an InsertValueInst, see if we can fold the result. 5103 /// If not, this returns null. 5104 static Value *simplifyInsertValueInst(Value *Agg, Value *Val, 5105 ArrayRef<unsigned> Idxs, 5106 const SimplifyQuery &Q, unsigned) { 5107 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 5108 if (Constant *CVal = dyn_cast<Constant>(Val)) 5109 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 5110 5111 // insertvalue x, poison, n -> x 5112 // insertvalue x, undef, n -> x if x cannot be poison 5113 if (isa<PoisonValue>(Val) || 5114 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg))) 5115 return Agg; 5116 5117 // insertvalue x, (extractvalue y, n), n 5118 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 5119 if (EV->getAggregateOperand()->getType() == Agg->getType() && 5120 EV->getIndices() == Idxs) { 5121 // insertvalue poison, (extractvalue y, n), n -> y 5122 // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison 5123 if (isa<PoisonValue>(Agg) || 5124 (Q.isUndefValue(Agg) && 5125 isGuaranteedNotToBePoison(EV->getAggregateOperand()))) 5126 return EV->getAggregateOperand(); 5127 5128 // insertvalue y, (extractvalue y, n), n -> y 5129 if (Agg == EV->getAggregateOperand()) 5130 return Agg; 5131 } 5132 5133 return nullptr; 5134 } 5135 5136 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, 5137 ArrayRef<unsigned> Idxs, 5138 const SimplifyQuery &Q) { 5139 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 5140 } 5141 5142 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 5143 const SimplifyQuery &Q) { 5144 // Try to constant fold. 5145 auto *VecC = dyn_cast<Constant>(Vec); 5146 auto *ValC = dyn_cast<Constant>(Val); 5147 auto *IdxC = dyn_cast<Constant>(Idx); 5148 if (VecC && ValC && IdxC) 5149 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 5150 5151 // For fixed-length vector, fold into poison if index is out of bounds. 5152 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 5153 if (isa<FixedVectorType>(Vec->getType()) && 5154 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 5155 return PoisonValue::get(Vec->getType()); 5156 } 5157 5158 // If index is undef, it might be out of bounds (see above case) 5159 if (Q.isUndefValue(Idx)) 5160 return PoisonValue::get(Vec->getType()); 5161 5162 // If the scalar is poison, or it is undef and there is no risk of 5163 // propagating poison from the vector value, simplify to the vector value. 5164 if (isa<PoisonValue>(Val) || 5165 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 5166 return Vec; 5167 5168 // If we are extracting a value from a vector, then inserting it into the same 5169 // place, that's the input vector: 5170 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 5171 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 5172 return Vec; 5173 5174 return nullptr; 5175 } 5176 5177 /// Given operands for an ExtractValueInst, see if we can fold the result. 5178 /// If not, this returns null. 5179 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5180 const SimplifyQuery &, unsigned) { 5181 if (auto *CAgg = dyn_cast<Constant>(Agg)) 5182 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 5183 5184 // extractvalue x, (insertvalue y, elt, n), n -> elt 5185 unsigned NumIdxs = Idxs.size(); 5186 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 5187 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 5188 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 5189 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 5190 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 5191 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 5192 Idxs.slice(0, NumCommonIdxs)) { 5193 if (NumIdxs == NumInsertValueIdxs) 5194 return IVI->getInsertedValueOperand(); 5195 break; 5196 } 5197 } 5198 5199 return nullptr; 5200 } 5201 5202 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5203 const SimplifyQuery &Q) { 5204 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 5205 } 5206 5207 /// Given operands for an ExtractElementInst, see if we can fold the result. 5208 /// If not, this returns null. 5209 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, 5210 const SimplifyQuery &Q, unsigned) { 5211 auto *VecVTy = cast<VectorType>(Vec->getType()); 5212 if (auto *CVec = dyn_cast<Constant>(Vec)) { 5213 if (auto *CIdx = dyn_cast<Constant>(Idx)) 5214 return ConstantExpr::getExtractElement(CVec, CIdx); 5215 5216 if (Q.isUndefValue(Vec)) 5217 return UndefValue::get(VecVTy->getElementType()); 5218 } 5219 5220 // An undef extract index can be arbitrarily chosen to be an out-of-range 5221 // index value, which would result in the instruction being poison. 5222 if (Q.isUndefValue(Idx)) 5223 return PoisonValue::get(VecVTy->getElementType()); 5224 5225 // If extracting a specified index from the vector, see if we can recursively 5226 // find a previously computed scalar that was inserted into the vector. 5227 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 5228 // For fixed-length vector, fold into undef if index is out of bounds. 5229 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 5230 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 5231 return PoisonValue::get(VecVTy->getElementType()); 5232 // Handle case where an element is extracted from a splat. 5233 if (IdxC->getValue().ult(MinNumElts)) 5234 if (auto *Splat = getSplatValue(Vec)) 5235 return Splat; 5236 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 5237 return Elt; 5238 } else { 5239 // extractelt x, (insertelt y, elt, n), n -> elt 5240 // If the possibly-variable indices are trivially known to be equal 5241 // (because they are the same operand) then use the value that was 5242 // inserted directly. 5243 auto *IE = dyn_cast<InsertElementInst>(Vec); 5244 if (IE && IE->getOperand(2) == Idx) 5245 return IE->getOperand(1); 5246 5247 // The index is not relevant if our vector is a splat. 5248 if (Value *Splat = getSplatValue(Vec)) 5249 return Splat; 5250 } 5251 return nullptr; 5252 } 5253 5254 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, 5255 const SimplifyQuery &Q) { 5256 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 5257 } 5258 5259 /// See if we can fold the given phi. If not, returns null. 5260 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 5261 const SimplifyQuery &Q) { 5262 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 5263 // here, because the PHI we may succeed simplifying to was not 5264 // def-reachable from the original PHI! 5265 5266 // If all of the PHI's incoming values are the same then replace the PHI node 5267 // with the common value. 5268 Value *CommonValue = nullptr; 5269 bool HasPoisonInput = false; 5270 bool HasUndefInput = false; 5271 for (Value *Incoming : IncomingValues) { 5272 // If the incoming value is the phi node itself, it can safely be skipped. 5273 if (Incoming == PN) 5274 continue; 5275 if (isa<PoisonValue>(Incoming)) { 5276 HasPoisonInput = true; 5277 continue; 5278 } 5279 if (Q.isUndefValue(Incoming)) { 5280 // Remember that we saw an undef value, but otherwise ignore them. 5281 HasUndefInput = true; 5282 continue; 5283 } 5284 if (CommonValue && Incoming != CommonValue) 5285 return nullptr; // Not the same, bail out. 5286 CommonValue = Incoming; 5287 } 5288 5289 // If CommonValue is null then all of the incoming values were either undef, 5290 // poison or equal to the phi node itself. 5291 if (!CommonValue) 5292 return HasUndefInput ? UndefValue::get(PN->getType()) 5293 : PoisonValue::get(PN->getType()); 5294 5295 if (HasPoisonInput || HasUndefInput) { 5296 // If we have a PHI node like phi(X, undef, X), where X is defined by some 5297 // instruction, we cannot return X as the result of the PHI node unless it 5298 // dominates the PHI block. 5299 return valueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : nullptr; 5300 } 5301 5302 return CommonValue; 5303 } 5304 5305 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5306 const SimplifyQuery &Q, unsigned MaxRecurse) { 5307 if (auto *C = dyn_cast<Constant>(Op)) 5308 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 5309 5310 if (auto *CI = dyn_cast<CastInst>(Op)) { 5311 auto *Src = CI->getOperand(0); 5312 Type *SrcTy = Src->getType(); 5313 Type *MidTy = CI->getType(); 5314 Type *DstTy = Ty; 5315 if (Src->getType() == Ty) { 5316 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 5317 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 5318 Type *SrcIntPtrTy = 5319 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 5320 Type *MidIntPtrTy = 5321 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 5322 Type *DstIntPtrTy = 5323 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 5324 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 5325 SrcIntPtrTy, MidIntPtrTy, 5326 DstIntPtrTy) == Instruction::BitCast) 5327 return Src; 5328 } 5329 } 5330 5331 // bitcast x -> x 5332 if (CastOpc == Instruction::BitCast) 5333 if (Op->getType() == Ty) 5334 return Op; 5335 5336 return nullptr; 5337 } 5338 5339 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5340 const SimplifyQuery &Q) { 5341 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 5342 } 5343 5344 /// For the given destination element of a shuffle, peek through shuffles to 5345 /// match a root vector source operand that contains that element in the same 5346 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 5347 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 5348 int MaskVal, Value *RootVec, 5349 unsigned MaxRecurse) { 5350 if (!MaxRecurse--) 5351 return nullptr; 5352 5353 // Bail out if any mask value is undefined. That kind of shuffle may be 5354 // simplified further based on demanded bits or other folds. 5355 if (MaskVal == -1) 5356 return nullptr; 5357 5358 // The mask value chooses which source operand we need to look at next. 5359 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 5360 int RootElt = MaskVal; 5361 Value *SourceOp = Op0; 5362 if (MaskVal >= InVecNumElts) { 5363 RootElt = MaskVal - InVecNumElts; 5364 SourceOp = Op1; 5365 } 5366 5367 // If the source operand is a shuffle itself, look through it to find the 5368 // matching root vector. 5369 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 5370 return foldIdentityShuffles( 5371 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 5372 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 5373 } 5374 5375 // The source operand is not a shuffle. Initialize the root vector value for 5376 // this shuffle if that has not been done yet. 5377 if (!RootVec) 5378 RootVec = SourceOp; 5379 5380 // Give up as soon as a source operand does not match the existing root value. 5381 if (RootVec != SourceOp) 5382 return nullptr; 5383 5384 // The element must be coming from the same lane in the source vector 5385 // (although it may have crossed lanes in intermediate shuffles). 5386 if (RootElt != DestElt) 5387 return nullptr; 5388 5389 return RootVec; 5390 } 5391 5392 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5393 ArrayRef<int> Mask, Type *RetTy, 5394 const SimplifyQuery &Q, 5395 unsigned MaxRecurse) { 5396 if (all_of(Mask, [](int Elem) { return Elem == PoisonMaskElem; })) 5397 return PoisonValue::get(RetTy); 5398 5399 auto *InVecTy = cast<VectorType>(Op0->getType()); 5400 unsigned MaskNumElts = Mask.size(); 5401 ElementCount InVecEltCount = InVecTy->getElementCount(); 5402 5403 bool Scalable = InVecEltCount.isScalable(); 5404 5405 SmallVector<int, 32> Indices; 5406 Indices.assign(Mask.begin(), Mask.end()); 5407 5408 // Canonicalization: If mask does not select elements from an input vector, 5409 // replace that input vector with poison. 5410 if (!Scalable) { 5411 bool MaskSelects0 = false, MaskSelects1 = false; 5412 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 5413 for (unsigned i = 0; i != MaskNumElts; ++i) { 5414 if (Indices[i] == -1) 5415 continue; 5416 if ((unsigned)Indices[i] < InVecNumElts) 5417 MaskSelects0 = true; 5418 else 5419 MaskSelects1 = true; 5420 } 5421 if (!MaskSelects0) 5422 Op0 = PoisonValue::get(InVecTy); 5423 if (!MaskSelects1) 5424 Op1 = PoisonValue::get(InVecTy); 5425 } 5426 5427 auto *Op0Const = dyn_cast<Constant>(Op0); 5428 auto *Op1Const = dyn_cast<Constant>(Op1); 5429 5430 // If all operands are constant, constant fold the shuffle. This 5431 // transformation depends on the value of the mask which is not known at 5432 // compile time for scalable vectors 5433 if (Op0Const && Op1Const) 5434 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 5435 5436 // Canonicalization: if only one input vector is constant, it shall be the 5437 // second one. This transformation depends on the value of the mask which 5438 // is not known at compile time for scalable vectors 5439 if (!Scalable && Op0Const && !Op1Const) { 5440 std::swap(Op0, Op1); 5441 ShuffleVectorInst::commuteShuffleMask(Indices, 5442 InVecEltCount.getKnownMinValue()); 5443 } 5444 5445 // A splat of an inserted scalar constant becomes a vector constant: 5446 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 5447 // NOTE: We may have commuted above, so analyze the updated Indices, not the 5448 // original mask constant. 5449 // NOTE: This transformation depends on the value of the mask which is not 5450 // known at compile time for scalable vectors 5451 Constant *C; 5452 ConstantInt *IndexC; 5453 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5454 m_ConstantInt(IndexC)))) { 5455 // Match a splat shuffle mask of the insert index allowing undef elements. 5456 int InsertIndex = IndexC->getZExtValue(); 5457 if (all_of(Indices, [InsertIndex](int MaskElt) { 5458 return MaskElt == InsertIndex || MaskElt == -1; 5459 })) { 5460 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5461 5462 // Shuffle mask poisons become poison constant result elements. 5463 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5464 for (unsigned i = 0; i != MaskNumElts; ++i) 5465 if (Indices[i] == -1) 5466 VecC[i] = PoisonValue::get(C->getType()); 5467 return ConstantVector::get(VecC); 5468 } 5469 } 5470 5471 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5472 // value type is same as the input vectors' type. 5473 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5474 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5475 all_equal(OpShuf->getShuffleMask())) 5476 return Op0; 5477 5478 // All remaining transformation depend on the value of the mask, which is 5479 // not known at compile time for scalable vectors. 5480 if (Scalable) 5481 return nullptr; 5482 5483 // Don't fold a shuffle with undef mask elements. This may get folded in a 5484 // better way using demanded bits or other analysis. 5485 // TODO: Should we allow this? 5486 if (is_contained(Indices, -1)) 5487 return nullptr; 5488 5489 // Check if every element of this shuffle can be mapped back to the 5490 // corresponding element of a single root vector. If so, we don't need this 5491 // shuffle. This handles simple identity shuffles as well as chains of 5492 // shuffles that may widen/narrow and/or move elements across lanes and back. 5493 Value *RootVec = nullptr; 5494 for (unsigned i = 0; i != MaskNumElts; ++i) { 5495 // Note that recursion is limited for each vector element, so if any element 5496 // exceeds the limit, this will fail to simplify. 5497 RootVec = 5498 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5499 5500 // We can't replace a widening/narrowing shuffle with one of its operands. 5501 if (!RootVec || RootVec->getType() != RetTy) 5502 return nullptr; 5503 } 5504 return RootVec; 5505 } 5506 5507 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5508 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5509 ArrayRef<int> Mask, Type *RetTy, 5510 const SimplifyQuery &Q) { 5511 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5512 } 5513 5514 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, 5515 const SimplifyQuery &Q) { 5516 if (auto *C = dyn_cast<Constant>(Op)) 5517 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5518 return nullptr; 5519 } 5520 5521 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5522 /// returns null. 5523 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5524 const SimplifyQuery &Q, unsigned MaxRecurse) { 5525 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5526 return C; 5527 5528 Value *X; 5529 // fneg (fneg X) ==> X 5530 if (match(Op, m_FNeg(m_Value(X)))) 5531 return X; 5532 5533 return nullptr; 5534 } 5535 5536 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, 5537 const SimplifyQuery &Q) { 5538 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5539 } 5540 5541 /// Try to propagate existing NaN values when possible. If not, replace the 5542 /// constant or elements in the constant with a canonical NaN. 5543 static Constant *propagateNaN(Constant *In) { 5544 Type *Ty = In->getType(); 5545 if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) { 5546 unsigned NumElts = VecTy->getNumElements(); 5547 SmallVector<Constant *, 32> NewC(NumElts); 5548 for (unsigned i = 0; i != NumElts; ++i) { 5549 Constant *EltC = In->getAggregateElement(i); 5550 // Poison elements propagate. NaN propagates except signaling is quieted. 5551 // Replace unknown or undef elements with canonical NaN. 5552 if (EltC && isa<PoisonValue>(EltC)) 5553 NewC[i] = EltC; 5554 else if (EltC && EltC->isNaN()) 5555 NewC[i] = ConstantFP::get( 5556 EltC->getType(), cast<ConstantFP>(EltC)->getValue().makeQuiet()); 5557 else 5558 NewC[i] = ConstantFP::getNaN(VecTy->getElementType()); 5559 } 5560 return ConstantVector::get(NewC); 5561 } 5562 5563 // If it is not a fixed vector, but not a simple NaN either, return a 5564 // canonical NaN. 5565 if (!In->isNaN()) 5566 return ConstantFP::getNaN(Ty); 5567 5568 // If we known this is a NaN, and it's scalable vector, we must have a splat 5569 // on our hands. Grab that before splatting a QNaN constant. 5570 if (isa<ScalableVectorType>(Ty)) { 5571 auto *Splat = In->getSplatValue(); 5572 assert(Splat && Splat->isNaN() && 5573 "Found a scalable-vector NaN but not a splat"); 5574 In = Splat; 5575 } 5576 5577 // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but 5578 // preserve the sign/payload. 5579 return ConstantFP::get(Ty, cast<ConstantFP>(In)->getValue().makeQuiet()); 5580 } 5581 5582 /// Perform folds that are common to any floating-point operation. This implies 5583 /// transforms based on poison/undef/NaN because the operation itself makes no 5584 /// difference to the result. 5585 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5586 const SimplifyQuery &Q, 5587 fp::ExceptionBehavior ExBehavior, 5588 RoundingMode Rounding) { 5589 // Poison is independent of anything else. It always propagates from an 5590 // operand to a math result. 5591 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5592 return PoisonValue::get(Ops[0]->getType()); 5593 5594 for (Value *V : Ops) { 5595 bool IsNan = match(V, m_NaN()); 5596 bool IsInf = match(V, m_Inf()); 5597 bool IsUndef = Q.isUndefValue(V); 5598 5599 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5600 // (an undef operand can be chosen to be Nan/Inf), then the result of 5601 // this operation is poison. 5602 if (FMF.noNaNs() && (IsNan || IsUndef)) 5603 return PoisonValue::get(V->getType()); 5604 if (FMF.noInfs() && (IsInf || IsUndef)) 5605 return PoisonValue::get(V->getType()); 5606 5607 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5608 // Undef does not propagate because undef means that all bits can take on 5609 // any value. If this is undef * NaN for example, then the result values 5610 // (at least the exponent bits) are limited. Assume the undef is a 5611 // canonical NaN and propagate that. 5612 if (IsUndef) 5613 return ConstantFP::getNaN(V->getType()); 5614 if (IsNan) 5615 return propagateNaN(cast<Constant>(V)); 5616 } else if (ExBehavior != fp::ebStrict) { 5617 if (IsNan) 5618 return propagateNaN(cast<Constant>(V)); 5619 } 5620 } 5621 return nullptr; 5622 } 5623 5624 /// Given operands for an FAdd, see if we can fold the result. If not, this 5625 /// returns null. 5626 static Value * 5627 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5628 const SimplifyQuery &Q, unsigned MaxRecurse, 5629 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5630 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5631 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5632 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5633 return C; 5634 5635 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5636 return C; 5637 5638 // fadd X, -0 ==> X 5639 // With strict/constrained FP, we have these possible edge cases that do 5640 // not simplify to Op0: 5641 // fadd SNaN, -0.0 --> QNaN 5642 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5643 if (canIgnoreSNaN(ExBehavior, FMF) && 5644 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5645 FMF.noSignedZeros())) 5646 if (match(Op1, m_NegZeroFP())) 5647 return Op0; 5648 5649 // fadd X, 0 ==> X, when we know X is not -0 5650 if (canIgnoreSNaN(ExBehavior, FMF)) 5651 if (match(Op1, m_PosZeroFP()) && 5652 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q))) 5653 return Op0; 5654 5655 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5656 return nullptr; 5657 5658 if (FMF.noNaNs()) { 5659 // With nnan: X + {+/-}Inf --> {+/-}Inf 5660 if (match(Op1, m_Inf())) 5661 return Op1; 5662 5663 // With nnan: -X + X --> 0.0 (and commuted variant) 5664 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5665 // Negative zeros are allowed because we always end up with positive zero: 5666 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5667 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5668 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5669 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5670 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5671 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5672 return ConstantFP::getZero(Op0->getType()); 5673 5674 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5675 match(Op1, m_FNeg(m_Specific(Op0)))) 5676 return ConstantFP::getZero(Op0->getType()); 5677 } 5678 5679 // (X - Y) + Y --> X 5680 // Y + (X - Y) --> X 5681 Value *X; 5682 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5683 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5684 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5685 return X; 5686 5687 return nullptr; 5688 } 5689 5690 /// Given operands for an FSub, see if we can fold the result. If not, this 5691 /// returns null. 5692 static Value * 5693 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5694 const SimplifyQuery &Q, unsigned MaxRecurse, 5695 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5696 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5697 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5698 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5699 return C; 5700 5701 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5702 return C; 5703 5704 // fsub X, +0 ==> X 5705 if (canIgnoreSNaN(ExBehavior, FMF) && 5706 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5707 FMF.noSignedZeros())) 5708 if (match(Op1, m_PosZeroFP())) 5709 return Op0; 5710 5711 // fsub X, -0 ==> X, when we know X is not -0 5712 if (canIgnoreSNaN(ExBehavior, FMF)) 5713 if (match(Op1, m_NegZeroFP()) && 5714 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q))) 5715 return Op0; 5716 5717 // fsub -0.0, (fsub -0.0, X) ==> X 5718 // fsub -0.0, (fneg X) ==> X 5719 Value *X; 5720 if (canIgnoreSNaN(ExBehavior, FMF)) 5721 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) 5722 return X; 5723 5724 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5725 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5726 if (canIgnoreSNaN(ExBehavior, FMF)) 5727 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5728 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5729 match(Op1, m_FNeg(m_Value(X))))) 5730 return X; 5731 5732 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5733 return nullptr; 5734 5735 if (FMF.noNaNs()) { 5736 // fsub nnan x, x ==> 0.0 5737 if (Op0 == Op1) 5738 return Constant::getNullValue(Op0->getType()); 5739 5740 // With nnan: {+/-}Inf - X --> {+/-}Inf 5741 if (match(Op0, m_Inf())) 5742 return Op0; 5743 5744 // With nnan: X - {+/-}Inf --> {-/+}Inf 5745 if (match(Op1, m_Inf())) 5746 return foldConstant(Instruction::FNeg, Op1, Q); 5747 } 5748 5749 // Y - (Y - X) --> X 5750 // (X + Y) - Y --> X 5751 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5752 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5753 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5754 return X; 5755 5756 return nullptr; 5757 } 5758 5759 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5760 const SimplifyQuery &Q, unsigned MaxRecurse, 5761 fp::ExceptionBehavior ExBehavior, 5762 RoundingMode Rounding) { 5763 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5764 return C; 5765 5766 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5767 return nullptr; 5768 5769 // Canonicalize special constants as operand 1. 5770 if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP())) 5771 std::swap(Op0, Op1); 5772 5773 // X * 1.0 --> X 5774 if (match(Op1, m_FPOne())) 5775 return Op0; 5776 5777 if (match(Op1, m_AnyZeroFP())) { 5778 // X * 0.0 --> 0.0 (with nnan and nsz) 5779 if (FMF.noNaNs() && FMF.noSignedZeros()) 5780 return ConstantFP::getZero(Op0->getType()); 5781 5782 KnownFPClass Known = 5783 computeKnownFPClass(Op0, FMF, fcInf | fcNan, /*Depth=*/0, Q); 5784 if (Known.isKnownNever(fcInf | fcNan)) { 5785 // +normal number * (-)0.0 --> (-)0.0 5786 if (Known.SignBit == false) 5787 return Op1; 5788 // -normal number * (-)0.0 --> -(-)0.0 5789 if (Known.SignBit == true) 5790 return foldConstant(Instruction::FNeg, Op1, Q); 5791 } 5792 } 5793 5794 // sqrt(X) * sqrt(X) --> X, if we can: 5795 // 1. Remove the intermediate rounding (reassociate). 5796 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5797 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5798 Value *X; 5799 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5800 FMF.noNaNs() && FMF.noSignedZeros()) 5801 return X; 5802 5803 return nullptr; 5804 } 5805 5806 /// Given the operands for an FMul, see if we can fold the result 5807 static Value * 5808 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5809 const SimplifyQuery &Q, unsigned MaxRecurse, 5810 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5811 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5812 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5813 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5814 return C; 5815 5816 // Now apply simplifications that do not require rounding. 5817 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5818 } 5819 5820 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5821 const SimplifyQuery &Q, 5822 fp::ExceptionBehavior ExBehavior, 5823 RoundingMode Rounding) { 5824 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5825 Rounding); 5826 } 5827 5828 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5829 const SimplifyQuery &Q, 5830 fp::ExceptionBehavior ExBehavior, 5831 RoundingMode Rounding) { 5832 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5833 Rounding); 5834 } 5835 5836 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5837 const SimplifyQuery &Q, 5838 fp::ExceptionBehavior ExBehavior, 5839 RoundingMode Rounding) { 5840 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5841 Rounding); 5842 } 5843 5844 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5845 const SimplifyQuery &Q, 5846 fp::ExceptionBehavior ExBehavior, 5847 RoundingMode Rounding) { 5848 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5849 Rounding); 5850 } 5851 5852 static Value * 5853 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5854 const SimplifyQuery &Q, unsigned, 5855 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5856 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5857 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5858 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5859 return C; 5860 5861 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5862 return C; 5863 5864 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5865 return nullptr; 5866 5867 // X / 1.0 -> X 5868 if (match(Op1, m_FPOne())) 5869 return Op0; 5870 5871 // 0 / X -> 0 5872 // Requires that NaNs are off (X could be zero) and signed zeroes are 5873 // ignored (X could be positive or negative, so the output sign is unknown). 5874 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5875 return ConstantFP::getZero(Op0->getType()); 5876 5877 if (FMF.noNaNs()) { 5878 // X / X -> 1.0 is legal when NaNs are ignored. 5879 // We can ignore infinities because INF/INF is NaN. 5880 if (Op0 == Op1) 5881 return ConstantFP::get(Op0->getType(), 1.0); 5882 5883 // (X * Y) / Y --> X if we can reassociate to the above form. 5884 Value *X; 5885 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5886 return X; 5887 5888 // -X / X -> -1.0 and 5889 // X / -X -> -1.0 are legal when NaNs are ignored. 5890 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5891 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5892 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5893 return ConstantFP::get(Op0->getType(), -1.0); 5894 5895 // nnan ninf X / [-]0.0 -> poison 5896 if (FMF.noInfs() && match(Op1, m_AnyZeroFP())) 5897 return PoisonValue::get(Op1->getType()); 5898 } 5899 5900 return nullptr; 5901 } 5902 5903 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5904 const SimplifyQuery &Q, 5905 fp::ExceptionBehavior ExBehavior, 5906 RoundingMode Rounding) { 5907 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5908 Rounding); 5909 } 5910 5911 static Value * 5912 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5913 const SimplifyQuery &Q, unsigned, 5914 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5915 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5916 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5917 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5918 return C; 5919 5920 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5921 return C; 5922 5923 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5924 return nullptr; 5925 5926 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5927 // The constant match may include undef elements in a vector, so return a full 5928 // zero constant as the result. 5929 if (FMF.noNaNs()) { 5930 // +0 % X -> 0 5931 if (match(Op0, m_PosZeroFP())) 5932 return ConstantFP::getZero(Op0->getType()); 5933 // -0 % X -> -0 5934 if (match(Op0, m_NegZeroFP())) 5935 return ConstantFP::getNegativeZero(Op0->getType()); 5936 } 5937 5938 return nullptr; 5939 } 5940 5941 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5942 const SimplifyQuery &Q, 5943 fp::ExceptionBehavior ExBehavior, 5944 RoundingMode Rounding) { 5945 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5946 Rounding); 5947 } 5948 5949 //=== Helper functions for higher up the class hierarchy. 5950 5951 /// Given the operand for a UnaryOperator, see if we can fold the result. 5952 /// If not, this returns null. 5953 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5954 unsigned MaxRecurse) { 5955 switch (Opcode) { 5956 case Instruction::FNeg: 5957 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5958 default: 5959 llvm_unreachable("Unexpected opcode"); 5960 } 5961 } 5962 5963 /// Given the operand for a UnaryOperator, see if we can fold the result. 5964 /// If not, this returns null. 5965 /// Try to use FastMathFlags when folding the result. 5966 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5967 const FastMathFlags &FMF, const SimplifyQuery &Q, 5968 unsigned MaxRecurse) { 5969 switch (Opcode) { 5970 case Instruction::FNeg: 5971 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5972 default: 5973 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5974 } 5975 } 5976 5977 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 5978 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 5979 } 5980 5981 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 5982 const SimplifyQuery &Q) { 5983 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 5984 } 5985 5986 /// Given operands for a BinaryOperator, see if we can fold the result. 5987 /// If not, this returns null. 5988 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 5989 const SimplifyQuery &Q, unsigned MaxRecurse) { 5990 switch (Opcode) { 5991 case Instruction::Add: 5992 return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5993 MaxRecurse); 5994 case Instruction::Sub: 5995 return simplifySubInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5996 MaxRecurse); 5997 case Instruction::Mul: 5998 return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 5999 MaxRecurse); 6000 case Instruction::SDiv: 6001 return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6002 case Instruction::UDiv: 6003 return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6004 case Instruction::SRem: 6005 return simplifySRemInst(LHS, RHS, Q, MaxRecurse); 6006 case Instruction::URem: 6007 return simplifyURemInst(LHS, RHS, Q, MaxRecurse); 6008 case Instruction::Shl: 6009 return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6010 MaxRecurse); 6011 case Instruction::LShr: 6012 return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6013 case Instruction::AShr: 6014 return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6015 case Instruction::And: 6016 return simplifyAndInst(LHS, RHS, Q, MaxRecurse); 6017 case Instruction::Or: 6018 return simplifyOrInst(LHS, RHS, Q, MaxRecurse); 6019 case Instruction::Xor: 6020 return simplifyXorInst(LHS, RHS, Q, MaxRecurse); 6021 case Instruction::FAdd: 6022 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6023 case Instruction::FSub: 6024 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6025 case Instruction::FMul: 6026 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6027 case Instruction::FDiv: 6028 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6029 case Instruction::FRem: 6030 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6031 default: 6032 llvm_unreachable("Unexpected opcode"); 6033 } 6034 } 6035 6036 /// Given operands for a BinaryOperator, see if we can fold the result. 6037 /// If not, this returns null. 6038 /// Try to use FastMathFlags when folding the result. 6039 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6040 const FastMathFlags &FMF, const SimplifyQuery &Q, 6041 unsigned MaxRecurse) { 6042 switch (Opcode) { 6043 case Instruction::FAdd: 6044 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 6045 case Instruction::FSub: 6046 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 6047 case Instruction::FMul: 6048 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 6049 case Instruction::FDiv: 6050 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 6051 default: 6052 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 6053 } 6054 } 6055 6056 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6057 const SimplifyQuery &Q) { 6058 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 6059 } 6060 6061 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6062 FastMathFlags FMF, const SimplifyQuery &Q) { 6063 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 6064 } 6065 6066 /// Given operands for a CmpInst, see if we can fold the result. 6067 static Value *simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 6068 const SimplifyQuery &Q, unsigned MaxRecurse) { 6069 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate)) 6070 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 6071 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6072 } 6073 6074 Value *llvm::simplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS, 6075 const SimplifyQuery &Q) { 6076 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 6077 } 6078 6079 static bool isIdempotent(Intrinsic::ID ID) { 6080 switch (ID) { 6081 default: 6082 return false; 6083 6084 // Unary idempotent: f(f(x)) = f(x) 6085 case Intrinsic::fabs: 6086 case Intrinsic::floor: 6087 case Intrinsic::ceil: 6088 case Intrinsic::trunc: 6089 case Intrinsic::rint: 6090 case Intrinsic::nearbyint: 6091 case Intrinsic::round: 6092 case Intrinsic::roundeven: 6093 case Intrinsic::canonicalize: 6094 case Intrinsic::arithmetic_fence: 6095 return true; 6096 } 6097 } 6098 6099 /// Return true if the intrinsic rounds a floating-point value to an integral 6100 /// floating-point value (not an integer type). 6101 static bool removesFPFraction(Intrinsic::ID ID) { 6102 switch (ID) { 6103 default: 6104 return false; 6105 6106 case Intrinsic::floor: 6107 case Intrinsic::ceil: 6108 case Intrinsic::trunc: 6109 case Intrinsic::rint: 6110 case Intrinsic::nearbyint: 6111 case Intrinsic::round: 6112 case Intrinsic::roundeven: 6113 return true; 6114 } 6115 } 6116 6117 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, 6118 const DataLayout &DL) { 6119 GlobalValue *PtrSym; 6120 APInt PtrOffset; 6121 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 6122 return nullptr; 6123 6124 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 6125 6126 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 6127 if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64) 6128 return nullptr; 6129 6130 APInt OffsetInt = OffsetConstInt->getValue().sextOrTrunc( 6131 DL.getIndexTypeSizeInBits(Ptr->getType())); 6132 if (OffsetInt.srem(4) != 0) 6133 return nullptr; 6134 6135 Constant *Loaded = 6136 ConstantFoldLoadFromConstPtr(Ptr, Int32Ty, std::move(OffsetInt), DL); 6137 if (!Loaded) 6138 return nullptr; 6139 6140 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 6141 if (!LoadedCE) 6142 return nullptr; 6143 6144 if (LoadedCE->getOpcode() == Instruction::Trunc) { 6145 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6146 if (!LoadedCE) 6147 return nullptr; 6148 } 6149 6150 if (LoadedCE->getOpcode() != Instruction::Sub) 6151 return nullptr; 6152 6153 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6154 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 6155 return nullptr; 6156 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 6157 6158 Constant *LoadedRHS = LoadedCE->getOperand(1); 6159 GlobalValue *LoadedRHSSym; 6160 APInt LoadedRHSOffset; 6161 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 6162 DL) || 6163 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 6164 return nullptr; 6165 6166 return LoadedLHSPtr; 6167 } 6168 6169 // TODO: Need to pass in FastMathFlags 6170 static Value *simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, 6171 bool IsStrict) { 6172 // ldexp(poison, x) -> poison 6173 // ldexp(x, poison) -> poison 6174 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 6175 return Op0; 6176 6177 // ldexp(undef, x) -> nan 6178 if (Q.isUndefValue(Op0)) 6179 return ConstantFP::getNaN(Op0->getType()); 6180 6181 if (!IsStrict) { 6182 // TODO: Could insert a canonicalize for strict 6183 6184 // ldexp(x, undef) -> x 6185 if (Q.isUndefValue(Op1)) 6186 return Op0; 6187 } 6188 6189 const APFloat *C = nullptr; 6190 match(Op0, PatternMatch::m_APFloat(C)); 6191 6192 // These cases should be safe, even with strictfp. 6193 // ldexp(0.0, x) -> 0.0 6194 // ldexp(-0.0, x) -> -0.0 6195 // ldexp(inf, x) -> inf 6196 // ldexp(-inf, x) -> -inf 6197 if (C && (C->isZero() || C->isInfinity())) 6198 return Op0; 6199 6200 // These are canonicalization dropping, could do it if we knew how we could 6201 // ignore denormal flushes and target handling of nan payload bits. 6202 if (IsStrict) 6203 return nullptr; 6204 6205 // TODO: Could quiet this with strictfp if the exception mode isn't strict. 6206 if (C && C->isNaN()) 6207 return ConstantFP::get(Op0->getType(), C->makeQuiet()); 6208 6209 // ldexp(x, 0) -> x 6210 6211 // TODO: Could fold this if we know the exception mode isn't 6212 // strict, we know the denormal mode and other target modes. 6213 if (match(Op1, PatternMatch::m_ZeroInt())) 6214 return Op0; 6215 6216 return nullptr; 6217 } 6218 6219 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 6220 const SimplifyQuery &Q, 6221 const CallBase *Call) { 6222 // Idempotent functions return the same result when called repeatedly. 6223 Intrinsic::ID IID = F->getIntrinsicID(); 6224 if (isIdempotent(IID)) 6225 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 6226 if (II->getIntrinsicID() == IID) 6227 return II; 6228 6229 if (removesFPFraction(IID)) { 6230 // Converting from int or calling a rounding function always results in a 6231 // finite integral number or infinity. For those inputs, rounding functions 6232 // always return the same value, so the (2nd) rounding is eliminated. Ex: 6233 // floor (sitofp x) -> sitofp x 6234 // round (ceil x) -> ceil x 6235 auto *II = dyn_cast<IntrinsicInst>(Op0); 6236 if ((II && removesFPFraction(II->getIntrinsicID())) || 6237 match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 6238 return Op0; 6239 } 6240 6241 Value *X; 6242 switch (IID) { 6243 case Intrinsic::fabs: 6244 if (computeKnownFPSignBit(Op0, /*Depth=*/0, Q) == false) 6245 return Op0; 6246 break; 6247 case Intrinsic::bswap: 6248 // bswap(bswap(x)) -> x 6249 if (match(Op0, m_BSwap(m_Value(X)))) 6250 return X; 6251 break; 6252 case Intrinsic::bitreverse: 6253 // bitreverse(bitreverse(x)) -> x 6254 if (match(Op0, m_BitReverse(m_Value(X)))) 6255 return X; 6256 break; 6257 case Intrinsic::ctpop: { 6258 // ctpop(X) -> 1 iff X is non-zero power of 2. 6259 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 6260 Q.DT)) 6261 return ConstantInt::get(Op0->getType(), 1); 6262 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 6263 // ctpop(and X, 1) --> and X, 1 6264 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 6265 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 6266 Q)) 6267 return Op0; 6268 break; 6269 } 6270 case Intrinsic::exp: 6271 // exp(log(x)) -> x 6272 if (Call->hasAllowReassoc() && 6273 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 6274 return X; 6275 break; 6276 case Intrinsic::exp2: 6277 // exp2(log2(x)) -> x 6278 if (Call->hasAllowReassoc() && 6279 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 6280 return X; 6281 break; 6282 case Intrinsic::exp10: 6283 // exp10(log10(x)) -> x 6284 if (Call->hasAllowReassoc() && 6285 match(Op0, m_Intrinsic<Intrinsic::log10>(m_Value(X)))) 6286 return X; 6287 break; 6288 case Intrinsic::log: 6289 // log(exp(x)) -> x 6290 if (Call->hasAllowReassoc() && 6291 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 6292 return X; 6293 break; 6294 case Intrinsic::log2: 6295 // log2(exp2(x)) -> x 6296 if (Call->hasAllowReassoc() && 6297 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 6298 match(Op0, 6299 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) 6300 return X; 6301 break; 6302 case Intrinsic::log10: 6303 // log10(pow(10.0, x)) -> x 6304 // log10(exp10(x)) -> x 6305 if (Call->hasAllowReassoc() && 6306 (match(Op0, m_Intrinsic<Intrinsic::exp10>(m_Value(X))) || 6307 match(Op0, 6308 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X))))) 6309 return X; 6310 break; 6311 case Intrinsic::vector_reverse: 6312 // vector.reverse(vector.reverse(x)) -> x 6313 if (match(Op0, m_VecReverse(m_Value(X)))) 6314 return X; 6315 // vector.reverse(splat(X)) -> splat(X) 6316 if (isSplatValue(Op0)) 6317 return Op0; 6318 break; 6319 case Intrinsic::frexp: { 6320 // Frexp is idempotent with the added complication of the struct return. 6321 if (match(Op0, m_ExtractValue<0>(m_Value(X)))) { 6322 if (match(X, m_Intrinsic<Intrinsic::frexp>(m_Value()))) 6323 return X; 6324 } 6325 6326 break; 6327 } 6328 default: 6329 break; 6330 } 6331 6332 return nullptr; 6333 } 6334 6335 /// Given a min/max intrinsic, see if it can be removed based on having an 6336 /// operand that is another min/max intrinsic with shared operand(s). The caller 6337 /// is expected to swap the operand arguments to handle commutation. 6338 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 6339 Value *X, *Y; 6340 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 6341 return nullptr; 6342 6343 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 6344 if (!MM0) 6345 return nullptr; 6346 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 6347 6348 if (Op1 == X || Op1 == Y || 6349 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 6350 // max (max X, Y), X --> max X, Y 6351 if (IID0 == IID) 6352 return MM0; 6353 // max (min X, Y), X --> X 6354 if (IID0 == getInverseMinMaxIntrinsic(IID)) 6355 return Op1; 6356 } 6357 return nullptr; 6358 } 6359 6360 /// Given a min/max intrinsic, see if it can be removed based on having an 6361 /// operand that is another min/max intrinsic with shared operand(s). The caller 6362 /// is expected to swap the operand arguments to handle commutation. 6363 static Value *foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, 6364 Value *Op1) { 6365 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum || 6366 IID == Intrinsic::maximum || IID == Intrinsic::minimum) && 6367 "Unsupported intrinsic"); 6368 6369 auto *M0 = dyn_cast<IntrinsicInst>(Op0); 6370 // If Op0 is not the same intrinsic as IID, do not process. 6371 // This is a difference with integer min/max handling. We do not process the 6372 // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN. 6373 if (!M0 || M0->getIntrinsicID() != IID) 6374 return nullptr; 6375 Value *X0 = M0->getOperand(0); 6376 Value *Y0 = M0->getOperand(1); 6377 // Simple case, m(m(X,Y), X) => m(X, Y) 6378 // m(m(X,Y), Y) => m(X, Y) 6379 // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN. 6380 // For minimum/maximum, Y is NaN => m(X, NaN) == NaN and m(NaN, NaN) == NaN. 6381 // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y. 6382 // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X. 6383 if (X0 == Op1 || Y0 == Op1) 6384 return M0; 6385 6386 auto *M1 = dyn_cast<IntrinsicInst>(Op1); 6387 if (!M1) 6388 return nullptr; 6389 Value *X1 = M1->getOperand(0); 6390 Value *Y1 = M1->getOperand(1); 6391 Intrinsic::ID IID1 = M1->getIntrinsicID(); 6392 // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative. 6393 // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y). 6394 // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN. 6395 // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN. 6396 // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y. 6397 // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X. 6398 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1)) 6399 if (IID1 == IID || getInverseMinMaxIntrinsic(IID1) == IID) 6400 return M0; 6401 6402 return nullptr; 6403 } 6404 6405 Value *llvm::simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, 6406 Value *Op0, Value *Op1, 6407 const SimplifyQuery &Q, 6408 const CallBase *Call) { 6409 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 6410 switch (IID) { 6411 case Intrinsic::abs: 6412 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 6413 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 6414 // on the outer abs. 6415 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 6416 return Op0; 6417 break; 6418 6419 case Intrinsic::cttz: { 6420 Value *X; 6421 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 6422 return X; 6423 break; 6424 } 6425 case Intrinsic::ctlz: { 6426 Value *X; 6427 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 6428 return X; 6429 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 6430 return Constant::getNullValue(ReturnType); 6431 break; 6432 } 6433 case Intrinsic::ptrmask: { 6434 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 6435 return PoisonValue::get(Op0->getType()); 6436 6437 // NOTE: We can't apply this simplifications based on the value of Op1 6438 // because we need to preserve provenance. 6439 if (Q.isUndefValue(Op0) || match(Op0, m_Zero())) 6440 return Constant::getNullValue(Op0->getType()); 6441 6442 assert(Op1->getType()->getScalarSizeInBits() == 6443 Q.DL.getIndexTypeSizeInBits(Op0->getType()) && 6444 "Invalid mask width"); 6445 // If index-width (mask size) is less than pointer-size then mask is 6446 // 1-extended. 6447 if (match(Op1, m_PtrToInt(m_Specific(Op0)))) 6448 return Op0; 6449 6450 // NOTE: We may have attributes associated with the return value of the 6451 // llvm.ptrmask intrinsic that will be lost when we just return the 6452 // operand. We should try to preserve them. 6453 if (match(Op1, m_AllOnes()) || Q.isUndefValue(Op1)) 6454 return Op0; 6455 6456 Constant *C; 6457 if (match(Op1, m_ImmConstant(C))) { 6458 KnownBits PtrKnown = computeKnownBits(Op0, /*Depth=*/0, Q); 6459 // See if we only masking off bits we know are already zero due to 6460 // alignment. 6461 APInt IrrelevantPtrBits = 6462 PtrKnown.Zero.zextOrTrunc(C->getType()->getScalarSizeInBits()); 6463 C = ConstantFoldBinaryOpOperands( 6464 Instruction::Or, C, ConstantInt::get(C->getType(), IrrelevantPtrBits), 6465 Q.DL); 6466 if (C != nullptr && C->isAllOnesValue()) 6467 return Op0; 6468 } 6469 break; 6470 } 6471 case Intrinsic::smax: 6472 case Intrinsic::smin: 6473 case Intrinsic::umax: 6474 case Intrinsic::umin: { 6475 // If the arguments are the same, this is a no-op. 6476 if (Op0 == Op1) 6477 return Op0; 6478 6479 // Canonicalize immediate constant operand as Op1. 6480 if (match(Op0, m_ImmConstant())) 6481 std::swap(Op0, Op1); 6482 6483 // Assume undef is the limit value. 6484 if (Q.isUndefValue(Op1)) 6485 return ConstantInt::get( 6486 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 6487 6488 const APInt *C; 6489 if (match(Op1, m_APIntAllowPoison(C))) { 6490 // Clamp to limit value. For example: 6491 // umax(i8 %x, i8 255) --> 255 6492 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 6493 return ConstantInt::get(ReturnType, *C); 6494 6495 // If the constant op is the opposite of the limit value, the other must 6496 // be larger/smaller or equal. For example: 6497 // umin(i8 %x, i8 255) --> %x 6498 if (*C == MinMaxIntrinsic::getSaturationPoint( 6499 getInverseMinMaxIntrinsic(IID), BitWidth)) 6500 return Op0; 6501 6502 // Remove nested call if constant operands allow it. Example: 6503 // max (max X, 7), 5 -> max X, 7 6504 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 6505 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 6506 // TODO: loosen undef/splat restrictions for vector constants. 6507 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 6508 const APInt *InnerC; 6509 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 6510 ICmpInst::compare(*InnerC, *C, 6511 ICmpInst::getNonStrictPredicate( 6512 MinMaxIntrinsic::getPredicate(IID)))) 6513 return Op0; 6514 } 6515 } 6516 6517 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 6518 return V; 6519 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 6520 return V; 6521 6522 ICmpInst::Predicate Pred = 6523 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 6524 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 6525 return Op0; 6526 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 6527 return Op1; 6528 6529 break; 6530 } 6531 case Intrinsic::scmp: 6532 case Intrinsic::ucmp: { 6533 // Fold to a constant if the relationship between operands can be 6534 // established with certainty 6535 if (isICmpTrue(CmpInst::ICMP_EQ, Op0, Op1, Q, RecursionLimit)) 6536 return Constant::getNullValue(ReturnType); 6537 6538 ICmpInst::Predicate PredGT = 6539 IID == Intrinsic::scmp ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 6540 if (isICmpTrue(PredGT, Op0, Op1, Q, RecursionLimit)) 6541 return ConstantInt::get(ReturnType, 1); 6542 6543 ICmpInst::Predicate PredLT = 6544 IID == Intrinsic::scmp ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 6545 if (isICmpTrue(PredLT, Op0, Op1, Q, RecursionLimit)) 6546 return ConstantInt::getSigned(ReturnType, -1); 6547 6548 break; 6549 } 6550 case Intrinsic::usub_with_overflow: 6551 case Intrinsic::ssub_with_overflow: 6552 // X - X -> { 0, false } 6553 // X - undef -> { 0, false } 6554 // undef - X -> { 0, false } 6555 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6556 return Constant::getNullValue(ReturnType); 6557 break; 6558 case Intrinsic::uadd_with_overflow: 6559 case Intrinsic::sadd_with_overflow: 6560 // X + undef -> { -1, false } 6561 // undef + x -> { -1, false } 6562 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 6563 return ConstantStruct::get( 6564 cast<StructType>(ReturnType), 6565 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 6566 Constant::getNullValue(ReturnType->getStructElementType(1))}); 6567 } 6568 break; 6569 case Intrinsic::umul_with_overflow: 6570 case Intrinsic::smul_with_overflow: 6571 // 0 * X -> { 0, false } 6572 // X * 0 -> { 0, false } 6573 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 6574 return Constant::getNullValue(ReturnType); 6575 // undef * X -> { 0, false } 6576 // X * undef -> { 0, false } 6577 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6578 return Constant::getNullValue(ReturnType); 6579 break; 6580 case Intrinsic::uadd_sat: 6581 // sat(MAX + X) -> MAX 6582 // sat(X + MAX) -> MAX 6583 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 6584 return Constant::getAllOnesValue(ReturnType); 6585 [[fallthrough]]; 6586 case Intrinsic::sadd_sat: 6587 // sat(X + undef) -> -1 6588 // sat(undef + X) -> -1 6589 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 6590 // For signed: Assume undef is ~X, in which case X + ~X = -1. 6591 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6592 return Constant::getAllOnesValue(ReturnType); 6593 6594 // X + 0 -> X 6595 if (match(Op1, m_Zero())) 6596 return Op0; 6597 // 0 + X -> X 6598 if (match(Op0, m_Zero())) 6599 return Op1; 6600 break; 6601 case Intrinsic::usub_sat: 6602 // sat(0 - X) -> 0, sat(X - MAX) -> 0 6603 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 6604 return Constant::getNullValue(ReturnType); 6605 [[fallthrough]]; 6606 case Intrinsic::ssub_sat: 6607 // X - X -> 0, X - undef -> 0, undef - X -> 0 6608 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6609 return Constant::getNullValue(ReturnType); 6610 // X - 0 -> X 6611 if (match(Op1, m_Zero())) 6612 return Op0; 6613 break; 6614 case Intrinsic::load_relative: 6615 if (auto *C0 = dyn_cast<Constant>(Op0)) 6616 if (auto *C1 = dyn_cast<Constant>(Op1)) 6617 return simplifyRelativeLoad(C0, C1, Q.DL); 6618 break; 6619 case Intrinsic::powi: 6620 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 6621 // powi(x, 0) -> 1.0 6622 if (Power->isZero()) 6623 return ConstantFP::get(Op0->getType(), 1.0); 6624 // powi(x, 1) -> x 6625 if (Power->isOne()) 6626 return Op0; 6627 } 6628 break; 6629 case Intrinsic::ldexp: 6630 return simplifyLdexp(Op0, Op1, Q, false); 6631 case Intrinsic::copysign: 6632 // copysign X, X --> X 6633 if (Op0 == Op1) 6634 return Op0; 6635 // copysign -X, X --> X 6636 // copysign X, -X --> -X 6637 if (match(Op0, m_FNeg(m_Specific(Op1))) || 6638 match(Op1, m_FNeg(m_Specific(Op0)))) 6639 return Op1; 6640 break; 6641 case Intrinsic::is_fpclass: { 6642 if (isa<PoisonValue>(Op0)) 6643 return PoisonValue::get(ReturnType); 6644 6645 uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue(); 6646 // If all tests are made, it doesn't matter what the value is. 6647 if ((Mask & fcAllFlags) == fcAllFlags) 6648 return ConstantInt::get(ReturnType, true); 6649 if ((Mask & fcAllFlags) == 0) 6650 return ConstantInt::get(ReturnType, false); 6651 if (Q.isUndefValue(Op0)) 6652 return UndefValue::get(ReturnType); 6653 break; 6654 } 6655 case Intrinsic::maxnum: 6656 case Intrinsic::minnum: 6657 case Intrinsic::maximum: 6658 case Intrinsic::minimum: { 6659 // If the arguments are the same, this is a no-op. 6660 if (Op0 == Op1) 6661 return Op0; 6662 6663 // Canonicalize constant operand as Op1. 6664 if (isa<Constant>(Op0)) 6665 std::swap(Op0, Op1); 6666 6667 // If an argument is undef, return the other argument. 6668 if (Q.isUndefValue(Op1)) 6669 return Op0; 6670 6671 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 6672 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 6673 6674 // minnum(X, nan) -> X 6675 // maxnum(X, nan) -> X 6676 // minimum(X, nan) -> nan 6677 // maximum(X, nan) -> nan 6678 if (match(Op1, m_NaN())) 6679 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 6680 6681 // In the following folds, inf can be replaced with the largest finite 6682 // float, if the ninf flag is set. 6683 const APFloat *C; 6684 if (match(Op1, m_APFloat(C)) && 6685 (C->isInfinity() || (Call && Call->hasNoInfs() && C->isLargest()))) { 6686 // minnum(X, -inf) -> -inf 6687 // maxnum(X, +inf) -> +inf 6688 // minimum(X, -inf) -> -inf if nnan 6689 // maximum(X, +inf) -> +inf if nnan 6690 if (C->isNegative() == IsMin && 6691 (!PropagateNaN || (Call && Call->hasNoNaNs()))) 6692 return ConstantFP::get(ReturnType, *C); 6693 6694 // minnum(X, +inf) -> X if nnan 6695 // maxnum(X, -inf) -> X if nnan 6696 // minimum(X, +inf) -> X 6697 // maximum(X, -inf) -> X 6698 if (C->isNegative() != IsMin && 6699 (PropagateNaN || (Call && Call->hasNoNaNs()))) 6700 return Op0; 6701 } 6702 6703 // Min/max of the same operation with common operand: 6704 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 6705 if (Value *V = foldMinimumMaximumSharedOp(IID, Op0, Op1)) 6706 return V; 6707 if (Value *V = foldMinimumMaximumSharedOp(IID, Op1, Op0)) 6708 return V; 6709 6710 break; 6711 } 6712 case Intrinsic::vector_extract: { 6713 // (extract_vector (insert_vector _, X, 0), 0) -> X 6714 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6715 Value *X = nullptr; 6716 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), 6717 m_Zero())) && 6718 IdxN == 0 && X->getType() == ReturnType) 6719 return X; 6720 6721 break; 6722 } 6723 default: 6724 break; 6725 } 6726 6727 return nullptr; 6728 } 6729 6730 static Value *simplifyIntrinsic(CallBase *Call, Value *Callee, 6731 ArrayRef<Value *> Args, 6732 const SimplifyQuery &Q) { 6733 // Operand bundles should not be in Args. 6734 assert(Call->arg_size() == Args.size()); 6735 unsigned NumOperands = Args.size(); 6736 Function *F = cast<Function>(Callee); 6737 Intrinsic::ID IID = F->getIntrinsicID(); 6738 6739 // Most of the intrinsics with no operands have some kind of side effect. 6740 // Don't simplify. 6741 if (!NumOperands) { 6742 switch (IID) { 6743 case Intrinsic::vscale: { 6744 Type *RetTy = F->getReturnType(); 6745 ConstantRange CR = getVScaleRange(Call->getFunction(), 64); 6746 if (const APInt *C = CR.getSingleElement()) 6747 return ConstantInt::get(RetTy, C->getZExtValue()); 6748 return nullptr; 6749 } 6750 default: 6751 return nullptr; 6752 } 6753 } 6754 6755 if (NumOperands == 1) 6756 return simplifyUnaryIntrinsic(F, Args[0], Q, Call); 6757 6758 if (NumOperands == 2) 6759 return simplifyBinaryIntrinsic(IID, F->getReturnType(), Args[0], Args[1], Q, 6760 Call); 6761 6762 // Handle intrinsics with 3 or more arguments. 6763 switch (IID) { 6764 case Intrinsic::masked_load: 6765 case Intrinsic::masked_gather: { 6766 Value *MaskArg = Args[2]; 6767 Value *PassthruArg = Args[3]; 6768 // If the mask is all zeros or undef, the "passthru" argument is the result. 6769 if (maskIsAllZeroOrUndef(MaskArg)) 6770 return PassthruArg; 6771 return nullptr; 6772 } 6773 case Intrinsic::fshl: 6774 case Intrinsic::fshr: { 6775 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2]; 6776 6777 // If both operands are undef, the result is undef. 6778 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6779 return UndefValue::get(F->getReturnType()); 6780 6781 // If shift amount is undef, assume it is zero. 6782 if (Q.isUndefValue(ShAmtArg)) 6783 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6784 6785 const APInt *ShAmtC; 6786 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6787 // If there's effectively no shift, return the 1st arg or 2nd arg. 6788 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6789 if (ShAmtC->urem(BitWidth).isZero()) 6790 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6791 } 6792 6793 // Rotating zero by anything is zero. 6794 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6795 return ConstantInt::getNullValue(F->getReturnType()); 6796 6797 // Rotating -1 by anything is -1. 6798 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6799 return ConstantInt::getAllOnesValue(F->getReturnType()); 6800 6801 return nullptr; 6802 } 6803 case Intrinsic::experimental_constrained_fma: { 6804 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6805 if (Value *V = simplifyFPOp(Args, {}, Q, *FPI->getExceptionBehavior(), 6806 *FPI->getRoundingMode())) 6807 return V; 6808 return nullptr; 6809 } 6810 case Intrinsic::fma: 6811 case Intrinsic::fmuladd: { 6812 if (Value *V = simplifyFPOp(Args, {}, Q, fp::ebIgnore, 6813 RoundingMode::NearestTiesToEven)) 6814 return V; 6815 return nullptr; 6816 } 6817 case Intrinsic::smul_fix: 6818 case Intrinsic::smul_fix_sat: { 6819 Value *Op0 = Args[0]; 6820 Value *Op1 = Args[1]; 6821 Value *Op2 = Args[2]; 6822 Type *ReturnType = F->getReturnType(); 6823 6824 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6825 // when both Op0 and Op1 are constant so we do not care about that special 6826 // case here). 6827 if (isa<Constant>(Op0)) 6828 std::swap(Op0, Op1); 6829 6830 // X * 0 -> 0 6831 if (match(Op1, m_Zero())) 6832 return Constant::getNullValue(ReturnType); 6833 6834 // X * undef -> 0 6835 if (Q.isUndefValue(Op1)) 6836 return Constant::getNullValue(ReturnType); 6837 6838 // X * (1 << Scale) -> X 6839 APInt ScaledOne = 6840 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6841 cast<ConstantInt>(Op2)->getZExtValue()); 6842 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6843 return Op0; 6844 6845 return nullptr; 6846 } 6847 case Intrinsic::vector_insert: { 6848 Value *Vec = Args[0]; 6849 Value *SubVec = Args[1]; 6850 Value *Idx = Args[2]; 6851 Type *ReturnType = F->getReturnType(); 6852 6853 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6854 // where: Y is X, or Y is undef 6855 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6856 Value *X = nullptr; 6857 if (match(SubVec, 6858 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && 6859 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6860 X->getType() == ReturnType) 6861 return X; 6862 6863 return nullptr; 6864 } 6865 case Intrinsic::experimental_constrained_fadd: { 6866 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6867 return simplifyFAddInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6868 *FPI->getExceptionBehavior(), 6869 *FPI->getRoundingMode()); 6870 } 6871 case Intrinsic::experimental_constrained_fsub: { 6872 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6873 return simplifyFSubInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6874 *FPI->getExceptionBehavior(), 6875 *FPI->getRoundingMode()); 6876 } 6877 case Intrinsic::experimental_constrained_fmul: { 6878 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6879 return simplifyFMulInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6880 *FPI->getExceptionBehavior(), 6881 *FPI->getRoundingMode()); 6882 } 6883 case Intrinsic::experimental_constrained_fdiv: { 6884 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6885 return simplifyFDivInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6886 *FPI->getExceptionBehavior(), 6887 *FPI->getRoundingMode()); 6888 } 6889 case Intrinsic::experimental_constrained_frem: { 6890 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6891 return simplifyFRemInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6892 *FPI->getExceptionBehavior(), 6893 *FPI->getRoundingMode()); 6894 } 6895 case Intrinsic::experimental_constrained_ldexp: 6896 return simplifyLdexp(Args[0], Args[1], Q, true); 6897 case Intrinsic::experimental_gc_relocate: { 6898 GCRelocateInst &GCR = *cast<GCRelocateInst>(Call); 6899 Value *DerivedPtr = GCR.getDerivedPtr(); 6900 Value *BasePtr = GCR.getBasePtr(); 6901 6902 // Undef is undef, even after relocation. 6903 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 6904 return UndefValue::get(GCR.getType()); 6905 } 6906 6907 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 6908 // For now, the assumption is that the relocation of null will be null 6909 // for most any collector. If this ever changes, a corresponding hook 6910 // should be added to GCStrategy and this code should check it first. 6911 if (isa<ConstantPointerNull>(DerivedPtr)) { 6912 // Use null-pointer of gc_relocate's type to replace it. 6913 return ConstantPointerNull::get(PT); 6914 } 6915 } 6916 return nullptr; 6917 } 6918 default: 6919 return nullptr; 6920 } 6921 } 6922 6923 static Value *tryConstantFoldCall(CallBase *Call, Value *Callee, 6924 ArrayRef<Value *> Args, 6925 const SimplifyQuery &Q) { 6926 auto *F = dyn_cast<Function>(Callee); 6927 if (!F || !canConstantFoldCallTo(Call, F)) 6928 return nullptr; 6929 6930 SmallVector<Constant *, 4> ConstantArgs; 6931 ConstantArgs.reserve(Args.size()); 6932 for (Value *Arg : Args) { 6933 Constant *C = dyn_cast<Constant>(Arg); 6934 if (!C) { 6935 if (isa<MetadataAsValue>(Arg)) 6936 continue; 6937 return nullptr; 6938 } 6939 ConstantArgs.push_back(C); 6940 } 6941 6942 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6943 } 6944 6945 Value *llvm::simplifyCall(CallBase *Call, Value *Callee, ArrayRef<Value *> Args, 6946 const SimplifyQuery &Q) { 6947 // Args should not contain operand bundle operands. 6948 assert(Call->arg_size() == Args.size()); 6949 6950 // musttail calls can only be simplified if they are also DCEd. 6951 // As we can't guarantee this here, don't simplify them. 6952 if (Call->isMustTailCall()) 6953 return nullptr; 6954 6955 // call undef -> poison 6956 // call null -> poison 6957 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6958 return PoisonValue::get(Call->getType()); 6959 6960 if (Value *V = tryConstantFoldCall(Call, Callee, Args, Q)) 6961 return V; 6962 6963 auto *F = dyn_cast<Function>(Callee); 6964 if (F && F->isIntrinsic()) 6965 if (Value *Ret = simplifyIntrinsic(Call, Callee, Args, Q)) 6966 return Ret; 6967 6968 return nullptr; 6969 } 6970 6971 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6972 assert(isa<ConstrainedFPIntrinsic>(Call)); 6973 SmallVector<Value *, 4> Args(Call->args()); 6974 if (Value *V = tryConstantFoldCall(Call, Call->getCalledOperand(), Args, Q)) 6975 return V; 6976 if (Value *Ret = simplifyIntrinsic(Call, Call->getCalledOperand(), Args, Q)) 6977 return Ret; 6978 return nullptr; 6979 } 6980 6981 /// Given operands for a Freeze, see if we can fold the result. 6982 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6983 // Use a utility function defined in ValueTracking. 6984 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 6985 return Op0; 6986 // We have room for improvement. 6987 return nullptr; 6988 } 6989 6990 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 6991 return ::simplifyFreezeInst(Op0, Q); 6992 } 6993 6994 Value *llvm::simplifyLoadInst(LoadInst *LI, Value *PtrOp, 6995 const SimplifyQuery &Q) { 6996 if (LI->isVolatile()) 6997 return nullptr; 6998 6999 if (auto *PtrOpC = dyn_cast<Constant>(PtrOp)) 7000 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL); 7001 7002 // We can only fold the load if it is from a constant global with definitive 7003 // initializer. Skip expensive logic if this is not the case. 7004 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp)); 7005 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 7006 return nullptr; 7007 7008 // If GlobalVariable's initializer is uniform, then return the constant 7009 // regardless of its offset. 7010 if (Constant *C = ConstantFoldLoadFromUniformValue(GV->getInitializer(), 7011 LI->getType(), Q.DL)) 7012 return C; 7013 7014 // Try to convert operand into a constant by stripping offsets while looking 7015 // through invariant.group intrinsics. 7016 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 7017 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 7018 Q.DL, Offset, /* AllowNonInbounts */ true, 7019 /* AllowInvariantGroup */ true); 7020 if (PtrOp == GV) { 7021 // Index size may have changed due to address space casts. 7022 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 7023 return ConstantFoldLoadFromConstPtr(GV, LI->getType(), std::move(Offset), 7024 Q.DL); 7025 } 7026 7027 return nullptr; 7028 } 7029 7030 /// See if we can compute a simplified version of this instruction. 7031 /// If not, this returns null. 7032 7033 static Value *simplifyInstructionWithOperands(Instruction *I, 7034 ArrayRef<Value *> NewOps, 7035 const SimplifyQuery &SQ, 7036 unsigned MaxRecurse) { 7037 assert(I->getFunction() && "instruction should be inserted in a function"); 7038 assert((!SQ.CxtI || SQ.CxtI->getFunction() == I->getFunction()) && 7039 "context instruction should be in the same function"); 7040 7041 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 7042 7043 switch (I->getOpcode()) { 7044 default: 7045 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 7046 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 7047 transform(NewOps, NewConstOps.begin(), 7048 [](Value *V) { return cast<Constant>(V); }); 7049 return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 7050 } 7051 return nullptr; 7052 case Instruction::FNeg: 7053 return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q, MaxRecurse); 7054 case Instruction::FAdd: 7055 return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7056 MaxRecurse); 7057 case Instruction::Add: 7058 return simplifyAddInst( 7059 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7060 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7061 case Instruction::FSub: 7062 return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7063 MaxRecurse); 7064 case Instruction::Sub: 7065 return simplifySubInst( 7066 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7067 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7068 case Instruction::FMul: 7069 return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7070 MaxRecurse); 7071 case Instruction::Mul: 7072 return simplifyMulInst( 7073 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7074 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7075 case Instruction::SDiv: 7076 return simplifySDivInst(NewOps[0], NewOps[1], 7077 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7078 MaxRecurse); 7079 case Instruction::UDiv: 7080 return simplifyUDivInst(NewOps[0], NewOps[1], 7081 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7082 MaxRecurse); 7083 case Instruction::FDiv: 7084 return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7085 MaxRecurse); 7086 case Instruction::SRem: 7087 return simplifySRemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7088 case Instruction::URem: 7089 return simplifyURemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7090 case Instruction::FRem: 7091 return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7092 MaxRecurse); 7093 case Instruction::Shl: 7094 return simplifyShlInst( 7095 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7096 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7097 case Instruction::LShr: 7098 return simplifyLShrInst(NewOps[0], NewOps[1], 7099 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7100 MaxRecurse); 7101 case Instruction::AShr: 7102 return simplifyAShrInst(NewOps[0], NewOps[1], 7103 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7104 MaxRecurse); 7105 case Instruction::And: 7106 return simplifyAndInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7107 case Instruction::Or: 7108 return simplifyOrInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7109 case Instruction::Xor: 7110 return simplifyXorInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7111 case Instruction::ICmp: 7112 return simplifyICmpInst(cast<ICmpInst>(I)->getPredicate(), NewOps[0], 7113 NewOps[1], Q, MaxRecurse); 7114 case Instruction::FCmp: 7115 return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 7116 NewOps[1], I->getFastMathFlags(), Q, MaxRecurse); 7117 case Instruction::Select: 7118 return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse); 7119 break; 7120 case Instruction::GetElementPtr: { 7121 auto *GEPI = cast<GetElementPtrInst>(I); 7122 return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 7123 ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q, 7124 MaxRecurse); 7125 } 7126 case Instruction::InsertValue: { 7127 InsertValueInst *IV = cast<InsertValueInst>(I); 7128 return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q, 7129 MaxRecurse); 7130 } 7131 case Instruction::InsertElement: 7132 return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 7133 case Instruction::ExtractValue: { 7134 auto *EVI = cast<ExtractValueInst>(I); 7135 return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q, 7136 MaxRecurse); 7137 } 7138 case Instruction::ExtractElement: 7139 return simplifyExtractElementInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7140 case Instruction::ShuffleVector: { 7141 auto *SVI = cast<ShuffleVectorInst>(I); 7142 return simplifyShuffleVectorInst(NewOps[0], NewOps[1], 7143 SVI->getShuffleMask(), SVI->getType(), Q, 7144 MaxRecurse); 7145 } 7146 case Instruction::PHI: 7147 return simplifyPHINode(cast<PHINode>(I), NewOps, Q); 7148 case Instruction::Call: 7149 return simplifyCall( 7150 cast<CallInst>(I), NewOps.back(), 7151 NewOps.drop_back(1 + cast<CallInst>(I)->getNumTotalBundleOperands()), Q); 7152 case Instruction::Freeze: 7153 return llvm::simplifyFreezeInst(NewOps[0], Q); 7154 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 7155 #include "llvm/IR/Instruction.def" 7156 #undef HANDLE_CAST_INST 7157 return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q, 7158 MaxRecurse); 7159 case Instruction::Alloca: 7160 // No simplifications for Alloca and it can't be constant folded. 7161 return nullptr; 7162 case Instruction::Load: 7163 return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 7164 } 7165 } 7166 7167 Value *llvm::simplifyInstructionWithOperands(Instruction *I, 7168 ArrayRef<Value *> NewOps, 7169 const SimplifyQuery &SQ) { 7170 assert(NewOps.size() == I->getNumOperands() && 7171 "Number of operands should match the instruction!"); 7172 return ::simplifyInstructionWithOperands(I, NewOps, SQ, RecursionLimit); 7173 } 7174 7175 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ) { 7176 SmallVector<Value *, 8> Ops(I->operands()); 7177 Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, RecursionLimit); 7178 7179 /// If called on unreachable code, the instruction may simplify to itself. 7180 /// Make life easier for users by detecting that case here, and returning a 7181 /// safe value instead. 7182 return Result == I ? PoisonValue::get(I->getType()) : Result; 7183 } 7184 7185 /// Implementation of recursive simplification through an instruction's 7186 /// uses. 7187 /// 7188 /// This is the common implementation of the recursive simplification routines. 7189 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 7190 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 7191 /// instructions to process and attempt to simplify it using 7192 /// InstructionSimplify. Recursively visited users which could not be 7193 /// simplified themselves are to the optional UnsimplifiedUsers set for 7194 /// further processing by the caller. 7195 /// 7196 /// This routine returns 'true' only when *it* simplifies something. The passed 7197 /// in simplified value does not count toward this. 7198 static bool replaceAndRecursivelySimplifyImpl( 7199 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7200 const DominatorTree *DT, AssumptionCache *AC, 7201 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 7202 bool Simplified = false; 7203 SmallSetVector<Instruction *, 8> Worklist; 7204 const DataLayout &DL = I->getDataLayout(); 7205 7206 // If we have an explicit value to collapse to, do that round of the 7207 // simplification loop by hand initially. 7208 if (SimpleV) { 7209 for (User *U : I->users()) 7210 if (U != I) 7211 Worklist.insert(cast<Instruction>(U)); 7212 7213 // Replace the instruction with its simplified value. 7214 I->replaceAllUsesWith(SimpleV); 7215 7216 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7217 I->eraseFromParent(); 7218 } else { 7219 Worklist.insert(I); 7220 } 7221 7222 // Note that we must test the size on each iteration, the worklist can grow. 7223 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 7224 I = Worklist[Idx]; 7225 7226 // See if this instruction simplifies. 7227 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); 7228 if (!SimpleV) { 7229 if (UnsimplifiedUsers) 7230 UnsimplifiedUsers->insert(I); 7231 continue; 7232 } 7233 7234 Simplified = true; 7235 7236 // Stash away all the uses of the old instruction so we can check them for 7237 // recursive simplifications after a RAUW. This is cheaper than checking all 7238 // uses of To on the recursive step in most cases. 7239 for (User *U : I->users()) 7240 Worklist.insert(cast<Instruction>(U)); 7241 7242 // Replace the instruction with its simplified value. 7243 I->replaceAllUsesWith(SimpleV); 7244 7245 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7246 I->eraseFromParent(); 7247 } 7248 return Simplified; 7249 } 7250 7251 bool llvm::replaceAndRecursivelySimplify( 7252 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7253 const DominatorTree *DT, AssumptionCache *AC, 7254 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 7255 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 7256 assert(SimpleV && "Must provide a simplified value."); 7257 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 7258 UnsimplifiedUsers); 7259 } 7260 7261 namespace llvm { 7262 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 7263 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 7264 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 7265 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7266 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 7267 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 7268 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 7269 return {F.getDataLayout(), TLI, DT, AC}; 7270 } 7271 7272 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 7273 const DataLayout &DL) { 7274 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 7275 } 7276 7277 template <class T, class... TArgs> 7278 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 7279 Function &F) { 7280 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 7281 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 7282 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 7283 return {F.getDataLayout(), TLI, DT, AC}; 7284 } 7285 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 7286 Function &); 7287 7288 bool SimplifyQuery::isUndefValue(Value *V) const { 7289 if (!CanUseUndef) 7290 return false; 7291 7292 return match(V, m_Undef()); 7293 } 7294 7295 } // namespace llvm 7296 7297 void InstSimplifyFolder::anchor() {} 7298