xref: /llvm-project/llvm/lib/Analysis/InstructionSimplify.cpp (revision 4a0d53a0b0a58a3c6980a7c551357ac71ba3db10)
1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions.  This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x").  All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/Analysis/InstructionSimplify.h"
20 
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/CmpInstAnalysis.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/InstSimplifyFolder.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/TargetLibraryInfo.h"
34 #include "llvm/Analysis/ValueTracking.h"
35 #include "llvm/Analysis/VectorUtils.h"
36 #include "llvm/IR/ConstantRange.h"
37 #include "llvm/IR/DataLayout.h"
38 #include "llvm/IR/Dominators.h"
39 #include "llvm/IR/InstrTypes.h"
40 #include "llvm/IR/Instructions.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/PatternMatch.h"
43 #include "llvm/IR/Statepoint.h"
44 #include "llvm/Support/KnownBits.h"
45 #include <algorithm>
46 #include <optional>
47 using namespace llvm;
48 using namespace llvm::PatternMatch;
49 
50 #define DEBUG_TYPE "instsimplify"
51 
52 enum { RecursionLimit = 3 };
53 
54 STATISTIC(NumExpand, "Number of expansions");
55 STATISTIC(NumReassoc, "Number of reassociations");
56 
57 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &,
58                               unsigned);
59 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned);
60 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &,
61                              const SimplifyQuery &, unsigned);
62 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &,
63                             unsigned);
64 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &,
65                             const SimplifyQuery &, unsigned);
66 static Value *simplifyCmpInst(CmpPredicate, Value *, Value *,
67                               const SimplifyQuery &, unsigned);
68 static Value *simplifyICmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS,
69                                const SimplifyQuery &Q, unsigned MaxRecurse);
70 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned);
71 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &,
72                               unsigned);
73 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &,
74                                unsigned);
75 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>,
76                               GEPNoWrapFlags, const SimplifyQuery &, unsigned);
77 static Value *simplifySelectInst(Value *, Value *, Value *,
78                                  const SimplifyQuery &, unsigned);
79 static Value *simplifyInstructionWithOperands(Instruction *I,
80                                               ArrayRef<Value *> NewOps,
81                                               const SimplifyQuery &SQ,
82                                               unsigned MaxRecurse);
83 
84 /// For a boolean type or a vector of boolean type, return false or a vector
85 /// with every element false.
86 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); }
87 
88 /// For a boolean type or a vector of boolean type, return true or a vector
89 /// with every element true.
90 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); }
91 
92 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
93 static bool isSameCompare(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS) {
94   CmpInst *Cmp = dyn_cast<CmpInst>(V);
95   if (!Cmp)
96     return false;
97   CmpInst::Predicate CPred = Cmp->getPredicate();
98   Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
99   if (CPred == Pred && CLHS == LHS && CRHS == RHS)
100     return true;
101   return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
102          CRHS == LHS;
103 }
104 
105 /// Simplify comparison with true or false branch of select:
106 ///  %sel = select i1 %cond, i32 %tv, i32 %fv
107 ///  %cmp = icmp sle i32 %sel, %rhs
108 /// Compose new comparison by substituting %sel with either %tv or %fv
109 /// and see if it simplifies.
110 static Value *simplifyCmpSelCase(CmpPredicate Pred, Value *LHS, Value *RHS,
111                                  Value *Cond, const SimplifyQuery &Q,
112                                  unsigned MaxRecurse, Constant *TrueOrFalse) {
113   Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse);
114   if (SimplifiedCmp == Cond) {
115     // %cmp simplified to the select condition (%cond).
116     return TrueOrFalse;
117   } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) {
118     // It didn't simplify. However, if composed comparison is equivalent
119     // to the select condition (%cond) then we can replace it.
120     return TrueOrFalse;
121   }
122   return SimplifiedCmp;
123 }
124 
125 /// Simplify comparison with true branch of select
126 static Value *simplifyCmpSelTrueCase(CmpPredicate Pred, Value *LHS, Value *RHS,
127                                      Value *Cond, const SimplifyQuery &Q,
128                                      unsigned MaxRecurse) {
129   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
130                             getTrue(Cond->getType()));
131 }
132 
133 /// Simplify comparison with false branch of select
134 static Value *simplifyCmpSelFalseCase(CmpPredicate Pred, Value *LHS, Value *RHS,
135                                       Value *Cond, const SimplifyQuery &Q,
136                                       unsigned MaxRecurse) {
137   return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse,
138                             getFalse(Cond->getType()));
139 }
140 
141 /// We know comparison with both branches of select can be simplified, but they
142 /// are not equal. This routine handles some logical simplifications.
143 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp,
144                                                Value *Cond,
145                                                const SimplifyQuery &Q,
146                                                unsigned MaxRecurse) {
147   // If the false value simplified to false, then the result of the compare
148   // is equal to "Cond && TCmp".  This also catches the case when the false
149   // value simplified to false and the true value to true, returning "Cond".
150   // Folding select to and/or isn't poison-safe in general; impliesPoison
151   // checks whether folding it does not convert a well-defined value into
152   // poison.
153   if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond))
154     if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse))
155       return V;
156   // If the true value simplified to true, then the result of the compare
157   // is equal to "Cond || FCmp".
158   if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond))
159     if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse))
160       return V;
161   // Finally, if the false value simplified to true and the true value to
162   // false, then the result of the compare is equal to "!Cond".
163   if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
164     if (Value *V = simplifyXorInst(
165             Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse))
166       return V;
167   return nullptr;
168 }
169 
170 /// Does the given value dominate the specified phi node?
171 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
172   Instruction *I = dyn_cast<Instruction>(V);
173   if (!I)
174     // Arguments and constants dominate all instructions.
175     return true;
176 
177   // If we have a DominatorTree then do a precise test.
178   if (DT)
179     return DT->dominates(I, P);
180 
181   // Otherwise, if the instruction is in the entry block and is not an invoke,
182   // then it obviously dominates all phi nodes.
183   if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) &&
184       !isa<CallBrInst>(I))
185     return true;
186 
187   return false;
188 }
189 
190 /// Try to simplify a binary operator of form "V op OtherOp" where V is
191 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
192 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
193 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V,
194                           Value *OtherOp, Instruction::BinaryOps OpcodeToExpand,
195                           const SimplifyQuery &Q, unsigned MaxRecurse) {
196   auto *B = dyn_cast<BinaryOperator>(V);
197   if (!B || B->getOpcode() != OpcodeToExpand)
198     return nullptr;
199   Value *B0 = B->getOperand(0), *B1 = B->getOperand(1);
200   Value *L =
201       simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse);
202   if (!L)
203     return nullptr;
204   Value *R =
205       simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse);
206   if (!R)
207     return nullptr;
208 
209   // Does the expanded pair of binops simplify to the existing binop?
210   if ((L == B0 && R == B1) ||
211       (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) {
212     ++NumExpand;
213     return B;
214   }
215 
216   // Otherwise, return "L op' R" if it simplifies.
217   Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse);
218   if (!S)
219     return nullptr;
220 
221   ++NumExpand;
222   return S;
223 }
224 
225 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
226 /// distributing op over op'.
227 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L,
228                                      Value *R,
229                                      Instruction::BinaryOps OpcodeToExpand,
230                                      const SimplifyQuery &Q,
231                                      unsigned MaxRecurse) {
232   // Recursion is always used, so bail out at once if we already hit the limit.
233   if (!MaxRecurse--)
234     return nullptr;
235 
236   if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse))
237     return V;
238   if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse))
239     return V;
240   return nullptr;
241 }
242 
243 /// Generic simplifications for associative binary operations.
244 /// Returns the simpler value, or null if none was found.
245 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode,
246                                        Value *LHS, Value *RHS,
247                                        const SimplifyQuery &Q,
248                                        unsigned MaxRecurse) {
249   assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
250 
251   // Recursion is always used, so bail out at once if we already hit the limit.
252   if (!MaxRecurse--)
253     return nullptr;
254 
255   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
256   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
257 
258   // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
259   if (Op0 && Op0->getOpcode() == Opcode) {
260     Value *A = Op0->getOperand(0);
261     Value *B = Op0->getOperand(1);
262     Value *C = RHS;
263 
264     // Does "B op C" simplify?
265     if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
266       // It does!  Return "A op V" if it simplifies or is already available.
267       // If V equals B then "A op V" is just the LHS.
268       if (V == B)
269         return LHS;
270       // Otherwise return "A op V" if it simplifies.
271       if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
272         ++NumReassoc;
273         return W;
274       }
275     }
276   }
277 
278   // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
279   if (Op1 && Op1->getOpcode() == Opcode) {
280     Value *A = LHS;
281     Value *B = Op1->getOperand(0);
282     Value *C = Op1->getOperand(1);
283 
284     // Does "A op B" simplify?
285     if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
286       // It does!  Return "V op C" if it simplifies or is already available.
287       // If V equals B then "V op C" is just the RHS.
288       if (V == B)
289         return RHS;
290       // Otherwise return "V op C" if it simplifies.
291       if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
292         ++NumReassoc;
293         return W;
294       }
295     }
296   }
297 
298   // The remaining transforms require commutativity as well as associativity.
299   if (!Instruction::isCommutative(Opcode))
300     return nullptr;
301 
302   // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
303   if (Op0 && Op0->getOpcode() == Opcode) {
304     Value *A = Op0->getOperand(0);
305     Value *B = Op0->getOperand(1);
306     Value *C = RHS;
307 
308     // Does "C op A" simplify?
309     if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
310       // It does!  Return "V op B" if it simplifies or is already available.
311       // If V equals A then "V op B" is just the LHS.
312       if (V == A)
313         return LHS;
314       // Otherwise return "V op B" if it simplifies.
315       if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
316         ++NumReassoc;
317         return W;
318       }
319     }
320   }
321 
322   // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
323   if (Op1 && Op1->getOpcode() == Opcode) {
324     Value *A = LHS;
325     Value *B = Op1->getOperand(0);
326     Value *C = Op1->getOperand(1);
327 
328     // Does "C op A" simplify?
329     if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
330       // It does!  Return "B op V" if it simplifies or is already available.
331       // If V equals C then "B op V" is just the RHS.
332       if (V == C)
333         return RHS;
334       // Otherwise return "B op V" if it simplifies.
335       if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
336         ++NumReassoc;
337         return W;
338       }
339     }
340   }
341 
342   return nullptr;
343 }
344 
345 /// In the case of a binary operation with a select instruction as an operand,
346 /// try to simplify the binop by seeing whether evaluating it on both branches
347 /// of the select results in the same value. Returns the common value if so,
348 /// otherwise returns null.
349 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS,
350                                     Value *RHS, const SimplifyQuery &Q,
351                                     unsigned MaxRecurse) {
352   // Recursion is always used, so bail out at once if we already hit the limit.
353   if (!MaxRecurse--)
354     return nullptr;
355 
356   SelectInst *SI;
357   if (isa<SelectInst>(LHS)) {
358     SI = cast<SelectInst>(LHS);
359   } else {
360     assert(isa<SelectInst>(RHS) && "No select instruction operand!");
361     SI = cast<SelectInst>(RHS);
362   }
363 
364   // Evaluate the BinOp on the true and false branches of the select.
365   Value *TV;
366   Value *FV;
367   if (SI == LHS) {
368     TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
369     FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
370   } else {
371     TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
372     FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
373   }
374 
375   // If they simplified to the same value, then return the common value.
376   // If they both failed to simplify then return null.
377   if (TV == FV)
378     return TV;
379 
380   // If one branch simplified to undef, return the other one.
381   if (TV && Q.isUndefValue(TV))
382     return FV;
383   if (FV && Q.isUndefValue(FV))
384     return TV;
385 
386   // If applying the operation did not change the true and false select values,
387   // then the result of the binop is the select itself.
388   if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
389     return SI;
390 
391   // If one branch simplified and the other did not, and the simplified
392   // value is equal to the unsimplified one, return the simplified value.
393   // For example, select (cond, X, X & Z) & Z -> X & Z.
394   if ((FV && !TV) || (TV && !FV)) {
395     // Check that the simplified value has the form "X op Y" where "op" is the
396     // same as the original operation.
397     Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
398     if (Simplified && Simplified->getOpcode() == unsigned(Opcode) &&
399         !Simplified->hasPoisonGeneratingFlags()) {
400       // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
401       // We already know that "op" is the same as for the simplified value.  See
402       // if the operands match too.  If so, return the simplified value.
403       Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
404       Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
405       Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
406       if (Simplified->getOperand(0) == UnsimplifiedLHS &&
407           Simplified->getOperand(1) == UnsimplifiedRHS)
408         return Simplified;
409       if (Simplified->isCommutative() &&
410           Simplified->getOperand(1) == UnsimplifiedLHS &&
411           Simplified->getOperand(0) == UnsimplifiedRHS)
412         return Simplified;
413     }
414   }
415 
416   return nullptr;
417 }
418 
419 /// In the case of a comparison with a select instruction, try to simplify the
420 /// comparison by seeing whether both branches of the select result in the same
421 /// value. Returns the common value if so, otherwise returns null.
422 /// For example, if we have:
423 ///  %tmp = select i1 %cmp, i32 1, i32 2
424 ///  %cmp1 = icmp sle i32 %tmp, 3
425 /// We can simplify %cmp1 to true, because both branches of select are
426 /// less than 3. We compose new comparison by substituting %tmp with both
427 /// branches of select and see if it can be simplified.
428 static Value *threadCmpOverSelect(CmpPredicate Pred, Value *LHS, Value *RHS,
429                                   const SimplifyQuery &Q, unsigned MaxRecurse) {
430   // Recursion is always used, so bail out at once if we already hit the limit.
431   if (!MaxRecurse--)
432     return nullptr;
433 
434   // Make sure the select is on the LHS.
435   if (!isa<SelectInst>(LHS)) {
436     std::swap(LHS, RHS);
437     Pred = CmpInst::getSwappedPredicate(Pred);
438   }
439   assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
440   SelectInst *SI = cast<SelectInst>(LHS);
441   Value *Cond = SI->getCondition();
442   Value *TV = SI->getTrueValue();
443   Value *FV = SI->getFalseValue();
444 
445   // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
446   // Does "cmp TV, RHS" simplify?
447   Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse);
448   if (!TCmp)
449     return nullptr;
450 
451   // Does "cmp FV, RHS" simplify?
452   Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse);
453   if (!FCmp)
454     return nullptr;
455 
456   // If both sides simplified to the same value, then use it as the result of
457   // the original comparison.
458   if (TCmp == FCmp)
459     return TCmp;
460 
461   // The remaining cases only make sense if the select condition has the same
462   // type as the result of the comparison, so bail out if this is not so.
463   if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy())
464     return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse);
465 
466   return nullptr;
467 }
468 
469 /// In the case of a binary operation with an operand that is a PHI instruction,
470 /// try to simplify the binop by seeing whether evaluating it on the incoming
471 /// phi values yields the same result for every value. If so returns the common
472 /// value, otherwise returns null.
473 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS,
474                                  Value *RHS, const SimplifyQuery &Q,
475                                  unsigned MaxRecurse) {
476   // Recursion is always used, so bail out at once if we already hit the limit.
477   if (!MaxRecurse--)
478     return nullptr;
479 
480   PHINode *PI;
481   if (isa<PHINode>(LHS)) {
482     PI = cast<PHINode>(LHS);
483     // Bail out if RHS and the phi may be mutually interdependent due to a loop.
484     if (!valueDominatesPHI(RHS, PI, Q.DT))
485       return nullptr;
486   } else {
487     assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
488     PI = cast<PHINode>(RHS);
489     // Bail out if LHS and the phi may be mutually interdependent due to a loop.
490     if (!valueDominatesPHI(LHS, PI, Q.DT))
491       return nullptr;
492   }
493 
494   // Evaluate the BinOp on the incoming phi values.
495   Value *CommonValue = nullptr;
496   for (Use &Incoming : PI->incoming_values()) {
497     // If the incoming value is the phi node itself, it can safely be skipped.
498     if (Incoming == PI)
499       continue;
500     Instruction *InTI = PI->getIncomingBlock(Incoming)->getTerminator();
501     Value *V = PI == LHS
502                    ? simplifyBinOp(Opcode, Incoming, RHS,
503                                    Q.getWithInstruction(InTI), MaxRecurse)
504                    : simplifyBinOp(Opcode, LHS, Incoming,
505                                    Q.getWithInstruction(InTI), MaxRecurse);
506     // If the operation failed to simplify, or simplified to a different value
507     // to previously, then give up.
508     if (!V || (CommonValue && V != CommonValue))
509       return nullptr;
510     CommonValue = V;
511   }
512 
513   return CommonValue;
514 }
515 
516 /// In the case of a comparison with a PHI instruction, try to simplify the
517 /// comparison by seeing whether comparing with all of the incoming phi values
518 /// yields the same result every time. If so returns the common result,
519 /// otherwise returns null.
520 static Value *threadCmpOverPHI(CmpPredicate Pred, Value *LHS, Value *RHS,
521                                const SimplifyQuery &Q, unsigned MaxRecurse) {
522   // Recursion is always used, so bail out at once if we already hit the limit.
523   if (!MaxRecurse--)
524     return nullptr;
525 
526   // Make sure the phi is on the LHS.
527   if (!isa<PHINode>(LHS)) {
528     std::swap(LHS, RHS);
529     Pred = CmpInst::getSwappedPredicate(Pred);
530   }
531   assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
532   PHINode *PI = cast<PHINode>(LHS);
533 
534   // Bail out if RHS and the phi may be mutually interdependent due to a loop.
535   if (!valueDominatesPHI(RHS, PI, Q.DT))
536     return nullptr;
537 
538   // Evaluate the BinOp on the incoming phi values.
539   Value *CommonValue = nullptr;
540   for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) {
541     Value *Incoming = PI->getIncomingValue(u);
542     Instruction *InTI = PI->getIncomingBlock(u)->getTerminator();
543     // If the incoming value is the phi node itself, it can safely be skipped.
544     if (Incoming == PI)
545       continue;
546     // Change the context instruction to the "edge" that flows into the phi.
547     // This is important because that is where incoming is actually "evaluated"
548     // even though it is used later somewhere else.
549     Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI),
550                                MaxRecurse);
551     // If the operation failed to simplify, or simplified to a different value
552     // to previously, then give up.
553     if (!V || (CommonValue && V != CommonValue))
554       return nullptr;
555     CommonValue = V;
556   }
557 
558   return CommonValue;
559 }
560 
561 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode,
562                                        Value *&Op0, Value *&Op1,
563                                        const SimplifyQuery &Q) {
564   if (auto *CLHS = dyn_cast<Constant>(Op0)) {
565     if (auto *CRHS = dyn_cast<Constant>(Op1)) {
566       switch (Opcode) {
567       default:
568         break;
569       case Instruction::FAdd:
570       case Instruction::FSub:
571       case Instruction::FMul:
572       case Instruction::FDiv:
573       case Instruction::FRem:
574         if (Q.CxtI != nullptr)
575           return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI);
576       }
577       return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL);
578     }
579 
580     // Canonicalize the constant to the RHS if this is a commutative operation.
581     if (Instruction::isCommutative(Opcode))
582       std::swap(Op0, Op1);
583   }
584   return nullptr;
585 }
586 
587 /// Given operands for an Add, see if we can fold the result.
588 /// If not, this returns null.
589 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
590                               const SimplifyQuery &Q, unsigned MaxRecurse) {
591   if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q))
592     return C;
593 
594   // X + poison -> poison
595   if (isa<PoisonValue>(Op1))
596     return Op1;
597 
598   // X + undef -> undef
599   if (Q.isUndefValue(Op1))
600     return Op1;
601 
602   // X + 0 -> X
603   if (match(Op1, m_Zero()))
604     return Op0;
605 
606   // If two operands are negative, return 0.
607   if (isKnownNegation(Op0, Op1))
608     return Constant::getNullValue(Op0->getType());
609 
610   // X + (Y - X) -> Y
611   // (Y - X) + X -> Y
612   // Eg: X + -X -> 0
613   Value *Y = nullptr;
614   if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
615       match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
616     return Y;
617 
618   // X + ~X -> -1   since   ~X = -X-1
619   Type *Ty = Op0->getType();
620   if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
621     return Constant::getAllOnesValue(Ty);
622 
623   // add nsw/nuw (xor Y, signmask), signmask --> Y
624   // The no-wrapping add guarantees that the top bit will be set by the add.
625   // Therefore, the xor must be clearing the already set sign bit of Y.
626   if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) &&
627       match(Op0, m_Xor(m_Value(Y), m_SignMask())))
628     return Y;
629 
630   // add nuw %x, -1  ->  -1, because %x can only be 0.
631   if (IsNUW && match(Op1, m_AllOnes()))
632     return Op1; // Which is -1.
633 
634   /// i1 add -> xor.
635   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
636     if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
637       return V;
638 
639   // Try some generic simplifications for associative operations.
640   if (Value *V =
641           simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse))
642     return V;
643 
644   // Threading Add over selects and phi nodes is pointless, so don't bother.
645   // Threading over the select in "A + select(cond, B, C)" means evaluating
646   // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
647   // only if B and C are equal.  If B and C are equal then (since we assume
648   // that operands have already been simplified) "select(cond, B, C)" should
649   // have been simplified to the common value of B and C already.  Analysing
650   // "A+B" and "A+C" thus gains nothing, but costs compile time.  Similarly
651   // for threading over phi nodes.
652 
653   return nullptr;
654 }
655 
656 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
657                              const SimplifyQuery &Query) {
658   return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit);
659 }
660 
661 /// Compute the base pointer and cumulative constant offsets for V.
662 ///
663 /// This strips all constant offsets off of V, leaving it the base pointer, and
664 /// accumulates the total constant offset applied in the returned constant.
665 /// It returns zero if there are no constant offsets applied.
666 ///
667 /// This is very similar to stripAndAccumulateConstantOffsets(), except it
668 /// normalizes the offset bitwidth to the stripped pointer type, not the
669 /// original pointer type.
670 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V,
671                                             bool AllowNonInbounds = false) {
672   assert(V->getType()->isPtrOrPtrVectorTy());
673 
674   APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType()));
675   V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds);
676   // As that strip may trace through `addrspacecast`, need to sext or trunc
677   // the offset calculated.
678   return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType()));
679 }
680 
681 /// Compute the constant difference between two pointer values.
682 /// If the difference is not a constant, returns zero.
683 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS,
684                                           Value *RHS) {
685   APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS);
686   APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS);
687 
688   // If LHS and RHS are not related via constant offsets to the same base
689   // value, there is nothing we can do here.
690   if (LHS != RHS)
691     return nullptr;
692 
693   // Otherwise, the difference of LHS - RHS can be computed as:
694   //    LHS - RHS
695   //  = (LHSOffset + Base) - (RHSOffset + Base)
696   //  = LHSOffset - RHSOffset
697   Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset);
698   if (auto *VecTy = dyn_cast<VectorType>(LHS->getType()))
699     Res = ConstantVector::getSplat(VecTy->getElementCount(), Res);
700   return Res;
701 }
702 
703 /// Test if there is a dominating equivalence condition for the
704 /// two operands. If there is, try to reduce the binary operation
705 /// between the two operands.
706 /// Example: Op0 - Op1 --> 0 when Op0 == Op1
707 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1,
708                               const SimplifyQuery &Q, unsigned MaxRecurse) {
709   // Recursive run it can not get any benefit
710   if (MaxRecurse != RecursionLimit)
711     return nullptr;
712 
713   std::optional<bool> Imp =
714       isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL);
715   if (Imp && *Imp) {
716     Type *Ty = Op0->getType();
717     switch (Opcode) {
718     case Instruction::Sub:
719     case Instruction::Xor:
720     case Instruction::URem:
721     case Instruction::SRem:
722       return Constant::getNullValue(Ty);
723 
724     case Instruction::SDiv:
725     case Instruction::UDiv:
726       return ConstantInt::get(Ty, 1);
727 
728     case Instruction::And:
729     case Instruction::Or:
730       // Could be either one - choose Op1 since that's more likely a constant.
731       return Op1;
732     default:
733       break;
734     }
735   }
736   return nullptr;
737 }
738 
739 /// Given operands for a Sub, see if we can fold the result.
740 /// If not, this returns null.
741 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
742                               const SimplifyQuery &Q, unsigned MaxRecurse) {
743   if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q))
744     return C;
745 
746   // X - poison -> poison
747   // poison - X -> poison
748   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
749     return PoisonValue::get(Op0->getType());
750 
751   // X - undef -> undef
752   // undef - X -> undef
753   if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
754     return UndefValue::get(Op0->getType());
755 
756   // X - 0 -> X
757   if (match(Op1, m_Zero()))
758     return Op0;
759 
760   // X - X -> 0
761   if (Op0 == Op1)
762     return Constant::getNullValue(Op0->getType());
763 
764   // Is this a negation?
765   if (match(Op0, m_Zero())) {
766     // 0 - X -> 0 if the sub is NUW.
767     if (IsNUW)
768       return Constant::getNullValue(Op0->getType());
769 
770     KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q);
771     if (Known.Zero.isMaxSignedValue()) {
772       // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
773       // Op1 must be 0 because negating the minimum signed value is undefined.
774       if (IsNSW)
775         return Constant::getNullValue(Op0->getType());
776 
777       // 0 - X -> X if X is 0 or the minimum signed value.
778       return Op1;
779     }
780   }
781 
782   // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
783   // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
784   Value *X = nullptr, *Y = nullptr, *Z = Op1;
785   if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
786     // See if "V === Y - Z" simplifies.
787     if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1))
788       // It does!  Now see if "X + V" simplifies.
789       if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) {
790         // It does, we successfully reassociated!
791         ++NumReassoc;
792         return W;
793       }
794     // See if "V === X - Z" simplifies.
795     if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
796       // It does!  Now see if "Y + V" simplifies.
797       if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) {
798         // It does, we successfully reassociated!
799         ++NumReassoc;
800         return W;
801       }
802   }
803 
804   // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
805   // For example, X - (X + 1) -> -1
806   X = Op0;
807   if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
808     // See if "V === X - Y" simplifies.
809     if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
810       // It does!  Now see if "V - Z" simplifies.
811       if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) {
812         // It does, we successfully reassociated!
813         ++NumReassoc;
814         return W;
815       }
816     // See if "V === X - Z" simplifies.
817     if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1))
818       // It does!  Now see if "V - Y" simplifies.
819       if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) {
820         // It does, we successfully reassociated!
821         ++NumReassoc;
822         return W;
823       }
824   }
825 
826   // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
827   // For example, X - (X - Y) -> Y.
828   Z = Op0;
829   if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
830     // See if "V === Z - X" simplifies.
831     if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1))
832       // It does!  Now see if "V + Y" simplifies.
833       if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) {
834         // It does, we successfully reassociated!
835         ++NumReassoc;
836         return W;
837       }
838 
839   // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
840   if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
841       match(Op1, m_Trunc(m_Value(Y))))
842     if (X->getType() == Y->getType())
843       // See if "V === X - Y" simplifies.
844       if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1))
845         // It does!  Now see if "trunc V" simplifies.
846         if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(),
847                                         Q, MaxRecurse - 1))
848           // It does, return the simplified "trunc V".
849           return W;
850 
851   // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
852   if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y))))
853     if (Constant *Result = computePointerDifference(Q.DL, X, Y))
854       return ConstantFoldIntegerCast(Result, Op0->getType(), /*IsSigned*/ true,
855                                      Q.DL);
856 
857   // i1 sub -> xor.
858   if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1))
859     if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1))
860       return V;
861 
862   // Threading Sub over selects and phi nodes is pointless, so don't bother.
863   // Threading over the select in "A - select(cond, B, C)" means evaluating
864   // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
865   // only if B and C are equal.  If B and C are equal then (since we assume
866   // that operands have already been simplified) "select(cond, B, C)" should
867   // have been simplified to the common value of B and C already.  Analysing
868   // "A-B" and "A-C" thus gains nothing, but costs compile time.  Similarly
869   // for threading over phi nodes.
870 
871   if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse))
872     return V;
873 
874   return nullptr;
875 }
876 
877 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
878                              const SimplifyQuery &Q) {
879   return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
880 }
881 
882 /// Given operands for a Mul, see if we can fold the result.
883 /// If not, this returns null.
884 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
885                               const SimplifyQuery &Q, unsigned MaxRecurse) {
886   if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q))
887     return C;
888 
889   // X * poison -> poison
890   if (isa<PoisonValue>(Op1))
891     return Op1;
892 
893   // X * undef -> 0
894   // X * 0 -> 0
895   if (Q.isUndefValue(Op1) || match(Op1, m_Zero()))
896     return Constant::getNullValue(Op0->getType());
897 
898   // X * 1 -> X
899   if (match(Op1, m_One()))
900     return Op0;
901 
902   // (X / Y) * Y -> X if the division is exact.
903   Value *X = nullptr;
904   if (Q.IIQ.UseInstrInfo &&
905       (match(Op0,
906              m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) ||     // (X / Y) * Y
907        match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y)
908     return X;
909 
910    if (Op0->getType()->isIntOrIntVectorTy(1)) {
911     // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not
912     // representable). All other cases reduce to 0, so just return 0.
913     if (IsNSW)
914       return ConstantInt::getNullValue(Op0->getType());
915 
916     // Treat "mul i1" as "and i1".
917     if (MaxRecurse)
918       if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1))
919         return V;
920   }
921 
922   // Try some generic simplifications for associative operations.
923   if (Value *V =
924           simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
925     return V;
926 
927   // Mul distributes over Add. Try some generic simplifications based on this.
928   if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1,
929                                         Instruction::Add, Q, MaxRecurse))
930     return V;
931 
932   // If the operation is with the result of a select instruction, check whether
933   // operating on either branch of the select always yields the same value.
934   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
935     if (Value *V =
936             threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
937       return V;
938 
939   // If the operation is with the result of a phi instruction, check whether
940   // operating on all incoming values of the phi always yields the same value.
941   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
942     if (Value *V =
943             threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse))
944       return V;
945 
946   return nullptr;
947 }
948 
949 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
950                              const SimplifyQuery &Q) {
951   return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
952 }
953 
954 /// Given a predicate and two operands, return true if the comparison is true.
955 /// This is a helper for div/rem simplification where we return some other value
956 /// when we can prove a relationship between the operands.
957 static bool isICmpTrue(CmpPredicate Pred, Value *LHS, Value *RHS,
958                        const SimplifyQuery &Q, unsigned MaxRecurse) {
959   Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse);
960   Constant *C = dyn_cast_or_null<Constant>(V);
961   return (C && C->isAllOnesValue());
962 }
963 
964 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
965 /// to simplify X % Y to X.
966 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q,
967                       unsigned MaxRecurse, bool IsSigned) {
968   // Recursion is always used, so bail out at once if we already hit the limit.
969   if (!MaxRecurse--)
970     return false;
971 
972   if (IsSigned) {
973     // (X srem Y) sdiv Y --> 0
974     if (match(X, m_SRem(m_Value(), m_Specific(Y))))
975       return true;
976 
977     // |X| / |Y| --> 0
978     //
979     // We require that 1 operand is a simple constant. That could be extended to
980     // 2 variables if we computed the sign bit for each.
981     //
982     // Make sure that a constant is not the minimum signed value because taking
983     // the abs() of that is undefined.
984     Type *Ty = X->getType();
985     const APInt *C;
986     if (match(X, m_APInt(C)) && !C->isMinSignedValue()) {
987       // Is the variable divisor magnitude always greater than the constant
988       // dividend magnitude?
989       // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
990       Constant *PosDividendC = ConstantInt::get(Ty, C->abs());
991       Constant *NegDividendC = ConstantInt::get(Ty, -C->abs());
992       if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) ||
993           isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse))
994         return true;
995     }
996     if (match(Y, m_APInt(C))) {
997       // Special-case: we can't take the abs() of a minimum signed value. If
998       // that's the divisor, then all we have to do is prove that the dividend
999       // is also not the minimum signed value.
1000       if (C->isMinSignedValue())
1001         return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse);
1002 
1003       // Is the variable dividend magnitude always less than the constant
1004       // divisor magnitude?
1005       // |X| < |C| --> X > -abs(C) and X < abs(C)
1006       Constant *PosDivisorC = ConstantInt::get(Ty, C->abs());
1007       Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs());
1008       if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) &&
1009           isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse))
1010         return true;
1011     }
1012     return false;
1013   }
1014 
1015   // IsSigned == false.
1016 
1017   // Is the unsigned dividend known to be less than a constant divisor?
1018   // TODO: Convert this (and above) to range analysis
1019   //      ("computeConstantRangeIncludingKnownBits")?
1020   const APInt *C;
1021   if (match(Y, m_APInt(C)) &&
1022       computeKnownBits(X, /* Depth */ 0, Q).getMaxValue().ult(*C))
1023     return true;
1024 
1025   // Try again for any divisor:
1026   // Is the dividend unsigned less than the divisor?
1027   return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse);
1028 }
1029 
1030 /// Check for common or similar folds of integer division or integer remainder.
1031 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
1032 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0,
1033                              Value *Op1, const SimplifyQuery &Q,
1034                              unsigned MaxRecurse) {
1035   bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv);
1036   bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem);
1037 
1038   Type *Ty = Op0->getType();
1039 
1040   // X / undef -> poison
1041   // X % undef -> poison
1042   if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1))
1043     return PoisonValue::get(Ty);
1044 
1045   // X / 0 -> poison
1046   // X % 0 -> poison
1047   // We don't need to preserve faults!
1048   if (match(Op1, m_Zero()))
1049     return PoisonValue::get(Ty);
1050 
1051   // poison / X -> poison
1052   // poison % X -> poison
1053   if (isa<PoisonValue>(Op0))
1054     return Op0;
1055 
1056   // undef / X -> 0
1057   // undef % X -> 0
1058   if (Q.isUndefValue(Op0))
1059     return Constant::getNullValue(Ty);
1060 
1061   // 0 / X -> 0
1062   // 0 % X -> 0
1063   if (match(Op0, m_Zero()))
1064     return Constant::getNullValue(Op0->getType());
1065 
1066   // X / X -> 1
1067   // X % X -> 0
1068   if (Op0 == Op1)
1069     return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty);
1070 
1071   KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q);
1072   // X / 0 -> poison
1073   // X % 0 -> poison
1074   // If the divisor is known to be zero, just return poison. This can happen in
1075   // some cases where its provable indirectly the denominator is zero but it's
1076   // not trivially simplifiable (i.e known zero through a phi node).
1077   if (Known.isZero())
1078     return PoisonValue::get(Ty);
1079 
1080   // X / 1 -> X
1081   // X % 1 -> 0
1082   // If the divisor can only be zero or one, we can't have division-by-zero
1083   // or remainder-by-zero, so assume the divisor is 1.
1084   //   e.g. 1, zext (i8 X), sdiv X (Y and 1)
1085   if (Known.countMinLeadingZeros() == Known.getBitWidth() - 1)
1086     return IsDiv ? Op0 : Constant::getNullValue(Ty);
1087 
1088   // If X * Y does not overflow, then:
1089   //   X * Y / Y -> X
1090   //   X * Y % Y -> 0
1091   Value *X;
1092   if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) {
1093     auto *Mul = cast<OverflowingBinaryOperator>(Op0);
1094     // The multiplication can't overflow if it is defined not to, or if
1095     // X == A / Y for some A.
1096     if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) ||
1097         (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) ||
1098         (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) ||
1099         (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) {
1100       return IsDiv ? X : Constant::getNullValue(Op0->getType());
1101     }
1102   }
1103 
1104   if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned))
1105     return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0;
1106 
1107   if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse))
1108     return V;
1109 
1110   // If the operation is with the result of a select instruction, check whether
1111   // operating on either branch of the select always yields the same value.
1112   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1113     if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1114       return V;
1115 
1116   // If the operation is with the result of a phi instruction, check whether
1117   // operating on all incoming values of the phi always yields the same value.
1118   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1119     if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1120       return V;
1121 
1122   return nullptr;
1123 }
1124 
1125 /// These are simplifications common to SDiv and UDiv.
1126 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1127                           bool IsExact, const SimplifyQuery &Q,
1128                           unsigned MaxRecurse) {
1129   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1130     return C;
1131 
1132   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
1133     return V;
1134 
1135   const APInt *DivC;
1136   if (IsExact && match(Op1, m_APInt(DivC))) {
1137     // If this is an exact divide by a constant, then the dividend (Op0) must
1138     // have at least as many trailing zeros as the divisor to divide evenly. If
1139     // it has less trailing zeros, then the result must be poison.
1140     if (DivC->countr_zero()) {
1141       KnownBits KnownOp0 = computeKnownBits(Op0, /* Depth */ 0, Q);
1142       if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero())
1143         return PoisonValue::get(Op0->getType());
1144     }
1145 
1146     // udiv exact (mul nsw X, C), C --> X
1147     // sdiv exact (mul nuw X, C), C --> X
1148     // where C is not a power of 2.
1149     Value *X;
1150     if (!DivC->isPowerOf2() &&
1151         (Opcode == Instruction::UDiv
1152              ? match(Op0, m_NSWMul(m_Value(X), m_Specific(Op1)))
1153              : match(Op0, m_NUWMul(m_Value(X), m_Specific(Op1)))))
1154       return X;
1155   }
1156 
1157   return nullptr;
1158 }
1159 
1160 /// These are simplifications common to SRem and URem.
1161 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
1162                           const SimplifyQuery &Q, unsigned MaxRecurse) {
1163   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1164     return C;
1165 
1166   if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse))
1167     return V;
1168 
1169   // (X << Y) % X -> 0
1170   if (Q.IIQ.UseInstrInfo) {
1171     if ((Opcode == Instruction::SRem &&
1172          match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) ||
1173         (Opcode == Instruction::URem &&
1174          match(Op0, m_NUWShl(m_Specific(Op1), m_Value()))))
1175       return Constant::getNullValue(Op0->getType());
1176 
1177     const APInt *C0;
1178     if (match(Op1, m_APInt(C0))) {
1179       // (srem (mul nsw X, C1), C0) -> 0 if C1 s% C0 == 0
1180       // (urem (mul nuw X, C1), C0) -> 0 if C1 u% C0 == 0
1181       if (Opcode == Instruction::SRem
1182               ? match(Op0,
1183                       m_NSWMul(m_Value(), m_CheckedInt([C0](const APInt &C) {
1184                                  return C.srem(*C0).isZero();
1185                                })))
1186               : match(Op0,
1187                       m_NUWMul(m_Value(), m_CheckedInt([C0](const APInt &C) {
1188                                  return C.urem(*C0).isZero();
1189                                }))))
1190         return Constant::getNullValue(Op0->getType());
1191     }
1192   }
1193   return nullptr;
1194 }
1195 
1196 /// Given operands for an SDiv, see if we can fold the result.
1197 /// If not, this returns null.
1198 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact,
1199                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1200   // If two operands are negated and no signed overflow, return -1.
1201   if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true))
1202     return Constant::getAllOnesValue(Op0->getType());
1203 
1204   return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1205 }
1206 
1207 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact,
1208                               const SimplifyQuery &Q) {
1209   return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit);
1210 }
1211 
1212 /// Given operands for a UDiv, see if we can fold the result.
1213 /// If not, this returns null.
1214 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact,
1215                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1216   return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse);
1217 }
1218 
1219 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact,
1220                               const SimplifyQuery &Q) {
1221   return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit);
1222 }
1223 
1224 /// Given operands for an SRem, see if we can fold the result.
1225 /// If not, this returns null.
1226 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1227                                unsigned MaxRecurse) {
1228   // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1229   // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1230   Value *X;
1231   if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))
1232     return ConstantInt::getNullValue(Op0->getType());
1233 
1234   // If the two operands are negated, return 0.
1235   if (isKnownNegation(Op0, Op1))
1236     return ConstantInt::getNullValue(Op0->getType());
1237 
1238   return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse);
1239 }
1240 
1241 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1242   return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit);
1243 }
1244 
1245 /// Given operands for a URem, see if we can fold the result.
1246 /// If not, this returns null.
1247 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
1248                                unsigned MaxRecurse) {
1249   return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse);
1250 }
1251 
1252 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
1253   return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit);
1254 }
1255 
1256 /// Returns true if a shift by \c Amount always yields poison.
1257 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) {
1258   Constant *C = dyn_cast<Constant>(Amount);
1259   if (!C)
1260     return false;
1261 
1262   // X shift by undef -> poison because it may shift by the bitwidth.
1263   if (Q.isUndefValue(C))
1264     return true;
1265 
1266   // Shifting by the bitwidth or more is poison. This covers scalars and
1267   // fixed/scalable vectors with splat constants.
1268   const APInt *AmountC;
1269   if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth()))
1270     return true;
1271 
1272   // Try harder for fixed-length vectors:
1273   // If all lanes of a vector shift are poison, the whole shift is poison.
1274   if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) {
1275     for (unsigned I = 0,
1276                   E = cast<FixedVectorType>(C->getType())->getNumElements();
1277          I != E; ++I)
1278       if (!isPoisonShift(C->getAggregateElement(I), Q))
1279         return false;
1280     return true;
1281   }
1282 
1283   return false;
1284 }
1285 
1286 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1287 /// If not, this returns null.
1288 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0,
1289                             Value *Op1, bool IsNSW, const SimplifyQuery &Q,
1290                             unsigned MaxRecurse) {
1291   if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q))
1292     return C;
1293 
1294   // poison shift by X -> poison
1295   if (isa<PoisonValue>(Op0))
1296     return Op0;
1297 
1298   // 0 shift by X -> 0
1299   if (match(Op0, m_Zero()))
1300     return Constant::getNullValue(Op0->getType());
1301 
1302   // X shift by 0 -> X
1303   // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1304   // would be poison.
1305   Value *X;
1306   if (match(Op1, m_Zero()) ||
1307       (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)))
1308     return Op0;
1309 
1310   // Fold undefined shifts.
1311   if (isPoisonShift(Op1, Q))
1312     return PoisonValue::get(Op0->getType());
1313 
1314   // If the operation is with the result of a select instruction, check whether
1315   // operating on either branch of the select always yields the same value.
1316   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
1317     if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
1318       return V;
1319 
1320   // If the operation is with the result of a phi instruction, check whether
1321   // operating on all incoming values of the phi always yields the same value.
1322   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
1323     if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
1324       return V;
1325 
1326   // If any bits in the shift amount make that value greater than or equal to
1327   // the number of bits in the type, the shift is undefined.
1328   KnownBits KnownAmt = computeKnownBits(Op1, /* Depth */ 0, Q);
1329   if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth()))
1330     return PoisonValue::get(Op0->getType());
1331 
1332   // If all valid bits in the shift amount are known zero, the first operand is
1333   // unchanged.
1334   unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth());
1335   if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits)
1336     return Op0;
1337 
1338   // Check for nsw shl leading to a poison value.
1339   if (IsNSW) {
1340     assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction");
1341     KnownBits KnownVal = computeKnownBits(Op0, /* Depth */ 0, Q);
1342     KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt);
1343 
1344     if (KnownVal.Zero.isSignBitSet())
1345       KnownShl.Zero.setSignBit();
1346     if (KnownVal.One.isSignBitSet())
1347       KnownShl.One.setSignBit();
1348 
1349     if (KnownShl.hasConflict())
1350       return PoisonValue::get(Op0->getType());
1351   }
1352 
1353   return nullptr;
1354 }
1355 
1356 /// Given operands for an LShr or AShr, see if we can fold the result.  If not,
1357 /// this returns null.
1358 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0,
1359                                  Value *Op1, bool IsExact,
1360                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
1361   if (Value *V =
1362           simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse))
1363     return V;
1364 
1365   // X >> X -> 0
1366   if (Op0 == Op1)
1367     return Constant::getNullValue(Op0->getType());
1368 
1369   // undef >> X -> 0
1370   // undef >> X -> undef (if it's exact)
1371   if (Q.isUndefValue(Op0))
1372     return IsExact ? Op0 : Constant::getNullValue(Op0->getType());
1373 
1374   // The low bit cannot be shifted out of an exact shift if it is set.
1375   // TODO: Generalize by counting trailing zeros (see fold for exact division).
1376   if (IsExact) {
1377     KnownBits Op0Known = computeKnownBits(Op0, /* Depth */ 0, Q);
1378     if (Op0Known.One[0])
1379       return Op0;
1380   }
1381 
1382   return nullptr;
1383 }
1384 
1385 /// Given operands for an Shl, see if we can fold the result.
1386 /// If not, this returns null.
1387 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
1388                               const SimplifyQuery &Q, unsigned MaxRecurse) {
1389   if (Value *V =
1390           simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse))
1391     return V;
1392 
1393   Type *Ty = Op0->getType();
1394   // undef << X -> 0
1395   // undef << X -> undef if (if it's NSW/NUW)
1396   if (Q.isUndefValue(Op0))
1397     return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Ty);
1398 
1399   // (X >> A) << A -> X
1400   Value *X;
1401   if (Q.IIQ.UseInstrInfo &&
1402       match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
1403     return X;
1404 
1405   // shl nuw i8 C, %x  ->  C  iff C has sign bit set.
1406   if (IsNUW && match(Op0, m_Negative()))
1407     return Op0;
1408   // NOTE: could use computeKnownBits() / LazyValueInfo,
1409   // but the cost-benefit analysis suggests it isn't worth it.
1410 
1411   // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees
1412   // that the sign-bit does not change, so the only input that does not
1413   // produce poison is 0, and "0 << (bitwidth-1) --> 0".
1414   if (IsNSW && IsNUW &&
1415       match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1)))
1416     return Constant::getNullValue(Ty);
1417 
1418   return nullptr;
1419 }
1420 
1421 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW,
1422                              const SimplifyQuery &Q) {
1423   return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit);
1424 }
1425 
1426 /// Given operands for an LShr, see if we can fold the result.
1427 /// If not, this returns null.
1428 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
1429                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1430   if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q,
1431                                     MaxRecurse))
1432     return V;
1433 
1434   // (X << A) >> A -> X
1435   Value *X;
1436   if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
1437     return X;
1438 
1439   // ((X << A) | Y) >> A -> X  if effective width of Y is not larger than A.
1440   // We can return X as we do in the above case since OR alters no bits in X.
1441   // SimplifyDemandedBits in InstCombine can do more general optimization for
1442   // bit manipulation. This pattern aims to provide opportunities for other
1443   // optimizers by supporting a simple but common case in InstSimplify.
1444   Value *Y;
1445   const APInt *ShRAmt, *ShLAmt;
1446   if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(ShRAmt)) &&
1447       match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) &&
1448       *ShRAmt == *ShLAmt) {
1449     const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q);
1450     const unsigned EffWidthY = YKnown.countMaxActiveBits();
1451     if (ShRAmt->uge(EffWidthY))
1452       return X;
1453   }
1454 
1455   return nullptr;
1456 }
1457 
1458 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
1459                               const SimplifyQuery &Q) {
1460   return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit);
1461 }
1462 
1463 /// Given operands for an AShr, see if we can fold the result.
1464 /// If not, this returns null.
1465 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
1466                                const SimplifyQuery &Q, unsigned MaxRecurse) {
1467   if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q,
1468                                     MaxRecurse))
1469     return V;
1470 
1471   // -1 >>a X --> -1
1472   // (-1 << X) a>> X --> -1
1473   // We could return the original -1 constant to preserve poison elements.
1474   if (match(Op0, m_AllOnes()) ||
1475       match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1))))
1476     return Constant::getAllOnesValue(Op0->getType());
1477 
1478   // (X << A) >> A -> X
1479   Value *X;
1480   if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
1481     return X;
1482 
1483   // Arithmetic shifting an all-sign-bit value is a no-op.
1484   unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
1485   if (NumSignBits == Op0->getType()->getScalarSizeInBits())
1486     return Op0;
1487 
1488   return nullptr;
1489 }
1490 
1491 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
1492                               const SimplifyQuery &Q) {
1493   return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit);
1494 }
1495 
1496 /// Commuted variants are assumed to be handled by calling this function again
1497 /// with the parameters swapped.
1498 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp,
1499                                          ICmpInst *UnsignedICmp, bool IsAnd,
1500                                          const SimplifyQuery &Q) {
1501   Value *X, *Y;
1502 
1503   CmpPredicate EqPred;
1504   if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) ||
1505       !ICmpInst::isEquality(EqPred))
1506     return nullptr;
1507 
1508   CmpPredicate UnsignedPred;
1509 
1510   Value *A, *B;
1511   // Y = (A - B);
1512   if (match(Y, m_Sub(m_Value(A), m_Value(B)))) {
1513     if (match(UnsignedICmp,
1514               m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) &&
1515         ICmpInst::isUnsigned(UnsignedPred)) {
1516       // A >=/<= B || (A - B) != 0  <-->  true
1517       if ((UnsignedPred == ICmpInst::ICMP_UGE ||
1518            UnsignedPred == ICmpInst::ICMP_ULE) &&
1519           EqPred == ICmpInst::ICMP_NE && !IsAnd)
1520         return ConstantInt::getTrue(UnsignedICmp->getType());
1521       // A </> B && (A - B) == 0  <-->  false
1522       if ((UnsignedPred == ICmpInst::ICMP_ULT ||
1523            UnsignedPred == ICmpInst::ICMP_UGT) &&
1524           EqPred == ICmpInst::ICMP_EQ && IsAnd)
1525         return ConstantInt::getFalse(UnsignedICmp->getType());
1526 
1527       // A </> B && (A - B) != 0  <-->  A </> B
1528       // A </> B || (A - B) != 0  <-->  (A - B) != 0
1529       if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT ||
1530                                           UnsignedPred == ICmpInst::ICMP_UGT))
1531         return IsAnd ? UnsignedICmp : ZeroICmp;
1532 
1533       // A <=/>= B && (A - B) == 0  <-->  (A - B) == 0
1534       // A <=/>= B || (A - B) == 0  <-->  A <=/>= B
1535       if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE ||
1536                                           UnsignedPred == ICmpInst::ICMP_UGE))
1537         return IsAnd ? ZeroICmp : UnsignedICmp;
1538     }
1539 
1540     // Given  Y = (A - B)
1541     //   Y >= A && Y != 0  --> Y >= A  iff B != 0
1542     //   Y <  A || Y == 0  --> Y <  A  iff B != 0
1543     if (match(UnsignedICmp,
1544               m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) {
1545       if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd &&
1546           EqPred == ICmpInst::ICMP_NE && isKnownNonZero(B, Q))
1547         return UnsignedICmp;
1548       if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd &&
1549           EqPred == ICmpInst::ICMP_EQ && isKnownNonZero(B, Q))
1550         return UnsignedICmp;
1551     }
1552   }
1553 
1554   if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) &&
1555       ICmpInst::isUnsigned(UnsignedPred))
1556     ;
1557   else if (match(UnsignedICmp,
1558                  m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) &&
1559            ICmpInst::isUnsigned(UnsignedPred))
1560     UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred);
1561   else
1562     return nullptr;
1563 
1564   // X > Y && Y == 0  -->  Y == 0  iff X != 0
1565   // X > Y || Y == 0  -->  X > Y   iff X != 0
1566   if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ &&
1567       isKnownNonZero(X, Q))
1568     return IsAnd ? ZeroICmp : UnsignedICmp;
1569 
1570   // X <= Y && Y != 0  -->  X <= Y  iff X != 0
1571   // X <= Y || Y != 0  -->  Y != 0  iff X != 0
1572   if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE &&
1573       isKnownNonZero(X, Q))
1574     return IsAnd ? UnsignedICmp : ZeroICmp;
1575 
1576   // The transforms below here are expected to be handled more generally with
1577   // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1578   // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1579   // these are candidates for removal.
1580 
1581   // X < Y && Y != 0  -->  X < Y
1582   // X < Y || Y != 0  -->  Y != 0
1583   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE)
1584     return IsAnd ? UnsignedICmp : ZeroICmp;
1585 
1586   // X >= Y && Y == 0  -->  Y == 0
1587   // X >= Y || Y == 0  -->  X >= Y
1588   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ)
1589     return IsAnd ? ZeroICmp : UnsignedICmp;
1590 
1591   // X < Y && Y == 0  -->  false
1592   if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ &&
1593       IsAnd)
1594     return getFalse(UnsignedICmp->getType());
1595 
1596   // X >= Y || Y != 0  -->  true
1597   if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE &&
1598       !IsAnd)
1599     return getTrue(UnsignedICmp->getType());
1600 
1601   return nullptr;
1602 }
1603 
1604 /// Test if a pair of compares with a shared operand and 2 constants has an
1605 /// empty set intersection, full set union, or if one compare is a superset of
1606 /// the other.
1607 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1,
1608                                                 bool IsAnd) {
1609   // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1610   if (Cmp0->getOperand(0) != Cmp1->getOperand(0))
1611     return nullptr;
1612 
1613   const APInt *C0, *C1;
1614   if (!match(Cmp0->getOperand(1), m_APInt(C0)) ||
1615       !match(Cmp1->getOperand(1), m_APInt(C1)))
1616     return nullptr;
1617 
1618   auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0);
1619   auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1);
1620 
1621   // For and-of-compares, check if the intersection is empty:
1622   // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1623   if (IsAnd && Range0.intersectWith(Range1).isEmptySet())
1624     return getFalse(Cmp0->getType());
1625 
1626   // For or-of-compares, check if the union is full:
1627   // (icmp X, C0) || (icmp X, C1) --> full set --> true
1628   if (!IsAnd && Range0.unionWith(Range1).isFullSet())
1629     return getTrue(Cmp0->getType());
1630 
1631   // Is one range a superset of the other?
1632   // If this is and-of-compares, take the smaller set:
1633   // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1634   // If this is or-of-compares, take the larger set:
1635   // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1636   if (Range0.contains(Range1))
1637     return IsAnd ? Cmp1 : Cmp0;
1638   if (Range1.contains(Range0))
1639     return IsAnd ? Cmp0 : Cmp1;
1640 
1641   return nullptr;
1642 }
1643 
1644 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1645                                         const InstrInfoQuery &IIQ) {
1646   // (icmp (add V, C0), C1) & (icmp V, C0)
1647   CmpPredicate Pred0, Pred1;
1648   const APInt *C0, *C1;
1649   Value *V;
1650   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1651     return nullptr;
1652 
1653   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1654     return nullptr;
1655 
1656   auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0));
1657   if (AddInst->getOperand(1) != Op1->getOperand(1))
1658     return nullptr;
1659 
1660   Type *ITy = Op0->getType();
1661   bool IsNSW = IIQ.hasNoSignedWrap(AddInst);
1662   bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst);
1663 
1664   const APInt Delta = *C1 - *C0;
1665   if (C0->isStrictlyPositive()) {
1666     if (Delta == 2) {
1667       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT)
1668         return getFalse(ITy);
1669       if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
1670         return getFalse(ITy);
1671     }
1672     if (Delta == 1) {
1673       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT)
1674         return getFalse(ITy);
1675       if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW)
1676         return getFalse(ITy);
1677     }
1678   }
1679   if (C0->getBoolValue() && IsNUW) {
1680     if (Delta == 2)
1681       if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT)
1682         return getFalse(ITy);
1683     if (Delta == 1)
1684       if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT)
1685         return getFalse(ITy);
1686   }
1687 
1688   return nullptr;
1689 }
1690 
1691 /// Try to simplify and/or of icmp with ctpop intrinsic.
1692 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1,
1693                                             bool IsAnd) {
1694   CmpPredicate Pred0, Pred1;
1695   Value *X;
1696   const APInt *C;
1697   if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)),
1698                           m_APInt(C))) ||
1699       !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero())
1700     return nullptr;
1701 
1702   // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0
1703   if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE)
1704     return Cmp1;
1705   // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0
1706   if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ)
1707     return Cmp1;
1708 
1709   return nullptr;
1710 }
1711 
1712 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1713                                  const SimplifyQuery &Q) {
1714   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q))
1715     return X;
1716   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q))
1717     return X;
1718 
1719   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true))
1720     return X;
1721 
1722   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true))
1723     return X;
1724   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true))
1725     return X;
1726 
1727   if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1728     return X;
1729   if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1730     return X;
1731 
1732   return nullptr;
1733 }
1734 
1735 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1,
1736                                        const InstrInfoQuery &IIQ) {
1737   // (icmp (add V, C0), C1) | (icmp V, C0)
1738   CmpPredicate Pred0, Pred1;
1739   const APInt *C0, *C1;
1740   Value *V;
1741   if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1))))
1742     return nullptr;
1743 
1744   if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value())))
1745     return nullptr;
1746 
1747   auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0));
1748   if (AddInst->getOperand(1) != Op1->getOperand(1))
1749     return nullptr;
1750 
1751   Type *ITy = Op0->getType();
1752   bool IsNSW = IIQ.hasNoSignedWrap(AddInst);
1753   bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst);
1754 
1755   const APInt Delta = *C1 - *C0;
1756   if (C0->isStrictlyPositive()) {
1757     if (Delta == 2) {
1758       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE)
1759         return getTrue(ITy);
1760       if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
1761         return getTrue(ITy);
1762     }
1763     if (Delta == 1) {
1764       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE)
1765         return getTrue(ITy);
1766       if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW)
1767         return getTrue(ITy);
1768     }
1769   }
1770   if (C0->getBoolValue() && IsNUW) {
1771     if (Delta == 2)
1772       if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE)
1773         return getTrue(ITy);
1774     if (Delta == 1)
1775       if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE)
1776         return getTrue(ITy);
1777   }
1778 
1779   return nullptr;
1780 }
1781 
1782 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1,
1783                                 const SimplifyQuery &Q) {
1784   if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q))
1785     return X;
1786   if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q))
1787     return X;
1788 
1789   if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false))
1790     return X;
1791 
1792   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false))
1793     return X;
1794   if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false))
1795     return X;
1796 
1797   if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ))
1798     return X;
1799   if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ))
1800     return X;
1801 
1802   return nullptr;
1803 }
1804 
1805 static Value *simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS,
1806                                    FCmpInst *RHS, bool IsAnd) {
1807   Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1);
1808   Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1);
1809   if (LHS0->getType() != RHS0->getType())
1810     return nullptr;
1811 
1812   FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate();
1813   auto AbsOrSelfLHS0 = m_CombineOr(m_Specific(LHS0), m_FAbs(m_Specific(LHS0)));
1814   if ((PredL == FCmpInst::FCMP_ORD || PredL == FCmpInst::FCMP_UNO) &&
1815       ((FCmpInst::isOrdered(PredR) && IsAnd) ||
1816        (FCmpInst::isUnordered(PredR) && !IsAnd))) {
1817     // (fcmp ord X, 0) & (fcmp o** X/abs(X), Y) --> fcmp o** X/abs(X), Y
1818     // (fcmp uno X, 0) & (fcmp o** X/abs(X), Y) --> false
1819     // (fcmp uno X, 0) | (fcmp u** X/abs(X), Y) --> fcmp u** X/abs(X), Y
1820     // (fcmp ord X, 0) | (fcmp u** X/abs(X), Y) --> true
1821     if ((match(RHS0, AbsOrSelfLHS0) || match(RHS1, AbsOrSelfLHS0)) &&
1822         match(LHS1, m_PosZeroFP()))
1823       return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR)
1824                  ? static_cast<Value *>(RHS)
1825                  : ConstantInt::getBool(LHS->getType(), !IsAnd);
1826   }
1827 
1828   auto AbsOrSelfRHS0 = m_CombineOr(m_Specific(RHS0), m_FAbs(m_Specific(RHS0)));
1829   if ((PredR == FCmpInst::FCMP_ORD || PredR == FCmpInst::FCMP_UNO) &&
1830       ((FCmpInst::isOrdered(PredL) && IsAnd) ||
1831        (FCmpInst::isUnordered(PredL) && !IsAnd))) {
1832     // (fcmp o** X/abs(X), Y) & (fcmp ord X, 0) --> fcmp o** X/abs(X), Y
1833     // (fcmp o** X/abs(X), Y) & (fcmp uno X, 0) --> false
1834     // (fcmp u** X/abs(X), Y) | (fcmp uno X, 0) --> fcmp u** X/abs(X), Y
1835     // (fcmp u** X/abs(X), Y) | (fcmp ord X, 0) --> true
1836     if ((match(LHS0, AbsOrSelfRHS0) || match(LHS1, AbsOrSelfRHS0)) &&
1837         match(RHS1, m_PosZeroFP()))
1838       return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR)
1839                  ? static_cast<Value *>(LHS)
1840                  : ConstantInt::getBool(LHS->getType(), !IsAnd);
1841   }
1842 
1843   return nullptr;
1844 }
1845 
1846 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0,
1847                                   Value *Op1, bool IsAnd) {
1848   // Look through casts of the 'and' operands to find compares.
1849   auto *Cast0 = dyn_cast<CastInst>(Op0);
1850   auto *Cast1 = dyn_cast<CastInst>(Op1);
1851   if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() &&
1852       Cast0->getSrcTy() == Cast1->getSrcTy()) {
1853     Op0 = Cast0->getOperand(0);
1854     Op1 = Cast1->getOperand(0);
1855   }
1856 
1857   Value *V = nullptr;
1858   auto *ICmp0 = dyn_cast<ICmpInst>(Op0);
1859   auto *ICmp1 = dyn_cast<ICmpInst>(Op1);
1860   if (ICmp0 && ICmp1)
1861     V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q)
1862               : simplifyOrOfICmps(ICmp0, ICmp1, Q);
1863 
1864   auto *FCmp0 = dyn_cast<FCmpInst>(Op0);
1865   auto *FCmp1 = dyn_cast<FCmpInst>(Op1);
1866   if (FCmp0 && FCmp1)
1867     V = simplifyAndOrOfFCmps(Q, FCmp0, FCmp1, IsAnd);
1868 
1869   if (!V)
1870     return nullptr;
1871   if (!Cast0)
1872     return V;
1873 
1874   // If we looked through casts, we can only handle a constant simplification
1875   // because we are not allowed to create a cast instruction here.
1876   if (auto *C = dyn_cast<Constant>(V))
1877     return ConstantFoldCastOperand(Cast0->getOpcode(), C, Cast0->getType(),
1878                                    Q.DL);
1879 
1880   return nullptr;
1881 }
1882 
1883 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
1884                                      const SimplifyQuery &Q,
1885                                      bool AllowRefinement,
1886                                      SmallVectorImpl<Instruction *> *DropFlags,
1887                                      unsigned MaxRecurse);
1888 
1889 static Value *simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1,
1890                                       const SimplifyQuery &Q,
1891                                       unsigned MaxRecurse) {
1892   assert((Opcode == Instruction::And || Opcode == Instruction::Or) &&
1893          "Must be and/or");
1894   CmpPredicate Pred;
1895   Value *A, *B;
1896   if (!match(Op0, m_ICmp(Pred, m_Value(A), m_Value(B))) ||
1897       !ICmpInst::isEquality(Pred))
1898     return nullptr;
1899 
1900   auto Simplify = [&](Value *Res) -> Value * {
1901     Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, Res->getType());
1902 
1903     // and (icmp eq a, b), x implies (a==b) inside x.
1904     // or (icmp ne a, b), x implies (a==b) inside x.
1905     // If x simplifies to true/false, we can simplify the and/or.
1906     if (Pred ==
1907         (Opcode == Instruction::And ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) {
1908       if (Res == Absorber)
1909         return Absorber;
1910       if (Res == ConstantExpr::getBinOpIdentity(Opcode, Res->getType()))
1911         return Op0;
1912       return nullptr;
1913     }
1914 
1915     // If we have and (icmp ne a, b), x and for a==b we can simplify x to false,
1916     // then we can drop the icmp, as x will already be false in the case where
1917     // the icmp is false. Similar for or and true.
1918     if (Res == Absorber)
1919       return Op1;
1920     return nullptr;
1921   };
1922 
1923   // In the final case (Res == Absorber with inverted predicate), it is safe to
1924   // refine poison during simplification, but not undef. For simplicity always
1925   // disable undef-based folds here.
1926   if (Value *Res = simplifyWithOpReplaced(Op1, A, B, Q.getWithoutUndef(),
1927                                           /* AllowRefinement */ true,
1928                                           /* DropFlags */ nullptr, MaxRecurse))
1929     return Simplify(Res);
1930   if (Value *Res = simplifyWithOpReplaced(Op1, B, A, Q.getWithoutUndef(),
1931                                           /* AllowRefinement */ true,
1932                                           /* DropFlags */ nullptr, MaxRecurse))
1933     return Simplify(Res);
1934 
1935   return nullptr;
1936 }
1937 
1938 /// Given a bitwise logic op, check if the operands are add/sub with a common
1939 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
1940 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1,
1941                                     Instruction::BinaryOps Opcode) {
1942   assert(Op0->getType() == Op1->getType() && "Mismatched binop types");
1943   assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op");
1944   Value *X;
1945   Constant *C1, *C2;
1946   if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) &&
1947        match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) ||
1948       (match(Op1, m_Add(m_Value(X), m_Constant(C1))) &&
1949        match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) {
1950     if (ConstantExpr::getNot(C1) == C2) {
1951       // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
1952       // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
1953       // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
1954       Type *Ty = Op0->getType();
1955       return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty)
1956                                         : ConstantInt::getAllOnesValue(Ty);
1957     }
1958   }
1959   return nullptr;
1960 }
1961 
1962 // Commutative patterns for and that will be tried with both operand orders.
1963 static Value *simplifyAndCommutative(Value *Op0, Value *Op1,
1964                                      const SimplifyQuery &Q,
1965                                      unsigned MaxRecurse) {
1966   // ~A & A =  0
1967   if (match(Op0, m_Not(m_Specific(Op1))))
1968     return Constant::getNullValue(Op0->getType());
1969 
1970   // (A | ?) & A = A
1971   if (match(Op0, m_c_Or(m_Specific(Op1), m_Value())))
1972     return Op1;
1973 
1974   // (X | ~Y) & (X | Y) --> X
1975   Value *X, *Y;
1976   if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) &&
1977       match(Op1, m_c_Or(m_Specific(X), m_Specific(Y))))
1978     return X;
1979 
1980   // If we have a multiplication overflow check that is being 'and'ed with a
1981   // check that one of the multipliers is not zero, we can omit the 'and', and
1982   // only keep the overflow check.
1983   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true))
1984     return Op1;
1985 
1986   // -A & A = A if A is a power of two or zero.
1987   if (match(Op0, m_Neg(m_Specific(Op1))) &&
1988       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1989     return Op1;
1990 
1991   // This is a similar pattern used for checking if a value is a power-of-2:
1992   // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
1993   if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) &&
1994       isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT))
1995     return Constant::getNullValue(Op1->getType());
1996 
1997   // (x << N) & ((x << M) - 1) --> 0, where x is known to be a power of 2 and
1998   // M <= N.
1999   const APInt *Shift1, *Shift2;
2000   if (match(Op0, m_Shl(m_Value(X), m_APInt(Shift1))) &&
2001       match(Op1, m_Add(m_Shl(m_Specific(X), m_APInt(Shift2)), m_AllOnes())) &&
2002       isKnownToBeAPowerOfTwo(X, Q.DL, /*OrZero*/ true, /*Depth*/ 0, Q.AC,
2003                              Q.CxtI) &&
2004       Shift1->uge(*Shift2))
2005     return Constant::getNullValue(Op0->getType());
2006 
2007   if (Value *V =
2008           simplifyAndOrWithICmpEq(Instruction::And, Op0, Op1, Q, MaxRecurse))
2009     return V;
2010 
2011   return nullptr;
2012 }
2013 
2014 /// Given operands for an And, see if we can fold the result.
2015 /// If not, this returns null.
2016 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2017                               unsigned MaxRecurse) {
2018   if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q))
2019     return C;
2020 
2021   // X & poison -> poison
2022   if (isa<PoisonValue>(Op1))
2023     return Op1;
2024 
2025   // X & undef -> 0
2026   if (Q.isUndefValue(Op1))
2027     return Constant::getNullValue(Op0->getType());
2028 
2029   // X & X = X
2030   if (Op0 == Op1)
2031     return Op0;
2032 
2033   // X & 0 = 0
2034   if (match(Op1, m_Zero()))
2035     return Constant::getNullValue(Op0->getType());
2036 
2037   // X & -1 = X
2038   if (match(Op1, m_AllOnes()))
2039     return Op0;
2040 
2041   if (Value *Res = simplifyAndCommutative(Op0, Op1, Q, MaxRecurse))
2042     return Res;
2043   if (Value *Res = simplifyAndCommutative(Op1, Op0, Q, MaxRecurse))
2044     return Res;
2045 
2046   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And))
2047     return V;
2048 
2049   // A mask that only clears known zeros of a shifted value is a no-op.
2050   const APInt *Mask;
2051   const APInt *ShAmt;
2052   Value *X, *Y;
2053   if (match(Op1, m_APInt(Mask))) {
2054     // If all bits in the inverted and shifted mask are clear:
2055     // and (shl X, ShAmt), Mask --> shl X, ShAmt
2056     if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) &&
2057         (~(*Mask)).lshr(*ShAmt).isZero())
2058       return Op0;
2059 
2060     // If all bits in the inverted and shifted mask are clear:
2061     // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2062     if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
2063         (~(*Mask)).shl(*ShAmt).isZero())
2064       return Op0;
2065   }
2066 
2067   // and 2^x-1, 2^C --> 0 where x <= C.
2068   const APInt *PowerC;
2069   Value *Shift;
2070   if (match(Op1, m_Power2(PowerC)) &&
2071       match(Op0, m_Add(m_Value(Shift), m_AllOnes())) &&
2072       isKnownToBeAPowerOfTwo(Shift, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI,
2073                              Q.DT)) {
2074     KnownBits Known = computeKnownBits(Shift, /* Depth */ 0, Q);
2075     // Use getActiveBits() to make use of the additional power of two knowledge
2076     if (PowerC->getActiveBits() >= Known.getMaxValue().getActiveBits())
2077       return ConstantInt::getNullValue(Op1->getType());
2078   }
2079 
2080   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true))
2081     return V;
2082 
2083   // Try some generic simplifications for associative operations.
2084   if (Value *V =
2085           simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse))
2086     return V;
2087 
2088   // And distributes over Or.  Try some generic simplifications based on this.
2089   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2090                                         Instruction::Or, Q, MaxRecurse))
2091     return V;
2092 
2093   // And distributes over Xor.  Try some generic simplifications based on this.
2094   if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1,
2095                                         Instruction::Xor, Q, MaxRecurse))
2096     return V;
2097 
2098   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2099     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2100       // A & (A && B) -> A && B
2101       if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero())))
2102         return Op1;
2103       else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero())))
2104         return Op0;
2105     }
2106     // If the operation is with the result of a select instruction, check
2107     // whether operating on either branch of the select always yields the same
2108     // value.
2109     if (Value *V =
2110             threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse))
2111       return V;
2112   }
2113 
2114   // If the operation is with the result of a phi instruction, check whether
2115   // operating on all incoming values of the phi always yields the same value.
2116   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2117     if (Value *V =
2118             threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse))
2119       return V;
2120 
2121   // Assuming the effective width of Y is not larger than A, i.e. all bits
2122   // from X and Y are disjoint in (X << A) | Y,
2123   // if the mask of this AND op covers all bits of X or Y, while it covers
2124   // no bits from the other, we can bypass this AND op. E.g.,
2125   // ((X << A) | Y) & Mask -> Y,
2126   //     if Mask = ((1 << effective_width_of(Y)) - 1)
2127   // ((X << A) | Y) & Mask -> X << A,
2128   //     if Mask = ((1 << effective_width_of(X)) - 1) << A
2129   // SimplifyDemandedBits in InstCombine can optimize the general case.
2130   // This pattern aims to help other passes for a common case.
2131   Value *XShifted;
2132   if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(Mask)) &&
2133       match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)),
2134                                      m_Value(XShifted)),
2135                         m_Value(Y)))) {
2136     const unsigned Width = Op0->getType()->getScalarSizeInBits();
2137     const unsigned ShftCnt = ShAmt->getLimitedValue(Width);
2138     const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q);
2139     const unsigned EffWidthY = YKnown.countMaxActiveBits();
2140     if (EffWidthY <= ShftCnt) {
2141       const KnownBits XKnown = computeKnownBits(X, /* Depth */ 0, Q);
2142       const unsigned EffWidthX = XKnown.countMaxActiveBits();
2143       const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY);
2144       const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt;
2145       // If the mask is extracting all bits from X or Y as is, we can skip
2146       // this AND op.
2147       if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask))
2148         return Y;
2149       if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask))
2150         return XShifted;
2151     }
2152   }
2153 
2154   // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2155   // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2156   BinaryOperator *Or;
2157   if (match(Op0, m_c_Xor(m_Value(X),
2158                          m_CombineAnd(m_BinOp(Or),
2159                                       m_c_Or(m_Deferred(X), m_Value(Y))))) &&
2160       match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y))))
2161     return Constant::getNullValue(Op0->getType());
2162 
2163   const APInt *C1;
2164   Value *A;
2165   // (A ^ C) & (A ^ ~C) -> 0
2166   if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) &&
2167       match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1))))
2168     return Constant::getNullValue(Op0->getType());
2169 
2170   if (Op0->getType()->isIntOrIntVectorTy(1)) {
2171     if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) {
2172       // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1.
2173       if (*Implied == true)
2174         return Op0;
2175       // If Op0 is true implies Op1 is false, then they are not true together.
2176       if (*Implied == false)
2177         return ConstantInt::getFalse(Op0->getType());
2178     }
2179     if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) {
2180       // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0.
2181       if (*Implied)
2182         return Op1;
2183       // If Op1 is true implies Op0 is false, then they are not true together.
2184       if (!*Implied)
2185         return ConstantInt::getFalse(Op1->getType());
2186     }
2187   }
2188 
2189   if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse))
2190     return V;
2191 
2192   return nullptr;
2193 }
2194 
2195 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2196   return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit);
2197 }
2198 
2199 // TODO: Many of these folds could use LogicalAnd/LogicalOr.
2200 static Value *simplifyOrLogic(Value *X, Value *Y) {
2201   assert(X->getType() == Y->getType() && "Expected same type for 'or' ops");
2202   Type *Ty = X->getType();
2203 
2204   // X | ~X --> -1
2205   if (match(Y, m_Not(m_Specific(X))))
2206     return ConstantInt::getAllOnesValue(Ty);
2207 
2208   // X | ~(X & ?) = -1
2209   if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value()))))
2210     return ConstantInt::getAllOnesValue(Ty);
2211 
2212   // X | (X & ?) --> X
2213   if (match(Y, m_c_And(m_Specific(X), m_Value())))
2214     return X;
2215 
2216   Value *A, *B;
2217 
2218   // (A ^ B) | (A | B) --> A | B
2219   // (A ^ B) | (B | A) --> B | A
2220   if (match(X, m_Xor(m_Value(A), m_Value(B))) &&
2221       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2222     return Y;
2223 
2224   // ~(A ^ B) | (A | B) --> -1
2225   // ~(A ^ B) | (B | A) --> -1
2226   if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) &&
2227       match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2228     return ConstantInt::getAllOnesValue(Ty);
2229 
2230   // (A & ~B) | (A ^ B) --> A ^ B
2231   // (~B & A) | (A ^ B) --> A ^ B
2232   // (A & ~B) | (B ^ A) --> B ^ A
2233   // (~B & A) | (B ^ A) --> B ^ A
2234   if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) &&
2235       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2236     return Y;
2237 
2238   // (~A ^ B) | (A & B) --> ~A ^ B
2239   // (B ^ ~A) | (A & B) --> B ^ ~A
2240   // (~A ^ B) | (B & A) --> ~A ^ B
2241   // (B ^ ~A) | (B & A) --> B ^ ~A
2242   if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) &&
2243       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2244     return X;
2245 
2246   // (~A | B) | (A ^ B) --> -1
2247   // (~A | B) | (B ^ A) --> -1
2248   // (B | ~A) | (A ^ B) --> -1
2249   // (B | ~A) | (B ^ A) --> -1
2250   if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) &&
2251       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2252     return ConstantInt::getAllOnesValue(Ty);
2253 
2254   // (~A & B) | ~(A | B) --> ~A
2255   // (~A & B) | ~(B | A) --> ~A
2256   // (B & ~A) | ~(A | B) --> ~A
2257   // (B & ~A) | ~(B | A) --> ~A
2258   Value *NotA;
2259   if (match(X, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2260                        m_Value(B))) &&
2261       match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B)))))
2262     return NotA;
2263   // The same is true of Logical And
2264   // TODO: This could share the logic of the version above if there was a
2265   // version of LogicalAnd that allowed more than just i1 types.
2266   if (match(X, m_c_LogicalAnd(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))),
2267                               m_Value(B))) &&
2268       match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B)))))
2269     return NotA;
2270 
2271   // ~(A ^ B) | (A & B) --> ~(A ^ B)
2272   // ~(A ^ B) | (B & A) --> ~(A ^ B)
2273   Value *NotAB;
2274   if (match(X, m_CombineAnd(m_Not(m_Xor(m_Value(A), m_Value(B))),
2275                             m_Value(NotAB))) &&
2276       match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2277     return NotAB;
2278 
2279   // ~(A & B) | (A ^ B) --> ~(A & B)
2280   // ~(A & B) | (B ^ A) --> ~(A & B)
2281   if (match(X, m_CombineAnd(m_Not(m_And(m_Value(A), m_Value(B))),
2282                             m_Value(NotAB))) &&
2283       match(Y, m_c_Xor(m_Specific(A), m_Specific(B))))
2284     return NotAB;
2285 
2286   return nullptr;
2287 }
2288 
2289 /// Given operands for an Or, see if we can fold the result.
2290 /// If not, this returns null.
2291 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2292                              unsigned MaxRecurse) {
2293   if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q))
2294     return C;
2295 
2296   // X | poison -> poison
2297   if (isa<PoisonValue>(Op1))
2298     return Op1;
2299 
2300   // X | undef -> -1
2301   // X | -1 = -1
2302   // Do not return Op1 because it may contain undef elements if it's a vector.
2303   if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes()))
2304     return Constant::getAllOnesValue(Op0->getType());
2305 
2306   // X | X = X
2307   // X | 0 = X
2308   if (Op0 == Op1 || match(Op1, m_Zero()))
2309     return Op0;
2310 
2311   if (Value *R = simplifyOrLogic(Op0, Op1))
2312     return R;
2313   if (Value *R = simplifyOrLogic(Op1, Op0))
2314     return R;
2315 
2316   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or))
2317     return V;
2318 
2319   // Rotated -1 is still -1:
2320   // (-1 << X) | (-1 >> (C - X)) --> -1
2321   // (-1 >> X) | (-1 << (C - X)) --> -1
2322   // ...with C <= bitwidth (and commuted variants).
2323   Value *X, *Y;
2324   if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) &&
2325        match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) ||
2326       (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) &&
2327        match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) {
2328     const APInt *C;
2329     if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) ||
2330          match(Y, m_Sub(m_APInt(C), m_Specific(X)))) &&
2331         C->ule(X->getType()->getScalarSizeInBits())) {
2332       return ConstantInt::getAllOnesValue(X->getType());
2333     }
2334   }
2335 
2336   // A funnel shift (rotate) can be decomposed into simpler shifts. See if we
2337   // are mixing in another shift that is redundant with the funnel shift.
2338 
2339   // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
2340   // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y
2341   if (match(Op0,
2342             m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
2343       match(Op1, m_Shl(m_Specific(X), m_Specific(Y))))
2344     return Op0;
2345   if (match(Op1,
2346             m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) &&
2347       match(Op0, m_Shl(m_Specific(X), m_Specific(Y))))
2348     return Op1;
2349 
2350   // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y
2351   // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y
2352   if (match(Op0,
2353             m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
2354       match(Op1, m_LShr(m_Specific(X), m_Specific(Y))))
2355     return Op0;
2356   if (match(Op1,
2357             m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) &&
2358       match(Op0, m_LShr(m_Specific(X), m_Specific(Y))))
2359     return Op1;
2360 
2361   if (Value *V =
2362           simplifyAndOrWithICmpEq(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2363     return V;
2364   if (Value *V =
2365           simplifyAndOrWithICmpEq(Instruction::Or, Op1, Op0, Q, MaxRecurse))
2366     return V;
2367 
2368   if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false))
2369     return V;
2370 
2371   // If we have a multiplication overflow check that is being 'and'ed with a
2372   // check that one of the multipliers is not zero, we can omit the 'and', and
2373   // only keep the overflow check.
2374   if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false))
2375     return Op1;
2376   if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false))
2377     return Op0;
2378 
2379   // Try some generic simplifications for associative operations.
2380   if (Value *V =
2381           simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2382     return V;
2383 
2384   // Or distributes over And.  Try some generic simplifications based on this.
2385   if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1,
2386                                         Instruction::And, Q, MaxRecurse))
2387     return V;
2388 
2389   if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) {
2390     if (Op0->getType()->isIntOrIntVectorTy(1)) {
2391       // A | (A || B) -> A || B
2392       if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value())))
2393         return Op1;
2394       else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value())))
2395         return Op0;
2396     }
2397     // If the operation is with the result of a select instruction, check
2398     // whether operating on either branch of the select always yields the same
2399     // value.
2400     if (Value *V =
2401             threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2402       return V;
2403   }
2404 
2405   // (A & C1)|(B & C2)
2406   Value *A, *B;
2407   const APInt *C1, *C2;
2408   if (match(Op0, m_And(m_Value(A), m_APInt(C1))) &&
2409       match(Op1, m_And(m_Value(B), m_APInt(C2)))) {
2410     if (*C1 == ~*C2) {
2411       // (A & C1)|(B & C2)
2412       // If we have: ((V + N) & C1) | (V & C2)
2413       // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2414       // replace with V+N.
2415       Value *N;
2416       if (C2->isMask() && // C2 == 0+1+
2417           match(A, m_c_Add(m_Specific(B), m_Value(N)))) {
2418         // Add commutes, try both ways.
2419         if (MaskedValueIsZero(N, *C2, Q))
2420           return A;
2421       }
2422       // Or commutes, try both ways.
2423       if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) {
2424         // Add commutes, try both ways.
2425         if (MaskedValueIsZero(N, *C1, Q))
2426           return B;
2427       }
2428     }
2429   }
2430 
2431   // If the operation is with the result of a phi instruction, check whether
2432   // operating on all incoming values of the phi always yields the same value.
2433   if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
2434     if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2435       return V;
2436 
2437   // (A ^ C) | (A ^ ~C) -> -1, i.e. all bits set to one.
2438   if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) &&
2439       match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1))))
2440     return Constant::getAllOnesValue(Op0->getType());
2441 
2442   if (Op0->getType()->isIntOrIntVectorTy(1)) {
2443     if (std::optional<bool> Implied =
2444             isImpliedCondition(Op0, Op1, Q.DL, false)) {
2445       // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0.
2446       if (*Implied == false)
2447         return Op0;
2448       // If Op0 is false implies Op1 is true, then at least one is always true.
2449       if (*Implied == true)
2450         return ConstantInt::getTrue(Op0->getType());
2451     }
2452     if (std::optional<bool> Implied =
2453             isImpliedCondition(Op1, Op0, Q.DL, false)) {
2454       // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1.
2455       if (*Implied == false)
2456         return Op1;
2457       // If Op1 is false implies Op0 is true, then at least one is always true.
2458       if (*Implied == true)
2459         return ConstantInt::getTrue(Op1->getType());
2460     }
2461   }
2462 
2463   if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse))
2464     return V;
2465 
2466   return nullptr;
2467 }
2468 
2469 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2470   return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit);
2471 }
2472 
2473 /// Given operands for a Xor, see if we can fold the result.
2474 /// If not, this returns null.
2475 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q,
2476                               unsigned MaxRecurse) {
2477   if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q))
2478     return C;
2479 
2480   // X ^ poison -> poison
2481   if (isa<PoisonValue>(Op1))
2482     return Op1;
2483 
2484   // A ^ undef -> undef
2485   if (Q.isUndefValue(Op1))
2486     return Op1;
2487 
2488   // A ^ 0 = A
2489   if (match(Op1, m_Zero()))
2490     return Op0;
2491 
2492   // A ^ A = 0
2493   if (Op0 == Op1)
2494     return Constant::getNullValue(Op0->getType());
2495 
2496   // A ^ ~A  =  ~A ^ A  =  -1
2497   if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0))))
2498     return Constant::getAllOnesValue(Op0->getType());
2499 
2500   auto foldAndOrNot = [](Value *X, Value *Y) -> Value * {
2501     Value *A, *B;
2502     // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2503     if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) &&
2504         match(Y, m_c_Or(m_Specific(A), m_Specific(B))))
2505       return A;
2506 
2507     // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2508     // The 'not' op must contain a complete -1 operand (no undef elements for
2509     // vector) for the transform to be safe.
2510     Value *NotA;
2511     if (match(X, m_c_Or(m_CombineAnd(m_Not(m_Value(A)), m_Value(NotA)),
2512                         m_Value(B))) &&
2513         match(Y, m_c_And(m_Specific(A), m_Specific(B))))
2514       return NotA;
2515 
2516     return nullptr;
2517   };
2518   if (Value *R = foldAndOrNot(Op0, Op1))
2519     return R;
2520   if (Value *R = foldAndOrNot(Op1, Op0))
2521     return R;
2522 
2523   if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor))
2524     return V;
2525 
2526   // Try some generic simplifications for associative operations.
2527   if (Value *V =
2528           simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
2529     return V;
2530 
2531   // Threading Xor over selects and phi nodes is pointless, so don't bother.
2532   // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2533   // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2534   // only if B and C are equal.  If B and C are equal then (since we assume
2535   // that operands have already been simplified) "select(cond, B, C)" should
2536   // have been simplified to the common value of B and C already.  Analysing
2537   // "A^B" and "A^C" thus gains nothing, but costs compile time.  Similarly
2538   // for threading over phi nodes.
2539 
2540   if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse))
2541     return V;
2542 
2543   return nullptr;
2544 }
2545 
2546 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) {
2547   return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit);
2548 }
2549 
2550 static Type *getCompareTy(Value *Op) {
2551   return CmpInst::makeCmpResultType(Op->getType());
2552 }
2553 
2554 /// Rummage around inside V looking for something equivalent to the comparison
2555 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2556 /// Helper function for analyzing max/min idioms.
2557 static Value *extractEquivalentCondition(Value *V, CmpPredicate Pred,
2558                                          Value *LHS, Value *RHS) {
2559   SelectInst *SI = dyn_cast<SelectInst>(V);
2560   if (!SI)
2561     return nullptr;
2562   CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
2563   if (!Cmp)
2564     return nullptr;
2565   Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
2566   if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
2567     return Cmp;
2568   if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
2569       LHS == CmpRHS && RHS == CmpLHS)
2570     return Cmp;
2571   return nullptr;
2572 }
2573 
2574 /// Return true if the underlying object (storage) must be disjoint from
2575 /// storage returned by any noalias return call.
2576 static bool isAllocDisjoint(const Value *V) {
2577   // For allocas, we consider only static ones (dynamic
2578   // allocas might be transformed into calls to malloc not simultaneously
2579   // live with the compared-to allocation). For globals, we exclude symbols
2580   // that might be resolve lazily to symbols in another dynamically-loaded
2581   // library (and, thus, could be malloc'ed by the implementation).
2582   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V))
2583     return AI->isStaticAlloca();
2584   if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
2585     return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() ||
2586             GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) &&
2587            !GV->isThreadLocal();
2588   if (const Argument *A = dyn_cast<Argument>(V))
2589     return A->hasByValAttr();
2590   return false;
2591 }
2592 
2593 /// Return true if V1 and V2 are each the base of some distict storage region
2594 /// [V, object_size(V)] which do not overlap.  Note that zero sized regions
2595 /// *are* possible, and that zero sized regions do not overlap with any other.
2596 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) {
2597   // Global variables always exist, so they always exist during the lifetime
2598   // of each other and all allocas.  Global variables themselves usually have
2599   // non-overlapping storage, but since their addresses are constants, the
2600   // case involving two globals does not reach here and is instead handled in
2601   // constant folding.
2602   //
2603   // Two different allocas usually have different addresses...
2604   //
2605   // However, if there's an @llvm.stackrestore dynamically in between two
2606   // allocas, they may have the same address. It's tempting to reduce the
2607   // scope of the problem by only looking at *static* allocas here. That would
2608   // cover the majority of allocas while significantly reducing the likelihood
2609   // of having an @llvm.stackrestore pop up in the middle. However, it's not
2610   // actually impossible for an @llvm.stackrestore to pop up in the middle of
2611   // an entry block. Also, if we have a block that's not attached to a
2612   // function, we can't tell if it's "static" under the current definition.
2613   // Theoretically, this problem could be fixed by creating a new kind of
2614   // instruction kind specifically for static allocas. Such a new instruction
2615   // could be required to be at the top of the entry block, thus preventing it
2616   // from being subject to a @llvm.stackrestore. Instcombine could even
2617   // convert regular allocas into these special allocas. It'd be nifty.
2618   // However, until then, this problem remains open.
2619   //
2620   // So, we'll assume that two non-empty allocas have different addresses
2621   // for now.
2622   auto isByValArg = [](const Value *V) {
2623     const Argument *A = dyn_cast<Argument>(V);
2624     return A && A->hasByValAttr();
2625   };
2626 
2627   // Byval args are backed by store which does not overlap with each other,
2628   // allocas, or globals.
2629   if (isByValArg(V1))
2630     return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2);
2631   if (isByValArg(V2))
2632     return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1);
2633 
2634   return isa<AllocaInst>(V1) &&
2635          (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2));
2636 }
2637 
2638 // A significant optimization not implemented here is assuming that alloca
2639 // addresses are not equal to incoming argument values. They don't *alias*,
2640 // as we say, but that doesn't mean they aren't equal, so we take a
2641 // conservative approach.
2642 //
2643 // This is inspired in part by C++11 5.10p1:
2644 //   "Two pointers of the same type compare equal if and only if they are both
2645 //    null, both point to the same function, or both represent the same
2646 //    address."
2647 //
2648 // This is pretty permissive.
2649 //
2650 // It's also partly due to C11 6.5.9p6:
2651 //   "Two pointers compare equal if and only if both are null pointers, both are
2652 //    pointers to the same object (including a pointer to an object and a
2653 //    subobject at its beginning) or function, both are pointers to one past the
2654 //    last element of the same array object, or one is a pointer to one past the
2655 //    end of one array object and the other is a pointer to the start of a
2656 //    different array object that happens to immediately follow the first array
2657 //    object in the address space.)
2658 //
2659 // C11's version is more restrictive, however there's no reason why an argument
2660 // couldn't be a one-past-the-end value for a stack object in the caller and be
2661 // equal to the beginning of a stack object in the callee.
2662 //
2663 // If the C and C++ standards are ever made sufficiently restrictive in this
2664 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2665 // this optimization.
2666 static Constant *computePointerICmp(CmpPredicate Pred, Value *LHS, Value *RHS,
2667                                     const SimplifyQuery &Q) {
2668   assert(LHS->getType() == RHS->getType() && "Must have same types");
2669   const DataLayout &DL = Q.DL;
2670   const TargetLibraryInfo *TLI = Q.TLI;
2671 
2672   // We can only fold certain predicates on pointer comparisons.
2673   switch (Pred) {
2674   default:
2675     return nullptr;
2676 
2677     // Equality comparisons are easy to fold.
2678   case CmpInst::ICMP_EQ:
2679   case CmpInst::ICMP_NE:
2680     break;
2681 
2682     // We can only handle unsigned relational comparisons because 'inbounds' on
2683     // a GEP only protects against unsigned wrapping.
2684   case CmpInst::ICMP_UGT:
2685   case CmpInst::ICMP_UGE:
2686   case CmpInst::ICMP_ULT:
2687   case CmpInst::ICMP_ULE:
2688     // However, we have to switch them to their signed variants to handle
2689     // negative indices from the base pointer.
2690     Pred = ICmpInst::getSignedPredicate(Pred);
2691     break;
2692   }
2693 
2694   // Strip off any constant offsets so that we can reason about them.
2695   // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2696   // here and compare base addresses like AliasAnalysis does, however there are
2697   // numerous hazards. AliasAnalysis and its utilities rely on special rules
2698   // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2699   // doesn't need to guarantee pointer inequality when it says NoAlias.
2700 
2701   // Even if an non-inbounds GEP occurs along the path we can still optimize
2702   // equality comparisons concerning the result.
2703   bool AllowNonInbounds = ICmpInst::isEquality(Pred);
2704   unsigned IndexSize = DL.getIndexTypeSizeInBits(LHS->getType());
2705   APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0);
2706   LHS = LHS->stripAndAccumulateConstantOffsets(DL, LHSOffset, AllowNonInbounds);
2707   RHS = RHS->stripAndAccumulateConstantOffsets(DL, RHSOffset, AllowNonInbounds);
2708 
2709   // If LHS and RHS are related via constant offsets to the same base
2710   // value, we can replace it with an icmp which just compares the offsets.
2711   if (LHS == RHS)
2712     return ConstantInt::get(getCompareTy(LHS),
2713                             ICmpInst::compare(LHSOffset, RHSOffset, Pred));
2714 
2715   // Various optimizations for (in)equality comparisons.
2716   if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
2717     // Different non-empty allocations that exist at the same time have
2718     // different addresses (if the program can tell). If the offsets are
2719     // within the bounds of their allocations (and not one-past-the-end!
2720     // so we can't use inbounds!), and their allocations aren't the same,
2721     // the pointers are not equal.
2722     if (haveNonOverlappingStorage(LHS, RHS)) {
2723       uint64_t LHSSize, RHSSize;
2724       ObjectSizeOpts Opts;
2725       Opts.EvalMode = ObjectSizeOpts::Mode::Min;
2726       auto *F = [](Value *V) -> Function * {
2727         if (auto *I = dyn_cast<Instruction>(V))
2728           return I->getFunction();
2729         if (auto *A = dyn_cast<Argument>(V))
2730           return A->getParent();
2731         return nullptr;
2732       }(LHS);
2733       Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true;
2734       if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && LHSSize != 0 &&
2735           getObjectSize(RHS, RHSSize, DL, TLI, Opts) && RHSSize != 0) {
2736         APInt Dist = LHSOffset - RHSOffset;
2737         if (Dist.isNonNegative() ? Dist.ult(LHSSize) : (-Dist).ult(RHSSize))
2738           return ConstantInt::get(getCompareTy(LHS),
2739                                   !CmpInst::isTrueWhenEqual(Pred));
2740       }
2741     }
2742 
2743     // If one side of the equality comparison must come from a noalias call
2744     // (meaning a system memory allocation function), and the other side must
2745     // come from a pointer that cannot overlap with dynamically-allocated
2746     // memory within the lifetime of the current function (allocas, byval
2747     // arguments, globals), then determine the comparison result here.
2748     SmallVector<const Value *, 8> LHSUObjs, RHSUObjs;
2749     getUnderlyingObjects(LHS, LHSUObjs);
2750     getUnderlyingObjects(RHS, RHSUObjs);
2751 
2752     // Is the set of underlying objects all noalias calls?
2753     auto IsNAC = [](ArrayRef<const Value *> Objects) {
2754       return all_of(Objects, isNoAliasCall);
2755     };
2756 
2757     // Is the set of underlying objects all things which must be disjoint from
2758     // noalias calls.  We assume that indexing from such disjoint storage
2759     // into the heap is undefined, and thus offsets can be safely ignored.
2760     auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) {
2761       return all_of(Objects, ::isAllocDisjoint);
2762     };
2763 
2764     if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) ||
2765         (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs)))
2766       return ConstantInt::get(getCompareTy(LHS),
2767                               !CmpInst::isTrueWhenEqual(Pred));
2768 
2769     // Fold comparisons for non-escaping pointer even if the allocation call
2770     // cannot be elided. We cannot fold malloc comparison to null. Also, the
2771     // dynamic allocation call could be either of the operands.  Note that
2772     // the other operand can not be based on the alloc - if it were, then
2773     // the cmp itself would be a capture.
2774     Value *MI = nullptr;
2775     if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonZero(RHS, Q))
2776       MI = LHS;
2777     else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonZero(LHS, Q))
2778       MI = RHS;
2779     if (MI) {
2780       // FIXME: This is incorrect, see PR54002. While we can assume that the
2781       // allocation is at an address that makes the comparison false, this
2782       // requires that *all* comparisons to that address be false, which
2783       // InstSimplify cannot guarantee.
2784       struct CustomCaptureTracker : public CaptureTracker {
2785         bool Captured = false;
2786         void tooManyUses() override { Captured = true; }
2787         bool captured(const Use *U) override {
2788           if (auto *ICmp = dyn_cast<ICmpInst>(U->getUser())) {
2789             // Comparison against value stored in global variable. Given the
2790             // pointer does not escape, its value cannot be guessed and stored
2791             // separately in a global variable.
2792             unsigned OtherIdx = 1 - U->getOperandNo();
2793             auto *LI = dyn_cast<LoadInst>(ICmp->getOperand(OtherIdx));
2794             if (LI && isa<GlobalVariable>(LI->getPointerOperand()))
2795               return false;
2796           }
2797 
2798           Captured = true;
2799           return true;
2800         }
2801       };
2802       CustomCaptureTracker Tracker;
2803       PointerMayBeCaptured(MI, &Tracker);
2804       if (!Tracker.Captured)
2805         return ConstantInt::get(getCompareTy(LHS),
2806                                 CmpInst::isFalseWhenEqual(Pred));
2807     }
2808   }
2809 
2810   // Otherwise, fail.
2811   return nullptr;
2812 }
2813 
2814 /// Fold an icmp when its operands have i1 scalar type.
2815 static Value *simplifyICmpOfBools(CmpPredicate Pred, Value *LHS, Value *RHS,
2816                                   const SimplifyQuery &Q) {
2817   Type *ITy = getCompareTy(LHS); // The return type.
2818   Type *OpTy = LHS->getType();   // The operand type.
2819   if (!OpTy->isIntOrIntVectorTy(1))
2820     return nullptr;
2821 
2822   // A boolean compared to true/false can be reduced in 14 out of the 20
2823   // (10 predicates * 2 constants) possible combinations. The other
2824   // 6 cases require a 'not' of the LHS.
2825 
2826   auto ExtractNotLHS = [](Value *V) -> Value * {
2827     Value *X;
2828     if (match(V, m_Not(m_Value(X))))
2829       return X;
2830     return nullptr;
2831   };
2832 
2833   if (match(RHS, m_Zero())) {
2834     switch (Pred) {
2835     case CmpInst::ICMP_NE:  // X !=  0 -> X
2836     case CmpInst::ICMP_UGT: // X >u  0 -> X
2837     case CmpInst::ICMP_SLT: // X <s  0 -> X
2838       return LHS;
2839 
2840     case CmpInst::ICMP_EQ:  // not(X) ==  0 -> X != 0 -> X
2841     case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X
2842     case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X
2843       if (Value *X = ExtractNotLHS(LHS))
2844         return X;
2845       break;
2846 
2847     case CmpInst::ICMP_ULT: // X <u  0 -> false
2848     case CmpInst::ICMP_SGT: // X >s  0 -> false
2849       return getFalse(ITy);
2850 
2851     case CmpInst::ICMP_UGE: // X >=u 0 -> true
2852     case CmpInst::ICMP_SLE: // X <=s 0 -> true
2853       return getTrue(ITy);
2854 
2855     default:
2856       break;
2857     }
2858   } else if (match(RHS, m_One())) {
2859     switch (Pred) {
2860     case CmpInst::ICMP_EQ:  // X ==   1 -> X
2861     case CmpInst::ICMP_UGE: // X >=u  1 -> X
2862     case CmpInst::ICMP_SLE: // X <=s -1 -> X
2863       return LHS;
2864 
2865     case CmpInst::ICMP_NE:  // not(X) !=  1 -> X ==   1 -> X
2866     case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u  1 -> X
2867     case CmpInst::ICMP_SGT: // not(X) >s  1 -> X <=s -1 -> X
2868       if (Value *X = ExtractNotLHS(LHS))
2869         return X;
2870       break;
2871 
2872     case CmpInst::ICMP_UGT: // X >u   1 -> false
2873     case CmpInst::ICMP_SLT: // X <s  -1 -> false
2874       return getFalse(ITy);
2875 
2876     case CmpInst::ICMP_ULE: // X <=u  1 -> true
2877     case CmpInst::ICMP_SGE: // X >=s -1 -> true
2878       return getTrue(ITy);
2879 
2880     default:
2881       break;
2882     }
2883   }
2884 
2885   switch (Pred) {
2886   default:
2887     break;
2888   case ICmpInst::ICMP_UGE:
2889     if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
2890       return getTrue(ITy);
2891     break;
2892   case ICmpInst::ICMP_SGE:
2893     /// For signed comparison, the values for an i1 are 0 and -1
2894     /// respectively. This maps into a truth table of:
2895     /// LHS | RHS | LHS >=s RHS   | LHS implies RHS
2896     ///  0  |  0  |  1 (0 >= 0)   |  1
2897     ///  0  |  1  |  1 (0 >= -1)  |  1
2898     ///  1  |  0  |  0 (-1 >= 0)  |  0
2899     ///  1  |  1  |  1 (-1 >= -1) |  1
2900     if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
2901       return getTrue(ITy);
2902     break;
2903   case ICmpInst::ICMP_ULE:
2904     if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false))
2905       return getTrue(ITy);
2906     break;
2907   case ICmpInst::ICMP_SLE:
2908     /// SLE follows the same logic as SGE with the LHS and RHS swapped.
2909     if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false))
2910       return getTrue(ITy);
2911     break;
2912   }
2913 
2914   return nullptr;
2915 }
2916 
2917 /// Try hard to fold icmp with zero RHS because this is a common case.
2918 static Value *simplifyICmpWithZero(CmpPredicate Pred, Value *LHS, Value *RHS,
2919                                    const SimplifyQuery &Q) {
2920   if (!match(RHS, m_Zero()))
2921     return nullptr;
2922 
2923   Type *ITy = getCompareTy(LHS); // The return type.
2924   switch (Pred) {
2925   default:
2926     llvm_unreachable("Unknown ICmp predicate!");
2927   case ICmpInst::ICMP_ULT:
2928     return getFalse(ITy);
2929   case ICmpInst::ICMP_UGE:
2930     return getTrue(ITy);
2931   case ICmpInst::ICMP_EQ:
2932   case ICmpInst::ICMP_ULE:
2933     if (isKnownNonZero(LHS, Q))
2934       return getFalse(ITy);
2935     break;
2936   case ICmpInst::ICMP_NE:
2937   case ICmpInst::ICMP_UGT:
2938     if (isKnownNonZero(LHS, Q))
2939       return getTrue(ITy);
2940     break;
2941   case ICmpInst::ICMP_SLT: {
2942     KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q);
2943     if (LHSKnown.isNegative())
2944       return getTrue(ITy);
2945     if (LHSKnown.isNonNegative())
2946       return getFalse(ITy);
2947     break;
2948   }
2949   case ICmpInst::ICMP_SLE: {
2950     KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q);
2951     if (LHSKnown.isNegative())
2952       return getTrue(ITy);
2953     if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q))
2954       return getFalse(ITy);
2955     break;
2956   }
2957   case ICmpInst::ICMP_SGE: {
2958     KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q);
2959     if (LHSKnown.isNegative())
2960       return getFalse(ITy);
2961     if (LHSKnown.isNonNegative())
2962       return getTrue(ITy);
2963     break;
2964   }
2965   case ICmpInst::ICMP_SGT: {
2966     KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q);
2967     if (LHSKnown.isNegative())
2968       return getFalse(ITy);
2969     if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q))
2970       return getTrue(ITy);
2971     break;
2972   }
2973   }
2974 
2975   return nullptr;
2976 }
2977 
2978 static Value *simplifyICmpWithConstant(CmpPredicate Pred, Value *LHS,
2979                                        Value *RHS, const InstrInfoQuery &IIQ) {
2980   Type *ITy = getCompareTy(RHS); // The return type.
2981 
2982   Value *X;
2983   const APInt *C;
2984   if (!match(RHS, m_APIntAllowPoison(C)))
2985     return nullptr;
2986 
2987   // Sign-bit checks can be optimized to true/false after unsigned
2988   // floating-point casts:
2989   // icmp slt (bitcast (uitofp X)),  0 --> false
2990   // icmp sgt (bitcast (uitofp X)), -1 --> true
2991   if (match(LHS, m_ElementWiseBitCast(m_UIToFP(m_Value(X))))) {
2992     bool TrueIfSigned;
2993     if (isSignBitCheck(Pred, *C, TrueIfSigned))
2994       return ConstantInt::getBool(ITy, !TrueIfSigned);
2995   }
2996 
2997   // Rule out tautological comparisons (eg., ult 0 or uge 0).
2998   ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C);
2999   if (RHS_CR.isEmptySet())
3000     return ConstantInt::getFalse(ITy);
3001   if (RHS_CR.isFullSet())
3002     return ConstantInt::getTrue(ITy);
3003 
3004   ConstantRange LHS_CR =
3005       computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo);
3006   if (!LHS_CR.isFullSet()) {
3007     if (RHS_CR.contains(LHS_CR))
3008       return ConstantInt::getTrue(ITy);
3009     if (RHS_CR.inverse().contains(LHS_CR))
3010       return ConstantInt::getFalse(ITy);
3011   }
3012 
3013   // (mul nuw/nsw X, MulC) != C --> true  (if C is not a multiple of MulC)
3014   // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
3015   const APInt *MulC;
3016   if (IIQ.UseInstrInfo && ICmpInst::isEquality(Pred) &&
3017       ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowPoison(MulC))) &&
3018         *MulC != 0 && C->urem(*MulC) != 0) ||
3019        (match(LHS, m_NSWMul(m_Value(), m_APIntAllowPoison(MulC))) &&
3020         *MulC != 0 && C->srem(*MulC) != 0)))
3021     return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE);
3022 
3023   return nullptr;
3024 }
3025 
3026 enum class MonotonicType { GreaterEq, LowerEq };
3027 
3028 /// Get values V_i such that V uge V_i (GreaterEq) or V ule V_i (LowerEq).
3029 static void getUnsignedMonotonicValues(SmallPtrSetImpl<Value *> &Res, Value *V,
3030                                        MonotonicType Type, unsigned Depth = 0) {
3031   if (!Res.insert(V).second)
3032     return;
3033 
3034   // Can be increased if useful.
3035   if (++Depth > 1)
3036     return;
3037 
3038   auto *I = dyn_cast<Instruction>(V);
3039   if (!I)
3040     return;
3041 
3042   Value *X, *Y;
3043   if (Type == MonotonicType::GreaterEq) {
3044     if (match(I, m_Or(m_Value(X), m_Value(Y))) ||
3045         match(I, m_Intrinsic<Intrinsic::uadd_sat>(m_Value(X), m_Value(Y)))) {
3046       getUnsignedMonotonicValues(Res, X, Type, Depth);
3047       getUnsignedMonotonicValues(Res, Y, Type, Depth);
3048     }
3049   } else {
3050     assert(Type == MonotonicType::LowerEq);
3051     switch (I->getOpcode()) {
3052     case Instruction::And:
3053       getUnsignedMonotonicValues(Res, I->getOperand(0), Type, Depth);
3054       getUnsignedMonotonicValues(Res, I->getOperand(1), Type, Depth);
3055       break;
3056     case Instruction::URem:
3057     case Instruction::UDiv:
3058     case Instruction::LShr:
3059       getUnsignedMonotonicValues(Res, I->getOperand(0), Type, Depth);
3060       break;
3061     case Instruction::Call:
3062       if (match(I, m_Intrinsic<Intrinsic::usub_sat>(m_Value(X))))
3063         getUnsignedMonotonicValues(Res, X, Type, Depth);
3064       break;
3065     default:
3066       break;
3067     }
3068   }
3069 }
3070 
3071 static Value *simplifyICmpUsingMonotonicValues(CmpPredicate Pred, Value *LHS,
3072                                                Value *RHS) {
3073   if (Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_ULT)
3074     return nullptr;
3075 
3076   // We have LHS uge GreaterValues and LowerValues uge RHS. If any of the
3077   // GreaterValues and LowerValues are the same, it follows that LHS uge RHS.
3078   SmallPtrSet<Value *, 4> GreaterValues;
3079   SmallPtrSet<Value *, 4> LowerValues;
3080   getUnsignedMonotonicValues(GreaterValues, LHS, MonotonicType::GreaterEq);
3081   getUnsignedMonotonicValues(LowerValues, RHS, MonotonicType::LowerEq);
3082   for (Value *GV : GreaterValues)
3083     if (LowerValues.contains(GV))
3084       return ConstantInt::getBool(getCompareTy(LHS),
3085                                   Pred == ICmpInst::ICMP_UGE);
3086   return nullptr;
3087 }
3088 
3089 static Value *simplifyICmpWithBinOpOnLHS(CmpPredicate Pred, BinaryOperator *LBO,
3090                                          Value *RHS, const SimplifyQuery &Q,
3091                                          unsigned MaxRecurse) {
3092   Type *ITy = getCompareTy(RHS); // The return type.
3093 
3094   Value *Y = nullptr;
3095   // icmp pred (or X, Y), X
3096   if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) {
3097     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) {
3098       KnownBits RHSKnown = computeKnownBits(RHS, /* Depth */ 0, Q);
3099       KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q);
3100       if (RHSKnown.isNonNegative() && YKnown.isNegative())
3101         return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy);
3102       if (RHSKnown.isNegative() || YKnown.isNonNegative())
3103         return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy);
3104     }
3105   }
3106 
3107   // icmp pred (urem X, Y), Y
3108   if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
3109     switch (Pred) {
3110     default:
3111       break;
3112     case ICmpInst::ICMP_SGT:
3113     case ICmpInst::ICMP_SGE: {
3114       KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q);
3115       if (!Known.isNonNegative())
3116         break;
3117       [[fallthrough]];
3118     }
3119     case ICmpInst::ICMP_EQ:
3120     case ICmpInst::ICMP_UGT:
3121     case ICmpInst::ICMP_UGE:
3122       return getFalse(ITy);
3123     case ICmpInst::ICMP_SLT:
3124     case ICmpInst::ICMP_SLE: {
3125       KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q);
3126       if (!Known.isNonNegative())
3127         break;
3128       [[fallthrough]];
3129     }
3130     case ICmpInst::ICMP_NE:
3131     case ICmpInst::ICMP_ULT:
3132     case ICmpInst::ICMP_ULE:
3133       return getTrue(ITy);
3134     }
3135   }
3136 
3137   // If x is nonzero:
3138   // x >>u C <u  x --> true  for C != 0.
3139   // x >>u C !=  x --> true  for C != 0.
3140   // x >>u C >=u x --> false for C != 0.
3141   // x >>u C ==  x --> false for C != 0.
3142   // x udiv C <u  x --> true  for C != 1.
3143   // x udiv C !=  x --> true  for C != 1.
3144   // x udiv C >=u x --> false for C != 1.
3145   // x udiv C ==  x --> false for C != 1.
3146   // TODO: allow non-constant shift amount/divisor
3147   const APInt *C;
3148   if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) ||
3149       (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) {
3150     if (isKnownNonZero(RHS, Q)) {
3151       switch (Pred) {
3152       default:
3153         break;
3154       case ICmpInst::ICMP_EQ:
3155       case ICmpInst::ICMP_UGE:
3156       case ICmpInst::ICMP_UGT:
3157         return getFalse(ITy);
3158       case ICmpInst::ICMP_NE:
3159       case ICmpInst::ICMP_ULT:
3160       case ICmpInst::ICMP_ULE:
3161         return getTrue(ITy);
3162       }
3163     }
3164   }
3165 
3166   // (x*C1)/C2 <= x for C1 <= C2.
3167   // This holds even if the multiplication overflows: Assume that x != 0 and
3168   // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3169   // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3170   //
3171   // Additionally, either the multiplication and division might be represented
3172   // as shifts:
3173   // (x*C1)>>C2 <= x for C1 < 2**C2.
3174   // (x<<C1)/C2 <= x for 2**C1 < C2.
3175   const APInt *C1, *C2;
3176   if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3177        C1->ule(*C2)) ||
3178       (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3179        C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) ||
3180       (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) &&
3181        (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) {
3182     if (Pred == ICmpInst::ICMP_UGT)
3183       return getFalse(ITy);
3184     if (Pred == ICmpInst::ICMP_ULE)
3185       return getTrue(ITy);
3186   }
3187 
3188   // (sub C, X) == X, C is odd  --> false
3189   // (sub C, X) != X, C is odd  --> true
3190   if (match(LBO, m_Sub(m_APIntAllowPoison(C), m_Specific(RHS))) &&
3191       (*C & 1) == 1 && ICmpInst::isEquality(Pred))
3192     return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy);
3193 
3194   return nullptr;
3195 }
3196 
3197 // If only one of the icmp's operands has NSW flags, try to prove that:
3198 //
3199 //   icmp slt (x + C1), (x +nsw C2)
3200 //
3201 // is equivalent to:
3202 //
3203 //   icmp slt C1, C2
3204 //
3205 // which is true if x + C2 has the NSW flags set and:
3206 // *) C1 < C2 && C1 >= 0, or
3207 // *) C2 < C1 && C1 <= 0.
3208 //
3209 static bool trySimplifyICmpWithAdds(CmpPredicate Pred, Value *LHS, Value *RHS,
3210                                     const InstrInfoQuery &IIQ) {
3211   // TODO: only support icmp slt for now.
3212   if (Pred != CmpInst::ICMP_SLT || !IIQ.UseInstrInfo)
3213     return false;
3214 
3215   // Canonicalize nsw add as RHS.
3216   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3217     std::swap(LHS, RHS);
3218   if (!match(RHS, m_NSWAdd(m_Value(), m_Value())))
3219     return false;
3220 
3221   Value *X;
3222   const APInt *C1, *C2;
3223   if (!match(LHS, m_Add(m_Value(X), m_APInt(C1))) ||
3224       !match(RHS, m_Add(m_Specific(X), m_APInt(C2))))
3225     return false;
3226 
3227   return (C1->slt(*C2) && C1->isNonNegative()) ||
3228          (C2->slt(*C1) && C1->isNonPositive());
3229 }
3230 
3231 /// TODO: A large part of this logic is duplicated in InstCombine's
3232 /// foldICmpBinOp(). We should be able to share that and avoid the code
3233 /// duplication.
3234 static Value *simplifyICmpWithBinOp(CmpPredicate Pred, Value *LHS, Value *RHS,
3235                                     const SimplifyQuery &Q,
3236                                     unsigned MaxRecurse) {
3237   BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
3238   BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
3239   if (MaxRecurse && (LBO || RBO)) {
3240     // Analyze the case when either LHS or RHS is an add instruction.
3241     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3242     // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3243     bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
3244     if (LBO && LBO->getOpcode() == Instruction::Add) {
3245       A = LBO->getOperand(0);
3246       B = LBO->getOperand(1);
3247       NoLHSWrapProblem =
3248           ICmpInst::isEquality(Pred) ||
3249           (CmpInst::isUnsigned(Pred) &&
3250            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) ||
3251           (CmpInst::isSigned(Pred) &&
3252            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)));
3253     }
3254     if (RBO && RBO->getOpcode() == Instruction::Add) {
3255       C = RBO->getOperand(0);
3256       D = RBO->getOperand(1);
3257       NoRHSWrapProblem =
3258           ICmpInst::isEquality(Pred) ||
3259           (CmpInst::isUnsigned(Pred) &&
3260            Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) ||
3261           (CmpInst::isSigned(Pred) &&
3262            Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO)));
3263     }
3264 
3265     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3266     if ((A == RHS || B == RHS) && NoLHSWrapProblem)
3267       if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A,
3268                                       Constant::getNullValue(RHS->getType()), Q,
3269                                       MaxRecurse - 1))
3270         return V;
3271 
3272     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3273     if ((C == LHS || D == LHS) && NoRHSWrapProblem)
3274       if (Value *V =
3275               simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()),
3276                                C == LHS ? D : C, Q, MaxRecurse - 1))
3277         return V;
3278 
3279     // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3280     bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) ||
3281                        trySimplifyICmpWithAdds(Pred, LHS, RHS, Q.IIQ);
3282     if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) {
3283       // Determine Y and Z in the form icmp (X+Y), (X+Z).
3284       Value *Y, *Z;
3285       if (A == C) {
3286         // C + B == C + D  ->  B == D
3287         Y = B;
3288         Z = D;
3289       } else if (A == D) {
3290         // D + B == C + D  ->  B == C
3291         Y = B;
3292         Z = C;
3293       } else if (B == C) {
3294         // A + C == C + D  ->  A == D
3295         Y = A;
3296         Z = D;
3297       } else {
3298         assert(B == D);
3299         // A + D == C + D  ->  A == C
3300         Y = A;
3301         Z = C;
3302       }
3303       if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1))
3304         return V;
3305     }
3306   }
3307 
3308   if (LBO)
3309     if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse))
3310       return V;
3311 
3312   if (RBO)
3313     if (Value *V = simplifyICmpWithBinOpOnLHS(
3314             ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse))
3315       return V;
3316 
3317   // 0 - (zext X) pred C
3318   if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) {
3319     const APInt *C;
3320     if (match(RHS, m_APInt(C))) {
3321       if (C->isStrictlyPositive()) {
3322         if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE)
3323           return ConstantInt::getTrue(getCompareTy(RHS));
3324         if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ)
3325           return ConstantInt::getFalse(getCompareTy(RHS));
3326       }
3327       if (C->isNonNegative()) {
3328         if (Pred == ICmpInst::ICMP_SLE)
3329           return ConstantInt::getTrue(getCompareTy(RHS));
3330         if (Pred == ICmpInst::ICMP_SGT)
3331           return ConstantInt::getFalse(getCompareTy(RHS));
3332       }
3333     }
3334   }
3335 
3336   //   If C2 is a power-of-2 and C is not:
3337   //   (C2 << X) == C --> false
3338   //   (C2 << X) != C --> true
3339   const APInt *C;
3340   if (match(LHS, m_Shl(m_Power2(), m_Value())) &&
3341       match(RHS, m_APIntAllowPoison(C)) && !C->isPowerOf2()) {
3342     // C2 << X can equal zero in some circumstances.
3343     // This simplification might be unsafe if C is zero.
3344     //
3345     // We know it is safe if:
3346     // - The shift is nsw. We can't shift out the one bit.
3347     // - The shift is nuw. We can't shift out the one bit.
3348     // - C2 is one.
3349     // - C isn't zero.
3350     if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3351         Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) ||
3352         match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) {
3353       if (Pred == ICmpInst::ICMP_EQ)
3354         return ConstantInt::getFalse(getCompareTy(RHS));
3355       if (Pred == ICmpInst::ICMP_NE)
3356         return ConstantInt::getTrue(getCompareTy(RHS));
3357     }
3358   }
3359 
3360   // If C is a power-of-2:
3361   // (C << X)  >u 0x8000 --> false
3362   // (C << X) <=u 0x8000 --> true
3363   if (match(LHS, m_Shl(m_Power2(), m_Value())) && match(RHS, m_SignMask())) {
3364     if (Pred == ICmpInst::ICMP_UGT)
3365       return ConstantInt::getFalse(getCompareTy(RHS));
3366     if (Pred == ICmpInst::ICMP_ULE)
3367       return ConstantInt::getTrue(getCompareTy(RHS));
3368   }
3369 
3370   if (!MaxRecurse || !LBO || !RBO || LBO->getOpcode() != RBO->getOpcode())
3371     return nullptr;
3372 
3373   if (LBO->getOperand(0) == RBO->getOperand(0)) {
3374     switch (LBO->getOpcode()) {
3375     default:
3376       break;
3377     case Instruction::Shl: {
3378       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3379       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3380       if (!NUW || (ICmpInst::isSigned(Pred) && !NSW) ||
3381           !isKnownNonZero(LBO->getOperand(0), Q))
3382         break;
3383       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(1),
3384                                       RBO->getOperand(1), Q, MaxRecurse - 1))
3385         return V;
3386       break;
3387     }
3388     // If C1 & C2 == C1, A = X and/or C1, B = X and/or C2:
3389     // icmp ule A, B -> true
3390     // icmp ugt A, B -> false
3391     // icmp sle A, B -> true (C1 and C2 are the same sign)
3392     // icmp sgt A, B -> false (C1 and C2 are the same sign)
3393     case Instruction::And:
3394     case Instruction::Or: {
3395       const APInt *C1, *C2;
3396       if (ICmpInst::isRelational(Pred) &&
3397           match(LBO->getOperand(1), m_APInt(C1)) &&
3398           match(RBO->getOperand(1), m_APInt(C2))) {
3399         if (!C1->isSubsetOf(*C2)) {
3400           std::swap(C1, C2);
3401           Pred = ICmpInst::getSwappedPredicate(Pred);
3402         }
3403         if (C1->isSubsetOf(*C2)) {
3404           if (Pred == ICmpInst::ICMP_ULE)
3405             return ConstantInt::getTrue(getCompareTy(LHS));
3406           if (Pred == ICmpInst::ICMP_UGT)
3407             return ConstantInt::getFalse(getCompareTy(LHS));
3408           if (C1->isNonNegative() == C2->isNonNegative()) {
3409             if (Pred == ICmpInst::ICMP_SLE)
3410               return ConstantInt::getTrue(getCompareTy(LHS));
3411             if (Pred == ICmpInst::ICMP_SGT)
3412               return ConstantInt::getFalse(getCompareTy(LHS));
3413           }
3414         }
3415       }
3416       break;
3417     }
3418     }
3419   }
3420 
3421   if (LBO->getOperand(1) == RBO->getOperand(1)) {
3422     switch (LBO->getOpcode()) {
3423     default:
3424       break;
3425     case Instruction::UDiv:
3426     case Instruction::LShr:
3427       if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) ||
3428           !Q.IIQ.isExact(RBO))
3429         break;
3430       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3431                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3432         return V;
3433       break;
3434     case Instruction::SDiv:
3435       if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) ||
3436           !Q.IIQ.isExact(RBO))
3437         break;
3438       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3439                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3440         return V;
3441       break;
3442     case Instruction::AShr:
3443       if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO))
3444         break;
3445       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3446                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3447         return V;
3448       break;
3449     case Instruction::Shl: {
3450       bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO);
3451       bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO);
3452       if (!NUW && !NSW)
3453         break;
3454       if (!NSW && ICmpInst::isSigned(Pred))
3455         break;
3456       if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0),
3457                                       RBO->getOperand(0), Q, MaxRecurse - 1))
3458         return V;
3459       break;
3460     }
3461     }
3462   }
3463   return nullptr;
3464 }
3465 
3466 /// simplify integer comparisons where at least one operand of the compare
3467 /// matches an integer min/max idiom.
3468 static Value *simplifyICmpWithMinMax(CmpPredicate Pred, Value *LHS, Value *RHS,
3469                                      const SimplifyQuery &Q,
3470                                      unsigned MaxRecurse) {
3471   Type *ITy = getCompareTy(LHS); // The return type.
3472   Value *A, *B;
3473   CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
3474   CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3475 
3476   // Signed variants on "max(a,b)>=a -> true".
3477   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3478     if (A != RHS)
3479       std::swap(A, B);       // smax(A, B) pred A.
3480     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3481     // We analyze this as smax(A, B) pred A.
3482     P = Pred;
3483   } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
3484              (A == LHS || B == LHS)) {
3485     if (A != LHS)
3486       std::swap(A, B);       // A pred smax(A, B).
3487     EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
3488     // We analyze this as smax(A, B) swapped-pred A.
3489     P = CmpInst::getSwappedPredicate(Pred);
3490   } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
3491              (A == RHS || B == RHS)) {
3492     if (A != RHS)
3493       std::swap(A, B);       // smin(A, B) pred A.
3494     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3495     // We analyze this as smax(-A, -B) swapped-pred -A.
3496     // Note that we do not need to actually form -A or -B thanks to EqP.
3497     P = CmpInst::getSwappedPredicate(Pred);
3498   } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
3499              (A == LHS || B == LHS)) {
3500     if (A != LHS)
3501       std::swap(A, B);       // A pred smin(A, B).
3502     EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
3503     // We analyze this as smax(-A, -B) pred -A.
3504     // Note that we do not need to actually form -A or -B thanks to EqP.
3505     P = Pred;
3506   }
3507   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3508     // Cases correspond to "max(A, B) p A".
3509     switch (P) {
3510     default:
3511       break;
3512     case CmpInst::ICMP_EQ:
3513     case CmpInst::ICMP_SLE:
3514       // Equivalent to "A EqP B".  This may be the same as the condition tested
3515       // in the max/min; if so, we can just return that.
3516       if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
3517         return V;
3518       if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
3519         return V;
3520       // Otherwise, see if "A EqP B" simplifies.
3521       if (MaxRecurse)
3522         if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3523           return V;
3524       break;
3525     case CmpInst::ICMP_NE:
3526     case CmpInst::ICMP_SGT: {
3527       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3528       // Equivalent to "A InvEqP B".  This may be the same as the condition
3529       // tested in the max/min; if so, we can just return that.
3530       if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
3531         return V;
3532       if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
3533         return V;
3534       // Otherwise, see if "A InvEqP B" simplifies.
3535       if (MaxRecurse)
3536         if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3537           return V;
3538       break;
3539     }
3540     case CmpInst::ICMP_SGE:
3541       // Always true.
3542       return getTrue(ITy);
3543     case CmpInst::ICMP_SLT:
3544       // Always false.
3545       return getFalse(ITy);
3546     }
3547   }
3548 
3549   // Unsigned variants on "max(a,b)>=a -> true".
3550   P = CmpInst::BAD_ICMP_PREDICATE;
3551   if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
3552     if (A != RHS)
3553       std::swap(A, B);       // umax(A, B) pred A.
3554     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3555     // We analyze this as umax(A, B) pred A.
3556     P = Pred;
3557   } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
3558              (A == LHS || B == LHS)) {
3559     if (A != LHS)
3560       std::swap(A, B);       // A pred umax(A, B).
3561     EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
3562     // We analyze this as umax(A, B) swapped-pred A.
3563     P = CmpInst::getSwappedPredicate(Pred);
3564   } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
3565              (A == RHS || B == RHS)) {
3566     if (A != RHS)
3567       std::swap(A, B);       // umin(A, B) pred A.
3568     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3569     // We analyze this as umax(-A, -B) swapped-pred -A.
3570     // Note that we do not need to actually form -A or -B thanks to EqP.
3571     P = CmpInst::getSwappedPredicate(Pred);
3572   } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
3573              (A == LHS || B == LHS)) {
3574     if (A != LHS)
3575       std::swap(A, B);       // A pred umin(A, B).
3576     EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
3577     // We analyze this as umax(-A, -B) pred -A.
3578     // Note that we do not need to actually form -A or -B thanks to EqP.
3579     P = Pred;
3580   }
3581   if (P != CmpInst::BAD_ICMP_PREDICATE) {
3582     // Cases correspond to "max(A, B) p A".
3583     switch (P) {
3584     default:
3585       break;
3586     case CmpInst::ICMP_EQ:
3587     case CmpInst::ICMP_ULE:
3588       // Equivalent to "A EqP B".  This may be the same as the condition tested
3589       // in the max/min; if so, we can just return that.
3590       if (Value *V = extractEquivalentCondition(LHS, EqP, A, B))
3591         return V;
3592       if (Value *V = extractEquivalentCondition(RHS, EqP, A, B))
3593         return V;
3594       // Otherwise, see if "A EqP B" simplifies.
3595       if (MaxRecurse)
3596         if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1))
3597           return V;
3598       break;
3599     case CmpInst::ICMP_NE:
3600     case CmpInst::ICMP_UGT: {
3601       CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
3602       // Equivalent to "A InvEqP B".  This may be the same as the condition
3603       // tested in the max/min; if so, we can just return that.
3604       if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B))
3605         return V;
3606       if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B))
3607         return V;
3608       // Otherwise, see if "A InvEqP B" simplifies.
3609       if (MaxRecurse)
3610         if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1))
3611           return V;
3612       break;
3613     }
3614     case CmpInst::ICMP_UGE:
3615       return getTrue(ITy);
3616     case CmpInst::ICMP_ULT:
3617       return getFalse(ITy);
3618     }
3619   }
3620 
3621   // Comparing 1 each of min/max with a common operand?
3622   // Canonicalize min operand to RHS.
3623   if (match(LHS, m_UMin(m_Value(), m_Value())) ||
3624       match(LHS, m_SMin(m_Value(), m_Value()))) {
3625     std::swap(LHS, RHS);
3626     Pred = ICmpInst::getSwappedPredicate(Pred);
3627   }
3628 
3629   Value *C, *D;
3630   if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
3631       match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
3632       (A == C || A == D || B == C || B == D)) {
3633     // smax(A, B) >=s smin(A, D) --> true
3634     if (Pred == CmpInst::ICMP_SGE)
3635       return getTrue(ITy);
3636     // smax(A, B) <s smin(A, D) --> false
3637     if (Pred == CmpInst::ICMP_SLT)
3638       return getFalse(ITy);
3639   } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
3640              match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
3641              (A == C || A == D || B == C || B == D)) {
3642     // umax(A, B) >=u umin(A, D) --> true
3643     if (Pred == CmpInst::ICMP_UGE)
3644       return getTrue(ITy);
3645     // umax(A, B) <u umin(A, D) --> false
3646     if (Pred == CmpInst::ICMP_ULT)
3647       return getFalse(ITy);
3648   }
3649 
3650   return nullptr;
3651 }
3652 
3653 static Value *simplifyICmpWithDominatingAssume(CmpPredicate Predicate,
3654                                                Value *LHS, Value *RHS,
3655                                                const SimplifyQuery &Q) {
3656   // Gracefully handle instructions that have not been inserted yet.
3657   if (!Q.AC || !Q.CxtI)
3658     return nullptr;
3659 
3660   for (Value *AssumeBaseOp : {LHS, RHS}) {
3661     for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) {
3662       if (!AssumeVH)
3663         continue;
3664 
3665       CallInst *Assume = cast<CallInst>(AssumeVH);
3666       if (std::optional<bool> Imp = isImpliedCondition(
3667               Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL))
3668         if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT))
3669           return ConstantInt::get(getCompareTy(LHS), *Imp);
3670     }
3671   }
3672 
3673   return nullptr;
3674 }
3675 
3676 static Value *simplifyICmpWithIntrinsicOnLHS(CmpPredicate Pred, Value *LHS,
3677                                              Value *RHS) {
3678   auto *II = dyn_cast<IntrinsicInst>(LHS);
3679   if (!II)
3680     return nullptr;
3681 
3682   switch (II->getIntrinsicID()) {
3683   case Intrinsic::uadd_sat:
3684     // uadd.sat(X, Y) uge X + Y
3685     if (match(RHS, m_c_Add(m_Specific(II->getArgOperand(0)),
3686                            m_Specific(II->getArgOperand(1))))) {
3687       if (Pred == ICmpInst::ICMP_UGE)
3688         return ConstantInt::getTrue(getCompareTy(II));
3689       if (Pred == ICmpInst::ICMP_ULT)
3690         return ConstantInt::getFalse(getCompareTy(II));
3691     }
3692     return nullptr;
3693   case Intrinsic::usub_sat:
3694     // usub.sat(X, Y) ule X - Y
3695     if (match(RHS, m_Sub(m_Specific(II->getArgOperand(0)),
3696                          m_Specific(II->getArgOperand(1))))) {
3697       if (Pred == ICmpInst::ICMP_ULE)
3698         return ConstantInt::getTrue(getCompareTy(II));
3699       if (Pred == ICmpInst::ICMP_UGT)
3700         return ConstantInt::getFalse(getCompareTy(II));
3701     }
3702     return nullptr;
3703   default:
3704     return nullptr;
3705   }
3706 }
3707 
3708 /// Helper method to get range from metadata or attribute.
3709 static std::optional<ConstantRange> getRange(Value *V,
3710                                              const InstrInfoQuery &IIQ) {
3711   if (Instruction *I = dyn_cast<Instruction>(V))
3712     if (MDNode *MD = IIQ.getMetadata(I, LLVMContext::MD_range))
3713       return getConstantRangeFromMetadata(*MD);
3714 
3715   if (const Argument *A = dyn_cast<Argument>(V))
3716     return A->getRange();
3717   else if (const CallBase *CB = dyn_cast<CallBase>(V))
3718     return CB->getRange();
3719 
3720   return std::nullopt;
3721 }
3722 
3723 /// Given operands for an ICmpInst, see if we can fold the result.
3724 /// If not, this returns null.
3725 static Value *simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS,
3726                                const SimplifyQuery &Q, unsigned MaxRecurse) {
3727   assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
3728 
3729   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
3730     if (Constant *CRHS = dyn_cast<Constant>(RHS))
3731       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI);
3732 
3733     // If we have a constant, make sure it is on the RHS.
3734     std::swap(LHS, RHS);
3735     Pred = CmpInst::getSwappedPredicate(Pred);
3736   }
3737   assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X");
3738 
3739   Type *ITy = getCompareTy(LHS); // The return type.
3740 
3741   // icmp poison, X -> poison
3742   if (isa<PoisonValue>(RHS))
3743     return PoisonValue::get(ITy);
3744 
3745   // For EQ and NE, we can always pick a value for the undef to make the
3746   // predicate pass or fail, so we can return undef.
3747   // Matches behavior in llvm::ConstantFoldCompareInstruction.
3748   if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred))
3749     return UndefValue::get(ITy);
3750 
3751   // icmp X, X -> true/false
3752   // icmp X, undef -> true/false because undef could be X.
3753   if (LHS == RHS || Q.isUndefValue(RHS))
3754     return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
3755 
3756   if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q))
3757     return V;
3758 
3759   // TODO: Sink/common this with other potentially expensive calls that use
3760   //       ValueTracking? See comment below for isKnownNonEqual().
3761   if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q))
3762     return V;
3763 
3764   if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ))
3765     return V;
3766 
3767   // If both operands have range metadata, use the metadata
3768   // to simplify the comparison.
3769   if (std::optional<ConstantRange> RhsCr = getRange(RHS, Q.IIQ))
3770     if (std::optional<ConstantRange> LhsCr = getRange(LHS, Q.IIQ)) {
3771       if (LhsCr->icmp(Pred, *RhsCr))
3772         return ConstantInt::getTrue(ITy);
3773 
3774       if (LhsCr->icmp(CmpInst::getInversePredicate(Pred), *RhsCr))
3775         return ConstantInt::getFalse(ITy);
3776     }
3777 
3778   // Compare of cast, for example (zext X) != 0 -> X != 0
3779   if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
3780     Instruction *LI = cast<CastInst>(LHS);
3781     Value *SrcOp = LI->getOperand(0);
3782     Type *SrcTy = SrcOp->getType();
3783     Type *DstTy = LI->getType();
3784 
3785     // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3786     // if the integer type is the same size as the pointer type.
3787     if (MaxRecurse && isa<PtrToIntInst>(LI) &&
3788         Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
3789       if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
3790         // Transfer the cast to the constant.
3791         if (Value *V = simplifyICmpInst(Pred, SrcOp,
3792                                         ConstantExpr::getIntToPtr(RHSC, SrcTy),
3793                                         Q, MaxRecurse - 1))
3794           return V;
3795       } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
3796         if (RI->getOperand(0)->getType() == SrcTy)
3797           // Compare without the cast.
3798           if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
3799                                           MaxRecurse - 1))
3800             return V;
3801       }
3802     }
3803 
3804     if (isa<ZExtInst>(LHS)) {
3805       // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3806       // same type.
3807       if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3808         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3809           // Compare X and Y.  Note that signed predicates become unsigned.
3810           if (Value *V =
3811                   simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp,
3812                                    RI->getOperand(0), Q, MaxRecurse - 1))
3813             return V;
3814       }
3815       // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3816       else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3817         if (SrcOp == RI->getOperand(0)) {
3818           if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE)
3819             return ConstantInt::getTrue(ITy);
3820           if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT)
3821             return ConstantInt::getFalse(ITy);
3822         }
3823       }
3824       // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3825       // too.  If not, then try to deduce the result of the comparison.
3826       else if (match(RHS, m_ImmConstant())) {
3827         Constant *C = dyn_cast<Constant>(RHS);
3828         assert(C != nullptr);
3829 
3830         // Compute the constant that would happen if we truncated to SrcTy then
3831         // reextended to DstTy.
3832         Constant *Trunc =
3833             ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL);
3834         assert(Trunc && "Constant-fold of ImmConstant should not fail");
3835         Constant *RExt =
3836             ConstantFoldCastOperand(CastInst::ZExt, Trunc, DstTy, Q.DL);
3837         assert(RExt && "Constant-fold of ImmConstant should not fail");
3838         Constant *AnyEq =
3839             ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL);
3840         assert(AnyEq && "Constant-fold of ImmConstant should not fail");
3841 
3842         // If the re-extended constant didn't change any of the elements then
3843         // this is effectively also a case of comparing two zero-extended
3844         // values.
3845         if (AnyEq->isAllOnesValue() && MaxRecurse)
3846           if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
3847                                           SrcOp, Trunc, Q, MaxRecurse - 1))
3848             return V;
3849 
3850         // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3851         // there.  Use this to work out the result of the comparison.
3852         if (AnyEq->isNullValue()) {
3853           switch (Pred) {
3854           default:
3855             llvm_unreachable("Unknown ICmp predicate!");
3856           // LHS <u RHS.
3857           case ICmpInst::ICMP_EQ:
3858           case ICmpInst::ICMP_UGT:
3859           case ICmpInst::ICMP_UGE:
3860             return Constant::getNullValue(ITy);
3861 
3862           case ICmpInst::ICMP_NE:
3863           case ICmpInst::ICMP_ULT:
3864           case ICmpInst::ICMP_ULE:
3865             return Constant::getAllOnesValue(ITy);
3866 
3867           // LHS is non-negative.  If RHS is negative then LHS >s LHS.  If RHS
3868           // is non-negative then LHS <s RHS.
3869           case ICmpInst::ICMP_SGT:
3870           case ICmpInst::ICMP_SGE:
3871             return ConstantFoldCompareInstOperands(
3872                 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()),
3873                 Q.DL);
3874           case ICmpInst::ICMP_SLT:
3875           case ICmpInst::ICMP_SLE:
3876             return ConstantFoldCompareInstOperands(
3877                 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()),
3878                 Q.DL);
3879           }
3880         }
3881       }
3882     }
3883 
3884     if (isa<SExtInst>(LHS)) {
3885       // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3886       // same type.
3887       if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
3888         if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
3889           // Compare X and Y.  Note that the predicate does not change.
3890           if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q,
3891                                           MaxRecurse - 1))
3892             return V;
3893       }
3894       // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3895       else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
3896         if (SrcOp == RI->getOperand(0)) {
3897           if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE)
3898             return ConstantInt::getTrue(ITy);
3899           if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT)
3900             return ConstantInt::getFalse(ITy);
3901         }
3902       }
3903       // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3904       // too.  If not, then try to deduce the result of the comparison.
3905       else if (match(RHS, m_ImmConstant())) {
3906         Constant *C = cast<Constant>(RHS);
3907 
3908         // Compute the constant that would happen if we truncated to SrcTy then
3909         // reextended to DstTy.
3910         Constant *Trunc =
3911             ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL);
3912         assert(Trunc && "Constant-fold of ImmConstant should not fail");
3913         Constant *RExt =
3914             ConstantFoldCastOperand(CastInst::SExt, Trunc, DstTy, Q.DL);
3915         assert(RExt && "Constant-fold of ImmConstant should not fail");
3916         Constant *AnyEq =
3917             ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL);
3918         assert(AnyEq && "Constant-fold of ImmConstant should not fail");
3919 
3920         // If the re-extended constant didn't change then this is effectively
3921         // also a case of comparing two sign-extended values.
3922         if (AnyEq->isAllOnesValue() && MaxRecurse)
3923           if (Value *V =
3924                   simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1))
3925             return V;
3926 
3927         // Otherwise the upper bits of LHS are all equal, while RHS has varying
3928         // bits there.  Use this to work out the result of the comparison.
3929         if (AnyEq->isNullValue()) {
3930           switch (Pred) {
3931           default:
3932             llvm_unreachable("Unknown ICmp predicate!");
3933           case ICmpInst::ICMP_EQ:
3934             return Constant::getNullValue(ITy);
3935           case ICmpInst::ICMP_NE:
3936             return Constant::getAllOnesValue(ITy);
3937 
3938           // If RHS is non-negative then LHS <s RHS.  If RHS is negative then
3939           // LHS >s RHS.
3940           case ICmpInst::ICMP_SGT:
3941           case ICmpInst::ICMP_SGE:
3942             return ConstantFoldCompareInstOperands(
3943                 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()),
3944                 Q.DL);
3945           case ICmpInst::ICMP_SLT:
3946           case ICmpInst::ICMP_SLE:
3947             return ConstantFoldCompareInstOperands(
3948                 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()),
3949                 Q.DL);
3950 
3951           // If LHS is non-negative then LHS <u RHS.  If LHS is negative then
3952           // LHS >u RHS.
3953           case ICmpInst::ICMP_UGT:
3954           case ICmpInst::ICMP_UGE:
3955             // Comparison is true iff the LHS <s 0.
3956             if (MaxRecurse)
3957               if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
3958                                               Constant::getNullValue(SrcTy), Q,
3959                                               MaxRecurse - 1))
3960                 return V;
3961             break;
3962           case ICmpInst::ICMP_ULT:
3963           case ICmpInst::ICMP_ULE:
3964             // Comparison is true iff the LHS >=s 0.
3965             if (MaxRecurse)
3966               if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
3967                                               Constant::getNullValue(SrcTy), Q,
3968                                               MaxRecurse - 1))
3969                 return V;
3970             break;
3971           }
3972         }
3973       }
3974     }
3975   }
3976 
3977   // icmp eq|ne X, Y -> false|true if X != Y
3978   // This is potentially expensive, and we have already computedKnownBits for
3979   // compares with 0 above here, so only try this for a non-zero compare.
3980   if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) &&
3981       isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) {
3982     return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy);
3983   }
3984 
3985   if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse))
3986     return V;
3987 
3988   if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse))
3989     return V;
3990 
3991   if (Value *V = simplifyICmpWithIntrinsicOnLHS(Pred, LHS, RHS))
3992     return V;
3993   if (Value *V = simplifyICmpWithIntrinsicOnLHS(
3994           ICmpInst::getSwappedPredicate(Pred), RHS, LHS))
3995     return V;
3996 
3997   if (Value *V = simplifyICmpUsingMonotonicValues(Pred, LHS, RHS))
3998     return V;
3999   if (Value *V = simplifyICmpUsingMonotonicValues(
4000           ICmpInst::getSwappedPredicate(Pred), RHS, LHS))
4001     return V;
4002 
4003   if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q))
4004     return V;
4005 
4006   if (std::optional<bool> Res =
4007           isImpliedByDomCondition(Pred, LHS, RHS, Q.CxtI, Q.DL))
4008     return ConstantInt::getBool(ITy, *Res);
4009 
4010   // Simplify comparisons of related pointers using a powerful, recursive
4011   // GEP-walk when we have target data available..
4012   if (LHS->getType()->isPointerTy())
4013     if (auto *C = computePointerICmp(Pred, LHS, RHS, Q))
4014       return C;
4015   if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS))
4016     if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS))
4017       if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() &&
4018           Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) ==
4019               Q.DL.getTypeSizeInBits(CLHS->getType()))
4020         if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(),
4021                                          CRHS->getPointerOperand(), Q))
4022           return C;
4023 
4024   // If the comparison is with the result of a select instruction, check whether
4025   // comparing with either branch of the select always yields the same value.
4026   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
4027     if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
4028       return V;
4029 
4030   // If the comparison is with the result of a phi instruction, check whether
4031   // doing the compare with each incoming phi value yields a common result.
4032   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4033     if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
4034       return V;
4035 
4036   return nullptr;
4037 }
4038 
4039 Value *llvm::simplifyICmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS,
4040                               const SimplifyQuery &Q) {
4041   return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
4042 }
4043 
4044 /// Given operands for an FCmpInst, see if we can fold the result.
4045 /// If not, this returns null.
4046 static Value *simplifyFCmpInst(CmpPredicate Pred, Value *LHS, Value *RHS,
4047                                FastMathFlags FMF, const SimplifyQuery &Q,
4048                                unsigned MaxRecurse) {
4049   assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
4050 
4051   if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
4052     if (Constant *CRHS = dyn_cast<Constant>(RHS))
4053       return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI,
4054                                              Q.CxtI);
4055 
4056     // If we have a constant, make sure it is on the RHS.
4057     std::swap(LHS, RHS);
4058     Pred = CmpInst::getSwappedPredicate(Pred);
4059   }
4060 
4061   // Fold trivial predicates.
4062   Type *RetTy = getCompareTy(LHS);
4063   if (Pred == FCmpInst::FCMP_FALSE)
4064     return getFalse(RetTy);
4065   if (Pred == FCmpInst::FCMP_TRUE)
4066     return getTrue(RetTy);
4067 
4068   // fcmp pred x, poison and  fcmp pred poison, x
4069   // fold to poison
4070   if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS))
4071     return PoisonValue::get(RetTy);
4072 
4073   // fcmp pred x, undef  and  fcmp pred undef, x
4074   // fold to true if unordered, false if ordered
4075   if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) {
4076     // Choosing NaN for the undef will always make unordered comparison succeed
4077     // and ordered comparison fail.
4078     return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
4079   }
4080 
4081   // fcmp x,x -> true/false.  Not all compares are foldable.
4082   if (LHS == RHS) {
4083     if (CmpInst::isTrueWhenEqual(Pred))
4084       return getTrue(RetTy);
4085     if (CmpInst::isFalseWhenEqual(Pred))
4086       return getFalse(RetTy);
4087   }
4088 
4089   // Fold (un)ordered comparison if we can determine there are no NaNs.
4090   //
4091   // This catches the 2 variable input case, constants are handled below as a
4092   // class-like compare.
4093   if (Pred == FCmpInst::FCMP_ORD || Pred == FCmpInst::FCMP_UNO) {
4094     KnownFPClass RHSClass =
4095         computeKnownFPClass(RHS, fcAllFlags, /*Depth=*/0, Q);
4096     KnownFPClass LHSClass =
4097         computeKnownFPClass(LHS, fcAllFlags, /*Depth=*/0, Q);
4098 
4099     if (FMF.noNaNs() ||
4100         (RHSClass.isKnownNeverNaN() && LHSClass.isKnownNeverNaN()))
4101       return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD);
4102 
4103     if (RHSClass.isKnownAlwaysNaN() || LHSClass.isKnownAlwaysNaN())
4104       return ConstantInt::get(RetTy, Pred == CmpInst::FCMP_UNO);
4105   }
4106 
4107   const APFloat *C = nullptr;
4108   match(RHS, m_APFloatAllowPoison(C));
4109   std::optional<KnownFPClass> FullKnownClassLHS;
4110 
4111   // Lazily compute the possible classes for LHS. Avoid computing it twice if
4112   // RHS is a 0.
4113   auto computeLHSClass = [=, &FullKnownClassLHS](FPClassTest InterestedFlags =
4114                                                      fcAllFlags) {
4115     if (FullKnownClassLHS)
4116       return *FullKnownClassLHS;
4117     return computeKnownFPClass(LHS, FMF, InterestedFlags, 0, Q);
4118   };
4119 
4120   if (C && Q.CxtI) {
4121     // Fold out compares that express a class test.
4122     //
4123     // FIXME: Should be able to perform folds without context
4124     // instruction. Always pass in the context function?
4125 
4126     const Function *ParentF = Q.CxtI->getFunction();
4127     auto [ClassVal, ClassTest] = fcmpToClassTest(Pred, *ParentF, LHS, C);
4128     if (ClassVal) {
4129       FullKnownClassLHS = computeLHSClass();
4130       if ((FullKnownClassLHS->KnownFPClasses & ClassTest) == fcNone)
4131         return getFalse(RetTy);
4132       if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) == fcNone)
4133         return getTrue(RetTy);
4134     }
4135   }
4136 
4137   // Handle fcmp with constant RHS.
4138   if (C) {
4139     // TODO: If we always required a context function, we wouldn't need to
4140     // special case nans.
4141     if (C->isNaN())
4142       return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred));
4143 
4144     // TODO: Need version fcmpToClassTest which returns implied class when the
4145     // compare isn't a complete class test. e.g. > 1.0 implies fcPositive, but
4146     // isn't implementable as a class call.
4147     if (C->isNegative() && !C->isNegZero()) {
4148       FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask;
4149 
4150       // TODO: We can catch more cases by using a range check rather than
4151       //       relying on CannotBeOrderedLessThanZero.
4152       switch (Pred) {
4153       case FCmpInst::FCMP_UGE:
4154       case FCmpInst::FCMP_UGT:
4155       case FCmpInst::FCMP_UNE: {
4156         KnownFPClass KnownClass = computeLHSClass(Interested);
4157 
4158         // (X >= 0) implies (X > C) when (C < 0)
4159         if (KnownClass.cannotBeOrderedLessThanZero())
4160           return getTrue(RetTy);
4161         break;
4162       }
4163       case FCmpInst::FCMP_OEQ:
4164       case FCmpInst::FCMP_OLE:
4165       case FCmpInst::FCMP_OLT: {
4166         KnownFPClass KnownClass = computeLHSClass(Interested);
4167 
4168         // (X >= 0) implies !(X < C) when (C < 0)
4169         if (KnownClass.cannotBeOrderedLessThanZero())
4170           return getFalse(RetTy);
4171         break;
4172       }
4173       default:
4174         break;
4175       }
4176     }
4177     // Check comparison of [minnum/maxnum with constant] with other constant.
4178     const APFloat *C2;
4179     if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) &&
4180          *C2 < *C) ||
4181         (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) &&
4182          *C2 > *C)) {
4183       bool IsMaxNum =
4184           cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum;
4185       // The ordered relationship and minnum/maxnum guarantee that we do not
4186       // have NaN constants, so ordered/unordered preds are handled the same.
4187       switch (Pred) {
4188       case FCmpInst::FCMP_OEQ:
4189       case FCmpInst::FCMP_UEQ:
4190         // minnum(X, LesserC)  == C --> false
4191         // maxnum(X, GreaterC) == C --> false
4192         return getFalse(RetTy);
4193       case FCmpInst::FCMP_ONE:
4194       case FCmpInst::FCMP_UNE:
4195         // minnum(X, LesserC)  != C --> true
4196         // maxnum(X, GreaterC) != C --> true
4197         return getTrue(RetTy);
4198       case FCmpInst::FCMP_OGE:
4199       case FCmpInst::FCMP_UGE:
4200       case FCmpInst::FCMP_OGT:
4201       case FCmpInst::FCMP_UGT:
4202         // minnum(X, LesserC)  >= C --> false
4203         // minnum(X, LesserC)  >  C --> false
4204         // maxnum(X, GreaterC) >= C --> true
4205         // maxnum(X, GreaterC) >  C --> true
4206         return ConstantInt::get(RetTy, IsMaxNum);
4207       case FCmpInst::FCMP_OLE:
4208       case FCmpInst::FCMP_ULE:
4209       case FCmpInst::FCMP_OLT:
4210       case FCmpInst::FCMP_ULT:
4211         // minnum(X, LesserC)  <= C --> true
4212         // minnum(X, LesserC)  <  C --> true
4213         // maxnum(X, GreaterC) <= C --> false
4214         // maxnum(X, GreaterC) <  C --> false
4215         return ConstantInt::get(RetTy, !IsMaxNum);
4216       default:
4217         // TRUE/FALSE/ORD/UNO should be handled before this.
4218         llvm_unreachable("Unexpected fcmp predicate");
4219       }
4220     }
4221   }
4222 
4223   // TODO: Could fold this with above if there were a matcher which returned all
4224   // classes in a non-splat vector.
4225   if (match(RHS, m_AnyZeroFP())) {
4226     switch (Pred) {
4227     case FCmpInst::FCMP_OGE:
4228     case FCmpInst::FCMP_ULT: {
4229       FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask;
4230       if (!FMF.noNaNs())
4231         Interested |= fcNan;
4232 
4233       KnownFPClass Known = computeLHSClass(Interested);
4234 
4235       // Positive or zero X >= 0.0 --> true
4236       // Positive or zero X <  0.0 --> false
4237       if ((FMF.noNaNs() || Known.isKnownNeverNaN()) &&
4238           Known.cannotBeOrderedLessThanZero())
4239         return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy);
4240       break;
4241     }
4242     case FCmpInst::FCMP_UGE:
4243     case FCmpInst::FCMP_OLT: {
4244       FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask;
4245       KnownFPClass Known = computeLHSClass(Interested);
4246 
4247       // Positive or zero or nan X >= 0.0 --> true
4248       // Positive or zero or nan X <  0.0 --> false
4249       if (Known.cannotBeOrderedLessThanZero())
4250         return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy);
4251       break;
4252     }
4253     default:
4254       break;
4255     }
4256   }
4257 
4258   // If the comparison is with the result of a select instruction, check whether
4259   // comparing with either branch of the select always yields the same value.
4260   if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
4261     if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
4262       return V;
4263 
4264   // If the comparison is with the result of a phi instruction, check whether
4265   // doing the compare with each incoming phi value yields a common result.
4266   if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
4267     if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
4268       return V;
4269 
4270   return nullptr;
4271 }
4272 
4273 Value *llvm::simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS,
4274                               FastMathFlags FMF, const SimplifyQuery &Q) {
4275   return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit);
4276 }
4277 
4278 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4279                                      const SimplifyQuery &Q,
4280                                      bool AllowRefinement,
4281                                      SmallVectorImpl<Instruction *> *DropFlags,
4282                                      unsigned MaxRecurse) {
4283   assert((AllowRefinement || !Q.CanUseUndef) &&
4284          "If AllowRefinement=false then CanUseUndef=false");
4285 
4286   // Trivial replacement.
4287   if (V == Op)
4288     return RepOp;
4289 
4290   if (!MaxRecurse--)
4291     return nullptr;
4292 
4293   // We cannot replace a constant, and shouldn't even try.
4294   if (isa<Constant>(Op))
4295     return nullptr;
4296 
4297   auto *I = dyn_cast<Instruction>(V);
4298   if (!I)
4299     return nullptr;
4300 
4301   // The arguments of a phi node might refer to a value from a previous
4302   // cycle iteration.
4303   if (isa<PHINode>(I))
4304     return nullptr;
4305 
4306   // For vector types, the simplification must hold per-lane, so forbid
4307   // potentially cross-lane operations like shufflevector.
4308   if (Op->getType()->isVectorTy() && !isNotCrossLaneOperation(I))
4309     return nullptr;
4310 
4311   // Don't fold away llvm.is.constant checks based on assumptions.
4312   if (match(I, m_Intrinsic<Intrinsic::is_constant>()))
4313     return nullptr;
4314 
4315   // Don't simplify freeze.
4316   if (isa<FreezeInst>(I))
4317     return nullptr;
4318 
4319   // Replace Op with RepOp in instruction operands.
4320   SmallVector<Value *, 8> NewOps;
4321   bool AnyReplaced = false;
4322   for (Value *InstOp : I->operands()) {
4323     if (Value *NewInstOp = simplifyWithOpReplaced(
4324             InstOp, Op, RepOp, Q, AllowRefinement, DropFlags, MaxRecurse)) {
4325       NewOps.push_back(NewInstOp);
4326       AnyReplaced = InstOp != NewInstOp;
4327     } else {
4328       NewOps.push_back(InstOp);
4329     }
4330 
4331     // Bail out if any operand is undef and SimplifyQuery disables undef
4332     // simplification. Constant folding currently doesn't respect this option.
4333     if (isa<UndefValue>(NewOps.back()) && !Q.CanUseUndef)
4334       return nullptr;
4335   }
4336 
4337   if (!AnyReplaced)
4338     return nullptr;
4339 
4340   if (!AllowRefinement) {
4341     // General InstSimplify functions may refine the result, e.g. by returning
4342     // a constant for a potentially poison value. To avoid this, implement only
4343     // a few non-refining but profitable transforms here.
4344 
4345     if (auto *BO = dyn_cast<BinaryOperator>(I)) {
4346       unsigned Opcode = BO->getOpcode();
4347       // id op x -> x, x op id -> x
4348       if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType()))
4349         return NewOps[1];
4350       if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(),
4351                                                       /* RHS */ true))
4352         return NewOps[0];
4353 
4354       // x & x -> x, x | x -> x
4355       if ((Opcode == Instruction::And || Opcode == Instruction::Or) &&
4356           NewOps[0] == NewOps[1]) {
4357         // or disjoint x, x results in poison.
4358         if (auto *PDI = dyn_cast<PossiblyDisjointInst>(BO)) {
4359           if (PDI->isDisjoint()) {
4360             if (!DropFlags)
4361               return nullptr;
4362             DropFlags->push_back(BO);
4363           }
4364         }
4365         return NewOps[0];
4366       }
4367 
4368       // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison
4369       // by assumption and this case never wraps, so nowrap flags can be
4370       // ignored.
4371       if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) &&
4372           NewOps[0] == RepOp && NewOps[1] == RepOp)
4373         return Constant::getNullValue(I->getType());
4374 
4375       // If we are substituting an absorber constant into a binop and extra
4376       // poison can't leak if we remove the select -- because both operands of
4377       // the binop are based on the same value -- then it may be safe to replace
4378       // the value with the absorber constant. Examples:
4379       // (Op == 0) ? 0 : (Op & -Op)            --> Op & -Op
4380       // (Op == 0) ? 0 : (Op * (binop Op, C))  --> Op * (binop Op, C)
4381       // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op)
4382       Constant *Absorber =
4383           ConstantExpr::getBinOpAbsorber(Opcode, I->getType());
4384       if ((NewOps[0] == Absorber || NewOps[1] == Absorber) &&
4385           impliesPoison(BO, Op))
4386         return Absorber;
4387     }
4388 
4389     if (isa<GetElementPtrInst>(I)) {
4390       // getelementptr x, 0 -> x.
4391       // This never returns poison, even if inbounds is set.
4392       if (NewOps.size() == 2 && match(NewOps[1], m_Zero()))
4393         return NewOps[0];
4394     }
4395   } else {
4396     // The simplification queries below may return the original value. Consider:
4397     //   %div = udiv i32 %arg, %arg2
4398     //   %mul = mul nsw i32 %div, %arg2
4399     //   %cmp = icmp eq i32 %mul, %arg
4400     //   %sel = select i1 %cmp, i32 %div, i32 undef
4401     // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4402     // simplifies back to %arg. This can only happen because %mul does not
4403     // dominate %div. To ensure a consistent return value contract, we make sure
4404     // that this case returns nullptr as well.
4405     auto PreventSelfSimplify = [V](Value *Simplified) {
4406       return Simplified != V ? Simplified : nullptr;
4407     };
4408 
4409     return PreventSelfSimplify(
4410         ::simplifyInstructionWithOperands(I, NewOps, Q, MaxRecurse));
4411   }
4412 
4413   // If all operands are constant after substituting Op for RepOp then we can
4414   // constant fold the instruction.
4415   SmallVector<Constant *, 8> ConstOps;
4416   for (Value *NewOp : NewOps) {
4417     if (Constant *ConstOp = dyn_cast<Constant>(NewOp))
4418       ConstOps.push_back(ConstOp);
4419     else
4420       return nullptr;
4421   }
4422 
4423   // Consider:
4424   //   %cmp = icmp eq i32 %x, 2147483647
4425   //   %add = add nsw i32 %x, 1
4426   //   %sel = select i1 %cmp, i32 -2147483648, i32 %add
4427   //
4428   // We can't replace %sel with %add unless we strip away the flags (which
4429   // will be done in InstCombine).
4430   // TODO: This may be unsound, because it only catches some forms of
4431   // refinement.
4432   if (!AllowRefinement) {
4433     if (canCreatePoison(cast<Operator>(I), !DropFlags)) {
4434       // abs cannot create poison if the value is known to never be int_min.
4435       if (auto *II = dyn_cast<IntrinsicInst>(I);
4436           II && II->getIntrinsicID() == Intrinsic::abs) {
4437         if (!ConstOps[0]->isNotMinSignedValue())
4438           return nullptr;
4439       } else
4440         return nullptr;
4441     }
4442     Constant *Res = ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI,
4443                                              /*AllowNonDeterministic=*/false);
4444     if (DropFlags && Res && I->hasPoisonGeneratingAnnotations())
4445       DropFlags->push_back(I);
4446     return Res;
4447   }
4448 
4449   return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI,
4450                                   /*AllowNonDeterministic=*/false);
4451 }
4452 
4453 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp,
4454                                     const SimplifyQuery &Q,
4455                                     bool AllowRefinement,
4456                                     SmallVectorImpl<Instruction *> *DropFlags) {
4457   // If refinement is disabled, also disable undef simplifications (which are
4458   // always refinements) in SimplifyQuery.
4459   if (!AllowRefinement)
4460     return ::simplifyWithOpReplaced(V, Op, RepOp, Q.getWithoutUndef(),
4461                                     AllowRefinement, DropFlags, RecursionLimit);
4462   return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, DropFlags,
4463                                   RecursionLimit);
4464 }
4465 
4466 /// Try to simplify a select instruction when its condition operand is an
4467 /// integer comparison where one operand of the compare is a constant.
4468 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X,
4469                                     const APInt *Y, bool TrueWhenUnset) {
4470   const APInt *C;
4471 
4472   // (X & Y) == 0 ? X & ~Y : X  --> X
4473   // (X & Y) != 0 ? X & ~Y : X  --> X & ~Y
4474   if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) &&
4475       *Y == ~*C)
4476     return TrueWhenUnset ? FalseVal : TrueVal;
4477 
4478   // (X & Y) == 0 ? X : X & ~Y  --> X & ~Y
4479   // (X & Y) != 0 ? X : X & ~Y  --> X
4480   if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) &&
4481       *Y == ~*C)
4482     return TrueWhenUnset ? FalseVal : TrueVal;
4483 
4484   if (Y->isPowerOf2()) {
4485     // (X & Y) == 0 ? X | Y : X  --> X | Y
4486     // (X & Y) != 0 ? X | Y : X  --> X
4487     if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) &&
4488         *Y == *C) {
4489       // We can't return the or if it has the disjoint flag.
4490       if (TrueWhenUnset && cast<PossiblyDisjointInst>(TrueVal)->isDisjoint())
4491         return nullptr;
4492       return TrueWhenUnset ? TrueVal : FalseVal;
4493     }
4494 
4495     // (X & Y) == 0 ? X : X | Y  --> X
4496     // (X & Y) != 0 ? X : X | Y  --> X | Y
4497     if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) &&
4498         *Y == *C) {
4499       // We can't return the or if it has the disjoint flag.
4500       if (!TrueWhenUnset && cast<PossiblyDisjointInst>(FalseVal)->isDisjoint())
4501         return nullptr;
4502       return TrueWhenUnset ? TrueVal : FalseVal;
4503     }
4504   }
4505 
4506   return nullptr;
4507 }
4508 
4509 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS,
4510                                      CmpPredicate Pred, Value *TVal,
4511                                      Value *FVal) {
4512   // Canonicalize common cmp+sel operand as CmpLHS.
4513   if (CmpRHS == TVal || CmpRHS == FVal) {
4514     std::swap(CmpLHS, CmpRHS);
4515     Pred = ICmpInst::getSwappedPredicate(Pred);
4516   }
4517 
4518   // Canonicalize common cmp+sel operand as TVal.
4519   if (CmpLHS == FVal) {
4520     std::swap(TVal, FVal);
4521     Pred = ICmpInst::getInversePredicate(Pred);
4522   }
4523 
4524   // A vector select may be shuffling together elements that are equivalent
4525   // based on the max/min/select relationship.
4526   Value *X = CmpLHS, *Y = CmpRHS;
4527   bool PeekedThroughSelectShuffle = false;
4528   auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal);
4529   if (Shuf && Shuf->isSelect()) {
4530     if (Shuf->getOperand(0) == Y)
4531       FVal = Shuf->getOperand(1);
4532     else if (Shuf->getOperand(1) == Y)
4533       FVal = Shuf->getOperand(0);
4534     else
4535       return nullptr;
4536     PeekedThroughSelectShuffle = true;
4537   }
4538 
4539   // (X pred Y) ? X : max/min(X, Y)
4540   auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal);
4541   if (!MMI || TVal != X ||
4542       !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y))))
4543     return nullptr;
4544 
4545   // (X >  Y) ? X : max(X, Y) --> max(X, Y)
4546   // (X >= Y) ? X : max(X, Y) --> max(X, Y)
4547   // (X <  Y) ? X : min(X, Y) --> min(X, Y)
4548   // (X <= Y) ? X : min(X, Y) --> min(X, Y)
4549   //
4550   // The equivalence allows a vector select (shuffle) of max/min and Y. Ex:
4551   // (X > Y) ? X : (Z ? max(X, Y) : Y)
4552   // If Z is true, this reduces as above, and if Z is false:
4553   // (X > Y) ? X : Y --> max(X, Y)
4554   ICmpInst::Predicate MMPred = MMI->getPredicate();
4555   if (MMPred == CmpInst::getStrictPredicate(Pred))
4556     return MMI;
4557 
4558   // Other transforms are not valid with a shuffle.
4559   if (PeekedThroughSelectShuffle)
4560     return nullptr;
4561 
4562   // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y)
4563   if (Pred == CmpInst::ICMP_EQ)
4564     return MMI;
4565 
4566   // (X != Y) ? X : max/min(X, Y) --> X
4567   if (Pred == CmpInst::ICMP_NE)
4568     return X;
4569 
4570   // (X <  Y) ? X : max(X, Y) --> X
4571   // (X <= Y) ? X : max(X, Y) --> X
4572   // (X >  Y) ? X : min(X, Y) --> X
4573   // (X >= Y) ? X : min(X, Y) --> X
4574   ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred);
4575   if (MMPred == CmpInst::getStrictPredicate(InvPred))
4576     return X;
4577 
4578   return nullptr;
4579 }
4580 
4581 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4582 /// eq/ne.
4583 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS,
4584                                            CmpPredicate Pred, Value *TrueVal,
4585                                            Value *FalseVal) {
4586   if (auto Res = decomposeBitTestICmp(CmpLHS, CmpRHS, Pred))
4587     return simplifySelectBitTest(TrueVal, FalseVal, Res->X, &Res->Mask,
4588                                  Res->Pred == ICmpInst::ICMP_EQ);
4589 
4590   return nullptr;
4591 }
4592 
4593 /// Try to simplify a select instruction when its condition operand is an
4594 /// integer equality or floating-point equivalence comparison.
4595 static Value *simplifySelectWithEquivalence(Value *CmpLHS, Value *CmpRHS,
4596                                             Value *TrueVal, Value *FalseVal,
4597                                             const SimplifyQuery &Q,
4598                                             unsigned MaxRecurse) {
4599   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q.getWithoutUndef(),
4600                              /* AllowRefinement */ false,
4601                              /* DropFlags */ nullptr, MaxRecurse) == TrueVal)
4602     return FalseVal;
4603   if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q,
4604                              /* AllowRefinement */ true,
4605                              /* DropFlags */ nullptr, MaxRecurse) == FalseVal)
4606     return FalseVal;
4607 
4608   return nullptr;
4609 }
4610 
4611 /// Try to simplify a select instruction when its condition operand is an
4612 /// integer comparison.
4613 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal,
4614                                          Value *FalseVal,
4615                                          const SimplifyQuery &Q,
4616                                          unsigned MaxRecurse) {
4617   CmpPredicate Pred;
4618   Value *CmpLHS, *CmpRHS;
4619   if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4620     return nullptr;
4621 
4622   if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
4623     return V;
4624 
4625   // Canonicalize ne to eq predicate.
4626   if (Pred == ICmpInst::ICMP_NE) {
4627     Pred = ICmpInst::ICMP_EQ;
4628     std::swap(TrueVal, FalseVal);
4629   }
4630 
4631   // Check for integer min/max with a limit constant:
4632   // X > MIN_INT ? X : MIN_INT --> X
4633   // X < MAX_INT ? X : MAX_INT --> X
4634   if (TrueVal->getType()->isIntOrIntVectorTy()) {
4635     Value *X, *Y;
4636     SelectPatternFlavor SPF =
4637         matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal,
4638                                      X, Y)
4639             .Flavor;
4640     if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) {
4641       APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF),
4642                                     X->getType()->getScalarSizeInBits());
4643       if (match(Y, m_SpecificInt(LimitC)))
4644         return X;
4645     }
4646   }
4647 
4648   if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) {
4649     Value *X;
4650     const APInt *Y;
4651     if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y))))
4652       if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y,
4653                                            /*TrueWhenUnset=*/true))
4654         return V;
4655 
4656     // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4657     Value *ShAmt;
4658     auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)),
4659                              m_FShr(m_Value(), m_Value(X), m_Value(ShAmt)));
4660     // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4661     // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4662     if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt)
4663       return X;
4664 
4665     // Test for a zero-shift-guard-op around rotates. These are used to
4666     // avoid UB from oversized shifts in raw IR rotate patterns, but the
4667     // intrinsics do not have that problem.
4668     // We do not allow this transform for the general funnel shift case because
4669     // that would not preserve the poison safety of the original code.
4670     auto isRotate =
4671         m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)),
4672                     m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt)));
4673     // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4674     // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4675     if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt &&
4676         Pred == ICmpInst::ICMP_EQ)
4677       return FalseVal;
4678 
4679     // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4680     // X == 0 ? -abs(X) : abs(X) --> abs(X)
4681     if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) &&
4682         match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))))
4683       return FalseVal;
4684     if (match(TrueVal,
4685               m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) &&
4686         match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))
4687       return FalseVal;
4688   }
4689 
4690   // Check for other compares that behave like bit test.
4691   if (Value *V =
4692           simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal))
4693     return V;
4694 
4695   // If we have a scalar equality comparison, then we know the value in one of
4696   // the arms of the select. See if substituting this value into the arm and
4697   // simplifying the result yields the same value as the other arm.
4698   if (Pred == ICmpInst::ICMP_EQ) {
4699     if (Value *V = simplifySelectWithEquivalence(CmpLHS, CmpRHS, TrueVal,
4700                                                  FalseVal, Q, MaxRecurse))
4701       return V;
4702     if (Value *V = simplifySelectWithEquivalence(CmpRHS, CmpLHS, TrueVal,
4703                                                  FalseVal, Q, MaxRecurse))
4704       return V;
4705 
4706     Value *X;
4707     Value *Y;
4708     // select((X | Y) == 0 ?  X : 0) --> 0 (commuted 2 ways)
4709     if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y))) &&
4710         match(CmpRHS, m_Zero())) {
4711       // (X | Y) == 0 implies X == 0 and Y == 0.
4712       if (Value *V = simplifySelectWithEquivalence(X, CmpRHS, TrueVal, FalseVal,
4713                                                    Q, MaxRecurse))
4714         return V;
4715       if (Value *V = simplifySelectWithEquivalence(Y, CmpRHS, TrueVal, FalseVal,
4716                                                    Q, MaxRecurse))
4717         return V;
4718     }
4719 
4720     // select((X & Y) == -1 ?  X : -1) --> -1 (commuted 2 ways)
4721     if (match(CmpLHS, m_And(m_Value(X), m_Value(Y))) &&
4722         match(CmpRHS, m_AllOnes())) {
4723       // (X & Y) == -1 implies X == -1 and Y == -1.
4724       if (Value *V = simplifySelectWithEquivalence(X, CmpRHS, TrueVal, FalseVal,
4725                                                    Q, MaxRecurse))
4726         return V;
4727       if (Value *V = simplifySelectWithEquivalence(Y, CmpRHS, TrueVal, FalseVal,
4728                                                    Q, MaxRecurse))
4729         return V;
4730     }
4731   }
4732 
4733   return nullptr;
4734 }
4735 
4736 /// Try to simplify a select instruction when its condition operand is a
4737 /// floating-point comparison.
4738 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F,
4739                                      const SimplifyQuery &Q,
4740                                      unsigned MaxRecurse) {
4741   CmpPredicate Pred;
4742   Value *CmpLHS, *CmpRHS;
4743   if (!match(Cond, m_FCmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS))))
4744     return nullptr;
4745   FCmpInst *I = cast<FCmpInst>(Cond);
4746 
4747   bool IsEquiv = I->isEquivalence();
4748   if (I->isEquivalence(/*Invert=*/true)) {
4749     std::swap(T, F);
4750     Pred = FCmpInst::getInversePredicate(Pred);
4751     IsEquiv = true;
4752   }
4753 
4754   // This transforms is safe if at least one operand is known to not be zero.
4755   // Otherwise, the select can change the sign of a zero operand.
4756   if (IsEquiv) {
4757     if (Value *V =
4758             simplifySelectWithEquivalence(CmpLHS, CmpRHS, T, F, Q, MaxRecurse))
4759       return V;
4760     if (Value *V =
4761             simplifySelectWithEquivalence(CmpRHS, CmpLHS, T, F, Q, MaxRecurse))
4762       return V;
4763   }
4764 
4765   // Canonicalize CmpLHS to be T, and CmpRHS to be F, if they're swapped.
4766   if (CmpLHS == F && CmpRHS == T)
4767     std::swap(CmpLHS, CmpRHS);
4768 
4769   if (CmpLHS != T || CmpRHS != F)
4770     return nullptr;
4771 
4772   // This transform is also safe if we do not have (do not care about) -0.0.
4773   if (Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros()) {
4774     // (T == F) ? T : F --> F
4775     if (Pred == FCmpInst::FCMP_OEQ)
4776       return F;
4777 
4778     // (T != F) ? T : F --> T
4779     if (Pred == FCmpInst::FCMP_UNE)
4780       return T;
4781   }
4782 
4783   return nullptr;
4784 }
4785 
4786 /// Given operands for a SelectInst, see if we can fold the result.
4787 /// If not, this returns null.
4788 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4789                                  const SimplifyQuery &Q, unsigned MaxRecurse) {
4790   if (auto *CondC = dyn_cast<Constant>(Cond)) {
4791     if (auto *TrueC = dyn_cast<Constant>(TrueVal))
4792       if (auto *FalseC = dyn_cast<Constant>(FalseVal))
4793         if (Constant *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC))
4794           return C;
4795 
4796     // select poison, X, Y -> poison
4797     if (isa<PoisonValue>(CondC))
4798       return PoisonValue::get(TrueVal->getType());
4799 
4800     // select undef, X, Y -> X or Y
4801     if (Q.isUndefValue(CondC))
4802       return isa<Constant>(FalseVal) ? FalseVal : TrueVal;
4803 
4804     // select true,  X, Y --> X
4805     // select false, X, Y --> Y
4806     // For vectors, allow undef/poison elements in the condition to match the
4807     // defined elements, so we can eliminate the select.
4808     if (match(CondC, m_One()))
4809       return TrueVal;
4810     if (match(CondC, m_Zero()))
4811       return FalseVal;
4812   }
4813 
4814   assert(Cond->getType()->isIntOrIntVectorTy(1) &&
4815          "Select must have bool or bool vector condition");
4816   assert(TrueVal->getType() == FalseVal->getType() &&
4817          "Select must have same types for true/false ops");
4818 
4819   if (Cond->getType() == TrueVal->getType()) {
4820     // select i1 Cond, i1 true, i1 false --> i1 Cond
4821     if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt()))
4822       return Cond;
4823 
4824     // (X && Y) ? X : Y --> Y (commuted 2 ways)
4825     if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal))))
4826       return FalseVal;
4827 
4828     // (X || Y) ? X : Y --> X (commuted 2 ways)
4829     if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal))))
4830       return TrueVal;
4831 
4832     // (X || Y) ? false : X --> false (commuted 2 ways)
4833     if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) &&
4834         match(TrueVal, m_ZeroInt()))
4835       return ConstantInt::getFalse(Cond->getType());
4836 
4837     // Match patterns that end in logical-and.
4838     if (match(FalseVal, m_ZeroInt())) {
4839       // !(X || Y) && X --> false (commuted 2 ways)
4840       if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value()))))
4841         return ConstantInt::getFalse(Cond->getType());
4842       // X && !(X || Y) --> false (commuted 2 ways)
4843       if (match(TrueVal, m_Not(m_c_LogicalOr(m_Specific(Cond), m_Value()))))
4844         return ConstantInt::getFalse(Cond->getType());
4845 
4846       // (X || Y) && Y --> Y (commuted 2 ways)
4847       if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value())))
4848         return TrueVal;
4849       // Y && (X || Y) --> Y (commuted 2 ways)
4850       if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value())))
4851         return Cond;
4852 
4853       // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4854       Value *X, *Y;
4855       if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4856           match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4857         return X;
4858       if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) &&
4859           match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y))))
4860         return X;
4861     }
4862 
4863     // Match patterns that end in logical-or.
4864     if (match(TrueVal, m_One())) {
4865       // !(X && Y) || X --> true (commuted 2 ways)
4866       if (match(Cond, m_Not(m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))))
4867         return ConstantInt::getTrue(Cond->getType());
4868       // X || !(X && Y) --> true (commuted 2 ways)
4869       if (match(FalseVal, m_Not(m_c_LogicalAnd(m_Specific(Cond), m_Value()))))
4870         return ConstantInt::getTrue(Cond->getType());
4871 
4872       // (X && Y) || Y --> Y (commuted 2 ways)
4873       if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))
4874         return FalseVal;
4875       // Y || (X && Y) --> Y (commuted 2 ways)
4876       if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value())))
4877         return Cond;
4878     }
4879   }
4880 
4881   // select ?, X, X -> X
4882   if (TrueVal == FalseVal)
4883     return TrueVal;
4884 
4885   if (Cond == TrueVal) {
4886     // select i1 X, i1 X, i1 false --> X (logical-and)
4887     if (match(FalseVal, m_ZeroInt()))
4888       return Cond;
4889     // select i1 X, i1 X, i1 true --> true
4890     if (match(FalseVal, m_One()))
4891       return ConstantInt::getTrue(Cond->getType());
4892   }
4893   if (Cond == FalseVal) {
4894     // select i1 X, i1 true, i1 X --> X (logical-or)
4895     if (match(TrueVal, m_One()))
4896       return Cond;
4897     // select i1 X, i1 false, i1 X --> false
4898     if (match(TrueVal, m_ZeroInt()))
4899       return ConstantInt::getFalse(Cond->getType());
4900   }
4901 
4902   // If the true or false value is poison, we can fold to the other value.
4903   // If the true or false value is undef, we can fold to the other value as
4904   // long as the other value isn't poison.
4905   // select ?, poison, X -> X
4906   // select ?, undef,  X -> X
4907   if (isa<PoisonValue>(TrueVal) ||
4908       (Q.isUndefValue(TrueVal) && impliesPoison(FalseVal, Cond)))
4909     return FalseVal;
4910   // select ?, X, poison -> X
4911   // select ?, X, undef  -> X
4912   if (isa<PoisonValue>(FalseVal) ||
4913       (Q.isUndefValue(FalseVal) && impliesPoison(TrueVal, Cond)))
4914     return TrueVal;
4915 
4916   // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4917   Constant *TrueC, *FalseC;
4918   if (isa<FixedVectorType>(TrueVal->getType()) &&
4919       match(TrueVal, m_Constant(TrueC)) &&
4920       match(FalseVal, m_Constant(FalseC))) {
4921     unsigned NumElts =
4922         cast<FixedVectorType>(TrueC->getType())->getNumElements();
4923     SmallVector<Constant *, 16> NewC;
4924     for (unsigned i = 0; i != NumElts; ++i) {
4925       // Bail out on incomplete vector constants.
4926       Constant *TEltC = TrueC->getAggregateElement(i);
4927       Constant *FEltC = FalseC->getAggregateElement(i);
4928       if (!TEltC || !FEltC)
4929         break;
4930 
4931       // If the elements match (undef or not), that value is the result. If only
4932       // one element is undef, choose the defined element as the safe result.
4933       if (TEltC == FEltC)
4934         NewC.push_back(TEltC);
4935       else if (isa<PoisonValue>(TEltC) ||
4936                (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC)))
4937         NewC.push_back(FEltC);
4938       else if (isa<PoisonValue>(FEltC) ||
4939                (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC)))
4940         NewC.push_back(TEltC);
4941       else
4942         break;
4943     }
4944     if (NewC.size() == NumElts)
4945       return ConstantVector::get(NewC);
4946   }
4947 
4948   if (Value *V =
4949           simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4950     return V;
4951 
4952   if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q, MaxRecurse))
4953     return V;
4954 
4955   std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL);
4956   if (Imp)
4957     return *Imp ? TrueVal : FalseVal;
4958 
4959   return nullptr;
4960 }
4961 
4962 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
4963                                 const SimplifyQuery &Q) {
4964   return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit);
4965 }
4966 
4967 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4968 /// If not, this returns null.
4969 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr,
4970                               ArrayRef<Value *> Indices, GEPNoWrapFlags NW,
4971                               const SimplifyQuery &Q, unsigned) {
4972   // The type of the GEP pointer operand.
4973   unsigned AS =
4974       cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace();
4975 
4976   // getelementptr P -> P.
4977   if (Indices.empty())
4978     return Ptr;
4979 
4980   // Compute the (pointer) type returned by the GEP instruction.
4981   Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices);
4982   Type *GEPTy = Ptr->getType();
4983   if (!GEPTy->isVectorTy()) {
4984     for (Value *Op : Indices) {
4985       // If one of the operands is a vector, the result type is a vector of
4986       // pointers. All vector operands must have the same number of elements.
4987       if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) {
4988         GEPTy = VectorType::get(GEPTy, VT->getElementCount());
4989         break;
4990       }
4991     }
4992   }
4993 
4994   // All-zero GEP is a no-op, unless it performs a vector splat.
4995   if (Ptr->getType() == GEPTy &&
4996       all_of(Indices, [](const auto *V) { return match(V, m_Zero()); }))
4997     return Ptr;
4998 
4999   // getelementptr poison, idx -> poison
5000   // getelementptr baseptr, poison -> poison
5001   if (isa<PoisonValue>(Ptr) ||
5002       any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); }))
5003     return PoisonValue::get(GEPTy);
5004 
5005   // getelementptr undef, idx -> undef
5006   if (Q.isUndefValue(Ptr))
5007     return UndefValue::get(GEPTy);
5008 
5009   bool IsScalableVec =
5010       SrcTy->isScalableTy() || any_of(Indices, [](const Value *V) {
5011         return isa<ScalableVectorType>(V->getType());
5012       });
5013 
5014   if (Indices.size() == 1) {
5015     Type *Ty = SrcTy;
5016     if (!IsScalableVec && Ty->isSized()) {
5017       Value *P;
5018       uint64_t C;
5019       uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty);
5020       // getelementptr P, N -> P if P points to a type of zero size.
5021       if (TyAllocSize == 0 && Ptr->getType() == GEPTy)
5022         return Ptr;
5023 
5024       // The following transforms are only safe if the ptrtoint cast
5025       // doesn't truncate the pointers.
5026       if (Indices[0]->getType()->getScalarSizeInBits() ==
5027           Q.DL.getPointerSizeInBits(AS)) {
5028         auto CanSimplify = [GEPTy, &P, Ptr]() -> bool {
5029           return P->getType() == GEPTy &&
5030                  getUnderlyingObject(P) == getUnderlyingObject(Ptr);
5031         };
5032         // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
5033         if (TyAllocSize == 1 &&
5034             match(Indices[0],
5035                   m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) &&
5036             CanSimplify())
5037           return P;
5038 
5039         // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
5040         // size 1 << C.
5041         if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)),
5042                                            m_PtrToInt(m_Specific(Ptr))),
5043                                      m_ConstantInt(C))) &&
5044             TyAllocSize == 1ULL << C && CanSimplify())
5045           return P;
5046 
5047         // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
5048         // size C.
5049         if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)),
5050                                            m_PtrToInt(m_Specific(Ptr))),
5051                                      m_SpecificInt(TyAllocSize))) &&
5052             CanSimplify())
5053           return P;
5054       }
5055     }
5056   }
5057 
5058   if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 &&
5059       all_of(Indices.drop_back(1),
5060              [](Value *Idx) { return match(Idx, m_Zero()); })) {
5061     unsigned IdxWidth =
5062         Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace());
5063     if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) {
5064       APInt BasePtrOffset(IdxWidth, 0);
5065       Value *StrippedBasePtr =
5066           Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset);
5067 
5068       // Avoid creating inttoptr of zero here: While LLVMs treatment of
5069       // inttoptr is generally conservative, this particular case is folded to
5070       // a null pointer, which will have incorrect provenance.
5071 
5072       // gep (gep V, C), (sub 0, V) -> C
5073       if (match(Indices.back(),
5074                 m_Neg(m_PtrToInt(m_Specific(StrippedBasePtr)))) &&
5075           !BasePtrOffset.isZero()) {
5076         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset);
5077         return ConstantExpr::getIntToPtr(CI, GEPTy);
5078       }
5079       // gep (gep V, C), (xor V, -1) -> C-1
5080       if (match(Indices.back(),
5081                 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) &&
5082           !BasePtrOffset.isOne()) {
5083         auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1);
5084         return ConstantExpr::getIntToPtr(CI, GEPTy);
5085       }
5086     }
5087   }
5088 
5089   // Check to see if this is constant foldable.
5090   if (!isa<Constant>(Ptr) ||
5091       !all_of(Indices, [](Value *V) { return isa<Constant>(V); }))
5092     return nullptr;
5093 
5094   if (!ConstantExpr::isSupportedGetElementPtr(SrcTy))
5095     return ConstantFoldGetElementPtr(SrcTy, cast<Constant>(Ptr), std::nullopt,
5096                                      Indices);
5097 
5098   auto *CE =
5099       ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, NW);
5100   return ConstantFoldConstant(CE, Q.DL);
5101 }
5102 
5103 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices,
5104                              GEPNoWrapFlags NW, const SimplifyQuery &Q) {
5105   return ::simplifyGEPInst(SrcTy, Ptr, Indices, NW, Q, RecursionLimit);
5106 }
5107 
5108 /// Given operands for an InsertValueInst, see if we can fold the result.
5109 /// If not, this returns null.
5110 static Value *simplifyInsertValueInst(Value *Agg, Value *Val,
5111                                       ArrayRef<unsigned> Idxs,
5112                                       const SimplifyQuery &Q, unsigned) {
5113   if (Constant *CAgg = dyn_cast<Constant>(Agg))
5114     if (Constant *CVal = dyn_cast<Constant>(Val))
5115       return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
5116 
5117   // insertvalue x, poison, n -> x
5118   // insertvalue x, undef, n -> x if x cannot be poison
5119   if (isa<PoisonValue>(Val) ||
5120       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg)))
5121     return Agg;
5122 
5123   // insertvalue x, (extractvalue y, n), n
5124   if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
5125     if (EV->getAggregateOperand()->getType() == Agg->getType() &&
5126         EV->getIndices() == Idxs) {
5127       // insertvalue poison, (extractvalue y, n), n -> y
5128       // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison
5129       if (isa<PoisonValue>(Agg) ||
5130           (Q.isUndefValue(Agg) &&
5131            isGuaranteedNotToBePoison(EV->getAggregateOperand())))
5132         return EV->getAggregateOperand();
5133 
5134       // insertvalue y, (extractvalue y, n), n -> y
5135       if (Agg == EV->getAggregateOperand())
5136         return Agg;
5137     }
5138 
5139   return nullptr;
5140 }
5141 
5142 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val,
5143                                      ArrayRef<unsigned> Idxs,
5144                                      const SimplifyQuery &Q) {
5145   return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit);
5146 }
5147 
5148 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx,
5149                                        const SimplifyQuery &Q) {
5150   // Try to constant fold.
5151   auto *VecC = dyn_cast<Constant>(Vec);
5152   auto *ValC = dyn_cast<Constant>(Val);
5153   auto *IdxC = dyn_cast<Constant>(Idx);
5154   if (VecC && ValC && IdxC)
5155     return ConstantExpr::getInsertElement(VecC, ValC, IdxC);
5156 
5157   // For fixed-length vector, fold into poison if index is out of bounds.
5158   if (auto *CI = dyn_cast<ConstantInt>(Idx)) {
5159     if (isa<FixedVectorType>(Vec->getType()) &&
5160         CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements()))
5161       return PoisonValue::get(Vec->getType());
5162   }
5163 
5164   // If index is undef, it might be out of bounds (see above case)
5165   if (Q.isUndefValue(Idx))
5166     return PoisonValue::get(Vec->getType());
5167 
5168   // If the scalar is poison, or it is undef and there is no risk of
5169   // propagating poison from the vector value, simplify to the vector value.
5170   if (isa<PoisonValue>(Val) ||
5171       (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec)))
5172     return Vec;
5173 
5174   // Inserting the splatted value into a constant splat does nothing.
5175   if (VecC && ValC && VecC->getSplatValue() == ValC)
5176     return Vec;
5177 
5178   // If we are extracting a value from a vector, then inserting it into the same
5179   // place, that's the input vector:
5180   // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
5181   if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx))))
5182     return Vec;
5183 
5184   return nullptr;
5185 }
5186 
5187 /// Given operands for an ExtractValueInst, see if we can fold the result.
5188 /// If not, this returns null.
5189 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
5190                                        const SimplifyQuery &, unsigned) {
5191   if (auto *CAgg = dyn_cast<Constant>(Agg))
5192     return ConstantFoldExtractValueInstruction(CAgg, Idxs);
5193 
5194   // extractvalue x, (insertvalue y, elt, n), n -> elt
5195   unsigned NumIdxs = Idxs.size();
5196   for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr;
5197        IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) {
5198     ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices();
5199     unsigned NumInsertValueIdxs = InsertValueIdxs.size();
5200     unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs);
5201     if (InsertValueIdxs.slice(0, NumCommonIdxs) ==
5202         Idxs.slice(0, NumCommonIdxs)) {
5203       if (NumIdxs == NumInsertValueIdxs)
5204         return IVI->getInsertedValueOperand();
5205       break;
5206     }
5207   }
5208 
5209   return nullptr;
5210 }
5211 
5212 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs,
5213                                       const SimplifyQuery &Q) {
5214   return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit);
5215 }
5216 
5217 /// Given operands for an ExtractElementInst, see if we can fold the result.
5218 /// If not, this returns null.
5219 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx,
5220                                          const SimplifyQuery &Q, unsigned) {
5221   auto *VecVTy = cast<VectorType>(Vec->getType());
5222   if (auto *CVec = dyn_cast<Constant>(Vec)) {
5223     if (auto *CIdx = dyn_cast<Constant>(Idx))
5224       return ConstantExpr::getExtractElement(CVec, CIdx);
5225 
5226     if (Q.isUndefValue(Vec))
5227       return UndefValue::get(VecVTy->getElementType());
5228   }
5229 
5230   // An undef extract index can be arbitrarily chosen to be an out-of-range
5231   // index value, which would result in the instruction being poison.
5232   if (Q.isUndefValue(Idx))
5233     return PoisonValue::get(VecVTy->getElementType());
5234 
5235   // If extracting a specified index from the vector, see if we can recursively
5236   // find a previously computed scalar that was inserted into the vector.
5237   if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) {
5238     // For fixed-length vector, fold into undef if index is out of bounds.
5239     unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue();
5240     if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts))
5241       return PoisonValue::get(VecVTy->getElementType());
5242     // Handle case where an element is extracted from a splat.
5243     if (IdxC->getValue().ult(MinNumElts))
5244       if (auto *Splat = getSplatValue(Vec))
5245         return Splat;
5246     if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue()))
5247       return Elt;
5248   } else {
5249     // extractelt x, (insertelt y, elt, n), n -> elt
5250     // If the possibly-variable indices are trivially known to be equal
5251     // (because they are the same operand) then use the value that was
5252     // inserted directly.
5253     auto *IE = dyn_cast<InsertElementInst>(Vec);
5254     if (IE && IE->getOperand(2) == Idx)
5255       return IE->getOperand(1);
5256 
5257     // The index is not relevant if our vector is a splat.
5258     if (Value *Splat = getSplatValue(Vec))
5259       return Splat;
5260   }
5261   return nullptr;
5262 }
5263 
5264 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx,
5265                                         const SimplifyQuery &Q) {
5266   return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit);
5267 }
5268 
5269 /// See if we can fold the given phi. If not, returns null.
5270 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues,
5271                               const SimplifyQuery &Q) {
5272   // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
5273   //          here, because the PHI we may succeed simplifying to was not
5274   //          def-reachable from the original PHI!
5275 
5276   // If all of the PHI's incoming values are the same then replace the PHI node
5277   // with the common value.
5278   Value *CommonValue = nullptr;
5279   bool HasPoisonInput = false;
5280   bool HasUndefInput = false;
5281   for (Value *Incoming : IncomingValues) {
5282     // If the incoming value is the phi node itself, it can safely be skipped.
5283     if (Incoming == PN)
5284       continue;
5285     if (isa<PoisonValue>(Incoming)) {
5286       HasPoisonInput = true;
5287       continue;
5288     }
5289     if (Q.isUndefValue(Incoming)) {
5290       // Remember that we saw an undef value, but otherwise ignore them.
5291       HasUndefInput = true;
5292       continue;
5293     }
5294     if (CommonValue && Incoming != CommonValue)
5295       return nullptr; // Not the same, bail out.
5296     CommonValue = Incoming;
5297   }
5298 
5299   // If CommonValue is null then all of the incoming values were either undef,
5300   // poison or equal to the phi node itself.
5301   if (!CommonValue)
5302     return HasUndefInput ? UndefValue::get(PN->getType())
5303                          : PoisonValue::get(PN->getType());
5304 
5305   if (HasPoisonInput || HasUndefInput) {
5306     // If we have a PHI node like phi(X, undef, X), where X is defined by some
5307     // instruction, we cannot return X as the result of the PHI node unless it
5308     // dominates the PHI block.
5309     if (!valueDominatesPHI(CommonValue, PN, Q.DT))
5310       return nullptr;
5311 
5312     // Make sure we do not replace an undef value with poison.
5313     if (HasUndefInput &&
5314         !isGuaranteedNotToBePoison(CommonValue, Q.AC, Q.CxtI, Q.DT))
5315       return nullptr;
5316     return CommonValue;
5317   }
5318 
5319   return CommonValue;
5320 }
5321 
5322 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
5323                                const SimplifyQuery &Q, unsigned MaxRecurse) {
5324   if (auto *C = dyn_cast<Constant>(Op))
5325     return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL);
5326 
5327   if (auto *CI = dyn_cast<CastInst>(Op)) {
5328     auto *Src = CI->getOperand(0);
5329     Type *SrcTy = Src->getType();
5330     Type *MidTy = CI->getType();
5331     Type *DstTy = Ty;
5332     if (Src->getType() == Ty) {
5333       auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode());
5334       auto SecondOp = static_cast<Instruction::CastOps>(CastOpc);
5335       Type *SrcIntPtrTy =
5336           SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr;
5337       Type *MidIntPtrTy =
5338           MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr;
5339       Type *DstIntPtrTy =
5340           DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr;
5341       if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy,
5342                                          SrcIntPtrTy, MidIntPtrTy,
5343                                          DstIntPtrTy) == Instruction::BitCast)
5344         return Src;
5345     }
5346   }
5347 
5348   // bitcast x -> x
5349   if (CastOpc == Instruction::BitCast)
5350     if (Op->getType() == Ty)
5351       return Op;
5352 
5353   // ptrtoint (ptradd (Ptr, X - ptrtoint(Ptr))) -> X
5354   Value *Ptr, *X;
5355   if (CastOpc == Instruction::PtrToInt &&
5356       match(Op, m_PtrAdd(m_Value(Ptr),
5357                          m_Sub(m_Value(X), m_PtrToInt(m_Deferred(Ptr))))) &&
5358       X->getType() == Ty && Ty == Q.DL.getIndexType(Ptr->getType()))
5359     return X;
5360 
5361   return nullptr;
5362 }
5363 
5364 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty,
5365                               const SimplifyQuery &Q) {
5366   return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit);
5367 }
5368 
5369 /// For the given destination element of a shuffle, peek through shuffles to
5370 /// match a root vector source operand that contains that element in the same
5371 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
5372 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1,
5373                                    int MaskVal, Value *RootVec,
5374                                    unsigned MaxRecurse) {
5375   if (!MaxRecurse--)
5376     return nullptr;
5377 
5378   // Bail out if any mask value is undefined. That kind of shuffle may be
5379   // simplified further based on demanded bits or other folds.
5380   if (MaskVal == -1)
5381     return nullptr;
5382 
5383   // The mask value chooses which source operand we need to look at next.
5384   int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements();
5385   int RootElt = MaskVal;
5386   Value *SourceOp = Op0;
5387   if (MaskVal >= InVecNumElts) {
5388     RootElt = MaskVal - InVecNumElts;
5389     SourceOp = Op1;
5390   }
5391 
5392   // If the source operand is a shuffle itself, look through it to find the
5393   // matching root vector.
5394   if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) {
5395     return foldIdentityShuffles(
5396         DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1),
5397         SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse);
5398   }
5399 
5400   // The source operand is not a shuffle. Initialize the root vector value for
5401   // this shuffle if that has not been done yet.
5402   if (!RootVec)
5403     RootVec = SourceOp;
5404 
5405   // Give up as soon as a source operand does not match the existing root value.
5406   if (RootVec != SourceOp)
5407     return nullptr;
5408 
5409   // The element must be coming from the same lane in the source vector
5410   // (although it may have crossed lanes in intermediate shuffles).
5411   if (RootElt != DestElt)
5412     return nullptr;
5413 
5414   return RootVec;
5415 }
5416 
5417 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1,
5418                                         ArrayRef<int> Mask, Type *RetTy,
5419                                         const SimplifyQuery &Q,
5420                                         unsigned MaxRecurse) {
5421   if (all_of(Mask, [](int Elem) { return Elem == PoisonMaskElem; }))
5422     return PoisonValue::get(RetTy);
5423 
5424   auto *InVecTy = cast<VectorType>(Op0->getType());
5425   unsigned MaskNumElts = Mask.size();
5426   ElementCount InVecEltCount = InVecTy->getElementCount();
5427 
5428   bool Scalable = InVecEltCount.isScalable();
5429 
5430   SmallVector<int, 32> Indices;
5431   Indices.assign(Mask.begin(), Mask.end());
5432 
5433   // Canonicalization: If mask does not select elements from an input vector,
5434   // replace that input vector with poison.
5435   if (!Scalable) {
5436     bool MaskSelects0 = false, MaskSelects1 = false;
5437     unsigned InVecNumElts = InVecEltCount.getKnownMinValue();
5438     for (unsigned i = 0; i != MaskNumElts; ++i) {
5439       if (Indices[i] == -1)
5440         continue;
5441       if ((unsigned)Indices[i] < InVecNumElts)
5442         MaskSelects0 = true;
5443       else
5444         MaskSelects1 = true;
5445     }
5446     if (!MaskSelects0)
5447       Op0 = PoisonValue::get(InVecTy);
5448     if (!MaskSelects1)
5449       Op1 = PoisonValue::get(InVecTy);
5450   }
5451 
5452   auto *Op0Const = dyn_cast<Constant>(Op0);
5453   auto *Op1Const = dyn_cast<Constant>(Op1);
5454 
5455   // If all operands are constant, constant fold the shuffle. This
5456   // transformation depends on the value of the mask which is not known at
5457   // compile time for scalable vectors
5458   if (Op0Const && Op1Const)
5459     return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask);
5460 
5461   // Canonicalization: if only one input vector is constant, it shall be the
5462   // second one. This transformation depends on the value of the mask which
5463   // is not known at compile time for scalable vectors
5464   if (!Scalable && Op0Const && !Op1Const) {
5465     std::swap(Op0, Op1);
5466     ShuffleVectorInst::commuteShuffleMask(Indices,
5467                                           InVecEltCount.getKnownMinValue());
5468   }
5469 
5470   // A splat of an inserted scalar constant becomes a vector constant:
5471   // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
5472   // NOTE: We may have commuted above, so analyze the updated Indices, not the
5473   //       original mask constant.
5474   // NOTE: This transformation depends on the value of the mask which is not
5475   // known at compile time for scalable vectors
5476   Constant *C;
5477   ConstantInt *IndexC;
5478   if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C),
5479                                           m_ConstantInt(IndexC)))) {
5480     // Match a splat shuffle mask of the insert index allowing undef elements.
5481     int InsertIndex = IndexC->getZExtValue();
5482     if (all_of(Indices, [InsertIndex](int MaskElt) {
5483           return MaskElt == InsertIndex || MaskElt == -1;
5484         })) {
5485       assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat");
5486 
5487       // Shuffle mask poisons become poison constant result elements.
5488       SmallVector<Constant *, 16> VecC(MaskNumElts, C);
5489       for (unsigned i = 0; i != MaskNumElts; ++i)
5490         if (Indices[i] == -1)
5491           VecC[i] = PoisonValue::get(C->getType());
5492       return ConstantVector::get(VecC);
5493     }
5494   }
5495 
5496   // A shuffle of a splat is always the splat itself. Legal if the shuffle's
5497   // value type is same as the input vectors' type.
5498   if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0))
5499     if (Q.isUndefValue(Op1) && RetTy == InVecTy &&
5500         all_equal(OpShuf->getShuffleMask()))
5501       return Op0;
5502 
5503   // All remaining transformation depend on the value of the mask, which is
5504   // not known at compile time for scalable vectors.
5505   if (Scalable)
5506     return nullptr;
5507 
5508   // Don't fold a shuffle with undef mask elements. This may get folded in a
5509   // better way using demanded bits or other analysis.
5510   // TODO: Should we allow this?
5511   if (is_contained(Indices, -1))
5512     return nullptr;
5513 
5514   // Check if every element of this shuffle can be mapped back to the
5515   // corresponding element of a single root vector. If so, we don't need this
5516   // shuffle. This handles simple identity shuffles as well as chains of
5517   // shuffles that may widen/narrow and/or move elements across lanes and back.
5518   Value *RootVec = nullptr;
5519   for (unsigned i = 0; i != MaskNumElts; ++i) {
5520     // Note that recursion is limited for each vector element, so if any element
5521     // exceeds the limit, this will fail to simplify.
5522     RootVec =
5523         foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse);
5524 
5525     // We can't replace a widening/narrowing shuffle with one of its operands.
5526     if (!RootVec || RootVec->getType() != RetTy)
5527       return nullptr;
5528   }
5529   return RootVec;
5530 }
5531 
5532 /// Given operands for a ShuffleVectorInst, fold the result or return null.
5533 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1,
5534                                        ArrayRef<int> Mask, Type *RetTy,
5535                                        const SimplifyQuery &Q) {
5536   return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit);
5537 }
5538 
5539 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op,
5540                               const SimplifyQuery &Q) {
5541   if (auto *C = dyn_cast<Constant>(Op))
5542     return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL);
5543   return nullptr;
5544 }
5545 
5546 /// Given the operand for an FNeg, see if we can fold the result.  If not, this
5547 /// returns null.
5548 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF,
5549                                const SimplifyQuery &Q, unsigned MaxRecurse) {
5550   if (Constant *C = foldConstant(Instruction::FNeg, Op, Q))
5551     return C;
5552 
5553   Value *X;
5554   // fneg (fneg X) ==> X
5555   if (match(Op, m_FNeg(m_Value(X))))
5556     return X;
5557 
5558   return nullptr;
5559 }
5560 
5561 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF,
5562                               const SimplifyQuery &Q) {
5563   return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit);
5564 }
5565 
5566 /// Try to propagate existing NaN values when possible. If not, replace the
5567 /// constant or elements in the constant with a canonical NaN.
5568 static Constant *propagateNaN(Constant *In) {
5569   Type *Ty = In->getType();
5570   if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) {
5571     unsigned NumElts = VecTy->getNumElements();
5572     SmallVector<Constant *, 32> NewC(NumElts);
5573     for (unsigned i = 0; i != NumElts; ++i) {
5574       Constant *EltC = In->getAggregateElement(i);
5575       // Poison elements propagate. NaN propagates except signaling is quieted.
5576       // Replace unknown or undef elements with canonical NaN.
5577       if (EltC && isa<PoisonValue>(EltC))
5578         NewC[i] = EltC;
5579       else if (EltC && EltC->isNaN())
5580         NewC[i] = ConstantFP::get(
5581             EltC->getType(), cast<ConstantFP>(EltC)->getValue().makeQuiet());
5582       else
5583         NewC[i] = ConstantFP::getNaN(VecTy->getElementType());
5584     }
5585     return ConstantVector::get(NewC);
5586   }
5587 
5588   // If it is not a fixed vector, but not a simple NaN either, return a
5589   // canonical NaN.
5590   if (!In->isNaN())
5591     return ConstantFP::getNaN(Ty);
5592 
5593   // If we known this is a NaN, and it's scalable vector, we must have a splat
5594   // on our hands. Grab that before splatting a QNaN constant.
5595   if (isa<ScalableVectorType>(Ty)) {
5596     auto *Splat = In->getSplatValue();
5597     assert(Splat && Splat->isNaN() &&
5598            "Found a scalable-vector NaN but not a splat");
5599     In = Splat;
5600   }
5601 
5602   // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but
5603   // preserve the sign/payload.
5604   return ConstantFP::get(Ty, cast<ConstantFP>(In)->getValue().makeQuiet());
5605 }
5606 
5607 /// Perform folds that are common to any floating-point operation. This implies
5608 /// transforms based on poison/undef/NaN because the operation itself makes no
5609 /// difference to the result.
5610 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF,
5611                               const SimplifyQuery &Q,
5612                               fp::ExceptionBehavior ExBehavior,
5613                               RoundingMode Rounding) {
5614   // Poison is independent of anything else. It always propagates from an
5615   // operand to a math result.
5616   if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); }))
5617     return PoisonValue::get(Ops[0]->getType());
5618 
5619   for (Value *V : Ops) {
5620     bool IsNan = match(V, m_NaN());
5621     bool IsInf = match(V, m_Inf());
5622     bool IsUndef = Q.isUndefValue(V);
5623 
5624     // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5625     // (an undef operand can be chosen to be Nan/Inf), then the result of
5626     // this operation is poison.
5627     if (FMF.noNaNs() && (IsNan || IsUndef))
5628       return PoisonValue::get(V->getType());
5629     if (FMF.noInfs() && (IsInf || IsUndef))
5630       return PoisonValue::get(V->getType());
5631 
5632     if (isDefaultFPEnvironment(ExBehavior, Rounding)) {
5633       // Undef does not propagate because undef means that all bits can take on
5634       // any value. If this is undef * NaN for example, then the result values
5635       // (at least the exponent bits) are limited. Assume the undef is a
5636       // canonical NaN and propagate that.
5637       if (IsUndef)
5638         return ConstantFP::getNaN(V->getType());
5639       if (IsNan)
5640         return propagateNaN(cast<Constant>(V));
5641     } else if (ExBehavior != fp::ebStrict) {
5642       if (IsNan)
5643         return propagateNaN(cast<Constant>(V));
5644     }
5645   }
5646   return nullptr;
5647 }
5648 
5649 /// Given operands for an FAdd, see if we can fold the result.  If not, this
5650 /// returns null.
5651 static Value *
5652 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5653                  const SimplifyQuery &Q, unsigned MaxRecurse,
5654                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5655                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5656   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5657     if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q))
5658       return C;
5659 
5660   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5661     return C;
5662 
5663   // fadd X, -0 ==> X
5664   // With strict/constrained FP, we have these possible edge cases that do
5665   // not simplify to Op0:
5666   // fadd SNaN, -0.0 --> QNaN
5667   // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5668   if (canIgnoreSNaN(ExBehavior, FMF) &&
5669       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5670        FMF.noSignedZeros()))
5671     if (match(Op1, m_NegZeroFP()))
5672       return Op0;
5673 
5674   // fadd X, 0 ==> X, when we know X is not -0
5675   if (canIgnoreSNaN(ExBehavior, FMF))
5676     if (match(Op1, m_PosZeroFP()) &&
5677         (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q)))
5678       return Op0;
5679 
5680   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5681     return nullptr;
5682 
5683   if (FMF.noNaNs()) {
5684     // With nnan: X + {+/-}Inf --> {+/-}Inf
5685     if (match(Op1, m_Inf()))
5686       return Op1;
5687 
5688     // With nnan: -X + X --> 0.0 (and commuted variant)
5689     // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5690     // Negative zeros are allowed because we always end up with positive zero:
5691     // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5692     // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5693     // X =  0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5694     // X =  0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5695     if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) ||
5696         match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0))))
5697       return ConstantFP::getZero(Op0->getType());
5698 
5699     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
5700         match(Op1, m_FNeg(m_Specific(Op0))))
5701       return ConstantFP::getZero(Op0->getType());
5702   }
5703 
5704   // (X - Y) + Y --> X
5705   // Y + (X - Y) --> X
5706   Value *X;
5707   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5708       (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) ||
5709        match(Op1, m_FSub(m_Value(X), m_Specific(Op0)))))
5710     return X;
5711 
5712   return nullptr;
5713 }
5714 
5715 /// Given operands for an FSub, see if we can fold the result.  If not, this
5716 /// returns null.
5717 static Value *
5718 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5719                  const SimplifyQuery &Q, unsigned MaxRecurse,
5720                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5721                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5722   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5723     if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q))
5724       return C;
5725 
5726   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5727     return C;
5728 
5729   // fsub X, +0 ==> X
5730   if (canIgnoreSNaN(ExBehavior, FMF) &&
5731       (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) ||
5732        FMF.noSignedZeros()))
5733     if (match(Op1, m_PosZeroFP()))
5734       return Op0;
5735 
5736   // fsub X, -0 ==> X, when we know X is not -0
5737   if (canIgnoreSNaN(ExBehavior, FMF))
5738     if (match(Op1, m_NegZeroFP()) &&
5739         (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q)))
5740       return Op0;
5741 
5742   // fsub -0.0, (fsub -0.0, X) ==> X
5743   // fsub -0.0, (fneg X) ==> X
5744   Value *X;
5745   if (canIgnoreSNaN(ExBehavior, FMF))
5746     if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X))))
5747       return X;
5748 
5749   // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5750   // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5751   if (canIgnoreSNaN(ExBehavior, FMF))
5752     if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) &&
5753         (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) ||
5754          match(Op1, m_FNeg(m_Value(X)))))
5755       return X;
5756 
5757   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5758     return nullptr;
5759 
5760   if (FMF.noNaNs()) {
5761     // fsub nnan x, x ==> 0.0
5762     if (Op0 == Op1)
5763       return Constant::getNullValue(Op0->getType());
5764 
5765     // With nnan: {+/-}Inf - X --> {+/-}Inf
5766     if (match(Op0, m_Inf()))
5767       return Op0;
5768 
5769     // With nnan: X - {+/-}Inf --> {-/+}Inf
5770     if (match(Op1, m_Inf()))
5771       return foldConstant(Instruction::FNeg, Op1, Q);
5772   }
5773 
5774   // Y - (Y - X) --> X
5775   // (X + Y) - Y --> X
5776   if (FMF.noSignedZeros() && FMF.allowReassoc() &&
5777       (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) ||
5778        match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X)))))
5779     return X;
5780 
5781   return nullptr;
5782 }
5783 
5784 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5785                               const SimplifyQuery &Q, unsigned MaxRecurse,
5786                               fp::ExceptionBehavior ExBehavior,
5787                               RoundingMode Rounding) {
5788   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5789     return C;
5790 
5791   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5792     return nullptr;
5793 
5794   // Canonicalize special constants as operand 1.
5795   if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP()))
5796     std::swap(Op0, Op1);
5797 
5798   // X * 1.0 --> X
5799   if (match(Op1, m_FPOne()))
5800     return Op0;
5801 
5802   if (match(Op1, m_AnyZeroFP())) {
5803     // X * 0.0 --> 0.0 (with nnan and nsz)
5804     if (FMF.noNaNs() && FMF.noSignedZeros())
5805       return ConstantFP::getZero(Op0->getType());
5806 
5807     KnownFPClass Known =
5808         computeKnownFPClass(Op0, FMF, fcInf | fcNan, /*Depth=*/0, Q);
5809     if (Known.isKnownNever(fcInf | fcNan)) {
5810       // +normal number * (-)0.0 --> (-)0.0
5811       if (Known.SignBit == false)
5812         return Op1;
5813       // -normal number * (-)0.0 --> -(-)0.0
5814       if (Known.SignBit == true)
5815         return foldConstant(Instruction::FNeg, Op1, Q);
5816     }
5817   }
5818 
5819   // sqrt(X) * sqrt(X) --> X, if we can:
5820   // 1. Remove the intermediate rounding (reassociate).
5821   // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5822   // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5823   Value *X;
5824   if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() &&
5825       FMF.noNaNs() && FMF.noSignedZeros())
5826     return X;
5827 
5828   return nullptr;
5829 }
5830 
5831 /// Given the operands for an FMul, see if we can fold the result
5832 static Value *
5833 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5834                  const SimplifyQuery &Q, unsigned MaxRecurse,
5835                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5836                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5837   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5838     if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q))
5839       return C;
5840 
5841   // Now apply simplifications that do not require rounding.
5842   return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding);
5843 }
5844 
5845 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5846                               const SimplifyQuery &Q,
5847                               fp::ExceptionBehavior ExBehavior,
5848                               RoundingMode Rounding) {
5849   return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5850                             Rounding);
5851 }
5852 
5853 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5854                               const SimplifyQuery &Q,
5855                               fp::ExceptionBehavior ExBehavior,
5856                               RoundingMode Rounding) {
5857   return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5858                             Rounding);
5859 }
5860 
5861 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5862                               const SimplifyQuery &Q,
5863                               fp::ExceptionBehavior ExBehavior,
5864                               RoundingMode Rounding) {
5865   return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5866                             Rounding);
5867 }
5868 
5869 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF,
5870                              const SimplifyQuery &Q,
5871                              fp::ExceptionBehavior ExBehavior,
5872                              RoundingMode Rounding) {
5873   return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5874                            Rounding);
5875 }
5876 
5877 static Value *
5878 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5879                  const SimplifyQuery &Q, unsigned,
5880                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5881                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5882   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5883     if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q))
5884       return C;
5885 
5886   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5887     return C;
5888 
5889   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5890     return nullptr;
5891 
5892   // X / 1.0 -> X
5893   if (match(Op1, m_FPOne()))
5894     return Op0;
5895 
5896   // 0 / X -> 0
5897   // Requires that NaNs are off (X could be zero) and signed zeroes are
5898   // ignored (X could be positive or negative, so the output sign is unknown).
5899   if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()))
5900     return ConstantFP::getZero(Op0->getType());
5901 
5902   if (FMF.noNaNs()) {
5903     // X / X -> 1.0 is legal when NaNs are ignored.
5904     // We can ignore infinities because INF/INF is NaN.
5905     if (Op0 == Op1)
5906       return ConstantFP::get(Op0->getType(), 1.0);
5907 
5908     // (X * Y) / Y --> X if we can reassociate to the above form.
5909     Value *X;
5910     if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1))))
5911       return X;
5912 
5913     // -X /  X -> -1.0 and
5914     //  X / -X -> -1.0 are legal when NaNs are ignored.
5915     // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5916     if (match(Op0, m_FNegNSZ(m_Specific(Op1))) ||
5917         match(Op1, m_FNegNSZ(m_Specific(Op0))))
5918       return ConstantFP::get(Op0->getType(), -1.0);
5919 
5920     // nnan ninf X / [-]0.0 -> poison
5921     if (FMF.noInfs() && match(Op1, m_AnyZeroFP()))
5922       return PoisonValue::get(Op1->getType());
5923   }
5924 
5925   return nullptr;
5926 }
5927 
5928 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5929                               const SimplifyQuery &Q,
5930                               fp::ExceptionBehavior ExBehavior,
5931                               RoundingMode Rounding) {
5932   return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5933                             Rounding);
5934 }
5935 
5936 static Value *
5937 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5938                  const SimplifyQuery &Q, unsigned,
5939                  fp::ExceptionBehavior ExBehavior = fp::ebIgnore,
5940                  RoundingMode Rounding = RoundingMode::NearestTiesToEven) {
5941   if (isDefaultFPEnvironment(ExBehavior, Rounding))
5942     if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q))
5943       return C;
5944 
5945   if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding))
5946     return C;
5947 
5948   if (!isDefaultFPEnvironment(ExBehavior, Rounding))
5949     return nullptr;
5950 
5951   // Unlike fdiv, the result of frem always matches the sign of the dividend.
5952   // The constant match may include undef elements in a vector, so return a full
5953   // zero constant as the result.
5954   if (FMF.noNaNs()) {
5955     // +0 % X -> 0
5956     if (match(Op0, m_PosZeroFP()))
5957       return ConstantFP::getZero(Op0->getType());
5958     // -0 % X -> -0
5959     if (match(Op0, m_NegZeroFP()))
5960       return ConstantFP::getNegativeZero(Op0->getType());
5961   }
5962 
5963   return nullptr;
5964 }
5965 
5966 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF,
5967                               const SimplifyQuery &Q,
5968                               fp::ExceptionBehavior ExBehavior,
5969                               RoundingMode Rounding) {
5970   return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior,
5971                             Rounding);
5972 }
5973 
5974 //=== Helper functions for higher up the class hierarchy.
5975 
5976 /// Given the operand for a UnaryOperator, see if we can fold the result.
5977 /// If not, this returns null.
5978 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q,
5979                            unsigned MaxRecurse) {
5980   switch (Opcode) {
5981   case Instruction::FNeg:
5982     return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse);
5983   default:
5984     llvm_unreachable("Unexpected opcode");
5985   }
5986 }
5987 
5988 /// Given the operand for a UnaryOperator, see if we can fold the result.
5989 /// If not, this returns null.
5990 /// Try to use FastMathFlags when folding the result.
5991 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op,
5992                              const FastMathFlags &FMF, const SimplifyQuery &Q,
5993                              unsigned MaxRecurse) {
5994   switch (Opcode) {
5995   case Instruction::FNeg:
5996     return simplifyFNegInst(Op, FMF, Q, MaxRecurse);
5997   default:
5998     return simplifyUnOp(Opcode, Op, Q, MaxRecurse);
5999   }
6000 }
6001 
6002 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) {
6003   return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit);
6004 }
6005 
6006 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF,
6007                           const SimplifyQuery &Q) {
6008   return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit);
6009 }
6010 
6011 /// Given operands for a BinaryOperator, see if we can fold the result.
6012 /// If not, this returns null.
6013 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
6014                             const SimplifyQuery &Q, unsigned MaxRecurse) {
6015   switch (Opcode) {
6016   case Instruction::Add:
6017     return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
6018                            MaxRecurse);
6019   case Instruction::Sub:
6020     return simplifySubInst(LHS, RHS,  /* IsNSW */ false, /* IsNUW */ false, Q,
6021                            MaxRecurse);
6022   case Instruction::Mul:
6023     return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
6024                            MaxRecurse);
6025   case Instruction::SDiv:
6026     return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
6027   case Instruction::UDiv:
6028     return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
6029   case Instruction::SRem:
6030     return simplifySRemInst(LHS, RHS, Q, MaxRecurse);
6031   case Instruction::URem:
6032     return simplifyURemInst(LHS, RHS, Q, MaxRecurse);
6033   case Instruction::Shl:
6034     return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q,
6035                            MaxRecurse);
6036   case Instruction::LShr:
6037     return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
6038   case Instruction::AShr:
6039     return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse);
6040   case Instruction::And:
6041     return simplifyAndInst(LHS, RHS, Q, MaxRecurse);
6042   case Instruction::Or:
6043     return simplifyOrInst(LHS, RHS, Q, MaxRecurse);
6044   case Instruction::Xor:
6045     return simplifyXorInst(LHS, RHS, Q, MaxRecurse);
6046   case Instruction::FAdd:
6047     return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6048   case Instruction::FSub:
6049     return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6050   case Instruction::FMul:
6051     return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6052   case Instruction::FDiv:
6053     return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6054   case Instruction::FRem:
6055     return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6056   default:
6057     llvm_unreachable("Unexpected opcode");
6058   }
6059 }
6060 
6061 /// Given operands for a BinaryOperator, see if we can fold the result.
6062 /// If not, this returns null.
6063 /// Try to use FastMathFlags when folding the result.
6064 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
6065                             const FastMathFlags &FMF, const SimplifyQuery &Q,
6066                             unsigned MaxRecurse) {
6067   switch (Opcode) {
6068   case Instruction::FAdd:
6069     return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse);
6070   case Instruction::FSub:
6071     return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse);
6072   case Instruction::FMul:
6073     return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse);
6074   case Instruction::FDiv:
6075     return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse);
6076   default:
6077     return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse);
6078   }
6079 }
6080 
6081 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
6082                            const SimplifyQuery &Q) {
6083   return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit);
6084 }
6085 
6086 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
6087                            FastMathFlags FMF, const SimplifyQuery &Q) {
6088   return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit);
6089 }
6090 
6091 /// Given operands for a CmpInst, see if we can fold the result.
6092 static Value *simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS,
6093                               const SimplifyQuery &Q, unsigned MaxRecurse) {
6094   if (CmpInst::isIntPredicate(Predicate))
6095     return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
6096   return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse);
6097 }
6098 
6099 Value *llvm::simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS,
6100                              const SimplifyQuery &Q) {
6101   return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit);
6102 }
6103 
6104 static bool isIdempotent(Intrinsic::ID ID) {
6105   switch (ID) {
6106   default:
6107     return false;
6108 
6109   // Unary idempotent: f(f(x)) = f(x)
6110   case Intrinsic::fabs:
6111   case Intrinsic::floor:
6112   case Intrinsic::ceil:
6113   case Intrinsic::trunc:
6114   case Intrinsic::rint:
6115   case Intrinsic::nearbyint:
6116   case Intrinsic::round:
6117   case Intrinsic::roundeven:
6118   case Intrinsic::canonicalize:
6119   case Intrinsic::arithmetic_fence:
6120     return true;
6121   }
6122 }
6123 
6124 /// Return true if the intrinsic rounds a floating-point value to an integral
6125 /// floating-point value (not an integer type).
6126 static bool removesFPFraction(Intrinsic::ID ID) {
6127   switch (ID) {
6128   default:
6129     return false;
6130 
6131   case Intrinsic::floor:
6132   case Intrinsic::ceil:
6133   case Intrinsic::trunc:
6134   case Intrinsic::rint:
6135   case Intrinsic::nearbyint:
6136   case Intrinsic::round:
6137   case Intrinsic::roundeven:
6138     return true;
6139   }
6140 }
6141 
6142 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset,
6143                                    const DataLayout &DL) {
6144   GlobalValue *PtrSym;
6145   APInt PtrOffset;
6146   if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL))
6147     return nullptr;
6148 
6149   Type *Int32Ty = Type::getInt32Ty(Ptr->getContext());
6150 
6151   auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset);
6152   if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64)
6153     return nullptr;
6154 
6155   APInt OffsetInt = OffsetConstInt->getValue().sextOrTrunc(
6156       DL.getIndexTypeSizeInBits(Ptr->getType()));
6157   if (OffsetInt.srem(4) != 0)
6158     return nullptr;
6159 
6160   Constant *Loaded =
6161       ConstantFoldLoadFromConstPtr(Ptr, Int32Ty, std::move(OffsetInt), DL);
6162   if (!Loaded)
6163     return nullptr;
6164 
6165   auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded);
6166   if (!LoadedCE)
6167     return nullptr;
6168 
6169   if (LoadedCE->getOpcode() == Instruction::Trunc) {
6170     LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
6171     if (!LoadedCE)
6172       return nullptr;
6173   }
6174 
6175   if (LoadedCE->getOpcode() != Instruction::Sub)
6176     return nullptr;
6177 
6178   auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0));
6179   if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt)
6180     return nullptr;
6181   auto *LoadedLHSPtr = LoadedLHS->getOperand(0);
6182 
6183   Constant *LoadedRHS = LoadedCE->getOperand(1);
6184   GlobalValue *LoadedRHSSym;
6185   APInt LoadedRHSOffset;
6186   if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset,
6187                                   DL) ||
6188       PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset)
6189     return nullptr;
6190 
6191   return LoadedLHSPtr;
6192 }
6193 
6194 // TODO: Need to pass in FastMathFlags
6195 static Value *simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q,
6196                             bool IsStrict) {
6197   // ldexp(poison, x) -> poison
6198   // ldexp(x, poison) -> poison
6199   if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
6200     return Op0;
6201 
6202   // ldexp(undef, x) -> nan
6203   if (Q.isUndefValue(Op0))
6204     return ConstantFP::getNaN(Op0->getType());
6205 
6206   if (!IsStrict) {
6207     // TODO: Could insert a canonicalize for strict
6208 
6209     // ldexp(x, undef) -> x
6210     if (Q.isUndefValue(Op1))
6211       return Op0;
6212   }
6213 
6214   const APFloat *C = nullptr;
6215   match(Op0, PatternMatch::m_APFloat(C));
6216 
6217   // These cases should be safe, even with strictfp.
6218   // ldexp(0.0, x) -> 0.0
6219   // ldexp(-0.0, x) -> -0.0
6220   // ldexp(inf, x) -> inf
6221   // ldexp(-inf, x) -> -inf
6222   if (C && (C->isZero() || C->isInfinity()))
6223     return Op0;
6224 
6225   // These are canonicalization dropping, could do it if we knew how we could
6226   // ignore denormal flushes and target handling of nan payload bits.
6227   if (IsStrict)
6228     return nullptr;
6229 
6230   // TODO: Could quiet this with strictfp if the exception mode isn't strict.
6231   if (C && C->isNaN())
6232     return ConstantFP::get(Op0->getType(), C->makeQuiet());
6233 
6234   // ldexp(x, 0) -> x
6235 
6236   // TODO: Could fold this if we know the exception mode isn't
6237   // strict, we know the denormal mode and other target modes.
6238   if (match(Op1, PatternMatch::m_ZeroInt()))
6239     return Op0;
6240 
6241   return nullptr;
6242 }
6243 
6244 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0,
6245                                      const SimplifyQuery &Q,
6246                                      const CallBase *Call) {
6247   // Idempotent functions return the same result when called repeatedly.
6248   Intrinsic::ID IID = F->getIntrinsicID();
6249   if (isIdempotent(IID))
6250     if (auto *II = dyn_cast<IntrinsicInst>(Op0))
6251       if (II->getIntrinsicID() == IID)
6252         return II;
6253 
6254   if (removesFPFraction(IID)) {
6255     // Converting from int or calling a rounding function always results in a
6256     // finite integral number or infinity. For those inputs, rounding functions
6257     // always return the same value, so the (2nd) rounding is eliminated. Ex:
6258     // floor (sitofp x) -> sitofp x
6259     // round (ceil x) -> ceil x
6260     auto *II = dyn_cast<IntrinsicInst>(Op0);
6261     if ((II && removesFPFraction(II->getIntrinsicID())) ||
6262         match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value())))
6263       return Op0;
6264   }
6265 
6266   Value *X;
6267   switch (IID) {
6268   case Intrinsic::fabs:
6269     if (computeKnownFPSignBit(Op0, /*Depth=*/0, Q) == false)
6270       return Op0;
6271     break;
6272   case Intrinsic::bswap:
6273     // bswap(bswap(x)) -> x
6274     if (match(Op0, m_BSwap(m_Value(X))))
6275       return X;
6276     break;
6277   case Intrinsic::bitreverse:
6278     // bitreverse(bitreverse(x)) -> x
6279     if (match(Op0, m_BitReverse(m_Value(X))))
6280       return X;
6281     break;
6282   case Intrinsic::ctpop: {
6283     // ctpop(X) -> 1 iff X is non-zero power of 2.
6284     if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI,
6285                                Q.DT))
6286       return ConstantInt::get(Op0->getType(), 1);
6287     // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
6288     // ctpop(and X, 1) --> and X, 1
6289     unsigned BitWidth = Op0->getType()->getScalarSizeInBits();
6290     if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1),
6291                           Q))
6292       return Op0;
6293     break;
6294   }
6295   case Intrinsic::exp:
6296     // exp(log(x)) -> x
6297     if (Call->hasAllowReassoc() &&
6298         match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X))))
6299       return X;
6300     break;
6301   case Intrinsic::exp2:
6302     // exp2(log2(x)) -> x
6303     if (Call->hasAllowReassoc() &&
6304         match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X))))
6305       return X;
6306     break;
6307   case Intrinsic::exp10:
6308     // exp10(log10(x)) -> x
6309     if (Call->hasAllowReassoc() &&
6310         match(Op0, m_Intrinsic<Intrinsic::log10>(m_Value(X))))
6311       return X;
6312     break;
6313   case Intrinsic::log:
6314     // log(exp(x)) -> x
6315     if (Call->hasAllowReassoc() &&
6316         match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X))))
6317       return X;
6318     break;
6319   case Intrinsic::log2:
6320     // log2(exp2(x)) -> x
6321     if (Call->hasAllowReassoc() &&
6322         (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) ||
6323          match(Op0,
6324                m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X)))))
6325       return X;
6326     break;
6327   case Intrinsic::log10:
6328     // log10(pow(10.0, x)) -> x
6329     // log10(exp10(x)) -> x
6330     if (Call->hasAllowReassoc() &&
6331         (match(Op0, m_Intrinsic<Intrinsic::exp10>(m_Value(X))) ||
6332          match(Op0,
6333                m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X)))))
6334       return X;
6335     break;
6336   case Intrinsic::vector_reverse:
6337     // vector.reverse(vector.reverse(x)) -> x
6338     if (match(Op0, m_VecReverse(m_Value(X))))
6339       return X;
6340     // vector.reverse(splat(X)) -> splat(X)
6341     if (isSplatValue(Op0))
6342       return Op0;
6343     break;
6344   case Intrinsic::frexp: {
6345     // Frexp is idempotent with the added complication of the struct return.
6346     if (match(Op0, m_ExtractValue<0>(m_Value(X)))) {
6347       if (match(X, m_Intrinsic<Intrinsic::frexp>(m_Value())))
6348         return X;
6349     }
6350 
6351     break;
6352   }
6353   default:
6354     break;
6355   }
6356 
6357   return nullptr;
6358 }
6359 
6360 /// Given a min/max intrinsic, see if it can be removed based on having an
6361 /// operand that is another min/max intrinsic with shared operand(s). The caller
6362 /// is expected to swap the operand arguments to handle commutation.
6363 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) {
6364   Value *X, *Y;
6365   if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y))))
6366     return nullptr;
6367 
6368   auto *MM0 = dyn_cast<IntrinsicInst>(Op0);
6369   if (!MM0)
6370     return nullptr;
6371   Intrinsic::ID IID0 = MM0->getIntrinsicID();
6372 
6373   if (Op1 == X || Op1 == Y ||
6374       match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) {
6375     // max (max X, Y), X --> max X, Y
6376     if (IID0 == IID)
6377       return MM0;
6378     // max (min X, Y), X --> X
6379     if (IID0 == getInverseMinMaxIntrinsic(IID))
6380       return Op1;
6381   }
6382   return nullptr;
6383 }
6384 
6385 /// Given a min/max intrinsic, see if it can be removed based on having an
6386 /// operand that is another min/max intrinsic with shared operand(s). The caller
6387 /// is expected to swap the operand arguments to handle commutation.
6388 static Value *foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0,
6389                                          Value *Op1) {
6390   assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum ||
6391           IID == Intrinsic::maximum || IID == Intrinsic::minimum) &&
6392          "Unsupported intrinsic");
6393 
6394   auto *M0 = dyn_cast<IntrinsicInst>(Op0);
6395   // If Op0 is not the same intrinsic as IID, do not process.
6396   // This is a difference with integer min/max handling. We do not process the
6397   // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN.
6398   if (!M0 || M0->getIntrinsicID() != IID)
6399     return nullptr;
6400   Value *X0 = M0->getOperand(0);
6401   Value *Y0 = M0->getOperand(1);
6402   // Simple case, m(m(X,Y), X) => m(X, Y)
6403   //              m(m(X,Y), Y) => m(X, Y)
6404   // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN.
6405   // For minimum/maximum, Y is NaN => m(X, NaN) == NaN  and m(NaN, NaN) == NaN.
6406   // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y.
6407   // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X.
6408   if (X0 == Op1 || Y0 == Op1)
6409     return M0;
6410 
6411   auto *M1 = dyn_cast<IntrinsicInst>(Op1);
6412   if (!M1)
6413     return nullptr;
6414   Value *X1 = M1->getOperand(0);
6415   Value *Y1 = M1->getOperand(1);
6416   Intrinsic::ID IID1 = M1->getIntrinsicID();
6417   // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative.
6418   // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y).
6419   // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN.
6420   // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN.
6421   // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y.
6422   // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X.
6423   if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1))
6424     if (IID1 == IID || getInverseMinMaxIntrinsic(IID1) == IID)
6425       return M0;
6426 
6427   return nullptr;
6428 }
6429 
6430 Value *llvm::simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType,
6431                                      Value *Op0, Value *Op1,
6432                                      const SimplifyQuery &Q,
6433                                      const CallBase *Call) {
6434   unsigned BitWidth = ReturnType->getScalarSizeInBits();
6435   switch (IID) {
6436   case Intrinsic::abs:
6437     // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
6438     // It is always ok to pick the earlier abs. We'll just lose nsw if its only
6439     // on the outer abs.
6440     if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value())))
6441       return Op0;
6442     break;
6443 
6444   case Intrinsic::cttz: {
6445     Value *X;
6446     if (match(Op0, m_Shl(m_One(), m_Value(X))))
6447       return X;
6448     break;
6449   }
6450   case Intrinsic::ctlz: {
6451     Value *X;
6452     if (match(Op0, m_LShr(m_Negative(), m_Value(X))))
6453       return X;
6454     if (match(Op0, m_AShr(m_Negative(), m_Value())))
6455       return Constant::getNullValue(ReturnType);
6456     break;
6457   }
6458   case Intrinsic::ptrmask: {
6459     if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1))
6460       return PoisonValue::get(Op0->getType());
6461 
6462     // NOTE: We can't apply this simplifications based on the value of Op1
6463     // because we need to preserve provenance.
6464     if (Q.isUndefValue(Op0) || match(Op0, m_Zero()))
6465       return Constant::getNullValue(Op0->getType());
6466 
6467     assert(Op1->getType()->getScalarSizeInBits() ==
6468                Q.DL.getIndexTypeSizeInBits(Op0->getType()) &&
6469            "Invalid mask width");
6470     // If index-width (mask size) is less than pointer-size then mask is
6471     // 1-extended.
6472     if (match(Op1, m_PtrToInt(m_Specific(Op0))))
6473       return Op0;
6474 
6475     // NOTE: We may have attributes associated with the return value of the
6476     // llvm.ptrmask intrinsic that will be lost when we just return the
6477     // operand. We should try to preserve them.
6478     if (match(Op1, m_AllOnes()) || Q.isUndefValue(Op1))
6479       return Op0;
6480 
6481     Constant *C;
6482     if (match(Op1, m_ImmConstant(C))) {
6483       KnownBits PtrKnown = computeKnownBits(Op0, /*Depth=*/0, Q);
6484       // See if we only masking off bits we know are already zero due to
6485       // alignment.
6486       APInt IrrelevantPtrBits =
6487           PtrKnown.Zero.zextOrTrunc(C->getType()->getScalarSizeInBits());
6488       C = ConstantFoldBinaryOpOperands(
6489           Instruction::Or, C, ConstantInt::get(C->getType(), IrrelevantPtrBits),
6490           Q.DL);
6491       if (C != nullptr && C->isAllOnesValue())
6492         return Op0;
6493     }
6494     break;
6495   }
6496   case Intrinsic::smax:
6497   case Intrinsic::smin:
6498   case Intrinsic::umax:
6499   case Intrinsic::umin: {
6500     // If the arguments are the same, this is a no-op.
6501     if (Op0 == Op1)
6502       return Op0;
6503 
6504     // Canonicalize immediate constant operand as Op1.
6505     if (match(Op0, m_ImmConstant()))
6506       std::swap(Op0, Op1);
6507 
6508     // Assume undef is the limit value.
6509     if (Q.isUndefValue(Op1))
6510       return ConstantInt::get(
6511           ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth));
6512 
6513     const APInt *C;
6514     if (match(Op1, m_APIntAllowPoison(C))) {
6515       // Clamp to limit value. For example:
6516       // umax(i8 %x, i8 255) --> 255
6517       if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth))
6518         return ConstantInt::get(ReturnType, *C);
6519 
6520       // If the constant op is the opposite of the limit value, the other must
6521       // be larger/smaller or equal. For example:
6522       // umin(i8 %x, i8 255) --> %x
6523       if (*C == MinMaxIntrinsic::getSaturationPoint(
6524                     getInverseMinMaxIntrinsic(IID), BitWidth))
6525         return Op0;
6526 
6527       // Remove nested call if constant operands allow it. Example:
6528       // max (max X, 7), 5 -> max X, 7
6529       auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0);
6530       if (MinMax0 && MinMax0->getIntrinsicID() == IID) {
6531         // TODO: loosen undef/splat restrictions for vector constants.
6532         Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1);
6533         const APInt *InnerC;
6534         if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) &&
6535             ICmpInst::compare(*InnerC, *C,
6536                               ICmpInst::getNonStrictPredicate(
6537                                   MinMaxIntrinsic::getPredicate(IID))))
6538           return Op0;
6539       }
6540     }
6541 
6542     if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1))
6543       return V;
6544     if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0))
6545       return V;
6546 
6547     ICmpInst::Predicate Pred =
6548         ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID));
6549     if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit))
6550       return Op0;
6551     if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit))
6552       return Op1;
6553 
6554     break;
6555   }
6556   case Intrinsic::scmp:
6557   case Intrinsic::ucmp: {
6558     // Fold to a constant if the relationship between operands can be
6559     // established with certainty
6560     if (isICmpTrue(CmpInst::ICMP_EQ, Op0, Op1, Q, RecursionLimit))
6561       return Constant::getNullValue(ReturnType);
6562 
6563     ICmpInst::Predicate PredGT =
6564         IID == Intrinsic::scmp ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
6565     if (isICmpTrue(PredGT, Op0, Op1, Q, RecursionLimit))
6566       return ConstantInt::get(ReturnType, 1);
6567 
6568     ICmpInst::Predicate PredLT =
6569         IID == Intrinsic::scmp ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
6570     if (isICmpTrue(PredLT, Op0, Op1, Q, RecursionLimit))
6571       return ConstantInt::getSigned(ReturnType, -1);
6572 
6573     break;
6574   }
6575   case Intrinsic::usub_with_overflow:
6576   case Intrinsic::ssub_with_overflow:
6577     // X - X -> { 0, false }
6578     // X - undef -> { 0, false }
6579     // undef - X -> { 0, false }
6580     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6581       return Constant::getNullValue(ReturnType);
6582     break;
6583   case Intrinsic::uadd_with_overflow:
6584   case Intrinsic::sadd_with_overflow:
6585     // X + undef -> { -1, false }
6586     // undef + x -> { -1, false }
6587     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) {
6588       return ConstantStruct::get(
6589           cast<StructType>(ReturnType),
6590           {Constant::getAllOnesValue(ReturnType->getStructElementType(0)),
6591            Constant::getNullValue(ReturnType->getStructElementType(1))});
6592     }
6593     break;
6594   case Intrinsic::umul_with_overflow:
6595   case Intrinsic::smul_with_overflow:
6596     // 0 * X -> { 0, false }
6597     // X * 0 -> { 0, false }
6598     if (match(Op0, m_Zero()) || match(Op1, m_Zero()))
6599       return Constant::getNullValue(ReturnType);
6600     // undef * X -> { 0, false }
6601     // X * undef -> { 0, false }
6602     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6603       return Constant::getNullValue(ReturnType);
6604     break;
6605   case Intrinsic::uadd_sat:
6606     // sat(MAX + X) -> MAX
6607     // sat(X + MAX) -> MAX
6608     if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes()))
6609       return Constant::getAllOnesValue(ReturnType);
6610     [[fallthrough]];
6611   case Intrinsic::sadd_sat:
6612     // sat(X + undef) -> -1
6613     // sat(undef + X) -> -1
6614     // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
6615     // For signed: Assume undef is ~X, in which case X + ~X = -1.
6616     if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6617       return Constant::getAllOnesValue(ReturnType);
6618 
6619     // X + 0 -> X
6620     if (match(Op1, m_Zero()))
6621       return Op0;
6622     // 0 + X -> X
6623     if (match(Op0, m_Zero()))
6624       return Op1;
6625     break;
6626   case Intrinsic::usub_sat:
6627     // sat(0 - X) -> 0, sat(X - MAX) -> 0
6628     if (match(Op0, m_Zero()) || match(Op1, m_AllOnes()))
6629       return Constant::getNullValue(ReturnType);
6630     [[fallthrough]];
6631   case Intrinsic::ssub_sat:
6632     // X - X -> 0, X - undef -> 0, undef - X -> 0
6633     if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1))
6634       return Constant::getNullValue(ReturnType);
6635     // X - 0 -> X
6636     if (match(Op1, m_Zero()))
6637       return Op0;
6638     break;
6639   case Intrinsic::load_relative:
6640     if (auto *C0 = dyn_cast<Constant>(Op0))
6641       if (auto *C1 = dyn_cast<Constant>(Op1))
6642         return simplifyRelativeLoad(C0, C1, Q.DL);
6643     break;
6644   case Intrinsic::powi:
6645     if (auto *Power = dyn_cast<ConstantInt>(Op1)) {
6646       // powi(x, 0) -> 1.0
6647       if (Power->isZero())
6648         return ConstantFP::get(Op0->getType(), 1.0);
6649       // powi(x, 1) -> x
6650       if (Power->isOne())
6651         return Op0;
6652     }
6653     break;
6654   case Intrinsic::ldexp:
6655     return simplifyLdexp(Op0, Op1, Q, false);
6656   case Intrinsic::copysign:
6657     // copysign X, X --> X
6658     if (Op0 == Op1)
6659       return Op0;
6660     // copysign -X, X --> X
6661     // copysign X, -X --> -X
6662     if (match(Op0, m_FNeg(m_Specific(Op1))) ||
6663         match(Op1, m_FNeg(m_Specific(Op0))))
6664       return Op1;
6665     break;
6666   case Intrinsic::is_fpclass: {
6667     if (isa<PoisonValue>(Op0))
6668       return PoisonValue::get(ReturnType);
6669 
6670     uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue();
6671     // If all tests are made, it doesn't matter what the value is.
6672     if ((Mask & fcAllFlags) == fcAllFlags)
6673       return ConstantInt::get(ReturnType, true);
6674     if ((Mask & fcAllFlags) == 0)
6675       return ConstantInt::get(ReturnType, false);
6676     if (Q.isUndefValue(Op0))
6677       return UndefValue::get(ReturnType);
6678     break;
6679   }
6680   case Intrinsic::maxnum:
6681   case Intrinsic::minnum:
6682   case Intrinsic::maximum:
6683   case Intrinsic::minimum: {
6684     // If the arguments are the same, this is a no-op.
6685     if (Op0 == Op1)
6686       return Op0;
6687 
6688     // Canonicalize constant operand as Op1.
6689     if (isa<Constant>(Op0))
6690       std::swap(Op0, Op1);
6691 
6692     // If an argument is undef, return the other argument.
6693     if (Q.isUndefValue(Op1))
6694       return Op0;
6695 
6696     bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum;
6697     bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum;
6698 
6699     // minnum(X, nan) -> X
6700     // maxnum(X, nan) -> X
6701     // minimum(X, nan) -> nan
6702     // maximum(X, nan) -> nan
6703     if (match(Op1, m_NaN()))
6704       return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0;
6705 
6706     // In the following folds, inf can be replaced with the largest finite
6707     // float, if the ninf flag is set.
6708     const APFloat *C;
6709     if (match(Op1, m_APFloat(C)) &&
6710         (C->isInfinity() || (Call && Call->hasNoInfs() && C->isLargest()))) {
6711       // minnum(X, -inf) -> -inf
6712       // maxnum(X, +inf) -> +inf
6713       // minimum(X, -inf) -> -inf if nnan
6714       // maximum(X, +inf) -> +inf if nnan
6715       if (C->isNegative() == IsMin &&
6716           (!PropagateNaN || (Call && Call->hasNoNaNs())))
6717         return ConstantFP::get(ReturnType, *C);
6718 
6719       // minnum(X, +inf) -> X if nnan
6720       // maxnum(X, -inf) -> X if nnan
6721       // minimum(X, +inf) -> X
6722       // maximum(X, -inf) -> X
6723       if (C->isNegative() != IsMin &&
6724           (PropagateNaN || (Call && Call->hasNoNaNs())))
6725         return Op0;
6726     }
6727 
6728     // Min/max of the same operation with common operand:
6729     // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
6730     if (Value *V = foldMinimumMaximumSharedOp(IID, Op0, Op1))
6731       return V;
6732     if (Value *V = foldMinimumMaximumSharedOp(IID, Op1, Op0))
6733       return V;
6734 
6735     break;
6736   }
6737   case Intrinsic::vector_extract: {
6738     // (extract_vector (insert_vector _, X, 0), 0) -> X
6739     unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue();
6740     Value *X = nullptr;
6741     if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X),
6742                                                          m_Zero())) &&
6743         IdxN == 0 && X->getType() == ReturnType)
6744       return X;
6745 
6746     break;
6747   }
6748   default:
6749     break;
6750   }
6751 
6752   return nullptr;
6753 }
6754 
6755 static Value *simplifyIntrinsic(CallBase *Call, Value *Callee,
6756                                 ArrayRef<Value *> Args,
6757                                 const SimplifyQuery &Q) {
6758   // Operand bundles should not be in Args.
6759   assert(Call->arg_size() == Args.size());
6760   unsigned NumOperands = Args.size();
6761   Function *F = cast<Function>(Callee);
6762   Intrinsic::ID IID = F->getIntrinsicID();
6763 
6764   // Most of the intrinsics with no operands have some kind of side effect.
6765   // Don't simplify.
6766   if (!NumOperands) {
6767     switch (IID) {
6768     case Intrinsic::vscale: {
6769       Type *RetTy = F->getReturnType();
6770       ConstantRange CR = getVScaleRange(Call->getFunction(), 64);
6771       if (const APInt *C = CR.getSingleElement())
6772         return ConstantInt::get(RetTy, C->getZExtValue());
6773       return nullptr;
6774     }
6775     default:
6776       return nullptr;
6777     }
6778   }
6779 
6780   if (NumOperands == 1)
6781     return simplifyUnaryIntrinsic(F, Args[0], Q, Call);
6782 
6783   if (NumOperands == 2)
6784     return simplifyBinaryIntrinsic(IID, F->getReturnType(), Args[0], Args[1], Q,
6785                                    Call);
6786 
6787   // Handle intrinsics with 3 or more arguments.
6788   switch (IID) {
6789   case Intrinsic::masked_load:
6790   case Intrinsic::masked_gather: {
6791     Value *MaskArg = Args[2];
6792     Value *PassthruArg = Args[3];
6793     // If the mask is all zeros or undef, the "passthru" argument is the result.
6794     if (maskIsAllZeroOrUndef(MaskArg))
6795       return PassthruArg;
6796     return nullptr;
6797   }
6798   case Intrinsic::fshl:
6799   case Intrinsic::fshr: {
6800     Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2];
6801 
6802     // If both operands are undef, the result is undef.
6803     if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1))
6804       return UndefValue::get(F->getReturnType());
6805 
6806     // If shift amount is undef, assume it is zero.
6807     if (Q.isUndefValue(ShAmtArg))
6808       return Args[IID == Intrinsic::fshl ? 0 : 1];
6809 
6810     const APInt *ShAmtC;
6811     if (match(ShAmtArg, m_APInt(ShAmtC))) {
6812       // If there's effectively no shift, return the 1st arg or 2nd arg.
6813       APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth());
6814       if (ShAmtC->urem(BitWidth).isZero())
6815         return Args[IID == Intrinsic::fshl ? 0 : 1];
6816     }
6817 
6818     // Rotating zero by anything is zero.
6819     if (match(Op0, m_Zero()) && match(Op1, m_Zero()))
6820       return ConstantInt::getNullValue(F->getReturnType());
6821 
6822     // Rotating -1 by anything is -1.
6823     if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes()))
6824       return ConstantInt::getAllOnesValue(F->getReturnType());
6825 
6826     return nullptr;
6827   }
6828   case Intrinsic::experimental_constrained_fma: {
6829     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6830     if (Value *V = simplifyFPOp(Args, {}, Q, *FPI->getExceptionBehavior(),
6831                                 *FPI->getRoundingMode()))
6832       return V;
6833     return nullptr;
6834   }
6835   case Intrinsic::fma:
6836   case Intrinsic::fmuladd: {
6837     if (Value *V = simplifyFPOp(Args, {}, Q, fp::ebIgnore,
6838                                 RoundingMode::NearestTiesToEven))
6839       return V;
6840     return nullptr;
6841   }
6842   case Intrinsic::smul_fix:
6843   case Intrinsic::smul_fix_sat: {
6844     Value *Op0 = Args[0];
6845     Value *Op1 = Args[1];
6846     Value *Op2 = Args[2];
6847     Type *ReturnType = F->getReturnType();
6848 
6849     // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6850     // when both Op0 and Op1 are constant so we do not care about that special
6851     // case here).
6852     if (isa<Constant>(Op0))
6853       std::swap(Op0, Op1);
6854 
6855     // X * 0 -> 0
6856     if (match(Op1, m_Zero()))
6857       return Constant::getNullValue(ReturnType);
6858 
6859     // X * undef -> 0
6860     if (Q.isUndefValue(Op1))
6861       return Constant::getNullValue(ReturnType);
6862 
6863     // X * (1 << Scale) -> X
6864     APInt ScaledOne =
6865         APInt::getOneBitSet(ReturnType->getScalarSizeInBits(),
6866                             cast<ConstantInt>(Op2)->getZExtValue());
6867     if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne)))
6868       return Op0;
6869 
6870     return nullptr;
6871   }
6872   case Intrinsic::vector_insert: {
6873     Value *Vec = Args[0];
6874     Value *SubVec = Args[1];
6875     Value *Idx = Args[2];
6876     Type *ReturnType = F->getReturnType();
6877 
6878     // (insert_vector Y, (extract_vector X, 0), 0) -> X
6879     // where: Y is X, or Y is undef
6880     unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
6881     Value *X = nullptr;
6882     if (match(SubVec,
6883               m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) &&
6884         (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 &&
6885         X->getType() == ReturnType)
6886       return X;
6887 
6888     return nullptr;
6889   }
6890   case Intrinsic::experimental_constrained_fadd: {
6891     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6892     return simplifyFAddInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6893                             *FPI->getExceptionBehavior(),
6894                             *FPI->getRoundingMode());
6895   }
6896   case Intrinsic::experimental_constrained_fsub: {
6897     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6898     return simplifyFSubInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6899                             *FPI->getExceptionBehavior(),
6900                             *FPI->getRoundingMode());
6901   }
6902   case Intrinsic::experimental_constrained_fmul: {
6903     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6904     return simplifyFMulInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6905                             *FPI->getExceptionBehavior(),
6906                             *FPI->getRoundingMode());
6907   }
6908   case Intrinsic::experimental_constrained_fdiv: {
6909     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6910     return simplifyFDivInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6911                             *FPI->getExceptionBehavior(),
6912                             *FPI->getRoundingMode());
6913   }
6914   case Intrinsic::experimental_constrained_frem: {
6915     auto *FPI = cast<ConstrainedFPIntrinsic>(Call);
6916     return simplifyFRemInst(Args[0], Args[1], FPI->getFastMathFlags(), Q,
6917                             *FPI->getExceptionBehavior(),
6918                             *FPI->getRoundingMode());
6919   }
6920   case Intrinsic::experimental_constrained_ldexp:
6921     return simplifyLdexp(Args[0], Args[1], Q, true);
6922   case Intrinsic::experimental_gc_relocate: {
6923     GCRelocateInst &GCR = *cast<GCRelocateInst>(Call);
6924     Value *DerivedPtr = GCR.getDerivedPtr();
6925     Value *BasePtr = GCR.getBasePtr();
6926 
6927     // Undef is undef, even after relocation.
6928     if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
6929       return UndefValue::get(GCR.getType());
6930     }
6931 
6932     if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
6933       // For now, the assumption is that the relocation of null will be null
6934       // for most any collector. If this ever changes, a corresponding hook
6935       // should be added to GCStrategy and this code should check it first.
6936       if (isa<ConstantPointerNull>(DerivedPtr)) {
6937         // Use null-pointer of gc_relocate's type to replace it.
6938         return ConstantPointerNull::get(PT);
6939       }
6940     }
6941     return nullptr;
6942   }
6943   default:
6944     return nullptr;
6945   }
6946 }
6947 
6948 static Value *tryConstantFoldCall(CallBase *Call, Value *Callee,
6949                                   ArrayRef<Value *> Args,
6950                                   const SimplifyQuery &Q) {
6951   auto *F = dyn_cast<Function>(Callee);
6952   if (!F || !canConstantFoldCallTo(Call, F))
6953     return nullptr;
6954 
6955   SmallVector<Constant *, 4> ConstantArgs;
6956   ConstantArgs.reserve(Args.size());
6957   for (Value *Arg : Args) {
6958     Constant *C = dyn_cast<Constant>(Arg);
6959     if (!C) {
6960       if (isa<MetadataAsValue>(Arg))
6961         continue;
6962       return nullptr;
6963     }
6964     ConstantArgs.push_back(C);
6965   }
6966 
6967   return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI);
6968 }
6969 
6970 Value *llvm::simplifyCall(CallBase *Call, Value *Callee, ArrayRef<Value *> Args,
6971                           const SimplifyQuery &Q) {
6972   // Args should not contain operand bundle operands.
6973   assert(Call->arg_size() == Args.size());
6974 
6975   // musttail calls can only be simplified if they are also DCEd.
6976   // As we can't guarantee this here, don't simplify them.
6977   if (Call->isMustTailCall())
6978     return nullptr;
6979 
6980   // call undef -> poison
6981   // call null -> poison
6982   if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee))
6983     return PoisonValue::get(Call->getType());
6984 
6985   if (Value *V = tryConstantFoldCall(Call, Callee, Args, Q))
6986     return V;
6987 
6988   auto *F = dyn_cast<Function>(Callee);
6989   if (F && F->isIntrinsic())
6990     if (Value *Ret = simplifyIntrinsic(Call, Callee, Args, Q))
6991       return Ret;
6992 
6993   return nullptr;
6994 }
6995 
6996 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) {
6997   assert(isa<ConstrainedFPIntrinsic>(Call));
6998   SmallVector<Value *, 4> Args(Call->args());
6999   if (Value *V = tryConstantFoldCall(Call, Call->getCalledOperand(), Args, Q))
7000     return V;
7001   if (Value *Ret = simplifyIntrinsic(Call, Call->getCalledOperand(), Args, Q))
7002     return Ret;
7003   return nullptr;
7004 }
7005 
7006 /// Given operands for a Freeze, see if we can fold the result.
7007 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
7008   // Use a utility function defined in ValueTracking.
7009   if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT))
7010     return Op0;
7011   // We have room for improvement.
7012   return nullptr;
7013 }
7014 
7015 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) {
7016   return ::simplifyFreezeInst(Op0, Q);
7017 }
7018 
7019 Value *llvm::simplifyLoadInst(LoadInst *LI, Value *PtrOp,
7020                               const SimplifyQuery &Q) {
7021   if (LI->isVolatile())
7022     return nullptr;
7023 
7024   if (auto *PtrOpC = dyn_cast<Constant>(PtrOp))
7025     return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL);
7026 
7027   // We can only fold the load if it is from a constant global with definitive
7028   // initializer. Skip expensive logic if this is not the case.
7029   auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp));
7030   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
7031     return nullptr;
7032 
7033   // If GlobalVariable's initializer is uniform, then return the constant
7034   // regardless of its offset.
7035   if (Constant *C = ConstantFoldLoadFromUniformValue(GV->getInitializer(),
7036                                                      LI->getType(), Q.DL))
7037     return C;
7038 
7039   // Try to convert operand into a constant by stripping offsets while looking
7040   // through invariant.group intrinsics.
7041   APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0);
7042   PtrOp = PtrOp->stripAndAccumulateConstantOffsets(
7043       Q.DL, Offset, /* AllowNonInbounts */ true,
7044       /* AllowInvariantGroup */ true);
7045   if (PtrOp == GV) {
7046     // Index size may have changed due to address space casts.
7047     Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()));
7048     return ConstantFoldLoadFromConstPtr(GV, LI->getType(), std::move(Offset),
7049                                         Q.DL);
7050   }
7051 
7052   return nullptr;
7053 }
7054 
7055 /// See if we can compute a simplified version of this instruction.
7056 /// If not, this returns null.
7057 
7058 static Value *simplifyInstructionWithOperands(Instruction *I,
7059                                               ArrayRef<Value *> NewOps,
7060                                               const SimplifyQuery &SQ,
7061                                               unsigned MaxRecurse) {
7062   assert(I->getFunction() && "instruction should be inserted in a function");
7063   assert((!SQ.CxtI || SQ.CxtI->getFunction() == I->getFunction()) &&
7064          "context instruction should be in the same function");
7065 
7066   const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I);
7067 
7068   switch (I->getOpcode()) {
7069   default:
7070     if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) {
7071       SmallVector<Constant *, 8> NewConstOps(NewOps.size());
7072       transform(NewOps, NewConstOps.begin(),
7073                 [](Value *V) { return cast<Constant>(V); });
7074       return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI);
7075     }
7076     return nullptr;
7077   case Instruction::FNeg:
7078     return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q, MaxRecurse);
7079   case Instruction::FAdd:
7080     return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7081                             MaxRecurse);
7082   case Instruction::Add:
7083     return simplifyAddInst(
7084         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
7085         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse);
7086   case Instruction::FSub:
7087     return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7088                             MaxRecurse);
7089   case Instruction::Sub:
7090     return simplifySubInst(
7091         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
7092         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse);
7093   case Instruction::FMul:
7094     return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7095                             MaxRecurse);
7096   case Instruction::Mul:
7097     return simplifyMulInst(
7098         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
7099         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse);
7100   case Instruction::SDiv:
7101     return simplifySDivInst(NewOps[0], NewOps[1],
7102                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q,
7103                             MaxRecurse);
7104   case Instruction::UDiv:
7105     return simplifyUDivInst(NewOps[0], NewOps[1],
7106                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q,
7107                             MaxRecurse);
7108   case Instruction::FDiv:
7109     return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7110                             MaxRecurse);
7111   case Instruction::SRem:
7112     return simplifySRemInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7113   case Instruction::URem:
7114     return simplifyURemInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7115   case Instruction::FRem:
7116     return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q,
7117                             MaxRecurse);
7118   case Instruction::Shl:
7119     return simplifyShlInst(
7120         NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)),
7121         Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse);
7122   case Instruction::LShr:
7123     return simplifyLShrInst(NewOps[0], NewOps[1],
7124                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q,
7125                             MaxRecurse);
7126   case Instruction::AShr:
7127     return simplifyAShrInst(NewOps[0], NewOps[1],
7128                             Q.IIQ.isExact(cast<BinaryOperator>(I)), Q,
7129                             MaxRecurse);
7130   case Instruction::And:
7131     return simplifyAndInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7132   case Instruction::Or:
7133     return simplifyOrInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7134   case Instruction::Xor:
7135     return simplifyXorInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7136   case Instruction::ICmp:
7137     return simplifyICmpInst(cast<ICmpInst>(I)->getCmpPredicate(), NewOps[0],
7138                             NewOps[1], Q, MaxRecurse);
7139   case Instruction::FCmp:
7140     return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0],
7141                             NewOps[1], I->getFastMathFlags(), Q, MaxRecurse);
7142   case Instruction::Select:
7143     return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse);
7144     break;
7145   case Instruction::GetElementPtr: {
7146     auto *GEPI = cast<GetElementPtrInst>(I);
7147     return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0],
7148                            ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q,
7149                            MaxRecurse);
7150   }
7151   case Instruction::InsertValue: {
7152     InsertValueInst *IV = cast<InsertValueInst>(I);
7153     return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q,
7154                                    MaxRecurse);
7155   }
7156   case Instruction::InsertElement:
7157     return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q);
7158   case Instruction::ExtractValue: {
7159     auto *EVI = cast<ExtractValueInst>(I);
7160     return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q,
7161                                     MaxRecurse);
7162   }
7163   case Instruction::ExtractElement:
7164     return simplifyExtractElementInst(NewOps[0], NewOps[1], Q, MaxRecurse);
7165   case Instruction::ShuffleVector: {
7166     auto *SVI = cast<ShuffleVectorInst>(I);
7167     return simplifyShuffleVectorInst(NewOps[0], NewOps[1],
7168                                      SVI->getShuffleMask(), SVI->getType(), Q,
7169                                      MaxRecurse);
7170   }
7171   case Instruction::PHI:
7172     return simplifyPHINode(cast<PHINode>(I), NewOps, Q);
7173   case Instruction::Call:
7174     return simplifyCall(
7175         cast<CallInst>(I), NewOps.back(),
7176         NewOps.drop_back(1 + cast<CallInst>(I)->getNumTotalBundleOperands()), Q);
7177   case Instruction::Freeze:
7178     return llvm::simplifyFreezeInst(NewOps[0], Q);
7179 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
7180 #include "llvm/IR/Instruction.def"
7181 #undef HANDLE_CAST_INST
7182     return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q,
7183                             MaxRecurse);
7184   case Instruction::Alloca:
7185     // No simplifications for Alloca and it can't be constant folded.
7186     return nullptr;
7187   case Instruction::Load:
7188     return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q);
7189   }
7190 }
7191 
7192 Value *llvm::simplifyInstructionWithOperands(Instruction *I,
7193                                              ArrayRef<Value *> NewOps,
7194                                              const SimplifyQuery &SQ) {
7195   assert(NewOps.size() == I->getNumOperands() &&
7196          "Number of operands should match the instruction!");
7197   return ::simplifyInstructionWithOperands(I, NewOps, SQ, RecursionLimit);
7198 }
7199 
7200 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ) {
7201   SmallVector<Value *, 8> Ops(I->operands());
7202   Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, RecursionLimit);
7203 
7204   /// If called on unreachable code, the instruction may simplify to itself.
7205   /// Make life easier for users by detecting that case here, and returning a
7206   /// safe value instead.
7207   return Result == I ? PoisonValue::get(I->getType()) : Result;
7208 }
7209 
7210 /// Implementation of recursive simplification through an instruction's
7211 /// uses.
7212 ///
7213 /// This is the common implementation of the recursive simplification routines.
7214 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
7215 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
7216 /// instructions to process and attempt to simplify it using
7217 /// InstructionSimplify. Recursively visited users which could not be
7218 /// simplified themselves are to the optional UnsimplifiedUsers set for
7219 /// further processing by the caller.
7220 ///
7221 /// This routine returns 'true' only when *it* simplifies something. The passed
7222 /// in simplified value does not count toward this.
7223 static bool replaceAndRecursivelySimplifyImpl(
7224     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
7225     const DominatorTree *DT, AssumptionCache *AC,
7226     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) {
7227   bool Simplified = false;
7228   SmallSetVector<Instruction *, 8> Worklist;
7229   const DataLayout &DL = I->getDataLayout();
7230 
7231   // If we have an explicit value to collapse to, do that round of the
7232   // simplification loop by hand initially.
7233   if (SimpleV) {
7234     for (User *U : I->users())
7235       if (U != I)
7236         Worklist.insert(cast<Instruction>(U));
7237 
7238     // Replace the instruction with its simplified value.
7239     I->replaceAllUsesWith(SimpleV);
7240 
7241     if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects())
7242       I->eraseFromParent();
7243   } else {
7244     Worklist.insert(I);
7245   }
7246 
7247   // Note that we must test the size on each iteration, the worklist can grow.
7248   for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
7249     I = Worklist[Idx];
7250 
7251     // See if this instruction simplifies.
7252     SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC});
7253     if (!SimpleV) {
7254       if (UnsimplifiedUsers)
7255         UnsimplifiedUsers->insert(I);
7256       continue;
7257     }
7258 
7259     Simplified = true;
7260 
7261     // Stash away all the uses of the old instruction so we can check them for
7262     // recursive simplifications after a RAUW. This is cheaper than checking all
7263     // uses of To on the recursive step in most cases.
7264     for (User *U : I->users())
7265       Worklist.insert(cast<Instruction>(U));
7266 
7267     // Replace the instruction with its simplified value.
7268     I->replaceAllUsesWith(SimpleV);
7269 
7270     if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects())
7271       I->eraseFromParent();
7272   }
7273   return Simplified;
7274 }
7275 
7276 bool llvm::replaceAndRecursivelySimplify(
7277     Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI,
7278     const DominatorTree *DT, AssumptionCache *AC,
7279     SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) {
7280   assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
7281   assert(SimpleV && "Must provide a simplified value.");
7282   return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC,
7283                                            UnsimplifiedUsers);
7284 }
7285 
7286 namespace llvm {
7287 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) {
7288   auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>();
7289   auto *DT = DTWP ? &DTWP->getDomTree() : nullptr;
7290   auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
7291   auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr;
7292   auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>();
7293   auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr;
7294   return {F.getDataLayout(), TLI, DT, AC};
7295 }
7296 
7297 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR,
7298                                          const DataLayout &DL) {
7299   return {DL, &AR.TLI, &AR.DT, &AR.AC};
7300 }
7301 
7302 template <class T, class... TArgs>
7303 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM,
7304                                          Function &F) {
7305   auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F);
7306   auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F);
7307   auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F);
7308   return {F.getDataLayout(), TLI, DT, AC};
7309 }
7310 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &,
7311                                                   Function &);
7312 
7313 bool SimplifyQuery::isUndefValue(Value *V) const {
7314   if (!CanUseUndef)
7315     return false;
7316 
7317   return match(V, m_Undef());
7318 }
7319 
7320 } // namespace llvm
7321 
7322 void InstSimplifyFolder::anchor() {}
7323