1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements routines for folding instructions into simpler forms 10 // that do not require creating new instructions. This does constant folding 11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either 12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value 13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been 14 // simplified: This is usually true and assuming it simplifies the logic (if 15 // they have not been simplified then results are correct but maybe suboptimal). 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/Analysis/InstructionSimplify.h" 20 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/Analysis/AliasAnalysis.h" 25 #include "llvm/Analysis/AssumptionCache.h" 26 #include "llvm/Analysis/CaptureTracking.h" 27 #include "llvm/Analysis/CmpInstAnalysis.h" 28 #include "llvm/Analysis/ConstantFolding.h" 29 #include "llvm/Analysis/InstSimplifyFolder.h" 30 #include "llvm/Analysis/LoopAnalysisManager.h" 31 #include "llvm/Analysis/MemoryBuiltins.h" 32 #include "llvm/Analysis/OverflowInstAnalysis.h" 33 #include "llvm/Analysis/TargetLibraryInfo.h" 34 #include "llvm/Analysis/ValueTracking.h" 35 #include "llvm/Analysis/VectorUtils.h" 36 #include "llvm/IR/ConstantRange.h" 37 #include "llvm/IR/DataLayout.h" 38 #include "llvm/IR/Dominators.h" 39 #include "llvm/IR/InstrTypes.h" 40 #include "llvm/IR/Instructions.h" 41 #include "llvm/IR/Operator.h" 42 #include "llvm/IR/PatternMatch.h" 43 #include "llvm/IR/Statepoint.h" 44 #include "llvm/Support/KnownBits.h" 45 #include <algorithm> 46 #include <optional> 47 using namespace llvm; 48 using namespace llvm::PatternMatch; 49 50 #define DEBUG_TYPE "instsimplify" 51 52 enum { RecursionLimit = 3 }; 53 54 STATISTIC(NumExpand, "Number of expansions"); 55 STATISTIC(NumReassoc, "Number of reassociations"); 56 57 static Value *simplifyAndInst(Value *, Value *, const SimplifyQuery &, 58 unsigned); 59 static Value *simplifyUnOp(unsigned, Value *, const SimplifyQuery &, unsigned); 60 static Value *simplifyFPUnOp(unsigned, Value *, const FastMathFlags &, 61 const SimplifyQuery &, unsigned); 62 static Value *simplifyBinOp(unsigned, Value *, Value *, const SimplifyQuery &, 63 unsigned); 64 static Value *simplifyBinOp(unsigned, Value *, Value *, const FastMathFlags &, 65 const SimplifyQuery &, unsigned); 66 static Value *simplifyCmpInst(CmpPredicate, Value *, Value *, 67 const SimplifyQuery &, unsigned); 68 static Value *simplifyICmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, 69 const SimplifyQuery &Q, unsigned MaxRecurse); 70 static Value *simplifyOrInst(Value *, Value *, const SimplifyQuery &, unsigned); 71 static Value *simplifyXorInst(Value *, Value *, const SimplifyQuery &, 72 unsigned); 73 static Value *simplifyCastInst(unsigned, Value *, Type *, const SimplifyQuery &, 74 unsigned); 75 static Value *simplifyGEPInst(Type *, Value *, ArrayRef<Value *>, 76 GEPNoWrapFlags, const SimplifyQuery &, unsigned); 77 static Value *simplifySelectInst(Value *, Value *, Value *, 78 const SimplifyQuery &, unsigned); 79 static Value *simplifyInstructionWithOperands(Instruction *I, 80 ArrayRef<Value *> NewOps, 81 const SimplifyQuery &SQ, 82 unsigned MaxRecurse); 83 84 /// For a boolean type or a vector of boolean type, return false or a vector 85 /// with every element false. 86 static Constant *getFalse(Type *Ty) { return ConstantInt::getFalse(Ty); } 87 88 /// For a boolean type or a vector of boolean type, return true or a vector 89 /// with every element true. 90 static Constant *getTrue(Type *Ty) { return ConstantInt::getTrue(Ty); } 91 92 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"? 93 static bool isSameCompare(Value *V, CmpPredicate Pred, Value *LHS, Value *RHS) { 94 CmpInst *Cmp = dyn_cast<CmpInst>(V); 95 if (!Cmp) 96 return false; 97 CmpInst::Predicate CPred = Cmp->getPredicate(); 98 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1); 99 if (CPred == Pred && CLHS == LHS && CRHS == RHS) 100 return true; 101 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS && 102 CRHS == LHS; 103 } 104 105 /// Simplify comparison with true or false branch of select: 106 /// %sel = select i1 %cond, i32 %tv, i32 %fv 107 /// %cmp = icmp sle i32 %sel, %rhs 108 /// Compose new comparison by substituting %sel with either %tv or %fv 109 /// and see if it simplifies. 110 static Value *simplifyCmpSelCase(CmpPredicate Pred, Value *LHS, Value *RHS, 111 Value *Cond, const SimplifyQuery &Q, 112 unsigned MaxRecurse, Constant *TrueOrFalse) { 113 Value *SimplifiedCmp = simplifyCmpInst(Pred, LHS, RHS, Q, MaxRecurse); 114 if (SimplifiedCmp == Cond) { 115 // %cmp simplified to the select condition (%cond). 116 return TrueOrFalse; 117 } else if (!SimplifiedCmp && isSameCompare(Cond, Pred, LHS, RHS)) { 118 // It didn't simplify. However, if composed comparison is equivalent 119 // to the select condition (%cond) then we can replace it. 120 return TrueOrFalse; 121 } 122 return SimplifiedCmp; 123 } 124 125 /// Simplify comparison with true branch of select 126 static Value *simplifyCmpSelTrueCase(CmpPredicate Pred, Value *LHS, Value *RHS, 127 Value *Cond, const SimplifyQuery &Q, 128 unsigned MaxRecurse) { 129 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 130 getTrue(Cond->getType())); 131 } 132 133 /// Simplify comparison with false branch of select 134 static Value *simplifyCmpSelFalseCase(CmpPredicate Pred, Value *LHS, Value *RHS, 135 Value *Cond, const SimplifyQuery &Q, 136 unsigned MaxRecurse) { 137 return simplifyCmpSelCase(Pred, LHS, RHS, Cond, Q, MaxRecurse, 138 getFalse(Cond->getType())); 139 } 140 141 /// We know comparison with both branches of select can be simplified, but they 142 /// are not equal. This routine handles some logical simplifications. 143 static Value *handleOtherCmpSelSimplifications(Value *TCmp, Value *FCmp, 144 Value *Cond, 145 const SimplifyQuery &Q, 146 unsigned MaxRecurse) { 147 // If the false value simplified to false, then the result of the compare 148 // is equal to "Cond && TCmp". This also catches the case when the false 149 // value simplified to false and the true value to true, returning "Cond". 150 // Folding select to and/or isn't poison-safe in general; impliesPoison 151 // checks whether folding it does not convert a well-defined value into 152 // poison. 153 if (match(FCmp, m_Zero()) && impliesPoison(TCmp, Cond)) 154 if (Value *V = simplifyAndInst(Cond, TCmp, Q, MaxRecurse)) 155 return V; 156 // If the true value simplified to true, then the result of the compare 157 // is equal to "Cond || FCmp". 158 if (match(TCmp, m_One()) && impliesPoison(FCmp, Cond)) 159 if (Value *V = simplifyOrInst(Cond, FCmp, Q, MaxRecurse)) 160 return V; 161 // Finally, if the false value simplified to true and the true value to 162 // false, then the result of the compare is equal to "!Cond". 163 if (match(FCmp, m_One()) && match(TCmp, m_Zero())) 164 if (Value *V = simplifyXorInst( 165 Cond, Constant::getAllOnesValue(Cond->getType()), Q, MaxRecurse)) 166 return V; 167 return nullptr; 168 } 169 170 /// Does the given value dominate the specified phi node? 171 static bool valueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) { 172 Instruction *I = dyn_cast<Instruction>(V); 173 if (!I) 174 // Arguments and constants dominate all instructions. 175 return true; 176 177 // If we have a DominatorTree then do a precise test. 178 if (DT) 179 return DT->dominates(I, P); 180 181 // Otherwise, if the instruction is in the entry block and is not an invoke, 182 // then it obviously dominates all phi nodes. 183 if (I->getParent()->isEntryBlock() && !isa<InvokeInst>(I) && 184 !isa<CallBrInst>(I)) 185 return true; 186 187 return false; 188 } 189 190 /// Try to simplify a binary operator of form "V op OtherOp" where V is 191 /// "(B0 opex B1)" by distributing 'op' across 'opex' as 192 /// "(B0 op OtherOp) opex (B1 op OtherOp)". 193 static Value *expandBinOp(Instruction::BinaryOps Opcode, Value *V, 194 Value *OtherOp, Instruction::BinaryOps OpcodeToExpand, 195 const SimplifyQuery &Q, unsigned MaxRecurse) { 196 auto *B = dyn_cast<BinaryOperator>(V); 197 if (!B || B->getOpcode() != OpcodeToExpand) 198 return nullptr; 199 Value *B0 = B->getOperand(0), *B1 = B->getOperand(1); 200 Value *L = 201 simplifyBinOp(Opcode, B0, OtherOp, Q.getWithoutUndef(), MaxRecurse); 202 if (!L) 203 return nullptr; 204 Value *R = 205 simplifyBinOp(Opcode, B1, OtherOp, Q.getWithoutUndef(), MaxRecurse); 206 if (!R) 207 return nullptr; 208 209 // Does the expanded pair of binops simplify to the existing binop? 210 if ((L == B0 && R == B1) || 211 (Instruction::isCommutative(OpcodeToExpand) && L == B1 && R == B0)) { 212 ++NumExpand; 213 return B; 214 } 215 216 // Otherwise, return "L op' R" if it simplifies. 217 Value *S = simplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse); 218 if (!S) 219 return nullptr; 220 221 ++NumExpand; 222 return S; 223 } 224 225 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by 226 /// distributing op over op'. 227 static Value *expandCommutativeBinOp(Instruction::BinaryOps Opcode, Value *L, 228 Value *R, 229 Instruction::BinaryOps OpcodeToExpand, 230 const SimplifyQuery &Q, 231 unsigned MaxRecurse) { 232 // Recursion is always used, so bail out at once if we already hit the limit. 233 if (!MaxRecurse--) 234 return nullptr; 235 236 if (Value *V = expandBinOp(Opcode, L, R, OpcodeToExpand, Q, MaxRecurse)) 237 return V; 238 if (Value *V = expandBinOp(Opcode, R, L, OpcodeToExpand, Q, MaxRecurse)) 239 return V; 240 return nullptr; 241 } 242 243 /// Generic simplifications for associative binary operations. 244 /// Returns the simpler value, or null if none was found. 245 static Value *simplifyAssociativeBinOp(Instruction::BinaryOps Opcode, 246 Value *LHS, Value *RHS, 247 const SimplifyQuery &Q, 248 unsigned MaxRecurse) { 249 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!"); 250 251 // Recursion is always used, so bail out at once if we already hit the limit. 252 if (!MaxRecurse--) 253 return nullptr; 254 255 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS); 256 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS); 257 258 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely. 259 if (Op0 && Op0->getOpcode() == Opcode) { 260 Value *A = Op0->getOperand(0); 261 Value *B = Op0->getOperand(1); 262 Value *C = RHS; 263 264 // Does "B op C" simplify? 265 if (Value *V = simplifyBinOp(Opcode, B, C, Q, MaxRecurse)) { 266 // It does! Return "A op V" if it simplifies or is already available. 267 // If V equals B then "A op V" is just the LHS. 268 if (V == B) 269 return LHS; 270 // Otherwise return "A op V" if it simplifies. 271 if (Value *W = simplifyBinOp(Opcode, A, V, Q, MaxRecurse)) { 272 ++NumReassoc; 273 return W; 274 } 275 } 276 } 277 278 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely. 279 if (Op1 && Op1->getOpcode() == Opcode) { 280 Value *A = LHS; 281 Value *B = Op1->getOperand(0); 282 Value *C = Op1->getOperand(1); 283 284 // Does "A op B" simplify? 285 if (Value *V = simplifyBinOp(Opcode, A, B, Q, MaxRecurse)) { 286 // It does! Return "V op C" if it simplifies or is already available. 287 // If V equals B then "V op C" is just the RHS. 288 if (V == B) 289 return RHS; 290 // Otherwise return "V op C" if it simplifies. 291 if (Value *W = simplifyBinOp(Opcode, V, C, Q, MaxRecurse)) { 292 ++NumReassoc; 293 return W; 294 } 295 } 296 } 297 298 // The remaining transforms require commutativity as well as associativity. 299 if (!Instruction::isCommutative(Opcode)) 300 return nullptr; 301 302 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely. 303 if (Op0 && Op0->getOpcode() == Opcode) { 304 Value *A = Op0->getOperand(0); 305 Value *B = Op0->getOperand(1); 306 Value *C = RHS; 307 308 // Does "C op A" simplify? 309 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 310 // It does! Return "V op B" if it simplifies or is already available. 311 // If V equals A then "V op B" is just the LHS. 312 if (V == A) 313 return LHS; 314 // Otherwise return "V op B" if it simplifies. 315 if (Value *W = simplifyBinOp(Opcode, V, B, Q, MaxRecurse)) { 316 ++NumReassoc; 317 return W; 318 } 319 } 320 } 321 322 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely. 323 if (Op1 && Op1->getOpcode() == Opcode) { 324 Value *A = LHS; 325 Value *B = Op1->getOperand(0); 326 Value *C = Op1->getOperand(1); 327 328 // Does "C op A" simplify? 329 if (Value *V = simplifyBinOp(Opcode, C, A, Q, MaxRecurse)) { 330 // It does! Return "B op V" if it simplifies or is already available. 331 // If V equals C then "B op V" is just the RHS. 332 if (V == C) 333 return RHS; 334 // Otherwise return "B op V" if it simplifies. 335 if (Value *W = simplifyBinOp(Opcode, B, V, Q, MaxRecurse)) { 336 ++NumReassoc; 337 return W; 338 } 339 } 340 } 341 342 return nullptr; 343 } 344 345 /// In the case of a binary operation with a select instruction as an operand, 346 /// try to simplify the binop by seeing whether evaluating it on both branches 347 /// of the select results in the same value. Returns the common value if so, 348 /// otherwise returns null. 349 static Value *threadBinOpOverSelect(Instruction::BinaryOps Opcode, Value *LHS, 350 Value *RHS, const SimplifyQuery &Q, 351 unsigned MaxRecurse) { 352 // Recursion is always used, so bail out at once if we already hit the limit. 353 if (!MaxRecurse--) 354 return nullptr; 355 356 SelectInst *SI; 357 if (isa<SelectInst>(LHS)) { 358 SI = cast<SelectInst>(LHS); 359 } else { 360 assert(isa<SelectInst>(RHS) && "No select instruction operand!"); 361 SI = cast<SelectInst>(RHS); 362 } 363 364 // Evaluate the BinOp on the true and false branches of the select. 365 Value *TV; 366 Value *FV; 367 if (SI == LHS) { 368 TV = simplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse); 369 FV = simplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse); 370 } else { 371 TV = simplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse); 372 FV = simplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse); 373 } 374 375 // If they simplified to the same value, then return the common value. 376 // If they both failed to simplify then return null. 377 if (TV == FV) 378 return TV; 379 380 // If one branch simplified to undef, return the other one. 381 if (TV && Q.isUndefValue(TV)) 382 return FV; 383 if (FV && Q.isUndefValue(FV)) 384 return TV; 385 386 // If applying the operation did not change the true and false select values, 387 // then the result of the binop is the select itself. 388 if (TV == SI->getTrueValue() && FV == SI->getFalseValue()) 389 return SI; 390 391 // If one branch simplified and the other did not, and the simplified 392 // value is equal to the unsimplified one, return the simplified value. 393 // For example, select (cond, X, X & Z) & Z -> X & Z. 394 if ((FV && !TV) || (TV && !FV)) { 395 // Check that the simplified value has the form "X op Y" where "op" is the 396 // same as the original operation. 397 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV); 398 if (Simplified && Simplified->getOpcode() == unsigned(Opcode) && 399 !Simplified->hasPoisonGeneratingFlags()) { 400 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS". 401 // We already know that "op" is the same as for the simplified value. See 402 // if the operands match too. If so, return the simplified value. 403 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue(); 404 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS; 405 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch; 406 if (Simplified->getOperand(0) == UnsimplifiedLHS && 407 Simplified->getOperand(1) == UnsimplifiedRHS) 408 return Simplified; 409 if (Simplified->isCommutative() && 410 Simplified->getOperand(1) == UnsimplifiedLHS && 411 Simplified->getOperand(0) == UnsimplifiedRHS) 412 return Simplified; 413 } 414 } 415 416 return nullptr; 417 } 418 419 /// In the case of a comparison with a select instruction, try to simplify the 420 /// comparison by seeing whether both branches of the select result in the same 421 /// value. Returns the common value if so, otherwise returns null. 422 /// For example, if we have: 423 /// %tmp = select i1 %cmp, i32 1, i32 2 424 /// %cmp1 = icmp sle i32 %tmp, 3 425 /// We can simplify %cmp1 to true, because both branches of select are 426 /// less than 3. We compose new comparison by substituting %tmp with both 427 /// branches of select and see if it can be simplified. 428 static Value *threadCmpOverSelect(CmpPredicate Pred, Value *LHS, Value *RHS, 429 const SimplifyQuery &Q, unsigned MaxRecurse) { 430 // Recursion is always used, so bail out at once if we already hit the limit. 431 if (!MaxRecurse--) 432 return nullptr; 433 434 // Make sure the select is on the LHS. 435 if (!isa<SelectInst>(LHS)) { 436 std::swap(LHS, RHS); 437 Pred = CmpInst::getSwappedPredicate(Pred); 438 } 439 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!"); 440 SelectInst *SI = cast<SelectInst>(LHS); 441 Value *Cond = SI->getCondition(); 442 Value *TV = SI->getTrueValue(); 443 Value *FV = SI->getFalseValue(); 444 445 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it. 446 // Does "cmp TV, RHS" simplify? 447 Value *TCmp = simplifyCmpSelTrueCase(Pred, TV, RHS, Cond, Q, MaxRecurse); 448 if (!TCmp) 449 return nullptr; 450 451 // Does "cmp FV, RHS" simplify? 452 Value *FCmp = simplifyCmpSelFalseCase(Pred, FV, RHS, Cond, Q, MaxRecurse); 453 if (!FCmp) 454 return nullptr; 455 456 // If both sides simplified to the same value, then use it as the result of 457 // the original comparison. 458 if (TCmp == FCmp) 459 return TCmp; 460 461 // The remaining cases only make sense if the select condition has the same 462 // type as the result of the comparison, so bail out if this is not so. 463 if (Cond->getType()->isVectorTy() == RHS->getType()->isVectorTy()) 464 return handleOtherCmpSelSimplifications(TCmp, FCmp, Cond, Q, MaxRecurse); 465 466 return nullptr; 467 } 468 469 /// In the case of a binary operation with an operand that is a PHI instruction, 470 /// try to simplify the binop by seeing whether evaluating it on the incoming 471 /// phi values yields the same result for every value. If so returns the common 472 /// value, otherwise returns null. 473 static Value *threadBinOpOverPHI(Instruction::BinaryOps Opcode, Value *LHS, 474 Value *RHS, const SimplifyQuery &Q, 475 unsigned MaxRecurse) { 476 // Recursion is always used, so bail out at once if we already hit the limit. 477 if (!MaxRecurse--) 478 return nullptr; 479 480 PHINode *PI; 481 if (isa<PHINode>(LHS)) { 482 PI = cast<PHINode>(LHS); 483 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 484 if (!valueDominatesPHI(RHS, PI, Q.DT)) 485 return nullptr; 486 } else { 487 assert(isa<PHINode>(RHS) && "No PHI instruction operand!"); 488 PI = cast<PHINode>(RHS); 489 // Bail out if LHS and the phi may be mutually interdependent due to a loop. 490 if (!valueDominatesPHI(LHS, PI, Q.DT)) 491 return nullptr; 492 } 493 494 // Evaluate the BinOp on the incoming phi values. 495 Value *CommonValue = nullptr; 496 for (Use &Incoming : PI->incoming_values()) { 497 // If the incoming value is the phi node itself, it can safely be skipped. 498 if (Incoming == PI) 499 continue; 500 Instruction *InTI = PI->getIncomingBlock(Incoming)->getTerminator(); 501 Value *V = PI == LHS 502 ? simplifyBinOp(Opcode, Incoming, RHS, 503 Q.getWithInstruction(InTI), MaxRecurse) 504 : simplifyBinOp(Opcode, LHS, Incoming, 505 Q.getWithInstruction(InTI), MaxRecurse); 506 // If the operation failed to simplify, or simplified to a different value 507 // to previously, then give up. 508 if (!V || (CommonValue && V != CommonValue)) 509 return nullptr; 510 CommonValue = V; 511 } 512 513 return CommonValue; 514 } 515 516 /// In the case of a comparison with a PHI instruction, try to simplify the 517 /// comparison by seeing whether comparing with all of the incoming phi values 518 /// yields the same result every time. If so returns the common result, 519 /// otherwise returns null. 520 static Value *threadCmpOverPHI(CmpPredicate Pred, Value *LHS, Value *RHS, 521 const SimplifyQuery &Q, unsigned MaxRecurse) { 522 // Recursion is always used, so bail out at once if we already hit the limit. 523 if (!MaxRecurse--) 524 return nullptr; 525 526 // Make sure the phi is on the LHS. 527 if (!isa<PHINode>(LHS)) { 528 std::swap(LHS, RHS); 529 Pred = CmpInst::getSwappedPredicate(Pred); 530 } 531 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!"); 532 PHINode *PI = cast<PHINode>(LHS); 533 534 // Bail out if RHS and the phi may be mutually interdependent due to a loop. 535 if (!valueDominatesPHI(RHS, PI, Q.DT)) 536 return nullptr; 537 538 // Evaluate the BinOp on the incoming phi values. 539 Value *CommonValue = nullptr; 540 for (unsigned u = 0, e = PI->getNumIncomingValues(); u < e; ++u) { 541 Value *Incoming = PI->getIncomingValue(u); 542 Instruction *InTI = PI->getIncomingBlock(u)->getTerminator(); 543 // If the incoming value is the phi node itself, it can safely be skipped. 544 if (Incoming == PI) 545 continue; 546 // Change the context instruction to the "edge" that flows into the phi. 547 // This is important because that is where incoming is actually "evaluated" 548 // even though it is used later somewhere else. 549 Value *V = simplifyCmpInst(Pred, Incoming, RHS, Q.getWithInstruction(InTI), 550 MaxRecurse); 551 // If the operation failed to simplify, or simplified to a different value 552 // to previously, then give up. 553 if (!V || (CommonValue && V != CommonValue)) 554 return nullptr; 555 CommonValue = V; 556 } 557 558 return CommonValue; 559 } 560 561 static Constant *foldOrCommuteConstant(Instruction::BinaryOps Opcode, 562 Value *&Op0, Value *&Op1, 563 const SimplifyQuery &Q) { 564 if (auto *CLHS = dyn_cast<Constant>(Op0)) { 565 if (auto *CRHS = dyn_cast<Constant>(Op1)) { 566 switch (Opcode) { 567 default: 568 break; 569 case Instruction::FAdd: 570 case Instruction::FSub: 571 case Instruction::FMul: 572 case Instruction::FDiv: 573 case Instruction::FRem: 574 if (Q.CxtI != nullptr) 575 return ConstantFoldFPInstOperands(Opcode, CLHS, CRHS, Q.DL, Q.CxtI); 576 } 577 return ConstantFoldBinaryOpOperands(Opcode, CLHS, CRHS, Q.DL); 578 } 579 580 // Canonicalize the constant to the RHS if this is a commutative operation. 581 if (Instruction::isCommutative(Opcode)) 582 std::swap(Op0, Op1); 583 } 584 return nullptr; 585 } 586 587 /// Given operands for an Add, see if we can fold the result. 588 /// If not, this returns null. 589 static Value *simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 590 const SimplifyQuery &Q, unsigned MaxRecurse) { 591 if (Constant *C = foldOrCommuteConstant(Instruction::Add, Op0, Op1, Q)) 592 return C; 593 594 // X + poison -> poison 595 if (isa<PoisonValue>(Op1)) 596 return Op1; 597 598 // X + undef -> undef 599 if (Q.isUndefValue(Op1)) 600 return Op1; 601 602 // X + 0 -> X 603 if (match(Op1, m_Zero())) 604 return Op0; 605 606 // If two operands are negative, return 0. 607 if (isKnownNegation(Op0, Op1)) 608 return Constant::getNullValue(Op0->getType()); 609 610 // X + (Y - X) -> Y 611 // (Y - X) + X -> Y 612 // Eg: X + -X -> 0 613 Value *Y = nullptr; 614 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) || 615 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1)))) 616 return Y; 617 618 // X + ~X -> -1 since ~X = -X-1 619 Type *Ty = Op0->getType(); 620 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 621 return Constant::getAllOnesValue(Ty); 622 623 // add nsw/nuw (xor Y, signmask), signmask --> Y 624 // The no-wrapping add guarantees that the top bit will be set by the add. 625 // Therefore, the xor must be clearing the already set sign bit of Y. 626 if ((IsNSW || IsNUW) && match(Op1, m_SignMask()) && 627 match(Op0, m_Xor(m_Value(Y), m_SignMask()))) 628 return Y; 629 630 // add nuw %x, -1 -> -1, because %x can only be 0. 631 if (IsNUW && match(Op1, m_AllOnes())) 632 return Op1; // Which is -1. 633 634 /// i1 add -> xor. 635 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 636 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 637 return V; 638 639 // Try some generic simplifications for associative operations. 640 if (Value *V = 641 simplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q, MaxRecurse)) 642 return V; 643 644 // Threading Add over selects and phi nodes is pointless, so don't bother. 645 // Threading over the select in "A + select(cond, B, C)" means evaluating 646 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and 647 // only if B and C are equal. If B and C are equal then (since we assume 648 // that operands have already been simplified) "select(cond, B, C)" should 649 // have been simplified to the common value of B and C already. Analysing 650 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly 651 // for threading over phi nodes. 652 653 return nullptr; 654 } 655 656 Value *llvm::simplifyAddInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 657 const SimplifyQuery &Query) { 658 return ::simplifyAddInst(Op0, Op1, IsNSW, IsNUW, Query, RecursionLimit); 659 } 660 661 /// Compute the base pointer and cumulative constant offsets for V. 662 /// 663 /// This strips all constant offsets off of V, leaving it the base pointer, and 664 /// accumulates the total constant offset applied in the returned constant. 665 /// It returns zero if there are no constant offsets applied. 666 /// 667 /// This is very similar to stripAndAccumulateConstantOffsets(), except it 668 /// normalizes the offset bitwidth to the stripped pointer type, not the 669 /// original pointer type. 670 static APInt stripAndComputeConstantOffsets(const DataLayout &DL, Value *&V, 671 bool AllowNonInbounds = false) { 672 assert(V->getType()->isPtrOrPtrVectorTy()); 673 674 APInt Offset = APInt::getZero(DL.getIndexTypeSizeInBits(V->getType())); 675 V = V->stripAndAccumulateConstantOffsets(DL, Offset, AllowNonInbounds); 676 // As that strip may trace through `addrspacecast`, need to sext or trunc 677 // the offset calculated. 678 return Offset.sextOrTrunc(DL.getIndexTypeSizeInBits(V->getType())); 679 } 680 681 /// Compute the constant difference between two pointer values. 682 /// If the difference is not a constant, returns zero. 683 static Constant *computePointerDifference(const DataLayout &DL, Value *LHS, 684 Value *RHS) { 685 APInt LHSOffset = stripAndComputeConstantOffsets(DL, LHS); 686 APInt RHSOffset = stripAndComputeConstantOffsets(DL, RHS); 687 688 // If LHS and RHS are not related via constant offsets to the same base 689 // value, there is nothing we can do here. 690 if (LHS != RHS) 691 return nullptr; 692 693 // Otherwise, the difference of LHS - RHS can be computed as: 694 // LHS - RHS 695 // = (LHSOffset + Base) - (RHSOffset + Base) 696 // = LHSOffset - RHSOffset 697 Constant *Res = ConstantInt::get(LHS->getContext(), LHSOffset - RHSOffset); 698 if (auto *VecTy = dyn_cast<VectorType>(LHS->getType())) 699 Res = ConstantVector::getSplat(VecTy->getElementCount(), Res); 700 return Res; 701 } 702 703 /// Test if there is a dominating equivalence condition for the 704 /// two operands. If there is, try to reduce the binary operation 705 /// between the two operands. 706 /// Example: Op0 - Op1 --> 0 when Op0 == Op1 707 static Value *simplifyByDomEq(unsigned Opcode, Value *Op0, Value *Op1, 708 const SimplifyQuery &Q, unsigned MaxRecurse) { 709 // Recursive run it can not get any benefit 710 if (MaxRecurse != RecursionLimit) 711 return nullptr; 712 713 std::optional<bool> Imp = 714 isImpliedByDomCondition(CmpInst::ICMP_EQ, Op0, Op1, Q.CxtI, Q.DL); 715 if (Imp && *Imp) { 716 Type *Ty = Op0->getType(); 717 switch (Opcode) { 718 case Instruction::Sub: 719 case Instruction::Xor: 720 case Instruction::URem: 721 case Instruction::SRem: 722 return Constant::getNullValue(Ty); 723 724 case Instruction::SDiv: 725 case Instruction::UDiv: 726 return ConstantInt::get(Ty, 1); 727 728 case Instruction::And: 729 case Instruction::Or: 730 // Could be either one - choose Op1 since that's more likely a constant. 731 return Op1; 732 default: 733 break; 734 } 735 } 736 return nullptr; 737 } 738 739 /// Given operands for a Sub, see if we can fold the result. 740 /// If not, this returns null. 741 static Value *simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 742 const SimplifyQuery &Q, unsigned MaxRecurse) { 743 if (Constant *C = foldOrCommuteConstant(Instruction::Sub, Op0, Op1, Q)) 744 return C; 745 746 // X - poison -> poison 747 // poison - X -> poison 748 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 749 return PoisonValue::get(Op0->getType()); 750 751 // X - undef -> undef 752 // undef - X -> undef 753 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 754 return UndefValue::get(Op0->getType()); 755 756 // X - 0 -> X 757 if (match(Op1, m_Zero())) 758 return Op0; 759 760 // X - X -> 0 761 if (Op0 == Op1) 762 return Constant::getNullValue(Op0->getType()); 763 764 // Is this a negation? 765 if (match(Op0, m_Zero())) { 766 // 0 - X -> 0 if the sub is NUW. 767 if (IsNUW) 768 return Constant::getNullValue(Op0->getType()); 769 770 KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q); 771 if (Known.Zero.isMaxSignedValue()) { 772 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then 773 // Op1 must be 0 because negating the minimum signed value is undefined. 774 if (IsNSW) 775 return Constant::getNullValue(Op0->getType()); 776 777 // 0 - X -> X if X is 0 or the minimum signed value. 778 return Op1; 779 } 780 } 781 782 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies. 783 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X 784 Value *X = nullptr, *Y = nullptr, *Z = Op1; 785 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z 786 // See if "V === Y - Z" simplifies. 787 if (Value *V = simplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse - 1)) 788 // It does! Now see if "X + V" simplifies. 789 if (Value *W = simplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse - 1)) { 790 // It does, we successfully reassociated! 791 ++NumReassoc; 792 return W; 793 } 794 // See if "V === X - Z" simplifies. 795 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 796 // It does! Now see if "Y + V" simplifies. 797 if (Value *W = simplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse - 1)) { 798 // It does, we successfully reassociated! 799 ++NumReassoc; 800 return W; 801 } 802 } 803 804 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies. 805 // For example, X - (X + 1) -> -1 806 X = Op0; 807 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z) 808 // See if "V === X - Y" simplifies. 809 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 810 // It does! Now see if "V - Z" simplifies. 811 if (Value *W = simplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse - 1)) { 812 // It does, we successfully reassociated! 813 ++NumReassoc; 814 return W; 815 } 816 // See if "V === X - Z" simplifies. 817 if (Value *V = simplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse - 1)) 818 // It does! Now see if "V - Y" simplifies. 819 if (Value *W = simplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse - 1)) { 820 // It does, we successfully reassociated! 821 ++NumReassoc; 822 return W; 823 } 824 } 825 826 // Z - (X - Y) -> (Z - X) + Y if everything simplifies. 827 // For example, X - (X - Y) -> Y. 828 Z = Op0; 829 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y) 830 // See if "V === Z - X" simplifies. 831 if (Value *V = simplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse - 1)) 832 // It does! Now see if "V + Y" simplifies. 833 if (Value *W = simplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse - 1)) { 834 // It does, we successfully reassociated! 835 ++NumReassoc; 836 return W; 837 } 838 839 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies. 840 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) && 841 match(Op1, m_Trunc(m_Value(Y)))) 842 if (X->getType() == Y->getType()) 843 // See if "V === X - Y" simplifies. 844 if (Value *V = simplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse - 1)) 845 // It does! Now see if "trunc V" simplifies. 846 if (Value *W = simplifyCastInst(Instruction::Trunc, V, Op0->getType(), 847 Q, MaxRecurse - 1)) 848 // It does, return the simplified "trunc V". 849 return W; 850 851 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...). 852 if (match(Op0, m_PtrToInt(m_Value(X))) && match(Op1, m_PtrToInt(m_Value(Y)))) 853 if (Constant *Result = computePointerDifference(Q.DL, X, Y)) 854 return ConstantFoldIntegerCast(Result, Op0->getType(), /*IsSigned*/ true, 855 Q.DL); 856 857 // i1 sub -> xor. 858 if (MaxRecurse && Op0->getType()->isIntOrIntVectorTy(1)) 859 if (Value *V = simplifyXorInst(Op0, Op1, Q, MaxRecurse - 1)) 860 return V; 861 862 // Threading Sub over selects and phi nodes is pointless, so don't bother. 863 // Threading over the select in "A - select(cond, B, C)" means evaluating 864 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and 865 // only if B and C are equal. If B and C are equal then (since we assume 866 // that operands have already been simplified) "select(cond, B, C)" should 867 // have been simplified to the common value of B and C already. Analysing 868 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly 869 // for threading over phi nodes. 870 871 if (Value *V = simplifyByDomEq(Instruction::Sub, Op0, Op1, Q, MaxRecurse)) 872 return V; 873 874 return nullptr; 875 } 876 877 Value *llvm::simplifySubInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 878 const SimplifyQuery &Q) { 879 return ::simplifySubInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 880 } 881 882 /// Given operands for a Mul, see if we can fold the result. 883 /// If not, this returns null. 884 static Value *simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 885 const SimplifyQuery &Q, unsigned MaxRecurse) { 886 if (Constant *C = foldOrCommuteConstant(Instruction::Mul, Op0, Op1, Q)) 887 return C; 888 889 // X * poison -> poison 890 if (isa<PoisonValue>(Op1)) 891 return Op1; 892 893 // X * undef -> 0 894 // X * 0 -> 0 895 if (Q.isUndefValue(Op1) || match(Op1, m_Zero())) 896 return Constant::getNullValue(Op0->getType()); 897 898 // X * 1 -> X 899 if (match(Op1, m_One())) 900 return Op0; 901 902 // (X / Y) * Y -> X if the division is exact. 903 Value *X = nullptr; 904 if (Q.IIQ.UseInstrInfo && 905 (match(Op0, 906 m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y 907 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0)))))) // Y * (X / Y) 908 return X; 909 910 if (Op0->getType()->isIntOrIntVectorTy(1)) { 911 // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not 912 // representable). All other cases reduce to 0, so just return 0. 913 if (IsNSW) 914 return ConstantInt::getNullValue(Op0->getType()); 915 916 // Treat "mul i1" as "and i1". 917 if (MaxRecurse) 918 if (Value *V = simplifyAndInst(Op0, Op1, Q, MaxRecurse - 1)) 919 return V; 920 } 921 922 // Try some generic simplifications for associative operations. 923 if (Value *V = 924 simplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 925 return V; 926 927 // Mul distributes over Add. Try some generic simplifications based on this. 928 if (Value *V = expandCommutativeBinOp(Instruction::Mul, Op0, Op1, 929 Instruction::Add, Q, MaxRecurse)) 930 return V; 931 932 // If the operation is with the result of a select instruction, check whether 933 // operating on either branch of the select always yields the same value. 934 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 935 if (Value *V = 936 threadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 937 return V; 938 939 // If the operation is with the result of a phi instruction, check whether 940 // operating on all incoming values of the phi always yields the same value. 941 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 942 if (Value *V = 943 threadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q, MaxRecurse)) 944 return V; 945 946 return nullptr; 947 } 948 949 Value *llvm::simplifyMulInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 950 const SimplifyQuery &Q) { 951 return ::simplifyMulInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 952 } 953 954 /// Given a predicate and two operands, return true if the comparison is true. 955 /// This is a helper for div/rem simplification where we return some other value 956 /// when we can prove a relationship between the operands. 957 static bool isICmpTrue(CmpPredicate Pred, Value *LHS, Value *RHS, 958 const SimplifyQuery &Q, unsigned MaxRecurse) { 959 Value *V = simplifyICmpInst(Pred, LHS, RHS, Q, MaxRecurse); 960 Constant *C = dyn_cast_or_null<Constant>(V); 961 return (C && C->isAllOnesValue()); 962 } 963 964 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer 965 /// to simplify X % Y to X. 966 static bool isDivZero(Value *X, Value *Y, const SimplifyQuery &Q, 967 unsigned MaxRecurse, bool IsSigned) { 968 // Recursion is always used, so bail out at once if we already hit the limit. 969 if (!MaxRecurse--) 970 return false; 971 972 if (IsSigned) { 973 // (X srem Y) sdiv Y --> 0 974 if (match(X, m_SRem(m_Value(), m_Specific(Y)))) 975 return true; 976 977 // |X| / |Y| --> 0 978 // 979 // We require that 1 operand is a simple constant. That could be extended to 980 // 2 variables if we computed the sign bit for each. 981 // 982 // Make sure that a constant is not the minimum signed value because taking 983 // the abs() of that is undefined. 984 Type *Ty = X->getType(); 985 const APInt *C; 986 if (match(X, m_APInt(C)) && !C->isMinSignedValue()) { 987 // Is the variable divisor magnitude always greater than the constant 988 // dividend magnitude? 989 // |Y| > |C| --> Y < -abs(C) or Y > abs(C) 990 Constant *PosDividendC = ConstantInt::get(Ty, C->abs()); 991 Constant *NegDividendC = ConstantInt::get(Ty, -C->abs()); 992 if (isICmpTrue(CmpInst::ICMP_SLT, Y, NegDividendC, Q, MaxRecurse) || 993 isICmpTrue(CmpInst::ICMP_SGT, Y, PosDividendC, Q, MaxRecurse)) 994 return true; 995 } 996 if (match(Y, m_APInt(C))) { 997 // Special-case: we can't take the abs() of a minimum signed value. If 998 // that's the divisor, then all we have to do is prove that the dividend 999 // is also not the minimum signed value. 1000 if (C->isMinSignedValue()) 1001 return isICmpTrue(CmpInst::ICMP_NE, X, Y, Q, MaxRecurse); 1002 1003 // Is the variable dividend magnitude always less than the constant 1004 // divisor magnitude? 1005 // |X| < |C| --> X > -abs(C) and X < abs(C) 1006 Constant *PosDivisorC = ConstantInt::get(Ty, C->abs()); 1007 Constant *NegDivisorC = ConstantInt::get(Ty, -C->abs()); 1008 if (isICmpTrue(CmpInst::ICMP_SGT, X, NegDivisorC, Q, MaxRecurse) && 1009 isICmpTrue(CmpInst::ICMP_SLT, X, PosDivisorC, Q, MaxRecurse)) 1010 return true; 1011 } 1012 return false; 1013 } 1014 1015 // IsSigned == false. 1016 1017 // Is the unsigned dividend known to be less than a constant divisor? 1018 // TODO: Convert this (and above) to range analysis 1019 // ("computeConstantRangeIncludingKnownBits")? 1020 const APInt *C; 1021 if (match(Y, m_APInt(C)) && 1022 computeKnownBits(X, /* Depth */ 0, Q).getMaxValue().ult(*C)) 1023 return true; 1024 1025 // Try again for any divisor: 1026 // Is the dividend unsigned less than the divisor? 1027 return isICmpTrue(ICmpInst::ICMP_ULT, X, Y, Q, MaxRecurse); 1028 } 1029 1030 /// Check for common or similar folds of integer division or integer remainder. 1031 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem). 1032 static Value *simplifyDivRem(Instruction::BinaryOps Opcode, Value *Op0, 1033 Value *Op1, const SimplifyQuery &Q, 1034 unsigned MaxRecurse) { 1035 bool IsDiv = (Opcode == Instruction::SDiv || Opcode == Instruction::UDiv); 1036 bool IsSigned = (Opcode == Instruction::SDiv || Opcode == Instruction::SRem); 1037 1038 Type *Ty = Op0->getType(); 1039 1040 // X / undef -> poison 1041 // X % undef -> poison 1042 if (Q.isUndefValue(Op1) || isa<PoisonValue>(Op1)) 1043 return PoisonValue::get(Ty); 1044 1045 // X / 0 -> poison 1046 // X % 0 -> poison 1047 // We don't need to preserve faults! 1048 if (match(Op1, m_Zero())) 1049 return PoisonValue::get(Ty); 1050 1051 // poison / X -> poison 1052 // poison % X -> poison 1053 if (isa<PoisonValue>(Op0)) 1054 return Op0; 1055 1056 // undef / X -> 0 1057 // undef % X -> 0 1058 if (Q.isUndefValue(Op0)) 1059 return Constant::getNullValue(Ty); 1060 1061 // 0 / X -> 0 1062 // 0 % X -> 0 1063 if (match(Op0, m_Zero())) 1064 return Constant::getNullValue(Op0->getType()); 1065 1066 // X / X -> 1 1067 // X % X -> 0 1068 if (Op0 == Op1) 1069 return IsDiv ? ConstantInt::get(Ty, 1) : Constant::getNullValue(Ty); 1070 1071 KnownBits Known = computeKnownBits(Op1, /* Depth */ 0, Q); 1072 // X / 0 -> poison 1073 // X % 0 -> poison 1074 // If the divisor is known to be zero, just return poison. This can happen in 1075 // some cases where its provable indirectly the denominator is zero but it's 1076 // not trivially simplifiable (i.e known zero through a phi node). 1077 if (Known.isZero()) 1078 return PoisonValue::get(Ty); 1079 1080 // X / 1 -> X 1081 // X % 1 -> 0 1082 // If the divisor can only be zero or one, we can't have division-by-zero 1083 // or remainder-by-zero, so assume the divisor is 1. 1084 // e.g. 1, zext (i8 X), sdiv X (Y and 1) 1085 if (Known.countMinLeadingZeros() == Known.getBitWidth() - 1) 1086 return IsDiv ? Op0 : Constant::getNullValue(Ty); 1087 1088 // If X * Y does not overflow, then: 1089 // X * Y / Y -> X 1090 // X * Y % Y -> 0 1091 Value *X; 1092 if (match(Op0, m_c_Mul(m_Value(X), m_Specific(Op1)))) { 1093 auto *Mul = cast<OverflowingBinaryOperator>(Op0); 1094 // The multiplication can't overflow if it is defined not to, or if 1095 // X == A / Y for some A. 1096 if ((IsSigned && Q.IIQ.hasNoSignedWrap(Mul)) || 1097 (!IsSigned && Q.IIQ.hasNoUnsignedWrap(Mul)) || 1098 (IsSigned && match(X, m_SDiv(m_Value(), m_Specific(Op1)))) || 1099 (!IsSigned && match(X, m_UDiv(m_Value(), m_Specific(Op1))))) { 1100 return IsDiv ? X : Constant::getNullValue(Op0->getType()); 1101 } 1102 } 1103 1104 if (isDivZero(Op0, Op1, Q, MaxRecurse, IsSigned)) 1105 return IsDiv ? Constant::getNullValue(Op0->getType()) : Op0; 1106 1107 if (Value *V = simplifyByDomEq(Opcode, Op0, Op1, Q, MaxRecurse)) 1108 return V; 1109 1110 // If the operation is with the result of a select instruction, check whether 1111 // operating on either branch of the select always yields the same value. 1112 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1113 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1114 return V; 1115 1116 // If the operation is with the result of a phi instruction, check whether 1117 // operating on all incoming values of the phi always yields the same value. 1118 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1119 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1120 return V; 1121 1122 return nullptr; 1123 } 1124 1125 /// These are simplifications common to SDiv and UDiv. 1126 static Value *simplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1127 bool IsExact, const SimplifyQuery &Q, 1128 unsigned MaxRecurse) { 1129 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1130 return C; 1131 1132 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1133 return V; 1134 1135 const APInt *DivC; 1136 if (IsExact && match(Op1, m_APInt(DivC))) { 1137 // If this is an exact divide by a constant, then the dividend (Op0) must 1138 // have at least as many trailing zeros as the divisor to divide evenly. If 1139 // it has less trailing zeros, then the result must be poison. 1140 if (DivC->countr_zero()) { 1141 KnownBits KnownOp0 = computeKnownBits(Op0, /* Depth */ 0, Q); 1142 if (KnownOp0.countMaxTrailingZeros() < DivC->countr_zero()) 1143 return PoisonValue::get(Op0->getType()); 1144 } 1145 1146 // udiv exact (mul nsw X, C), C --> X 1147 // sdiv exact (mul nuw X, C), C --> X 1148 // where C is not a power of 2. 1149 Value *X; 1150 if (!DivC->isPowerOf2() && 1151 (Opcode == Instruction::UDiv 1152 ? match(Op0, m_NSWMul(m_Value(X), m_Specific(Op1))) 1153 : match(Op0, m_NUWMul(m_Value(X), m_Specific(Op1))))) 1154 return X; 1155 } 1156 1157 return nullptr; 1158 } 1159 1160 /// These are simplifications common to SRem and URem. 1161 static Value *simplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1, 1162 const SimplifyQuery &Q, unsigned MaxRecurse) { 1163 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1164 return C; 1165 1166 if (Value *V = simplifyDivRem(Opcode, Op0, Op1, Q, MaxRecurse)) 1167 return V; 1168 1169 // (X << Y) % X -> 0 1170 if (Q.IIQ.UseInstrInfo) { 1171 if ((Opcode == Instruction::SRem && 1172 match(Op0, m_NSWShl(m_Specific(Op1), m_Value()))) || 1173 (Opcode == Instruction::URem && 1174 match(Op0, m_NUWShl(m_Specific(Op1), m_Value())))) 1175 return Constant::getNullValue(Op0->getType()); 1176 1177 const APInt *C0; 1178 if (match(Op1, m_APInt(C0))) { 1179 // (srem (mul nsw X, C1), C0) -> 0 if C1 s% C0 == 0 1180 // (urem (mul nuw X, C1), C0) -> 0 if C1 u% C0 == 0 1181 if (Opcode == Instruction::SRem 1182 ? match(Op0, 1183 m_NSWMul(m_Value(), m_CheckedInt([C0](const APInt &C) { 1184 return C.srem(*C0).isZero(); 1185 }))) 1186 : match(Op0, 1187 m_NUWMul(m_Value(), m_CheckedInt([C0](const APInt &C) { 1188 return C.urem(*C0).isZero(); 1189 })))) 1190 return Constant::getNullValue(Op0->getType()); 1191 } 1192 } 1193 return nullptr; 1194 } 1195 1196 /// Given operands for an SDiv, see if we can fold the result. 1197 /// If not, this returns null. 1198 static Value *simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1199 const SimplifyQuery &Q, unsigned MaxRecurse) { 1200 // If two operands are negated and no signed overflow, return -1. 1201 if (isKnownNegation(Op0, Op1, /*NeedNSW=*/true)) 1202 return Constant::getAllOnesValue(Op0->getType()); 1203 1204 return simplifyDiv(Instruction::SDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1205 } 1206 1207 Value *llvm::simplifySDivInst(Value *Op0, Value *Op1, bool IsExact, 1208 const SimplifyQuery &Q) { 1209 return ::simplifySDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1210 } 1211 1212 /// Given operands for a UDiv, see if we can fold the result. 1213 /// If not, this returns null. 1214 static Value *simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1215 const SimplifyQuery &Q, unsigned MaxRecurse) { 1216 return simplifyDiv(Instruction::UDiv, Op0, Op1, IsExact, Q, MaxRecurse); 1217 } 1218 1219 Value *llvm::simplifyUDivInst(Value *Op0, Value *Op1, bool IsExact, 1220 const SimplifyQuery &Q) { 1221 return ::simplifyUDivInst(Op0, Op1, IsExact, Q, RecursionLimit); 1222 } 1223 1224 /// Given operands for an SRem, see if we can fold the result. 1225 /// If not, this returns null. 1226 static Value *simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1227 unsigned MaxRecurse) { 1228 // If the divisor is 0, the result is undefined, so assume the divisor is -1. 1229 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0 1230 Value *X; 1231 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) 1232 return ConstantInt::getNullValue(Op0->getType()); 1233 1234 // If the two operands are negated, return 0. 1235 if (isKnownNegation(Op0, Op1)) 1236 return ConstantInt::getNullValue(Op0->getType()); 1237 1238 return simplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse); 1239 } 1240 1241 Value *llvm::simplifySRemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1242 return ::simplifySRemInst(Op0, Op1, Q, RecursionLimit); 1243 } 1244 1245 /// Given operands for a URem, see if we can fold the result. 1246 /// If not, this returns null. 1247 static Value *simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 1248 unsigned MaxRecurse) { 1249 return simplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse); 1250 } 1251 1252 Value *llvm::simplifyURemInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 1253 return ::simplifyURemInst(Op0, Op1, Q, RecursionLimit); 1254 } 1255 1256 /// Returns true if a shift by \c Amount always yields poison. 1257 static bool isPoisonShift(Value *Amount, const SimplifyQuery &Q) { 1258 Constant *C = dyn_cast<Constant>(Amount); 1259 if (!C) 1260 return false; 1261 1262 // X shift by undef -> poison because it may shift by the bitwidth. 1263 if (Q.isUndefValue(C)) 1264 return true; 1265 1266 // Shifting by the bitwidth or more is poison. This covers scalars and 1267 // fixed/scalable vectors with splat constants. 1268 const APInt *AmountC; 1269 if (match(C, m_APInt(AmountC)) && AmountC->uge(AmountC->getBitWidth())) 1270 return true; 1271 1272 // Try harder for fixed-length vectors: 1273 // If all lanes of a vector shift are poison, the whole shift is poison. 1274 if (isa<ConstantVector>(C) || isa<ConstantDataVector>(C)) { 1275 for (unsigned I = 0, 1276 E = cast<FixedVectorType>(C->getType())->getNumElements(); 1277 I != E; ++I) 1278 if (!isPoisonShift(C->getAggregateElement(I), Q)) 1279 return false; 1280 return true; 1281 } 1282 1283 return false; 1284 } 1285 1286 /// Given operands for an Shl, LShr or AShr, see if we can fold the result. 1287 /// If not, this returns null. 1288 static Value *simplifyShift(Instruction::BinaryOps Opcode, Value *Op0, 1289 Value *Op1, bool IsNSW, const SimplifyQuery &Q, 1290 unsigned MaxRecurse) { 1291 if (Constant *C = foldOrCommuteConstant(Opcode, Op0, Op1, Q)) 1292 return C; 1293 1294 // poison shift by X -> poison 1295 if (isa<PoisonValue>(Op0)) 1296 return Op0; 1297 1298 // 0 shift by X -> 0 1299 if (match(Op0, m_Zero())) 1300 return Constant::getNullValue(Op0->getType()); 1301 1302 // X shift by 0 -> X 1303 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones 1304 // would be poison. 1305 Value *X; 1306 if (match(Op1, m_Zero()) || 1307 (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1))) 1308 return Op0; 1309 1310 // Fold undefined shifts. 1311 if (isPoisonShift(Op1, Q)) 1312 return PoisonValue::get(Op0->getType()); 1313 1314 // If the operation is with the result of a select instruction, check whether 1315 // operating on either branch of the select always yields the same value. 1316 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) 1317 if (Value *V = threadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse)) 1318 return V; 1319 1320 // If the operation is with the result of a phi instruction, check whether 1321 // operating on all incoming values of the phi always yields the same value. 1322 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 1323 if (Value *V = threadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse)) 1324 return V; 1325 1326 // If any bits in the shift amount make that value greater than or equal to 1327 // the number of bits in the type, the shift is undefined. 1328 KnownBits KnownAmt = computeKnownBits(Op1, /* Depth */ 0, Q); 1329 if (KnownAmt.getMinValue().uge(KnownAmt.getBitWidth())) 1330 return PoisonValue::get(Op0->getType()); 1331 1332 // If all valid bits in the shift amount are known zero, the first operand is 1333 // unchanged. 1334 unsigned NumValidShiftBits = Log2_32_Ceil(KnownAmt.getBitWidth()); 1335 if (KnownAmt.countMinTrailingZeros() >= NumValidShiftBits) 1336 return Op0; 1337 1338 // Check for nsw shl leading to a poison value. 1339 if (IsNSW) { 1340 assert(Opcode == Instruction::Shl && "Expected shl for nsw instruction"); 1341 KnownBits KnownVal = computeKnownBits(Op0, /* Depth */ 0, Q); 1342 KnownBits KnownShl = KnownBits::shl(KnownVal, KnownAmt); 1343 1344 if (KnownVal.Zero.isSignBitSet()) 1345 KnownShl.Zero.setSignBit(); 1346 if (KnownVal.One.isSignBitSet()) 1347 KnownShl.One.setSignBit(); 1348 1349 if (KnownShl.hasConflict()) 1350 return PoisonValue::get(Op0->getType()); 1351 } 1352 1353 return nullptr; 1354 } 1355 1356 /// Given operands for an LShr or AShr, see if we can fold the result. If not, 1357 /// this returns null. 1358 static Value *simplifyRightShift(Instruction::BinaryOps Opcode, Value *Op0, 1359 Value *Op1, bool IsExact, 1360 const SimplifyQuery &Q, unsigned MaxRecurse) { 1361 if (Value *V = 1362 simplifyShift(Opcode, Op0, Op1, /*IsNSW*/ false, Q, MaxRecurse)) 1363 return V; 1364 1365 // X >> X -> 0 1366 if (Op0 == Op1) 1367 return Constant::getNullValue(Op0->getType()); 1368 1369 // undef >> X -> 0 1370 // undef >> X -> undef (if it's exact) 1371 if (Q.isUndefValue(Op0)) 1372 return IsExact ? Op0 : Constant::getNullValue(Op0->getType()); 1373 1374 // The low bit cannot be shifted out of an exact shift if it is set. 1375 // TODO: Generalize by counting trailing zeros (see fold for exact division). 1376 if (IsExact) { 1377 KnownBits Op0Known = computeKnownBits(Op0, /* Depth */ 0, Q); 1378 if (Op0Known.One[0]) 1379 return Op0; 1380 } 1381 1382 return nullptr; 1383 } 1384 1385 /// Given operands for an Shl, see if we can fold the result. 1386 /// If not, this returns null. 1387 static Value *simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1388 const SimplifyQuery &Q, unsigned MaxRecurse) { 1389 if (Value *V = 1390 simplifyShift(Instruction::Shl, Op0, Op1, IsNSW, Q, MaxRecurse)) 1391 return V; 1392 1393 Type *Ty = Op0->getType(); 1394 // undef << X -> 0 1395 // undef << X -> undef if (if it's NSW/NUW) 1396 if (Q.isUndefValue(Op0)) 1397 return IsNSW || IsNUW ? Op0 : Constant::getNullValue(Ty); 1398 1399 // (X >> A) << A -> X 1400 Value *X; 1401 if (Q.IIQ.UseInstrInfo && 1402 match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1))))) 1403 return X; 1404 1405 // shl nuw i8 C, %x -> C iff C has sign bit set. 1406 if (IsNUW && match(Op0, m_Negative())) 1407 return Op0; 1408 // NOTE: could use computeKnownBits() / LazyValueInfo, 1409 // but the cost-benefit analysis suggests it isn't worth it. 1410 1411 // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees 1412 // that the sign-bit does not change, so the only input that does not 1413 // produce poison is 0, and "0 << (bitwidth-1) --> 0". 1414 if (IsNSW && IsNUW && 1415 match(Op1, m_SpecificInt(Ty->getScalarSizeInBits() - 1))) 1416 return Constant::getNullValue(Ty); 1417 1418 return nullptr; 1419 } 1420 1421 Value *llvm::simplifyShlInst(Value *Op0, Value *Op1, bool IsNSW, bool IsNUW, 1422 const SimplifyQuery &Q) { 1423 return ::simplifyShlInst(Op0, Op1, IsNSW, IsNUW, Q, RecursionLimit); 1424 } 1425 1426 /// Given operands for an LShr, see if we can fold the result. 1427 /// If not, this returns null. 1428 static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1429 const SimplifyQuery &Q, unsigned MaxRecurse) { 1430 if (Value *V = simplifyRightShift(Instruction::LShr, Op0, Op1, IsExact, Q, 1431 MaxRecurse)) 1432 return V; 1433 1434 // (X << A) >> A -> X 1435 Value *X; 1436 if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1)))) 1437 return X; 1438 1439 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A. 1440 // We can return X as we do in the above case since OR alters no bits in X. 1441 // SimplifyDemandedBits in InstCombine can do more general optimization for 1442 // bit manipulation. This pattern aims to provide opportunities for other 1443 // optimizers by supporting a simple but common case in InstSimplify. 1444 Value *Y; 1445 const APInt *ShRAmt, *ShLAmt; 1446 if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(ShRAmt)) && 1447 match(Op0, m_c_Or(m_NUWShl(m_Value(X), m_APInt(ShLAmt)), m_Value(Y))) && 1448 *ShRAmt == *ShLAmt) { 1449 const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 1450 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 1451 if (ShRAmt->uge(EffWidthY)) 1452 return X; 1453 } 1454 1455 return nullptr; 1456 } 1457 1458 Value *llvm::simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact, 1459 const SimplifyQuery &Q) { 1460 return ::simplifyLShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1461 } 1462 1463 /// Given operands for an AShr, see if we can fold the result. 1464 /// If not, this returns null. 1465 static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1466 const SimplifyQuery &Q, unsigned MaxRecurse) { 1467 if (Value *V = simplifyRightShift(Instruction::AShr, Op0, Op1, IsExact, Q, 1468 MaxRecurse)) 1469 return V; 1470 1471 // -1 >>a X --> -1 1472 // (-1 << X) a>> X --> -1 1473 // We could return the original -1 constant to preserve poison elements. 1474 if (match(Op0, m_AllOnes()) || 1475 match(Op0, m_Shl(m_AllOnes(), m_Specific(Op1)))) 1476 return Constant::getAllOnesValue(Op0->getType()); 1477 1478 // (X << A) >> A -> X 1479 Value *X; 1480 if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1)))) 1481 return X; 1482 1483 // Arithmetic shifting an all-sign-bit value is a no-op. 1484 unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT); 1485 if (NumSignBits == Op0->getType()->getScalarSizeInBits()) 1486 return Op0; 1487 1488 return nullptr; 1489 } 1490 1491 Value *llvm::simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact, 1492 const SimplifyQuery &Q) { 1493 return ::simplifyAShrInst(Op0, Op1, IsExact, Q, RecursionLimit); 1494 } 1495 1496 /// Commuted variants are assumed to be handled by calling this function again 1497 /// with the parameters swapped. 1498 static Value *simplifyUnsignedRangeCheck(ICmpInst *ZeroICmp, 1499 ICmpInst *UnsignedICmp, bool IsAnd, 1500 const SimplifyQuery &Q) { 1501 Value *X, *Y; 1502 1503 CmpPredicate EqPred; 1504 if (!match(ZeroICmp, m_ICmp(EqPred, m_Value(Y), m_Zero())) || 1505 !ICmpInst::isEquality(EqPred)) 1506 return nullptr; 1507 1508 CmpPredicate UnsignedPred; 1509 1510 Value *A, *B; 1511 // Y = (A - B); 1512 if (match(Y, m_Sub(m_Value(A), m_Value(B)))) { 1513 if (match(UnsignedICmp, 1514 m_c_ICmp(UnsignedPred, m_Specific(A), m_Specific(B))) && 1515 ICmpInst::isUnsigned(UnsignedPred)) { 1516 // A >=/<= B || (A - B) != 0 <--> true 1517 if ((UnsignedPred == ICmpInst::ICMP_UGE || 1518 UnsignedPred == ICmpInst::ICMP_ULE) && 1519 EqPred == ICmpInst::ICMP_NE && !IsAnd) 1520 return ConstantInt::getTrue(UnsignedICmp->getType()); 1521 // A </> B && (A - B) == 0 <--> false 1522 if ((UnsignedPred == ICmpInst::ICMP_ULT || 1523 UnsignedPred == ICmpInst::ICMP_UGT) && 1524 EqPred == ICmpInst::ICMP_EQ && IsAnd) 1525 return ConstantInt::getFalse(UnsignedICmp->getType()); 1526 1527 // A </> B && (A - B) != 0 <--> A </> B 1528 // A </> B || (A - B) != 0 <--> (A - B) != 0 1529 if (EqPred == ICmpInst::ICMP_NE && (UnsignedPred == ICmpInst::ICMP_ULT || 1530 UnsignedPred == ICmpInst::ICMP_UGT)) 1531 return IsAnd ? UnsignedICmp : ZeroICmp; 1532 1533 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0 1534 // A <=/>= B || (A - B) == 0 <--> A <=/>= B 1535 if (EqPred == ICmpInst::ICMP_EQ && (UnsignedPred == ICmpInst::ICMP_ULE || 1536 UnsignedPred == ICmpInst::ICMP_UGE)) 1537 return IsAnd ? ZeroICmp : UnsignedICmp; 1538 } 1539 1540 // Given Y = (A - B) 1541 // Y >= A && Y != 0 --> Y >= A iff B != 0 1542 // Y < A || Y == 0 --> Y < A iff B != 0 1543 if (match(UnsignedICmp, 1544 m_c_ICmp(UnsignedPred, m_Specific(Y), m_Specific(A)))) { 1545 if (UnsignedPred == ICmpInst::ICMP_UGE && IsAnd && 1546 EqPred == ICmpInst::ICMP_NE && isKnownNonZero(B, Q)) 1547 return UnsignedICmp; 1548 if (UnsignedPred == ICmpInst::ICMP_ULT && !IsAnd && 1549 EqPred == ICmpInst::ICMP_EQ && isKnownNonZero(B, Q)) 1550 return UnsignedICmp; 1551 } 1552 } 1553 1554 if (match(UnsignedICmp, m_ICmp(UnsignedPred, m_Value(X), m_Specific(Y))) && 1555 ICmpInst::isUnsigned(UnsignedPred)) 1556 ; 1557 else if (match(UnsignedICmp, 1558 m_ICmp(UnsignedPred, m_Specific(Y), m_Value(X))) && 1559 ICmpInst::isUnsigned(UnsignedPred)) 1560 UnsignedPred = ICmpInst::getSwappedPredicate(UnsignedPred); 1561 else 1562 return nullptr; 1563 1564 // X > Y && Y == 0 --> Y == 0 iff X != 0 1565 // X > Y || Y == 0 --> X > Y iff X != 0 1566 if (UnsignedPred == ICmpInst::ICMP_UGT && EqPred == ICmpInst::ICMP_EQ && 1567 isKnownNonZero(X, Q)) 1568 return IsAnd ? ZeroICmp : UnsignedICmp; 1569 1570 // X <= Y && Y != 0 --> X <= Y iff X != 0 1571 // X <= Y || Y != 0 --> Y != 0 iff X != 0 1572 if (UnsignedPred == ICmpInst::ICMP_ULE && EqPred == ICmpInst::ICMP_NE && 1573 isKnownNonZero(X, Q)) 1574 return IsAnd ? UnsignedICmp : ZeroICmp; 1575 1576 // The transforms below here are expected to be handled more generally with 1577 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's 1578 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap, 1579 // these are candidates for removal. 1580 1581 // X < Y && Y != 0 --> X < Y 1582 // X < Y || Y != 0 --> Y != 0 1583 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_NE) 1584 return IsAnd ? UnsignedICmp : ZeroICmp; 1585 1586 // X >= Y && Y == 0 --> Y == 0 1587 // X >= Y || Y == 0 --> X >= Y 1588 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_EQ) 1589 return IsAnd ? ZeroICmp : UnsignedICmp; 1590 1591 // X < Y && Y == 0 --> false 1592 if (UnsignedPred == ICmpInst::ICMP_ULT && EqPred == ICmpInst::ICMP_EQ && 1593 IsAnd) 1594 return getFalse(UnsignedICmp->getType()); 1595 1596 // X >= Y || Y != 0 --> true 1597 if (UnsignedPred == ICmpInst::ICMP_UGE && EqPred == ICmpInst::ICMP_NE && 1598 !IsAnd) 1599 return getTrue(UnsignedICmp->getType()); 1600 1601 return nullptr; 1602 } 1603 1604 /// Test if a pair of compares with a shared operand and 2 constants has an 1605 /// empty set intersection, full set union, or if one compare is a superset of 1606 /// the other. 1607 static Value *simplifyAndOrOfICmpsWithConstants(ICmpInst *Cmp0, ICmpInst *Cmp1, 1608 bool IsAnd) { 1609 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)). 1610 if (Cmp0->getOperand(0) != Cmp1->getOperand(0)) 1611 return nullptr; 1612 1613 const APInt *C0, *C1; 1614 if (!match(Cmp0->getOperand(1), m_APInt(C0)) || 1615 !match(Cmp1->getOperand(1), m_APInt(C1))) 1616 return nullptr; 1617 1618 auto Range0 = ConstantRange::makeExactICmpRegion(Cmp0->getPredicate(), *C0); 1619 auto Range1 = ConstantRange::makeExactICmpRegion(Cmp1->getPredicate(), *C1); 1620 1621 // For and-of-compares, check if the intersection is empty: 1622 // (icmp X, C0) && (icmp X, C1) --> empty set --> false 1623 if (IsAnd && Range0.intersectWith(Range1).isEmptySet()) 1624 return getFalse(Cmp0->getType()); 1625 1626 // For or-of-compares, check if the union is full: 1627 // (icmp X, C0) || (icmp X, C1) --> full set --> true 1628 if (!IsAnd && Range0.unionWith(Range1).isFullSet()) 1629 return getTrue(Cmp0->getType()); 1630 1631 // Is one range a superset of the other? 1632 // If this is and-of-compares, take the smaller set: 1633 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42 1634 // If this is or-of-compares, take the larger set: 1635 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4 1636 if (Range0.contains(Range1)) 1637 return IsAnd ? Cmp1 : Cmp0; 1638 if (Range1.contains(Range0)) 1639 return IsAnd ? Cmp0 : Cmp1; 1640 1641 return nullptr; 1642 } 1643 1644 static Value *simplifyAndOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1645 const InstrInfoQuery &IIQ) { 1646 // (icmp (add V, C0), C1) & (icmp V, C0) 1647 CmpPredicate Pred0, Pred1; 1648 const APInt *C0, *C1; 1649 Value *V; 1650 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1651 return nullptr; 1652 1653 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1654 return nullptr; 1655 1656 auto *AddInst = cast<OverflowingBinaryOperator>(Op0->getOperand(0)); 1657 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1658 return nullptr; 1659 1660 Type *ITy = Op0->getType(); 1661 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1662 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1663 1664 const APInt Delta = *C1 - *C0; 1665 if (C0->isStrictlyPositive()) { 1666 if (Delta == 2) { 1667 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_SGT) 1668 return getFalse(ITy); 1669 if (Pred0 == ICmpInst::ICMP_SLT && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1670 return getFalse(ITy); 1671 } 1672 if (Delta == 1) { 1673 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_SGT) 1674 return getFalse(ITy); 1675 if (Pred0 == ICmpInst::ICMP_SLE && Pred1 == ICmpInst::ICMP_SGT && IsNSW) 1676 return getFalse(ITy); 1677 } 1678 } 1679 if (C0->getBoolValue() && IsNUW) { 1680 if (Delta == 2) 1681 if (Pred0 == ICmpInst::ICMP_ULT && Pred1 == ICmpInst::ICMP_UGT) 1682 return getFalse(ITy); 1683 if (Delta == 1) 1684 if (Pred0 == ICmpInst::ICMP_ULE && Pred1 == ICmpInst::ICMP_UGT) 1685 return getFalse(ITy); 1686 } 1687 1688 return nullptr; 1689 } 1690 1691 /// Try to simplify and/or of icmp with ctpop intrinsic. 1692 static Value *simplifyAndOrOfICmpsWithCtpop(ICmpInst *Cmp0, ICmpInst *Cmp1, 1693 bool IsAnd) { 1694 CmpPredicate Pred0, Pred1; 1695 Value *X; 1696 const APInt *C; 1697 if (!match(Cmp0, m_ICmp(Pred0, m_Intrinsic<Intrinsic::ctpop>(m_Value(X)), 1698 m_APInt(C))) || 1699 !match(Cmp1, m_ICmp(Pred1, m_Specific(X), m_ZeroInt())) || C->isZero()) 1700 return nullptr; 1701 1702 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0 1703 if (!IsAnd && Pred0 == ICmpInst::ICMP_EQ && Pred1 == ICmpInst::ICMP_NE) 1704 return Cmp1; 1705 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0 1706 if (IsAnd && Pred0 == ICmpInst::ICMP_NE && Pred1 == ICmpInst::ICMP_EQ) 1707 return Cmp1; 1708 1709 return nullptr; 1710 } 1711 1712 static Value *simplifyAndOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1713 const SimplifyQuery &Q) { 1714 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/true, Q)) 1715 return X; 1716 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/true, Q)) 1717 return X; 1718 1719 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, true)) 1720 return X; 1721 1722 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, true)) 1723 return X; 1724 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, true)) 1725 return X; 1726 1727 if (Value *X = simplifyAndOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1728 return X; 1729 if (Value *X = simplifyAndOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1730 return X; 1731 1732 return nullptr; 1733 } 1734 1735 static Value *simplifyOrOfICmpsWithAdd(ICmpInst *Op0, ICmpInst *Op1, 1736 const InstrInfoQuery &IIQ) { 1737 // (icmp (add V, C0), C1) | (icmp V, C0) 1738 CmpPredicate Pred0, Pred1; 1739 const APInt *C0, *C1; 1740 Value *V; 1741 if (!match(Op0, m_ICmp(Pred0, m_Add(m_Value(V), m_APInt(C0)), m_APInt(C1)))) 1742 return nullptr; 1743 1744 if (!match(Op1, m_ICmp(Pred1, m_Specific(V), m_Value()))) 1745 return nullptr; 1746 1747 auto *AddInst = cast<BinaryOperator>(Op0->getOperand(0)); 1748 if (AddInst->getOperand(1) != Op1->getOperand(1)) 1749 return nullptr; 1750 1751 Type *ITy = Op0->getType(); 1752 bool IsNSW = IIQ.hasNoSignedWrap(AddInst); 1753 bool IsNUW = IIQ.hasNoUnsignedWrap(AddInst); 1754 1755 const APInt Delta = *C1 - *C0; 1756 if (C0->isStrictlyPositive()) { 1757 if (Delta == 2) { 1758 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_SLE) 1759 return getTrue(ITy); 1760 if (Pred0 == ICmpInst::ICMP_SGE && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1761 return getTrue(ITy); 1762 } 1763 if (Delta == 1) { 1764 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_SLE) 1765 return getTrue(ITy); 1766 if (Pred0 == ICmpInst::ICMP_SGT && Pred1 == ICmpInst::ICMP_SLE && IsNSW) 1767 return getTrue(ITy); 1768 } 1769 } 1770 if (C0->getBoolValue() && IsNUW) { 1771 if (Delta == 2) 1772 if (Pred0 == ICmpInst::ICMP_UGE && Pred1 == ICmpInst::ICMP_ULE) 1773 return getTrue(ITy); 1774 if (Delta == 1) 1775 if (Pred0 == ICmpInst::ICMP_UGT && Pred1 == ICmpInst::ICMP_ULE) 1776 return getTrue(ITy); 1777 } 1778 1779 return nullptr; 1780 } 1781 1782 static Value *simplifyOrOfICmps(ICmpInst *Op0, ICmpInst *Op1, 1783 const SimplifyQuery &Q) { 1784 if (Value *X = simplifyUnsignedRangeCheck(Op0, Op1, /*IsAnd=*/false, Q)) 1785 return X; 1786 if (Value *X = simplifyUnsignedRangeCheck(Op1, Op0, /*IsAnd=*/false, Q)) 1787 return X; 1788 1789 if (Value *X = simplifyAndOrOfICmpsWithConstants(Op0, Op1, false)) 1790 return X; 1791 1792 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op0, Op1, false)) 1793 return X; 1794 if (Value *X = simplifyAndOrOfICmpsWithCtpop(Op1, Op0, false)) 1795 return X; 1796 1797 if (Value *X = simplifyOrOfICmpsWithAdd(Op0, Op1, Q.IIQ)) 1798 return X; 1799 if (Value *X = simplifyOrOfICmpsWithAdd(Op1, Op0, Q.IIQ)) 1800 return X; 1801 1802 return nullptr; 1803 } 1804 1805 static Value *simplifyAndOrOfFCmps(const SimplifyQuery &Q, FCmpInst *LHS, 1806 FCmpInst *RHS, bool IsAnd) { 1807 Value *LHS0 = LHS->getOperand(0), *LHS1 = LHS->getOperand(1); 1808 Value *RHS0 = RHS->getOperand(0), *RHS1 = RHS->getOperand(1); 1809 if (LHS0->getType() != RHS0->getType()) 1810 return nullptr; 1811 1812 FCmpInst::Predicate PredL = LHS->getPredicate(), PredR = RHS->getPredicate(); 1813 auto AbsOrSelfLHS0 = m_CombineOr(m_Specific(LHS0), m_FAbs(m_Specific(LHS0))); 1814 if ((PredL == FCmpInst::FCMP_ORD || PredL == FCmpInst::FCMP_UNO) && 1815 ((FCmpInst::isOrdered(PredR) && IsAnd) || 1816 (FCmpInst::isUnordered(PredR) && !IsAnd))) { 1817 // (fcmp ord X, 0) & (fcmp o** X/abs(X), Y) --> fcmp o** X/abs(X), Y 1818 // (fcmp uno X, 0) & (fcmp o** X/abs(X), Y) --> false 1819 // (fcmp uno X, 0) | (fcmp u** X/abs(X), Y) --> fcmp u** X/abs(X), Y 1820 // (fcmp ord X, 0) | (fcmp u** X/abs(X), Y) --> true 1821 if ((match(RHS0, AbsOrSelfLHS0) || match(RHS1, AbsOrSelfLHS0)) && 1822 match(LHS1, m_PosZeroFP())) 1823 return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR) 1824 ? static_cast<Value *>(RHS) 1825 : ConstantInt::getBool(LHS->getType(), !IsAnd); 1826 } 1827 1828 auto AbsOrSelfRHS0 = m_CombineOr(m_Specific(RHS0), m_FAbs(m_Specific(RHS0))); 1829 if ((PredR == FCmpInst::FCMP_ORD || PredR == FCmpInst::FCMP_UNO) && 1830 ((FCmpInst::isOrdered(PredL) && IsAnd) || 1831 (FCmpInst::isUnordered(PredL) && !IsAnd))) { 1832 // (fcmp o** X/abs(X), Y) & (fcmp ord X, 0) --> fcmp o** X/abs(X), Y 1833 // (fcmp o** X/abs(X), Y) & (fcmp uno X, 0) --> false 1834 // (fcmp u** X/abs(X), Y) | (fcmp uno X, 0) --> fcmp u** X/abs(X), Y 1835 // (fcmp u** X/abs(X), Y) | (fcmp ord X, 0) --> true 1836 if ((match(LHS0, AbsOrSelfRHS0) || match(LHS1, AbsOrSelfRHS0)) && 1837 match(RHS1, m_PosZeroFP())) 1838 return FCmpInst::isOrdered(PredL) == FCmpInst::isOrdered(PredR) 1839 ? static_cast<Value *>(LHS) 1840 : ConstantInt::getBool(LHS->getType(), !IsAnd); 1841 } 1842 1843 return nullptr; 1844 } 1845 1846 static Value *simplifyAndOrOfCmps(const SimplifyQuery &Q, Value *Op0, 1847 Value *Op1, bool IsAnd) { 1848 // Look through casts of the 'and' operands to find compares. 1849 auto *Cast0 = dyn_cast<CastInst>(Op0); 1850 auto *Cast1 = dyn_cast<CastInst>(Op1); 1851 if (Cast0 && Cast1 && Cast0->getOpcode() == Cast1->getOpcode() && 1852 Cast0->getSrcTy() == Cast1->getSrcTy()) { 1853 Op0 = Cast0->getOperand(0); 1854 Op1 = Cast1->getOperand(0); 1855 } 1856 1857 Value *V = nullptr; 1858 auto *ICmp0 = dyn_cast<ICmpInst>(Op0); 1859 auto *ICmp1 = dyn_cast<ICmpInst>(Op1); 1860 if (ICmp0 && ICmp1) 1861 V = IsAnd ? simplifyAndOfICmps(ICmp0, ICmp1, Q) 1862 : simplifyOrOfICmps(ICmp0, ICmp1, Q); 1863 1864 auto *FCmp0 = dyn_cast<FCmpInst>(Op0); 1865 auto *FCmp1 = dyn_cast<FCmpInst>(Op1); 1866 if (FCmp0 && FCmp1) 1867 V = simplifyAndOrOfFCmps(Q, FCmp0, FCmp1, IsAnd); 1868 1869 if (!V) 1870 return nullptr; 1871 if (!Cast0) 1872 return V; 1873 1874 // If we looked through casts, we can only handle a constant simplification 1875 // because we are not allowed to create a cast instruction here. 1876 if (auto *C = dyn_cast<Constant>(V)) 1877 return ConstantFoldCastOperand(Cast0->getOpcode(), C, Cast0->getType(), 1878 Q.DL); 1879 1880 return nullptr; 1881 } 1882 1883 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 1884 const SimplifyQuery &Q, 1885 bool AllowRefinement, 1886 SmallVectorImpl<Instruction *> *DropFlags, 1887 unsigned MaxRecurse); 1888 1889 static Value *simplifyAndOrWithICmpEq(unsigned Opcode, Value *Op0, Value *Op1, 1890 const SimplifyQuery &Q, 1891 unsigned MaxRecurse) { 1892 assert((Opcode == Instruction::And || Opcode == Instruction::Or) && 1893 "Must be and/or"); 1894 CmpPredicate Pred; 1895 Value *A, *B; 1896 if (!match(Op0, m_ICmp(Pred, m_Value(A), m_Value(B))) || 1897 !ICmpInst::isEquality(Pred)) 1898 return nullptr; 1899 1900 auto Simplify = [&](Value *Res) -> Value * { 1901 Constant *Absorber = ConstantExpr::getBinOpAbsorber(Opcode, Res->getType()); 1902 1903 // and (icmp eq a, b), x implies (a==b) inside x. 1904 // or (icmp ne a, b), x implies (a==b) inside x. 1905 // If x simplifies to true/false, we can simplify the and/or. 1906 if (Pred == 1907 (Opcode == Instruction::And ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE)) { 1908 if (Res == Absorber) 1909 return Absorber; 1910 if (Res == ConstantExpr::getBinOpIdentity(Opcode, Res->getType())) 1911 return Op0; 1912 return nullptr; 1913 } 1914 1915 // If we have and (icmp ne a, b), x and for a==b we can simplify x to false, 1916 // then we can drop the icmp, as x will already be false in the case where 1917 // the icmp is false. Similar for or and true. 1918 if (Res == Absorber) 1919 return Op1; 1920 return nullptr; 1921 }; 1922 1923 // In the final case (Res == Absorber with inverted predicate), it is safe to 1924 // refine poison during simplification, but not undef. For simplicity always 1925 // disable undef-based folds here. 1926 if (Value *Res = simplifyWithOpReplaced(Op1, A, B, Q.getWithoutUndef(), 1927 /* AllowRefinement */ true, 1928 /* DropFlags */ nullptr, MaxRecurse)) 1929 return Simplify(Res); 1930 if (Value *Res = simplifyWithOpReplaced(Op1, B, A, Q.getWithoutUndef(), 1931 /* AllowRefinement */ true, 1932 /* DropFlags */ nullptr, MaxRecurse)) 1933 return Simplify(Res); 1934 1935 return nullptr; 1936 } 1937 1938 /// Given a bitwise logic op, check if the operands are add/sub with a common 1939 /// source value and inverted constant (identity: C - X -> ~(X + ~C)). 1940 static Value *simplifyLogicOfAddSub(Value *Op0, Value *Op1, 1941 Instruction::BinaryOps Opcode) { 1942 assert(Op0->getType() == Op1->getType() && "Mismatched binop types"); 1943 assert(BinaryOperator::isBitwiseLogicOp(Opcode) && "Expected logic op"); 1944 Value *X; 1945 Constant *C1, *C2; 1946 if ((match(Op0, m_Add(m_Value(X), m_Constant(C1))) && 1947 match(Op1, m_Sub(m_Constant(C2), m_Specific(X)))) || 1948 (match(Op1, m_Add(m_Value(X), m_Constant(C1))) && 1949 match(Op0, m_Sub(m_Constant(C2), m_Specific(X))))) { 1950 if (ConstantExpr::getNot(C1) == C2) { 1951 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0 1952 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1 1953 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1 1954 Type *Ty = Op0->getType(); 1955 return Opcode == Instruction::And ? ConstantInt::getNullValue(Ty) 1956 : ConstantInt::getAllOnesValue(Ty); 1957 } 1958 } 1959 return nullptr; 1960 } 1961 1962 // Commutative patterns for and that will be tried with both operand orders. 1963 static Value *simplifyAndCommutative(Value *Op0, Value *Op1, 1964 const SimplifyQuery &Q, 1965 unsigned MaxRecurse) { 1966 // ~A & A = 0 1967 if (match(Op0, m_Not(m_Specific(Op1)))) 1968 return Constant::getNullValue(Op0->getType()); 1969 1970 // (A | ?) & A = A 1971 if (match(Op0, m_c_Or(m_Specific(Op1), m_Value()))) 1972 return Op1; 1973 1974 // (X | ~Y) & (X | Y) --> X 1975 Value *X, *Y; 1976 if (match(Op0, m_c_Or(m_Value(X), m_Not(m_Value(Y)))) && 1977 match(Op1, m_c_Or(m_Specific(X), m_Specific(Y)))) 1978 return X; 1979 1980 // If we have a multiplication overflow check that is being 'and'ed with a 1981 // check that one of the multipliers is not zero, we can omit the 'and', and 1982 // only keep the overflow check. 1983 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, true)) 1984 return Op1; 1985 1986 // -A & A = A if A is a power of two or zero. 1987 if (match(Op0, m_Neg(m_Specific(Op1))) && 1988 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1989 return Op1; 1990 1991 // This is a similar pattern used for checking if a value is a power-of-2: 1992 // (A - 1) & A --> 0 (if A is a power-of-2 or 0) 1993 if (match(Op0, m_Add(m_Specific(Op1), m_AllOnes())) && 1994 isKnownToBeAPowerOfTwo(Op1, Q.DL, /*OrZero*/ true, 0, Q.AC, Q.CxtI, Q.DT)) 1995 return Constant::getNullValue(Op1->getType()); 1996 1997 // (x << N) & ((x << M) - 1) --> 0, where x is known to be a power of 2 and 1998 // M <= N. 1999 const APInt *Shift1, *Shift2; 2000 if (match(Op0, m_Shl(m_Value(X), m_APInt(Shift1))) && 2001 match(Op1, m_Add(m_Shl(m_Specific(X), m_APInt(Shift2)), m_AllOnes())) && 2002 isKnownToBeAPowerOfTwo(X, Q.DL, /*OrZero*/ true, /*Depth*/ 0, Q.AC, 2003 Q.CxtI) && 2004 Shift1->uge(*Shift2)) 2005 return Constant::getNullValue(Op0->getType()); 2006 2007 if (Value *V = 2008 simplifyAndOrWithICmpEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2009 return V; 2010 2011 return nullptr; 2012 } 2013 2014 /// Given operands for an And, see if we can fold the result. 2015 /// If not, this returns null. 2016 static Value *simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2017 unsigned MaxRecurse) { 2018 if (Constant *C = foldOrCommuteConstant(Instruction::And, Op0, Op1, Q)) 2019 return C; 2020 2021 // X & poison -> poison 2022 if (isa<PoisonValue>(Op1)) 2023 return Op1; 2024 2025 // X & undef -> 0 2026 if (Q.isUndefValue(Op1)) 2027 return Constant::getNullValue(Op0->getType()); 2028 2029 // X & X = X 2030 if (Op0 == Op1) 2031 return Op0; 2032 2033 // X & 0 = 0 2034 if (match(Op1, m_Zero())) 2035 return Constant::getNullValue(Op0->getType()); 2036 2037 // X & -1 = X 2038 if (match(Op1, m_AllOnes())) 2039 return Op0; 2040 2041 if (Value *Res = simplifyAndCommutative(Op0, Op1, Q, MaxRecurse)) 2042 return Res; 2043 if (Value *Res = simplifyAndCommutative(Op1, Op0, Q, MaxRecurse)) 2044 return Res; 2045 2046 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::And)) 2047 return V; 2048 2049 // A mask that only clears known zeros of a shifted value is a no-op. 2050 const APInt *Mask; 2051 const APInt *ShAmt; 2052 Value *X, *Y; 2053 if (match(Op1, m_APInt(Mask))) { 2054 // If all bits in the inverted and shifted mask are clear: 2055 // and (shl X, ShAmt), Mask --> shl X, ShAmt 2056 if (match(Op0, m_Shl(m_Value(X), m_APInt(ShAmt))) && 2057 (~(*Mask)).lshr(*ShAmt).isZero()) 2058 return Op0; 2059 2060 // If all bits in the inverted and shifted mask are clear: 2061 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt 2062 if (match(Op0, m_LShr(m_Value(X), m_APInt(ShAmt))) && 2063 (~(*Mask)).shl(*ShAmt).isZero()) 2064 return Op0; 2065 } 2066 2067 // and 2^x-1, 2^C --> 0 where x <= C. 2068 const APInt *PowerC; 2069 Value *Shift; 2070 if (match(Op1, m_Power2(PowerC)) && 2071 match(Op0, m_Add(m_Value(Shift), m_AllOnes())) && 2072 isKnownToBeAPowerOfTwo(Shift, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 2073 Q.DT)) { 2074 KnownBits Known = computeKnownBits(Shift, /* Depth */ 0, Q); 2075 // Use getActiveBits() to make use of the additional power of two knowledge 2076 if (PowerC->getActiveBits() >= Known.getMaxValue().getActiveBits()) 2077 return ConstantInt::getNullValue(Op1->getType()); 2078 } 2079 2080 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, true)) 2081 return V; 2082 2083 // Try some generic simplifications for associative operations. 2084 if (Value *V = 2085 simplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2086 return V; 2087 2088 // And distributes over Or. Try some generic simplifications based on this. 2089 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2090 Instruction::Or, Q, MaxRecurse)) 2091 return V; 2092 2093 // And distributes over Xor. Try some generic simplifications based on this. 2094 if (Value *V = expandCommutativeBinOp(Instruction::And, Op0, Op1, 2095 Instruction::Xor, Q, MaxRecurse)) 2096 return V; 2097 2098 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2099 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2100 // A & (A && B) -> A && B 2101 if (match(Op1, m_Select(m_Specific(Op0), m_Value(), m_Zero()))) 2102 return Op1; 2103 else if (match(Op0, m_Select(m_Specific(Op1), m_Value(), m_Zero()))) 2104 return Op0; 2105 } 2106 // If the operation is with the result of a select instruction, check 2107 // whether operating on either branch of the select always yields the same 2108 // value. 2109 if (Value *V = 2110 threadBinOpOverSelect(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2111 return V; 2112 } 2113 2114 // If the operation is with the result of a phi instruction, check whether 2115 // operating on all incoming values of the phi always yields the same value. 2116 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2117 if (Value *V = 2118 threadBinOpOverPHI(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2119 return V; 2120 2121 // Assuming the effective width of Y is not larger than A, i.e. all bits 2122 // from X and Y are disjoint in (X << A) | Y, 2123 // if the mask of this AND op covers all bits of X or Y, while it covers 2124 // no bits from the other, we can bypass this AND op. E.g., 2125 // ((X << A) | Y) & Mask -> Y, 2126 // if Mask = ((1 << effective_width_of(Y)) - 1) 2127 // ((X << A) | Y) & Mask -> X << A, 2128 // if Mask = ((1 << effective_width_of(X)) - 1) << A 2129 // SimplifyDemandedBits in InstCombine can optimize the general case. 2130 // This pattern aims to help other passes for a common case. 2131 Value *XShifted; 2132 if (Q.IIQ.UseInstrInfo && match(Op1, m_APInt(Mask)) && 2133 match(Op0, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X), m_APInt(ShAmt)), 2134 m_Value(XShifted)), 2135 m_Value(Y)))) { 2136 const unsigned Width = Op0->getType()->getScalarSizeInBits(); 2137 const unsigned ShftCnt = ShAmt->getLimitedValue(Width); 2138 const KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 2139 const unsigned EffWidthY = YKnown.countMaxActiveBits(); 2140 if (EffWidthY <= ShftCnt) { 2141 const KnownBits XKnown = computeKnownBits(X, /* Depth */ 0, Q); 2142 const unsigned EffWidthX = XKnown.countMaxActiveBits(); 2143 const APInt EffBitsY = APInt::getLowBitsSet(Width, EffWidthY); 2144 const APInt EffBitsX = APInt::getLowBitsSet(Width, EffWidthX) << ShftCnt; 2145 // If the mask is extracting all bits from X or Y as is, we can skip 2146 // this AND op. 2147 if (EffBitsY.isSubsetOf(*Mask) && !EffBitsX.intersects(*Mask)) 2148 return Y; 2149 if (EffBitsX.isSubsetOf(*Mask) && !EffBitsY.intersects(*Mask)) 2150 return XShifted; 2151 } 2152 } 2153 2154 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0 2155 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0 2156 BinaryOperator *Or; 2157 if (match(Op0, m_c_Xor(m_Value(X), 2158 m_CombineAnd(m_BinOp(Or), 2159 m_c_Or(m_Deferred(X), m_Value(Y))))) && 2160 match(Op1, m_c_Xor(m_Specific(Or), m_Specific(Y)))) 2161 return Constant::getNullValue(Op0->getType()); 2162 2163 const APInt *C1; 2164 Value *A; 2165 // (A ^ C) & (A ^ ~C) -> 0 2166 if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) && 2167 match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1)))) 2168 return Constant::getNullValue(Op0->getType()); 2169 2170 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2171 if (std::optional<bool> Implied = isImpliedCondition(Op0, Op1, Q.DL)) { 2172 // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1. 2173 if (*Implied == true) 2174 return Op0; 2175 // If Op0 is true implies Op1 is false, then they are not true together. 2176 if (*Implied == false) 2177 return ConstantInt::getFalse(Op0->getType()); 2178 } 2179 if (std::optional<bool> Implied = isImpliedCondition(Op1, Op0, Q.DL)) { 2180 // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0. 2181 if (*Implied) 2182 return Op1; 2183 // If Op1 is true implies Op0 is false, then they are not true together. 2184 if (!*Implied) 2185 return ConstantInt::getFalse(Op1->getType()); 2186 } 2187 } 2188 2189 if (Value *V = simplifyByDomEq(Instruction::And, Op0, Op1, Q, MaxRecurse)) 2190 return V; 2191 2192 return nullptr; 2193 } 2194 2195 Value *llvm::simplifyAndInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2196 return ::simplifyAndInst(Op0, Op1, Q, RecursionLimit); 2197 } 2198 2199 // TODO: Many of these folds could use LogicalAnd/LogicalOr. 2200 static Value *simplifyOrLogic(Value *X, Value *Y) { 2201 assert(X->getType() == Y->getType() && "Expected same type for 'or' ops"); 2202 Type *Ty = X->getType(); 2203 2204 // X | ~X --> -1 2205 if (match(Y, m_Not(m_Specific(X)))) 2206 return ConstantInt::getAllOnesValue(Ty); 2207 2208 // X | ~(X & ?) = -1 2209 if (match(Y, m_Not(m_c_And(m_Specific(X), m_Value())))) 2210 return ConstantInt::getAllOnesValue(Ty); 2211 2212 // X | (X & ?) --> X 2213 if (match(Y, m_c_And(m_Specific(X), m_Value()))) 2214 return X; 2215 2216 Value *A, *B; 2217 2218 // (A ^ B) | (A | B) --> A | B 2219 // (A ^ B) | (B | A) --> B | A 2220 if (match(X, m_Xor(m_Value(A), m_Value(B))) && 2221 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2222 return Y; 2223 2224 // ~(A ^ B) | (A | B) --> -1 2225 // ~(A ^ B) | (B | A) --> -1 2226 if (match(X, m_Not(m_Xor(m_Value(A), m_Value(B)))) && 2227 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2228 return ConstantInt::getAllOnesValue(Ty); 2229 2230 // (A & ~B) | (A ^ B) --> A ^ B 2231 // (~B & A) | (A ^ B) --> A ^ B 2232 // (A & ~B) | (B ^ A) --> B ^ A 2233 // (~B & A) | (B ^ A) --> B ^ A 2234 if (match(X, m_c_And(m_Value(A), m_Not(m_Value(B)))) && 2235 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2236 return Y; 2237 2238 // (~A ^ B) | (A & B) --> ~A ^ B 2239 // (B ^ ~A) | (A & B) --> B ^ ~A 2240 // (~A ^ B) | (B & A) --> ~A ^ B 2241 // (B ^ ~A) | (B & A) --> B ^ ~A 2242 if (match(X, m_c_Xor(m_Not(m_Value(A)), m_Value(B))) && 2243 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2244 return X; 2245 2246 // (~A | B) | (A ^ B) --> -1 2247 // (~A | B) | (B ^ A) --> -1 2248 // (B | ~A) | (A ^ B) --> -1 2249 // (B | ~A) | (B ^ A) --> -1 2250 if (match(X, m_c_Or(m_Not(m_Value(A)), m_Value(B))) && 2251 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2252 return ConstantInt::getAllOnesValue(Ty); 2253 2254 // (~A & B) | ~(A | B) --> ~A 2255 // (~A & B) | ~(B | A) --> ~A 2256 // (B & ~A) | ~(A | B) --> ~A 2257 // (B & ~A) | ~(B | A) --> ~A 2258 Value *NotA; 2259 if (match(X, m_c_And(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2260 m_Value(B))) && 2261 match(Y, m_Not(m_c_Or(m_Specific(A), m_Specific(B))))) 2262 return NotA; 2263 // The same is true of Logical And 2264 // TODO: This could share the logic of the version above if there was a 2265 // version of LogicalAnd that allowed more than just i1 types. 2266 if (match(X, m_c_LogicalAnd(m_CombineAnd(m_Value(NotA), m_Not(m_Value(A))), 2267 m_Value(B))) && 2268 match(Y, m_Not(m_c_LogicalOr(m_Specific(A), m_Specific(B))))) 2269 return NotA; 2270 2271 // ~(A ^ B) | (A & B) --> ~(A ^ B) 2272 // ~(A ^ B) | (B & A) --> ~(A ^ B) 2273 Value *NotAB; 2274 if (match(X, m_CombineAnd(m_Not(m_Xor(m_Value(A), m_Value(B))), 2275 m_Value(NotAB))) && 2276 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2277 return NotAB; 2278 2279 // ~(A & B) | (A ^ B) --> ~(A & B) 2280 // ~(A & B) | (B ^ A) --> ~(A & B) 2281 if (match(X, m_CombineAnd(m_Not(m_And(m_Value(A), m_Value(B))), 2282 m_Value(NotAB))) && 2283 match(Y, m_c_Xor(m_Specific(A), m_Specific(B)))) 2284 return NotAB; 2285 2286 return nullptr; 2287 } 2288 2289 /// Given operands for an Or, see if we can fold the result. 2290 /// If not, this returns null. 2291 static Value *simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2292 unsigned MaxRecurse) { 2293 if (Constant *C = foldOrCommuteConstant(Instruction::Or, Op0, Op1, Q)) 2294 return C; 2295 2296 // X | poison -> poison 2297 if (isa<PoisonValue>(Op1)) 2298 return Op1; 2299 2300 // X | undef -> -1 2301 // X | -1 = -1 2302 // Do not return Op1 because it may contain undef elements if it's a vector. 2303 if (Q.isUndefValue(Op1) || match(Op1, m_AllOnes())) 2304 return Constant::getAllOnesValue(Op0->getType()); 2305 2306 // X | X = X 2307 // X | 0 = X 2308 if (Op0 == Op1 || match(Op1, m_Zero())) 2309 return Op0; 2310 2311 if (Value *R = simplifyOrLogic(Op0, Op1)) 2312 return R; 2313 if (Value *R = simplifyOrLogic(Op1, Op0)) 2314 return R; 2315 2316 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Or)) 2317 return V; 2318 2319 // Rotated -1 is still -1: 2320 // (-1 << X) | (-1 >> (C - X)) --> -1 2321 // (-1 >> X) | (-1 << (C - X)) --> -1 2322 // ...with C <= bitwidth (and commuted variants). 2323 Value *X, *Y; 2324 if ((match(Op0, m_Shl(m_AllOnes(), m_Value(X))) && 2325 match(Op1, m_LShr(m_AllOnes(), m_Value(Y)))) || 2326 (match(Op1, m_Shl(m_AllOnes(), m_Value(X))) && 2327 match(Op0, m_LShr(m_AllOnes(), m_Value(Y))))) { 2328 const APInt *C; 2329 if ((match(X, m_Sub(m_APInt(C), m_Specific(Y))) || 2330 match(Y, m_Sub(m_APInt(C), m_Specific(X)))) && 2331 C->ule(X->getType()->getScalarSizeInBits())) { 2332 return ConstantInt::getAllOnesValue(X->getType()); 2333 } 2334 } 2335 2336 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we 2337 // are mixing in another shift that is redundant with the funnel shift. 2338 2339 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y 2340 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y 2341 if (match(Op0, 2342 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2343 match(Op1, m_Shl(m_Specific(X), m_Specific(Y)))) 2344 return Op0; 2345 if (match(Op1, 2346 m_Intrinsic<Intrinsic::fshl>(m_Value(X), m_Value(), m_Value(Y))) && 2347 match(Op0, m_Shl(m_Specific(X), m_Specific(Y)))) 2348 return Op1; 2349 2350 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y 2351 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y 2352 if (match(Op0, 2353 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2354 match(Op1, m_LShr(m_Specific(X), m_Specific(Y)))) 2355 return Op0; 2356 if (match(Op1, 2357 m_Intrinsic<Intrinsic::fshr>(m_Value(), m_Value(X), m_Value(Y))) && 2358 match(Op0, m_LShr(m_Specific(X), m_Specific(Y)))) 2359 return Op1; 2360 2361 if (Value *V = 2362 simplifyAndOrWithICmpEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2363 return V; 2364 if (Value *V = 2365 simplifyAndOrWithICmpEq(Instruction::Or, Op1, Op0, Q, MaxRecurse)) 2366 return V; 2367 2368 if (Value *V = simplifyAndOrOfCmps(Q, Op0, Op1, false)) 2369 return V; 2370 2371 // If we have a multiplication overflow check that is being 'and'ed with a 2372 // check that one of the multipliers is not zero, we can omit the 'and', and 2373 // only keep the overflow check. 2374 if (isCheckForZeroAndMulWithOverflow(Op0, Op1, false)) 2375 return Op1; 2376 if (isCheckForZeroAndMulWithOverflow(Op1, Op0, false)) 2377 return Op0; 2378 2379 // Try some generic simplifications for associative operations. 2380 if (Value *V = 2381 simplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2382 return V; 2383 2384 // Or distributes over And. Try some generic simplifications based on this. 2385 if (Value *V = expandCommutativeBinOp(Instruction::Or, Op0, Op1, 2386 Instruction::And, Q, MaxRecurse)) 2387 return V; 2388 2389 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1)) { 2390 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2391 // A | (A || B) -> A || B 2392 if (match(Op1, m_Select(m_Specific(Op0), m_One(), m_Value()))) 2393 return Op1; 2394 else if (match(Op0, m_Select(m_Specific(Op1), m_One(), m_Value()))) 2395 return Op0; 2396 } 2397 // If the operation is with the result of a select instruction, check 2398 // whether operating on either branch of the select always yields the same 2399 // value. 2400 if (Value *V = 2401 threadBinOpOverSelect(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2402 return V; 2403 } 2404 2405 // (A & C1)|(B & C2) 2406 Value *A, *B; 2407 const APInt *C1, *C2; 2408 if (match(Op0, m_And(m_Value(A), m_APInt(C1))) && 2409 match(Op1, m_And(m_Value(B), m_APInt(C2)))) { 2410 if (*C1 == ~*C2) { 2411 // (A & C1)|(B & C2) 2412 // If we have: ((V + N) & C1) | (V & C2) 2413 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0 2414 // replace with V+N. 2415 Value *N; 2416 if (C2->isMask() && // C2 == 0+1+ 2417 match(A, m_c_Add(m_Specific(B), m_Value(N)))) { 2418 // Add commutes, try both ways. 2419 if (MaskedValueIsZero(N, *C2, Q)) 2420 return A; 2421 } 2422 // Or commutes, try both ways. 2423 if (C1->isMask() && match(B, m_c_Add(m_Specific(A), m_Value(N)))) { 2424 // Add commutes, try both ways. 2425 if (MaskedValueIsZero(N, *C1, Q)) 2426 return B; 2427 } 2428 } 2429 } 2430 2431 // If the operation is with the result of a phi instruction, check whether 2432 // operating on all incoming values of the phi always yields the same value. 2433 if (isa<PHINode>(Op0) || isa<PHINode>(Op1)) 2434 if (Value *V = threadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2435 return V; 2436 2437 // (A ^ C) | (A ^ ~C) -> -1, i.e. all bits set to one. 2438 if (match(Op0, m_Xor(m_Value(A), m_APInt(C1))) && 2439 match(Op1, m_Xor(m_Specific(A), m_SpecificInt(~*C1)))) 2440 return Constant::getAllOnesValue(Op0->getType()); 2441 2442 if (Op0->getType()->isIntOrIntVectorTy(1)) { 2443 if (std::optional<bool> Implied = 2444 isImpliedCondition(Op0, Op1, Q.DL, false)) { 2445 // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0. 2446 if (*Implied == false) 2447 return Op0; 2448 // If Op0 is false implies Op1 is true, then at least one is always true. 2449 if (*Implied == true) 2450 return ConstantInt::getTrue(Op0->getType()); 2451 } 2452 if (std::optional<bool> Implied = 2453 isImpliedCondition(Op1, Op0, Q.DL, false)) { 2454 // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1. 2455 if (*Implied == false) 2456 return Op1; 2457 // If Op1 is false implies Op0 is true, then at least one is always true. 2458 if (*Implied == true) 2459 return ConstantInt::getTrue(Op1->getType()); 2460 } 2461 } 2462 2463 if (Value *V = simplifyByDomEq(Instruction::Or, Op0, Op1, Q, MaxRecurse)) 2464 return V; 2465 2466 return nullptr; 2467 } 2468 2469 Value *llvm::simplifyOrInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2470 return ::simplifyOrInst(Op0, Op1, Q, RecursionLimit); 2471 } 2472 2473 /// Given operands for a Xor, see if we can fold the result. 2474 /// If not, this returns null. 2475 static Value *simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q, 2476 unsigned MaxRecurse) { 2477 if (Constant *C = foldOrCommuteConstant(Instruction::Xor, Op0, Op1, Q)) 2478 return C; 2479 2480 // X ^ poison -> poison 2481 if (isa<PoisonValue>(Op1)) 2482 return Op1; 2483 2484 // A ^ undef -> undef 2485 if (Q.isUndefValue(Op1)) 2486 return Op1; 2487 2488 // A ^ 0 = A 2489 if (match(Op1, m_Zero())) 2490 return Op0; 2491 2492 // A ^ A = 0 2493 if (Op0 == Op1) 2494 return Constant::getNullValue(Op0->getType()); 2495 2496 // A ^ ~A = ~A ^ A = -1 2497 if (match(Op0, m_Not(m_Specific(Op1))) || match(Op1, m_Not(m_Specific(Op0)))) 2498 return Constant::getAllOnesValue(Op0->getType()); 2499 2500 auto foldAndOrNot = [](Value *X, Value *Y) -> Value * { 2501 Value *A, *B; 2502 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants. 2503 if (match(X, m_c_And(m_Not(m_Value(A)), m_Value(B))) && 2504 match(Y, m_c_Or(m_Specific(A), m_Specific(B)))) 2505 return A; 2506 2507 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants. 2508 // The 'not' op must contain a complete -1 operand (no undef elements for 2509 // vector) for the transform to be safe. 2510 Value *NotA; 2511 if (match(X, m_c_Or(m_CombineAnd(m_Not(m_Value(A)), m_Value(NotA)), 2512 m_Value(B))) && 2513 match(Y, m_c_And(m_Specific(A), m_Specific(B)))) 2514 return NotA; 2515 2516 return nullptr; 2517 }; 2518 if (Value *R = foldAndOrNot(Op0, Op1)) 2519 return R; 2520 if (Value *R = foldAndOrNot(Op1, Op0)) 2521 return R; 2522 2523 if (Value *V = simplifyLogicOfAddSub(Op0, Op1, Instruction::Xor)) 2524 return V; 2525 2526 // Try some generic simplifications for associative operations. 2527 if (Value *V = 2528 simplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2529 return V; 2530 2531 // Threading Xor over selects and phi nodes is pointless, so don't bother. 2532 // Threading over the select in "A ^ select(cond, B, C)" means evaluating 2533 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and 2534 // only if B and C are equal. If B and C are equal then (since we assume 2535 // that operands have already been simplified) "select(cond, B, C)" should 2536 // have been simplified to the common value of B and C already. Analysing 2537 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly 2538 // for threading over phi nodes. 2539 2540 if (Value *V = simplifyByDomEq(Instruction::Xor, Op0, Op1, Q, MaxRecurse)) 2541 return V; 2542 2543 return nullptr; 2544 } 2545 2546 Value *llvm::simplifyXorInst(Value *Op0, Value *Op1, const SimplifyQuery &Q) { 2547 return ::simplifyXorInst(Op0, Op1, Q, RecursionLimit); 2548 } 2549 2550 static Type *getCompareTy(Value *Op) { 2551 return CmpInst::makeCmpResultType(Op->getType()); 2552 } 2553 2554 /// Rummage around inside V looking for something equivalent to the comparison 2555 /// "LHS Pred RHS". Return such a value if found, otherwise return null. 2556 /// Helper function for analyzing max/min idioms. 2557 static Value *extractEquivalentCondition(Value *V, CmpPredicate Pred, 2558 Value *LHS, Value *RHS) { 2559 SelectInst *SI = dyn_cast<SelectInst>(V); 2560 if (!SI) 2561 return nullptr; 2562 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); 2563 if (!Cmp) 2564 return nullptr; 2565 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1); 2566 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS) 2567 return Cmp; 2568 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) && 2569 LHS == CmpRHS && RHS == CmpLHS) 2570 return Cmp; 2571 return nullptr; 2572 } 2573 2574 /// Return true if the underlying object (storage) must be disjoint from 2575 /// storage returned by any noalias return call. 2576 static bool isAllocDisjoint(const Value *V) { 2577 // For allocas, we consider only static ones (dynamic 2578 // allocas might be transformed into calls to malloc not simultaneously 2579 // live with the compared-to allocation). For globals, we exclude symbols 2580 // that might be resolve lazily to symbols in another dynamically-loaded 2581 // library (and, thus, could be malloc'ed by the implementation). 2582 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) 2583 return AI->isStaticAlloca(); 2584 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) 2585 return (GV->hasLocalLinkage() || GV->hasHiddenVisibility() || 2586 GV->hasProtectedVisibility() || GV->hasGlobalUnnamedAddr()) && 2587 !GV->isThreadLocal(); 2588 if (const Argument *A = dyn_cast<Argument>(V)) 2589 return A->hasByValAttr(); 2590 return false; 2591 } 2592 2593 /// Return true if V1 and V2 are each the base of some distict storage region 2594 /// [V, object_size(V)] which do not overlap. Note that zero sized regions 2595 /// *are* possible, and that zero sized regions do not overlap with any other. 2596 static bool haveNonOverlappingStorage(const Value *V1, const Value *V2) { 2597 // Global variables always exist, so they always exist during the lifetime 2598 // of each other and all allocas. Global variables themselves usually have 2599 // non-overlapping storage, but since their addresses are constants, the 2600 // case involving two globals does not reach here and is instead handled in 2601 // constant folding. 2602 // 2603 // Two different allocas usually have different addresses... 2604 // 2605 // However, if there's an @llvm.stackrestore dynamically in between two 2606 // allocas, they may have the same address. It's tempting to reduce the 2607 // scope of the problem by only looking at *static* allocas here. That would 2608 // cover the majority of allocas while significantly reducing the likelihood 2609 // of having an @llvm.stackrestore pop up in the middle. However, it's not 2610 // actually impossible for an @llvm.stackrestore to pop up in the middle of 2611 // an entry block. Also, if we have a block that's not attached to a 2612 // function, we can't tell if it's "static" under the current definition. 2613 // Theoretically, this problem could be fixed by creating a new kind of 2614 // instruction kind specifically for static allocas. Such a new instruction 2615 // could be required to be at the top of the entry block, thus preventing it 2616 // from being subject to a @llvm.stackrestore. Instcombine could even 2617 // convert regular allocas into these special allocas. It'd be nifty. 2618 // However, until then, this problem remains open. 2619 // 2620 // So, we'll assume that two non-empty allocas have different addresses 2621 // for now. 2622 auto isByValArg = [](const Value *V) { 2623 const Argument *A = dyn_cast<Argument>(V); 2624 return A && A->hasByValAttr(); 2625 }; 2626 2627 // Byval args are backed by store which does not overlap with each other, 2628 // allocas, or globals. 2629 if (isByValArg(V1)) 2630 return isa<AllocaInst>(V2) || isa<GlobalVariable>(V2) || isByValArg(V2); 2631 if (isByValArg(V2)) 2632 return isa<AllocaInst>(V1) || isa<GlobalVariable>(V1) || isByValArg(V1); 2633 2634 return isa<AllocaInst>(V1) && 2635 (isa<AllocaInst>(V2) || isa<GlobalVariable>(V2)); 2636 } 2637 2638 // A significant optimization not implemented here is assuming that alloca 2639 // addresses are not equal to incoming argument values. They don't *alias*, 2640 // as we say, but that doesn't mean they aren't equal, so we take a 2641 // conservative approach. 2642 // 2643 // This is inspired in part by C++11 5.10p1: 2644 // "Two pointers of the same type compare equal if and only if they are both 2645 // null, both point to the same function, or both represent the same 2646 // address." 2647 // 2648 // This is pretty permissive. 2649 // 2650 // It's also partly due to C11 6.5.9p6: 2651 // "Two pointers compare equal if and only if both are null pointers, both are 2652 // pointers to the same object (including a pointer to an object and a 2653 // subobject at its beginning) or function, both are pointers to one past the 2654 // last element of the same array object, or one is a pointer to one past the 2655 // end of one array object and the other is a pointer to the start of a 2656 // different array object that happens to immediately follow the first array 2657 // object in the address space.) 2658 // 2659 // C11's version is more restrictive, however there's no reason why an argument 2660 // couldn't be a one-past-the-end value for a stack object in the caller and be 2661 // equal to the beginning of a stack object in the callee. 2662 // 2663 // If the C and C++ standards are ever made sufficiently restrictive in this 2664 // area, it may be possible to update LLVM's semantics accordingly and reinstate 2665 // this optimization. 2666 static Constant *computePointerICmp(CmpPredicate Pred, Value *LHS, Value *RHS, 2667 const SimplifyQuery &Q) { 2668 assert(LHS->getType() == RHS->getType() && "Must have same types"); 2669 const DataLayout &DL = Q.DL; 2670 const TargetLibraryInfo *TLI = Q.TLI; 2671 2672 // We can only fold certain predicates on pointer comparisons. 2673 switch (Pred) { 2674 default: 2675 return nullptr; 2676 2677 // Equality comparisons are easy to fold. 2678 case CmpInst::ICMP_EQ: 2679 case CmpInst::ICMP_NE: 2680 break; 2681 2682 // We can only handle unsigned relational comparisons because 'inbounds' on 2683 // a GEP only protects against unsigned wrapping. 2684 case CmpInst::ICMP_UGT: 2685 case CmpInst::ICMP_UGE: 2686 case CmpInst::ICMP_ULT: 2687 case CmpInst::ICMP_ULE: 2688 // However, we have to switch them to their signed variants to handle 2689 // negative indices from the base pointer. 2690 Pred = ICmpInst::getSignedPredicate(Pred); 2691 break; 2692 } 2693 2694 // Strip off any constant offsets so that we can reason about them. 2695 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets 2696 // here and compare base addresses like AliasAnalysis does, however there are 2697 // numerous hazards. AliasAnalysis and its utilities rely on special rules 2698 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis 2699 // doesn't need to guarantee pointer inequality when it says NoAlias. 2700 2701 // Even if an non-inbounds GEP occurs along the path we can still optimize 2702 // equality comparisons concerning the result. 2703 bool AllowNonInbounds = ICmpInst::isEquality(Pred); 2704 unsigned IndexSize = DL.getIndexTypeSizeInBits(LHS->getType()); 2705 APInt LHSOffset(IndexSize, 0), RHSOffset(IndexSize, 0); 2706 LHS = LHS->stripAndAccumulateConstantOffsets(DL, LHSOffset, AllowNonInbounds); 2707 RHS = RHS->stripAndAccumulateConstantOffsets(DL, RHSOffset, AllowNonInbounds); 2708 2709 // If LHS and RHS are related via constant offsets to the same base 2710 // value, we can replace it with an icmp which just compares the offsets. 2711 if (LHS == RHS) 2712 return ConstantInt::get(getCompareTy(LHS), 2713 ICmpInst::compare(LHSOffset, RHSOffset, Pred)); 2714 2715 // Various optimizations for (in)equality comparisons. 2716 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) { 2717 // Different non-empty allocations that exist at the same time have 2718 // different addresses (if the program can tell). If the offsets are 2719 // within the bounds of their allocations (and not one-past-the-end! 2720 // so we can't use inbounds!), and their allocations aren't the same, 2721 // the pointers are not equal. 2722 if (haveNonOverlappingStorage(LHS, RHS)) { 2723 uint64_t LHSSize, RHSSize; 2724 ObjectSizeOpts Opts; 2725 Opts.EvalMode = ObjectSizeOpts::Mode::Min; 2726 auto *F = [](Value *V) -> Function * { 2727 if (auto *I = dyn_cast<Instruction>(V)) 2728 return I->getFunction(); 2729 if (auto *A = dyn_cast<Argument>(V)) 2730 return A->getParent(); 2731 return nullptr; 2732 }(LHS); 2733 Opts.NullIsUnknownSize = F ? NullPointerIsDefined(F) : true; 2734 if (getObjectSize(LHS, LHSSize, DL, TLI, Opts) && LHSSize != 0 && 2735 getObjectSize(RHS, RHSSize, DL, TLI, Opts) && RHSSize != 0) { 2736 APInt Dist = LHSOffset - RHSOffset; 2737 if (Dist.isNonNegative() ? Dist.ult(LHSSize) : (-Dist).ult(RHSSize)) 2738 return ConstantInt::get(getCompareTy(LHS), 2739 !CmpInst::isTrueWhenEqual(Pred)); 2740 } 2741 } 2742 2743 // If one side of the equality comparison must come from a noalias call 2744 // (meaning a system memory allocation function), and the other side must 2745 // come from a pointer that cannot overlap with dynamically-allocated 2746 // memory within the lifetime of the current function (allocas, byval 2747 // arguments, globals), then determine the comparison result here. 2748 SmallVector<const Value *, 8> LHSUObjs, RHSUObjs; 2749 getUnderlyingObjects(LHS, LHSUObjs); 2750 getUnderlyingObjects(RHS, RHSUObjs); 2751 2752 // Is the set of underlying objects all noalias calls? 2753 auto IsNAC = [](ArrayRef<const Value *> Objects) { 2754 return all_of(Objects, isNoAliasCall); 2755 }; 2756 2757 // Is the set of underlying objects all things which must be disjoint from 2758 // noalias calls. We assume that indexing from such disjoint storage 2759 // into the heap is undefined, and thus offsets can be safely ignored. 2760 auto IsAllocDisjoint = [](ArrayRef<const Value *> Objects) { 2761 return all_of(Objects, ::isAllocDisjoint); 2762 }; 2763 2764 if ((IsNAC(LHSUObjs) && IsAllocDisjoint(RHSUObjs)) || 2765 (IsNAC(RHSUObjs) && IsAllocDisjoint(LHSUObjs))) 2766 return ConstantInt::get(getCompareTy(LHS), 2767 !CmpInst::isTrueWhenEqual(Pred)); 2768 2769 // Fold comparisons for non-escaping pointer even if the allocation call 2770 // cannot be elided. We cannot fold malloc comparison to null. Also, the 2771 // dynamic allocation call could be either of the operands. Note that 2772 // the other operand can not be based on the alloc - if it were, then 2773 // the cmp itself would be a capture. 2774 Value *MI = nullptr; 2775 if (isAllocLikeFn(LHS, TLI) && llvm::isKnownNonZero(RHS, Q)) 2776 MI = LHS; 2777 else if (isAllocLikeFn(RHS, TLI) && llvm::isKnownNonZero(LHS, Q)) 2778 MI = RHS; 2779 if (MI) { 2780 // FIXME: This is incorrect, see PR54002. While we can assume that the 2781 // allocation is at an address that makes the comparison false, this 2782 // requires that *all* comparisons to that address be false, which 2783 // InstSimplify cannot guarantee. 2784 struct CustomCaptureTracker : public CaptureTracker { 2785 bool Captured = false; 2786 void tooManyUses() override { Captured = true; } 2787 bool captured(const Use *U) override { 2788 if (auto *ICmp = dyn_cast<ICmpInst>(U->getUser())) { 2789 // Comparison against value stored in global variable. Given the 2790 // pointer does not escape, its value cannot be guessed and stored 2791 // separately in a global variable. 2792 unsigned OtherIdx = 1 - U->getOperandNo(); 2793 auto *LI = dyn_cast<LoadInst>(ICmp->getOperand(OtherIdx)); 2794 if (LI && isa<GlobalVariable>(LI->getPointerOperand())) 2795 return false; 2796 } 2797 2798 Captured = true; 2799 return true; 2800 } 2801 }; 2802 CustomCaptureTracker Tracker; 2803 PointerMayBeCaptured(MI, &Tracker); 2804 if (!Tracker.Captured) 2805 return ConstantInt::get(getCompareTy(LHS), 2806 CmpInst::isFalseWhenEqual(Pred)); 2807 } 2808 } 2809 2810 // Otherwise, fail. 2811 return nullptr; 2812 } 2813 2814 /// Fold an icmp when its operands have i1 scalar type. 2815 static Value *simplifyICmpOfBools(CmpPredicate Pred, Value *LHS, Value *RHS, 2816 const SimplifyQuery &Q) { 2817 Type *ITy = getCompareTy(LHS); // The return type. 2818 Type *OpTy = LHS->getType(); // The operand type. 2819 if (!OpTy->isIntOrIntVectorTy(1)) 2820 return nullptr; 2821 2822 // A boolean compared to true/false can be reduced in 14 out of the 20 2823 // (10 predicates * 2 constants) possible combinations. The other 2824 // 6 cases require a 'not' of the LHS. 2825 2826 auto ExtractNotLHS = [](Value *V) -> Value * { 2827 Value *X; 2828 if (match(V, m_Not(m_Value(X)))) 2829 return X; 2830 return nullptr; 2831 }; 2832 2833 if (match(RHS, m_Zero())) { 2834 switch (Pred) { 2835 case CmpInst::ICMP_NE: // X != 0 -> X 2836 case CmpInst::ICMP_UGT: // X >u 0 -> X 2837 case CmpInst::ICMP_SLT: // X <s 0 -> X 2838 return LHS; 2839 2840 case CmpInst::ICMP_EQ: // not(X) == 0 -> X != 0 -> X 2841 case CmpInst::ICMP_ULE: // not(X) <=u 0 -> X >u 0 -> X 2842 case CmpInst::ICMP_SGE: // not(X) >=s 0 -> X <s 0 -> X 2843 if (Value *X = ExtractNotLHS(LHS)) 2844 return X; 2845 break; 2846 2847 case CmpInst::ICMP_ULT: // X <u 0 -> false 2848 case CmpInst::ICMP_SGT: // X >s 0 -> false 2849 return getFalse(ITy); 2850 2851 case CmpInst::ICMP_UGE: // X >=u 0 -> true 2852 case CmpInst::ICMP_SLE: // X <=s 0 -> true 2853 return getTrue(ITy); 2854 2855 default: 2856 break; 2857 } 2858 } else if (match(RHS, m_One())) { 2859 switch (Pred) { 2860 case CmpInst::ICMP_EQ: // X == 1 -> X 2861 case CmpInst::ICMP_UGE: // X >=u 1 -> X 2862 case CmpInst::ICMP_SLE: // X <=s -1 -> X 2863 return LHS; 2864 2865 case CmpInst::ICMP_NE: // not(X) != 1 -> X == 1 -> X 2866 case CmpInst::ICMP_ULT: // not(X) <=u 1 -> X >=u 1 -> X 2867 case CmpInst::ICMP_SGT: // not(X) >s 1 -> X <=s -1 -> X 2868 if (Value *X = ExtractNotLHS(LHS)) 2869 return X; 2870 break; 2871 2872 case CmpInst::ICMP_UGT: // X >u 1 -> false 2873 case CmpInst::ICMP_SLT: // X <s -1 -> false 2874 return getFalse(ITy); 2875 2876 case CmpInst::ICMP_ULE: // X <=u 1 -> true 2877 case CmpInst::ICMP_SGE: // X >=s -1 -> true 2878 return getTrue(ITy); 2879 2880 default: 2881 break; 2882 } 2883 } 2884 2885 switch (Pred) { 2886 default: 2887 break; 2888 case ICmpInst::ICMP_UGE: 2889 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2890 return getTrue(ITy); 2891 break; 2892 case ICmpInst::ICMP_SGE: 2893 /// For signed comparison, the values for an i1 are 0 and -1 2894 /// respectively. This maps into a truth table of: 2895 /// LHS | RHS | LHS >=s RHS | LHS implies RHS 2896 /// 0 | 0 | 1 (0 >= 0) | 1 2897 /// 0 | 1 | 1 (0 >= -1) | 1 2898 /// 1 | 0 | 0 (-1 >= 0) | 0 2899 /// 1 | 1 | 1 (-1 >= -1) | 1 2900 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2901 return getTrue(ITy); 2902 break; 2903 case ICmpInst::ICMP_ULE: 2904 if (isImpliedCondition(LHS, RHS, Q.DL).value_or(false)) 2905 return getTrue(ITy); 2906 break; 2907 case ICmpInst::ICMP_SLE: 2908 /// SLE follows the same logic as SGE with the LHS and RHS swapped. 2909 if (isImpliedCondition(RHS, LHS, Q.DL).value_or(false)) 2910 return getTrue(ITy); 2911 break; 2912 } 2913 2914 return nullptr; 2915 } 2916 2917 /// Try hard to fold icmp with zero RHS because this is a common case. 2918 static Value *simplifyICmpWithZero(CmpPredicate Pred, Value *LHS, Value *RHS, 2919 const SimplifyQuery &Q) { 2920 if (!match(RHS, m_Zero())) 2921 return nullptr; 2922 2923 Type *ITy = getCompareTy(LHS); // The return type. 2924 switch (Pred) { 2925 default: 2926 llvm_unreachable("Unknown ICmp predicate!"); 2927 case ICmpInst::ICMP_ULT: 2928 return getFalse(ITy); 2929 case ICmpInst::ICMP_UGE: 2930 return getTrue(ITy); 2931 case ICmpInst::ICMP_EQ: 2932 case ICmpInst::ICMP_ULE: 2933 if (isKnownNonZero(LHS, Q)) 2934 return getFalse(ITy); 2935 break; 2936 case ICmpInst::ICMP_NE: 2937 case ICmpInst::ICMP_UGT: 2938 if (isKnownNonZero(LHS, Q)) 2939 return getTrue(ITy); 2940 break; 2941 case ICmpInst::ICMP_SLT: { 2942 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2943 if (LHSKnown.isNegative()) 2944 return getTrue(ITy); 2945 if (LHSKnown.isNonNegative()) 2946 return getFalse(ITy); 2947 break; 2948 } 2949 case ICmpInst::ICMP_SLE: { 2950 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2951 if (LHSKnown.isNegative()) 2952 return getTrue(ITy); 2953 if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q)) 2954 return getFalse(ITy); 2955 break; 2956 } 2957 case ICmpInst::ICMP_SGE: { 2958 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2959 if (LHSKnown.isNegative()) 2960 return getFalse(ITy); 2961 if (LHSKnown.isNonNegative()) 2962 return getTrue(ITy); 2963 break; 2964 } 2965 case ICmpInst::ICMP_SGT: { 2966 KnownBits LHSKnown = computeKnownBits(LHS, /* Depth */ 0, Q); 2967 if (LHSKnown.isNegative()) 2968 return getFalse(ITy); 2969 if (LHSKnown.isNonNegative() && isKnownNonZero(LHS, Q)) 2970 return getTrue(ITy); 2971 break; 2972 } 2973 } 2974 2975 return nullptr; 2976 } 2977 2978 static Value *simplifyICmpWithConstant(CmpPredicate Pred, Value *LHS, 2979 Value *RHS, const InstrInfoQuery &IIQ) { 2980 Type *ITy = getCompareTy(RHS); // The return type. 2981 2982 Value *X; 2983 const APInt *C; 2984 if (!match(RHS, m_APIntAllowPoison(C))) 2985 return nullptr; 2986 2987 // Sign-bit checks can be optimized to true/false after unsigned 2988 // floating-point casts: 2989 // icmp slt (bitcast (uitofp X)), 0 --> false 2990 // icmp sgt (bitcast (uitofp X)), -1 --> true 2991 if (match(LHS, m_ElementWiseBitCast(m_UIToFP(m_Value(X))))) { 2992 bool TrueIfSigned; 2993 if (isSignBitCheck(Pred, *C, TrueIfSigned)) 2994 return ConstantInt::getBool(ITy, !TrueIfSigned); 2995 } 2996 2997 // Rule out tautological comparisons (eg., ult 0 or uge 0). 2998 ConstantRange RHS_CR = ConstantRange::makeExactICmpRegion(Pred, *C); 2999 if (RHS_CR.isEmptySet()) 3000 return ConstantInt::getFalse(ITy); 3001 if (RHS_CR.isFullSet()) 3002 return ConstantInt::getTrue(ITy); 3003 3004 ConstantRange LHS_CR = 3005 computeConstantRange(LHS, CmpInst::isSigned(Pred), IIQ.UseInstrInfo); 3006 if (!LHS_CR.isFullSet()) { 3007 if (RHS_CR.contains(LHS_CR)) 3008 return ConstantInt::getTrue(ITy); 3009 if (RHS_CR.inverse().contains(LHS_CR)) 3010 return ConstantInt::getFalse(ITy); 3011 } 3012 3013 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC) 3014 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC) 3015 const APInt *MulC; 3016 if (IIQ.UseInstrInfo && ICmpInst::isEquality(Pred) && 3017 ((match(LHS, m_NUWMul(m_Value(), m_APIntAllowPoison(MulC))) && 3018 *MulC != 0 && C->urem(*MulC) != 0) || 3019 (match(LHS, m_NSWMul(m_Value(), m_APIntAllowPoison(MulC))) && 3020 *MulC != 0 && C->srem(*MulC) != 0))) 3021 return ConstantInt::get(ITy, Pred == ICmpInst::ICMP_NE); 3022 3023 return nullptr; 3024 } 3025 3026 enum class MonotonicType { GreaterEq, LowerEq }; 3027 3028 /// Get values V_i such that V uge V_i (GreaterEq) or V ule V_i (LowerEq). 3029 static void getUnsignedMonotonicValues(SmallPtrSetImpl<Value *> &Res, Value *V, 3030 MonotonicType Type, unsigned Depth = 0) { 3031 if (!Res.insert(V).second) 3032 return; 3033 3034 // Can be increased if useful. 3035 if (++Depth > 1) 3036 return; 3037 3038 auto *I = dyn_cast<Instruction>(V); 3039 if (!I) 3040 return; 3041 3042 Value *X, *Y; 3043 if (Type == MonotonicType::GreaterEq) { 3044 if (match(I, m_Or(m_Value(X), m_Value(Y))) || 3045 match(I, m_Intrinsic<Intrinsic::uadd_sat>(m_Value(X), m_Value(Y)))) { 3046 getUnsignedMonotonicValues(Res, X, Type, Depth); 3047 getUnsignedMonotonicValues(Res, Y, Type, Depth); 3048 } 3049 } else { 3050 assert(Type == MonotonicType::LowerEq); 3051 switch (I->getOpcode()) { 3052 case Instruction::And: 3053 getUnsignedMonotonicValues(Res, I->getOperand(0), Type, Depth); 3054 getUnsignedMonotonicValues(Res, I->getOperand(1), Type, Depth); 3055 break; 3056 case Instruction::URem: 3057 case Instruction::UDiv: 3058 case Instruction::LShr: 3059 getUnsignedMonotonicValues(Res, I->getOperand(0), Type, Depth); 3060 break; 3061 case Instruction::Call: 3062 if (match(I, m_Intrinsic<Intrinsic::usub_sat>(m_Value(X)))) 3063 getUnsignedMonotonicValues(Res, X, Type, Depth); 3064 break; 3065 default: 3066 break; 3067 } 3068 } 3069 } 3070 3071 static Value *simplifyICmpUsingMonotonicValues(CmpPredicate Pred, Value *LHS, 3072 Value *RHS) { 3073 if (Pred != ICmpInst::ICMP_UGE && Pred != ICmpInst::ICMP_ULT) 3074 return nullptr; 3075 3076 // We have LHS uge GreaterValues and LowerValues uge RHS. If any of the 3077 // GreaterValues and LowerValues are the same, it follows that LHS uge RHS. 3078 SmallPtrSet<Value *, 4> GreaterValues; 3079 SmallPtrSet<Value *, 4> LowerValues; 3080 getUnsignedMonotonicValues(GreaterValues, LHS, MonotonicType::GreaterEq); 3081 getUnsignedMonotonicValues(LowerValues, RHS, MonotonicType::LowerEq); 3082 for (Value *GV : GreaterValues) 3083 if (LowerValues.contains(GV)) 3084 return ConstantInt::getBool(getCompareTy(LHS), 3085 Pred == ICmpInst::ICMP_UGE); 3086 return nullptr; 3087 } 3088 3089 static Value *simplifyICmpWithBinOpOnLHS(CmpPredicate Pred, BinaryOperator *LBO, 3090 Value *RHS, const SimplifyQuery &Q, 3091 unsigned MaxRecurse) { 3092 Type *ITy = getCompareTy(RHS); // The return type. 3093 3094 Value *Y = nullptr; 3095 // icmp pred (or X, Y), X 3096 if (match(LBO, m_c_Or(m_Value(Y), m_Specific(RHS)))) { 3097 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SGE) { 3098 KnownBits RHSKnown = computeKnownBits(RHS, /* Depth */ 0, Q); 3099 KnownBits YKnown = computeKnownBits(Y, /* Depth */ 0, Q); 3100 if (RHSKnown.isNonNegative() && YKnown.isNegative()) 3101 return Pred == ICmpInst::ICMP_SLT ? getTrue(ITy) : getFalse(ITy); 3102 if (RHSKnown.isNegative() || YKnown.isNonNegative()) 3103 return Pred == ICmpInst::ICMP_SLT ? getFalse(ITy) : getTrue(ITy); 3104 } 3105 } 3106 3107 // icmp pred (urem X, Y), Y 3108 if (match(LBO, m_URem(m_Value(), m_Specific(RHS)))) { 3109 switch (Pred) { 3110 default: 3111 break; 3112 case ICmpInst::ICMP_SGT: 3113 case ICmpInst::ICMP_SGE: { 3114 KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q); 3115 if (!Known.isNonNegative()) 3116 break; 3117 [[fallthrough]]; 3118 } 3119 case ICmpInst::ICMP_EQ: 3120 case ICmpInst::ICMP_UGT: 3121 case ICmpInst::ICMP_UGE: 3122 return getFalse(ITy); 3123 case ICmpInst::ICMP_SLT: 3124 case ICmpInst::ICMP_SLE: { 3125 KnownBits Known = computeKnownBits(RHS, /* Depth */ 0, Q); 3126 if (!Known.isNonNegative()) 3127 break; 3128 [[fallthrough]]; 3129 } 3130 case ICmpInst::ICMP_NE: 3131 case ICmpInst::ICMP_ULT: 3132 case ICmpInst::ICMP_ULE: 3133 return getTrue(ITy); 3134 } 3135 } 3136 3137 // If x is nonzero: 3138 // x >>u C <u x --> true for C != 0. 3139 // x >>u C != x --> true for C != 0. 3140 // x >>u C >=u x --> false for C != 0. 3141 // x >>u C == x --> false for C != 0. 3142 // x udiv C <u x --> true for C != 1. 3143 // x udiv C != x --> true for C != 1. 3144 // x udiv C >=u x --> false for C != 1. 3145 // x udiv C == x --> false for C != 1. 3146 // TODO: allow non-constant shift amount/divisor 3147 const APInt *C; 3148 if ((match(LBO, m_LShr(m_Specific(RHS), m_APInt(C))) && *C != 0) || 3149 (match(LBO, m_UDiv(m_Specific(RHS), m_APInt(C))) && *C != 1)) { 3150 if (isKnownNonZero(RHS, Q)) { 3151 switch (Pred) { 3152 default: 3153 break; 3154 case ICmpInst::ICMP_EQ: 3155 case ICmpInst::ICMP_UGE: 3156 case ICmpInst::ICMP_UGT: 3157 return getFalse(ITy); 3158 case ICmpInst::ICMP_NE: 3159 case ICmpInst::ICMP_ULT: 3160 case ICmpInst::ICMP_ULE: 3161 return getTrue(ITy); 3162 } 3163 } 3164 } 3165 3166 // (x*C1)/C2 <= x for C1 <= C2. 3167 // This holds even if the multiplication overflows: Assume that x != 0 and 3168 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and 3169 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x. 3170 // 3171 // Additionally, either the multiplication and division might be represented 3172 // as shifts: 3173 // (x*C1)>>C2 <= x for C1 < 2**C2. 3174 // (x<<C1)/C2 <= x for 2**C1 < C2. 3175 const APInt *C1, *C2; 3176 if ((match(LBO, m_UDiv(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3177 C1->ule(*C2)) || 3178 (match(LBO, m_LShr(m_Mul(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3179 C1->ule(APInt(C2->getBitWidth(), 1) << *C2)) || 3180 (match(LBO, m_UDiv(m_Shl(m_Specific(RHS), m_APInt(C1)), m_APInt(C2))) && 3181 (APInt(C1->getBitWidth(), 1) << *C1).ule(*C2))) { 3182 if (Pred == ICmpInst::ICMP_UGT) 3183 return getFalse(ITy); 3184 if (Pred == ICmpInst::ICMP_ULE) 3185 return getTrue(ITy); 3186 } 3187 3188 // (sub C, X) == X, C is odd --> false 3189 // (sub C, X) != X, C is odd --> true 3190 if (match(LBO, m_Sub(m_APIntAllowPoison(C), m_Specific(RHS))) && 3191 (*C & 1) == 1 && ICmpInst::isEquality(Pred)) 3192 return (Pred == ICmpInst::ICMP_EQ) ? getFalse(ITy) : getTrue(ITy); 3193 3194 return nullptr; 3195 } 3196 3197 // If only one of the icmp's operands has NSW flags, try to prove that: 3198 // 3199 // icmp slt (x + C1), (x +nsw C2) 3200 // 3201 // is equivalent to: 3202 // 3203 // icmp slt C1, C2 3204 // 3205 // which is true if x + C2 has the NSW flags set and: 3206 // *) C1 < C2 && C1 >= 0, or 3207 // *) C2 < C1 && C1 <= 0. 3208 // 3209 static bool trySimplifyICmpWithAdds(CmpPredicate Pred, Value *LHS, Value *RHS, 3210 const InstrInfoQuery &IIQ) { 3211 // TODO: only support icmp slt for now. 3212 if (Pred != CmpInst::ICMP_SLT || !IIQ.UseInstrInfo) 3213 return false; 3214 3215 // Canonicalize nsw add as RHS. 3216 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3217 std::swap(LHS, RHS); 3218 if (!match(RHS, m_NSWAdd(m_Value(), m_Value()))) 3219 return false; 3220 3221 Value *X; 3222 const APInt *C1, *C2; 3223 if (!match(LHS, m_Add(m_Value(X), m_APInt(C1))) || 3224 !match(RHS, m_Add(m_Specific(X), m_APInt(C2)))) 3225 return false; 3226 3227 return (C1->slt(*C2) && C1->isNonNegative()) || 3228 (C2->slt(*C1) && C1->isNonPositive()); 3229 } 3230 3231 /// TODO: A large part of this logic is duplicated in InstCombine's 3232 /// foldICmpBinOp(). We should be able to share that and avoid the code 3233 /// duplication. 3234 static Value *simplifyICmpWithBinOp(CmpPredicate Pred, Value *LHS, Value *RHS, 3235 const SimplifyQuery &Q, 3236 unsigned MaxRecurse) { 3237 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS); 3238 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS); 3239 if (MaxRecurse && (LBO || RBO)) { 3240 // Analyze the case when either LHS or RHS is an add instruction. 3241 Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr; 3242 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null). 3243 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false; 3244 if (LBO && LBO->getOpcode() == Instruction::Add) { 3245 A = LBO->getOperand(0); 3246 B = LBO->getOperand(1); 3247 NoLHSWrapProblem = 3248 ICmpInst::isEquality(Pred) || 3249 (CmpInst::isUnsigned(Pred) && 3250 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO))) || 3251 (CmpInst::isSigned(Pred) && 3252 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO))); 3253 } 3254 if (RBO && RBO->getOpcode() == Instruction::Add) { 3255 C = RBO->getOperand(0); 3256 D = RBO->getOperand(1); 3257 NoRHSWrapProblem = 3258 ICmpInst::isEquality(Pred) || 3259 (CmpInst::isUnsigned(Pred) && 3260 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(RBO))) || 3261 (CmpInst::isSigned(Pred) && 3262 Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(RBO))); 3263 } 3264 3265 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow. 3266 if ((A == RHS || B == RHS) && NoLHSWrapProblem) 3267 if (Value *V = simplifyICmpInst(Pred, A == RHS ? B : A, 3268 Constant::getNullValue(RHS->getType()), Q, 3269 MaxRecurse - 1)) 3270 return V; 3271 3272 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow. 3273 if ((C == LHS || D == LHS) && NoRHSWrapProblem) 3274 if (Value *V = 3275 simplifyICmpInst(Pred, Constant::getNullValue(LHS->getType()), 3276 C == LHS ? D : C, Q, MaxRecurse - 1)) 3277 return V; 3278 3279 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow. 3280 bool CanSimplify = (NoLHSWrapProblem && NoRHSWrapProblem) || 3281 trySimplifyICmpWithAdds(Pred, LHS, RHS, Q.IIQ); 3282 if (A && C && (A == C || A == D || B == C || B == D) && CanSimplify) { 3283 // Determine Y and Z in the form icmp (X+Y), (X+Z). 3284 Value *Y, *Z; 3285 if (A == C) { 3286 // C + B == C + D -> B == D 3287 Y = B; 3288 Z = D; 3289 } else if (A == D) { 3290 // D + B == C + D -> B == C 3291 Y = B; 3292 Z = C; 3293 } else if (B == C) { 3294 // A + C == C + D -> A == D 3295 Y = A; 3296 Z = D; 3297 } else { 3298 assert(B == D); 3299 // A + D == C + D -> A == C 3300 Y = A; 3301 Z = C; 3302 } 3303 if (Value *V = simplifyICmpInst(Pred, Y, Z, Q, MaxRecurse - 1)) 3304 return V; 3305 } 3306 } 3307 3308 if (LBO) 3309 if (Value *V = simplifyICmpWithBinOpOnLHS(Pred, LBO, RHS, Q, MaxRecurse)) 3310 return V; 3311 3312 if (RBO) 3313 if (Value *V = simplifyICmpWithBinOpOnLHS( 3314 ICmpInst::getSwappedPredicate(Pred), RBO, LHS, Q, MaxRecurse)) 3315 return V; 3316 3317 // 0 - (zext X) pred C 3318 if (!CmpInst::isUnsigned(Pred) && match(LHS, m_Neg(m_ZExt(m_Value())))) { 3319 const APInt *C; 3320 if (match(RHS, m_APInt(C))) { 3321 if (C->isStrictlyPositive()) { 3322 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_NE) 3323 return ConstantInt::getTrue(getCompareTy(RHS)); 3324 if (Pred == ICmpInst::ICMP_SGE || Pred == ICmpInst::ICMP_EQ) 3325 return ConstantInt::getFalse(getCompareTy(RHS)); 3326 } 3327 if (C->isNonNegative()) { 3328 if (Pred == ICmpInst::ICMP_SLE) 3329 return ConstantInt::getTrue(getCompareTy(RHS)); 3330 if (Pred == ICmpInst::ICMP_SGT) 3331 return ConstantInt::getFalse(getCompareTy(RHS)); 3332 } 3333 } 3334 } 3335 3336 // If C2 is a power-of-2 and C is not: 3337 // (C2 << X) == C --> false 3338 // (C2 << X) != C --> true 3339 const APInt *C; 3340 if (match(LHS, m_Shl(m_Power2(), m_Value())) && 3341 match(RHS, m_APIntAllowPoison(C)) && !C->isPowerOf2()) { 3342 // C2 << X can equal zero in some circumstances. 3343 // This simplification might be unsafe if C is zero. 3344 // 3345 // We know it is safe if: 3346 // - The shift is nsw. We can't shift out the one bit. 3347 // - The shift is nuw. We can't shift out the one bit. 3348 // - C2 is one. 3349 // - C isn't zero. 3350 if (Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3351 Q.IIQ.hasNoUnsignedWrap(cast<OverflowingBinaryOperator>(LBO)) || 3352 match(LHS, m_Shl(m_One(), m_Value())) || !C->isZero()) { 3353 if (Pred == ICmpInst::ICMP_EQ) 3354 return ConstantInt::getFalse(getCompareTy(RHS)); 3355 if (Pred == ICmpInst::ICMP_NE) 3356 return ConstantInt::getTrue(getCompareTy(RHS)); 3357 } 3358 } 3359 3360 // If C is a power-of-2: 3361 // (C << X) >u 0x8000 --> false 3362 // (C << X) <=u 0x8000 --> true 3363 if (match(LHS, m_Shl(m_Power2(), m_Value())) && match(RHS, m_SignMask())) { 3364 if (Pred == ICmpInst::ICMP_UGT) 3365 return ConstantInt::getFalse(getCompareTy(RHS)); 3366 if (Pred == ICmpInst::ICMP_ULE) 3367 return ConstantInt::getTrue(getCompareTy(RHS)); 3368 } 3369 3370 if (!MaxRecurse || !LBO || !RBO || LBO->getOpcode() != RBO->getOpcode()) 3371 return nullptr; 3372 3373 if (LBO->getOperand(0) == RBO->getOperand(0)) { 3374 switch (LBO->getOpcode()) { 3375 default: 3376 break; 3377 case Instruction::Shl: { 3378 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3379 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3380 if (!NUW || (ICmpInst::isSigned(Pred) && !NSW) || 3381 !isKnownNonZero(LBO->getOperand(0), Q)) 3382 break; 3383 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(1), 3384 RBO->getOperand(1), Q, MaxRecurse - 1)) 3385 return V; 3386 break; 3387 } 3388 // If C1 & C2 == C1, A = X and/or C1, B = X and/or C2: 3389 // icmp ule A, B -> true 3390 // icmp ugt A, B -> false 3391 // icmp sle A, B -> true (C1 and C2 are the same sign) 3392 // icmp sgt A, B -> false (C1 and C2 are the same sign) 3393 case Instruction::And: 3394 case Instruction::Or: { 3395 const APInt *C1, *C2; 3396 if (ICmpInst::isRelational(Pred) && 3397 match(LBO->getOperand(1), m_APInt(C1)) && 3398 match(RBO->getOperand(1), m_APInt(C2))) { 3399 if (!C1->isSubsetOf(*C2)) { 3400 std::swap(C1, C2); 3401 Pred = ICmpInst::getSwappedPredicate(Pred); 3402 } 3403 if (C1->isSubsetOf(*C2)) { 3404 if (Pred == ICmpInst::ICMP_ULE) 3405 return ConstantInt::getTrue(getCompareTy(LHS)); 3406 if (Pred == ICmpInst::ICMP_UGT) 3407 return ConstantInt::getFalse(getCompareTy(LHS)); 3408 if (C1->isNonNegative() == C2->isNonNegative()) { 3409 if (Pred == ICmpInst::ICMP_SLE) 3410 return ConstantInt::getTrue(getCompareTy(LHS)); 3411 if (Pred == ICmpInst::ICMP_SGT) 3412 return ConstantInt::getFalse(getCompareTy(LHS)); 3413 } 3414 } 3415 } 3416 break; 3417 } 3418 } 3419 } 3420 3421 if (LBO->getOperand(1) == RBO->getOperand(1)) { 3422 switch (LBO->getOpcode()) { 3423 default: 3424 break; 3425 case Instruction::UDiv: 3426 case Instruction::LShr: 3427 if (ICmpInst::isSigned(Pred) || !Q.IIQ.isExact(LBO) || 3428 !Q.IIQ.isExact(RBO)) 3429 break; 3430 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3431 RBO->getOperand(0), Q, MaxRecurse - 1)) 3432 return V; 3433 break; 3434 case Instruction::SDiv: 3435 if (!ICmpInst::isEquality(Pred) || !Q.IIQ.isExact(LBO) || 3436 !Q.IIQ.isExact(RBO)) 3437 break; 3438 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3439 RBO->getOperand(0), Q, MaxRecurse - 1)) 3440 return V; 3441 break; 3442 case Instruction::AShr: 3443 if (!Q.IIQ.isExact(LBO) || !Q.IIQ.isExact(RBO)) 3444 break; 3445 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3446 RBO->getOperand(0), Q, MaxRecurse - 1)) 3447 return V; 3448 break; 3449 case Instruction::Shl: { 3450 bool NUW = Q.IIQ.hasNoUnsignedWrap(LBO) && Q.IIQ.hasNoUnsignedWrap(RBO); 3451 bool NSW = Q.IIQ.hasNoSignedWrap(LBO) && Q.IIQ.hasNoSignedWrap(RBO); 3452 if (!NUW && !NSW) 3453 break; 3454 if (!NSW && ICmpInst::isSigned(Pred)) 3455 break; 3456 if (Value *V = simplifyICmpInst(Pred, LBO->getOperand(0), 3457 RBO->getOperand(0), Q, MaxRecurse - 1)) 3458 return V; 3459 break; 3460 } 3461 } 3462 } 3463 return nullptr; 3464 } 3465 3466 /// simplify integer comparisons where at least one operand of the compare 3467 /// matches an integer min/max idiom. 3468 static Value *simplifyICmpWithMinMax(CmpPredicate Pred, Value *LHS, Value *RHS, 3469 const SimplifyQuery &Q, 3470 unsigned MaxRecurse) { 3471 Type *ITy = getCompareTy(LHS); // The return type. 3472 Value *A, *B; 3473 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE; 3474 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B". 3475 3476 // Signed variants on "max(a,b)>=a -> true". 3477 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3478 if (A != RHS) 3479 std::swap(A, B); // smax(A, B) pred A. 3480 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3481 // We analyze this as smax(A, B) pred A. 3482 P = Pred; 3483 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) && 3484 (A == LHS || B == LHS)) { 3485 if (A != LHS) 3486 std::swap(A, B); // A pred smax(A, B). 3487 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B". 3488 // We analyze this as smax(A, B) swapped-pred A. 3489 P = CmpInst::getSwappedPredicate(Pred); 3490 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) && 3491 (A == RHS || B == RHS)) { 3492 if (A != RHS) 3493 std::swap(A, B); // smin(A, B) pred A. 3494 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3495 // We analyze this as smax(-A, -B) swapped-pred -A. 3496 // Note that we do not need to actually form -A or -B thanks to EqP. 3497 P = CmpInst::getSwappedPredicate(Pred); 3498 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) && 3499 (A == LHS || B == LHS)) { 3500 if (A != LHS) 3501 std::swap(A, B); // A pred smin(A, B). 3502 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B". 3503 // We analyze this as smax(-A, -B) pred -A. 3504 // Note that we do not need to actually form -A or -B thanks to EqP. 3505 P = Pred; 3506 } 3507 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3508 // Cases correspond to "max(A, B) p A". 3509 switch (P) { 3510 default: 3511 break; 3512 case CmpInst::ICMP_EQ: 3513 case CmpInst::ICMP_SLE: 3514 // Equivalent to "A EqP B". This may be the same as the condition tested 3515 // in the max/min; if so, we can just return that. 3516 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3517 return V; 3518 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3519 return V; 3520 // Otherwise, see if "A EqP B" simplifies. 3521 if (MaxRecurse) 3522 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3523 return V; 3524 break; 3525 case CmpInst::ICMP_NE: 3526 case CmpInst::ICMP_SGT: { 3527 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3528 // Equivalent to "A InvEqP B". This may be the same as the condition 3529 // tested in the max/min; if so, we can just return that. 3530 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3531 return V; 3532 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3533 return V; 3534 // Otherwise, see if "A InvEqP B" simplifies. 3535 if (MaxRecurse) 3536 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3537 return V; 3538 break; 3539 } 3540 case CmpInst::ICMP_SGE: 3541 // Always true. 3542 return getTrue(ITy); 3543 case CmpInst::ICMP_SLT: 3544 // Always false. 3545 return getFalse(ITy); 3546 } 3547 } 3548 3549 // Unsigned variants on "max(a,b)>=a -> true". 3550 P = CmpInst::BAD_ICMP_PREDICATE; 3551 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) { 3552 if (A != RHS) 3553 std::swap(A, B); // umax(A, B) pred A. 3554 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3555 // We analyze this as umax(A, B) pred A. 3556 P = Pred; 3557 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) && 3558 (A == LHS || B == LHS)) { 3559 if (A != LHS) 3560 std::swap(A, B); // A pred umax(A, B). 3561 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B". 3562 // We analyze this as umax(A, B) swapped-pred A. 3563 P = CmpInst::getSwappedPredicate(Pred); 3564 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) && 3565 (A == RHS || B == RHS)) { 3566 if (A != RHS) 3567 std::swap(A, B); // umin(A, B) pred A. 3568 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3569 // We analyze this as umax(-A, -B) swapped-pred -A. 3570 // Note that we do not need to actually form -A or -B thanks to EqP. 3571 P = CmpInst::getSwappedPredicate(Pred); 3572 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) && 3573 (A == LHS || B == LHS)) { 3574 if (A != LHS) 3575 std::swap(A, B); // A pred umin(A, B). 3576 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B". 3577 // We analyze this as umax(-A, -B) pred -A. 3578 // Note that we do not need to actually form -A or -B thanks to EqP. 3579 P = Pred; 3580 } 3581 if (P != CmpInst::BAD_ICMP_PREDICATE) { 3582 // Cases correspond to "max(A, B) p A". 3583 switch (P) { 3584 default: 3585 break; 3586 case CmpInst::ICMP_EQ: 3587 case CmpInst::ICMP_ULE: 3588 // Equivalent to "A EqP B". This may be the same as the condition tested 3589 // in the max/min; if so, we can just return that. 3590 if (Value *V = extractEquivalentCondition(LHS, EqP, A, B)) 3591 return V; 3592 if (Value *V = extractEquivalentCondition(RHS, EqP, A, B)) 3593 return V; 3594 // Otherwise, see if "A EqP B" simplifies. 3595 if (MaxRecurse) 3596 if (Value *V = simplifyICmpInst(EqP, A, B, Q, MaxRecurse - 1)) 3597 return V; 3598 break; 3599 case CmpInst::ICMP_NE: 3600 case CmpInst::ICMP_UGT: { 3601 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP); 3602 // Equivalent to "A InvEqP B". This may be the same as the condition 3603 // tested in the max/min; if so, we can just return that. 3604 if (Value *V = extractEquivalentCondition(LHS, InvEqP, A, B)) 3605 return V; 3606 if (Value *V = extractEquivalentCondition(RHS, InvEqP, A, B)) 3607 return V; 3608 // Otherwise, see if "A InvEqP B" simplifies. 3609 if (MaxRecurse) 3610 if (Value *V = simplifyICmpInst(InvEqP, A, B, Q, MaxRecurse - 1)) 3611 return V; 3612 break; 3613 } 3614 case CmpInst::ICMP_UGE: 3615 return getTrue(ITy); 3616 case CmpInst::ICMP_ULT: 3617 return getFalse(ITy); 3618 } 3619 } 3620 3621 // Comparing 1 each of min/max with a common operand? 3622 // Canonicalize min operand to RHS. 3623 if (match(LHS, m_UMin(m_Value(), m_Value())) || 3624 match(LHS, m_SMin(m_Value(), m_Value()))) { 3625 std::swap(LHS, RHS); 3626 Pred = ICmpInst::getSwappedPredicate(Pred); 3627 } 3628 3629 Value *C, *D; 3630 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && 3631 match(RHS, m_SMin(m_Value(C), m_Value(D))) && 3632 (A == C || A == D || B == C || B == D)) { 3633 // smax(A, B) >=s smin(A, D) --> true 3634 if (Pred == CmpInst::ICMP_SGE) 3635 return getTrue(ITy); 3636 // smax(A, B) <s smin(A, D) --> false 3637 if (Pred == CmpInst::ICMP_SLT) 3638 return getFalse(ITy); 3639 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && 3640 match(RHS, m_UMin(m_Value(C), m_Value(D))) && 3641 (A == C || A == D || B == C || B == D)) { 3642 // umax(A, B) >=u umin(A, D) --> true 3643 if (Pred == CmpInst::ICMP_UGE) 3644 return getTrue(ITy); 3645 // umax(A, B) <u umin(A, D) --> false 3646 if (Pred == CmpInst::ICMP_ULT) 3647 return getFalse(ITy); 3648 } 3649 3650 return nullptr; 3651 } 3652 3653 static Value *simplifyICmpWithDominatingAssume(CmpPredicate Predicate, 3654 Value *LHS, Value *RHS, 3655 const SimplifyQuery &Q) { 3656 // Gracefully handle instructions that have not been inserted yet. 3657 if (!Q.AC || !Q.CxtI) 3658 return nullptr; 3659 3660 for (Value *AssumeBaseOp : {LHS, RHS}) { 3661 for (auto &AssumeVH : Q.AC->assumptionsFor(AssumeBaseOp)) { 3662 if (!AssumeVH) 3663 continue; 3664 3665 CallInst *Assume = cast<CallInst>(AssumeVH); 3666 if (std::optional<bool> Imp = isImpliedCondition( 3667 Assume->getArgOperand(0), Predicate, LHS, RHS, Q.DL)) 3668 if (isValidAssumeForContext(Assume, Q.CxtI, Q.DT)) 3669 return ConstantInt::get(getCompareTy(LHS), *Imp); 3670 } 3671 } 3672 3673 return nullptr; 3674 } 3675 3676 static Value *simplifyICmpWithIntrinsicOnLHS(CmpPredicate Pred, Value *LHS, 3677 Value *RHS) { 3678 auto *II = dyn_cast<IntrinsicInst>(LHS); 3679 if (!II) 3680 return nullptr; 3681 3682 switch (II->getIntrinsicID()) { 3683 case Intrinsic::uadd_sat: 3684 // uadd.sat(X, Y) uge X + Y 3685 if (match(RHS, m_c_Add(m_Specific(II->getArgOperand(0)), 3686 m_Specific(II->getArgOperand(1))))) { 3687 if (Pred == ICmpInst::ICMP_UGE) 3688 return ConstantInt::getTrue(getCompareTy(II)); 3689 if (Pred == ICmpInst::ICMP_ULT) 3690 return ConstantInt::getFalse(getCompareTy(II)); 3691 } 3692 return nullptr; 3693 case Intrinsic::usub_sat: 3694 // usub.sat(X, Y) ule X - Y 3695 if (match(RHS, m_Sub(m_Specific(II->getArgOperand(0)), 3696 m_Specific(II->getArgOperand(1))))) { 3697 if (Pred == ICmpInst::ICMP_ULE) 3698 return ConstantInt::getTrue(getCompareTy(II)); 3699 if (Pred == ICmpInst::ICMP_UGT) 3700 return ConstantInt::getFalse(getCompareTy(II)); 3701 } 3702 return nullptr; 3703 default: 3704 return nullptr; 3705 } 3706 } 3707 3708 /// Helper method to get range from metadata or attribute. 3709 static std::optional<ConstantRange> getRange(Value *V, 3710 const InstrInfoQuery &IIQ) { 3711 if (Instruction *I = dyn_cast<Instruction>(V)) 3712 if (MDNode *MD = IIQ.getMetadata(I, LLVMContext::MD_range)) 3713 return getConstantRangeFromMetadata(*MD); 3714 3715 if (const Argument *A = dyn_cast<Argument>(V)) 3716 return A->getRange(); 3717 else if (const CallBase *CB = dyn_cast<CallBase>(V)) 3718 return CB->getRange(); 3719 3720 return std::nullopt; 3721 } 3722 3723 /// Given operands for an ICmpInst, see if we can fold the result. 3724 /// If not, this returns null. 3725 static Value *simplifyICmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, 3726 const SimplifyQuery &Q, unsigned MaxRecurse) { 3727 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!"); 3728 3729 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 3730 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 3731 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI); 3732 3733 // If we have a constant, make sure it is on the RHS. 3734 std::swap(LHS, RHS); 3735 Pred = CmpInst::getSwappedPredicate(Pred); 3736 } 3737 assert(!isa<UndefValue>(LHS) && "Unexpected icmp undef,%X"); 3738 3739 Type *ITy = getCompareTy(LHS); // The return type. 3740 3741 // icmp poison, X -> poison 3742 if (isa<PoisonValue>(RHS)) 3743 return PoisonValue::get(ITy); 3744 3745 // For EQ and NE, we can always pick a value for the undef to make the 3746 // predicate pass or fail, so we can return undef. 3747 // Matches behavior in llvm::ConstantFoldCompareInstruction. 3748 if (Q.isUndefValue(RHS) && ICmpInst::isEquality(Pred)) 3749 return UndefValue::get(ITy); 3750 3751 // icmp X, X -> true/false 3752 // icmp X, undef -> true/false because undef could be X. 3753 if (LHS == RHS || Q.isUndefValue(RHS)) 3754 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred)); 3755 3756 if (Value *V = simplifyICmpOfBools(Pred, LHS, RHS, Q)) 3757 return V; 3758 3759 // TODO: Sink/common this with other potentially expensive calls that use 3760 // ValueTracking? See comment below for isKnownNonEqual(). 3761 if (Value *V = simplifyICmpWithZero(Pred, LHS, RHS, Q)) 3762 return V; 3763 3764 if (Value *V = simplifyICmpWithConstant(Pred, LHS, RHS, Q.IIQ)) 3765 return V; 3766 3767 // If both operands have range metadata, use the metadata 3768 // to simplify the comparison. 3769 if (std::optional<ConstantRange> RhsCr = getRange(RHS, Q.IIQ)) 3770 if (std::optional<ConstantRange> LhsCr = getRange(LHS, Q.IIQ)) { 3771 if (LhsCr->icmp(Pred, *RhsCr)) 3772 return ConstantInt::getTrue(ITy); 3773 3774 if (LhsCr->icmp(CmpInst::getInversePredicate(Pred), *RhsCr)) 3775 return ConstantInt::getFalse(ITy); 3776 } 3777 3778 // Compare of cast, for example (zext X) != 0 -> X != 0 3779 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) { 3780 Instruction *LI = cast<CastInst>(LHS); 3781 Value *SrcOp = LI->getOperand(0); 3782 Type *SrcTy = SrcOp->getType(); 3783 Type *DstTy = LI->getType(); 3784 3785 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input 3786 // if the integer type is the same size as the pointer type. 3787 if (MaxRecurse && isa<PtrToIntInst>(LI) && 3788 Q.DL.getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) { 3789 if (Constant *RHSC = dyn_cast<Constant>(RHS)) { 3790 // Transfer the cast to the constant. 3791 if (Value *V = simplifyICmpInst(Pred, SrcOp, 3792 ConstantExpr::getIntToPtr(RHSC, SrcTy), 3793 Q, MaxRecurse - 1)) 3794 return V; 3795 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) { 3796 if (RI->getOperand(0)->getType() == SrcTy) 3797 // Compare without the cast. 3798 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3799 MaxRecurse - 1)) 3800 return V; 3801 } 3802 } 3803 3804 if (isa<ZExtInst>(LHS)) { 3805 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the 3806 // same type. 3807 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3808 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3809 // Compare X and Y. Note that signed predicates become unsigned. 3810 if (Value *V = 3811 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), SrcOp, 3812 RI->getOperand(0), Q, MaxRecurse - 1)) 3813 return V; 3814 } 3815 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true. 3816 else if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3817 if (SrcOp == RI->getOperand(0)) { 3818 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_SGE) 3819 return ConstantInt::getTrue(ITy); 3820 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SLT) 3821 return ConstantInt::getFalse(ITy); 3822 } 3823 } 3824 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended 3825 // too. If not, then try to deduce the result of the comparison. 3826 else if (match(RHS, m_ImmConstant())) { 3827 Constant *C = dyn_cast<Constant>(RHS); 3828 assert(C != nullptr); 3829 3830 // Compute the constant that would happen if we truncated to SrcTy then 3831 // reextended to DstTy. 3832 Constant *Trunc = 3833 ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL); 3834 assert(Trunc && "Constant-fold of ImmConstant should not fail"); 3835 Constant *RExt = 3836 ConstantFoldCastOperand(CastInst::ZExt, Trunc, DstTy, Q.DL); 3837 assert(RExt && "Constant-fold of ImmConstant should not fail"); 3838 Constant *AnyEq = 3839 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL); 3840 assert(AnyEq && "Constant-fold of ImmConstant should not fail"); 3841 3842 // If the re-extended constant didn't change any of the elements then 3843 // this is effectively also a case of comparing two zero-extended 3844 // values. 3845 if (AnyEq->isAllOnesValue() && MaxRecurse) 3846 if (Value *V = simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred), 3847 SrcOp, Trunc, Q, MaxRecurse - 1)) 3848 return V; 3849 3850 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit 3851 // there. Use this to work out the result of the comparison. 3852 if (AnyEq->isNullValue()) { 3853 switch (Pred) { 3854 default: 3855 llvm_unreachable("Unknown ICmp predicate!"); 3856 // LHS <u RHS. 3857 case ICmpInst::ICMP_EQ: 3858 case ICmpInst::ICMP_UGT: 3859 case ICmpInst::ICMP_UGE: 3860 return Constant::getNullValue(ITy); 3861 3862 case ICmpInst::ICMP_NE: 3863 case ICmpInst::ICMP_ULT: 3864 case ICmpInst::ICMP_ULE: 3865 return Constant::getAllOnesValue(ITy); 3866 3867 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS 3868 // is non-negative then LHS <s RHS. 3869 case ICmpInst::ICMP_SGT: 3870 case ICmpInst::ICMP_SGE: 3871 return ConstantFoldCompareInstOperands( 3872 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()), 3873 Q.DL); 3874 case ICmpInst::ICMP_SLT: 3875 case ICmpInst::ICMP_SLE: 3876 return ConstantFoldCompareInstOperands( 3877 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()), 3878 Q.DL); 3879 } 3880 } 3881 } 3882 } 3883 3884 if (isa<SExtInst>(LHS)) { 3885 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the 3886 // same type. 3887 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) { 3888 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType()) 3889 // Compare X and Y. Note that the predicate does not change. 3890 if (Value *V = simplifyICmpInst(Pred, SrcOp, RI->getOperand(0), Q, 3891 MaxRecurse - 1)) 3892 return V; 3893 } 3894 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true. 3895 else if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) { 3896 if (SrcOp == RI->getOperand(0)) { 3897 if (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_SLE) 3898 return ConstantInt::getTrue(ITy); 3899 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SGT) 3900 return ConstantInt::getFalse(ITy); 3901 } 3902 } 3903 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended 3904 // too. If not, then try to deduce the result of the comparison. 3905 else if (match(RHS, m_ImmConstant())) { 3906 Constant *C = cast<Constant>(RHS); 3907 3908 // Compute the constant that would happen if we truncated to SrcTy then 3909 // reextended to DstTy. 3910 Constant *Trunc = 3911 ConstantFoldCastOperand(Instruction::Trunc, C, SrcTy, Q.DL); 3912 assert(Trunc && "Constant-fold of ImmConstant should not fail"); 3913 Constant *RExt = 3914 ConstantFoldCastOperand(CastInst::SExt, Trunc, DstTy, Q.DL); 3915 assert(RExt && "Constant-fold of ImmConstant should not fail"); 3916 Constant *AnyEq = 3917 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ, RExt, C, Q.DL); 3918 assert(AnyEq && "Constant-fold of ImmConstant should not fail"); 3919 3920 // If the re-extended constant didn't change then this is effectively 3921 // also a case of comparing two sign-extended values. 3922 if (AnyEq->isAllOnesValue() && MaxRecurse) 3923 if (Value *V = 3924 simplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse - 1)) 3925 return V; 3926 3927 // Otherwise the upper bits of LHS are all equal, while RHS has varying 3928 // bits there. Use this to work out the result of the comparison. 3929 if (AnyEq->isNullValue()) { 3930 switch (Pred) { 3931 default: 3932 llvm_unreachable("Unknown ICmp predicate!"); 3933 case ICmpInst::ICMP_EQ: 3934 return Constant::getNullValue(ITy); 3935 case ICmpInst::ICMP_NE: 3936 return Constant::getAllOnesValue(ITy); 3937 3938 // If RHS is non-negative then LHS <s RHS. If RHS is negative then 3939 // LHS >s RHS. 3940 case ICmpInst::ICMP_SGT: 3941 case ICmpInst::ICMP_SGE: 3942 return ConstantFoldCompareInstOperands( 3943 ICmpInst::ICMP_SLT, C, Constant::getNullValue(C->getType()), 3944 Q.DL); 3945 case ICmpInst::ICMP_SLT: 3946 case ICmpInst::ICMP_SLE: 3947 return ConstantFoldCompareInstOperands( 3948 ICmpInst::ICMP_SGE, C, Constant::getNullValue(C->getType()), 3949 Q.DL); 3950 3951 // If LHS is non-negative then LHS <u RHS. If LHS is negative then 3952 // LHS >u RHS. 3953 case ICmpInst::ICMP_UGT: 3954 case ICmpInst::ICMP_UGE: 3955 // Comparison is true iff the LHS <s 0. 3956 if (MaxRecurse) 3957 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp, 3958 Constant::getNullValue(SrcTy), Q, 3959 MaxRecurse - 1)) 3960 return V; 3961 break; 3962 case ICmpInst::ICMP_ULT: 3963 case ICmpInst::ICMP_ULE: 3964 // Comparison is true iff the LHS >=s 0. 3965 if (MaxRecurse) 3966 if (Value *V = simplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp, 3967 Constant::getNullValue(SrcTy), Q, 3968 MaxRecurse - 1)) 3969 return V; 3970 break; 3971 } 3972 } 3973 } 3974 } 3975 } 3976 3977 // icmp eq|ne X, Y -> false|true if X != Y 3978 // This is potentially expensive, and we have already computedKnownBits for 3979 // compares with 0 above here, so only try this for a non-zero compare. 3980 if (ICmpInst::isEquality(Pred) && !match(RHS, m_Zero()) && 3981 isKnownNonEqual(LHS, RHS, Q.DL, Q.AC, Q.CxtI, Q.DT, Q.IIQ.UseInstrInfo)) { 3982 return Pred == ICmpInst::ICMP_NE ? getTrue(ITy) : getFalse(ITy); 3983 } 3984 3985 if (Value *V = simplifyICmpWithBinOp(Pred, LHS, RHS, Q, MaxRecurse)) 3986 return V; 3987 3988 if (Value *V = simplifyICmpWithMinMax(Pred, LHS, RHS, Q, MaxRecurse)) 3989 return V; 3990 3991 if (Value *V = simplifyICmpWithIntrinsicOnLHS(Pred, LHS, RHS)) 3992 return V; 3993 if (Value *V = simplifyICmpWithIntrinsicOnLHS( 3994 ICmpInst::getSwappedPredicate(Pred), RHS, LHS)) 3995 return V; 3996 3997 if (Value *V = simplifyICmpUsingMonotonicValues(Pred, LHS, RHS)) 3998 return V; 3999 if (Value *V = simplifyICmpUsingMonotonicValues( 4000 ICmpInst::getSwappedPredicate(Pred), RHS, LHS)) 4001 return V; 4002 4003 if (Value *V = simplifyICmpWithDominatingAssume(Pred, LHS, RHS, Q)) 4004 return V; 4005 4006 if (std::optional<bool> Res = 4007 isImpliedByDomCondition(Pred, LHS, RHS, Q.CxtI, Q.DL)) 4008 return ConstantInt::getBool(ITy, *Res); 4009 4010 // Simplify comparisons of related pointers using a powerful, recursive 4011 // GEP-walk when we have target data available.. 4012 if (LHS->getType()->isPointerTy()) 4013 if (auto *C = computePointerICmp(Pred, LHS, RHS, Q)) 4014 return C; 4015 if (auto *CLHS = dyn_cast<PtrToIntOperator>(LHS)) 4016 if (auto *CRHS = dyn_cast<PtrToIntOperator>(RHS)) 4017 if (CLHS->getPointerOperandType() == CRHS->getPointerOperandType() && 4018 Q.DL.getTypeSizeInBits(CLHS->getPointerOperandType()) == 4019 Q.DL.getTypeSizeInBits(CLHS->getType())) 4020 if (auto *C = computePointerICmp(Pred, CLHS->getPointerOperand(), 4021 CRHS->getPointerOperand(), Q)) 4022 return C; 4023 4024 // If the comparison is with the result of a select instruction, check whether 4025 // comparing with either branch of the select always yields the same value. 4026 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4027 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4028 return V; 4029 4030 // If the comparison is with the result of a phi instruction, check whether 4031 // doing the compare with each incoming phi value yields a common result. 4032 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4033 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4034 return V; 4035 4036 return nullptr; 4037 } 4038 4039 Value *llvm::simplifyICmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, 4040 const SimplifyQuery &Q) { 4041 return ::simplifyICmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 4042 } 4043 4044 /// Given operands for an FCmpInst, see if we can fold the result. 4045 /// If not, this returns null. 4046 static Value *simplifyFCmpInst(CmpPredicate Pred, Value *LHS, Value *RHS, 4047 FastMathFlags FMF, const SimplifyQuery &Q, 4048 unsigned MaxRecurse) { 4049 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!"); 4050 4051 if (Constant *CLHS = dyn_cast<Constant>(LHS)) { 4052 if (Constant *CRHS = dyn_cast<Constant>(RHS)) 4053 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.DL, Q.TLI, 4054 Q.CxtI); 4055 4056 // If we have a constant, make sure it is on the RHS. 4057 std::swap(LHS, RHS); 4058 Pred = CmpInst::getSwappedPredicate(Pred); 4059 } 4060 4061 // Fold trivial predicates. 4062 Type *RetTy = getCompareTy(LHS); 4063 if (Pred == FCmpInst::FCMP_FALSE) 4064 return getFalse(RetTy); 4065 if (Pred == FCmpInst::FCMP_TRUE) 4066 return getTrue(RetTy); 4067 4068 // fcmp pred x, poison and fcmp pred poison, x 4069 // fold to poison 4070 if (isa<PoisonValue>(LHS) || isa<PoisonValue>(RHS)) 4071 return PoisonValue::get(RetTy); 4072 4073 // fcmp pred x, undef and fcmp pred undef, x 4074 // fold to true if unordered, false if ordered 4075 if (Q.isUndefValue(LHS) || Q.isUndefValue(RHS)) { 4076 // Choosing NaN for the undef will always make unordered comparison succeed 4077 // and ordered comparison fail. 4078 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4079 } 4080 4081 // fcmp x,x -> true/false. Not all compares are foldable. 4082 if (LHS == RHS) { 4083 if (CmpInst::isTrueWhenEqual(Pred)) 4084 return getTrue(RetTy); 4085 if (CmpInst::isFalseWhenEqual(Pred)) 4086 return getFalse(RetTy); 4087 } 4088 4089 // Fold (un)ordered comparison if we can determine there are no NaNs. 4090 // 4091 // This catches the 2 variable input case, constants are handled below as a 4092 // class-like compare. 4093 if (Pred == FCmpInst::FCMP_ORD || Pred == FCmpInst::FCMP_UNO) { 4094 KnownFPClass RHSClass = 4095 computeKnownFPClass(RHS, fcAllFlags, /*Depth=*/0, Q); 4096 KnownFPClass LHSClass = 4097 computeKnownFPClass(LHS, fcAllFlags, /*Depth=*/0, Q); 4098 4099 if (FMF.noNaNs() || 4100 (RHSClass.isKnownNeverNaN() && LHSClass.isKnownNeverNaN())) 4101 return ConstantInt::get(RetTy, Pred == FCmpInst::FCMP_ORD); 4102 4103 if (RHSClass.isKnownAlwaysNaN() || LHSClass.isKnownAlwaysNaN()) 4104 return ConstantInt::get(RetTy, Pred == CmpInst::FCMP_UNO); 4105 } 4106 4107 const APFloat *C = nullptr; 4108 match(RHS, m_APFloatAllowPoison(C)); 4109 std::optional<KnownFPClass> FullKnownClassLHS; 4110 4111 // Lazily compute the possible classes for LHS. Avoid computing it twice if 4112 // RHS is a 0. 4113 auto computeLHSClass = [=, &FullKnownClassLHS](FPClassTest InterestedFlags = 4114 fcAllFlags) { 4115 if (FullKnownClassLHS) 4116 return *FullKnownClassLHS; 4117 return computeKnownFPClass(LHS, FMF, InterestedFlags, 0, Q); 4118 }; 4119 4120 if (C && Q.CxtI) { 4121 // Fold out compares that express a class test. 4122 // 4123 // FIXME: Should be able to perform folds without context 4124 // instruction. Always pass in the context function? 4125 4126 const Function *ParentF = Q.CxtI->getFunction(); 4127 auto [ClassVal, ClassTest] = fcmpToClassTest(Pred, *ParentF, LHS, C); 4128 if (ClassVal) { 4129 FullKnownClassLHS = computeLHSClass(); 4130 if ((FullKnownClassLHS->KnownFPClasses & ClassTest) == fcNone) 4131 return getFalse(RetTy); 4132 if ((FullKnownClassLHS->KnownFPClasses & ~ClassTest) == fcNone) 4133 return getTrue(RetTy); 4134 } 4135 } 4136 4137 // Handle fcmp with constant RHS. 4138 if (C) { 4139 // TODO: If we always required a context function, we wouldn't need to 4140 // special case nans. 4141 if (C->isNaN()) 4142 return ConstantInt::get(RetTy, CmpInst::isUnordered(Pred)); 4143 4144 // TODO: Need version fcmpToClassTest which returns implied class when the 4145 // compare isn't a complete class test. e.g. > 1.0 implies fcPositive, but 4146 // isn't implementable as a class call. 4147 if (C->isNegative() && !C->isNegZero()) { 4148 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4149 4150 // TODO: We can catch more cases by using a range check rather than 4151 // relying on CannotBeOrderedLessThanZero. 4152 switch (Pred) { 4153 case FCmpInst::FCMP_UGE: 4154 case FCmpInst::FCMP_UGT: 4155 case FCmpInst::FCMP_UNE: { 4156 KnownFPClass KnownClass = computeLHSClass(Interested); 4157 4158 // (X >= 0) implies (X > C) when (C < 0) 4159 if (KnownClass.cannotBeOrderedLessThanZero()) 4160 return getTrue(RetTy); 4161 break; 4162 } 4163 case FCmpInst::FCMP_OEQ: 4164 case FCmpInst::FCMP_OLE: 4165 case FCmpInst::FCMP_OLT: { 4166 KnownFPClass KnownClass = computeLHSClass(Interested); 4167 4168 // (X >= 0) implies !(X < C) when (C < 0) 4169 if (KnownClass.cannotBeOrderedLessThanZero()) 4170 return getFalse(RetTy); 4171 break; 4172 } 4173 default: 4174 break; 4175 } 4176 } 4177 // Check comparison of [minnum/maxnum with constant] with other constant. 4178 const APFloat *C2; 4179 if ((match(LHS, m_Intrinsic<Intrinsic::minnum>(m_Value(), m_APFloat(C2))) && 4180 *C2 < *C) || 4181 (match(LHS, m_Intrinsic<Intrinsic::maxnum>(m_Value(), m_APFloat(C2))) && 4182 *C2 > *C)) { 4183 bool IsMaxNum = 4184 cast<IntrinsicInst>(LHS)->getIntrinsicID() == Intrinsic::maxnum; 4185 // The ordered relationship and minnum/maxnum guarantee that we do not 4186 // have NaN constants, so ordered/unordered preds are handled the same. 4187 switch (Pred) { 4188 case FCmpInst::FCMP_OEQ: 4189 case FCmpInst::FCMP_UEQ: 4190 // minnum(X, LesserC) == C --> false 4191 // maxnum(X, GreaterC) == C --> false 4192 return getFalse(RetTy); 4193 case FCmpInst::FCMP_ONE: 4194 case FCmpInst::FCMP_UNE: 4195 // minnum(X, LesserC) != C --> true 4196 // maxnum(X, GreaterC) != C --> true 4197 return getTrue(RetTy); 4198 case FCmpInst::FCMP_OGE: 4199 case FCmpInst::FCMP_UGE: 4200 case FCmpInst::FCMP_OGT: 4201 case FCmpInst::FCMP_UGT: 4202 // minnum(X, LesserC) >= C --> false 4203 // minnum(X, LesserC) > C --> false 4204 // maxnum(X, GreaterC) >= C --> true 4205 // maxnum(X, GreaterC) > C --> true 4206 return ConstantInt::get(RetTy, IsMaxNum); 4207 case FCmpInst::FCMP_OLE: 4208 case FCmpInst::FCMP_ULE: 4209 case FCmpInst::FCMP_OLT: 4210 case FCmpInst::FCMP_ULT: 4211 // minnum(X, LesserC) <= C --> true 4212 // minnum(X, LesserC) < C --> true 4213 // maxnum(X, GreaterC) <= C --> false 4214 // maxnum(X, GreaterC) < C --> false 4215 return ConstantInt::get(RetTy, !IsMaxNum); 4216 default: 4217 // TRUE/FALSE/ORD/UNO should be handled before this. 4218 llvm_unreachable("Unexpected fcmp predicate"); 4219 } 4220 } 4221 } 4222 4223 // TODO: Could fold this with above if there were a matcher which returned all 4224 // classes in a non-splat vector. 4225 if (match(RHS, m_AnyZeroFP())) { 4226 switch (Pred) { 4227 case FCmpInst::FCMP_OGE: 4228 case FCmpInst::FCMP_ULT: { 4229 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4230 if (!FMF.noNaNs()) 4231 Interested |= fcNan; 4232 4233 KnownFPClass Known = computeLHSClass(Interested); 4234 4235 // Positive or zero X >= 0.0 --> true 4236 // Positive or zero X < 0.0 --> false 4237 if ((FMF.noNaNs() || Known.isKnownNeverNaN()) && 4238 Known.cannotBeOrderedLessThanZero()) 4239 return Pred == FCmpInst::FCMP_OGE ? getTrue(RetTy) : getFalse(RetTy); 4240 break; 4241 } 4242 case FCmpInst::FCMP_UGE: 4243 case FCmpInst::FCMP_OLT: { 4244 FPClassTest Interested = KnownFPClass::OrderedLessThanZeroMask; 4245 KnownFPClass Known = computeLHSClass(Interested); 4246 4247 // Positive or zero or nan X >= 0.0 --> true 4248 // Positive or zero or nan X < 0.0 --> false 4249 if (Known.cannotBeOrderedLessThanZero()) 4250 return Pred == FCmpInst::FCMP_UGE ? getTrue(RetTy) : getFalse(RetTy); 4251 break; 4252 } 4253 default: 4254 break; 4255 } 4256 } 4257 4258 // If the comparison is with the result of a select instruction, check whether 4259 // comparing with either branch of the select always yields the same value. 4260 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS)) 4261 if (Value *V = threadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse)) 4262 return V; 4263 4264 // If the comparison is with the result of a phi instruction, check whether 4265 // doing the compare with each incoming phi value yields a common result. 4266 if (isa<PHINode>(LHS) || isa<PHINode>(RHS)) 4267 if (Value *V = threadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse)) 4268 return V; 4269 4270 return nullptr; 4271 } 4272 4273 Value *llvm::simplifyFCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, 4274 FastMathFlags FMF, const SimplifyQuery &Q) { 4275 return ::simplifyFCmpInst(Predicate, LHS, RHS, FMF, Q, RecursionLimit); 4276 } 4277 4278 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4279 const SimplifyQuery &Q, 4280 bool AllowRefinement, 4281 SmallVectorImpl<Instruction *> *DropFlags, 4282 unsigned MaxRecurse) { 4283 assert((AllowRefinement || !Q.CanUseUndef) && 4284 "If AllowRefinement=false then CanUseUndef=false"); 4285 4286 // Trivial replacement. 4287 if (V == Op) 4288 return RepOp; 4289 4290 if (!MaxRecurse--) 4291 return nullptr; 4292 4293 // We cannot replace a constant, and shouldn't even try. 4294 if (isa<Constant>(Op)) 4295 return nullptr; 4296 4297 auto *I = dyn_cast<Instruction>(V); 4298 if (!I) 4299 return nullptr; 4300 4301 // The arguments of a phi node might refer to a value from a previous 4302 // cycle iteration. 4303 if (isa<PHINode>(I)) 4304 return nullptr; 4305 4306 // For vector types, the simplification must hold per-lane, so forbid 4307 // potentially cross-lane operations like shufflevector. 4308 if (Op->getType()->isVectorTy() && !isNotCrossLaneOperation(I)) 4309 return nullptr; 4310 4311 // Don't fold away llvm.is.constant checks based on assumptions. 4312 if (match(I, m_Intrinsic<Intrinsic::is_constant>())) 4313 return nullptr; 4314 4315 // Don't simplify freeze. 4316 if (isa<FreezeInst>(I)) 4317 return nullptr; 4318 4319 // Replace Op with RepOp in instruction operands. 4320 SmallVector<Value *, 8> NewOps; 4321 bool AnyReplaced = false; 4322 for (Value *InstOp : I->operands()) { 4323 if (Value *NewInstOp = simplifyWithOpReplaced( 4324 InstOp, Op, RepOp, Q, AllowRefinement, DropFlags, MaxRecurse)) { 4325 NewOps.push_back(NewInstOp); 4326 AnyReplaced = InstOp != NewInstOp; 4327 } else { 4328 NewOps.push_back(InstOp); 4329 } 4330 4331 // Bail out if any operand is undef and SimplifyQuery disables undef 4332 // simplification. Constant folding currently doesn't respect this option. 4333 if (isa<UndefValue>(NewOps.back()) && !Q.CanUseUndef) 4334 return nullptr; 4335 } 4336 4337 if (!AnyReplaced) 4338 return nullptr; 4339 4340 if (!AllowRefinement) { 4341 // General InstSimplify functions may refine the result, e.g. by returning 4342 // a constant for a potentially poison value. To avoid this, implement only 4343 // a few non-refining but profitable transforms here. 4344 4345 if (auto *BO = dyn_cast<BinaryOperator>(I)) { 4346 unsigned Opcode = BO->getOpcode(); 4347 // id op x -> x, x op id -> x 4348 if (NewOps[0] == ConstantExpr::getBinOpIdentity(Opcode, I->getType())) 4349 return NewOps[1]; 4350 if (NewOps[1] == ConstantExpr::getBinOpIdentity(Opcode, I->getType(), 4351 /* RHS */ true)) 4352 return NewOps[0]; 4353 4354 // x & x -> x, x | x -> x 4355 if ((Opcode == Instruction::And || Opcode == Instruction::Or) && 4356 NewOps[0] == NewOps[1]) { 4357 // or disjoint x, x results in poison. 4358 if (auto *PDI = dyn_cast<PossiblyDisjointInst>(BO)) { 4359 if (PDI->isDisjoint()) { 4360 if (!DropFlags) 4361 return nullptr; 4362 DropFlags->push_back(BO); 4363 } 4364 } 4365 return NewOps[0]; 4366 } 4367 4368 // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison 4369 // by assumption and this case never wraps, so nowrap flags can be 4370 // ignored. 4371 if ((Opcode == Instruction::Sub || Opcode == Instruction::Xor) && 4372 NewOps[0] == RepOp && NewOps[1] == RepOp) 4373 return Constant::getNullValue(I->getType()); 4374 4375 // If we are substituting an absorber constant into a binop and extra 4376 // poison can't leak if we remove the select -- because both operands of 4377 // the binop are based on the same value -- then it may be safe to replace 4378 // the value with the absorber constant. Examples: 4379 // (Op == 0) ? 0 : (Op & -Op) --> Op & -Op 4380 // (Op == 0) ? 0 : (Op * (binop Op, C)) --> Op * (binop Op, C) 4381 // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op) 4382 Constant *Absorber = 4383 ConstantExpr::getBinOpAbsorber(Opcode, I->getType()); 4384 if ((NewOps[0] == Absorber || NewOps[1] == Absorber) && 4385 impliesPoison(BO, Op)) 4386 return Absorber; 4387 } 4388 4389 if (isa<GetElementPtrInst>(I)) { 4390 // getelementptr x, 0 -> x. 4391 // This never returns poison, even if inbounds is set. 4392 if (NewOps.size() == 2 && match(NewOps[1], m_Zero())) 4393 return NewOps[0]; 4394 } 4395 } else { 4396 // The simplification queries below may return the original value. Consider: 4397 // %div = udiv i32 %arg, %arg2 4398 // %mul = mul nsw i32 %div, %arg2 4399 // %cmp = icmp eq i32 %mul, %arg 4400 // %sel = select i1 %cmp, i32 %div, i32 undef 4401 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which 4402 // simplifies back to %arg. This can only happen because %mul does not 4403 // dominate %div. To ensure a consistent return value contract, we make sure 4404 // that this case returns nullptr as well. 4405 auto PreventSelfSimplify = [V](Value *Simplified) { 4406 return Simplified != V ? Simplified : nullptr; 4407 }; 4408 4409 return PreventSelfSimplify( 4410 ::simplifyInstructionWithOperands(I, NewOps, Q, MaxRecurse)); 4411 } 4412 4413 // If all operands are constant after substituting Op for RepOp then we can 4414 // constant fold the instruction. 4415 SmallVector<Constant *, 8> ConstOps; 4416 for (Value *NewOp : NewOps) { 4417 if (Constant *ConstOp = dyn_cast<Constant>(NewOp)) 4418 ConstOps.push_back(ConstOp); 4419 else 4420 return nullptr; 4421 } 4422 4423 // Consider: 4424 // %cmp = icmp eq i32 %x, 2147483647 4425 // %add = add nsw i32 %x, 1 4426 // %sel = select i1 %cmp, i32 -2147483648, i32 %add 4427 // 4428 // We can't replace %sel with %add unless we strip away the flags (which 4429 // will be done in InstCombine). 4430 // TODO: This may be unsound, because it only catches some forms of 4431 // refinement. 4432 if (!AllowRefinement) { 4433 if (canCreatePoison(cast<Operator>(I), !DropFlags)) { 4434 // abs cannot create poison if the value is known to never be int_min. 4435 if (auto *II = dyn_cast<IntrinsicInst>(I); 4436 II && II->getIntrinsicID() == Intrinsic::abs) { 4437 if (!ConstOps[0]->isNotMinSignedValue()) 4438 return nullptr; 4439 } else 4440 return nullptr; 4441 } 4442 Constant *Res = ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI, 4443 /*AllowNonDeterministic=*/false); 4444 if (DropFlags && Res && I->hasPoisonGeneratingAnnotations()) 4445 DropFlags->push_back(I); 4446 return Res; 4447 } 4448 4449 return ConstantFoldInstOperands(I, ConstOps, Q.DL, Q.TLI, 4450 /*AllowNonDeterministic=*/false); 4451 } 4452 4453 Value *llvm::simplifyWithOpReplaced(Value *V, Value *Op, Value *RepOp, 4454 const SimplifyQuery &Q, 4455 bool AllowRefinement, 4456 SmallVectorImpl<Instruction *> *DropFlags) { 4457 // If refinement is disabled, also disable undef simplifications (which are 4458 // always refinements) in SimplifyQuery. 4459 if (!AllowRefinement) 4460 return ::simplifyWithOpReplaced(V, Op, RepOp, Q.getWithoutUndef(), 4461 AllowRefinement, DropFlags, RecursionLimit); 4462 return ::simplifyWithOpReplaced(V, Op, RepOp, Q, AllowRefinement, DropFlags, 4463 RecursionLimit); 4464 } 4465 4466 /// Try to simplify a select instruction when its condition operand is an 4467 /// integer comparison where one operand of the compare is a constant. 4468 static Value *simplifySelectBitTest(Value *TrueVal, Value *FalseVal, Value *X, 4469 const APInt *Y, bool TrueWhenUnset) { 4470 const APInt *C; 4471 4472 // (X & Y) == 0 ? X & ~Y : X --> X 4473 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y 4474 if (FalseVal == X && match(TrueVal, m_And(m_Specific(X), m_APInt(C))) && 4475 *Y == ~*C) 4476 return TrueWhenUnset ? FalseVal : TrueVal; 4477 4478 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y 4479 // (X & Y) != 0 ? X : X & ~Y --> X 4480 if (TrueVal == X && match(FalseVal, m_And(m_Specific(X), m_APInt(C))) && 4481 *Y == ~*C) 4482 return TrueWhenUnset ? FalseVal : TrueVal; 4483 4484 if (Y->isPowerOf2()) { 4485 // (X & Y) == 0 ? X | Y : X --> X | Y 4486 // (X & Y) != 0 ? X | Y : X --> X 4487 if (FalseVal == X && match(TrueVal, m_Or(m_Specific(X), m_APInt(C))) && 4488 *Y == *C) { 4489 // We can't return the or if it has the disjoint flag. 4490 if (TrueWhenUnset && cast<PossiblyDisjointInst>(TrueVal)->isDisjoint()) 4491 return nullptr; 4492 return TrueWhenUnset ? TrueVal : FalseVal; 4493 } 4494 4495 // (X & Y) == 0 ? X : X | Y --> X 4496 // (X & Y) != 0 ? X : X | Y --> X | Y 4497 if (TrueVal == X && match(FalseVal, m_Or(m_Specific(X), m_APInt(C))) && 4498 *Y == *C) { 4499 // We can't return the or if it has the disjoint flag. 4500 if (!TrueWhenUnset && cast<PossiblyDisjointInst>(FalseVal)->isDisjoint()) 4501 return nullptr; 4502 return TrueWhenUnset ? TrueVal : FalseVal; 4503 } 4504 } 4505 4506 return nullptr; 4507 } 4508 4509 static Value *simplifyCmpSelOfMaxMin(Value *CmpLHS, Value *CmpRHS, 4510 CmpPredicate Pred, Value *TVal, 4511 Value *FVal) { 4512 // Canonicalize common cmp+sel operand as CmpLHS. 4513 if (CmpRHS == TVal || CmpRHS == FVal) { 4514 std::swap(CmpLHS, CmpRHS); 4515 Pred = ICmpInst::getSwappedPredicate(Pred); 4516 } 4517 4518 // Canonicalize common cmp+sel operand as TVal. 4519 if (CmpLHS == FVal) { 4520 std::swap(TVal, FVal); 4521 Pred = ICmpInst::getInversePredicate(Pred); 4522 } 4523 4524 // A vector select may be shuffling together elements that are equivalent 4525 // based on the max/min/select relationship. 4526 Value *X = CmpLHS, *Y = CmpRHS; 4527 bool PeekedThroughSelectShuffle = false; 4528 auto *Shuf = dyn_cast<ShuffleVectorInst>(FVal); 4529 if (Shuf && Shuf->isSelect()) { 4530 if (Shuf->getOperand(0) == Y) 4531 FVal = Shuf->getOperand(1); 4532 else if (Shuf->getOperand(1) == Y) 4533 FVal = Shuf->getOperand(0); 4534 else 4535 return nullptr; 4536 PeekedThroughSelectShuffle = true; 4537 } 4538 4539 // (X pred Y) ? X : max/min(X, Y) 4540 auto *MMI = dyn_cast<MinMaxIntrinsic>(FVal); 4541 if (!MMI || TVal != X || 4542 !match(FVal, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) 4543 return nullptr; 4544 4545 // (X > Y) ? X : max(X, Y) --> max(X, Y) 4546 // (X >= Y) ? X : max(X, Y) --> max(X, Y) 4547 // (X < Y) ? X : min(X, Y) --> min(X, Y) 4548 // (X <= Y) ? X : min(X, Y) --> min(X, Y) 4549 // 4550 // The equivalence allows a vector select (shuffle) of max/min and Y. Ex: 4551 // (X > Y) ? X : (Z ? max(X, Y) : Y) 4552 // If Z is true, this reduces as above, and if Z is false: 4553 // (X > Y) ? X : Y --> max(X, Y) 4554 ICmpInst::Predicate MMPred = MMI->getPredicate(); 4555 if (MMPred == CmpInst::getStrictPredicate(Pred)) 4556 return MMI; 4557 4558 // Other transforms are not valid with a shuffle. 4559 if (PeekedThroughSelectShuffle) 4560 return nullptr; 4561 4562 // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y) 4563 if (Pred == CmpInst::ICMP_EQ) 4564 return MMI; 4565 4566 // (X != Y) ? X : max/min(X, Y) --> X 4567 if (Pred == CmpInst::ICMP_NE) 4568 return X; 4569 4570 // (X < Y) ? X : max(X, Y) --> X 4571 // (X <= Y) ? X : max(X, Y) --> X 4572 // (X > Y) ? X : min(X, Y) --> X 4573 // (X >= Y) ? X : min(X, Y) --> X 4574 ICmpInst::Predicate InvPred = CmpInst::getInversePredicate(Pred); 4575 if (MMPred == CmpInst::getStrictPredicate(InvPred)) 4576 return X; 4577 4578 return nullptr; 4579 } 4580 4581 /// An alternative way to test if a bit is set or not uses sgt/slt instead of 4582 /// eq/ne. 4583 static Value *simplifySelectWithFakeICmpEq(Value *CmpLHS, Value *CmpRHS, 4584 CmpPredicate Pred, Value *TrueVal, 4585 Value *FalseVal) { 4586 if (auto Res = decomposeBitTestICmp(CmpLHS, CmpRHS, Pred)) 4587 return simplifySelectBitTest(TrueVal, FalseVal, Res->X, &Res->Mask, 4588 Res->Pred == ICmpInst::ICMP_EQ); 4589 4590 return nullptr; 4591 } 4592 4593 /// Try to simplify a select instruction when its condition operand is an 4594 /// integer equality or floating-point equivalence comparison. 4595 static Value *simplifySelectWithEquivalence(Value *CmpLHS, Value *CmpRHS, 4596 Value *TrueVal, Value *FalseVal, 4597 const SimplifyQuery &Q, 4598 unsigned MaxRecurse) { 4599 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q.getWithoutUndef(), 4600 /* AllowRefinement */ false, 4601 /* DropFlags */ nullptr, MaxRecurse) == TrueVal) 4602 return FalseVal; 4603 if (simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q, 4604 /* AllowRefinement */ true, 4605 /* DropFlags */ nullptr, MaxRecurse) == FalseVal) 4606 return FalseVal; 4607 4608 return nullptr; 4609 } 4610 4611 /// Try to simplify a select instruction when its condition operand is an 4612 /// integer comparison. 4613 static Value *simplifySelectWithICmpCond(Value *CondVal, Value *TrueVal, 4614 Value *FalseVal, 4615 const SimplifyQuery &Q, 4616 unsigned MaxRecurse) { 4617 CmpPredicate Pred; 4618 Value *CmpLHS, *CmpRHS; 4619 if (!match(CondVal, m_ICmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4620 return nullptr; 4621 4622 if (Value *V = simplifyCmpSelOfMaxMin(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4623 return V; 4624 4625 // Canonicalize ne to eq predicate. 4626 if (Pred == ICmpInst::ICMP_NE) { 4627 Pred = ICmpInst::ICMP_EQ; 4628 std::swap(TrueVal, FalseVal); 4629 } 4630 4631 // Check for integer min/max with a limit constant: 4632 // X > MIN_INT ? X : MIN_INT --> X 4633 // X < MAX_INT ? X : MAX_INT --> X 4634 if (TrueVal->getType()->isIntOrIntVectorTy()) { 4635 Value *X, *Y; 4636 SelectPatternFlavor SPF = 4637 matchDecomposedSelectPattern(cast<ICmpInst>(CondVal), TrueVal, FalseVal, 4638 X, Y) 4639 .Flavor; 4640 if (SelectPatternResult::isMinOrMax(SPF) && Pred == getMinMaxPred(SPF)) { 4641 APInt LimitC = getMinMaxLimit(getInverseMinMaxFlavor(SPF), 4642 X->getType()->getScalarSizeInBits()); 4643 if (match(Y, m_SpecificInt(LimitC))) 4644 return X; 4645 } 4646 } 4647 4648 if (Pred == ICmpInst::ICMP_EQ && match(CmpRHS, m_Zero())) { 4649 Value *X; 4650 const APInt *Y; 4651 if (match(CmpLHS, m_And(m_Value(X), m_APInt(Y)))) 4652 if (Value *V = simplifySelectBitTest(TrueVal, FalseVal, X, Y, 4653 /*TrueWhenUnset=*/true)) 4654 return V; 4655 4656 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate. 4657 Value *ShAmt; 4658 auto isFsh = m_CombineOr(m_FShl(m_Value(X), m_Value(), m_Value(ShAmt)), 4659 m_FShr(m_Value(), m_Value(X), m_Value(ShAmt))); 4660 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X 4661 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X 4662 if (match(TrueVal, isFsh) && FalseVal == X && CmpLHS == ShAmt) 4663 return X; 4664 4665 // Test for a zero-shift-guard-op around rotates. These are used to 4666 // avoid UB from oversized shifts in raw IR rotate patterns, but the 4667 // intrinsics do not have that problem. 4668 // We do not allow this transform for the general funnel shift case because 4669 // that would not preserve the poison safety of the original code. 4670 auto isRotate = 4671 m_CombineOr(m_FShl(m_Value(X), m_Deferred(X), m_Value(ShAmt)), 4672 m_FShr(m_Value(X), m_Deferred(X), m_Value(ShAmt))); 4673 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt) 4674 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt) 4675 if (match(FalseVal, isRotate) && TrueVal == X && CmpLHS == ShAmt && 4676 Pred == ICmpInst::ICMP_EQ) 4677 return FalseVal; 4678 4679 // X == 0 ? abs(X) : -abs(X) --> -abs(X) 4680 // X == 0 ? -abs(X) : abs(X) --> abs(X) 4681 if (match(TrueVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))) && 4682 match(FalseVal, m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS))))) 4683 return FalseVal; 4684 if (match(TrueVal, 4685 m_Neg(m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) && 4686 match(FalseVal, m_Intrinsic<Intrinsic::abs>(m_Specific(CmpLHS)))) 4687 return FalseVal; 4688 } 4689 4690 // Check for other compares that behave like bit test. 4691 if (Value *V = 4692 simplifySelectWithFakeICmpEq(CmpLHS, CmpRHS, Pred, TrueVal, FalseVal)) 4693 return V; 4694 4695 // If we have a scalar equality comparison, then we know the value in one of 4696 // the arms of the select. See if substituting this value into the arm and 4697 // simplifying the result yields the same value as the other arm. 4698 if (Pred == ICmpInst::ICMP_EQ) { 4699 if (Value *V = simplifySelectWithEquivalence(CmpLHS, CmpRHS, TrueVal, 4700 FalseVal, Q, MaxRecurse)) 4701 return V; 4702 if (Value *V = simplifySelectWithEquivalence(CmpRHS, CmpLHS, TrueVal, 4703 FalseVal, Q, MaxRecurse)) 4704 return V; 4705 4706 Value *X; 4707 Value *Y; 4708 // select((X | Y) == 0 ? X : 0) --> 0 (commuted 2 ways) 4709 if (match(CmpLHS, m_Or(m_Value(X), m_Value(Y))) && 4710 match(CmpRHS, m_Zero())) { 4711 // (X | Y) == 0 implies X == 0 and Y == 0. 4712 if (Value *V = simplifySelectWithEquivalence(X, CmpRHS, TrueVal, FalseVal, 4713 Q, MaxRecurse)) 4714 return V; 4715 if (Value *V = simplifySelectWithEquivalence(Y, CmpRHS, TrueVal, FalseVal, 4716 Q, MaxRecurse)) 4717 return V; 4718 } 4719 4720 // select((X & Y) == -1 ? X : -1) --> -1 (commuted 2 ways) 4721 if (match(CmpLHS, m_And(m_Value(X), m_Value(Y))) && 4722 match(CmpRHS, m_AllOnes())) { 4723 // (X & Y) == -1 implies X == -1 and Y == -1. 4724 if (Value *V = simplifySelectWithEquivalence(X, CmpRHS, TrueVal, FalseVal, 4725 Q, MaxRecurse)) 4726 return V; 4727 if (Value *V = simplifySelectWithEquivalence(Y, CmpRHS, TrueVal, FalseVal, 4728 Q, MaxRecurse)) 4729 return V; 4730 } 4731 } 4732 4733 return nullptr; 4734 } 4735 4736 /// Try to simplify a select instruction when its condition operand is a 4737 /// floating-point comparison. 4738 static Value *simplifySelectWithFCmp(Value *Cond, Value *T, Value *F, 4739 const SimplifyQuery &Q, 4740 unsigned MaxRecurse) { 4741 CmpPredicate Pred; 4742 Value *CmpLHS, *CmpRHS; 4743 if (!match(Cond, m_FCmp(Pred, m_Value(CmpLHS), m_Value(CmpRHS)))) 4744 return nullptr; 4745 FCmpInst *I = cast<FCmpInst>(Cond); 4746 4747 bool IsEquiv = I->isEquivalence(); 4748 if (I->isEquivalence(/*Invert=*/true)) { 4749 std::swap(T, F); 4750 Pred = FCmpInst::getInversePredicate(Pred); 4751 IsEquiv = true; 4752 } 4753 4754 // This transforms is safe if at least one operand is known to not be zero. 4755 // Otherwise, the select can change the sign of a zero operand. 4756 if (IsEquiv) { 4757 if (Value *V = 4758 simplifySelectWithEquivalence(CmpLHS, CmpRHS, T, F, Q, MaxRecurse)) 4759 return V; 4760 if (Value *V = 4761 simplifySelectWithEquivalence(CmpRHS, CmpLHS, T, F, Q, MaxRecurse)) 4762 return V; 4763 } 4764 4765 // Canonicalize CmpLHS to be T, and CmpRHS to be F, if they're swapped. 4766 if (CmpLHS == F && CmpRHS == T) 4767 std::swap(CmpLHS, CmpRHS); 4768 4769 if (CmpLHS != T || CmpRHS != F) 4770 return nullptr; 4771 4772 // This transform is also safe if we do not have (do not care about) -0.0. 4773 if (Q.CxtI && isa<FPMathOperator>(Q.CxtI) && Q.CxtI->hasNoSignedZeros()) { 4774 // (T == F) ? T : F --> F 4775 if (Pred == FCmpInst::FCMP_OEQ) 4776 return F; 4777 4778 // (T != F) ? T : F --> T 4779 if (Pred == FCmpInst::FCMP_UNE) 4780 return T; 4781 } 4782 4783 return nullptr; 4784 } 4785 4786 /// Given operands for a SelectInst, see if we can fold the result. 4787 /// If not, this returns null. 4788 static Value *simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4789 const SimplifyQuery &Q, unsigned MaxRecurse) { 4790 if (auto *CondC = dyn_cast<Constant>(Cond)) { 4791 if (auto *TrueC = dyn_cast<Constant>(TrueVal)) 4792 if (auto *FalseC = dyn_cast<Constant>(FalseVal)) 4793 if (Constant *C = ConstantFoldSelectInstruction(CondC, TrueC, FalseC)) 4794 return C; 4795 4796 // select poison, X, Y -> poison 4797 if (isa<PoisonValue>(CondC)) 4798 return PoisonValue::get(TrueVal->getType()); 4799 4800 // select undef, X, Y -> X or Y 4801 if (Q.isUndefValue(CondC)) 4802 return isa<Constant>(FalseVal) ? FalseVal : TrueVal; 4803 4804 // select true, X, Y --> X 4805 // select false, X, Y --> Y 4806 // For vectors, allow undef/poison elements in the condition to match the 4807 // defined elements, so we can eliminate the select. 4808 if (match(CondC, m_One())) 4809 return TrueVal; 4810 if (match(CondC, m_Zero())) 4811 return FalseVal; 4812 } 4813 4814 assert(Cond->getType()->isIntOrIntVectorTy(1) && 4815 "Select must have bool or bool vector condition"); 4816 assert(TrueVal->getType() == FalseVal->getType() && 4817 "Select must have same types for true/false ops"); 4818 4819 if (Cond->getType() == TrueVal->getType()) { 4820 // select i1 Cond, i1 true, i1 false --> i1 Cond 4821 if (match(TrueVal, m_One()) && match(FalseVal, m_ZeroInt())) 4822 return Cond; 4823 4824 // (X && Y) ? X : Y --> Y (commuted 2 ways) 4825 if (match(Cond, m_c_LogicalAnd(m_Specific(TrueVal), m_Specific(FalseVal)))) 4826 return FalseVal; 4827 4828 // (X || Y) ? X : Y --> X (commuted 2 ways) 4829 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Specific(FalseVal)))) 4830 return TrueVal; 4831 4832 // (X || Y) ? false : X --> false (commuted 2 ways) 4833 if (match(Cond, m_c_LogicalOr(m_Specific(FalseVal), m_Value())) && 4834 match(TrueVal, m_ZeroInt())) 4835 return ConstantInt::getFalse(Cond->getType()); 4836 4837 // Match patterns that end in logical-and. 4838 if (match(FalseVal, m_ZeroInt())) { 4839 // !(X || Y) && X --> false (commuted 2 ways) 4840 if (match(Cond, m_Not(m_c_LogicalOr(m_Specific(TrueVal), m_Value())))) 4841 return ConstantInt::getFalse(Cond->getType()); 4842 // X && !(X || Y) --> false (commuted 2 ways) 4843 if (match(TrueVal, m_Not(m_c_LogicalOr(m_Specific(Cond), m_Value())))) 4844 return ConstantInt::getFalse(Cond->getType()); 4845 4846 // (X || Y) && Y --> Y (commuted 2 ways) 4847 if (match(Cond, m_c_LogicalOr(m_Specific(TrueVal), m_Value()))) 4848 return TrueVal; 4849 // Y && (X || Y) --> Y (commuted 2 ways) 4850 if (match(TrueVal, m_c_LogicalOr(m_Specific(Cond), m_Value()))) 4851 return Cond; 4852 4853 // (X || Y) && (X || !Y) --> X (commuted 8 ways) 4854 Value *X, *Y; 4855 if (match(Cond, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4856 match(TrueVal, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4857 return X; 4858 if (match(TrueVal, m_c_LogicalOr(m_Value(X), m_Not(m_Value(Y)))) && 4859 match(Cond, m_c_LogicalOr(m_Specific(X), m_Specific(Y)))) 4860 return X; 4861 } 4862 4863 // Match patterns that end in logical-or. 4864 if (match(TrueVal, m_One())) { 4865 // !(X && Y) || X --> true (commuted 2 ways) 4866 if (match(Cond, m_Not(m_c_LogicalAnd(m_Specific(FalseVal), m_Value())))) 4867 return ConstantInt::getTrue(Cond->getType()); 4868 // X || !(X && Y) --> true (commuted 2 ways) 4869 if (match(FalseVal, m_Not(m_c_LogicalAnd(m_Specific(Cond), m_Value())))) 4870 return ConstantInt::getTrue(Cond->getType()); 4871 4872 // (X && Y) || Y --> Y (commuted 2 ways) 4873 if (match(Cond, m_c_LogicalAnd(m_Specific(FalseVal), m_Value()))) 4874 return FalseVal; 4875 // Y || (X && Y) --> Y (commuted 2 ways) 4876 if (match(FalseVal, m_c_LogicalAnd(m_Specific(Cond), m_Value()))) 4877 return Cond; 4878 } 4879 } 4880 4881 // select ?, X, X -> X 4882 if (TrueVal == FalseVal) 4883 return TrueVal; 4884 4885 if (Cond == TrueVal) { 4886 // select i1 X, i1 X, i1 false --> X (logical-and) 4887 if (match(FalseVal, m_ZeroInt())) 4888 return Cond; 4889 // select i1 X, i1 X, i1 true --> true 4890 if (match(FalseVal, m_One())) 4891 return ConstantInt::getTrue(Cond->getType()); 4892 } 4893 if (Cond == FalseVal) { 4894 // select i1 X, i1 true, i1 X --> X (logical-or) 4895 if (match(TrueVal, m_One())) 4896 return Cond; 4897 // select i1 X, i1 false, i1 X --> false 4898 if (match(TrueVal, m_ZeroInt())) 4899 return ConstantInt::getFalse(Cond->getType()); 4900 } 4901 4902 // If the true or false value is poison, we can fold to the other value. 4903 // If the true or false value is undef, we can fold to the other value as 4904 // long as the other value isn't poison. 4905 // select ?, poison, X -> X 4906 // select ?, undef, X -> X 4907 if (isa<PoisonValue>(TrueVal) || 4908 (Q.isUndefValue(TrueVal) && impliesPoison(FalseVal, Cond))) 4909 return FalseVal; 4910 // select ?, X, poison -> X 4911 // select ?, X, undef -> X 4912 if (isa<PoisonValue>(FalseVal) || 4913 (Q.isUndefValue(FalseVal) && impliesPoison(TrueVal, Cond))) 4914 return TrueVal; 4915 4916 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC'' 4917 Constant *TrueC, *FalseC; 4918 if (isa<FixedVectorType>(TrueVal->getType()) && 4919 match(TrueVal, m_Constant(TrueC)) && 4920 match(FalseVal, m_Constant(FalseC))) { 4921 unsigned NumElts = 4922 cast<FixedVectorType>(TrueC->getType())->getNumElements(); 4923 SmallVector<Constant *, 16> NewC; 4924 for (unsigned i = 0; i != NumElts; ++i) { 4925 // Bail out on incomplete vector constants. 4926 Constant *TEltC = TrueC->getAggregateElement(i); 4927 Constant *FEltC = FalseC->getAggregateElement(i); 4928 if (!TEltC || !FEltC) 4929 break; 4930 4931 // If the elements match (undef or not), that value is the result. If only 4932 // one element is undef, choose the defined element as the safe result. 4933 if (TEltC == FEltC) 4934 NewC.push_back(TEltC); 4935 else if (isa<PoisonValue>(TEltC) || 4936 (Q.isUndefValue(TEltC) && isGuaranteedNotToBePoison(FEltC))) 4937 NewC.push_back(FEltC); 4938 else if (isa<PoisonValue>(FEltC) || 4939 (Q.isUndefValue(FEltC) && isGuaranteedNotToBePoison(TEltC))) 4940 NewC.push_back(TEltC); 4941 else 4942 break; 4943 } 4944 if (NewC.size() == NumElts) 4945 return ConstantVector::get(NewC); 4946 } 4947 4948 if (Value *V = 4949 simplifySelectWithICmpCond(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4950 return V; 4951 4952 if (Value *V = simplifySelectWithFCmp(Cond, TrueVal, FalseVal, Q, MaxRecurse)) 4953 return V; 4954 4955 std::optional<bool> Imp = isImpliedByDomCondition(Cond, Q.CxtI, Q.DL); 4956 if (Imp) 4957 return *Imp ? TrueVal : FalseVal; 4958 4959 return nullptr; 4960 } 4961 4962 Value *llvm::simplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal, 4963 const SimplifyQuery &Q) { 4964 return ::simplifySelectInst(Cond, TrueVal, FalseVal, Q, RecursionLimit); 4965 } 4966 4967 /// Given operands for an GetElementPtrInst, see if we can fold the result. 4968 /// If not, this returns null. 4969 static Value *simplifyGEPInst(Type *SrcTy, Value *Ptr, 4970 ArrayRef<Value *> Indices, GEPNoWrapFlags NW, 4971 const SimplifyQuery &Q, unsigned) { 4972 // The type of the GEP pointer operand. 4973 unsigned AS = 4974 cast<PointerType>(Ptr->getType()->getScalarType())->getAddressSpace(); 4975 4976 // getelementptr P -> P. 4977 if (Indices.empty()) 4978 return Ptr; 4979 4980 // Compute the (pointer) type returned by the GEP instruction. 4981 Type *LastType = GetElementPtrInst::getIndexedType(SrcTy, Indices); 4982 Type *GEPTy = Ptr->getType(); 4983 if (!GEPTy->isVectorTy()) { 4984 for (Value *Op : Indices) { 4985 // If one of the operands is a vector, the result type is a vector of 4986 // pointers. All vector operands must have the same number of elements. 4987 if (VectorType *VT = dyn_cast<VectorType>(Op->getType())) { 4988 GEPTy = VectorType::get(GEPTy, VT->getElementCount()); 4989 break; 4990 } 4991 } 4992 } 4993 4994 // All-zero GEP is a no-op, unless it performs a vector splat. 4995 if (Ptr->getType() == GEPTy && 4996 all_of(Indices, [](const auto *V) { return match(V, m_Zero()); })) 4997 return Ptr; 4998 4999 // getelementptr poison, idx -> poison 5000 // getelementptr baseptr, poison -> poison 5001 if (isa<PoisonValue>(Ptr) || 5002 any_of(Indices, [](const auto *V) { return isa<PoisonValue>(V); })) 5003 return PoisonValue::get(GEPTy); 5004 5005 // getelementptr undef, idx -> undef 5006 if (Q.isUndefValue(Ptr)) 5007 return UndefValue::get(GEPTy); 5008 5009 bool IsScalableVec = 5010 SrcTy->isScalableTy() || any_of(Indices, [](const Value *V) { 5011 return isa<ScalableVectorType>(V->getType()); 5012 }); 5013 5014 if (Indices.size() == 1) { 5015 Type *Ty = SrcTy; 5016 if (!IsScalableVec && Ty->isSized()) { 5017 Value *P; 5018 uint64_t C; 5019 uint64_t TyAllocSize = Q.DL.getTypeAllocSize(Ty); 5020 // getelementptr P, N -> P if P points to a type of zero size. 5021 if (TyAllocSize == 0 && Ptr->getType() == GEPTy) 5022 return Ptr; 5023 5024 // The following transforms are only safe if the ptrtoint cast 5025 // doesn't truncate the pointers. 5026 if (Indices[0]->getType()->getScalarSizeInBits() == 5027 Q.DL.getPointerSizeInBits(AS)) { 5028 auto CanSimplify = [GEPTy, &P, Ptr]() -> bool { 5029 return P->getType() == GEPTy && 5030 getUnderlyingObject(P) == getUnderlyingObject(Ptr); 5031 }; 5032 // getelementptr V, (sub P, V) -> P if P points to a type of size 1. 5033 if (TyAllocSize == 1 && 5034 match(Indices[0], 5035 m_Sub(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Specific(Ptr)))) && 5036 CanSimplify()) 5037 return P; 5038 5039 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of 5040 // size 1 << C. 5041 if (match(Indices[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P)), 5042 m_PtrToInt(m_Specific(Ptr))), 5043 m_ConstantInt(C))) && 5044 TyAllocSize == 1ULL << C && CanSimplify()) 5045 return P; 5046 5047 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of 5048 // size C. 5049 if (match(Indices[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P)), 5050 m_PtrToInt(m_Specific(Ptr))), 5051 m_SpecificInt(TyAllocSize))) && 5052 CanSimplify()) 5053 return P; 5054 } 5055 } 5056 } 5057 5058 if (!IsScalableVec && Q.DL.getTypeAllocSize(LastType) == 1 && 5059 all_of(Indices.drop_back(1), 5060 [](Value *Idx) { return match(Idx, m_Zero()); })) { 5061 unsigned IdxWidth = 5062 Q.DL.getIndexSizeInBits(Ptr->getType()->getPointerAddressSpace()); 5063 if (Q.DL.getTypeSizeInBits(Indices.back()->getType()) == IdxWidth) { 5064 APInt BasePtrOffset(IdxWidth, 0); 5065 Value *StrippedBasePtr = 5066 Ptr->stripAndAccumulateInBoundsConstantOffsets(Q.DL, BasePtrOffset); 5067 5068 // Avoid creating inttoptr of zero here: While LLVMs treatment of 5069 // inttoptr is generally conservative, this particular case is folded to 5070 // a null pointer, which will have incorrect provenance. 5071 5072 // gep (gep V, C), (sub 0, V) -> C 5073 if (match(Indices.back(), 5074 m_Neg(m_PtrToInt(m_Specific(StrippedBasePtr)))) && 5075 !BasePtrOffset.isZero()) { 5076 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset); 5077 return ConstantExpr::getIntToPtr(CI, GEPTy); 5078 } 5079 // gep (gep V, C), (xor V, -1) -> C-1 5080 if (match(Indices.back(), 5081 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr)), m_AllOnes())) && 5082 !BasePtrOffset.isOne()) { 5083 auto *CI = ConstantInt::get(GEPTy->getContext(), BasePtrOffset - 1); 5084 return ConstantExpr::getIntToPtr(CI, GEPTy); 5085 } 5086 } 5087 } 5088 5089 // Check to see if this is constant foldable. 5090 if (!isa<Constant>(Ptr) || 5091 !all_of(Indices, [](Value *V) { return isa<Constant>(V); })) 5092 return nullptr; 5093 5094 if (!ConstantExpr::isSupportedGetElementPtr(SrcTy)) 5095 return ConstantFoldGetElementPtr(SrcTy, cast<Constant>(Ptr), std::nullopt, 5096 Indices); 5097 5098 auto *CE = 5099 ConstantExpr::getGetElementPtr(SrcTy, cast<Constant>(Ptr), Indices, NW); 5100 return ConstantFoldConstant(CE, Q.DL); 5101 } 5102 5103 Value *llvm::simplifyGEPInst(Type *SrcTy, Value *Ptr, ArrayRef<Value *> Indices, 5104 GEPNoWrapFlags NW, const SimplifyQuery &Q) { 5105 return ::simplifyGEPInst(SrcTy, Ptr, Indices, NW, Q, RecursionLimit); 5106 } 5107 5108 /// Given operands for an InsertValueInst, see if we can fold the result. 5109 /// If not, this returns null. 5110 static Value *simplifyInsertValueInst(Value *Agg, Value *Val, 5111 ArrayRef<unsigned> Idxs, 5112 const SimplifyQuery &Q, unsigned) { 5113 if (Constant *CAgg = dyn_cast<Constant>(Agg)) 5114 if (Constant *CVal = dyn_cast<Constant>(Val)) 5115 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs); 5116 5117 // insertvalue x, poison, n -> x 5118 // insertvalue x, undef, n -> x if x cannot be poison 5119 if (isa<PoisonValue>(Val) || 5120 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Agg))) 5121 return Agg; 5122 5123 // insertvalue x, (extractvalue y, n), n 5124 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val)) 5125 if (EV->getAggregateOperand()->getType() == Agg->getType() && 5126 EV->getIndices() == Idxs) { 5127 // insertvalue poison, (extractvalue y, n), n -> y 5128 // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison 5129 if (isa<PoisonValue>(Agg) || 5130 (Q.isUndefValue(Agg) && 5131 isGuaranteedNotToBePoison(EV->getAggregateOperand()))) 5132 return EV->getAggregateOperand(); 5133 5134 // insertvalue y, (extractvalue y, n), n -> y 5135 if (Agg == EV->getAggregateOperand()) 5136 return Agg; 5137 } 5138 5139 return nullptr; 5140 } 5141 5142 Value *llvm::simplifyInsertValueInst(Value *Agg, Value *Val, 5143 ArrayRef<unsigned> Idxs, 5144 const SimplifyQuery &Q) { 5145 return ::simplifyInsertValueInst(Agg, Val, Idxs, Q, RecursionLimit); 5146 } 5147 5148 Value *llvm::simplifyInsertElementInst(Value *Vec, Value *Val, Value *Idx, 5149 const SimplifyQuery &Q) { 5150 // Try to constant fold. 5151 auto *VecC = dyn_cast<Constant>(Vec); 5152 auto *ValC = dyn_cast<Constant>(Val); 5153 auto *IdxC = dyn_cast<Constant>(Idx); 5154 if (VecC && ValC && IdxC) 5155 return ConstantExpr::getInsertElement(VecC, ValC, IdxC); 5156 5157 // For fixed-length vector, fold into poison if index is out of bounds. 5158 if (auto *CI = dyn_cast<ConstantInt>(Idx)) { 5159 if (isa<FixedVectorType>(Vec->getType()) && 5160 CI->uge(cast<FixedVectorType>(Vec->getType())->getNumElements())) 5161 return PoisonValue::get(Vec->getType()); 5162 } 5163 5164 // If index is undef, it might be out of bounds (see above case) 5165 if (Q.isUndefValue(Idx)) 5166 return PoisonValue::get(Vec->getType()); 5167 5168 // If the scalar is poison, or it is undef and there is no risk of 5169 // propagating poison from the vector value, simplify to the vector value. 5170 if (isa<PoisonValue>(Val) || 5171 (Q.isUndefValue(Val) && isGuaranteedNotToBePoison(Vec))) 5172 return Vec; 5173 5174 // Inserting the splatted value into a constant splat does nothing. 5175 if (VecC && ValC && VecC->getSplatValue() == ValC) 5176 return Vec; 5177 5178 // If we are extracting a value from a vector, then inserting it into the same 5179 // place, that's the input vector: 5180 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec 5181 if (match(Val, m_ExtractElt(m_Specific(Vec), m_Specific(Idx)))) 5182 return Vec; 5183 5184 return nullptr; 5185 } 5186 5187 /// Given operands for an ExtractValueInst, see if we can fold the result. 5188 /// If not, this returns null. 5189 static Value *simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5190 const SimplifyQuery &, unsigned) { 5191 if (auto *CAgg = dyn_cast<Constant>(Agg)) 5192 return ConstantFoldExtractValueInstruction(CAgg, Idxs); 5193 5194 // extractvalue x, (insertvalue y, elt, n), n -> elt 5195 unsigned NumIdxs = Idxs.size(); 5196 for (auto *IVI = dyn_cast<InsertValueInst>(Agg); IVI != nullptr; 5197 IVI = dyn_cast<InsertValueInst>(IVI->getAggregateOperand())) { 5198 ArrayRef<unsigned> InsertValueIdxs = IVI->getIndices(); 5199 unsigned NumInsertValueIdxs = InsertValueIdxs.size(); 5200 unsigned NumCommonIdxs = std::min(NumInsertValueIdxs, NumIdxs); 5201 if (InsertValueIdxs.slice(0, NumCommonIdxs) == 5202 Idxs.slice(0, NumCommonIdxs)) { 5203 if (NumIdxs == NumInsertValueIdxs) 5204 return IVI->getInsertedValueOperand(); 5205 break; 5206 } 5207 } 5208 5209 return nullptr; 5210 } 5211 5212 Value *llvm::simplifyExtractValueInst(Value *Agg, ArrayRef<unsigned> Idxs, 5213 const SimplifyQuery &Q) { 5214 return ::simplifyExtractValueInst(Agg, Idxs, Q, RecursionLimit); 5215 } 5216 5217 /// Given operands for an ExtractElementInst, see if we can fold the result. 5218 /// If not, this returns null. 5219 static Value *simplifyExtractElementInst(Value *Vec, Value *Idx, 5220 const SimplifyQuery &Q, unsigned) { 5221 auto *VecVTy = cast<VectorType>(Vec->getType()); 5222 if (auto *CVec = dyn_cast<Constant>(Vec)) { 5223 if (auto *CIdx = dyn_cast<Constant>(Idx)) 5224 return ConstantExpr::getExtractElement(CVec, CIdx); 5225 5226 if (Q.isUndefValue(Vec)) 5227 return UndefValue::get(VecVTy->getElementType()); 5228 } 5229 5230 // An undef extract index can be arbitrarily chosen to be an out-of-range 5231 // index value, which would result in the instruction being poison. 5232 if (Q.isUndefValue(Idx)) 5233 return PoisonValue::get(VecVTy->getElementType()); 5234 5235 // If extracting a specified index from the vector, see if we can recursively 5236 // find a previously computed scalar that was inserted into the vector. 5237 if (auto *IdxC = dyn_cast<ConstantInt>(Idx)) { 5238 // For fixed-length vector, fold into undef if index is out of bounds. 5239 unsigned MinNumElts = VecVTy->getElementCount().getKnownMinValue(); 5240 if (isa<FixedVectorType>(VecVTy) && IdxC->getValue().uge(MinNumElts)) 5241 return PoisonValue::get(VecVTy->getElementType()); 5242 // Handle case where an element is extracted from a splat. 5243 if (IdxC->getValue().ult(MinNumElts)) 5244 if (auto *Splat = getSplatValue(Vec)) 5245 return Splat; 5246 if (Value *Elt = findScalarElement(Vec, IdxC->getZExtValue())) 5247 return Elt; 5248 } else { 5249 // extractelt x, (insertelt y, elt, n), n -> elt 5250 // If the possibly-variable indices are trivially known to be equal 5251 // (because they are the same operand) then use the value that was 5252 // inserted directly. 5253 auto *IE = dyn_cast<InsertElementInst>(Vec); 5254 if (IE && IE->getOperand(2) == Idx) 5255 return IE->getOperand(1); 5256 5257 // The index is not relevant if our vector is a splat. 5258 if (Value *Splat = getSplatValue(Vec)) 5259 return Splat; 5260 } 5261 return nullptr; 5262 } 5263 5264 Value *llvm::simplifyExtractElementInst(Value *Vec, Value *Idx, 5265 const SimplifyQuery &Q) { 5266 return ::simplifyExtractElementInst(Vec, Idx, Q, RecursionLimit); 5267 } 5268 5269 /// See if we can fold the given phi. If not, returns null. 5270 static Value *simplifyPHINode(PHINode *PN, ArrayRef<Value *> IncomingValues, 5271 const SimplifyQuery &Q) { 5272 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE 5273 // here, because the PHI we may succeed simplifying to was not 5274 // def-reachable from the original PHI! 5275 5276 // If all of the PHI's incoming values are the same then replace the PHI node 5277 // with the common value. 5278 Value *CommonValue = nullptr; 5279 bool HasPoisonInput = false; 5280 bool HasUndefInput = false; 5281 for (Value *Incoming : IncomingValues) { 5282 // If the incoming value is the phi node itself, it can safely be skipped. 5283 if (Incoming == PN) 5284 continue; 5285 if (isa<PoisonValue>(Incoming)) { 5286 HasPoisonInput = true; 5287 continue; 5288 } 5289 if (Q.isUndefValue(Incoming)) { 5290 // Remember that we saw an undef value, but otherwise ignore them. 5291 HasUndefInput = true; 5292 continue; 5293 } 5294 if (CommonValue && Incoming != CommonValue) 5295 return nullptr; // Not the same, bail out. 5296 CommonValue = Incoming; 5297 } 5298 5299 // If CommonValue is null then all of the incoming values were either undef, 5300 // poison or equal to the phi node itself. 5301 if (!CommonValue) 5302 return HasUndefInput ? UndefValue::get(PN->getType()) 5303 : PoisonValue::get(PN->getType()); 5304 5305 if (HasPoisonInput || HasUndefInput) { 5306 // If we have a PHI node like phi(X, undef, X), where X is defined by some 5307 // instruction, we cannot return X as the result of the PHI node unless it 5308 // dominates the PHI block. 5309 if (!valueDominatesPHI(CommonValue, PN, Q.DT)) 5310 return nullptr; 5311 5312 // Make sure we do not replace an undef value with poison. 5313 if (HasUndefInput && 5314 !isGuaranteedNotToBePoison(CommonValue, Q.AC, Q.CxtI, Q.DT)) 5315 return nullptr; 5316 return CommonValue; 5317 } 5318 5319 return CommonValue; 5320 } 5321 5322 static Value *simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5323 const SimplifyQuery &Q, unsigned MaxRecurse) { 5324 if (auto *C = dyn_cast<Constant>(Op)) 5325 return ConstantFoldCastOperand(CastOpc, C, Ty, Q.DL); 5326 5327 if (auto *CI = dyn_cast<CastInst>(Op)) { 5328 auto *Src = CI->getOperand(0); 5329 Type *SrcTy = Src->getType(); 5330 Type *MidTy = CI->getType(); 5331 Type *DstTy = Ty; 5332 if (Src->getType() == Ty) { 5333 auto FirstOp = static_cast<Instruction::CastOps>(CI->getOpcode()); 5334 auto SecondOp = static_cast<Instruction::CastOps>(CastOpc); 5335 Type *SrcIntPtrTy = 5336 SrcTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(SrcTy) : nullptr; 5337 Type *MidIntPtrTy = 5338 MidTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(MidTy) : nullptr; 5339 Type *DstIntPtrTy = 5340 DstTy->isPtrOrPtrVectorTy() ? Q.DL.getIntPtrType(DstTy) : nullptr; 5341 if (CastInst::isEliminableCastPair(FirstOp, SecondOp, SrcTy, MidTy, DstTy, 5342 SrcIntPtrTy, MidIntPtrTy, 5343 DstIntPtrTy) == Instruction::BitCast) 5344 return Src; 5345 } 5346 } 5347 5348 // bitcast x -> x 5349 if (CastOpc == Instruction::BitCast) 5350 if (Op->getType() == Ty) 5351 return Op; 5352 5353 // ptrtoint (ptradd (Ptr, X - ptrtoint(Ptr))) -> X 5354 Value *Ptr, *X; 5355 if (CastOpc == Instruction::PtrToInt && 5356 match(Op, m_PtrAdd(m_Value(Ptr), 5357 m_Sub(m_Value(X), m_PtrToInt(m_Deferred(Ptr))))) && 5358 X->getType() == Ty && Ty == Q.DL.getIndexType(Ptr->getType())) 5359 return X; 5360 5361 return nullptr; 5362 } 5363 5364 Value *llvm::simplifyCastInst(unsigned CastOpc, Value *Op, Type *Ty, 5365 const SimplifyQuery &Q) { 5366 return ::simplifyCastInst(CastOpc, Op, Ty, Q, RecursionLimit); 5367 } 5368 5369 /// For the given destination element of a shuffle, peek through shuffles to 5370 /// match a root vector source operand that contains that element in the same 5371 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s). 5372 static Value *foldIdentityShuffles(int DestElt, Value *Op0, Value *Op1, 5373 int MaskVal, Value *RootVec, 5374 unsigned MaxRecurse) { 5375 if (!MaxRecurse--) 5376 return nullptr; 5377 5378 // Bail out if any mask value is undefined. That kind of shuffle may be 5379 // simplified further based on demanded bits or other folds. 5380 if (MaskVal == -1) 5381 return nullptr; 5382 5383 // The mask value chooses which source operand we need to look at next. 5384 int InVecNumElts = cast<FixedVectorType>(Op0->getType())->getNumElements(); 5385 int RootElt = MaskVal; 5386 Value *SourceOp = Op0; 5387 if (MaskVal >= InVecNumElts) { 5388 RootElt = MaskVal - InVecNumElts; 5389 SourceOp = Op1; 5390 } 5391 5392 // If the source operand is a shuffle itself, look through it to find the 5393 // matching root vector. 5394 if (auto *SourceShuf = dyn_cast<ShuffleVectorInst>(SourceOp)) { 5395 return foldIdentityShuffles( 5396 DestElt, SourceShuf->getOperand(0), SourceShuf->getOperand(1), 5397 SourceShuf->getMaskValue(RootElt), RootVec, MaxRecurse); 5398 } 5399 5400 // The source operand is not a shuffle. Initialize the root vector value for 5401 // this shuffle if that has not been done yet. 5402 if (!RootVec) 5403 RootVec = SourceOp; 5404 5405 // Give up as soon as a source operand does not match the existing root value. 5406 if (RootVec != SourceOp) 5407 return nullptr; 5408 5409 // The element must be coming from the same lane in the source vector 5410 // (although it may have crossed lanes in intermediate shuffles). 5411 if (RootElt != DestElt) 5412 return nullptr; 5413 5414 return RootVec; 5415 } 5416 5417 static Value *simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5418 ArrayRef<int> Mask, Type *RetTy, 5419 const SimplifyQuery &Q, 5420 unsigned MaxRecurse) { 5421 if (all_of(Mask, [](int Elem) { return Elem == PoisonMaskElem; })) 5422 return PoisonValue::get(RetTy); 5423 5424 auto *InVecTy = cast<VectorType>(Op0->getType()); 5425 unsigned MaskNumElts = Mask.size(); 5426 ElementCount InVecEltCount = InVecTy->getElementCount(); 5427 5428 bool Scalable = InVecEltCount.isScalable(); 5429 5430 SmallVector<int, 32> Indices; 5431 Indices.assign(Mask.begin(), Mask.end()); 5432 5433 // Canonicalization: If mask does not select elements from an input vector, 5434 // replace that input vector with poison. 5435 if (!Scalable) { 5436 bool MaskSelects0 = false, MaskSelects1 = false; 5437 unsigned InVecNumElts = InVecEltCount.getKnownMinValue(); 5438 for (unsigned i = 0; i != MaskNumElts; ++i) { 5439 if (Indices[i] == -1) 5440 continue; 5441 if ((unsigned)Indices[i] < InVecNumElts) 5442 MaskSelects0 = true; 5443 else 5444 MaskSelects1 = true; 5445 } 5446 if (!MaskSelects0) 5447 Op0 = PoisonValue::get(InVecTy); 5448 if (!MaskSelects1) 5449 Op1 = PoisonValue::get(InVecTy); 5450 } 5451 5452 auto *Op0Const = dyn_cast<Constant>(Op0); 5453 auto *Op1Const = dyn_cast<Constant>(Op1); 5454 5455 // If all operands are constant, constant fold the shuffle. This 5456 // transformation depends on the value of the mask which is not known at 5457 // compile time for scalable vectors 5458 if (Op0Const && Op1Const) 5459 return ConstantExpr::getShuffleVector(Op0Const, Op1Const, Mask); 5460 5461 // Canonicalization: if only one input vector is constant, it shall be the 5462 // second one. This transformation depends on the value of the mask which 5463 // is not known at compile time for scalable vectors 5464 if (!Scalable && Op0Const && !Op1Const) { 5465 std::swap(Op0, Op1); 5466 ShuffleVectorInst::commuteShuffleMask(Indices, 5467 InVecEltCount.getKnownMinValue()); 5468 } 5469 5470 // A splat of an inserted scalar constant becomes a vector constant: 5471 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...> 5472 // NOTE: We may have commuted above, so analyze the updated Indices, not the 5473 // original mask constant. 5474 // NOTE: This transformation depends on the value of the mask which is not 5475 // known at compile time for scalable vectors 5476 Constant *C; 5477 ConstantInt *IndexC; 5478 if (!Scalable && match(Op0, m_InsertElt(m_Value(), m_Constant(C), 5479 m_ConstantInt(IndexC)))) { 5480 // Match a splat shuffle mask of the insert index allowing undef elements. 5481 int InsertIndex = IndexC->getZExtValue(); 5482 if (all_of(Indices, [InsertIndex](int MaskElt) { 5483 return MaskElt == InsertIndex || MaskElt == -1; 5484 })) { 5485 assert(isa<UndefValue>(Op1) && "Expected undef operand 1 for splat"); 5486 5487 // Shuffle mask poisons become poison constant result elements. 5488 SmallVector<Constant *, 16> VecC(MaskNumElts, C); 5489 for (unsigned i = 0; i != MaskNumElts; ++i) 5490 if (Indices[i] == -1) 5491 VecC[i] = PoisonValue::get(C->getType()); 5492 return ConstantVector::get(VecC); 5493 } 5494 } 5495 5496 // A shuffle of a splat is always the splat itself. Legal if the shuffle's 5497 // value type is same as the input vectors' type. 5498 if (auto *OpShuf = dyn_cast<ShuffleVectorInst>(Op0)) 5499 if (Q.isUndefValue(Op1) && RetTy == InVecTy && 5500 all_equal(OpShuf->getShuffleMask())) 5501 return Op0; 5502 5503 // All remaining transformation depend on the value of the mask, which is 5504 // not known at compile time for scalable vectors. 5505 if (Scalable) 5506 return nullptr; 5507 5508 // Don't fold a shuffle with undef mask elements. This may get folded in a 5509 // better way using demanded bits or other analysis. 5510 // TODO: Should we allow this? 5511 if (is_contained(Indices, -1)) 5512 return nullptr; 5513 5514 // Check if every element of this shuffle can be mapped back to the 5515 // corresponding element of a single root vector. If so, we don't need this 5516 // shuffle. This handles simple identity shuffles as well as chains of 5517 // shuffles that may widen/narrow and/or move elements across lanes and back. 5518 Value *RootVec = nullptr; 5519 for (unsigned i = 0; i != MaskNumElts; ++i) { 5520 // Note that recursion is limited for each vector element, so if any element 5521 // exceeds the limit, this will fail to simplify. 5522 RootVec = 5523 foldIdentityShuffles(i, Op0, Op1, Indices[i], RootVec, MaxRecurse); 5524 5525 // We can't replace a widening/narrowing shuffle with one of its operands. 5526 if (!RootVec || RootVec->getType() != RetTy) 5527 return nullptr; 5528 } 5529 return RootVec; 5530 } 5531 5532 /// Given operands for a ShuffleVectorInst, fold the result or return null. 5533 Value *llvm::simplifyShuffleVectorInst(Value *Op0, Value *Op1, 5534 ArrayRef<int> Mask, Type *RetTy, 5535 const SimplifyQuery &Q) { 5536 return ::simplifyShuffleVectorInst(Op0, Op1, Mask, RetTy, Q, RecursionLimit); 5537 } 5538 5539 static Constant *foldConstant(Instruction::UnaryOps Opcode, Value *&Op, 5540 const SimplifyQuery &Q) { 5541 if (auto *C = dyn_cast<Constant>(Op)) 5542 return ConstantFoldUnaryOpOperand(Opcode, C, Q.DL); 5543 return nullptr; 5544 } 5545 5546 /// Given the operand for an FNeg, see if we can fold the result. If not, this 5547 /// returns null. 5548 static Value *simplifyFNegInst(Value *Op, FastMathFlags FMF, 5549 const SimplifyQuery &Q, unsigned MaxRecurse) { 5550 if (Constant *C = foldConstant(Instruction::FNeg, Op, Q)) 5551 return C; 5552 5553 Value *X; 5554 // fneg (fneg X) ==> X 5555 if (match(Op, m_FNeg(m_Value(X)))) 5556 return X; 5557 5558 return nullptr; 5559 } 5560 5561 Value *llvm::simplifyFNegInst(Value *Op, FastMathFlags FMF, 5562 const SimplifyQuery &Q) { 5563 return ::simplifyFNegInst(Op, FMF, Q, RecursionLimit); 5564 } 5565 5566 /// Try to propagate existing NaN values when possible. If not, replace the 5567 /// constant or elements in the constant with a canonical NaN. 5568 static Constant *propagateNaN(Constant *In) { 5569 Type *Ty = In->getType(); 5570 if (auto *VecTy = dyn_cast<FixedVectorType>(Ty)) { 5571 unsigned NumElts = VecTy->getNumElements(); 5572 SmallVector<Constant *, 32> NewC(NumElts); 5573 for (unsigned i = 0; i != NumElts; ++i) { 5574 Constant *EltC = In->getAggregateElement(i); 5575 // Poison elements propagate. NaN propagates except signaling is quieted. 5576 // Replace unknown or undef elements with canonical NaN. 5577 if (EltC && isa<PoisonValue>(EltC)) 5578 NewC[i] = EltC; 5579 else if (EltC && EltC->isNaN()) 5580 NewC[i] = ConstantFP::get( 5581 EltC->getType(), cast<ConstantFP>(EltC)->getValue().makeQuiet()); 5582 else 5583 NewC[i] = ConstantFP::getNaN(VecTy->getElementType()); 5584 } 5585 return ConstantVector::get(NewC); 5586 } 5587 5588 // If it is not a fixed vector, but not a simple NaN either, return a 5589 // canonical NaN. 5590 if (!In->isNaN()) 5591 return ConstantFP::getNaN(Ty); 5592 5593 // If we known this is a NaN, and it's scalable vector, we must have a splat 5594 // on our hands. Grab that before splatting a QNaN constant. 5595 if (isa<ScalableVectorType>(Ty)) { 5596 auto *Splat = In->getSplatValue(); 5597 assert(Splat && Splat->isNaN() && 5598 "Found a scalable-vector NaN but not a splat"); 5599 In = Splat; 5600 } 5601 5602 // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but 5603 // preserve the sign/payload. 5604 return ConstantFP::get(Ty, cast<ConstantFP>(In)->getValue().makeQuiet()); 5605 } 5606 5607 /// Perform folds that are common to any floating-point operation. This implies 5608 /// transforms based on poison/undef/NaN because the operation itself makes no 5609 /// difference to the result. 5610 static Constant *simplifyFPOp(ArrayRef<Value *> Ops, FastMathFlags FMF, 5611 const SimplifyQuery &Q, 5612 fp::ExceptionBehavior ExBehavior, 5613 RoundingMode Rounding) { 5614 // Poison is independent of anything else. It always propagates from an 5615 // operand to a math result. 5616 if (any_of(Ops, [](Value *V) { return match(V, m_Poison()); })) 5617 return PoisonValue::get(Ops[0]->getType()); 5618 5619 for (Value *V : Ops) { 5620 bool IsNan = match(V, m_NaN()); 5621 bool IsInf = match(V, m_Inf()); 5622 bool IsUndef = Q.isUndefValue(V); 5623 5624 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand 5625 // (an undef operand can be chosen to be Nan/Inf), then the result of 5626 // this operation is poison. 5627 if (FMF.noNaNs() && (IsNan || IsUndef)) 5628 return PoisonValue::get(V->getType()); 5629 if (FMF.noInfs() && (IsInf || IsUndef)) 5630 return PoisonValue::get(V->getType()); 5631 5632 if (isDefaultFPEnvironment(ExBehavior, Rounding)) { 5633 // Undef does not propagate because undef means that all bits can take on 5634 // any value. If this is undef * NaN for example, then the result values 5635 // (at least the exponent bits) are limited. Assume the undef is a 5636 // canonical NaN and propagate that. 5637 if (IsUndef) 5638 return ConstantFP::getNaN(V->getType()); 5639 if (IsNan) 5640 return propagateNaN(cast<Constant>(V)); 5641 } else if (ExBehavior != fp::ebStrict) { 5642 if (IsNan) 5643 return propagateNaN(cast<Constant>(V)); 5644 } 5645 } 5646 return nullptr; 5647 } 5648 5649 /// Given operands for an FAdd, see if we can fold the result. If not, this 5650 /// returns null. 5651 static Value * 5652 simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5653 const SimplifyQuery &Q, unsigned MaxRecurse, 5654 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5655 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5656 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5657 if (Constant *C = foldOrCommuteConstant(Instruction::FAdd, Op0, Op1, Q)) 5658 return C; 5659 5660 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5661 return C; 5662 5663 // fadd X, -0 ==> X 5664 // With strict/constrained FP, we have these possible edge cases that do 5665 // not simplify to Op0: 5666 // fadd SNaN, -0.0 --> QNaN 5667 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative) 5668 if (canIgnoreSNaN(ExBehavior, FMF) && 5669 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5670 FMF.noSignedZeros())) 5671 if (match(Op1, m_NegZeroFP())) 5672 return Op0; 5673 5674 // fadd X, 0 ==> X, when we know X is not -0 5675 if (canIgnoreSNaN(ExBehavior, FMF)) 5676 if (match(Op1, m_PosZeroFP()) && 5677 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q))) 5678 return Op0; 5679 5680 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5681 return nullptr; 5682 5683 if (FMF.noNaNs()) { 5684 // With nnan: X + {+/-}Inf --> {+/-}Inf 5685 if (match(Op1, m_Inf())) 5686 return Op1; 5687 5688 // With nnan: -X + X --> 0.0 (and commuted variant) 5689 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN. 5690 // Negative zeros are allowed because we always end up with positive zero: 5691 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5692 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0 5693 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0 5694 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0 5695 if (match(Op0, m_FSub(m_AnyZeroFP(), m_Specific(Op1))) || 5696 match(Op1, m_FSub(m_AnyZeroFP(), m_Specific(Op0)))) 5697 return ConstantFP::getZero(Op0->getType()); 5698 5699 if (match(Op0, m_FNeg(m_Specific(Op1))) || 5700 match(Op1, m_FNeg(m_Specific(Op0)))) 5701 return ConstantFP::getZero(Op0->getType()); 5702 } 5703 5704 // (X - Y) + Y --> X 5705 // Y + (X - Y) --> X 5706 Value *X; 5707 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5708 (match(Op0, m_FSub(m_Value(X), m_Specific(Op1))) || 5709 match(Op1, m_FSub(m_Value(X), m_Specific(Op0))))) 5710 return X; 5711 5712 return nullptr; 5713 } 5714 5715 /// Given operands for an FSub, see if we can fold the result. If not, this 5716 /// returns null. 5717 static Value * 5718 simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5719 const SimplifyQuery &Q, unsigned MaxRecurse, 5720 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5721 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5722 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5723 if (Constant *C = foldOrCommuteConstant(Instruction::FSub, Op0, Op1, Q)) 5724 return C; 5725 5726 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5727 return C; 5728 5729 // fsub X, +0 ==> X 5730 if (canIgnoreSNaN(ExBehavior, FMF) && 5731 (!canRoundingModeBe(Rounding, RoundingMode::TowardNegative) || 5732 FMF.noSignedZeros())) 5733 if (match(Op1, m_PosZeroFP())) 5734 return Op0; 5735 5736 // fsub X, -0 ==> X, when we know X is not -0 5737 if (canIgnoreSNaN(ExBehavior, FMF)) 5738 if (match(Op1, m_NegZeroFP()) && 5739 (FMF.noSignedZeros() || cannotBeNegativeZero(Op0, /*Depth=*/0, Q))) 5740 return Op0; 5741 5742 // fsub -0.0, (fsub -0.0, X) ==> X 5743 // fsub -0.0, (fneg X) ==> X 5744 Value *X; 5745 if (canIgnoreSNaN(ExBehavior, FMF)) 5746 if (match(Op0, m_NegZeroFP()) && match(Op1, m_FNeg(m_Value(X)))) 5747 return X; 5748 5749 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored. 5750 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored. 5751 if (canIgnoreSNaN(ExBehavior, FMF)) 5752 if (FMF.noSignedZeros() && match(Op0, m_AnyZeroFP()) && 5753 (match(Op1, m_FSub(m_AnyZeroFP(), m_Value(X))) || 5754 match(Op1, m_FNeg(m_Value(X))))) 5755 return X; 5756 5757 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5758 return nullptr; 5759 5760 if (FMF.noNaNs()) { 5761 // fsub nnan x, x ==> 0.0 5762 if (Op0 == Op1) 5763 return Constant::getNullValue(Op0->getType()); 5764 5765 // With nnan: {+/-}Inf - X --> {+/-}Inf 5766 if (match(Op0, m_Inf())) 5767 return Op0; 5768 5769 // With nnan: X - {+/-}Inf --> {-/+}Inf 5770 if (match(Op1, m_Inf())) 5771 return foldConstant(Instruction::FNeg, Op1, Q); 5772 } 5773 5774 // Y - (Y - X) --> X 5775 // (X + Y) - Y --> X 5776 if (FMF.noSignedZeros() && FMF.allowReassoc() && 5777 (match(Op1, m_FSub(m_Specific(Op0), m_Value(X))) || 5778 match(Op0, m_c_FAdd(m_Specific(Op1), m_Value(X))))) 5779 return X; 5780 5781 return nullptr; 5782 } 5783 5784 static Value *simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5785 const SimplifyQuery &Q, unsigned MaxRecurse, 5786 fp::ExceptionBehavior ExBehavior, 5787 RoundingMode Rounding) { 5788 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5789 return C; 5790 5791 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5792 return nullptr; 5793 5794 // Canonicalize special constants as operand 1. 5795 if (match(Op0, m_FPOne()) || match(Op0, m_AnyZeroFP())) 5796 std::swap(Op0, Op1); 5797 5798 // X * 1.0 --> X 5799 if (match(Op1, m_FPOne())) 5800 return Op0; 5801 5802 if (match(Op1, m_AnyZeroFP())) { 5803 // X * 0.0 --> 0.0 (with nnan and nsz) 5804 if (FMF.noNaNs() && FMF.noSignedZeros()) 5805 return ConstantFP::getZero(Op0->getType()); 5806 5807 KnownFPClass Known = 5808 computeKnownFPClass(Op0, FMF, fcInf | fcNan, /*Depth=*/0, Q); 5809 if (Known.isKnownNever(fcInf | fcNan)) { 5810 // +normal number * (-)0.0 --> (-)0.0 5811 if (Known.SignBit == false) 5812 return Op1; 5813 // -normal number * (-)0.0 --> -(-)0.0 5814 if (Known.SignBit == true) 5815 return foldConstant(Instruction::FNeg, Op1, Q); 5816 } 5817 } 5818 5819 // sqrt(X) * sqrt(X) --> X, if we can: 5820 // 1. Remove the intermediate rounding (reassociate). 5821 // 2. Ignore non-zero negative numbers because sqrt would produce NAN. 5822 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0. 5823 Value *X; 5824 if (Op0 == Op1 && match(Op0, m_Sqrt(m_Value(X))) && FMF.allowReassoc() && 5825 FMF.noNaNs() && FMF.noSignedZeros()) 5826 return X; 5827 5828 return nullptr; 5829 } 5830 5831 /// Given the operands for an FMul, see if we can fold the result 5832 static Value * 5833 simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5834 const SimplifyQuery &Q, unsigned MaxRecurse, 5835 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5836 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5837 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5838 if (Constant *C = foldOrCommuteConstant(Instruction::FMul, Op0, Op1, Q)) 5839 return C; 5840 5841 // Now apply simplifications that do not require rounding. 5842 return simplifyFMAFMul(Op0, Op1, FMF, Q, MaxRecurse, ExBehavior, Rounding); 5843 } 5844 5845 Value *llvm::simplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5846 const SimplifyQuery &Q, 5847 fp::ExceptionBehavior ExBehavior, 5848 RoundingMode Rounding) { 5849 return ::simplifyFAddInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5850 Rounding); 5851 } 5852 5853 Value *llvm::simplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5854 const SimplifyQuery &Q, 5855 fp::ExceptionBehavior ExBehavior, 5856 RoundingMode Rounding) { 5857 return ::simplifyFSubInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5858 Rounding); 5859 } 5860 5861 Value *llvm::simplifyFMulInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5862 const SimplifyQuery &Q, 5863 fp::ExceptionBehavior ExBehavior, 5864 RoundingMode Rounding) { 5865 return ::simplifyFMulInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5866 Rounding); 5867 } 5868 5869 Value *llvm::simplifyFMAFMul(Value *Op0, Value *Op1, FastMathFlags FMF, 5870 const SimplifyQuery &Q, 5871 fp::ExceptionBehavior ExBehavior, 5872 RoundingMode Rounding) { 5873 return ::simplifyFMAFMul(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5874 Rounding); 5875 } 5876 5877 static Value * 5878 simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5879 const SimplifyQuery &Q, unsigned, 5880 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5881 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5882 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5883 if (Constant *C = foldOrCommuteConstant(Instruction::FDiv, Op0, Op1, Q)) 5884 return C; 5885 5886 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5887 return C; 5888 5889 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5890 return nullptr; 5891 5892 // X / 1.0 -> X 5893 if (match(Op1, m_FPOne())) 5894 return Op0; 5895 5896 // 0 / X -> 0 5897 // Requires that NaNs are off (X could be zero) and signed zeroes are 5898 // ignored (X could be positive or negative, so the output sign is unknown). 5899 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op0, m_AnyZeroFP())) 5900 return ConstantFP::getZero(Op0->getType()); 5901 5902 if (FMF.noNaNs()) { 5903 // X / X -> 1.0 is legal when NaNs are ignored. 5904 // We can ignore infinities because INF/INF is NaN. 5905 if (Op0 == Op1) 5906 return ConstantFP::get(Op0->getType(), 1.0); 5907 5908 // (X * Y) / Y --> X if we can reassociate to the above form. 5909 Value *X; 5910 if (FMF.allowReassoc() && match(Op0, m_c_FMul(m_Value(X), m_Specific(Op1)))) 5911 return X; 5912 5913 // -X / X -> -1.0 and 5914 // X / -X -> -1.0 are legal when NaNs are ignored. 5915 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored. 5916 if (match(Op0, m_FNegNSZ(m_Specific(Op1))) || 5917 match(Op1, m_FNegNSZ(m_Specific(Op0)))) 5918 return ConstantFP::get(Op0->getType(), -1.0); 5919 5920 // nnan ninf X / [-]0.0 -> poison 5921 if (FMF.noInfs() && match(Op1, m_AnyZeroFP())) 5922 return PoisonValue::get(Op1->getType()); 5923 } 5924 5925 return nullptr; 5926 } 5927 5928 Value *llvm::simplifyFDivInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5929 const SimplifyQuery &Q, 5930 fp::ExceptionBehavior ExBehavior, 5931 RoundingMode Rounding) { 5932 return ::simplifyFDivInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5933 Rounding); 5934 } 5935 5936 static Value * 5937 simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5938 const SimplifyQuery &Q, unsigned, 5939 fp::ExceptionBehavior ExBehavior = fp::ebIgnore, 5940 RoundingMode Rounding = RoundingMode::NearestTiesToEven) { 5941 if (isDefaultFPEnvironment(ExBehavior, Rounding)) 5942 if (Constant *C = foldOrCommuteConstant(Instruction::FRem, Op0, Op1, Q)) 5943 return C; 5944 5945 if (Constant *C = simplifyFPOp({Op0, Op1}, FMF, Q, ExBehavior, Rounding)) 5946 return C; 5947 5948 if (!isDefaultFPEnvironment(ExBehavior, Rounding)) 5949 return nullptr; 5950 5951 // Unlike fdiv, the result of frem always matches the sign of the dividend. 5952 // The constant match may include undef elements in a vector, so return a full 5953 // zero constant as the result. 5954 if (FMF.noNaNs()) { 5955 // +0 % X -> 0 5956 if (match(Op0, m_PosZeroFP())) 5957 return ConstantFP::getZero(Op0->getType()); 5958 // -0 % X -> -0 5959 if (match(Op0, m_NegZeroFP())) 5960 return ConstantFP::getNegativeZero(Op0->getType()); 5961 } 5962 5963 return nullptr; 5964 } 5965 5966 Value *llvm::simplifyFRemInst(Value *Op0, Value *Op1, FastMathFlags FMF, 5967 const SimplifyQuery &Q, 5968 fp::ExceptionBehavior ExBehavior, 5969 RoundingMode Rounding) { 5970 return ::simplifyFRemInst(Op0, Op1, FMF, Q, RecursionLimit, ExBehavior, 5971 Rounding); 5972 } 5973 5974 //=== Helper functions for higher up the class hierarchy. 5975 5976 /// Given the operand for a UnaryOperator, see if we can fold the result. 5977 /// If not, this returns null. 5978 static Value *simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q, 5979 unsigned MaxRecurse) { 5980 switch (Opcode) { 5981 case Instruction::FNeg: 5982 return simplifyFNegInst(Op, FastMathFlags(), Q, MaxRecurse); 5983 default: 5984 llvm_unreachable("Unexpected opcode"); 5985 } 5986 } 5987 5988 /// Given the operand for a UnaryOperator, see if we can fold the result. 5989 /// If not, this returns null. 5990 /// Try to use FastMathFlags when folding the result. 5991 static Value *simplifyFPUnOp(unsigned Opcode, Value *Op, 5992 const FastMathFlags &FMF, const SimplifyQuery &Q, 5993 unsigned MaxRecurse) { 5994 switch (Opcode) { 5995 case Instruction::FNeg: 5996 return simplifyFNegInst(Op, FMF, Q, MaxRecurse); 5997 default: 5998 return simplifyUnOp(Opcode, Op, Q, MaxRecurse); 5999 } 6000 } 6001 6002 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, const SimplifyQuery &Q) { 6003 return ::simplifyUnOp(Opcode, Op, Q, RecursionLimit); 6004 } 6005 6006 Value *llvm::simplifyUnOp(unsigned Opcode, Value *Op, FastMathFlags FMF, 6007 const SimplifyQuery &Q) { 6008 return ::simplifyFPUnOp(Opcode, Op, FMF, Q, RecursionLimit); 6009 } 6010 6011 /// Given operands for a BinaryOperator, see if we can fold the result. 6012 /// If not, this returns null. 6013 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6014 const SimplifyQuery &Q, unsigned MaxRecurse) { 6015 switch (Opcode) { 6016 case Instruction::Add: 6017 return simplifyAddInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6018 MaxRecurse); 6019 case Instruction::Sub: 6020 return simplifySubInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6021 MaxRecurse); 6022 case Instruction::Mul: 6023 return simplifyMulInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6024 MaxRecurse); 6025 case Instruction::SDiv: 6026 return simplifySDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6027 case Instruction::UDiv: 6028 return simplifyUDivInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6029 case Instruction::SRem: 6030 return simplifySRemInst(LHS, RHS, Q, MaxRecurse); 6031 case Instruction::URem: 6032 return simplifyURemInst(LHS, RHS, Q, MaxRecurse); 6033 case Instruction::Shl: 6034 return simplifyShlInst(LHS, RHS, /* IsNSW */ false, /* IsNUW */ false, Q, 6035 MaxRecurse); 6036 case Instruction::LShr: 6037 return simplifyLShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6038 case Instruction::AShr: 6039 return simplifyAShrInst(LHS, RHS, /* IsExact */ false, Q, MaxRecurse); 6040 case Instruction::And: 6041 return simplifyAndInst(LHS, RHS, Q, MaxRecurse); 6042 case Instruction::Or: 6043 return simplifyOrInst(LHS, RHS, Q, MaxRecurse); 6044 case Instruction::Xor: 6045 return simplifyXorInst(LHS, RHS, Q, MaxRecurse); 6046 case Instruction::FAdd: 6047 return simplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6048 case Instruction::FSub: 6049 return simplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6050 case Instruction::FMul: 6051 return simplifyFMulInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6052 case Instruction::FDiv: 6053 return simplifyFDivInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6054 case Instruction::FRem: 6055 return simplifyFRemInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6056 default: 6057 llvm_unreachable("Unexpected opcode"); 6058 } 6059 } 6060 6061 /// Given operands for a BinaryOperator, see if we can fold the result. 6062 /// If not, this returns null. 6063 /// Try to use FastMathFlags when folding the result. 6064 static Value *simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6065 const FastMathFlags &FMF, const SimplifyQuery &Q, 6066 unsigned MaxRecurse) { 6067 switch (Opcode) { 6068 case Instruction::FAdd: 6069 return simplifyFAddInst(LHS, RHS, FMF, Q, MaxRecurse); 6070 case Instruction::FSub: 6071 return simplifyFSubInst(LHS, RHS, FMF, Q, MaxRecurse); 6072 case Instruction::FMul: 6073 return simplifyFMulInst(LHS, RHS, FMF, Q, MaxRecurse); 6074 case Instruction::FDiv: 6075 return simplifyFDivInst(LHS, RHS, FMF, Q, MaxRecurse); 6076 default: 6077 return simplifyBinOp(Opcode, LHS, RHS, Q, MaxRecurse); 6078 } 6079 } 6080 6081 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6082 const SimplifyQuery &Q) { 6083 return ::simplifyBinOp(Opcode, LHS, RHS, Q, RecursionLimit); 6084 } 6085 6086 Value *llvm::simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, 6087 FastMathFlags FMF, const SimplifyQuery &Q) { 6088 return ::simplifyBinOp(Opcode, LHS, RHS, FMF, Q, RecursionLimit); 6089 } 6090 6091 /// Given operands for a CmpInst, see if we can fold the result. 6092 static Value *simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, 6093 const SimplifyQuery &Q, unsigned MaxRecurse) { 6094 if (CmpInst::isIntPredicate(Predicate)) 6095 return simplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse); 6096 return simplifyFCmpInst(Predicate, LHS, RHS, FastMathFlags(), Q, MaxRecurse); 6097 } 6098 6099 Value *llvm::simplifyCmpInst(CmpPredicate Predicate, Value *LHS, Value *RHS, 6100 const SimplifyQuery &Q) { 6101 return ::simplifyCmpInst(Predicate, LHS, RHS, Q, RecursionLimit); 6102 } 6103 6104 static bool isIdempotent(Intrinsic::ID ID) { 6105 switch (ID) { 6106 default: 6107 return false; 6108 6109 // Unary idempotent: f(f(x)) = f(x) 6110 case Intrinsic::fabs: 6111 case Intrinsic::floor: 6112 case Intrinsic::ceil: 6113 case Intrinsic::trunc: 6114 case Intrinsic::rint: 6115 case Intrinsic::nearbyint: 6116 case Intrinsic::round: 6117 case Intrinsic::roundeven: 6118 case Intrinsic::canonicalize: 6119 case Intrinsic::arithmetic_fence: 6120 return true; 6121 } 6122 } 6123 6124 /// Return true if the intrinsic rounds a floating-point value to an integral 6125 /// floating-point value (not an integer type). 6126 static bool removesFPFraction(Intrinsic::ID ID) { 6127 switch (ID) { 6128 default: 6129 return false; 6130 6131 case Intrinsic::floor: 6132 case Intrinsic::ceil: 6133 case Intrinsic::trunc: 6134 case Intrinsic::rint: 6135 case Intrinsic::nearbyint: 6136 case Intrinsic::round: 6137 case Intrinsic::roundeven: 6138 return true; 6139 } 6140 } 6141 6142 static Value *simplifyRelativeLoad(Constant *Ptr, Constant *Offset, 6143 const DataLayout &DL) { 6144 GlobalValue *PtrSym; 6145 APInt PtrOffset; 6146 if (!IsConstantOffsetFromGlobal(Ptr, PtrSym, PtrOffset, DL)) 6147 return nullptr; 6148 6149 Type *Int32Ty = Type::getInt32Ty(Ptr->getContext()); 6150 6151 auto *OffsetConstInt = dyn_cast<ConstantInt>(Offset); 6152 if (!OffsetConstInt || OffsetConstInt->getBitWidth() > 64) 6153 return nullptr; 6154 6155 APInt OffsetInt = OffsetConstInt->getValue().sextOrTrunc( 6156 DL.getIndexTypeSizeInBits(Ptr->getType())); 6157 if (OffsetInt.srem(4) != 0) 6158 return nullptr; 6159 6160 Constant *Loaded = 6161 ConstantFoldLoadFromConstPtr(Ptr, Int32Ty, std::move(OffsetInt), DL); 6162 if (!Loaded) 6163 return nullptr; 6164 6165 auto *LoadedCE = dyn_cast<ConstantExpr>(Loaded); 6166 if (!LoadedCE) 6167 return nullptr; 6168 6169 if (LoadedCE->getOpcode() == Instruction::Trunc) { 6170 LoadedCE = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6171 if (!LoadedCE) 6172 return nullptr; 6173 } 6174 6175 if (LoadedCE->getOpcode() != Instruction::Sub) 6176 return nullptr; 6177 6178 auto *LoadedLHS = dyn_cast<ConstantExpr>(LoadedCE->getOperand(0)); 6179 if (!LoadedLHS || LoadedLHS->getOpcode() != Instruction::PtrToInt) 6180 return nullptr; 6181 auto *LoadedLHSPtr = LoadedLHS->getOperand(0); 6182 6183 Constant *LoadedRHS = LoadedCE->getOperand(1); 6184 GlobalValue *LoadedRHSSym; 6185 APInt LoadedRHSOffset; 6186 if (!IsConstantOffsetFromGlobal(LoadedRHS, LoadedRHSSym, LoadedRHSOffset, 6187 DL) || 6188 PtrSym != LoadedRHSSym || PtrOffset != LoadedRHSOffset) 6189 return nullptr; 6190 6191 return LoadedLHSPtr; 6192 } 6193 6194 // TODO: Need to pass in FastMathFlags 6195 static Value *simplifyLdexp(Value *Op0, Value *Op1, const SimplifyQuery &Q, 6196 bool IsStrict) { 6197 // ldexp(poison, x) -> poison 6198 // ldexp(x, poison) -> poison 6199 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 6200 return Op0; 6201 6202 // ldexp(undef, x) -> nan 6203 if (Q.isUndefValue(Op0)) 6204 return ConstantFP::getNaN(Op0->getType()); 6205 6206 if (!IsStrict) { 6207 // TODO: Could insert a canonicalize for strict 6208 6209 // ldexp(x, undef) -> x 6210 if (Q.isUndefValue(Op1)) 6211 return Op0; 6212 } 6213 6214 const APFloat *C = nullptr; 6215 match(Op0, PatternMatch::m_APFloat(C)); 6216 6217 // These cases should be safe, even with strictfp. 6218 // ldexp(0.0, x) -> 0.0 6219 // ldexp(-0.0, x) -> -0.0 6220 // ldexp(inf, x) -> inf 6221 // ldexp(-inf, x) -> -inf 6222 if (C && (C->isZero() || C->isInfinity())) 6223 return Op0; 6224 6225 // These are canonicalization dropping, could do it if we knew how we could 6226 // ignore denormal flushes and target handling of nan payload bits. 6227 if (IsStrict) 6228 return nullptr; 6229 6230 // TODO: Could quiet this with strictfp if the exception mode isn't strict. 6231 if (C && C->isNaN()) 6232 return ConstantFP::get(Op0->getType(), C->makeQuiet()); 6233 6234 // ldexp(x, 0) -> x 6235 6236 // TODO: Could fold this if we know the exception mode isn't 6237 // strict, we know the denormal mode and other target modes. 6238 if (match(Op1, PatternMatch::m_ZeroInt())) 6239 return Op0; 6240 6241 return nullptr; 6242 } 6243 6244 static Value *simplifyUnaryIntrinsic(Function *F, Value *Op0, 6245 const SimplifyQuery &Q, 6246 const CallBase *Call) { 6247 // Idempotent functions return the same result when called repeatedly. 6248 Intrinsic::ID IID = F->getIntrinsicID(); 6249 if (isIdempotent(IID)) 6250 if (auto *II = dyn_cast<IntrinsicInst>(Op0)) 6251 if (II->getIntrinsicID() == IID) 6252 return II; 6253 6254 if (removesFPFraction(IID)) { 6255 // Converting from int or calling a rounding function always results in a 6256 // finite integral number or infinity. For those inputs, rounding functions 6257 // always return the same value, so the (2nd) rounding is eliminated. Ex: 6258 // floor (sitofp x) -> sitofp x 6259 // round (ceil x) -> ceil x 6260 auto *II = dyn_cast<IntrinsicInst>(Op0); 6261 if ((II && removesFPFraction(II->getIntrinsicID())) || 6262 match(Op0, m_SIToFP(m_Value())) || match(Op0, m_UIToFP(m_Value()))) 6263 return Op0; 6264 } 6265 6266 Value *X; 6267 switch (IID) { 6268 case Intrinsic::fabs: 6269 if (computeKnownFPSignBit(Op0, /*Depth=*/0, Q) == false) 6270 return Op0; 6271 break; 6272 case Intrinsic::bswap: 6273 // bswap(bswap(x)) -> x 6274 if (match(Op0, m_BSwap(m_Value(X)))) 6275 return X; 6276 break; 6277 case Intrinsic::bitreverse: 6278 // bitreverse(bitreverse(x)) -> x 6279 if (match(Op0, m_BitReverse(m_Value(X)))) 6280 return X; 6281 break; 6282 case Intrinsic::ctpop: { 6283 // ctpop(X) -> 1 iff X is non-zero power of 2. 6284 if (isKnownToBeAPowerOfTwo(Op0, Q.DL, /*OrZero*/ false, 0, Q.AC, Q.CxtI, 6285 Q.DT)) 6286 return ConstantInt::get(Op0->getType(), 1); 6287 // If everything but the lowest bit is zero, that bit is the pop-count. Ex: 6288 // ctpop(and X, 1) --> and X, 1 6289 unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); 6290 if (MaskedValueIsZero(Op0, APInt::getHighBitsSet(BitWidth, BitWidth - 1), 6291 Q)) 6292 return Op0; 6293 break; 6294 } 6295 case Intrinsic::exp: 6296 // exp(log(x)) -> x 6297 if (Call->hasAllowReassoc() && 6298 match(Op0, m_Intrinsic<Intrinsic::log>(m_Value(X)))) 6299 return X; 6300 break; 6301 case Intrinsic::exp2: 6302 // exp2(log2(x)) -> x 6303 if (Call->hasAllowReassoc() && 6304 match(Op0, m_Intrinsic<Intrinsic::log2>(m_Value(X)))) 6305 return X; 6306 break; 6307 case Intrinsic::exp10: 6308 // exp10(log10(x)) -> x 6309 if (Call->hasAllowReassoc() && 6310 match(Op0, m_Intrinsic<Intrinsic::log10>(m_Value(X)))) 6311 return X; 6312 break; 6313 case Intrinsic::log: 6314 // log(exp(x)) -> x 6315 if (Call->hasAllowReassoc() && 6316 match(Op0, m_Intrinsic<Intrinsic::exp>(m_Value(X)))) 6317 return X; 6318 break; 6319 case Intrinsic::log2: 6320 // log2(exp2(x)) -> x 6321 if (Call->hasAllowReassoc() && 6322 (match(Op0, m_Intrinsic<Intrinsic::exp2>(m_Value(X))) || 6323 match(Op0, 6324 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(2.0), m_Value(X))))) 6325 return X; 6326 break; 6327 case Intrinsic::log10: 6328 // log10(pow(10.0, x)) -> x 6329 // log10(exp10(x)) -> x 6330 if (Call->hasAllowReassoc() && 6331 (match(Op0, m_Intrinsic<Intrinsic::exp10>(m_Value(X))) || 6332 match(Op0, 6333 m_Intrinsic<Intrinsic::pow>(m_SpecificFP(10.0), m_Value(X))))) 6334 return X; 6335 break; 6336 case Intrinsic::vector_reverse: 6337 // vector.reverse(vector.reverse(x)) -> x 6338 if (match(Op0, m_VecReverse(m_Value(X)))) 6339 return X; 6340 // vector.reverse(splat(X)) -> splat(X) 6341 if (isSplatValue(Op0)) 6342 return Op0; 6343 break; 6344 case Intrinsic::frexp: { 6345 // Frexp is idempotent with the added complication of the struct return. 6346 if (match(Op0, m_ExtractValue<0>(m_Value(X)))) { 6347 if (match(X, m_Intrinsic<Intrinsic::frexp>(m_Value()))) 6348 return X; 6349 } 6350 6351 break; 6352 } 6353 default: 6354 break; 6355 } 6356 6357 return nullptr; 6358 } 6359 6360 /// Given a min/max intrinsic, see if it can be removed based on having an 6361 /// operand that is another min/max intrinsic with shared operand(s). The caller 6362 /// is expected to swap the operand arguments to handle commutation. 6363 static Value *foldMinMaxSharedOp(Intrinsic::ID IID, Value *Op0, Value *Op1) { 6364 Value *X, *Y; 6365 if (!match(Op0, m_MaxOrMin(m_Value(X), m_Value(Y)))) 6366 return nullptr; 6367 6368 auto *MM0 = dyn_cast<IntrinsicInst>(Op0); 6369 if (!MM0) 6370 return nullptr; 6371 Intrinsic::ID IID0 = MM0->getIntrinsicID(); 6372 6373 if (Op1 == X || Op1 == Y || 6374 match(Op1, m_c_MaxOrMin(m_Specific(X), m_Specific(Y)))) { 6375 // max (max X, Y), X --> max X, Y 6376 if (IID0 == IID) 6377 return MM0; 6378 // max (min X, Y), X --> X 6379 if (IID0 == getInverseMinMaxIntrinsic(IID)) 6380 return Op1; 6381 } 6382 return nullptr; 6383 } 6384 6385 /// Given a min/max intrinsic, see if it can be removed based on having an 6386 /// operand that is another min/max intrinsic with shared operand(s). The caller 6387 /// is expected to swap the operand arguments to handle commutation. 6388 static Value *foldMinimumMaximumSharedOp(Intrinsic::ID IID, Value *Op0, 6389 Value *Op1) { 6390 assert((IID == Intrinsic::maxnum || IID == Intrinsic::minnum || 6391 IID == Intrinsic::maximum || IID == Intrinsic::minimum) && 6392 "Unsupported intrinsic"); 6393 6394 auto *M0 = dyn_cast<IntrinsicInst>(Op0); 6395 // If Op0 is not the same intrinsic as IID, do not process. 6396 // This is a difference with integer min/max handling. We do not process the 6397 // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN. 6398 if (!M0 || M0->getIntrinsicID() != IID) 6399 return nullptr; 6400 Value *X0 = M0->getOperand(0); 6401 Value *Y0 = M0->getOperand(1); 6402 // Simple case, m(m(X,Y), X) => m(X, Y) 6403 // m(m(X,Y), Y) => m(X, Y) 6404 // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN. 6405 // For minimum/maximum, Y is NaN => m(X, NaN) == NaN and m(NaN, NaN) == NaN. 6406 // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y. 6407 // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X. 6408 if (X0 == Op1 || Y0 == Op1) 6409 return M0; 6410 6411 auto *M1 = dyn_cast<IntrinsicInst>(Op1); 6412 if (!M1) 6413 return nullptr; 6414 Value *X1 = M1->getOperand(0); 6415 Value *Y1 = M1->getOperand(1); 6416 Intrinsic::ID IID1 = M1->getIntrinsicID(); 6417 // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative. 6418 // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y). 6419 // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN. 6420 // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN. 6421 // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y. 6422 // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X. 6423 if ((X0 == X1 && Y0 == Y1) || (X0 == Y1 && Y0 == X1)) 6424 if (IID1 == IID || getInverseMinMaxIntrinsic(IID1) == IID) 6425 return M0; 6426 6427 return nullptr; 6428 } 6429 6430 Value *llvm::simplifyBinaryIntrinsic(Intrinsic::ID IID, Type *ReturnType, 6431 Value *Op0, Value *Op1, 6432 const SimplifyQuery &Q, 6433 const CallBase *Call) { 6434 unsigned BitWidth = ReturnType->getScalarSizeInBits(); 6435 switch (IID) { 6436 case Intrinsic::abs: 6437 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here. 6438 // It is always ok to pick the earlier abs. We'll just lose nsw if its only 6439 // on the outer abs. 6440 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(), m_Value()))) 6441 return Op0; 6442 break; 6443 6444 case Intrinsic::cttz: { 6445 Value *X; 6446 if (match(Op0, m_Shl(m_One(), m_Value(X)))) 6447 return X; 6448 break; 6449 } 6450 case Intrinsic::ctlz: { 6451 Value *X; 6452 if (match(Op0, m_LShr(m_Negative(), m_Value(X)))) 6453 return X; 6454 if (match(Op0, m_AShr(m_Negative(), m_Value()))) 6455 return Constant::getNullValue(ReturnType); 6456 break; 6457 } 6458 case Intrinsic::ptrmask: { 6459 if (isa<PoisonValue>(Op0) || isa<PoisonValue>(Op1)) 6460 return PoisonValue::get(Op0->getType()); 6461 6462 // NOTE: We can't apply this simplifications based on the value of Op1 6463 // because we need to preserve provenance. 6464 if (Q.isUndefValue(Op0) || match(Op0, m_Zero())) 6465 return Constant::getNullValue(Op0->getType()); 6466 6467 assert(Op1->getType()->getScalarSizeInBits() == 6468 Q.DL.getIndexTypeSizeInBits(Op0->getType()) && 6469 "Invalid mask width"); 6470 // If index-width (mask size) is less than pointer-size then mask is 6471 // 1-extended. 6472 if (match(Op1, m_PtrToInt(m_Specific(Op0)))) 6473 return Op0; 6474 6475 // NOTE: We may have attributes associated with the return value of the 6476 // llvm.ptrmask intrinsic that will be lost when we just return the 6477 // operand. We should try to preserve them. 6478 if (match(Op1, m_AllOnes()) || Q.isUndefValue(Op1)) 6479 return Op0; 6480 6481 Constant *C; 6482 if (match(Op1, m_ImmConstant(C))) { 6483 KnownBits PtrKnown = computeKnownBits(Op0, /*Depth=*/0, Q); 6484 // See if we only masking off bits we know are already zero due to 6485 // alignment. 6486 APInt IrrelevantPtrBits = 6487 PtrKnown.Zero.zextOrTrunc(C->getType()->getScalarSizeInBits()); 6488 C = ConstantFoldBinaryOpOperands( 6489 Instruction::Or, C, ConstantInt::get(C->getType(), IrrelevantPtrBits), 6490 Q.DL); 6491 if (C != nullptr && C->isAllOnesValue()) 6492 return Op0; 6493 } 6494 break; 6495 } 6496 case Intrinsic::smax: 6497 case Intrinsic::smin: 6498 case Intrinsic::umax: 6499 case Intrinsic::umin: { 6500 // If the arguments are the same, this is a no-op. 6501 if (Op0 == Op1) 6502 return Op0; 6503 6504 // Canonicalize immediate constant operand as Op1. 6505 if (match(Op0, m_ImmConstant())) 6506 std::swap(Op0, Op1); 6507 6508 // Assume undef is the limit value. 6509 if (Q.isUndefValue(Op1)) 6510 return ConstantInt::get( 6511 ReturnType, MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)); 6512 6513 const APInt *C; 6514 if (match(Op1, m_APIntAllowPoison(C))) { 6515 // Clamp to limit value. For example: 6516 // umax(i8 %x, i8 255) --> 255 6517 if (*C == MinMaxIntrinsic::getSaturationPoint(IID, BitWidth)) 6518 return ConstantInt::get(ReturnType, *C); 6519 6520 // If the constant op is the opposite of the limit value, the other must 6521 // be larger/smaller or equal. For example: 6522 // umin(i8 %x, i8 255) --> %x 6523 if (*C == MinMaxIntrinsic::getSaturationPoint( 6524 getInverseMinMaxIntrinsic(IID), BitWidth)) 6525 return Op0; 6526 6527 // Remove nested call if constant operands allow it. Example: 6528 // max (max X, 7), 5 -> max X, 7 6529 auto *MinMax0 = dyn_cast<IntrinsicInst>(Op0); 6530 if (MinMax0 && MinMax0->getIntrinsicID() == IID) { 6531 // TODO: loosen undef/splat restrictions for vector constants. 6532 Value *M00 = MinMax0->getOperand(0), *M01 = MinMax0->getOperand(1); 6533 const APInt *InnerC; 6534 if ((match(M00, m_APInt(InnerC)) || match(M01, m_APInt(InnerC))) && 6535 ICmpInst::compare(*InnerC, *C, 6536 ICmpInst::getNonStrictPredicate( 6537 MinMaxIntrinsic::getPredicate(IID)))) 6538 return Op0; 6539 } 6540 } 6541 6542 if (Value *V = foldMinMaxSharedOp(IID, Op0, Op1)) 6543 return V; 6544 if (Value *V = foldMinMaxSharedOp(IID, Op1, Op0)) 6545 return V; 6546 6547 ICmpInst::Predicate Pred = 6548 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID)); 6549 if (isICmpTrue(Pred, Op0, Op1, Q.getWithoutUndef(), RecursionLimit)) 6550 return Op0; 6551 if (isICmpTrue(Pred, Op1, Op0, Q.getWithoutUndef(), RecursionLimit)) 6552 return Op1; 6553 6554 break; 6555 } 6556 case Intrinsic::scmp: 6557 case Intrinsic::ucmp: { 6558 // Fold to a constant if the relationship between operands can be 6559 // established with certainty 6560 if (isICmpTrue(CmpInst::ICMP_EQ, Op0, Op1, Q, RecursionLimit)) 6561 return Constant::getNullValue(ReturnType); 6562 6563 ICmpInst::Predicate PredGT = 6564 IID == Intrinsic::scmp ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 6565 if (isICmpTrue(PredGT, Op0, Op1, Q, RecursionLimit)) 6566 return ConstantInt::get(ReturnType, 1); 6567 6568 ICmpInst::Predicate PredLT = 6569 IID == Intrinsic::scmp ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 6570 if (isICmpTrue(PredLT, Op0, Op1, Q, RecursionLimit)) 6571 return ConstantInt::getSigned(ReturnType, -1); 6572 6573 break; 6574 } 6575 case Intrinsic::usub_with_overflow: 6576 case Intrinsic::ssub_with_overflow: 6577 // X - X -> { 0, false } 6578 // X - undef -> { 0, false } 6579 // undef - X -> { 0, false } 6580 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6581 return Constant::getNullValue(ReturnType); 6582 break; 6583 case Intrinsic::uadd_with_overflow: 6584 case Intrinsic::sadd_with_overflow: 6585 // X + undef -> { -1, false } 6586 // undef + x -> { -1, false } 6587 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) { 6588 return ConstantStruct::get( 6589 cast<StructType>(ReturnType), 6590 {Constant::getAllOnesValue(ReturnType->getStructElementType(0)), 6591 Constant::getNullValue(ReturnType->getStructElementType(1))}); 6592 } 6593 break; 6594 case Intrinsic::umul_with_overflow: 6595 case Intrinsic::smul_with_overflow: 6596 // 0 * X -> { 0, false } 6597 // X * 0 -> { 0, false } 6598 if (match(Op0, m_Zero()) || match(Op1, m_Zero())) 6599 return Constant::getNullValue(ReturnType); 6600 // undef * X -> { 0, false } 6601 // X * undef -> { 0, false } 6602 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6603 return Constant::getNullValue(ReturnType); 6604 break; 6605 case Intrinsic::uadd_sat: 6606 // sat(MAX + X) -> MAX 6607 // sat(X + MAX) -> MAX 6608 if (match(Op0, m_AllOnes()) || match(Op1, m_AllOnes())) 6609 return Constant::getAllOnesValue(ReturnType); 6610 [[fallthrough]]; 6611 case Intrinsic::sadd_sat: 6612 // sat(X + undef) -> -1 6613 // sat(undef + X) -> -1 6614 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1). 6615 // For signed: Assume undef is ~X, in which case X + ~X = -1. 6616 if (Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6617 return Constant::getAllOnesValue(ReturnType); 6618 6619 // X + 0 -> X 6620 if (match(Op1, m_Zero())) 6621 return Op0; 6622 // 0 + X -> X 6623 if (match(Op0, m_Zero())) 6624 return Op1; 6625 break; 6626 case Intrinsic::usub_sat: 6627 // sat(0 - X) -> 0, sat(X - MAX) -> 0 6628 if (match(Op0, m_Zero()) || match(Op1, m_AllOnes())) 6629 return Constant::getNullValue(ReturnType); 6630 [[fallthrough]]; 6631 case Intrinsic::ssub_sat: 6632 // X - X -> 0, X - undef -> 0, undef - X -> 0 6633 if (Op0 == Op1 || Q.isUndefValue(Op0) || Q.isUndefValue(Op1)) 6634 return Constant::getNullValue(ReturnType); 6635 // X - 0 -> X 6636 if (match(Op1, m_Zero())) 6637 return Op0; 6638 break; 6639 case Intrinsic::load_relative: 6640 if (auto *C0 = dyn_cast<Constant>(Op0)) 6641 if (auto *C1 = dyn_cast<Constant>(Op1)) 6642 return simplifyRelativeLoad(C0, C1, Q.DL); 6643 break; 6644 case Intrinsic::powi: 6645 if (auto *Power = dyn_cast<ConstantInt>(Op1)) { 6646 // powi(x, 0) -> 1.0 6647 if (Power->isZero()) 6648 return ConstantFP::get(Op0->getType(), 1.0); 6649 // powi(x, 1) -> x 6650 if (Power->isOne()) 6651 return Op0; 6652 } 6653 break; 6654 case Intrinsic::ldexp: 6655 return simplifyLdexp(Op0, Op1, Q, false); 6656 case Intrinsic::copysign: 6657 // copysign X, X --> X 6658 if (Op0 == Op1) 6659 return Op0; 6660 // copysign -X, X --> X 6661 // copysign X, -X --> -X 6662 if (match(Op0, m_FNeg(m_Specific(Op1))) || 6663 match(Op1, m_FNeg(m_Specific(Op0)))) 6664 return Op1; 6665 break; 6666 case Intrinsic::is_fpclass: { 6667 if (isa<PoisonValue>(Op0)) 6668 return PoisonValue::get(ReturnType); 6669 6670 uint64_t Mask = cast<ConstantInt>(Op1)->getZExtValue(); 6671 // If all tests are made, it doesn't matter what the value is. 6672 if ((Mask & fcAllFlags) == fcAllFlags) 6673 return ConstantInt::get(ReturnType, true); 6674 if ((Mask & fcAllFlags) == 0) 6675 return ConstantInt::get(ReturnType, false); 6676 if (Q.isUndefValue(Op0)) 6677 return UndefValue::get(ReturnType); 6678 break; 6679 } 6680 case Intrinsic::maxnum: 6681 case Intrinsic::minnum: 6682 case Intrinsic::maximum: 6683 case Intrinsic::minimum: { 6684 // If the arguments are the same, this is a no-op. 6685 if (Op0 == Op1) 6686 return Op0; 6687 6688 // Canonicalize constant operand as Op1. 6689 if (isa<Constant>(Op0)) 6690 std::swap(Op0, Op1); 6691 6692 // If an argument is undef, return the other argument. 6693 if (Q.isUndefValue(Op1)) 6694 return Op0; 6695 6696 bool PropagateNaN = IID == Intrinsic::minimum || IID == Intrinsic::maximum; 6697 bool IsMin = IID == Intrinsic::minimum || IID == Intrinsic::minnum; 6698 6699 // minnum(X, nan) -> X 6700 // maxnum(X, nan) -> X 6701 // minimum(X, nan) -> nan 6702 // maximum(X, nan) -> nan 6703 if (match(Op1, m_NaN())) 6704 return PropagateNaN ? propagateNaN(cast<Constant>(Op1)) : Op0; 6705 6706 // In the following folds, inf can be replaced with the largest finite 6707 // float, if the ninf flag is set. 6708 const APFloat *C; 6709 if (match(Op1, m_APFloat(C)) && 6710 (C->isInfinity() || (Call && Call->hasNoInfs() && C->isLargest()))) { 6711 // minnum(X, -inf) -> -inf 6712 // maxnum(X, +inf) -> +inf 6713 // minimum(X, -inf) -> -inf if nnan 6714 // maximum(X, +inf) -> +inf if nnan 6715 if (C->isNegative() == IsMin && 6716 (!PropagateNaN || (Call && Call->hasNoNaNs()))) 6717 return ConstantFP::get(ReturnType, *C); 6718 6719 // minnum(X, +inf) -> X if nnan 6720 // maxnum(X, -inf) -> X if nnan 6721 // minimum(X, +inf) -> X 6722 // maximum(X, -inf) -> X 6723 if (C->isNegative() != IsMin && 6724 (PropagateNaN || (Call && Call->hasNoNaNs()))) 6725 return Op0; 6726 } 6727 6728 // Min/max of the same operation with common operand: 6729 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants) 6730 if (Value *V = foldMinimumMaximumSharedOp(IID, Op0, Op1)) 6731 return V; 6732 if (Value *V = foldMinimumMaximumSharedOp(IID, Op1, Op0)) 6733 return V; 6734 6735 break; 6736 } 6737 case Intrinsic::vector_extract: { 6738 // (extract_vector (insert_vector _, X, 0), 0) -> X 6739 unsigned IdxN = cast<ConstantInt>(Op1)->getZExtValue(); 6740 Value *X = nullptr; 6741 if (match(Op0, m_Intrinsic<Intrinsic::vector_insert>(m_Value(), m_Value(X), 6742 m_Zero())) && 6743 IdxN == 0 && X->getType() == ReturnType) 6744 return X; 6745 6746 break; 6747 } 6748 default: 6749 break; 6750 } 6751 6752 return nullptr; 6753 } 6754 6755 static Value *simplifyIntrinsic(CallBase *Call, Value *Callee, 6756 ArrayRef<Value *> Args, 6757 const SimplifyQuery &Q) { 6758 // Operand bundles should not be in Args. 6759 assert(Call->arg_size() == Args.size()); 6760 unsigned NumOperands = Args.size(); 6761 Function *F = cast<Function>(Callee); 6762 Intrinsic::ID IID = F->getIntrinsicID(); 6763 6764 // Most of the intrinsics with no operands have some kind of side effect. 6765 // Don't simplify. 6766 if (!NumOperands) { 6767 switch (IID) { 6768 case Intrinsic::vscale: { 6769 Type *RetTy = F->getReturnType(); 6770 ConstantRange CR = getVScaleRange(Call->getFunction(), 64); 6771 if (const APInt *C = CR.getSingleElement()) 6772 return ConstantInt::get(RetTy, C->getZExtValue()); 6773 return nullptr; 6774 } 6775 default: 6776 return nullptr; 6777 } 6778 } 6779 6780 if (NumOperands == 1) 6781 return simplifyUnaryIntrinsic(F, Args[0], Q, Call); 6782 6783 if (NumOperands == 2) 6784 return simplifyBinaryIntrinsic(IID, F->getReturnType(), Args[0], Args[1], Q, 6785 Call); 6786 6787 // Handle intrinsics with 3 or more arguments. 6788 switch (IID) { 6789 case Intrinsic::masked_load: 6790 case Intrinsic::masked_gather: { 6791 Value *MaskArg = Args[2]; 6792 Value *PassthruArg = Args[3]; 6793 // If the mask is all zeros or undef, the "passthru" argument is the result. 6794 if (maskIsAllZeroOrUndef(MaskArg)) 6795 return PassthruArg; 6796 return nullptr; 6797 } 6798 case Intrinsic::fshl: 6799 case Intrinsic::fshr: { 6800 Value *Op0 = Args[0], *Op1 = Args[1], *ShAmtArg = Args[2]; 6801 6802 // If both operands are undef, the result is undef. 6803 if (Q.isUndefValue(Op0) && Q.isUndefValue(Op1)) 6804 return UndefValue::get(F->getReturnType()); 6805 6806 // If shift amount is undef, assume it is zero. 6807 if (Q.isUndefValue(ShAmtArg)) 6808 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6809 6810 const APInt *ShAmtC; 6811 if (match(ShAmtArg, m_APInt(ShAmtC))) { 6812 // If there's effectively no shift, return the 1st arg or 2nd arg. 6813 APInt BitWidth = APInt(ShAmtC->getBitWidth(), ShAmtC->getBitWidth()); 6814 if (ShAmtC->urem(BitWidth).isZero()) 6815 return Args[IID == Intrinsic::fshl ? 0 : 1]; 6816 } 6817 6818 // Rotating zero by anything is zero. 6819 if (match(Op0, m_Zero()) && match(Op1, m_Zero())) 6820 return ConstantInt::getNullValue(F->getReturnType()); 6821 6822 // Rotating -1 by anything is -1. 6823 if (match(Op0, m_AllOnes()) && match(Op1, m_AllOnes())) 6824 return ConstantInt::getAllOnesValue(F->getReturnType()); 6825 6826 return nullptr; 6827 } 6828 case Intrinsic::experimental_constrained_fma: { 6829 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6830 if (Value *V = simplifyFPOp(Args, {}, Q, *FPI->getExceptionBehavior(), 6831 *FPI->getRoundingMode())) 6832 return V; 6833 return nullptr; 6834 } 6835 case Intrinsic::fma: 6836 case Intrinsic::fmuladd: { 6837 if (Value *V = simplifyFPOp(Args, {}, Q, fp::ebIgnore, 6838 RoundingMode::NearestTiesToEven)) 6839 return V; 6840 return nullptr; 6841 } 6842 case Intrinsic::smul_fix: 6843 case Intrinsic::smul_fix_sat: { 6844 Value *Op0 = Args[0]; 6845 Value *Op1 = Args[1]; 6846 Value *Op2 = Args[2]; 6847 Type *ReturnType = F->getReturnType(); 6848 6849 // Canonicalize constant operand as Op1 (ConstantFolding handles the case 6850 // when both Op0 and Op1 are constant so we do not care about that special 6851 // case here). 6852 if (isa<Constant>(Op0)) 6853 std::swap(Op0, Op1); 6854 6855 // X * 0 -> 0 6856 if (match(Op1, m_Zero())) 6857 return Constant::getNullValue(ReturnType); 6858 6859 // X * undef -> 0 6860 if (Q.isUndefValue(Op1)) 6861 return Constant::getNullValue(ReturnType); 6862 6863 // X * (1 << Scale) -> X 6864 APInt ScaledOne = 6865 APInt::getOneBitSet(ReturnType->getScalarSizeInBits(), 6866 cast<ConstantInt>(Op2)->getZExtValue()); 6867 if (ScaledOne.isNonNegative() && match(Op1, m_SpecificInt(ScaledOne))) 6868 return Op0; 6869 6870 return nullptr; 6871 } 6872 case Intrinsic::vector_insert: { 6873 Value *Vec = Args[0]; 6874 Value *SubVec = Args[1]; 6875 Value *Idx = Args[2]; 6876 Type *ReturnType = F->getReturnType(); 6877 6878 // (insert_vector Y, (extract_vector X, 0), 0) -> X 6879 // where: Y is X, or Y is undef 6880 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue(); 6881 Value *X = nullptr; 6882 if (match(SubVec, 6883 m_Intrinsic<Intrinsic::vector_extract>(m_Value(X), m_Zero())) && 6884 (Q.isUndefValue(Vec) || Vec == X) && IdxN == 0 && 6885 X->getType() == ReturnType) 6886 return X; 6887 6888 return nullptr; 6889 } 6890 case Intrinsic::experimental_constrained_fadd: { 6891 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6892 return simplifyFAddInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6893 *FPI->getExceptionBehavior(), 6894 *FPI->getRoundingMode()); 6895 } 6896 case Intrinsic::experimental_constrained_fsub: { 6897 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6898 return simplifyFSubInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6899 *FPI->getExceptionBehavior(), 6900 *FPI->getRoundingMode()); 6901 } 6902 case Intrinsic::experimental_constrained_fmul: { 6903 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6904 return simplifyFMulInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6905 *FPI->getExceptionBehavior(), 6906 *FPI->getRoundingMode()); 6907 } 6908 case Intrinsic::experimental_constrained_fdiv: { 6909 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6910 return simplifyFDivInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6911 *FPI->getExceptionBehavior(), 6912 *FPI->getRoundingMode()); 6913 } 6914 case Intrinsic::experimental_constrained_frem: { 6915 auto *FPI = cast<ConstrainedFPIntrinsic>(Call); 6916 return simplifyFRemInst(Args[0], Args[1], FPI->getFastMathFlags(), Q, 6917 *FPI->getExceptionBehavior(), 6918 *FPI->getRoundingMode()); 6919 } 6920 case Intrinsic::experimental_constrained_ldexp: 6921 return simplifyLdexp(Args[0], Args[1], Q, true); 6922 case Intrinsic::experimental_gc_relocate: { 6923 GCRelocateInst &GCR = *cast<GCRelocateInst>(Call); 6924 Value *DerivedPtr = GCR.getDerivedPtr(); 6925 Value *BasePtr = GCR.getBasePtr(); 6926 6927 // Undef is undef, even after relocation. 6928 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) { 6929 return UndefValue::get(GCR.getType()); 6930 } 6931 6932 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) { 6933 // For now, the assumption is that the relocation of null will be null 6934 // for most any collector. If this ever changes, a corresponding hook 6935 // should be added to GCStrategy and this code should check it first. 6936 if (isa<ConstantPointerNull>(DerivedPtr)) { 6937 // Use null-pointer of gc_relocate's type to replace it. 6938 return ConstantPointerNull::get(PT); 6939 } 6940 } 6941 return nullptr; 6942 } 6943 default: 6944 return nullptr; 6945 } 6946 } 6947 6948 static Value *tryConstantFoldCall(CallBase *Call, Value *Callee, 6949 ArrayRef<Value *> Args, 6950 const SimplifyQuery &Q) { 6951 auto *F = dyn_cast<Function>(Callee); 6952 if (!F || !canConstantFoldCallTo(Call, F)) 6953 return nullptr; 6954 6955 SmallVector<Constant *, 4> ConstantArgs; 6956 ConstantArgs.reserve(Args.size()); 6957 for (Value *Arg : Args) { 6958 Constant *C = dyn_cast<Constant>(Arg); 6959 if (!C) { 6960 if (isa<MetadataAsValue>(Arg)) 6961 continue; 6962 return nullptr; 6963 } 6964 ConstantArgs.push_back(C); 6965 } 6966 6967 return ConstantFoldCall(Call, F, ConstantArgs, Q.TLI); 6968 } 6969 6970 Value *llvm::simplifyCall(CallBase *Call, Value *Callee, ArrayRef<Value *> Args, 6971 const SimplifyQuery &Q) { 6972 // Args should not contain operand bundle operands. 6973 assert(Call->arg_size() == Args.size()); 6974 6975 // musttail calls can only be simplified if they are also DCEd. 6976 // As we can't guarantee this here, don't simplify them. 6977 if (Call->isMustTailCall()) 6978 return nullptr; 6979 6980 // call undef -> poison 6981 // call null -> poison 6982 if (isa<UndefValue>(Callee) || isa<ConstantPointerNull>(Callee)) 6983 return PoisonValue::get(Call->getType()); 6984 6985 if (Value *V = tryConstantFoldCall(Call, Callee, Args, Q)) 6986 return V; 6987 6988 auto *F = dyn_cast<Function>(Callee); 6989 if (F && F->isIntrinsic()) 6990 if (Value *Ret = simplifyIntrinsic(Call, Callee, Args, Q)) 6991 return Ret; 6992 6993 return nullptr; 6994 } 6995 6996 Value *llvm::simplifyConstrainedFPCall(CallBase *Call, const SimplifyQuery &Q) { 6997 assert(isa<ConstrainedFPIntrinsic>(Call)); 6998 SmallVector<Value *, 4> Args(Call->args()); 6999 if (Value *V = tryConstantFoldCall(Call, Call->getCalledOperand(), Args, Q)) 7000 return V; 7001 if (Value *Ret = simplifyIntrinsic(Call, Call->getCalledOperand(), Args, Q)) 7002 return Ret; 7003 return nullptr; 7004 } 7005 7006 /// Given operands for a Freeze, see if we can fold the result. 7007 static Value *simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 7008 // Use a utility function defined in ValueTracking. 7009 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0, Q.AC, Q.CxtI, Q.DT)) 7010 return Op0; 7011 // We have room for improvement. 7012 return nullptr; 7013 } 7014 7015 Value *llvm::simplifyFreezeInst(Value *Op0, const SimplifyQuery &Q) { 7016 return ::simplifyFreezeInst(Op0, Q); 7017 } 7018 7019 Value *llvm::simplifyLoadInst(LoadInst *LI, Value *PtrOp, 7020 const SimplifyQuery &Q) { 7021 if (LI->isVolatile()) 7022 return nullptr; 7023 7024 if (auto *PtrOpC = dyn_cast<Constant>(PtrOp)) 7025 return ConstantFoldLoadFromConstPtr(PtrOpC, LI->getType(), Q.DL); 7026 7027 // We can only fold the load if it is from a constant global with definitive 7028 // initializer. Skip expensive logic if this is not the case. 7029 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(PtrOp)); 7030 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 7031 return nullptr; 7032 7033 // If GlobalVariable's initializer is uniform, then return the constant 7034 // regardless of its offset. 7035 if (Constant *C = ConstantFoldLoadFromUniformValue(GV->getInitializer(), 7036 LI->getType(), Q.DL)) 7037 return C; 7038 7039 // Try to convert operand into a constant by stripping offsets while looking 7040 // through invariant.group intrinsics. 7041 APInt Offset(Q.DL.getIndexTypeSizeInBits(PtrOp->getType()), 0); 7042 PtrOp = PtrOp->stripAndAccumulateConstantOffsets( 7043 Q.DL, Offset, /* AllowNonInbounts */ true, 7044 /* AllowInvariantGroup */ true); 7045 if (PtrOp == GV) { 7046 // Index size may have changed due to address space casts. 7047 Offset = Offset.sextOrTrunc(Q.DL.getIndexTypeSizeInBits(PtrOp->getType())); 7048 return ConstantFoldLoadFromConstPtr(GV, LI->getType(), std::move(Offset), 7049 Q.DL); 7050 } 7051 7052 return nullptr; 7053 } 7054 7055 /// See if we can compute a simplified version of this instruction. 7056 /// If not, this returns null. 7057 7058 static Value *simplifyInstructionWithOperands(Instruction *I, 7059 ArrayRef<Value *> NewOps, 7060 const SimplifyQuery &SQ, 7061 unsigned MaxRecurse) { 7062 assert(I->getFunction() && "instruction should be inserted in a function"); 7063 assert((!SQ.CxtI || SQ.CxtI->getFunction() == I->getFunction()) && 7064 "context instruction should be in the same function"); 7065 7066 const SimplifyQuery Q = SQ.CxtI ? SQ : SQ.getWithInstruction(I); 7067 7068 switch (I->getOpcode()) { 7069 default: 7070 if (llvm::all_of(NewOps, [](Value *V) { return isa<Constant>(V); })) { 7071 SmallVector<Constant *, 8> NewConstOps(NewOps.size()); 7072 transform(NewOps, NewConstOps.begin(), 7073 [](Value *V) { return cast<Constant>(V); }); 7074 return ConstantFoldInstOperands(I, NewConstOps, Q.DL, Q.TLI); 7075 } 7076 return nullptr; 7077 case Instruction::FNeg: 7078 return simplifyFNegInst(NewOps[0], I->getFastMathFlags(), Q, MaxRecurse); 7079 case Instruction::FAdd: 7080 return simplifyFAddInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7081 MaxRecurse); 7082 case Instruction::Add: 7083 return simplifyAddInst( 7084 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7085 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7086 case Instruction::FSub: 7087 return simplifyFSubInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7088 MaxRecurse); 7089 case Instruction::Sub: 7090 return simplifySubInst( 7091 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7092 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7093 case Instruction::FMul: 7094 return simplifyFMulInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7095 MaxRecurse); 7096 case Instruction::Mul: 7097 return simplifyMulInst( 7098 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7099 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7100 case Instruction::SDiv: 7101 return simplifySDivInst(NewOps[0], NewOps[1], 7102 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7103 MaxRecurse); 7104 case Instruction::UDiv: 7105 return simplifyUDivInst(NewOps[0], NewOps[1], 7106 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7107 MaxRecurse); 7108 case Instruction::FDiv: 7109 return simplifyFDivInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7110 MaxRecurse); 7111 case Instruction::SRem: 7112 return simplifySRemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7113 case Instruction::URem: 7114 return simplifyURemInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7115 case Instruction::FRem: 7116 return simplifyFRemInst(NewOps[0], NewOps[1], I->getFastMathFlags(), Q, 7117 MaxRecurse); 7118 case Instruction::Shl: 7119 return simplifyShlInst( 7120 NewOps[0], NewOps[1], Q.IIQ.hasNoSignedWrap(cast<BinaryOperator>(I)), 7121 Q.IIQ.hasNoUnsignedWrap(cast<BinaryOperator>(I)), Q, MaxRecurse); 7122 case Instruction::LShr: 7123 return simplifyLShrInst(NewOps[0], NewOps[1], 7124 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7125 MaxRecurse); 7126 case Instruction::AShr: 7127 return simplifyAShrInst(NewOps[0], NewOps[1], 7128 Q.IIQ.isExact(cast<BinaryOperator>(I)), Q, 7129 MaxRecurse); 7130 case Instruction::And: 7131 return simplifyAndInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7132 case Instruction::Or: 7133 return simplifyOrInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7134 case Instruction::Xor: 7135 return simplifyXorInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7136 case Instruction::ICmp: 7137 return simplifyICmpInst(cast<ICmpInst>(I)->getCmpPredicate(), NewOps[0], 7138 NewOps[1], Q, MaxRecurse); 7139 case Instruction::FCmp: 7140 return simplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(), NewOps[0], 7141 NewOps[1], I->getFastMathFlags(), Q, MaxRecurse); 7142 case Instruction::Select: 7143 return simplifySelectInst(NewOps[0], NewOps[1], NewOps[2], Q, MaxRecurse); 7144 break; 7145 case Instruction::GetElementPtr: { 7146 auto *GEPI = cast<GetElementPtrInst>(I); 7147 return simplifyGEPInst(GEPI->getSourceElementType(), NewOps[0], 7148 ArrayRef(NewOps).slice(1), GEPI->getNoWrapFlags(), Q, 7149 MaxRecurse); 7150 } 7151 case Instruction::InsertValue: { 7152 InsertValueInst *IV = cast<InsertValueInst>(I); 7153 return simplifyInsertValueInst(NewOps[0], NewOps[1], IV->getIndices(), Q, 7154 MaxRecurse); 7155 } 7156 case Instruction::InsertElement: 7157 return simplifyInsertElementInst(NewOps[0], NewOps[1], NewOps[2], Q); 7158 case Instruction::ExtractValue: { 7159 auto *EVI = cast<ExtractValueInst>(I); 7160 return simplifyExtractValueInst(NewOps[0], EVI->getIndices(), Q, 7161 MaxRecurse); 7162 } 7163 case Instruction::ExtractElement: 7164 return simplifyExtractElementInst(NewOps[0], NewOps[1], Q, MaxRecurse); 7165 case Instruction::ShuffleVector: { 7166 auto *SVI = cast<ShuffleVectorInst>(I); 7167 return simplifyShuffleVectorInst(NewOps[0], NewOps[1], 7168 SVI->getShuffleMask(), SVI->getType(), Q, 7169 MaxRecurse); 7170 } 7171 case Instruction::PHI: 7172 return simplifyPHINode(cast<PHINode>(I), NewOps, Q); 7173 case Instruction::Call: 7174 return simplifyCall( 7175 cast<CallInst>(I), NewOps.back(), 7176 NewOps.drop_back(1 + cast<CallInst>(I)->getNumTotalBundleOperands()), Q); 7177 case Instruction::Freeze: 7178 return llvm::simplifyFreezeInst(NewOps[0], Q); 7179 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc: 7180 #include "llvm/IR/Instruction.def" 7181 #undef HANDLE_CAST_INST 7182 return simplifyCastInst(I->getOpcode(), NewOps[0], I->getType(), Q, 7183 MaxRecurse); 7184 case Instruction::Alloca: 7185 // No simplifications for Alloca and it can't be constant folded. 7186 return nullptr; 7187 case Instruction::Load: 7188 return simplifyLoadInst(cast<LoadInst>(I), NewOps[0], Q); 7189 } 7190 } 7191 7192 Value *llvm::simplifyInstructionWithOperands(Instruction *I, 7193 ArrayRef<Value *> NewOps, 7194 const SimplifyQuery &SQ) { 7195 assert(NewOps.size() == I->getNumOperands() && 7196 "Number of operands should match the instruction!"); 7197 return ::simplifyInstructionWithOperands(I, NewOps, SQ, RecursionLimit); 7198 } 7199 7200 Value *llvm::simplifyInstruction(Instruction *I, const SimplifyQuery &SQ) { 7201 SmallVector<Value *, 8> Ops(I->operands()); 7202 Value *Result = ::simplifyInstructionWithOperands(I, Ops, SQ, RecursionLimit); 7203 7204 /// If called on unreachable code, the instruction may simplify to itself. 7205 /// Make life easier for users by detecting that case here, and returning a 7206 /// safe value instead. 7207 return Result == I ? PoisonValue::get(I->getType()) : Result; 7208 } 7209 7210 /// Implementation of recursive simplification through an instruction's 7211 /// uses. 7212 /// 7213 /// This is the common implementation of the recursive simplification routines. 7214 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to 7215 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of 7216 /// instructions to process and attempt to simplify it using 7217 /// InstructionSimplify. Recursively visited users which could not be 7218 /// simplified themselves are to the optional UnsimplifiedUsers set for 7219 /// further processing by the caller. 7220 /// 7221 /// This routine returns 'true' only when *it* simplifies something. The passed 7222 /// in simplified value does not count toward this. 7223 static bool replaceAndRecursivelySimplifyImpl( 7224 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7225 const DominatorTree *DT, AssumptionCache *AC, 7226 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers = nullptr) { 7227 bool Simplified = false; 7228 SmallSetVector<Instruction *, 8> Worklist; 7229 const DataLayout &DL = I->getDataLayout(); 7230 7231 // If we have an explicit value to collapse to, do that round of the 7232 // simplification loop by hand initially. 7233 if (SimpleV) { 7234 for (User *U : I->users()) 7235 if (U != I) 7236 Worklist.insert(cast<Instruction>(U)); 7237 7238 // Replace the instruction with its simplified value. 7239 I->replaceAllUsesWith(SimpleV); 7240 7241 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7242 I->eraseFromParent(); 7243 } else { 7244 Worklist.insert(I); 7245 } 7246 7247 // Note that we must test the size on each iteration, the worklist can grow. 7248 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { 7249 I = Worklist[Idx]; 7250 7251 // See if this instruction simplifies. 7252 SimpleV = simplifyInstruction(I, {DL, TLI, DT, AC}); 7253 if (!SimpleV) { 7254 if (UnsimplifiedUsers) 7255 UnsimplifiedUsers->insert(I); 7256 continue; 7257 } 7258 7259 Simplified = true; 7260 7261 // Stash away all the uses of the old instruction so we can check them for 7262 // recursive simplifications after a RAUW. This is cheaper than checking all 7263 // uses of To on the recursive step in most cases. 7264 for (User *U : I->users()) 7265 Worklist.insert(cast<Instruction>(U)); 7266 7267 // Replace the instruction with its simplified value. 7268 I->replaceAllUsesWith(SimpleV); 7269 7270 if (!I->isEHPad() && !I->isTerminator() && !I->mayHaveSideEffects()) 7271 I->eraseFromParent(); 7272 } 7273 return Simplified; 7274 } 7275 7276 bool llvm::replaceAndRecursivelySimplify( 7277 Instruction *I, Value *SimpleV, const TargetLibraryInfo *TLI, 7278 const DominatorTree *DT, AssumptionCache *AC, 7279 SmallSetVector<Instruction *, 8> *UnsimplifiedUsers) { 7280 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!"); 7281 assert(SimpleV && "Must provide a simplified value."); 7282 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TLI, DT, AC, 7283 UnsimplifiedUsers); 7284 } 7285 7286 namespace llvm { 7287 const SimplifyQuery getBestSimplifyQuery(Pass &P, Function &F) { 7288 auto *DTWP = P.getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 7289 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 7290 auto *TLIWP = P.getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 7291 auto *TLI = TLIWP ? &TLIWP->getTLI(F) : nullptr; 7292 auto *ACWP = P.getAnalysisIfAvailable<AssumptionCacheTracker>(); 7293 auto *AC = ACWP ? &ACWP->getAssumptionCache(F) : nullptr; 7294 return {F.getDataLayout(), TLI, DT, AC}; 7295 } 7296 7297 const SimplifyQuery getBestSimplifyQuery(LoopStandardAnalysisResults &AR, 7298 const DataLayout &DL) { 7299 return {DL, &AR.TLI, &AR.DT, &AR.AC}; 7300 } 7301 7302 template <class T, class... TArgs> 7303 const SimplifyQuery getBestSimplifyQuery(AnalysisManager<T, TArgs...> &AM, 7304 Function &F) { 7305 auto *DT = AM.template getCachedResult<DominatorTreeAnalysis>(F); 7306 auto *TLI = AM.template getCachedResult<TargetLibraryAnalysis>(F); 7307 auto *AC = AM.template getCachedResult<AssumptionAnalysis>(F); 7308 return {F.getDataLayout(), TLI, DT, AC}; 7309 } 7310 template const SimplifyQuery getBestSimplifyQuery(AnalysisManager<Function> &, 7311 Function &); 7312 7313 bool SimplifyQuery::isUndefValue(Value *V) const { 7314 if (!CanUseUndef) 7315 return false; 7316 7317 return match(V, m_Undef()); 7318 } 7319 7320 } // namespace llvm 7321 7322 void InstSimplifyFolder::anchor() {} 7323