1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This simple pass provides alias and mod/ref information for global values 10 // that do not have their address taken, and keeps track of whether functions 11 // read or write memory (are "pure"). For this simple (but very common) case, 12 // we can provide pretty accurate and useful information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/GlobalsModRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/CallGraph.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PassManager.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "globalsmodref-aa" 36 37 STATISTIC(NumNonAddrTakenGlobalVars, 38 "Number of global vars without address taken"); 39 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 40 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 41 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 42 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 43 44 // An option to enable unsafe alias results from the GlobalsModRef analysis. 45 // When enabled, GlobalsModRef will provide no-alias results which in extremely 46 // rare cases may not be conservatively correct. In particular, in the face of 47 // transforms which cause asymmetry between how effective getUnderlyingObject 48 // is for two pointers, it may produce incorrect results. 49 // 50 // These unsafe results have been returned by GMR for many years without 51 // causing significant issues in the wild and so we provide a mechanism to 52 // re-enable them for users of LLVM that have a particular performance 53 // sensitivity and no known issues. The option also makes it easy to evaluate 54 // the performance impact of these results. 55 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 56 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 57 58 /// The mod/ref information collected for a particular function. 59 /// 60 /// We collect information about mod/ref behavior of a function here, both in 61 /// general and as pertains to specific globals. We only have this detailed 62 /// information when we know *something* useful about the behavior. If we 63 /// saturate to fully general mod/ref, we remove the info for the function. 64 class GlobalsAAResult::FunctionInfo { 65 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 66 67 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 68 /// should provide this much alignment at least, but this makes it clear we 69 /// specifically rely on this amount of alignment. 70 struct alignas(8) AlignedMap { 71 AlignedMap() = default; 72 AlignedMap(const AlignedMap &Arg) = default; 73 GlobalInfoMapType Map; 74 }; 75 76 /// Pointer traits for our aligned map. 77 struct AlignedMapPointerTraits { 78 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 79 static inline AlignedMap *getFromVoidPointer(void *P) { 80 return (AlignedMap *)P; 81 } 82 static constexpr int NumLowBitsAvailable = 3; 83 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 84 "AlignedMap insufficiently aligned to have enough low bits."); 85 }; 86 87 /// The bit that flags that this function may read any global. This is 88 /// chosen to mix together with ModRefInfo bits. 89 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 90 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 91 /// this remains correct. 92 enum { MayReadAnyGlobal = 4 }; 93 94 /// Checks to document the invariants of the bit packing here. 95 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0, 96 "ModRef and the MayReadAnyGlobal flag bits overlap."); 97 static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >> 98 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 99 "Insufficient low bits to store our flag and ModRef info."); 100 101 public: 102 FunctionInfo() = default; 103 ~FunctionInfo() { 104 delete Info.getPointer(); 105 } 106 // Spell out the copy ond move constructors and assignment operators to get 107 // deep copy semantics and correct move semantics in the face of the 108 // pointer-int pair. 109 FunctionInfo(const FunctionInfo &Arg) 110 : Info(nullptr, Arg.Info.getInt()) { 111 if (const auto *ArgPtr = Arg.Info.getPointer()) 112 Info.setPointer(new AlignedMap(*ArgPtr)); 113 } 114 FunctionInfo(FunctionInfo &&Arg) 115 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 116 Arg.Info.setPointerAndInt(nullptr, 0); 117 } 118 FunctionInfo &operator=(const FunctionInfo &RHS) { 119 delete Info.getPointer(); 120 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 121 if (const auto *RHSPtr = RHS.Info.getPointer()) 122 Info.setPointer(new AlignedMap(*RHSPtr)); 123 return *this; 124 } 125 FunctionInfo &operator=(FunctionInfo &&RHS) { 126 delete Info.getPointer(); 127 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 128 RHS.Info.setPointerAndInt(nullptr, 0); 129 return *this; 130 } 131 132 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 133 /// the corresponding ModRefInfo. 134 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 135 return ModRefInfo(I & static_cast<int>(ModRefInfo::ModRef)); 136 } 137 138 /// Returns the \c ModRefInfo info for this function. 139 ModRefInfo getModRefInfo() const { 140 return globalClearMayReadAnyGlobal(Info.getInt()); 141 } 142 143 /// Adds new \c ModRefInfo for this function to its state. 144 void addModRefInfo(ModRefInfo NewMRI) { 145 Info.setInt(Info.getInt() | static_cast<int>(NewMRI)); 146 } 147 148 /// Returns whether this function may read any global variable, and we don't 149 /// know which global. 150 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 151 152 /// Sets this function as potentially reading from any global. 153 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 154 155 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 156 /// global, which may be more precise than the general information above. 157 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 158 ModRefInfo GlobalMRI = 159 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 160 if (AlignedMap *P = Info.getPointer()) { 161 auto I = P->Map.find(&GV); 162 if (I != P->Map.end()) 163 GlobalMRI |= I->second; 164 } 165 return GlobalMRI; 166 } 167 168 /// Add mod/ref info from another function into ours, saturating towards 169 /// ModRef. 170 void addFunctionInfo(const FunctionInfo &FI) { 171 addModRefInfo(FI.getModRefInfo()); 172 173 if (FI.mayReadAnyGlobal()) 174 setMayReadAnyGlobal(); 175 176 if (AlignedMap *P = FI.Info.getPointer()) 177 for (const auto &G : P->Map) 178 addModRefInfoForGlobal(*G.first, G.second); 179 } 180 181 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 182 AlignedMap *P = Info.getPointer(); 183 if (!P) { 184 P = new AlignedMap(); 185 Info.setPointer(P); 186 } 187 auto &GlobalMRI = P->Map[&GV]; 188 GlobalMRI |= NewMRI; 189 } 190 191 /// Clear a global's ModRef info. Should be used when a global is being 192 /// deleted. 193 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 194 if (AlignedMap *P = Info.getPointer()) 195 P->Map.erase(&GV); 196 } 197 198 private: 199 /// All of the information is encoded into a single pointer, with a three bit 200 /// integer in the low three bits. The high bit provides a flag for when this 201 /// function may read any global. The low two bits are the ModRefInfo. And 202 /// the pointer, when non-null, points to a map from GlobalValue to 203 /// ModRefInfo specific to that GlobalValue. 204 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 205 }; 206 207 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 208 Value *V = getValPtr(); 209 if (auto *F = dyn_cast<Function>(V)) 210 GAR->FunctionInfos.erase(F); 211 212 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 213 if (GAR->NonAddressTakenGlobals.erase(GV)) { 214 // This global might be an indirect global. If so, remove it and 215 // remove any AllocRelatedValues for it. 216 if (GAR->IndirectGlobals.erase(GV)) { 217 // Remove any entries in AllocsForIndirectGlobals for this global. 218 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 219 E = GAR->AllocsForIndirectGlobals.end(); 220 I != E; ++I) 221 if (I->second == GV) 222 GAR->AllocsForIndirectGlobals.erase(I); 223 } 224 225 // Scan the function info we have collected and remove this global 226 // from all of them. 227 for (auto &FIPair : GAR->FunctionInfos) 228 FIPair.second.eraseModRefInfoForGlobal(*GV); 229 } 230 } 231 232 // If this is an allocation related to an indirect global, remove it. 233 GAR->AllocsForIndirectGlobals.erase(V); 234 235 // And clear out the handle. 236 setValPtr(nullptr); 237 GAR->Handles.erase(I); 238 // This object is now destroyed! 239 } 240 241 FunctionModRefBehavior GlobalsAAResult::getModRefBehavior(const Function *F) { 242 if (FunctionInfo *FI = getFunctionInfo(F)) { 243 if (!isModOrRefSet(FI->getModRefInfo())) 244 return FMRB_DoesNotAccessMemory; 245 else if (!isModSet(FI->getModRefInfo())) 246 return FMRB_OnlyReadsMemory; 247 } 248 249 return AAResultBase::getModRefBehavior(F); 250 } 251 252 /// Returns the function info for the function, or null if we don't have 253 /// anything useful to say about it. 254 GlobalsAAResult::FunctionInfo * 255 GlobalsAAResult::getFunctionInfo(const Function *F) { 256 auto I = FunctionInfos.find(F); 257 if (I != FunctionInfos.end()) 258 return &I->second; 259 return nullptr; 260 } 261 262 /// AnalyzeGlobals - Scan through the users of all of the internal 263 /// GlobalValue's in the program. If none of them have their "address taken" 264 /// (really, their address passed to something nontrivial), record this fact, 265 /// and record the functions that they are used directly in. 266 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 267 SmallPtrSet<Function *, 32> TrackedFunctions; 268 for (Function &F : M) 269 if (F.hasLocalLinkage()) { 270 if (!AnalyzeUsesOfPointer(&F)) { 271 // Remember that we are tracking this global. 272 NonAddressTakenGlobals.insert(&F); 273 TrackedFunctions.insert(&F); 274 Handles.emplace_front(*this, &F); 275 Handles.front().I = Handles.begin(); 276 ++NumNonAddrTakenFunctions; 277 } else 278 UnknownFunctionsWithLocalLinkage = true; 279 } 280 281 SmallPtrSet<Function *, 16> Readers, Writers; 282 for (GlobalVariable &GV : M.globals()) 283 if (GV.hasLocalLinkage()) { 284 if (!AnalyzeUsesOfPointer(&GV, &Readers, 285 GV.isConstant() ? nullptr : &Writers)) { 286 // Remember that we are tracking this global, and the mod/ref fns 287 NonAddressTakenGlobals.insert(&GV); 288 Handles.emplace_front(*this, &GV); 289 Handles.front().I = Handles.begin(); 290 291 for (Function *Reader : Readers) { 292 if (TrackedFunctions.insert(Reader).second) { 293 Handles.emplace_front(*this, Reader); 294 Handles.front().I = Handles.begin(); 295 } 296 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 297 } 298 299 if (!GV.isConstant()) // No need to keep track of writers to constants 300 for (Function *Writer : Writers) { 301 if (TrackedFunctions.insert(Writer).second) { 302 Handles.emplace_front(*this, Writer); 303 Handles.front().I = Handles.begin(); 304 } 305 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 306 } 307 ++NumNonAddrTakenGlobalVars; 308 309 // If this global holds a pointer type, see if it is an indirect global. 310 if (GV.getValueType()->isPointerTy() && 311 AnalyzeIndirectGlobalMemory(&GV)) 312 ++NumIndirectGlobalVars; 313 } 314 Readers.clear(); 315 Writers.clear(); 316 } 317 } 318 319 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 320 /// If this is used by anything complex (i.e., the address escapes), return 321 /// true. Also, while we are at it, keep track of those functions that read and 322 /// write to the value. 323 /// 324 /// If OkayStoreDest is non-null, stores into this global are allowed. 325 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 326 SmallPtrSetImpl<Function *> *Readers, 327 SmallPtrSetImpl<Function *> *Writers, 328 GlobalValue *OkayStoreDest) { 329 if (!V->getType()->isPointerTy()) 330 return true; 331 332 for (Use &U : V->uses()) { 333 User *I = U.getUser(); 334 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 335 if (Readers) 336 Readers->insert(LI->getParent()->getParent()); 337 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 338 if (V == SI->getOperand(1)) { 339 if (Writers) 340 Writers->insert(SI->getParent()->getParent()); 341 } else if (SI->getOperand(1) != OkayStoreDest) { 342 return true; // Storing the pointer 343 } 344 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 345 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 346 return true; 347 } else if (Operator::getOpcode(I) == Instruction::BitCast || 348 Operator::getOpcode(I) == Instruction::AddrSpaceCast) { 349 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 350 return true; 351 } else if (auto *Call = dyn_cast<CallBase>(I)) { 352 // Make sure that this is just the function being called, not that it is 353 // passing into the function. 354 if (Call->isDataOperand(&U)) { 355 // Detect calls to free. 356 if (Call->isArgOperand(&U) && 357 getFreedOperand(Call, &GetTLI(*Call->getFunction())) == U) { 358 if (Writers) 359 Writers->insert(Call->getParent()->getParent()); 360 } else { 361 return true; // Argument of an unknown call. 362 } 363 } 364 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 365 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 366 return true; // Allow comparison against null. 367 } else if (Constant *C = dyn_cast<Constant>(I)) { 368 // Ignore constants which don't have any live uses. 369 if (isa<GlobalValue>(C) || C->isConstantUsed()) 370 return true; 371 } else { 372 return true; 373 } 374 } 375 376 return false; 377 } 378 379 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 380 /// which holds a pointer type. See if the global always points to non-aliased 381 /// heap memory: that is, all initializers of the globals store a value known 382 /// to be obtained via a noalias return function call which have no other use. 383 /// Further, all loads out of GV must directly use the memory, not store the 384 /// pointer somewhere. If this is true, we consider the memory pointed to by 385 /// GV to be owned by GV and can disambiguate other pointers from it. 386 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 387 // Keep track of values related to the allocation of the memory, f.e. the 388 // value produced by the noalias call and any casts. 389 std::vector<Value *> AllocRelatedValues; 390 391 // If the initializer is a valid pointer, bail. 392 if (Constant *C = GV->getInitializer()) 393 if (!C->isNullValue()) 394 return false; 395 396 // Walk the user list of the global. If we find anything other than a direct 397 // load or store, bail out. 398 for (User *U : GV->users()) { 399 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 400 // The pointer loaded from the global can only be used in simple ways: 401 // we allow addressing of it and loading storing to it. We do *not* allow 402 // storing the loaded pointer somewhere else or passing to a function. 403 if (AnalyzeUsesOfPointer(LI)) 404 return false; // Loaded pointer escapes. 405 // TODO: Could try some IP mod/ref of the loaded pointer. 406 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 407 // Storing the global itself. 408 if (SI->getOperand(0) == GV) 409 return false; 410 411 // If storing the null pointer, ignore it. 412 if (isa<ConstantPointerNull>(SI->getOperand(0))) 413 continue; 414 415 // Check the value being stored. 416 Value *Ptr = getUnderlyingObject(SI->getOperand(0)); 417 418 if (!isNoAliasCall(Ptr)) 419 return false; // Too hard to analyze. 420 421 // Analyze all uses of the allocation. If any of them are used in a 422 // non-simple way (e.g. stored to another global) bail out. 423 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 424 GV)) 425 return false; // Loaded pointer escapes. 426 427 // Remember that this allocation is related to the indirect global. 428 AllocRelatedValues.push_back(Ptr); 429 } else { 430 // Something complex, bail out. 431 return false; 432 } 433 } 434 435 // Okay, this is an indirect global. Remember all of the allocations for 436 // this global in AllocsForIndirectGlobals. 437 while (!AllocRelatedValues.empty()) { 438 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 439 Handles.emplace_front(*this, AllocRelatedValues.back()); 440 Handles.front().I = Handles.begin(); 441 AllocRelatedValues.pop_back(); 442 } 443 IndirectGlobals.insert(GV); 444 Handles.emplace_front(*this, GV); 445 Handles.front().I = Handles.begin(); 446 return true; 447 } 448 449 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 450 // We do a bottom-up SCC traversal of the call graph. In other words, we 451 // visit all callees before callers (leaf-first). 452 unsigned SCCID = 0; 453 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 454 const std::vector<CallGraphNode *> &SCC = *I; 455 assert(!SCC.empty() && "SCC with no functions?"); 456 457 for (auto *CGN : SCC) 458 if (Function *F = CGN->getFunction()) 459 FunctionToSCCMap[F] = SCCID; 460 ++SCCID; 461 } 462 } 463 464 /// AnalyzeCallGraph - At this point, we know the functions where globals are 465 /// immediately stored to and read from. Propagate this information up the call 466 /// graph to all callers and compute the mod/ref info for all memory for each 467 /// function. 468 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 469 // We do a bottom-up SCC traversal of the call graph. In other words, we 470 // visit all callees before callers (leaf-first). 471 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 472 const std::vector<CallGraphNode *> &SCC = *I; 473 assert(!SCC.empty() && "SCC with no functions?"); 474 475 Function *F = SCC[0]->getFunction(); 476 477 if (!F || !F->isDefinitionExact()) { 478 // Calls externally or not exact - can't say anything useful. Remove any 479 // existing function records (may have been created when scanning 480 // globals). 481 for (auto *Node : SCC) 482 FunctionInfos.erase(Node->getFunction()); 483 continue; 484 } 485 486 FunctionInfo &FI = FunctionInfos[F]; 487 Handles.emplace_front(*this, F); 488 Handles.front().I = Handles.begin(); 489 bool KnowNothing = false; 490 491 // Intrinsics, like any other synchronizing function, can make effects 492 // of other threads visible. Without nosync we know nothing really. 493 // Similarly, if `nocallback` is missing the function, or intrinsic, 494 // can call into the module arbitrarily. If both are set the function 495 // has an effect but will not interact with accesses of internal 496 // globals inside the module. We are conservative here for optnone 497 // functions, might not be necessary. 498 auto MaySyncOrCallIntoModule = [](const Function &F) { 499 return !F.isDeclaration() || !F.hasNoSync() || 500 !F.hasFnAttribute(Attribute::NoCallback); 501 }; 502 503 // Collect the mod/ref properties due to called functions. We only compute 504 // one mod-ref set. 505 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 506 if (!F) { 507 KnowNothing = true; 508 break; 509 } 510 511 if (F->isDeclaration() || F->hasOptNone()) { 512 // Try to get mod/ref behaviour from function attributes. 513 if (F->doesNotAccessMemory()) { 514 // Can't do better than that! 515 } else if (F->onlyReadsMemory()) { 516 FI.addModRefInfo(ModRefInfo::Ref); 517 if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F)) 518 // This function might call back into the module and read a global - 519 // consider every global as possibly being read by this function. 520 FI.setMayReadAnyGlobal(); 521 } else { 522 FI.addModRefInfo(ModRefInfo::ModRef); 523 if (!F->onlyAccessesArgMemory()) 524 FI.setMayReadAnyGlobal(); 525 if (MaySyncOrCallIntoModule(*F)) { 526 KnowNothing = true; 527 break; 528 } 529 } 530 continue; 531 } 532 533 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 534 CI != E && !KnowNothing; ++CI) 535 if (Function *Callee = CI->second->getFunction()) { 536 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 537 // Propagate function effect up. 538 FI.addFunctionInfo(*CalleeFI); 539 } else { 540 // Can't say anything about it. However, if it is inside our SCC, 541 // then nothing needs to be done. 542 CallGraphNode *CalleeNode = CG[Callee]; 543 if (!is_contained(SCC, CalleeNode)) 544 KnowNothing = true; 545 } 546 } else { 547 KnowNothing = true; 548 } 549 } 550 551 // If we can't say anything useful about this SCC, remove all SCC functions 552 // from the FunctionInfos map. 553 if (KnowNothing) { 554 for (auto *Node : SCC) 555 FunctionInfos.erase(Node->getFunction()); 556 continue; 557 } 558 559 // Scan the function bodies for explicit loads or stores. 560 for (auto *Node : SCC) { 561 if (isModAndRefSet(FI.getModRefInfo())) 562 break; // The mod/ref lattice saturates here. 563 564 // Don't prove any properties based on the implementation of an optnone 565 // function. Function attributes were already used as a best approximation 566 // above. 567 if (Node->getFunction()->hasOptNone()) 568 continue; 569 570 for (Instruction &I : instructions(Node->getFunction())) { 571 if (isModAndRefSet(FI.getModRefInfo())) 572 break; // The mod/ref lattice saturates here. 573 574 // We handle calls specially because the graph-relevant aspects are 575 // handled above. 576 if (auto *Call = dyn_cast<CallBase>(&I)) { 577 if (Function *Callee = Call->getCalledFunction()) { 578 // The callgraph doesn't include intrinsic calls. 579 if (Callee->isIntrinsic()) { 580 if (isa<DbgInfoIntrinsic>(Call)) 581 // Don't let dbg intrinsics affect alias info. 582 continue; 583 584 FunctionModRefBehavior Behaviour = 585 AAResultBase::getModRefBehavior(Callee); 586 FI.addModRefInfo(createModRefInfo(Behaviour)); 587 } 588 } 589 continue; 590 } 591 592 // All non-call instructions we use the primary predicates for whether 593 // they read or write memory. 594 if (I.mayReadFromMemory()) 595 FI.addModRefInfo(ModRefInfo::Ref); 596 if (I.mayWriteToMemory()) 597 FI.addModRefInfo(ModRefInfo::Mod); 598 } 599 } 600 601 if (!isModSet(FI.getModRefInfo())) 602 ++NumReadMemFunctions; 603 if (!isModOrRefSet(FI.getModRefInfo())) 604 ++NumNoMemFunctions; 605 606 // Finally, now that we know the full effect on this SCC, clone the 607 // information to each function in the SCC. 608 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 609 // get invalidated if DenseMap decides to re-hash. 610 FunctionInfo CachedFI = FI; 611 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 612 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 613 } 614 } 615 616 // GV is a non-escaping global. V is a pointer address that has been loaded from. 617 // If we can prove that V must escape, we can conclude that a load from V cannot 618 // alias GV. 619 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 620 const Value *V, 621 int &Depth, 622 const DataLayout &DL) { 623 SmallPtrSet<const Value *, 8> Visited; 624 SmallVector<const Value *, 8> Inputs; 625 Visited.insert(V); 626 Inputs.push_back(V); 627 do { 628 const Value *Input = Inputs.pop_back_val(); 629 630 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 631 isa<InvokeInst>(Input)) 632 // Arguments to functions or returns from functions are inherently 633 // escaping, so we can immediately classify those as not aliasing any 634 // non-addr-taken globals. 635 // 636 // (Transitive) loads from a global are also safe - if this aliased 637 // another global, its address would escape, so no alias. 638 continue; 639 640 // Recurse through a limited number of selects, loads and PHIs. This is an 641 // arbitrary depth of 4, lower numbers could be used to fix compile time 642 // issues if needed, but this is generally expected to be only be important 643 // for small depths. 644 if (++Depth > 4) 645 return false; 646 647 if (auto *LI = dyn_cast<LoadInst>(Input)) { 648 Inputs.push_back(getUnderlyingObject(LI->getPointerOperand())); 649 continue; 650 } 651 if (auto *SI = dyn_cast<SelectInst>(Input)) { 652 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 653 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 654 if (Visited.insert(LHS).second) 655 Inputs.push_back(LHS); 656 if (Visited.insert(RHS).second) 657 Inputs.push_back(RHS); 658 continue; 659 } 660 if (auto *PN = dyn_cast<PHINode>(Input)) { 661 for (const Value *Op : PN->incoming_values()) { 662 Op = getUnderlyingObject(Op); 663 if (Visited.insert(Op).second) 664 Inputs.push_back(Op); 665 } 666 continue; 667 } 668 669 return false; 670 } while (!Inputs.empty()); 671 672 // All inputs were known to be no-alias. 673 return true; 674 } 675 676 // There are particular cases where we can conclude no-alias between 677 // a non-addr-taken global and some other underlying object. Specifically, 678 // a non-addr-taken global is known to not be escaped from any function. It is 679 // also incorrect for a transformation to introduce an escape of a global in 680 // a way that is observable when it was not there previously. One function 681 // being transformed to introduce an escape which could possibly be observed 682 // (via loading from a global or the return value for example) within another 683 // function is never safe. If the observation is made through non-atomic 684 // operations on different threads, it is a data-race and UB. If the 685 // observation is well defined, by being observed the transformation would have 686 // changed program behavior by introducing the observed escape, making it an 687 // invalid transform. 688 // 689 // This property does require that transformations which *temporarily* escape 690 // a global that was not previously escaped, prior to restoring it, cannot rely 691 // on the results of GMR::alias. This seems a reasonable restriction, although 692 // currently there is no way to enforce it. There is also no realistic 693 // optimization pass that would make this mistake. The closest example is 694 // a transformation pass which does reg2mem of SSA values but stores them into 695 // global variables temporarily before restoring the global variable's value. 696 // This could be useful to expose "benign" races for example. However, it seems 697 // reasonable to require that a pass which introduces escapes of global 698 // variables in this way to either not trust AA results while the escape is 699 // active, or to be forced to operate as a module pass that cannot co-exist 700 // with an alias analysis such as GMR. 701 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 702 const Value *V) { 703 // In order to know that the underlying object cannot alias the 704 // non-addr-taken global, we must know that it would have to be an escape. 705 // Thus if the underlying object is a function argument, a load from 706 // a global, or the return of a function, it cannot alias. We can also 707 // recurse through PHI nodes and select nodes provided all of their inputs 708 // resolve to one of these known-escaping roots. 709 SmallPtrSet<const Value *, 8> Visited; 710 SmallVector<const Value *, 8> Inputs; 711 Visited.insert(V); 712 Inputs.push_back(V); 713 int Depth = 0; 714 do { 715 const Value *Input = Inputs.pop_back_val(); 716 717 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 718 // If one input is the very global we're querying against, then we can't 719 // conclude no-alias. 720 if (InputGV == GV) 721 return false; 722 723 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 724 // FIXME: The condition can be refined, but be conservative for now. 725 auto *GVar = dyn_cast<GlobalVariable>(GV); 726 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 727 if (GVar && InputGVar && 728 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 729 !GVar->isInterposable() && !InputGVar->isInterposable()) { 730 Type *GVType = GVar->getInitializer()->getType(); 731 Type *InputGVType = InputGVar->getInitializer()->getType(); 732 if (GVType->isSized() && InputGVType->isSized() && 733 (DL.getTypeAllocSize(GVType) > 0) && 734 (DL.getTypeAllocSize(InputGVType) > 0)) 735 continue; 736 } 737 738 // Conservatively return false, even though we could be smarter 739 // (e.g. look through GlobalAliases). 740 return false; 741 } 742 743 if (isa<Argument>(Input) || isa<CallInst>(Input) || 744 isa<InvokeInst>(Input)) { 745 // Arguments to functions or returns from functions are inherently 746 // escaping, so we can immediately classify those as not aliasing any 747 // non-addr-taken globals. 748 continue; 749 } 750 751 // Recurse through a limited number of selects, loads and PHIs. This is an 752 // arbitrary depth of 4, lower numbers could be used to fix compile time 753 // issues if needed, but this is generally expected to be only be important 754 // for small depths. 755 if (++Depth > 4) 756 return false; 757 758 if (auto *LI = dyn_cast<LoadInst>(Input)) { 759 // A pointer loaded from a global would have been captured, and we know 760 // that the global is non-escaping, so no alias. 761 const Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); 762 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 763 // The load does not alias with GV. 764 continue; 765 // Otherwise, a load could come from anywhere, so bail. 766 return false; 767 } 768 if (auto *SI = dyn_cast<SelectInst>(Input)) { 769 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 770 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 771 if (Visited.insert(LHS).second) 772 Inputs.push_back(LHS); 773 if (Visited.insert(RHS).second) 774 Inputs.push_back(RHS); 775 continue; 776 } 777 if (auto *PN = dyn_cast<PHINode>(Input)) { 778 for (const Value *Op : PN->incoming_values()) { 779 Op = getUnderlyingObject(Op); 780 if (Visited.insert(Op).second) 781 Inputs.push_back(Op); 782 } 783 continue; 784 } 785 786 // FIXME: It would be good to handle other obvious no-alias cases here, but 787 // it isn't clear how to do so reasonably without building a small version 788 // of BasicAA into this code. We could recurse into AAResultBase::alias 789 // here but that seems likely to go poorly as we're inside the 790 // implementation of such a query. Until then, just conservatively return 791 // false. 792 return false; 793 } while (!Inputs.empty()); 794 795 // If all the inputs to V were definitively no-alias, then V is no-alias. 796 return true; 797 } 798 799 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA, 800 ModuleAnalysisManager::Invalidator &) { 801 // Check whether the analysis has been explicitly invalidated. Otherwise, it's 802 // stateless and remains preserved. 803 auto PAC = PA.getChecker<GlobalsAA>(); 804 return !PAC.preservedWhenStateless(); 805 } 806 807 /// alias - If one of the pointers is to a global that we are tracking, and the 808 /// other is some random pointer, we know there cannot be an alias, because the 809 /// address of the global isn't taken. 810 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 811 const MemoryLocation &LocB, 812 AAQueryInfo &AAQI) { 813 // Get the base object these pointers point to. 814 const Value *UV1 = 815 getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis()); 816 const Value *UV2 = 817 getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis()); 818 819 // If either of the underlying values is a global, they may be non-addr-taken 820 // globals, which we can answer queries about. 821 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 822 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 823 if (GV1 || GV2) { 824 // If the global's address is taken, pretend we don't know it's a pointer to 825 // the global. 826 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 827 GV1 = nullptr; 828 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 829 GV2 = nullptr; 830 831 // If the two pointers are derived from two different non-addr-taken 832 // globals we know these can't alias. 833 if (GV1 && GV2 && GV1 != GV2) 834 return AliasResult::NoAlias; 835 836 // If one is and the other isn't, it isn't strictly safe but we can fake 837 // this result if necessary for performance. This does not appear to be 838 // a common problem in practice. 839 if (EnableUnsafeGlobalsModRefAliasResults) 840 if ((GV1 || GV2) && GV1 != GV2) 841 return AliasResult::NoAlias; 842 843 // Check for a special case where a non-escaping global can be used to 844 // conclude no-alias. 845 if ((GV1 || GV2) && GV1 != GV2) { 846 const GlobalValue *GV = GV1 ? GV1 : GV2; 847 const Value *UV = GV1 ? UV2 : UV1; 848 if (isNonEscapingGlobalNoAlias(GV, UV)) 849 return AliasResult::NoAlias; 850 } 851 852 // Otherwise if they are both derived from the same addr-taken global, we 853 // can't know the two accesses don't overlap. 854 } 855 856 // These pointers may be based on the memory owned by an indirect global. If 857 // so, we may be able to handle this. First check to see if the base pointer 858 // is a direct load from an indirect global. 859 GV1 = GV2 = nullptr; 860 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 861 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 862 if (IndirectGlobals.count(GV)) 863 GV1 = GV; 864 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 865 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 866 if (IndirectGlobals.count(GV)) 867 GV2 = GV; 868 869 // These pointers may also be from an allocation for the indirect global. If 870 // so, also handle them. 871 if (!GV1) 872 GV1 = AllocsForIndirectGlobals.lookup(UV1); 873 if (!GV2) 874 GV2 = AllocsForIndirectGlobals.lookup(UV2); 875 876 // Now that we know whether the two pointers are related to indirect globals, 877 // use this to disambiguate the pointers. If the pointers are based on 878 // different indirect globals they cannot alias. 879 if (GV1 && GV2 && GV1 != GV2) 880 return AliasResult::NoAlias; 881 882 // If one is based on an indirect global and the other isn't, it isn't 883 // strictly safe but we can fake this result if necessary for performance. 884 // This does not appear to be a common problem in practice. 885 if (EnableUnsafeGlobalsModRefAliasResults) 886 if ((GV1 || GV2) && GV1 != GV2) 887 return AliasResult::NoAlias; 888 889 return AAResultBase::alias(LocA, LocB, AAQI); 890 } 891 892 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 893 const GlobalValue *GV, 894 AAQueryInfo &AAQI) { 895 if (Call->doesNotAccessMemory()) 896 return ModRefInfo::NoModRef; 897 ModRefInfo ConservativeResult = 898 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 899 900 // Iterate through all the arguments to the called function. If any argument 901 // is based on GV, return the conservative result. 902 for (const auto &A : Call->args()) { 903 SmallVector<const Value*, 4> Objects; 904 getUnderlyingObjects(A, Objects); 905 906 // All objects must be identified. 907 if (!all_of(Objects, isIdentifiedObject) && 908 // Try ::alias to see if all objects are known not to alias GV. 909 !all_of(Objects, [&](const Value *V) { 910 return this->alias(MemoryLocation::getBeforeOrAfter(V), 911 MemoryLocation::getBeforeOrAfter(GV), 912 AAQI) == AliasResult::NoAlias; 913 })) 914 return ConservativeResult; 915 916 if (is_contained(Objects, GV)) 917 return ConservativeResult; 918 } 919 920 // We identified all objects in the argument list, and none of them were GV. 921 return ModRefInfo::NoModRef; 922 } 923 924 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 925 const MemoryLocation &Loc, 926 AAQueryInfo &AAQI) { 927 ModRefInfo Known = ModRefInfo::ModRef; 928 929 // If we are asking for mod/ref info of a direct call with a pointer to a 930 // global we are tracking, return information if we have it. 931 if (const GlobalValue *GV = 932 dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr))) 933 // If GV is internal to this IR and there is no function with local linkage 934 // that has had their address taken, keep looking for a tighter ModRefInfo. 935 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage) 936 if (const Function *F = Call->getCalledFunction()) 937 if (NonAddressTakenGlobals.count(GV)) 938 if (const FunctionInfo *FI = getFunctionInfo(F)) 939 Known = FI->getModRefInfoForGlobal(*GV) | 940 getModRefInfoForArgument(Call, GV, AAQI); 941 942 return Known; 943 } 944 945 GlobalsAAResult::GlobalsAAResult( 946 const DataLayout &DL, 947 std::function<const TargetLibraryInfo &(Function &F)> GetTLI) 948 : DL(DL), GetTLI(std::move(GetTLI)) {} 949 950 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 951 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), 952 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 953 IndirectGlobals(std::move(Arg.IndirectGlobals)), 954 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 955 FunctionInfos(std::move(Arg.FunctionInfos)), 956 Handles(std::move(Arg.Handles)) { 957 // Update the parent for each DeletionCallbackHandle. 958 for (auto &H : Handles) { 959 assert(H.GAR == &Arg); 960 H.GAR = this; 961 } 962 } 963 964 GlobalsAAResult::~GlobalsAAResult() = default; 965 966 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( 967 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 968 CallGraph &CG) { 969 GlobalsAAResult Result(M.getDataLayout(), GetTLI); 970 971 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 972 Result.CollectSCCMembership(CG); 973 974 // Find non-addr taken globals. 975 Result.AnalyzeGlobals(M); 976 977 // Propagate on CG. 978 Result.AnalyzeCallGraph(CG, M); 979 980 return Result; 981 } 982 983 AnalysisKey GlobalsAA::Key; 984 985 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 986 FunctionAnalysisManager &FAM = 987 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 988 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 989 return FAM.getResult<TargetLibraryAnalysis>(F); 990 }; 991 return GlobalsAAResult::analyzeModule(M, GetTLI, 992 AM.getResult<CallGraphAnalysis>(M)); 993 } 994 995 PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M, 996 ModuleAnalysisManager &AM) { 997 if (auto *G = AM.getCachedResult<GlobalsAA>(M)) { 998 auto &CG = AM.getResult<CallGraphAnalysis>(M); 999 G->NonAddressTakenGlobals.clear(); 1000 G->UnknownFunctionsWithLocalLinkage = false; 1001 G->IndirectGlobals.clear(); 1002 G->AllocsForIndirectGlobals.clear(); 1003 G->FunctionInfos.clear(); 1004 G->FunctionToSCCMap.clear(); 1005 G->Handles.clear(); 1006 G->CollectSCCMembership(CG); 1007 G->AnalyzeGlobals(M); 1008 G->AnalyzeCallGraph(CG, M); 1009 } 1010 return PreservedAnalyses::all(); 1011 } 1012 1013 char GlobalsAAWrapperPass::ID = 0; 1014 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 1015 "Globals Alias Analysis", false, true) 1016 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1017 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1018 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 1019 "Globals Alias Analysis", false, true) 1020 1021 ModulePass *llvm::createGlobalsAAWrapperPass() { 1022 return new GlobalsAAWrapperPass(); 1023 } 1024 1025 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 1026 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1027 } 1028 1029 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 1030 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 1031 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1032 }; 1033 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1034 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1035 return false; 1036 } 1037 1038 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1039 Result.reset(); 1040 return false; 1041 } 1042 1043 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1044 AU.setPreservesAll(); 1045 AU.addRequired<CallGraphWrapperPass>(); 1046 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1047 } 1048