1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This simple pass provides alias and mod/ref information for global values 10 // that do not have their address taken, and keeps track of whether functions 11 // read or write memory (are "pure"). For this simple (but very common) case, 12 // we can provide pretty accurate and useful information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/GlobalsModRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/CallGraph.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PassManager.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "globalsmodref-aa" 36 37 STATISTIC(NumNonAddrTakenGlobalVars, 38 "Number of global vars without address taken"); 39 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 40 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 41 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 42 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 43 44 // An option to enable unsafe alias results from the GlobalsModRef analysis. 45 // When enabled, GlobalsModRef will provide no-alias results which in extremely 46 // rare cases may not be conservatively correct. In particular, in the face of 47 // transforms which cause asymmetry between how effective getUnderlyingObject 48 // is for two pointers, it may produce incorrect results. 49 // 50 // These unsafe results have been returned by GMR for many years without 51 // causing significant issues in the wild and so we provide a mechanism to 52 // re-enable them for users of LLVM that have a particular performance 53 // sensitivity and no known issues. The option also makes it easy to evaluate 54 // the performance impact of these results. 55 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 56 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 57 58 /// The mod/ref information collected for a particular function. 59 /// 60 /// We collect information about mod/ref behavior of a function here, both in 61 /// general and as pertains to specific globals. We only have this detailed 62 /// information when we know *something* useful about the behavior. If we 63 /// saturate to fully general mod/ref, we remove the info for the function. 64 class GlobalsAAResult::FunctionInfo { 65 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 66 67 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 68 /// should provide this much alignment at least, but this makes it clear we 69 /// specifically rely on this amount of alignment. 70 struct alignas(8) AlignedMap { 71 AlignedMap() = default; 72 AlignedMap(const AlignedMap &Arg) = default; 73 GlobalInfoMapType Map; 74 }; 75 76 /// Pointer traits for our aligned map. 77 struct AlignedMapPointerTraits { 78 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 79 static inline AlignedMap *getFromVoidPointer(void *P) { 80 return (AlignedMap *)P; 81 } 82 static constexpr int NumLowBitsAvailable = 3; 83 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 84 "AlignedMap insufficiently aligned to have enough low bits."); 85 }; 86 87 /// The bit that flags that this function may read any global. This is 88 /// chosen to mix together with ModRefInfo bits. 89 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 90 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 91 /// this remains correct. 92 enum { MayReadAnyGlobal = 4 }; 93 94 /// Checks to document the invariants of the bit packing here. 95 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0, 96 "ModRef and the MayReadAnyGlobal flag bits overlap."); 97 static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >> 98 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 99 "Insufficient low bits to store our flag and ModRef info."); 100 101 public: 102 FunctionInfo() = default; 103 ~FunctionInfo() { 104 delete Info.getPointer(); 105 } 106 // Spell out the copy ond move constructors and assignment operators to get 107 // deep copy semantics and correct move semantics in the face of the 108 // pointer-int pair. 109 FunctionInfo(const FunctionInfo &Arg) 110 : Info(nullptr, Arg.Info.getInt()) { 111 if (const auto *ArgPtr = Arg.Info.getPointer()) 112 Info.setPointer(new AlignedMap(*ArgPtr)); 113 } 114 FunctionInfo(FunctionInfo &&Arg) 115 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 116 Arg.Info.setPointerAndInt(nullptr, 0); 117 } 118 FunctionInfo &operator=(const FunctionInfo &RHS) { 119 delete Info.getPointer(); 120 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 121 if (const auto *RHSPtr = RHS.Info.getPointer()) 122 Info.setPointer(new AlignedMap(*RHSPtr)); 123 return *this; 124 } 125 FunctionInfo &operator=(FunctionInfo &&RHS) { 126 delete Info.getPointer(); 127 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 128 RHS.Info.setPointerAndInt(nullptr, 0); 129 return *this; 130 } 131 132 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 133 /// the corresponding ModRefInfo. 134 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 135 return ModRefInfo(I & static_cast<int>(ModRefInfo::ModRef)); 136 } 137 138 /// Returns the \c ModRefInfo info for this function. 139 ModRefInfo getModRefInfo() const { 140 return globalClearMayReadAnyGlobal(Info.getInt()); 141 } 142 143 /// Adds new \c ModRefInfo for this function to its state. 144 void addModRefInfo(ModRefInfo NewMRI) { 145 Info.setInt(Info.getInt() | static_cast<int>(NewMRI)); 146 } 147 148 /// Returns whether this function may read any global variable, and we don't 149 /// know which global. 150 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 151 152 /// Sets this function as potentially reading from any global. 153 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 154 155 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 156 /// global, which may be more precise than the general information above. 157 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 158 ModRefInfo GlobalMRI = 159 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 160 if (AlignedMap *P = Info.getPointer()) { 161 auto I = P->Map.find(&GV); 162 if (I != P->Map.end()) 163 GlobalMRI |= I->second; 164 } 165 return GlobalMRI; 166 } 167 168 /// Add mod/ref info from another function into ours, saturating towards 169 /// ModRef. 170 void addFunctionInfo(const FunctionInfo &FI) { 171 addModRefInfo(FI.getModRefInfo()); 172 173 if (FI.mayReadAnyGlobal()) 174 setMayReadAnyGlobal(); 175 176 if (AlignedMap *P = FI.Info.getPointer()) 177 for (const auto &G : P->Map) 178 addModRefInfoForGlobal(*G.first, G.second); 179 } 180 181 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 182 AlignedMap *P = Info.getPointer(); 183 if (!P) { 184 P = new AlignedMap(); 185 Info.setPointer(P); 186 } 187 auto &GlobalMRI = P->Map[&GV]; 188 GlobalMRI |= NewMRI; 189 } 190 191 /// Clear a global's ModRef info. Should be used when a global is being 192 /// deleted. 193 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 194 if (AlignedMap *P = Info.getPointer()) 195 P->Map.erase(&GV); 196 } 197 198 private: 199 /// All of the information is encoded into a single pointer, with a three bit 200 /// integer in the low three bits. The high bit provides a flag for when this 201 /// function may read any global. The low two bits are the ModRefInfo. And 202 /// the pointer, when non-null, points to a map from GlobalValue to 203 /// ModRefInfo specific to that GlobalValue. 204 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 205 }; 206 207 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 208 Value *V = getValPtr(); 209 if (auto *F = dyn_cast<Function>(V)) 210 GAR->FunctionInfos.erase(F); 211 212 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 213 if (GAR->NonAddressTakenGlobals.erase(GV)) { 214 // This global might be an indirect global. If so, remove it and 215 // remove any AllocRelatedValues for it. 216 if (GAR->IndirectGlobals.erase(GV)) { 217 // Remove any entries in AllocsForIndirectGlobals for this global. 218 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 219 E = GAR->AllocsForIndirectGlobals.end(); 220 I != E; ++I) 221 if (I->second == GV) 222 GAR->AllocsForIndirectGlobals.erase(I); 223 } 224 225 // Scan the function info we have collected and remove this global 226 // from all of them. 227 for (auto &FIPair : GAR->FunctionInfos) 228 FIPair.second.eraseModRefInfoForGlobal(*GV); 229 } 230 } 231 232 // If this is an allocation related to an indirect global, remove it. 233 GAR->AllocsForIndirectGlobals.erase(V); 234 235 // And clear out the handle. 236 setValPtr(nullptr); 237 GAR->Handles.erase(I); 238 // This object is now destroyed! 239 } 240 241 MemoryEffects GlobalsAAResult::getModRefBehavior(const Function *F) { 242 if (FunctionInfo *FI = getFunctionInfo(F)) 243 return MemoryEffects(FI->getModRefInfo()); 244 245 return AAResultBase::getModRefBehavior(F); 246 } 247 248 /// Returns the function info for the function, or null if we don't have 249 /// anything useful to say about it. 250 GlobalsAAResult::FunctionInfo * 251 GlobalsAAResult::getFunctionInfo(const Function *F) { 252 auto I = FunctionInfos.find(F); 253 if (I != FunctionInfos.end()) 254 return &I->second; 255 return nullptr; 256 } 257 258 /// AnalyzeGlobals - Scan through the users of all of the internal 259 /// GlobalValue's in the program. If none of them have their "address taken" 260 /// (really, their address passed to something nontrivial), record this fact, 261 /// and record the functions that they are used directly in. 262 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 263 SmallPtrSet<Function *, 32> TrackedFunctions; 264 for (Function &F : M) 265 if (F.hasLocalLinkage()) { 266 if (!AnalyzeUsesOfPointer(&F)) { 267 // Remember that we are tracking this global. 268 NonAddressTakenGlobals.insert(&F); 269 TrackedFunctions.insert(&F); 270 Handles.emplace_front(*this, &F); 271 Handles.front().I = Handles.begin(); 272 ++NumNonAddrTakenFunctions; 273 } else 274 UnknownFunctionsWithLocalLinkage = true; 275 } 276 277 SmallPtrSet<Function *, 16> Readers, Writers; 278 for (GlobalVariable &GV : M.globals()) 279 if (GV.hasLocalLinkage()) { 280 if (!AnalyzeUsesOfPointer(&GV, &Readers, 281 GV.isConstant() ? nullptr : &Writers)) { 282 // Remember that we are tracking this global, and the mod/ref fns 283 NonAddressTakenGlobals.insert(&GV); 284 Handles.emplace_front(*this, &GV); 285 Handles.front().I = Handles.begin(); 286 287 for (Function *Reader : Readers) { 288 if (TrackedFunctions.insert(Reader).second) { 289 Handles.emplace_front(*this, Reader); 290 Handles.front().I = Handles.begin(); 291 } 292 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 293 } 294 295 if (!GV.isConstant()) // No need to keep track of writers to constants 296 for (Function *Writer : Writers) { 297 if (TrackedFunctions.insert(Writer).second) { 298 Handles.emplace_front(*this, Writer); 299 Handles.front().I = Handles.begin(); 300 } 301 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 302 } 303 ++NumNonAddrTakenGlobalVars; 304 305 // If this global holds a pointer type, see if it is an indirect global. 306 if (GV.getValueType()->isPointerTy() && 307 AnalyzeIndirectGlobalMemory(&GV)) 308 ++NumIndirectGlobalVars; 309 } 310 Readers.clear(); 311 Writers.clear(); 312 } 313 } 314 315 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 316 /// If this is used by anything complex (i.e., the address escapes), return 317 /// true. Also, while we are at it, keep track of those functions that read and 318 /// write to the value. 319 /// 320 /// If OkayStoreDest is non-null, stores into this global are allowed. 321 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 322 SmallPtrSetImpl<Function *> *Readers, 323 SmallPtrSetImpl<Function *> *Writers, 324 GlobalValue *OkayStoreDest) { 325 if (!V->getType()->isPointerTy()) 326 return true; 327 328 for (Use &U : V->uses()) { 329 User *I = U.getUser(); 330 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 331 if (Readers) 332 Readers->insert(LI->getParent()->getParent()); 333 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 334 if (V == SI->getOperand(1)) { 335 if (Writers) 336 Writers->insert(SI->getParent()->getParent()); 337 } else if (SI->getOperand(1) != OkayStoreDest) { 338 return true; // Storing the pointer 339 } 340 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 341 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 342 return true; 343 } else if (Operator::getOpcode(I) == Instruction::BitCast || 344 Operator::getOpcode(I) == Instruction::AddrSpaceCast) { 345 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 346 return true; 347 } else if (auto *Call = dyn_cast<CallBase>(I)) { 348 // Make sure that this is just the function being called, not that it is 349 // passing into the function. 350 if (Call->isDataOperand(&U)) { 351 // Detect calls to free. 352 if (Call->isArgOperand(&U) && 353 getFreedOperand(Call, &GetTLI(*Call->getFunction())) == U) { 354 if (Writers) 355 Writers->insert(Call->getParent()->getParent()); 356 } else { 357 return true; // Argument of an unknown call. 358 } 359 } 360 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 361 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 362 return true; // Allow comparison against null. 363 } else if (Constant *C = dyn_cast<Constant>(I)) { 364 // Ignore constants which don't have any live uses. 365 if (isa<GlobalValue>(C) || C->isConstantUsed()) 366 return true; 367 } else { 368 return true; 369 } 370 } 371 372 return false; 373 } 374 375 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 376 /// which holds a pointer type. See if the global always points to non-aliased 377 /// heap memory: that is, all initializers of the globals store a value known 378 /// to be obtained via a noalias return function call which have no other use. 379 /// Further, all loads out of GV must directly use the memory, not store the 380 /// pointer somewhere. If this is true, we consider the memory pointed to by 381 /// GV to be owned by GV and can disambiguate other pointers from it. 382 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 383 // Keep track of values related to the allocation of the memory, f.e. the 384 // value produced by the noalias call and any casts. 385 std::vector<Value *> AllocRelatedValues; 386 387 // If the initializer is a valid pointer, bail. 388 if (Constant *C = GV->getInitializer()) 389 if (!C->isNullValue()) 390 return false; 391 392 // Walk the user list of the global. If we find anything other than a direct 393 // load or store, bail out. 394 for (User *U : GV->users()) { 395 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 396 // The pointer loaded from the global can only be used in simple ways: 397 // we allow addressing of it and loading storing to it. We do *not* allow 398 // storing the loaded pointer somewhere else or passing to a function. 399 if (AnalyzeUsesOfPointer(LI)) 400 return false; // Loaded pointer escapes. 401 // TODO: Could try some IP mod/ref of the loaded pointer. 402 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 403 // Storing the global itself. 404 if (SI->getOperand(0) == GV) 405 return false; 406 407 // If storing the null pointer, ignore it. 408 if (isa<ConstantPointerNull>(SI->getOperand(0))) 409 continue; 410 411 // Check the value being stored. 412 Value *Ptr = getUnderlyingObject(SI->getOperand(0)); 413 414 if (!isNoAliasCall(Ptr)) 415 return false; // Too hard to analyze. 416 417 // Analyze all uses of the allocation. If any of them are used in a 418 // non-simple way (e.g. stored to another global) bail out. 419 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 420 GV)) 421 return false; // Loaded pointer escapes. 422 423 // Remember that this allocation is related to the indirect global. 424 AllocRelatedValues.push_back(Ptr); 425 } else { 426 // Something complex, bail out. 427 return false; 428 } 429 } 430 431 // Okay, this is an indirect global. Remember all of the allocations for 432 // this global in AllocsForIndirectGlobals. 433 while (!AllocRelatedValues.empty()) { 434 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 435 Handles.emplace_front(*this, AllocRelatedValues.back()); 436 Handles.front().I = Handles.begin(); 437 AllocRelatedValues.pop_back(); 438 } 439 IndirectGlobals.insert(GV); 440 Handles.emplace_front(*this, GV); 441 Handles.front().I = Handles.begin(); 442 return true; 443 } 444 445 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 446 // We do a bottom-up SCC traversal of the call graph. In other words, we 447 // visit all callees before callers (leaf-first). 448 unsigned SCCID = 0; 449 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 450 const std::vector<CallGraphNode *> &SCC = *I; 451 assert(!SCC.empty() && "SCC with no functions?"); 452 453 for (auto *CGN : SCC) 454 if (Function *F = CGN->getFunction()) 455 FunctionToSCCMap[F] = SCCID; 456 ++SCCID; 457 } 458 } 459 460 /// AnalyzeCallGraph - At this point, we know the functions where globals are 461 /// immediately stored to and read from. Propagate this information up the call 462 /// graph to all callers and compute the mod/ref info for all memory for each 463 /// function. 464 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 465 // We do a bottom-up SCC traversal of the call graph. In other words, we 466 // visit all callees before callers (leaf-first). 467 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 468 const std::vector<CallGraphNode *> &SCC = *I; 469 assert(!SCC.empty() && "SCC with no functions?"); 470 471 Function *F = SCC[0]->getFunction(); 472 473 if (!F || !F->isDefinitionExact()) { 474 // Calls externally or not exact - can't say anything useful. Remove any 475 // existing function records (may have been created when scanning 476 // globals). 477 for (auto *Node : SCC) 478 FunctionInfos.erase(Node->getFunction()); 479 continue; 480 } 481 482 FunctionInfo &FI = FunctionInfos[F]; 483 Handles.emplace_front(*this, F); 484 Handles.front().I = Handles.begin(); 485 bool KnowNothing = false; 486 487 // Intrinsics, like any other synchronizing function, can make effects 488 // of other threads visible. Without nosync we know nothing really. 489 // Similarly, if `nocallback` is missing the function, or intrinsic, 490 // can call into the module arbitrarily. If both are set the function 491 // has an effect but will not interact with accesses of internal 492 // globals inside the module. We are conservative here for optnone 493 // functions, might not be necessary. 494 auto MaySyncOrCallIntoModule = [](const Function &F) { 495 return !F.isDeclaration() || !F.hasNoSync() || 496 !F.hasFnAttribute(Attribute::NoCallback); 497 }; 498 499 // Collect the mod/ref properties due to called functions. We only compute 500 // one mod-ref set. 501 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 502 if (!F) { 503 KnowNothing = true; 504 break; 505 } 506 507 if (F->isDeclaration() || F->hasOptNone()) { 508 // Try to get mod/ref behaviour from function attributes. 509 if (F->doesNotAccessMemory()) { 510 // Can't do better than that! 511 } else if (F->onlyReadsMemory()) { 512 FI.addModRefInfo(ModRefInfo::Ref); 513 if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F)) 514 // This function might call back into the module and read a global - 515 // consider every global as possibly being read by this function. 516 FI.setMayReadAnyGlobal(); 517 } else { 518 FI.addModRefInfo(ModRefInfo::ModRef); 519 if (!F->onlyAccessesArgMemory()) 520 FI.setMayReadAnyGlobal(); 521 if (MaySyncOrCallIntoModule(*F)) { 522 KnowNothing = true; 523 break; 524 } 525 } 526 continue; 527 } 528 529 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 530 CI != E && !KnowNothing; ++CI) 531 if (Function *Callee = CI->second->getFunction()) { 532 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 533 // Propagate function effect up. 534 FI.addFunctionInfo(*CalleeFI); 535 } else { 536 // Can't say anything about it. However, if it is inside our SCC, 537 // then nothing needs to be done. 538 CallGraphNode *CalleeNode = CG[Callee]; 539 if (!is_contained(SCC, CalleeNode)) 540 KnowNothing = true; 541 } 542 } else { 543 KnowNothing = true; 544 } 545 } 546 547 // If we can't say anything useful about this SCC, remove all SCC functions 548 // from the FunctionInfos map. 549 if (KnowNothing) { 550 for (auto *Node : SCC) 551 FunctionInfos.erase(Node->getFunction()); 552 continue; 553 } 554 555 // Scan the function bodies for explicit loads or stores. 556 for (auto *Node : SCC) { 557 if (isModAndRefSet(FI.getModRefInfo())) 558 break; // The mod/ref lattice saturates here. 559 560 // Don't prove any properties based on the implementation of an optnone 561 // function. Function attributes were already used as a best approximation 562 // above. 563 if (Node->getFunction()->hasOptNone()) 564 continue; 565 566 for (Instruction &I : instructions(Node->getFunction())) { 567 if (isModAndRefSet(FI.getModRefInfo())) 568 break; // The mod/ref lattice saturates here. 569 570 // We handle calls specially because the graph-relevant aspects are 571 // handled above. 572 if (auto *Call = dyn_cast<CallBase>(&I)) { 573 if (Function *Callee = Call->getCalledFunction()) { 574 // The callgraph doesn't include intrinsic calls. 575 if (Callee->isIntrinsic()) { 576 if (isa<DbgInfoIntrinsic>(Call)) 577 // Don't let dbg intrinsics affect alias info. 578 continue; 579 580 MemoryEffects Behaviour = AAResultBase::getModRefBehavior(Callee); 581 FI.addModRefInfo(Behaviour.getModRef()); 582 } 583 } 584 continue; 585 } 586 587 // All non-call instructions we use the primary predicates for whether 588 // they read or write memory. 589 if (I.mayReadFromMemory()) 590 FI.addModRefInfo(ModRefInfo::Ref); 591 if (I.mayWriteToMemory()) 592 FI.addModRefInfo(ModRefInfo::Mod); 593 } 594 } 595 596 if (!isModSet(FI.getModRefInfo())) 597 ++NumReadMemFunctions; 598 if (!isModOrRefSet(FI.getModRefInfo())) 599 ++NumNoMemFunctions; 600 601 // Finally, now that we know the full effect on this SCC, clone the 602 // information to each function in the SCC. 603 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 604 // get invalidated if DenseMap decides to re-hash. 605 FunctionInfo CachedFI = FI; 606 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 607 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 608 } 609 } 610 611 // GV is a non-escaping global. V is a pointer address that has been loaded from. 612 // If we can prove that V must escape, we can conclude that a load from V cannot 613 // alias GV. 614 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 615 const Value *V, 616 int &Depth, 617 const DataLayout &DL) { 618 SmallPtrSet<const Value *, 8> Visited; 619 SmallVector<const Value *, 8> Inputs; 620 Visited.insert(V); 621 Inputs.push_back(V); 622 do { 623 const Value *Input = Inputs.pop_back_val(); 624 625 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 626 isa<InvokeInst>(Input)) 627 // Arguments to functions or returns from functions are inherently 628 // escaping, so we can immediately classify those as not aliasing any 629 // non-addr-taken globals. 630 // 631 // (Transitive) loads from a global are also safe - if this aliased 632 // another global, its address would escape, so no alias. 633 continue; 634 635 // Recurse through a limited number of selects, loads and PHIs. This is an 636 // arbitrary depth of 4, lower numbers could be used to fix compile time 637 // issues if needed, but this is generally expected to be only be important 638 // for small depths. 639 if (++Depth > 4) 640 return false; 641 642 if (auto *LI = dyn_cast<LoadInst>(Input)) { 643 Inputs.push_back(getUnderlyingObject(LI->getPointerOperand())); 644 continue; 645 } 646 if (auto *SI = dyn_cast<SelectInst>(Input)) { 647 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 648 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 649 if (Visited.insert(LHS).second) 650 Inputs.push_back(LHS); 651 if (Visited.insert(RHS).second) 652 Inputs.push_back(RHS); 653 continue; 654 } 655 if (auto *PN = dyn_cast<PHINode>(Input)) { 656 for (const Value *Op : PN->incoming_values()) { 657 Op = getUnderlyingObject(Op); 658 if (Visited.insert(Op).second) 659 Inputs.push_back(Op); 660 } 661 continue; 662 } 663 664 return false; 665 } while (!Inputs.empty()); 666 667 // All inputs were known to be no-alias. 668 return true; 669 } 670 671 // There are particular cases where we can conclude no-alias between 672 // a non-addr-taken global and some other underlying object. Specifically, 673 // a non-addr-taken global is known to not be escaped from any function. It is 674 // also incorrect for a transformation to introduce an escape of a global in 675 // a way that is observable when it was not there previously. One function 676 // being transformed to introduce an escape which could possibly be observed 677 // (via loading from a global or the return value for example) within another 678 // function is never safe. If the observation is made through non-atomic 679 // operations on different threads, it is a data-race and UB. If the 680 // observation is well defined, by being observed the transformation would have 681 // changed program behavior by introducing the observed escape, making it an 682 // invalid transform. 683 // 684 // This property does require that transformations which *temporarily* escape 685 // a global that was not previously escaped, prior to restoring it, cannot rely 686 // on the results of GMR::alias. This seems a reasonable restriction, although 687 // currently there is no way to enforce it. There is also no realistic 688 // optimization pass that would make this mistake. The closest example is 689 // a transformation pass which does reg2mem of SSA values but stores them into 690 // global variables temporarily before restoring the global variable's value. 691 // This could be useful to expose "benign" races for example. However, it seems 692 // reasonable to require that a pass which introduces escapes of global 693 // variables in this way to either not trust AA results while the escape is 694 // active, or to be forced to operate as a module pass that cannot co-exist 695 // with an alias analysis such as GMR. 696 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 697 const Value *V) { 698 // In order to know that the underlying object cannot alias the 699 // non-addr-taken global, we must know that it would have to be an escape. 700 // Thus if the underlying object is a function argument, a load from 701 // a global, or the return of a function, it cannot alias. We can also 702 // recurse through PHI nodes and select nodes provided all of their inputs 703 // resolve to one of these known-escaping roots. 704 SmallPtrSet<const Value *, 8> Visited; 705 SmallVector<const Value *, 8> Inputs; 706 Visited.insert(V); 707 Inputs.push_back(V); 708 int Depth = 0; 709 do { 710 const Value *Input = Inputs.pop_back_val(); 711 712 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 713 // If one input is the very global we're querying against, then we can't 714 // conclude no-alias. 715 if (InputGV == GV) 716 return false; 717 718 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 719 // FIXME: The condition can be refined, but be conservative for now. 720 auto *GVar = dyn_cast<GlobalVariable>(GV); 721 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 722 if (GVar && InputGVar && 723 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 724 !GVar->isInterposable() && !InputGVar->isInterposable()) { 725 Type *GVType = GVar->getInitializer()->getType(); 726 Type *InputGVType = InputGVar->getInitializer()->getType(); 727 if (GVType->isSized() && InputGVType->isSized() && 728 (DL.getTypeAllocSize(GVType) > 0) && 729 (DL.getTypeAllocSize(InputGVType) > 0)) 730 continue; 731 } 732 733 // Conservatively return false, even though we could be smarter 734 // (e.g. look through GlobalAliases). 735 return false; 736 } 737 738 if (isa<Argument>(Input) || isa<CallInst>(Input) || 739 isa<InvokeInst>(Input)) { 740 // Arguments to functions or returns from functions are inherently 741 // escaping, so we can immediately classify those as not aliasing any 742 // non-addr-taken globals. 743 continue; 744 } 745 746 // Recurse through a limited number of selects, loads and PHIs. This is an 747 // arbitrary depth of 4, lower numbers could be used to fix compile time 748 // issues if needed, but this is generally expected to be only be important 749 // for small depths. 750 if (++Depth > 4) 751 return false; 752 753 if (auto *LI = dyn_cast<LoadInst>(Input)) { 754 // A pointer loaded from a global would have been captured, and we know 755 // that the global is non-escaping, so no alias. 756 const Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); 757 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 758 // The load does not alias with GV. 759 continue; 760 // Otherwise, a load could come from anywhere, so bail. 761 return false; 762 } 763 if (auto *SI = dyn_cast<SelectInst>(Input)) { 764 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 765 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 766 if (Visited.insert(LHS).second) 767 Inputs.push_back(LHS); 768 if (Visited.insert(RHS).second) 769 Inputs.push_back(RHS); 770 continue; 771 } 772 if (auto *PN = dyn_cast<PHINode>(Input)) { 773 for (const Value *Op : PN->incoming_values()) { 774 Op = getUnderlyingObject(Op); 775 if (Visited.insert(Op).second) 776 Inputs.push_back(Op); 777 } 778 continue; 779 } 780 781 // FIXME: It would be good to handle other obvious no-alias cases here, but 782 // it isn't clear how to do so reasonably without building a small version 783 // of BasicAA into this code. We could recurse into AAResultBase::alias 784 // here but that seems likely to go poorly as we're inside the 785 // implementation of such a query. Until then, just conservatively return 786 // false. 787 return false; 788 } while (!Inputs.empty()); 789 790 // If all the inputs to V were definitively no-alias, then V is no-alias. 791 return true; 792 } 793 794 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA, 795 ModuleAnalysisManager::Invalidator &) { 796 // Check whether the analysis has been explicitly invalidated. Otherwise, it's 797 // stateless and remains preserved. 798 auto PAC = PA.getChecker<GlobalsAA>(); 799 return !PAC.preservedWhenStateless(); 800 } 801 802 /// alias - If one of the pointers is to a global that we are tracking, and the 803 /// other is some random pointer, we know there cannot be an alias, because the 804 /// address of the global isn't taken. 805 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 806 const MemoryLocation &LocB, 807 AAQueryInfo &AAQI) { 808 // Get the base object these pointers point to. 809 const Value *UV1 = 810 getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis()); 811 const Value *UV2 = 812 getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis()); 813 814 // If either of the underlying values is a global, they may be non-addr-taken 815 // globals, which we can answer queries about. 816 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 817 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 818 if (GV1 || GV2) { 819 // If the global's address is taken, pretend we don't know it's a pointer to 820 // the global. 821 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 822 GV1 = nullptr; 823 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 824 GV2 = nullptr; 825 826 // If the two pointers are derived from two different non-addr-taken 827 // globals we know these can't alias. 828 if (GV1 && GV2 && GV1 != GV2) 829 return AliasResult::NoAlias; 830 831 // If one is and the other isn't, it isn't strictly safe but we can fake 832 // this result if necessary for performance. This does not appear to be 833 // a common problem in practice. 834 if (EnableUnsafeGlobalsModRefAliasResults) 835 if ((GV1 || GV2) && GV1 != GV2) 836 return AliasResult::NoAlias; 837 838 // Check for a special case where a non-escaping global can be used to 839 // conclude no-alias. 840 if ((GV1 || GV2) && GV1 != GV2) { 841 const GlobalValue *GV = GV1 ? GV1 : GV2; 842 const Value *UV = GV1 ? UV2 : UV1; 843 if (isNonEscapingGlobalNoAlias(GV, UV)) 844 return AliasResult::NoAlias; 845 } 846 847 // Otherwise if they are both derived from the same addr-taken global, we 848 // can't know the two accesses don't overlap. 849 } 850 851 // These pointers may be based on the memory owned by an indirect global. If 852 // so, we may be able to handle this. First check to see if the base pointer 853 // is a direct load from an indirect global. 854 GV1 = GV2 = nullptr; 855 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 856 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 857 if (IndirectGlobals.count(GV)) 858 GV1 = GV; 859 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 860 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 861 if (IndirectGlobals.count(GV)) 862 GV2 = GV; 863 864 // These pointers may also be from an allocation for the indirect global. If 865 // so, also handle them. 866 if (!GV1) 867 GV1 = AllocsForIndirectGlobals.lookup(UV1); 868 if (!GV2) 869 GV2 = AllocsForIndirectGlobals.lookup(UV2); 870 871 // Now that we know whether the two pointers are related to indirect globals, 872 // use this to disambiguate the pointers. If the pointers are based on 873 // different indirect globals they cannot alias. 874 if (GV1 && GV2 && GV1 != GV2) 875 return AliasResult::NoAlias; 876 877 // If one is based on an indirect global and the other isn't, it isn't 878 // strictly safe but we can fake this result if necessary for performance. 879 // This does not appear to be a common problem in practice. 880 if (EnableUnsafeGlobalsModRefAliasResults) 881 if ((GV1 || GV2) && GV1 != GV2) 882 return AliasResult::NoAlias; 883 884 return AAResultBase::alias(LocA, LocB, AAQI); 885 } 886 887 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 888 const GlobalValue *GV, 889 AAQueryInfo &AAQI) { 890 if (Call->doesNotAccessMemory()) 891 return ModRefInfo::NoModRef; 892 ModRefInfo ConservativeResult = 893 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 894 895 // Iterate through all the arguments to the called function. If any argument 896 // is based on GV, return the conservative result. 897 for (const auto &A : Call->args()) { 898 SmallVector<const Value*, 4> Objects; 899 getUnderlyingObjects(A, Objects); 900 901 // All objects must be identified. 902 if (!all_of(Objects, isIdentifiedObject) && 903 // Try ::alias to see if all objects are known not to alias GV. 904 !all_of(Objects, [&](const Value *V) { 905 return this->alias(MemoryLocation::getBeforeOrAfter(V), 906 MemoryLocation::getBeforeOrAfter(GV), 907 AAQI) == AliasResult::NoAlias; 908 })) 909 return ConservativeResult; 910 911 if (is_contained(Objects, GV)) 912 return ConservativeResult; 913 } 914 915 // We identified all objects in the argument list, and none of them were GV. 916 return ModRefInfo::NoModRef; 917 } 918 919 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 920 const MemoryLocation &Loc, 921 AAQueryInfo &AAQI) { 922 ModRefInfo Known = ModRefInfo::ModRef; 923 924 // If we are asking for mod/ref info of a direct call with a pointer to a 925 // global we are tracking, return information if we have it. 926 if (const GlobalValue *GV = 927 dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr))) 928 // If GV is internal to this IR and there is no function with local linkage 929 // that has had their address taken, keep looking for a tighter ModRefInfo. 930 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage) 931 if (const Function *F = Call->getCalledFunction()) 932 if (NonAddressTakenGlobals.count(GV)) 933 if (const FunctionInfo *FI = getFunctionInfo(F)) 934 Known = FI->getModRefInfoForGlobal(*GV) | 935 getModRefInfoForArgument(Call, GV, AAQI); 936 937 return Known; 938 } 939 940 GlobalsAAResult::GlobalsAAResult( 941 const DataLayout &DL, 942 std::function<const TargetLibraryInfo &(Function &F)> GetTLI) 943 : DL(DL), GetTLI(std::move(GetTLI)) {} 944 945 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 946 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), 947 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 948 IndirectGlobals(std::move(Arg.IndirectGlobals)), 949 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 950 FunctionInfos(std::move(Arg.FunctionInfos)), 951 Handles(std::move(Arg.Handles)) { 952 // Update the parent for each DeletionCallbackHandle. 953 for (auto &H : Handles) { 954 assert(H.GAR == &Arg); 955 H.GAR = this; 956 } 957 } 958 959 GlobalsAAResult::~GlobalsAAResult() = default; 960 961 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( 962 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 963 CallGraph &CG) { 964 GlobalsAAResult Result(M.getDataLayout(), GetTLI); 965 966 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 967 Result.CollectSCCMembership(CG); 968 969 // Find non-addr taken globals. 970 Result.AnalyzeGlobals(M); 971 972 // Propagate on CG. 973 Result.AnalyzeCallGraph(CG, M); 974 975 return Result; 976 } 977 978 AnalysisKey GlobalsAA::Key; 979 980 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 981 FunctionAnalysisManager &FAM = 982 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 983 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 984 return FAM.getResult<TargetLibraryAnalysis>(F); 985 }; 986 return GlobalsAAResult::analyzeModule(M, GetTLI, 987 AM.getResult<CallGraphAnalysis>(M)); 988 } 989 990 PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M, 991 ModuleAnalysisManager &AM) { 992 if (auto *G = AM.getCachedResult<GlobalsAA>(M)) { 993 auto &CG = AM.getResult<CallGraphAnalysis>(M); 994 G->NonAddressTakenGlobals.clear(); 995 G->UnknownFunctionsWithLocalLinkage = false; 996 G->IndirectGlobals.clear(); 997 G->AllocsForIndirectGlobals.clear(); 998 G->FunctionInfos.clear(); 999 G->FunctionToSCCMap.clear(); 1000 G->Handles.clear(); 1001 G->CollectSCCMembership(CG); 1002 G->AnalyzeGlobals(M); 1003 G->AnalyzeCallGraph(CG, M); 1004 } 1005 return PreservedAnalyses::all(); 1006 } 1007 1008 char GlobalsAAWrapperPass::ID = 0; 1009 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 1010 "Globals Alias Analysis", false, true) 1011 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1012 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1013 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 1014 "Globals Alias Analysis", false, true) 1015 1016 ModulePass *llvm::createGlobalsAAWrapperPass() { 1017 return new GlobalsAAWrapperPass(); 1018 } 1019 1020 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 1021 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1022 } 1023 1024 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 1025 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 1026 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1027 }; 1028 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1029 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1030 return false; 1031 } 1032 1033 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1034 Result.reset(); 1035 return false; 1036 } 1037 1038 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1039 AU.setPreservesAll(); 1040 AU.addRequired<CallGraphWrapperPass>(); 1041 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1042 } 1043