1 //===- GlobalsModRef.cpp - Simple Mod/Ref Analysis for Globals ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This simple pass provides alias and mod/ref information for global values 10 // that do not have their address taken, and keeps track of whether functions 11 // read or write memory (are "pure"). For this simple (but very common) case, 12 // we can provide pretty accurate and useful information. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/Analysis/GlobalsModRef.h" 17 #include "llvm/ADT/SCCIterator.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/CallGraph.h" 21 #include "llvm/Analysis/MemoryBuiltins.h" 22 #include "llvm/Analysis/TargetLibraryInfo.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/IntrinsicInst.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/PassManager.h" 29 #include "llvm/InitializePasses.h" 30 #include "llvm/Pass.h" 31 #include "llvm/Support/CommandLine.h" 32 33 using namespace llvm; 34 35 #define DEBUG_TYPE "globalsmodref-aa" 36 37 STATISTIC(NumNonAddrTakenGlobalVars, 38 "Number of global vars without address taken"); 39 STATISTIC(NumNonAddrTakenFunctions,"Number of functions without address taken"); 40 STATISTIC(NumNoMemFunctions, "Number of functions that do not access memory"); 41 STATISTIC(NumReadMemFunctions, "Number of functions that only read memory"); 42 STATISTIC(NumIndirectGlobalVars, "Number of indirect global objects"); 43 44 // An option to enable unsafe alias results from the GlobalsModRef analysis. 45 // When enabled, GlobalsModRef will provide no-alias results which in extremely 46 // rare cases may not be conservatively correct. In particular, in the face of 47 // transforms which cause asymmetry between how effective getUnderlyingObject 48 // is for two pointers, it may produce incorrect results. 49 // 50 // These unsafe results have been returned by GMR for many years without 51 // causing significant issues in the wild and so we provide a mechanism to 52 // re-enable them for users of LLVM that have a particular performance 53 // sensitivity and no known issues. The option also makes it easy to evaluate 54 // the performance impact of these results. 55 static cl::opt<bool> EnableUnsafeGlobalsModRefAliasResults( 56 "enable-unsafe-globalsmodref-alias-results", cl::init(false), cl::Hidden); 57 58 /// The mod/ref information collected for a particular function. 59 /// 60 /// We collect information about mod/ref behavior of a function here, both in 61 /// general and as pertains to specific globals. We only have this detailed 62 /// information when we know *something* useful about the behavior. If we 63 /// saturate to fully general mod/ref, we remove the info for the function. 64 class GlobalsAAResult::FunctionInfo { 65 typedef SmallDenseMap<const GlobalValue *, ModRefInfo, 16> GlobalInfoMapType; 66 67 /// Build a wrapper struct that has 8-byte alignment. All heap allocations 68 /// should provide this much alignment at least, but this makes it clear we 69 /// specifically rely on this amount of alignment. 70 struct alignas(8) AlignedMap { 71 AlignedMap() = default; 72 AlignedMap(const AlignedMap &Arg) = default; 73 GlobalInfoMapType Map; 74 }; 75 76 /// Pointer traits for our aligned map. 77 struct AlignedMapPointerTraits { 78 static inline void *getAsVoidPointer(AlignedMap *P) { return P; } 79 static inline AlignedMap *getFromVoidPointer(void *P) { 80 return (AlignedMap *)P; 81 } 82 static constexpr int NumLowBitsAvailable = 3; 83 static_assert(alignof(AlignedMap) >= (1 << NumLowBitsAvailable), 84 "AlignedMap insufficiently aligned to have enough low bits."); 85 }; 86 87 /// The bit that flags that this function may read any global. This is 88 /// chosen to mix together with ModRefInfo bits. 89 /// FIXME: This assumes ModRefInfo lattice will remain 4 bits! 90 /// FunctionInfo.getModRefInfo() masks out everything except ModRef so 91 /// this remains correct. 92 enum { MayReadAnyGlobal = 4 }; 93 94 /// Checks to document the invariants of the bit packing here. 95 static_assert((MayReadAnyGlobal & static_cast<int>(ModRefInfo::ModRef)) == 0, 96 "ModRef and the MayReadAnyGlobal flag bits overlap."); 97 static_assert(((MayReadAnyGlobal | static_cast<int>(ModRefInfo::ModRef)) >> 98 AlignedMapPointerTraits::NumLowBitsAvailable) == 0, 99 "Insufficient low bits to store our flag and ModRef info."); 100 101 public: 102 FunctionInfo() = default; 103 ~FunctionInfo() { 104 delete Info.getPointer(); 105 } 106 // Spell out the copy ond move constructors and assignment operators to get 107 // deep copy semantics and correct move semantics in the face of the 108 // pointer-int pair. 109 FunctionInfo(const FunctionInfo &Arg) 110 : Info(nullptr, Arg.Info.getInt()) { 111 if (const auto *ArgPtr = Arg.Info.getPointer()) 112 Info.setPointer(new AlignedMap(*ArgPtr)); 113 } 114 FunctionInfo(FunctionInfo &&Arg) 115 : Info(Arg.Info.getPointer(), Arg.Info.getInt()) { 116 Arg.Info.setPointerAndInt(nullptr, 0); 117 } 118 FunctionInfo &operator=(const FunctionInfo &RHS) { 119 delete Info.getPointer(); 120 Info.setPointerAndInt(nullptr, RHS.Info.getInt()); 121 if (const auto *RHSPtr = RHS.Info.getPointer()) 122 Info.setPointer(new AlignedMap(*RHSPtr)); 123 return *this; 124 } 125 FunctionInfo &operator=(FunctionInfo &&RHS) { 126 delete Info.getPointer(); 127 Info.setPointerAndInt(RHS.Info.getPointer(), RHS.Info.getInt()); 128 RHS.Info.setPointerAndInt(nullptr, 0); 129 return *this; 130 } 131 132 /// This method clears MayReadAnyGlobal bit added by GlobalsAAResult to return 133 /// the corresponding ModRefInfo. 134 ModRefInfo globalClearMayReadAnyGlobal(int I) const { 135 return ModRefInfo(I & static_cast<int>(ModRefInfo::ModRef)); 136 } 137 138 /// Returns the \c ModRefInfo info for this function. 139 ModRefInfo getModRefInfo() const { 140 return globalClearMayReadAnyGlobal(Info.getInt()); 141 } 142 143 /// Adds new \c ModRefInfo for this function to its state. 144 void addModRefInfo(ModRefInfo NewMRI) { 145 Info.setInt(Info.getInt() | static_cast<int>(NewMRI)); 146 } 147 148 /// Returns whether this function may read any global variable, and we don't 149 /// know which global. 150 bool mayReadAnyGlobal() const { return Info.getInt() & MayReadAnyGlobal; } 151 152 /// Sets this function as potentially reading from any global. 153 void setMayReadAnyGlobal() { Info.setInt(Info.getInt() | MayReadAnyGlobal); } 154 155 /// Returns the \c ModRefInfo info for this function w.r.t. a particular 156 /// global, which may be more precise than the general information above. 157 ModRefInfo getModRefInfoForGlobal(const GlobalValue &GV) const { 158 ModRefInfo GlobalMRI = 159 mayReadAnyGlobal() ? ModRefInfo::Ref : ModRefInfo::NoModRef; 160 if (AlignedMap *P = Info.getPointer()) { 161 auto I = P->Map.find(&GV); 162 if (I != P->Map.end()) 163 GlobalMRI |= I->second; 164 } 165 return GlobalMRI; 166 } 167 168 /// Add mod/ref info from another function into ours, saturating towards 169 /// ModRef. 170 void addFunctionInfo(const FunctionInfo &FI) { 171 addModRefInfo(FI.getModRefInfo()); 172 173 if (FI.mayReadAnyGlobal()) 174 setMayReadAnyGlobal(); 175 176 if (AlignedMap *P = FI.Info.getPointer()) 177 for (const auto &G : P->Map) 178 addModRefInfoForGlobal(*G.first, G.second); 179 } 180 181 void addModRefInfoForGlobal(const GlobalValue &GV, ModRefInfo NewMRI) { 182 AlignedMap *P = Info.getPointer(); 183 if (!P) { 184 P = new AlignedMap(); 185 Info.setPointer(P); 186 } 187 auto &GlobalMRI = P->Map[&GV]; 188 GlobalMRI |= NewMRI; 189 } 190 191 /// Clear a global's ModRef info. Should be used when a global is being 192 /// deleted. 193 void eraseModRefInfoForGlobal(const GlobalValue &GV) { 194 if (AlignedMap *P = Info.getPointer()) 195 P->Map.erase(&GV); 196 } 197 198 private: 199 /// All of the information is encoded into a single pointer, with a three bit 200 /// integer in the low three bits. The high bit provides a flag for when this 201 /// function may read any global. The low two bits are the ModRefInfo. And 202 /// the pointer, when non-null, points to a map from GlobalValue to 203 /// ModRefInfo specific to that GlobalValue. 204 PointerIntPair<AlignedMap *, 3, unsigned, AlignedMapPointerTraits> Info; 205 }; 206 207 void GlobalsAAResult::DeletionCallbackHandle::deleted() { 208 Value *V = getValPtr(); 209 if (auto *F = dyn_cast<Function>(V)) 210 GAR->FunctionInfos.erase(F); 211 212 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { 213 if (GAR->NonAddressTakenGlobals.erase(GV)) { 214 // This global might be an indirect global. If so, remove it and 215 // remove any AllocRelatedValues for it. 216 if (GAR->IndirectGlobals.erase(GV)) { 217 // Remove any entries in AllocsForIndirectGlobals for this global. 218 for (auto I = GAR->AllocsForIndirectGlobals.begin(), 219 E = GAR->AllocsForIndirectGlobals.end(); 220 I != E; ++I) 221 if (I->second == GV) 222 GAR->AllocsForIndirectGlobals.erase(I); 223 } 224 225 // Scan the function info we have collected and remove this global 226 // from all of them. 227 for (auto &FIPair : GAR->FunctionInfos) 228 FIPair.second.eraseModRefInfoForGlobal(*GV); 229 } 230 } 231 232 // If this is an allocation related to an indirect global, remove it. 233 GAR->AllocsForIndirectGlobals.erase(V); 234 235 // And clear out the handle. 236 setValPtr(nullptr); 237 GAR->Handles.erase(I); 238 // This object is now destroyed! 239 } 240 241 MemoryEffects GlobalsAAResult::getMemoryEffects(const Function *F) { 242 if (FunctionInfo *FI = getFunctionInfo(F)) 243 return MemoryEffects(FI->getModRefInfo()); 244 245 return AAResultBase::getMemoryEffects(F); 246 } 247 248 /// Returns the function info for the function, or null if we don't have 249 /// anything useful to say about it. 250 GlobalsAAResult::FunctionInfo * 251 GlobalsAAResult::getFunctionInfo(const Function *F) { 252 auto I = FunctionInfos.find(F); 253 if (I != FunctionInfos.end()) 254 return &I->second; 255 return nullptr; 256 } 257 258 /// AnalyzeGlobals - Scan through the users of all of the internal 259 /// GlobalValue's in the program. If none of them have their "address taken" 260 /// (really, their address passed to something nontrivial), record this fact, 261 /// and record the functions that they are used directly in. 262 void GlobalsAAResult::AnalyzeGlobals(Module &M) { 263 SmallPtrSet<Function *, 32> TrackedFunctions; 264 for (Function &F : M) 265 if (F.hasLocalLinkage()) { 266 if (!AnalyzeUsesOfPointer(&F)) { 267 // Remember that we are tracking this global. 268 NonAddressTakenGlobals.insert(&F); 269 TrackedFunctions.insert(&F); 270 Handles.emplace_front(*this, &F); 271 Handles.front().I = Handles.begin(); 272 ++NumNonAddrTakenFunctions; 273 } else 274 UnknownFunctionsWithLocalLinkage = true; 275 } 276 277 SmallPtrSet<Function *, 16> Readers, Writers; 278 for (GlobalVariable &GV : M.globals()) 279 if (GV.hasLocalLinkage()) { 280 if (!AnalyzeUsesOfPointer(&GV, &Readers, 281 GV.isConstant() ? nullptr : &Writers)) { 282 // Remember that we are tracking this global, and the mod/ref fns 283 NonAddressTakenGlobals.insert(&GV); 284 Handles.emplace_front(*this, &GV); 285 Handles.front().I = Handles.begin(); 286 287 for (Function *Reader : Readers) { 288 if (TrackedFunctions.insert(Reader).second) { 289 Handles.emplace_front(*this, Reader); 290 Handles.front().I = Handles.begin(); 291 } 292 FunctionInfos[Reader].addModRefInfoForGlobal(GV, ModRefInfo::Ref); 293 } 294 295 if (!GV.isConstant()) // No need to keep track of writers to constants 296 for (Function *Writer : Writers) { 297 if (TrackedFunctions.insert(Writer).second) { 298 Handles.emplace_front(*this, Writer); 299 Handles.front().I = Handles.begin(); 300 } 301 FunctionInfos[Writer].addModRefInfoForGlobal(GV, ModRefInfo::Mod); 302 } 303 ++NumNonAddrTakenGlobalVars; 304 305 // If this global holds a pointer type, see if it is an indirect global. 306 if (GV.getValueType()->isPointerTy() && 307 AnalyzeIndirectGlobalMemory(&GV)) 308 ++NumIndirectGlobalVars; 309 } 310 Readers.clear(); 311 Writers.clear(); 312 } 313 } 314 315 /// AnalyzeUsesOfPointer - Look at all of the users of the specified pointer. 316 /// If this is used by anything complex (i.e., the address escapes), return 317 /// true. Also, while we are at it, keep track of those functions that read and 318 /// write to the value. 319 /// 320 /// If OkayStoreDest is non-null, stores into this global are allowed. 321 bool GlobalsAAResult::AnalyzeUsesOfPointer(Value *V, 322 SmallPtrSetImpl<Function *> *Readers, 323 SmallPtrSetImpl<Function *> *Writers, 324 GlobalValue *OkayStoreDest) { 325 if (!V->getType()->isPointerTy()) 326 return true; 327 328 for (Use &U : V->uses()) { 329 User *I = U.getUser(); 330 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 331 if (Readers) 332 Readers->insert(LI->getParent()->getParent()); 333 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { 334 if (V == SI->getOperand(1)) { 335 if (Writers) 336 Writers->insert(SI->getParent()->getParent()); 337 } else if (SI->getOperand(1) != OkayStoreDest) { 338 return true; // Storing the pointer 339 } 340 } else if (Operator::getOpcode(I) == Instruction::GetElementPtr) { 341 if (AnalyzeUsesOfPointer(I, Readers, Writers)) 342 return true; 343 } else if (Operator::getOpcode(I) == Instruction::BitCast || 344 Operator::getOpcode(I) == Instruction::AddrSpaceCast) { 345 if (AnalyzeUsesOfPointer(I, Readers, Writers, OkayStoreDest)) 346 return true; 347 } else if (auto *Call = dyn_cast<CallBase>(I)) { 348 // Make sure that this is just the function being called, not that it is 349 // passing into the function. 350 if (Call->isDataOperand(&U)) { 351 // Detect calls to free. 352 if (Call->isArgOperand(&U) && 353 getFreedOperand(Call, &GetTLI(*Call->getFunction())) == U) { 354 if (Writers) 355 Writers->insert(Call->getParent()->getParent()); 356 } else { 357 // In general, we return true for unknown calls, but there are 358 // some simple checks that we can do for functions that 359 // will never call back into the module. 360 auto *F = Call->getCalledFunction(); 361 // TODO: we should be able to remove isDeclaration() check 362 // and let the function body analysis check for captures, 363 // and collect the mod-ref effects. This information will 364 // be later propagated via the call graph. 365 if (!F || !F->isDeclaration()) 366 return true; 367 // Note that the NoCallback check here is a little bit too 368 // conservative. If there are no captures of the global 369 // in the module, then this call may not be a capture even 370 // if it does not have NoCallback. 371 if (!Call->hasFnAttr(Attribute::NoCallback) || 372 !Call->isArgOperand(&U) || 373 !Call->doesNotCapture(Call->getArgOperandNo(&U))) 374 return true; 375 376 // Conservatively, assume the call reads and writes the global. 377 // We could use memory attributes to make it more precise. 378 if (Readers) 379 Readers->insert(Call->getParent()->getParent()); 380 if (Writers) 381 Writers->insert(Call->getParent()->getParent()); 382 } 383 } 384 } else if (ICmpInst *ICI = dyn_cast<ICmpInst>(I)) { 385 if (!isa<ConstantPointerNull>(ICI->getOperand(1))) 386 return true; // Allow comparison against null. 387 } else if (Constant *C = dyn_cast<Constant>(I)) { 388 // Ignore constants which don't have any live uses. 389 if (isa<GlobalValue>(C) || C->isConstantUsed()) 390 return true; 391 } else { 392 return true; 393 } 394 } 395 396 return false; 397 } 398 399 /// AnalyzeIndirectGlobalMemory - We found an non-address-taken global variable 400 /// which holds a pointer type. See if the global always points to non-aliased 401 /// heap memory: that is, all initializers of the globals store a value known 402 /// to be obtained via a noalias return function call which have no other use. 403 /// Further, all loads out of GV must directly use the memory, not store the 404 /// pointer somewhere. If this is true, we consider the memory pointed to by 405 /// GV to be owned by GV and can disambiguate other pointers from it. 406 bool GlobalsAAResult::AnalyzeIndirectGlobalMemory(GlobalVariable *GV) { 407 // Keep track of values related to the allocation of the memory, f.e. the 408 // value produced by the noalias call and any casts. 409 std::vector<Value *> AllocRelatedValues; 410 411 // If the initializer is a valid pointer, bail. 412 if (Constant *C = GV->getInitializer()) 413 if (!C->isNullValue()) 414 return false; 415 416 // Walk the user list of the global. If we find anything other than a direct 417 // load or store, bail out. 418 for (User *U : GV->users()) { 419 if (LoadInst *LI = dyn_cast<LoadInst>(U)) { 420 // The pointer loaded from the global can only be used in simple ways: 421 // we allow addressing of it and loading storing to it. We do *not* allow 422 // storing the loaded pointer somewhere else or passing to a function. 423 if (AnalyzeUsesOfPointer(LI)) 424 return false; // Loaded pointer escapes. 425 // TODO: Could try some IP mod/ref of the loaded pointer. 426 } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { 427 // Storing the global itself. 428 if (SI->getOperand(0) == GV) 429 return false; 430 431 // If storing the null pointer, ignore it. 432 if (isa<ConstantPointerNull>(SI->getOperand(0))) 433 continue; 434 435 // Check the value being stored. 436 Value *Ptr = getUnderlyingObject(SI->getOperand(0)); 437 438 if (!isNoAliasCall(Ptr)) 439 return false; // Too hard to analyze. 440 441 // Analyze all uses of the allocation. If any of them are used in a 442 // non-simple way (e.g. stored to another global) bail out. 443 if (AnalyzeUsesOfPointer(Ptr, /*Readers*/ nullptr, /*Writers*/ nullptr, 444 GV)) 445 return false; // Loaded pointer escapes. 446 447 // Remember that this allocation is related to the indirect global. 448 AllocRelatedValues.push_back(Ptr); 449 } else { 450 // Something complex, bail out. 451 return false; 452 } 453 } 454 455 // Okay, this is an indirect global. Remember all of the allocations for 456 // this global in AllocsForIndirectGlobals. 457 while (!AllocRelatedValues.empty()) { 458 AllocsForIndirectGlobals[AllocRelatedValues.back()] = GV; 459 Handles.emplace_front(*this, AllocRelatedValues.back()); 460 Handles.front().I = Handles.begin(); 461 AllocRelatedValues.pop_back(); 462 } 463 IndirectGlobals.insert(GV); 464 Handles.emplace_front(*this, GV); 465 Handles.front().I = Handles.begin(); 466 return true; 467 } 468 469 void GlobalsAAResult::CollectSCCMembership(CallGraph &CG) { 470 // We do a bottom-up SCC traversal of the call graph. In other words, we 471 // visit all callees before callers (leaf-first). 472 unsigned SCCID = 0; 473 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 474 const std::vector<CallGraphNode *> &SCC = *I; 475 assert(!SCC.empty() && "SCC with no functions?"); 476 477 for (auto *CGN : SCC) 478 if (Function *F = CGN->getFunction()) 479 FunctionToSCCMap[F] = SCCID; 480 ++SCCID; 481 } 482 } 483 484 /// AnalyzeCallGraph - At this point, we know the functions where globals are 485 /// immediately stored to and read from. Propagate this information up the call 486 /// graph to all callers and compute the mod/ref info for all memory for each 487 /// function. 488 void GlobalsAAResult::AnalyzeCallGraph(CallGraph &CG, Module &M) { 489 // We do a bottom-up SCC traversal of the call graph. In other words, we 490 // visit all callees before callers (leaf-first). 491 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) { 492 const std::vector<CallGraphNode *> &SCC = *I; 493 assert(!SCC.empty() && "SCC with no functions?"); 494 495 Function *F = SCC[0]->getFunction(); 496 497 if (!F || !F->isDefinitionExact()) { 498 // Calls externally or not exact - can't say anything useful. Remove any 499 // existing function records (may have been created when scanning 500 // globals). 501 for (auto *Node : SCC) 502 FunctionInfos.erase(Node->getFunction()); 503 continue; 504 } 505 506 FunctionInfo &FI = FunctionInfos[F]; 507 Handles.emplace_front(*this, F); 508 Handles.front().I = Handles.begin(); 509 bool KnowNothing = false; 510 511 // Intrinsics, like any other synchronizing function, can make effects 512 // of other threads visible. Without nosync we know nothing really. 513 // Similarly, if `nocallback` is missing the function, or intrinsic, 514 // can call into the module arbitrarily. If both are set the function 515 // has an effect but will not interact with accesses of internal 516 // globals inside the module. We are conservative here for optnone 517 // functions, might not be necessary. 518 auto MaySyncOrCallIntoModule = [](const Function &F) { 519 return !F.isDeclaration() || !F.hasNoSync() || 520 !F.hasFnAttribute(Attribute::NoCallback); 521 }; 522 523 // Collect the mod/ref properties due to called functions. We only compute 524 // one mod-ref set. 525 for (unsigned i = 0, e = SCC.size(); i != e && !KnowNothing; ++i) { 526 if (!F) { 527 KnowNothing = true; 528 break; 529 } 530 531 if (F->isDeclaration() || F->hasOptNone()) { 532 // Try to get mod/ref behaviour from function attributes. 533 if (F->doesNotAccessMemory()) { 534 // Can't do better than that! 535 } else if (F->onlyReadsMemory()) { 536 FI.addModRefInfo(ModRefInfo::Ref); 537 if (!F->onlyAccessesArgMemory() && MaySyncOrCallIntoModule(*F)) 538 // This function might call back into the module and read a global - 539 // consider every global as possibly being read by this function. 540 FI.setMayReadAnyGlobal(); 541 } else { 542 FI.addModRefInfo(ModRefInfo::ModRef); 543 if (!F->onlyAccessesArgMemory()) 544 FI.setMayReadAnyGlobal(); 545 if (MaySyncOrCallIntoModule(*F)) { 546 KnowNothing = true; 547 break; 548 } 549 } 550 continue; 551 } 552 553 for (CallGraphNode::iterator CI = SCC[i]->begin(), E = SCC[i]->end(); 554 CI != E && !KnowNothing; ++CI) 555 if (Function *Callee = CI->second->getFunction()) { 556 if (FunctionInfo *CalleeFI = getFunctionInfo(Callee)) { 557 // Propagate function effect up. 558 FI.addFunctionInfo(*CalleeFI); 559 } else { 560 // Can't say anything about it. However, if it is inside our SCC, 561 // then nothing needs to be done. 562 CallGraphNode *CalleeNode = CG[Callee]; 563 if (!is_contained(SCC, CalleeNode)) 564 KnowNothing = true; 565 } 566 } else { 567 KnowNothing = true; 568 } 569 } 570 571 // If we can't say anything useful about this SCC, remove all SCC functions 572 // from the FunctionInfos map. 573 if (KnowNothing) { 574 for (auto *Node : SCC) 575 FunctionInfos.erase(Node->getFunction()); 576 continue; 577 } 578 579 // Scan the function bodies for explicit loads or stores. 580 for (auto *Node : SCC) { 581 if (isModAndRefSet(FI.getModRefInfo())) 582 break; // The mod/ref lattice saturates here. 583 584 // Don't prove any properties based on the implementation of an optnone 585 // function. Function attributes were already used as a best approximation 586 // above. 587 if (Node->getFunction()->hasOptNone()) 588 continue; 589 590 for (Instruction &I : instructions(Node->getFunction())) { 591 if (isModAndRefSet(FI.getModRefInfo())) 592 break; // The mod/ref lattice saturates here. 593 594 // We handle calls specially because the graph-relevant aspects are 595 // handled above. 596 if (auto *Call = dyn_cast<CallBase>(&I)) { 597 if (Function *Callee = Call->getCalledFunction()) { 598 // The callgraph doesn't include intrinsic calls. 599 if (Callee->isIntrinsic()) { 600 if (isa<DbgInfoIntrinsic>(Call)) 601 // Don't let dbg intrinsics affect alias info. 602 continue; 603 604 MemoryEffects Behaviour = AAResultBase::getMemoryEffects(Callee); 605 FI.addModRefInfo(Behaviour.getModRef()); 606 } 607 } 608 continue; 609 } 610 611 // All non-call instructions we use the primary predicates for whether 612 // they read or write memory. 613 if (I.mayReadFromMemory()) 614 FI.addModRefInfo(ModRefInfo::Ref); 615 if (I.mayWriteToMemory()) 616 FI.addModRefInfo(ModRefInfo::Mod); 617 } 618 } 619 620 if (!isModSet(FI.getModRefInfo())) 621 ++NumReadMemFunctions; 622 if (!isModOrRefSet(FI.getModRefInfo())) 623 ++NumNoMemFunctions; 624 625 // Finally, now that we know the full effect on this SCC, clone the 626 // information to each function in the SCC. 627 // FI is a reference into FunctionInfos, so copy it now so that it doesn't 628 // get invalidated if DenseMap decides to re-hash. 629 FunctionInfo CachedFI = FI; 630 for (unsigned i = 1, e = SCC.size(); i != e; ++i) 631 FunctionInfos[SCC[i]->getFunction()] = CachedFI; 632 } 633 } 634 635 // GV is a non-escaping global. V is a pointer address that has been loaded from. 636 // If we can prove that V must escape, we can conclude that a load from V cannot 637 // alias GV. 638 static bool isNonEscapingGlobalNoAliasWithLoad(const GlobalValue *GV, 639 const Value *V, 640 int &Depth, 641 const DataLayout &DL) { 642 SmallPtrSet<const Value *, 8> Visited; 643 SmallVector<const Value *, 8> Inputs; 644 Visited.insert(V); 645 Inputs.push_back(V); 646 do { 647 const Value *Input = Inputs.pop_back_val(); 648 649 if (isa<GlobalValue>(Input) || isa<Argument>(Input) || isa<CallInst>(Input) || 650 isa<InvokeInst>(Input)) 651 // Arguments to functions or returns from functions are inherently 652 // escaping, so we can immediately classify those as not aliasing any 653 // non-addr-taken globals. 654 // 655 // (Transitive) loads from a global are also safe - if this aliased 656 // another global, its address would escape, so no alias. 657 continue; 658 659 // Recurse through a limited number of selects, loads and PHIs. This is an 660 // arbitrary depth of 4, lower numbers could be used to fix compile time 661 // issues if needed, but this is generally expected to be only be important 662 // for small depths. 663 if (++Depth > 4) 664 return false; 665 666 if (auto *LI = dyn_cast<LoadInst>(Input)) { 667 Inputs.push_back(getUnderlyingObject(LI->getPointerOperand())); 668 continue; 669 } 670 if (auto *SI = dyn_cast<SelectInst>(Input)) { 671 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 672 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 673 if (Visited.insert(LHS).second) 674 Inputs.push_back(LHS); 675 if (Visited.insert(RHS).second) 676 Inputs.push_back(RHS); 677 continue; 678 } 679 if (auto *PN = dyn_cast<PHINode>(Input)) { 680 for (const Value *Op : PN->incoming_values()) { 681 Op = getUnderlyingObject(Op); 682 if (Visited.insert(Op).second) 683 Inputs.push_back(Op); 684 } 685 continue; 686 } 687 688 return false; 689 } while (!Inputs.empty()); 690 691 // All inputs were known to be no-alias. 692 return true; 693 } 694 695 // There are particular cases where we can conclude no-alias between 696 // a non-addr-taken global and some other underlying object. Specifically, 697 // a non-addr-taken global is known to not be escaped from any function. It is 698 // also incorrect for a transformation to introduce an escape of a global in 699 // a way that is observable when it was not there previously. One function 700 // being transformed to introduce an escape which could possibly be observed 701 // (via loading from a global or the return value for example) within another 702 // function is never safe. If the observation is made through non-atomic 703 // operations on different threads, it is a data-race and UB. If the 704 // observation is well defined, by being observed the transformation would have 705 // changed program behavior by introducing the observed escape, making it an 706 // invalid transform. 707 // 708 // This property does require that transformations which *temporarily* escape 709 // a global that was not previously escaped, prior to restoring it, cannot rely 710 // on the results of GMR::alias. This seems a reasonable restriction, although 711 // currently there is no way to enforce it. There is also no realistic 712 // optimization pass that would make this mistake. The closest example is 713 // a transformation pass which does reg2mem of SSA values but stores them into 714 // global variables temporarily before restoring the global variable's value. 715 // This could be useful to expose "benign" races for example. However, it seems 716 // reasonable to require that a pass which introduces escapes of global 717 // variables in this way to either not trust AA results while the escape is 718 // active, or to be forced to operate as a module pass that cannot co-exist 719 // with an alias analysis such as GMR. 720 bool GlobalsAAResult::isNonEscapingGlobalNoAlias(const GlobalValue *GV, 721 const Value *V) { 722 // In order to know that the underlying object cannot alias the 723 // non-addr-taken global, we must know that it would have to be an escape. 724 // Thus if the underlying object is a function argument, a load from 725 // a global, or the return of a function, it cannot alias. We can also 726 // recurse through PHI nodes and select nodes provided all of their inputs 727 // resolve to one of these known-escaping roots. 728 SmallPtrSet<const Value *, 8> Visited; 729 SmallVector<const Value *, 8> Inputs; 730 Visited.insert(V); 731 Inputs.push_back(V); 732 int Depth = 0; 733 do { 734 const Value *Input = Inputs.pop_back_val(); 735 736 if (auto *InputGV = dyn_cast<GlobalValue>(Input)) { 737 // If one input is the very global we're querying against, then we can't 738 // conclude no-alias. 739 if (InputGV == GV) 740 return false; 741 742 // Distinct GlobalVariables never alias, unless overriden or zero-sized. 743 // FIXME: The condition can be refined, but be conservative for now. 744 auto *GVar = dyn_cast<GlobalVariable>(GV); 745 auto *InputGVar = dyn_cast<GlobalVariable>(InputGV); 746 if (GVar && InputGVar && 747 !GVar->isDeclaration() && !InputGVar->isDeclaration() && 748 !GVar->isInterposable() && !InputGVar->isInterposable()) { 749 Type *GVType = GVar->getInitializer()->getType(); 750 Type *InputGVType = InputGVar->getInitializer()->getType(); 751 if (GVType->isSized() && InputGVType->isSized() && 752 (DL.getTypeAllocSize(GVType) > 0) && 753 (DL.getTypeAllocSize(InputGVType) > 0)) 754 continue; 755 } 756 757 // Conservatively return false, even though we could be smarter 758 // (e.g. look through GlobalAliases). 759 return false; 760 } 761 762 if (isa<Argument>(Input) || isa<CallInst>(Input) || 763 isa<InvokeInst>(Input)) { 764 // Arguments to functions or returns from functions are inherently 765 // escaping, so we can immediately classify those as not aliasing any 766 // non-addr-taken globals. 767 continue; 768 } 769 770 // Recurse through a limited number of selects, loads and PHIs. This is an 771 // arbitrary depth of 4, lower numbers could be used to fix compile time 772 // issues if needed, but this is generally expected to be only be important 773 // for small depths. 774 if (++Depth > 4) 775 return false; 776 777 if (auto *LI = dyn_cast<LoadInst>(Input)) { 778 // A pointer loaded from a global would have been captured, and we know 779 // that the global is non-escaping, so no alias. 780 const Value *Ptr = getUnderlyingObject(LI->getPointerOperand()); 781 if (isNonEscapingGlobalNoAliasWithLoad(GV, Ptr, Depth, DL)) 782 // The load does not alias with GV. 783 continue; 784 // Otherwise, a load could come from anywhere, so bail. 785 return false; 786 } 787 if (auto *SI = dyn_cast<SelectInst>(Input)) { 788 const Value *LHS = getUnderlyingObject(SI->getTrueValue()); 789 const Value *RHS = getUnderlyingObject(SI->getFalseValue()); 790 if (Visited.insert(LHS).second) 791 Inputs.push_back(LHS); 792 if (Visited.insert(RHS).second) 793 Inputs.push_back(RHS); 794 continue; 795 } 796 if (auto *PN = dyn_cast<PHINode>(Input)) { 797 for (const Value *Op : PN->incoming_values()) { 798 Op = getUnderlyingObject(Op); 799 if (Visited.insert(Op).second) 800 Inputs.push_back(Op); 801 } 802 continue; 803 } 804 805 // FIXME: It would be good to handle other obvious no-alias cases here, but 806 // it isn't clear how to do so reasonably without building a small version 807 // of BasicAA into this code. We could recurse into AAResultBase::alias 808 // here but that seems likely to go poorly as we're inside the 809 // implementation of such a query. Until then, just conservatively return 810 // false. 811 return false; 812 } while (!Inputs.empty()); 813 814 // If all the inputs to V were definitively no-alias, then V is no-alias. 815 return true; 816 } 817 818 bool GlobalsAAResult::invalidate(Module &, const PreservedAnalyses &PA, 819 ModuleAnalysisManager::Invalidator &) { 820 // Check whether the analysis has been explicitly invalidated. Otherwise, it's 821 // stateless and remains preserved. 822 auto PAC = PA.getChecker<GlobalsAA>(); 823 return !PAC.preservedWhenStateless(); 824 } 825 826 /// alias - If one of the pointers is to a global that we are tracking, and the 827 /// other is some random pointer, we know there cannot be an alias, because the 828 /// address of the global isn't taken. 829 AliasResult GlobalsAAResult::alias(const MemoryLocation &LocA, 830 const MemoryLocation &LocB, 831 AAQueryInfo &AAQI, const Instruction *) { 832 // Get the base object these pointers point to. 833 const Value *UV1 = 834 getUnderlyingObject(LocA.Ptr->stripPointerCastsForAliasAnalysis()); 835 const Value *UV2 = 836 getUnderlyingObject(LocB.Ptr->stripPointerCastsForAliasAnalysis()); 837 838 // If either of the underlying values is a global, they may be non-addr-taken 839 // globals, which we can answer queries about. 840 const GlobalValue *GV1 = dyn_cast<GlobalValue>(UV1); 841 const GlobalValue *GV2 = dyn_cast<GlobalValue>(UV2); 842 if (GV1 || GV2) { 843 // If the global's address is taken, pretend we don't know it's a pointer to 844 // the global. 845 if (GV1 && !NonAddressTakenGlobals.count(GV1)) 846 GV1 = nullptr; 847 if (GV2 && !NonAddressTakenGlobals.count(GV2)) 848 GV2 = nullptr; 849 850 // If the two pointers are derived from two different non-addr-taken 851 // globals we know these can't alias. 852 if (GV1 && GV2 && GV1 != GV2) 853 return AliasResult::NoAlias; 854 855 // If one is and the other isn't, it isn't strictly safe but we can fake 856 // this result if necessary for performance. This does not appear to be 857 // a common problem in practice. 858 if (EnableUnsafeGlobalsModRefAliasResults) 859 if ((GV1 || GV2) && GV1 != GV2) 860 return AliasResult::NoAlias; 861 862 // Check for a special case where a non-escaping global can be used to 863 // conclude no-alias. 864 if ((GV1 || GV2) && GV1 != GV2) { 865 const GlobalValue *GV = GV1 ? GV1 : GV2; 866 const Value *UV = GV1 ? UV2 : UV1; 867 if (isNonEscapingGlobalNoAlias(GV, UV)) 868 return AliasResult::NoAlias; 869 } 870 871 // Otherwise if they are both derived from the same addr-taken global, we 872 // can't know the two accesses don't overlap. 873 } 874 875 // These pointers may be based on the memory owned by an indirect global. If 876 // so, we may be able to handle this. First check to see if the base pointer 877 // is a direct load from an indirect global. 878 GV1 = GV2 = nullptr; 879 if (const LoadInst *LI = dyn_cast<LoadInst>(UV1)) 880 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 881 if (IndirectGlobals.count(GV)) 882 GV1 = GV; 883 if (const LoadInst *LI = dyn_cast<LoadInst>(UV2)) 884 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getOperand(0))) 885 if (IndirectGlobals.count(GV)) 886 GV2 = GV; 887 888 // These pointers may also be from an allocation for the indirect global. If 889 // so, also handle them. 890 if (!GV1) 891 GV1 = AllocsForIndirectGlobals.lookup(UV1); 892 if (!GV2) 893 GV2 = AllocsForIndirectGlobals.lookup(UV2); 894 895 // Now that we know whether the two pointers are related to indirect globals, 896 // use this to disambiguate the pointers. If the pointers are based on 897 // different indirect globals they cannot alias. 898 if (GV1 && GV2 && GV1 != GV2) 899 return AliasResult::NoAlias; 900 901 // If one is based on an indirect global and the other isn't, it isn't 902 // strictly safe but we can fake this result if necessary for performance. 903 // This does not appear to be a common problem in practice. 904 if (EnableUnsafeGlobalsModRefAliasResults) 905 if ((GV1 || GV2) && GV1 != GV2) 906 return AliasResult::NoAlias; 907 908 return AAResultBase::alias(LocA, LocB, AAQI, nullptr); 909 } 910 911 ModRefInfo GlobalsAAResult::getModRefInfoForArgument(const CallBase *Call, 912 const GlobalValue *GV, 913 AAQueryInfo &AAQI) { 914 if (Call->doesNotAccessMemory()) 915 return ModRefInfo::NoModRef; 916 ModRefInfo ConservativeResult = 917 Call->onlyReadsMemory() ? ModRefInfo::Ref : ModRefInfo::ModRef; 918 919 // Iterate through all the arguments to the called function. If any argument 920 // is based on GV, return the conservative result. 921 for (const auto &A : Call->args()) { 922 SmallVector<const Value*, 4> Objects; 923 getUnderlyingObjects(A, Objects); 924 925 // All objects must be identified. 926 if (!all_of(Objects, isIdentifiedObject) && 927 // Try ::alias to see if all objects are known not to alias GV. 928 !all_of(Objects, [&](const Value *V) { 929 return this->alias(MemoryLocation::getBeforeOrAfter(V), 930 MemoryLocation::getBeforeOrAfter(GV), AAQI, 931 nullptr) == AliasResult::NoAlias; 932 })) 933 return ConservativeResult; 934 935 if (is_contained(Objects, GV)) 936 return ConservativeResult; 937 } 938 939 // We identified all objects in the argument list, and none of them were GV. 940 return ModRefInfo::NoModRef; 941 } 942 943 ModRefInfo GlobalsAAResult::getModRefInfo(const CallBase *Call, 944 const MemoryLocation &Loc, 945 AAQueryInfo &AAQI) { 946 ModRefInfo Known = ModRefInfo::ModRef; 947 948 // If we are asking for mod/ref info of a direct call with a pointer to a 949 // global we are tracking, return information if we have it. 950 if (const GlobalValue *GV = 951 dyn_cast<GlobalValue>(getUnderlyingObject(Loc.Ptr))) 952 // If GV is internal to this IR and there is no function with local linkage 953 // that has had their address taken, keep looking for a tighter ModRefInfo. 954 if (GV->hasLocalLinkage() && !UnknownFunctionsWithLocalLinkage) 955 if (const Function *F = Call->getCalledFunction()) 956 if (NonAddressTakenGlobals.count(GV)) 957 if (const FunctionInfo *FI = getFunctionInfo(F)) 958 Known = FI->getModRefInfoForGlobal(*GV) | 959 getModRefInfoForArgument(Call, GV, AAQI); 960 961 return Known; 962 } 963 964 GlobalsAAResult::GlobalsAAResult( 965 const DataLayout &DL, 966 std::function<const TargetLibraryInfo &(Function &F)> GetTLI) 967 : DL(DL), GetTLI(std::move(GetTLI)) {} 968 969 GlobalsAAResult::GlobalsAAResult(GlobalsAAResult &&Arg) 970 : AAResultBase(std::move(Arg)), DL(Arg.DL), GetTLI(std::move(Arg.GetTLI)), 971 NonAddressTakenGlobals(std::move(Arg.NonAddressTakenGlobals)), 972 IndirectGlobals(std::move(Arg.IndirectGlobals)), 973 AllocsForIndirectGlobals(std::move(Arg.AllocsForIndirectGlobals)), 974 FunctionInfos(std::move(Arg.FunctionInfos)), 975 Handles(std::move(Arg.Handles)) { 976 // Update the parent for each DeletionCallbackHandle. 977 for (auto &H : Handles) { 978 assert(H.GAR == &Arg); 979 H.GAR = this; 980 } 981 } 982 983 GlobalsAAResult::~GlobalsAAResult() = default; 984 985 /*static*/ GlobalsAAResult GlobalsAAResult::analyzeModule( 986 Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI, 987 CallGraph &CG) { 988 GlobalsAAResult Result(M.getDataLayout(), GetTLI); 989 990 // Discover which functions aren't recursive, to feed into AnalyzeGlobals. 991 Result.CollectSCCMembership(CG); 992 993 // Find non-addr taken globals. 994 Result.AnalyzeGlobals(M); 995 996 // Propagate on CG. 997 Result.AnalyzeCallGraph(CG, M); 998 999 return Result; 1000 } 1001 1002 AnalysisKey GlobalsAA::Key; 1003 1004 GlobalsAAResult GlobalsAA::run(Module &M, ModuleAnalysisManager &AM) { 1005 FunctionAnalysisManager &FAM = 1006 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); 1007 auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { 1008 return FAM.getResult<TargetLibraryAnalysis>(F); 1009 }; 1010 return GlobalsAAResult::analyzeModule(M, GetTLI, 1011 AM.getResult<CallGraphAnalysis>(M)); 1012 } 1013 1014 PreservedAnalyses RecomputeGlobalsAAPass::run(Module &M, 1015 ModuleAnalysisManager &AM) { 1016 if (auto *G = AM.getCachedResult<GlobalsAA>(M)) { 1017 auto &CG = AM.getResult<CallGraphAnalysis>(M); 1018 G->NonAddressTakenGlobals.clear(); 1019 G->UnknownFunctionsWithLocalLinkage = false; 1020 G->IndirectGlobals.clear(); 1021 G->AllocsForIndirectGlobals.clear(); 1022 G->FunctionInfos.clear(); 1023 G->FunctionToSCCMap.clear(); 1024 G->Handles.clear(); 1025 G->CollectSCCMembership(CG); 1026 G->AnalyzeGlobals(M); 1027 G->AnalyzeCallGraph(CG, M); 1028 } 1029 return PreservedAnalyses::all(); 1030 } 1031 1032 char GlobalsAAWrapperPass::ID = 0; 1033 INITIALIZE_PASS_BEGIN(GlobalsAAWrapperPass, "globals-aa", 1034 "Globals Alias Analysis", false, true) 1035 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) 1036 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 1037 INITIALIZE_PASS_END(GlobalsAAWrapperPass, "globals-aa", 1038 "Globals Alias Analysis", false, true) 1039 1040 ModulePass *llvm::createGlobalsAAWrapperPass() { 1041 return new GlobalsAAWrapperPass(); 1042 } 1043 1044 GlobalsAAWrapperPass::GlobalsAAWrapperPass() : ModulePass(ID) { 1045 initializeGlobalsAAWrapperPassPass(*PassRegistry::getPassRegistry()); 1046 } 1047 1048 bool GlobalsAAWrapperPass::runOnModule(Module &M) { 1049 auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { 1050 return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); 1051 }; 1052 Result.reset(new GlobalsAAResult(GlobalsAAResult::analyzeModule( 1053 M, GetTLI, getAnalysis<CallGraphWrapperPass>().getCallGraph()))); 1054 return false; 1055 } 1056 1057 bool GlobalsAAWrapperPass::doFinalization(Module &M) { 1058 Result.reset(); 1059 return false; 1060 } 1061 1062 void GlobalsAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 1063 AU.setPreservesAll(); 1064 AU.addRequired<CallGraphWrapperPass>(); 1065 AU.addRequired<TargetLibraryInfoWrapperPass>(); 1066 } 1067