1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantFold.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/IntrinsicsAArch64.h" 46 #include "llvm/IR/IntrinsicsAMDGPU.h" 47 #include "llvm/IR/IntrinsicsARM.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/Operator.h" 51 #include "llvm/IR/Type.h" 52 #include "llvm/IR/Value.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/ErrorHandling.h" 55 #include "llvm/Support/KnownBits.h" 56 #include "llvm/Support/MathExtras.h" 57 #include <cassert> 58 #include <cerrno> 59 #include <cfenv> 60 #include <cmath> 61 #include <cstdint> 62 63 using namespace llvm; 64 65 namespace { 66 67 //===----------------------------------------------------------------------===// 68 // Constant Folding internal helper functions 69 //===----------------------------------------------------------------------===// 70 71 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 72 Constant *C, Type *SrcEltTy, 73 unsigned NumSrcElts, 74 const DataLayout &DL) { 75 // Now that we know that the input value is a vector of integers, just shift 76 // and insert them into our result. 77 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 78 for (unsigned i = 0; i != NumSrcElts; ++i) { 79 Constant *Element; 80 if (DL.isLittleEndian()) 81 Element = C->getAggregateElement(NumSrcElts - i - 1); 82 else 83 Element = C->getAggregateElement(i); 84 85 if (isa_and_nonnull<UndefValue>(Element)) { 86 Result <<= BitShift; 87 continue; 88 } 89 90 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 91 if (!ElementCI) 92 return ConstantExpr::getBitCast(C, DestTy); 93 94 Result <<= BitShift; 95 Result |= ElementCI->getValue().zext(Result.getBitWidth()); 96 } 97 98 return nullptr; 99 } 100 101 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 102 /// This always returns a non-null constant, but it may be a 103 /// ConstantExpr if unfoldable. 104 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 105 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 106 "Invalid constantexpr bitcast!"); 107 108 // Catch the obvious splat cases. 109 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL)) 110 return Res; 111 112 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 113 // Handle a vector->scalar integer/fp cast. 114 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 115 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 116 Type *SrcEltTy = VTy->getElementType(); 117 118 // If the vector is a vector of floating point, convert it to vector of int 119 // to simplify things. 120 if (SrcEltTy->isFloatingPointTy()) { 121 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 122 auto *SrcIVTy = FixedVectorType::get( 123 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 124 // Ask IR to do the conversion now that #elts line up. 125 C = ConstantExpr::getBitCast(C, SrcIVTy); 126 } 127 128 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 129 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 130 SrcEltTy, NumSrcElts, DL)) 131 return CE; 132 133 if (isa<IntegerType>(DestTy)) 134 return ConstantInt::get(DestTy, Result); 135 136 APFloat FP(DestTy->getFltSemantics(), Result); 137 return ConstantFP::get(DestTy->getContext(), FP); 138 } 139 } 140 141 // The code below only handles casts to vectors currently. 142 auto *DestVTy = dyn_cast<VectorType>(DestTy); 143 if (!DestVTy) 144 return ConstantExpr::getBitCast(C, DestTy); 145 146 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 147 // vector so the code below can handle it uniformly. 148 if (!isa<VectorType>(C->getType()) && 149 (isa<ConstantFP>(C) || isa<ConstantInt>(C))) { 150 Constant *Ops = C; // don't take the address of C! 151 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 152 } 153 154 // If this is a bitcast from constant vector -> vector, fold it. 155 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) 156 return ConstantExpr::getBitCast(C, DestTy); 157 158 // If the element types match, IR can fold it. 159 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 160 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 161 if (NumDstElt == NumSrcElt) 162 return ConstantExpr::getBitCast(C, DestTy); 163 164 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 165 Type *DstEltTy = DestVTy->getElementType(); 166 167 // Otherwise, we're changing the number of elements in a vector, which 168 // requires endianness information to do the right thing. For example, 169 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 170 // folds to (little endian): 171 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 172 // and to (big endian): 173 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 174 175 // First thing is first. We only want to think about integer here, so if 176 // we have something in FP form, recast it as integer. 177 if (DstEltTy->isFloatingPointTy()) { 178 // Fold to an vector of integers with same size as our FP type. 179 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 180 auto *DestIVTy = FixedVectorType::get( 181 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 182 // Recursively handle this integer conversion, if possible. 183 C = FoldBitCast(C, DestIVTy, DL); 184 185 // Finally, IR can handle this now that #elts line up. 186 return ConstantExpr::getBitCast(C, DestTy); 187 } 188 189 // Okay, we know the destination is integer, if the input is FP, convert 190 // it to integer first. 191 if (SrcEltTy->isFloatingPointTy()) { 192 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 193 auto *SrcIVTy = FixedVectorType::get( 194 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 195 // Ask IR to do the conversion now that #elts line up. 196 C = ConstantExpr::getBitCast(C, SrcIVTy); 197 // If IR wasn't able to fold it, bail out. 198 if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. 199 !isa<ConstantDataVector>(C)) 200 return C; 201 } 202 203 // Now we know that the input and output vectors are both integer vectors 204 // of the same size, and that their #elements is not the same. Do the 205 // conversion here, which depends on whether the input or output has 206 // more elements. 207 bool isLittleEndian = DL.isLittleEndian(); 208 209 SmallVector<Constant*, 32> Result; 210 if (NumDstElt < NumSrcElt) { 211 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 212 Constant *Zero = Constant::getNullValue(DstEltTy); 213 unsigned Ratio = NumSrcElt/NumDstElt; 214 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 215 unsigned SrcElt = 0; 216 for (unsigned i = 0; i != NumDstElt; ++i) { 217 // Build each element of the result. 218 Constant *Elt = Zero; 219 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 220 for (unsigned j = 0; j != Ratio; ++j) { 221 Constant *Src = C->getAggregateElement(SrcElt++); 222 if (isa_and_nonnull<UndefValue>(Src)) 223 Src = Constant::getNullValue( 224 cast<VectorType>(C->getType())->getElementType()); 225 else 226 Src = dyn_cast_or_null<ConstantInt>(Src); 227 if (!Src) // Reject constantexpr elements. 228 return ConstantExpr::getBitCast(C, DestTy); 229 230 // Zero extend the element to the right size. 231 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(), 232 DL); 233 assert(Src && "Constant folding cannot fail on plain integers"); 234 235 // Shift it to the right place, depending on endianness. 236 Src = ConstantFoldBinaryOpOperands( 237 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt), 238 DL); 239 assert(Src && "Constant folding cannot fail on plain integers"); 240 241 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 242 243 // Mix it in. 244 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL); 245 assert(Elt && "Constant folding cannot fail on plain integers"); 246 } 247 Result.push_back(Elt); 248 } 249 return ConstantVector::get(Result); 250 } 251 252 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 253 unsigned Ratio = NumDstElt/NumSrcElt; 254 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 255 256 // Loop over each source value, expanding into multiple results. 257 for (unsigned i = 0; i != NumSrcElt; ++i) { 258 auto *Element = C->getAggregateElement(i); 259 260 if (!Element) // Reject constantexpr elements. 261 return ConstantExpr::getBitCast(C, DestTy); 262 263 if (isa<UndefValue>(Element)) { 264 // Correctly Propagate undef values. 265 Result.append(Ratio, UndefValue::get(DstEltTy)); 266 continue; 267 } 268 269 auto *Src = dyn_cast<ConstantInt>(Element); 270 if (!Src) 271 return ConstantExpr::getBitCast(C, DestTy); 272 273 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 274 for (unsigned j = 0; j != Ratio; ++j) { 275 // Shift the piece of the value into the right place, depending on 276 // endianness. 277 APInt Elt = Src->getValue().lshr(ShiftAmt); 278 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 279 280 // Truncate and remember this piece. 281 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize))); 282 } 283 } 284 285 return ConstantVector::get(Result); 286 } 287 288 } // end anonymous namespace 289 290 /// If this constant is a constant offset from a global, return the global and 291 /// the constant. Because of constantexprs, this function is recursive. 292 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 293 APInt &Offset, const DataLayout &DL, 294 DSOLocalEquivalent **DSOEquiv) { 295 if (DSOEquiv) 296 *DSOEquiv = nullptr; 297 298 // Trivial case, constant is the global. 299 if ((GV = dyn_cast<GlobalValue>(C))) { 300 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 301 Offset = APInt(BitWidth, 0); 302 return true; 303 } 304 305 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 306 if (DSOEquiv) 307 *DSOEquiv = FoundDSOEquiv; 308 GV = FoundDSOEquiv->getGlobalValue(); 309 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 310 Offset = APInt(BitWidth, 0); 311 return true; 312 } 313 314 // Otherwise, if this isn't a constant expr, bail out. 315 auto *CE = dyn_cast<ConstantExpr>(C); 316 if (!CE) return false; 317 318 // Look through ptr->int and ptr->ptr casts. 319 if (CE->getOpcode() == Instruction::PtrToInt || 320 CE->getOpcode() == Instruction::BitCast) 321 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 322 DSOEquiv); 323 324 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 325 auto *GEP = dyn_cast<GEPOperator>(CE); 326 if (!GEP) 327 return false; 328 329 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 330 APInt TmpOffset(BitWidth, 0); 331 332 // If the base isn't a global+constant, we aren't either. 333 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 334 DSOEquiv)) 335 return false; 336 337 // Otherwise, add any offset that our operands provide. 338 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 339 return false; 340 341 Offset = TmpOffset; 342 return true; 343 } 344 345 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 346 const DataLayout &DL) { 347 do { 348 Type *SrcTy = C->getType(); 349 if (SrcTy == DestTy) 350 return C; 351 352 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 353 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 354 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 355 return nullptr; 356 357 // Catch the obvious splat cases (since all-zeros can coerce non-integral 358 // pointers legally). 359 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL)) 360 return Res; 361 362 // If the type sizes are the same and a cast is legal, just directly 363 // cast the constant. 364 // But be careful not to coerce non-integral pointers illegally. 365 if (SrcSize == DestSize && 366 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 367 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 368 Instruction::CastOps Cast = Instruction::BitCast; 369 // If we are going from a pointer to int or vice versa, we spell the cast 370 // differently. 371 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 372 Cast = Instruction::IntToPtr; 373 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 374 Cast = Instruction::PtrToInt; 375 376 if (CastInst::castIsValid(Cast, C, DestTy)) 377 return ConstantFoldCastOperand(Cast, C, DestTy, DL); 378 } 379 380 // If this isn't an aggregate type, there is nothing we can do to drill down 381 // and find a bitcastable constant. 382 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 383 return nullptr; 384 385 // We're simulating a load through a pointer that was bitcast to point to 386 // a different type, so we can try to walk down through the initial 387 // elements of an aggregate to see if some part of the aggregate is 388 // castable to implement the "load" semantic model. 389 if (SrcTy->isStructTy()) { 390 // Struct types might have leading zero-length elements like [0 x i32], 391 // which are certainly not what we are looking for, so skip them. 392 unsigned Elem = 0; 393 Constant *ElemC; 394 do { 395 ElemC = C->getAggregateElement(Elem++); 396 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 397 C = ElemC; 398 } else { 399 // For non-byte-sized vector elements, the first element is not 400 // necessarily located at the vector base address. 401 if (auto *VT = dyn_cast<VectorType>(SrcTy)) 402 if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) 403 return nullptr; 404 405 C = C->getAggregateElement(0u); 406 } 407 } while (C); 408 409 return nullptr; 410 } 411 412 namespace { 413 414 /// Recursive helper to read bits out of global. C is the constant being copied 415 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 416 /// results into and BytesLeft is the number of bytes left in 417 /// the CurPtr buffer. DL is the DataLayout. 418 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 419 unsigned BytesLeft, const DataLayout &DL) { 420 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 421 "Out of range access"); 422 423 // If this element is zero or undefined, we can just return since *CurPtr is 424 // zero initialized. 425 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 426 return true; 427 428 if (auto *CI = dyn_cast<ConstantInt>(C)) { 429 if ((CI->getBitWidth() & 7) != 0) 430 return false; 431 const APInt &Val = CI->getValue(); 432 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 433 434 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 435 unsigned n = ByteOffset; 436 if (!DL.isLittleEndian()) 437 n = IntBytes - n - 1; 438 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue(); 439 ++ByteOffset; 440 } 441 return true; 442 } 443 444 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 445 if (CFP->getType()->isDoubleTy()) { 446 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 447 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 448 } 449 if (CFP->getType()->isFloatTy()){ 450 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 451 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 452 } 453 if (CFP->getType()->isHalfTy()){ 454 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 455 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 456 } 457 return false; 458 } 459 460 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 461 const StructLayout *SL = DL.getStructLayout(CS->getType()); 462 unsigned Index = SL->getElementContainingOffset(ByteOffset); 463 uint64_t CurEltOffset = SL->getElementOffset(Index); 464 ByteOffset -= CurEltOffset; 465 466 while (true) { 467 // If the element access is to the element itself and not to tail padding, 468 // read the bytes from the element. 469 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 470 471 if (ByteOffset < EltSize && 472 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 473 BytesLeft, DL)) 474 return false; 475 476 ++Index; 477 478 // Check to see if we read from the last struct element, if so we're done. 479 if (Index == CS->getType()->getNumElements()) 480 return true; 481 482 // If we read all of the bytes we needed from this element we're done. 483 uint64_t NextEltOffset = SL->getElementOffset(Index); 484 485 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 486 return true; 487 488 // Move to the next element of the struct. 489 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 490 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 491 ByteOffset = 0; 492 CurEltOffset = NextEltOffset; 493 } 494 // not reached. 495 } 496 497 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 498 isa<ConstantDataSequential>(C)) { 499 uint64_t NumElts, EltSize; 500 Type *EltTy; 501 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 502 NumElts = AT->getNumElements(); 503 EltTy = AT->getElementType(); 504 EltSize = DL.getTypeAllocSize(EltTy); 505 } else { 506 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 507 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 508 // TODO: For non-byte-sized vectors, current implementation assumes there is 509 // padding to the next byte boundary between elements. 510 if (!DL.typeSizeEqualsStoreSize(EltTy)) 511 return false; 512 513 EltSize = DL.getTypeStoreSize(EltTy); 514 } 515 uint64_t Index = ByteOffset / EltSize; 516 uint64_t Offset = ByteOffset - Index * EltSize; 517 518 for (; Index != NumElts; ++Index) { 519 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 520 BytesLeft, DL)) 521 return false; 522 523 uint64_t BytesWritten = EltSize - Offset; 524 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 525 if (BytesWritten >= BytesLeft) 526 return true; 527 528 Offset = 0; 529 BytesLeft -= BytesWritten; 530 CurPtr += BytesWritten; 531 } 532 return true; 533 } 534 535 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 536 if (CE->getOpcode() == Instruction::IntToPtr && 537 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 538 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 539 BytesLeft, DL); 540 } 541 } 542 543 // Otherwise, unknown initializer type. 544 return false; 545 } 546 547 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 548 int64_t Offset, const DataLayout &DL) { 549 // Bail out early. Not expect to load from scalable global variable. 550 if (isa<ScalableVectorType>(LoadTy)) 551 return nullptr; 552 553 auto *IntType = dyn_cast<IntegerType>(LoadTy); 554 555 // If this isn't an integer load we can't fold it directly. 556 if (!IntType) { 557 // If this is a non-integer load, we can try folding it as an int load and 558 // then bitcast the result. This can be useful for union cases. Note 559 // that address spaces don't matter here since we're not going to result in 560 // an actual new load. 561 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && 562 !LoadTy->isVectorTy()) 563 return nullptr; 564 565 Type *MapTy = Type::getIntNTy(C->getContext(), 566 DL.getTypeSizeInBits(LoadTy).getFixedValue()); 567 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 568 if (Res->isNullValue() && !LoadTy->isX86_AMXTy()) 569 // Materializing a zero can be done trivially without a bitcast 570 return Constant::getNullValue(LoadTy); 571 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 572 Res = FoldBitCast(Res, CastTy, DL); 573 if (LoadTy->isPtrOrPtrVectorTy()) { 574 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 575 if (Res->isNullValue() && !LoadTy->isX86_AMXTy()) 576 return Constant::getNullValue(LoadTy); 577 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 578 // Be careful not to replace a load of an addrspace value with an inttoptr here 579 return nullptr; 580 Res = ConstantExpr::getIntToPtr(Res, LoadTy); 581 } 582 return Res; 583 } 584 return nullptr; 585 } 586 587 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 588 if (BytesLoaded > 32 || BytesLoaded == 0) 589 return nullptr; 590 591 // If we're not accessing anything in this constant, the result is undefined. 592 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 593 return PoisonValue::get(IntType); 594 595 // TODO: We should be able to support scalable types. 596 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType()); 597 if (InitializerSize.isScalable()) 598 return nullptr; 599 600 // If we're not accessing anything in this constant, the result is undefined. 601 if (Offset >= (int64_t)InitializerSize.getFixedValue()) 602 return PoisonValue::get(IntType); 603 604 unsigned char RawBytes[32] = {0}; 605 unsigned char *CurPtr = RawBytes; 606 unsigned BytesLeft = BytesLoaded; 607 608 // If we're loading off the beginning of the global, some bytes may be valid. 609 if (Offset < 0) { 610 CurPtr += -Offset; 611 BytesLeft += Offset; 612 Offset = 0; 613 } 614 615 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 616 return nullptr; 617 618 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 619 if (DL.isLittleEndian()) { 620 ResultVal = RawBytes[BytesLoaded - 1]; 621 for (unsigned i = 1; i != BytesLoaded; ++i) { 622 ResultVal <<= 8; 623 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 624 } 625 } else { 626 ResultVal = RawBytes[0]; 627 for (unsigned i = 1; i != BytesLoaded; ++i) { 628 ResultVal <<= 8; 629 ResultVal |= RawBytes[i]; 630 } 631 } 632 633 return ConstantInt::get(IntType->getContext(), ResultVal); 634 } 635 636 } // anonymous namespace 637 638 // If GV is a constant with an initializer read its representation starting 639 // at Offset and return it as a constant array of unsigned char. Otherwise 640 // return null. 641 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV, 642 uint64_t Offset) { 643 if (!GV->isConstant() || !GV->hasDefinitiveInitializer()) 644 return nullptr; 645 646 const DataLayout &DL = GV->getDataLayout(); 647 Constant *Init = const_cast<Constant *>(GV->getInitializer()); 648 TypeSize InitSize = DL.getTypeAllocSize(Init->getType()); 649 if (InitSize < Offset) 650 return nullptr; 651 652 uint64_t NBytes = InitSize - Offset; 653 if (NBytes > UINT16_MAX) 654 // Bail for large initializers in excess of 64K to avoid allocating 655 // too much memory. 656 // Offset is assumed to be less than or equal than InitSize (this 657 // is enforced in ReadDataFromGlobal). 658 return nullptr; 659 660 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes)); 661 unsigned char *CurPtr = RawBytes.data(); 662 663 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL)) 664 return nullptr; 665 666 return ConstantDataArray::get(GV->getContext(), RawBytes); 667 } 668 669 /// If this Offset points exactly to the start of an aggregate element, return 670 /// that element, otherwise return nullptr. 671 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 672 const DataLayout &DL) { 673 if (Offset.isZero()) 674 return Base; 675 676 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 677 return nullptr; 678 679 Type *ElemTy = Base->getType(); 680 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 681 if (!Offset.isZero() || !Indices[0].isZero()) 682 return nullptr; 683 684 Constant *C = Base; 685 for (const APInt &Index : drop_begin(Indices)) { 686 if (Index.isNegative() || Index.getActiveBits() >= 32) 687 return nullptr; 688 689 C = C->getAggregateElement(Index.getZExtValue()); 690 if (!C) 691 return nullptr; 692 } 693 694 return C; 695 } 696 697 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 698 const APInt &Offset, 699 const DataLayout &DL) { 700 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 701 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 702 return Result; 703 704 // Explicitly check for out-of-bounds access, so we return poison even if the 705 // constant is a uniform value. 706 TypeSize Size = DL.getTypeAllocSize(C->getType()); 707 if (!Size.isScalable() && Offset.sge(Size.getFixedValue())) 708 return PoisonValue::get(Ty); 709 710 // Try an offset-independent fold of a uniform value. 711 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL)) 712 return Result; 713 714 // Try hard to fold loads from bitcasted strange and non-type-safe things. 715 if (Offset.getSignificantBits() <= 64) 716 if (Constant *Result = 717 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) 718 return Result; 719 720 return nullptr; 721 } 722 723 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 724 const DataLayout &DL) { 725 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 726 } 727 728 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 729 APInt Offset, 730 const DataLayout &DL) { 731 // We can only fold loads from constant globals with a definitive initializer. 732 // Check this upfront, to skip expensive offset calculations. 733 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 734 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 735 return nullptr; 736 737 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 738 DL, Offset, /* AllowNonInbounds */ true)); 739 740 if (C == GV) 741 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 742 Offset, DL)) 743 return Result; 744 745 // If this load comes from anywhere in a uniform constant global, the value 746 // is always the same, regardless of the loaded offset. 747 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL); 748 } 749 750 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 751 const DataLayout &DL) { 752 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 753 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL); 754 } 755 756 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, 757 const DataLayout &DL) { 758 if (isa<PoisonValue>(C)) 759 return PoisonValue::get(Ty); 760 if (isa<UndefValue>(C)) 761 return UndefValue::get(Ty); 762 // If padding is needed when storing C to memory, then it isn't considered as 763 // uniform. 764 if (!DL.typeSizeEqualsStoreSize(C->getType())) 765 return nullptr; 766 if (C->isNullValue() && !Ty->isX86_AMXTy()) 767 return Constant::getNullValue(Ty); 768 if (C->isAllOnesValue() && 769 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) 770 return Constant::getAllOnesValue(Ty); 771 return nullptr; 772 } 773 774 namespace { 775 776 /// One of Op0/Op1 is a constant expression. 777 /// Attempt to symbolically evaluate the result of a binary operator merging 778 /// these together. If target data info is available, it is provided as DL, 779 /// otherwise DL is null. 780 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 781 const DataLayout &DL) { 782 // SROA 783 784 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 785 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 786 // bits. 787 788 if (Opc == Instruction::And) { 789 KnownBits Known0 = computeKnownBits(Op0, DL); 790 KnownBits Known1 = computeKnownBits(Op1, DL); 791 if ((Known1.One | Known0.Zero).isAllOnes()) { 792 // All the bits of Op0 that the 'and' could be masking are already zero. 793 return Op0; 794 } 795 if ((Known0.One | Known1.Zero).isAllOnes()) { 796 // All the bits of Op1 that the 'and' could be masking are already zero. 797 return Op1; 798 } 799 800 Known0 &= Known1; 801 if (Known0.isConstant()) 802 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 803 } 804 805 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 806 // constant. This happens frequently when iterating over a global array. 807 if (Opc == Instruction::Sub) { 808 GlobalValue *GV1, *GV2; 809 APInt Offs1, Offs2; 810 811 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 812 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 813 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 814 815 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 816 // PtrToInt may change the bitwidth so we have convert to the right size 817 // first. 818 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 819 Offs2.zextOrTrunc(OpSize)); 820 } 821 } 822 823 return nullptr; 824 } 825 826 /// If array indices are not pointer-sized integers, explicitly cast them so 827 /// that they aren't implicitly casted by the getelementptr. 828 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 829 Type *ResultTy, GEPNoWrapFlags NW, 830 std::optional<ConstantRange> InRange, 831 const DataLayout &DL, const TargetLibraryInfo *TLI) { 832 Type *IntIdxTy = DL.getIndexType(ResultTy); 833 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 834 835 bool Any = false; 836 SmallVector<Constant*, 32> NewIdxs; 837 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 838 if ((i == 1 || 839 !isa<StructType>(GetElementPtrInst::getIndexedType( 840 SrcElemTy, Ops.slice(1, i - 1)))) && 841 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 842 Any = true; 843 Type *NewType = 844 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy; 845 Constant *NewIdx = ConstantFoldCastOperand( 846 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType, 847 DL); 848 if (!NewIdx) 849 return nullptr; 850 NewIdxs.push_back(NewIdx); 851 } else 852 NewIdxs.push_back(Ops[i]); 853 } 854 855 if (!Any) 856 return nullptr; 857 858 Constant *C = 859 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange); 860 return ConstantFoldConstant(C, DL, TLI); 861 } 862 863 /// If we can symbolically evaluate the GEP constant expression, do so. 864 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 865 ArrayRef<Constant *> Ops, 866 const DataLayout &DL, 867 const TargetLibraryInfo *TLI) { 868 Type *SrcElemTy = GEP->getSourceElementType(); 869 Type *ResTy = GEP->getType(); 870 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 871 return nullptr; 872 873 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(), 874 GEP->getInRange(), DL, TLI)) 875 return C; 876 877 Constant *Ptr = Ops[0]; 878 if (!Ptr->getType()->isPointerTy()) 879 return nullptr; 880 881 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 882 883 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 884 if (!isa<ConstantInt>(Ops[i])) 885 return nullptr; 886 887 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 888 APInt Offset = APInt( 889 BitWidth, 890 DL.getIndexedOffsetInType( 891 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)), 892 /*isSigned=*/true, /*implicitTrunc=*/true); 893 894 std::optional<ConstantRange> InRange = GEP->getInRange(); 895 if (InRange) 896 InRange = InRange->sextOrTrunc(BitWidth); 897 898 // If this is a GEP of a GEP, fold it all into a single GEP. 899 GEPNoWrapFlags NW = GEP->getNoWrapFlags(); 900 bool Overflow = false; 901 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 902 NW &= GEP->getNoWrapFlags(); 903 904 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 905 906 // Do not try the incorporate the sub-GEP if some index is not a number. 907 bool AllConstantInt = true; 908 for (Value *NestedOp : NestedOps) 909 if (!isa<ConstantInt>(NestedOp)) { 910 AllConstantInt = false; 911 break; 912 } 913 if (!AllConstantInt) 914 break; 915 916 // TODO: Try to intersect two inrange attributes? 917 if (!InRange) { 918 InRange = GEP->getInRange(); 919 if (InRange) 920 // Adjust inrange by offset until now. 921 InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset); 922 } 923 924 Ptr = cast<Constant>(GEP->getOperand(0)); 925 SrcElemTy = GEP->getSourceElementType(); 926 Offset = Offset.sadd_ov( 927 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps), 928 /*isSigned=*/true, /*implicitTrunc=*/true), 929 Overflow); 930 } 931 932 // Preserving nusw (without inbounds) also requires that the offset 933 // additions did not overflow. 934 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow) 935 NW = NW.withoutNoUnsignedSignedWrap(); 936 937 // If the base value for this address is a literal integer value, fold the 938 // getelementptr to the resulting integer value casted to the pointer type. 939 APInt BasePtr(BitWidth, 0); 940 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 941 if (CE->getOpcode() == Instruction::IntToPtr) { 942 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 943 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 944 } 945 } 946 947 auto *PTy = cast<PointerType>(Ptr->getType()); 948 if ((Ptr->isNullValue() || BasePtr != 0) && 949 !DL.isNonIntegralPointerType(PTy)) { 950 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 951 return ConstantExpr::getIntToPtr(C, ResTy); 952 } 953 954 // Try to infer inbounds for GEPs of globals. 955 // TODO(gep_nowrap): Also infer nuw flag. 956 if (!NW.isInBounds() && Offset.isNonNegative()) { 957 bool CanBeNull, CanBeFreed; 958 uint64_t DerefBytes = 959 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 960 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes)) 961 NW |= GEPNoWrapFlags::inBounds(); 962 } 963 964 // Otherwise canonicalize this to a single ptradd. 965 LLVMContext &Ctx = Ptr->getContext(); 966 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx), Ptr, 967 ConstantInt::get(Ctx, Offset), NW, 968 InRange); 969 } 970 971 /// Attempt to constant fold an instruction with the 972 /// specified opcode and operands. If successful, the constant result is 973 /// returned, if not, null is returned. Note that this function can fail when 974 /// attempting to fold instructions like loads and stores, which have no 975 /// constant expression form. 976 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 977 ArrayRef<Constant *> Ops, 978 const DataLayout &DL, 979 const TargetLibraryInfo *TLI, 980 bool AllowNonDeterministic) { 981 Type *DestTy = InstOrCE->getType(); 982 983 if (Instruction::isUnaryOp(Opcode)) 984 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 985 986 if (Instruction::isBinaryOp(Opcode)) { 987 switch (Opcode) { 988 default: 989 break; 990 case Instruction::FAdd: 991 case Instruction::FSub: 992 case Instruction::FMul: 993 case Instruction::FDiv: 994 case Instruction::FRem: 995 // Handle floating point instructions separately to account for denormals 996 // TODO: If a constant expression is being folded rather than an 997 // instruction, denormals will not be flushed/treated as zero 998 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) { 999 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I, 1000 AllowNonDeterministic); 1001 } 1002 } 1003 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1004 } 1005 1006 if (Instruction::isCast(Opcode)) 1007 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1008 1009 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1010 Type *SrcElemTy = GEP->getSourceElementType(); 1011 if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy)) 1012 return nullptr; 1013 1014 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1015 return C; 1016 1017 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1), 1018 GEP->getNoWrapFlags(), 1019 GEP->getInRange()); 1020 } 1021 1022 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1023 return CE->getWithOperands(Ops); 1024 1025 switch (Opcode) { 1026 default: return nullptr; 1027 case Instruction::ICmp: 1028 case Instruction::FCmp: { 1029 auto *C = cast<CmpInst>(InstOrCE); 1030 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1], 1031 DL, TLI, C); 1032 } 1033 case Instruction::Freeze: 1034 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1035 case Instruction::Call: 1036 if (auto *F = dyn_cast<Function>(Ops.back())) { 1037 const auto *Call = cast<CallBase>(InstOrCE); 1038 if (canConstantFoldCallTo(Call, F)) 1039 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI, 1040 AllowNonDeterministic); 1041 } 1042 return nullptr; 1043 case Instruction::Select: 1044 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]); 1045 case Instruction::ExtractElement: 1046 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1047 case Instruction::ExtractValue: 1048 return ConstantFoldExtractValueInstruction( 1049 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1050 case Instruction::InsertElement: 1051 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1052 case Instruction::InsertValue: 1053 return ConstantFoldInsertValueInstruction( 1054 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices()); 1055 case Instruction::ShuffleVector: 1056 return ConstantExpr::getShuffleVector( 1057 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1058 case Instruction::Load: { 1059 const auto *LI = dyn_cast<LoadInst>(InstOrCE); 1060 if (LI->isVolatile()) 1061 return nullptr; 1062 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1063 } 1064 } 1065 } 1066 1067 } // end anonymous namespace 1068 1069 //===----------------------------------------------------------------------===// 1070 // Constant Folding public APIs 1071 //===----------------------------------------------------------------------===// 1072 1073 namespace { 1074 1075 Constant * 1076 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1077 const TargetLibraryInfo *TLI, 1078 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1079 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1080 return const_cast<Constant *>(C); 1081 1082 SmallVector<Constant *, 8> Ops; 1083 for (const Use &OldU : C->operands()) { 1084 Constant *OldC = cast<Constant>(&OldU); 1085 Constant *NewC = OldC; 1086 // Recursively fold the ConstantExpr's operands. If we have already folded 1087 // a ConstantExpr, we don't have to process it again. 1088 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1089 auto It = FoldedOps.find(OldC); 1090 if (It == FoldedOps.end()) { 1091 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1092 FoldedOps.insert({OldC, NewC}); 1093 } else { 1094 NewC = It->second; 1095 } 1096 } 1097 Ops.push_back(NewC); 1098 } 1099 1100 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1101 if (Constant *Res = ConstantFoldInstOperandsImpl( 1102 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true)) 1103 return Res; 1104 return const_cast<Constant *>(C); 1105 } 1106 1107 assert(isa<ConstantVector>(C)); 1108 return ConstantVector::get(Ops); 1109 } 1110 1111 } // end anonymous namespace 1112 1113 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1114 const TargetLibraryInfo *TLI) { 1115 // Handle PHI nodes quickly here... 1116 if (auto *PN = dyn_cast<PHINode>(I)) { 1117 Constant *CommonValue = nullptr; 1118 1119 SmallDenseMap<Constant *, Constant *> FoldedOps; 1120 for (Value *Incoming : PN->incoming_values()) { 1121 // If the incoming value is undef then skip it. Note that while we could 1122 // skip the value if it is equal to the phi node itself we choose not to 1123 // because that would break the rule that constant folding only applies if 1124 // all operands are constants. 1125 if (isa<UndefValue>(Incoming)) 1126 continue; 1127 // If the incoming value is not a constant, then give up. 1128 auto *C = dyn_cast<Constant>(Incoming); 1129 if (!C) 1130 return nullptr; 1131 // Fold the PHI's operands. 1132 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1133 // If the incoming value is a different constant to 1134 // the one we saw previously, then give up. 1135 if (CommonValue && C != CommonValue) 1136 return nullptr; 1137 CommonValue = C; 1138 } 1139 1140 // If we reach here, all incoming values are the same constant or undef. 1141 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1142 } 1143 1144 // Scan the operand list, checking to see if they are all constants, if so, 1145 // hand off to ConstantFoldInstOperandsImpl. 1146 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1147 return nullptr; 1148 1149 SmallDenseMap<Constant *, Constant *> FoldedOps; 1150 SmallVector<Constant *, 8> Ops; 1151 for (const Use &OpU : I->operands()) { 1152 auto *Op = cast<Constant>(&OpU); 1153 // Fold the Instruction's operands. 1154 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1155 Ops.push_back(Op); 1156 } 1157 1158 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1159 } 1160 1161 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1162 const TargetLibraryInfo *TLI) { 1163 SmallDenseMap<Constant *, Constant *> FoldedOps; 1164 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1165 } 1166 1167 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1168 ArrayRef<Constant *> Ops, 1169 const DataLayout &DL, 1170 const TargetLibraryInfo *TLI, 1171 bool AllowNonDeterministic) { 1172 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI, 1173 AllowNonDeterministic); 1174 } 1175 1176 Constant *llvm::ConstantFoldCompareInstOperands( 1177 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, 1178 const TargetLibraryInfo *TLI, const Instruction *I) { 1179 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; 1180 // fold: icmp (inttoptr x), null -> icmp x, 0 1181 // fold: icmp null, (inttoptr x) -> icmp 0, x 1182 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1183 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1184 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1185 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1186 // 1187 // FIXME: The following comment is out of data and the DataLayout is here now. 1188 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1189 // around to know if bit truncation is happening. 1190 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1191 if (Ops1->isNullValue()) { 1192 if (CE0->getOpcode() == Instruction::IntToPtr) { 1193 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1194 // Convert the integer value to the right size to ensure we get the 1195 // proper extension or truncation. 1196 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, 1197 /*IsSigned*/ false, DL)) { 1198 Constant *Null = Constant::getNullValue(C->getType()); 1199 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1200 } 1201 } 1202 1203 // Only do this transformation if the int is intptrty in size, otherwise 1204 // there is a truncation or extension that we aren't modeling. 1205 if (CE0->getOpcode() == Instruction::PtrToInt) { 1206 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1207 if (CE0->getType() == IntPtrTy) { 1208 Constant *C = CE0->getOperand(0); 1209 Constant *Null = Constant::getNullValue(C->getType()); 1210 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1211 } 1212 } 1213 } 1214 1215 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1216 if (CE0->getOpcode() == CE1->getOpcode()) { 1217 if (CE0->getOpcode() == Instruction::IntToPtr) { 1218 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1219 1220 // Convert the integer value to the right size to ensure we get the 1221 // proper extension or truncation. 1222 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, 1223 /*IsSigned*/ false, DL); 1224 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy, 1225 /*IsSigned*/ false, DL); 1226 if (C0 && C1) 1227 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1228 } 1229 1230 // Only do this transformation if the int is intptrty in size, otherwise 1231 // there is a truncation or extension that we aren't modeling. 1232 if (CE0->getOpcode() == Instruction::PtrToInt) { 1233 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1234 if (CE0->getType() == IntPtrTy && 1235 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1236 return ConstantFoldCompareInstOperands( 1237 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1238 } 1239 } 1240 } 1241 } 1242 1243 // Convert pointer comparison (base+offset1) pred (base+offset2) into 1244 // offset1 pred offset2, for the case where the offset is inbounds. This 1245 // only works for equality and unsigned comparison, as inbounds permits 1246 // crossing the sign boundary. However, the offset comparison itself is 1247 // signed. 1248 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { 1249 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); 1250 APInt Offset0(IndexWidth, 0); 1251 Value *Stripped0 = 1252 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); 1253 APInt Offset1(IndexWidth, 0); 1254 Value *Stripped1 = 1255 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); 1256 if (Stripped0 == Stripped1) 1257 return ConstantInt::getBool( 1258 Ops0->getContext(), 1259 ICmpInst::compare(Offset0, Offset1, 1260 ICmpInst::getSignedPredicate(Predicate))); 1261 } 1262 } else if (isa<ConstantExpr>(Ops1)) { 1263 // If RHS is a constant expression, but the left side isn't, swap the 1264 // operands and try again. 1265 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1266 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1267 } 1268 1269 // Flush any denormal constant float input according to denormal handling 1270 // mode. 1271 Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false); 1272 if (!Ops0) 1273 return nullptr; 1274 Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false); 1275 if (!Ops1) 1276 return nullptr; 1277 1278 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1); 1279 } 1280 1281 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1282 const DataLayout &DL) { 1283 assert(Instruction::isUnaryOp(Opcode)); 1284 1285 return ConstantFoldUnaryInstruction(Opcode, Op); 1286 } 1287 1288 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1289 Constant *RHS, 1290 const DataLayout &DL) { 1291 assert(Instruction::isBinaryOp(Opcode)); 1292 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1293 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1294 return C; 1295 1296 if (ConstantExpr::isDesirableBinOp(Opcode)) 1297 return ConstantExpr::get(Opcode, LHS, RHS); 1298 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 1299 } 1300 1301 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I, 1302 bool IsOutput) { 1303 if (!I || !I->getParent() || !I->getFunction()) 1304 return Operand; 1305 1306 ConstantFP *CFP = dyn_cast<ConstantFP>(Operand); 1307 if (!CFP) 1308 return Operand; 1309 1310 const APFloat &APF = CFP->getValueAPF(); 1311 // TODO: Should this canonicalize nans? 1312 if (!APF.isDenormal()) 1313 return Operand; 1314 1315 Type *Ty = CFP->getType(); 1316 DenormalMode DenormMode = 1317 I->getFunction()->getDenormalMode(Ty->getFltSemantics()); 1318 DenormalMode::DenormalModeKind Mode = 1319 IsOutput ? DenormMode.Output : DenormMode.Input; 1320 switch (Mode) { 1321 default: 1322 llvm_unreachable("unknown denormal mode"); 1323 case DenormalMode::Dynamic: 1324 return nullptr; 1325 case DenormalMode::IEEE: 1326 return Operand; 1327 case DenormalMode::PreserveSign: 1328 if (APF.isDenormal()) { 1329 return ConstantFP::get( 1330 Ty->getContext(), 1331 APFloat::getZero(Ty->getFltSemantics(), APF.isNegative())); 1332 } 1333 return Operand; 1334 case DenormalMode::PositiveZero: 1335 if (APF.isDenormal()) { 1336 return ConstantFP::get(Ty->getContext(), 1337 APFloat::getZero(Ty->getFltSemantics(), false)); 1338 } 1339 return Operand; 1340 } 1341 return Operand; 1342 } 1343 1344 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, 1345 Constant *RHS, const DataLayout &DL, 1346 const Instruction *I, 1347 bool AllowNonDeterministic) { 1348 if (Instruction::isBinaryOp(Opcode)) { 1349 // Flush denormal inputs if needed. 1350 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false); 1351 if (!Op0) 1352 return nullptr; 1353 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false); 1354 if (!Op1) 1355 return nullptr; 1356 1357 // If nsz or an algebraic FMF flag is set, the result of the FP operation 1358 // may change due to future optimization. Don't constant fold them if 1359 // non-deterministic results are not allowed. 1360 if (!AllowNonDeterministic) 1361 if (auto *FP = dyn_cast_or_null<FPMathOperator>(I)) 1362 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() || 1363 FP->hasAllowContract() || FP->hasAllowReciprocal()) 1364 return nullptr; 1365 1366 // Calculate constant result. 1367 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL); 1368 if (!C) 1369 return nullptr; 1370 1371 // Flush denormal output if needed. 1372 C = FlushFPConstant(C, I, /* IsOutput */ true); 1373 if (!C) 1374 return nullptr; 1375 1376 // The precise NaN value is non-deterministic. 1377 if (!AllowNonDeterministic && C->isNaN()) 1378 return nullptr; 1379 1380 return C; 1381 } 1382 // If instruction lacks a parent/function and the denormal mode cannot be 1383 // determined, use the default (IEEE). 1384 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL); 1385 } 1386 1387 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1388 Type *DestTy, const DataLayout &DL) { 1389 assert(Instruction::isCast(Opcode)); 1390 switch (Opcode) { 1391 default: 1392 llvm_unreachable("Missing case"); 1393 case Instruction::PtrToInt: 1394 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1395 Constant *FoldedValue = nullptr; 1396 // If the input is a inttoptr, eliminate the pair. This requires knowing 1397 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1398 if (CE->getOpcode() == Instruction::IntToPtr) { 1399 // zext/trunc the inttoptr to pointer size. 1400 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), 1401 DL.getIntPtrType(CE->getType()), 1402 /*IsSigned=*/false, DL); 1403 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1404 // If we have GEP, we can perform the following folds: 1405 // (ptrtoint (gep null, x)) -> x 1406 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1407 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1408 APInt BaseOffset(BitWidth, 0); 1409 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1410 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1411 if (Base->isNullValue()) { 1412 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1413 } else { 1414 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V 1415 if (GEP->getNumIndices() == 1 && 1416 GEP->getSourceElementType()->isIntegerTy(8)) { 1417 auto *Ptr = cast<Constant>(GEP->getPointerOperand()); 1418 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1)); 1419 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 1420 if (Sub && Sub->getType() == IntIdxTy && 1421 Sub->getOpcode() == Instruction::Sub && 1422 Sub->getOperand(0)->isNullValue()) 1423 FoldedValue = ConstantExpr::getSub( 1424 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); 1425 } 1426 } 1427 } 1428 if (FoldedValue) { 1429 // Do a zext or trunc to get to the ptrtoint dest size. 1430 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false, 1431 DL); 1432 } 1433 } 1434 break; 1435 case Instruction::IntToPtr: 1436 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1437 // the int size is >= the ptr size and the address spaces are the same. 1438 // This requires knowing the width of a pointer, so it can't be done in 1439 // ConstantExpr::getCast. 1440 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1441 if (CE->getOpcode() == Instruction::PtrToInt) { 1442 Constant *SrcPtr = CE->getOperand(0); 1443 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1444 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1445 1446 if (MidIntSize >= SrcPtrSize) { 1447 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1448 if (SrcAS == DestTy->getPointerAddressSpace()) 1449 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1450 } 1451 } 1452 } 1453 break; 1454 case Instruction::Trunc: 1455 case Instruction::ZExt: 1456 case Instruction::SExt: 1457 case Instruction::FPTrunc: 1458 case Instruction::FPExt: 1459 case Instruction::UIToFP: 1460 case Instruction::SIToFP: 1461 case Instruction::FPToUI: 1462 case Instruction::FPToSI: 1463 case Instruction::AddrSpaceCast: 1464 break; 1465 case Instruction::BitCast: 1466 return FoldBitCast(C, DestTy, DL); 1467 } 1468 1469 if (ConstantExpr::isDesirableCastOp(Opcode)) 1470 return ConstantExpr::getCast(Opcode, C, DestTy); 1471 return ConstantFoldCastInstruction(Opcode, C, DestTy); 1472 } 1473 1474 Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy, 1475 bool IsSigned, const DataLayout &DL) { 1476 Type *SrcTy = C->getType(); 1477 if (SrcTy == DestTy) 1478 return C; 1479 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) 1480 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL); 1481 if (IsSigned) 1482 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL); 1483 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL); 1484 } 1485 1486 //===----------------------------------------------------------------------===// 1487 // Constant Folding for Calls 1488 // 1489 1490 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1491 if (Call->isNoBuiltin()) 1492 return false; 1493 if (Call->getFunctionType() != F->getFunctionType()) 1494 return false; 1495 switch (F->getIntrinsicID()) { 1496 // Operations that do not operate floating-point numbers and do not depend on 1497 // FP environment can be folded even in strictfp functions. 1498 case Intrinsic::bswap: 1499 case Intrinsic::ctpop: 1500 case Intrinsic::ctlz: 1501 case Intrinsic::cttz: 1502 case Intrinsic::fshl: 1503 case Intrinsic::fshr: 1504 case Intrinsic::launder_invariant_group: 1505 case Intrinsic::strip_invariant_group: 1506 case Intrinsic::masked_load: 1507 case Intrinsic::get_active_lane_mask: 1508 case Intrinsic::abs: 1509 case Intrinsic::smax: 1510 case Intrinsic::smin: 1511 case Intrinsic::umax: 1512 case Intrinsic::umin: 1513 case Intrinsic::scmp: 1514 case Intrinsic::ucmp: 1515 case Intrinsic::sadd_with_overflow: 1516 case Intrinsic::uadd_with_overflow: 1517 case Intrinsic::ssub_with_overflow: 1518 case Intrinsic::usub_with_overflow: 1519 case Intrinsic::smul_with_overflow: 1520 case Intrinsic::umul_with_overflow: 1521 case Intrinsic::sadd_sat: 1522 case Intrinsic::uadd_sat: 1523 case Intrinsic::ssub_sat: 1524 case Intrinsic::usub_sat: 1525 case Intrinsic::smul_fix: 1526 case Intrinsic::smul_fix_sat: 1527 case Intrinsic::bitreverse: 1528 case Intrinsic::is_constant: 1529 case Intrinsic::vector_reduce_add: 1530 case Intrinsic::vector_reduce_mul: 1531 case Intrinsic::vector_reduce_and: 1532 case Intrinsic::vector_reduce_or: 1533 case Intrinsic::vector_reduce_xor: 1534 case Intrinsic::vector_reduce_smin: 1535 case Intrinsic::vector_reduce_smax: 1536 case Intrinsic::vector_reduce_umin: 1537 case Intrinsic::vector_reduce_umax: 1538 // Target intrinsics 1539 case Intrinsic::amdgcn_perm: 1540 case Intrinsic::amdgcn_wave_reduce_umin: 1541 case Intrinsic::amdgcn_wave_reduce_umax: 1542 case Intrinsic::amdgcn_s_wqm: 1543 case Intrinsic::amdgcn_s_quadmask: 1544 case Intrinsic::amdgcn_s_bitreplicate: 1545 case Intrinsic::arm_mve_vctp8: 1546 case Intrinsic::arm_mve_vctp16: 1547 case Intrinsic::arm_mve_vctp32: 1548 case Intrinsic::arm_mve_vctp64: 1549 case Intrinsic::aarch64_sve_convert_from_svbool: 1550 // WebAssembly float semantics are always known 1551 case Intrinsic::wasm_trunc_signed: 1552 case Intrinsic::wasm_trunc_unsigned: 1553 return true; 1554 1555 // Floating point operations cannot be folded in strictfp functions in 1556 // general case. They can be folded if FP environment is known to compiler. 1557 case Intrinsic::minnum: 1558 case Intrinsic::maxnum: 1559 case Intrinsic::minimum: 1560 case Intrinsic::maximum: 1561 case Intrinsic::log: 1562 case Intrinsic::log2: 1563 case Intrinsic::log10: 1564 case Intrinsic::exp: 1565 case Intrinsic::exp2: 1566 case Intrinsic::exp10: 1567 case Intrinsic::sqrt: 1568 case Intrinsic::sin: 1569 case Intrinsic::cos: 1570 case Intrinsic::pow: 1571 case Intrinsic::powi: 1572 case Intrinsic::ldexp: 1573 case Intrinsic::fma: 1574 case Intrinsic::fmuladd: 1575 case Intrinsic::frexp: 1576 case Intrinsic::fptoui_sat: 1577 case Intrinsic::fptosi_sat: 1578 case Intrinsic::convert_from_fp16: 1579 case Intrinsic::convert_to_fp16: 1580 case Intrinsic::amdgcn_cos: 1581 case Intrinsic::amdgcn_cubeid: 1582 case Intrinsic::amdgcn_cubema: 1583 case Intrinsic::amdgcn_cubesc: 1584 case Intrinsic::amdgcn_cubetc: 1585 case Intrinsic::amdgcn_fmul_legacy: 1586 case Intrinsic::amdgcn_fma_legacy: 1587 case Intrinsic::amdgcn_fract: 1588 case Intrinsic::amdgcn_sin: 1589 // The intrinsics below depend on rounding mode in MXCSR. 1590 case Intrinsic::x86_sse_cvtss2si: 1591 case Intrinsic::x86_sse_cvtss2si64: 1592 case Intrinsic::x86_sse_cvttss2si: 1593 case Intrinsic::x86_sse_cvttss2si64: 1594 case Intrinsic::x86_sse2_cvtsd2si: 1595 case Intrinsic::x86_sse2_cvtsd2si64: 1596 case Intrinsic::x86_sse2_cvttsd2si: 1597 case Intrinsic::x86_sse2_cvttsd2si64: 1598 case Intrinsic::x86_avx512_vcvtss2si32: 1599 case Intrinsic::x86_avx512_vcvtss2si64: 1600 case Intrinsic::x86_avx512_cvttss2si: 1601 case Intrinsic::x86_avx512_cvttss2si64: 1602 case Intrinsic::x86_avx512_vcvtsd2si32: 1603 case Intrinsic::x86_avx512_vcvtsd2si64: 1604 case Intrinsic::x86_avx512_cvttsd2si: 1605 case Intrinsic::x86_avx512_cvttsd2si64: 1606 case Intrinsic::x86_avx512_vcvtss2usi32: 1607 case Intrinsic::x86_avx512_vcvtss2usi64: 1608 case Intrinsic::x86_avx512_cvttss2usi: 1609 case Intrinsic::x86_avx512_cvttss2usi64: 1610 case Intrinsic::x86_avx512_vcvtsd2usi32: 1611 case Intrinsic::x86_avx512_vcvtsd2usi64: 1612 case Intrinsic::x86_avx512_cvttsd2usi: 1613 case Intrinsic::x86_avx512_cvttsd2usi64: 1614 return !Call->isStrictFP(); 1615 1616 // Sign operations are actually bitwise operations, they do not raise 1617 // exceptions even for SNANs. 1618 case Intrinsic::fabs: 1619 case Intrinsic::copysign: 1620 case Intrinsic::is_fpclass: 1621 // Non-constrained variants of rounding operations means default FP 1622 // environment, they can be folded in any case. 1623 case Intrinsic::ceil: 1624 case Intrinsic::floor: 1625 case Intrinsic::round: 1626 case Intrinsic::roundeven: 1627 case Intrinsic::trunc: 1628 case Intrinsic::nearbyint: 1629 case Intrinsic::rint: 1630 case Intrinsic::canonicalize: 1631 // Constrained intrinsics can be folded if FP environment is known 1632 // to compiler. 1633 case Intrinsic::experimental_constrained_fma: 1634 case Intrinsic::experimental_constrained_fmuladd: 1635 case Intrinsic::experimental_constrained_fadd: 1636 case Intrinsic::experimental_constrained_fsub: 1637 case Intrinsic::experimental_constrained_fmul: 1638 case Intrinsic::experimental_constrained_fdiv: 1639 case Intrinsic::experimental_constrained_frem: 1640 case Intrinsic::experimental_constrained_ceil: 1641 case Intrinsic::experimental_constrained_floor: 1642 case Intrinsic::experimental_constrained_round: 1643 case Intrinsic::experimental_constrained_roundeven: 1644 case Intrinsic::experimental_constrained_trunc: 1645 case Intrinsic::experimental_constrained_nearbyint: 1646 case Intrinsic::experimental_constrained_rint: 1647 case Intrinsic::experimental_constrained_fcmp: 1648 case Intrinsic::experimental_constrained_fcmps: 1649 return true; 1650 default: 1651 return false; 1652 case Intrinsic::not_intrinsic: break; 1653 } 1654 1655 if (!F->hasName() || Call->isStrictFP()) 1656 return false; 1657 1658 // In these cases, the check of the length is required. We don't want to 1659 // return true for a name like "cos\0blah" which strcmp would return equal to 1660 // "cos", but has length 8. 1661 StringRef Name = F->getName(); 1662 switch (Name[0]) { 1663 default: 1664 return false; 1665 case 'a': 1666 return Name == "acos" || Name == "acosf" || 1667 Name == "asin" || Name == "asinf" || 1668 Name == "atan" || Name == "atanf" || 1669 Name == "atan2" || Name == "atan2f"; 1670 case 'c': 1671 return Name == "ceil" || Name == "ceilf" || 1672 Name == "cos" || Name == "cosf" || 1673 Name == "cosh" || Name == "coshf"; 1674 case 'e': 1675 return Name == "exp" || Name == "expf" || Name == "exp2" || 1676 Name == "exp2f" || Name == "erf" || Name == "erff"; 1677 case 'f': 1678 return Name == "fabs" || Name == "fabsf" || 1679 Name == "floor" || Name == "floorf" || 1680 Name == "fmod" || Name == "fmodf"; 1681 case 'i': 1682 return Name == "ilogb" || Name == "ilogbf"; 1683 case 'l': 1684 return Name == "log" || Name == "logf" || Name == "logl" || 1685 Name == "log2" || Name == "log2f" || Name == "log10" || 1686 Name == "log10f" || Name == "logb" || Name == "logbf" || 1687 Name == "log1p" || Name == "log1pf"; 1688 case 'n': 1689 return Name == "nearbyint" || Name == "nearbyintf"; 1690 case 'p': 1691 return Name == "pow" || Name == "powf"; 1692 case 'r': 1693 return Name == "remainder" || Name == "remainderf" || 1694 Name == "rint" || Name == "rintf" || 1695 Name == "round" || Name == "roundf"; 1696 case 's': 1697 return Name == "sin" || Name == "sinf" || 1698 Name == "sinh" || Name == "sinhf" || 1699 Name == "sqrt" || Name == "sqrtf"; 1700 case 't': 1701 return Name == "tan" || Name == "tanf" || 1702 Name == "tanh" || Name == "tanhf" || 1703 Name == "trunc" || Name == "truncf"; 1704 case '_': 1705 // Check for various function names that get used for the math functions 1706 // when the header files are preprocessed with the macro 1707 // __FINITE_MATH_ONLY__ enabled. 1708 // The '12' here is the length of the shortest name that can match. 1709 // We need to check the size before looking at Name[1] and Name[2] 1710 // so we may as well check a limit that will eliminate mismatches. 1711 if (Name.size() < 12 || Name[1] != '_') 1712 return false; 1713 switch (Name[2]) { 1714 default: 1715 return false; 1716 case 'a': 1717 return Name == "__acos_finite" || Name == "__acosf_finite" || 1718 Name == "__asin_finite" || Name == "__asinf_finite" || 1719 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1720 case 'c': 1721 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1722 case 'e': 1723 return Name == "__exp_finite" || Name == "__expf_finite" || 1724 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1725 case 'l': 1726 return Name == "__log_finite" || Name == "__logf_finite" || 1727 Name == "__log10_finite" || Name == "__log10f_finite"; 1728 case 'p': 1729 return Name == "__pow_finite" || Name == "__powf_finite"; 1730 case 's': 1731 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1732 } 1733 } 1734 } 1735 1736 namespace { 1737 1738 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1739 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1740 APFloat APF(V); 1741 bool unused; 1742 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1743 return ConstantFP::get(Ty->getContext(), APF); 1744 } 1745 if (Ty->isDoubleTy()) 1746 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1747 llvm_unreachable("Can only constant fold half/float/double"); 1748 } 1749 1750 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 1751 Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) { 1752 if (Ty->isFP128Ty()) 1753 return ConstantFP::get(Ty, V); 1754 llvm_unreachable("Can only constant fold fp128"); 1755 } 1756 #endif 1757 1758 /// Clear the floating-point exception state. 1759 inline void llvm_fenv_clearexcept() { 1760 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT 1761 feclearexcept(FE_ALL_EXCEPT); 1762 #endif 1763 errno = 0; 1764 } 1765 1766 /// Test if a floating-point exception was raised. 1767 inline bool llvm_fenv_testexcept() { 1768 int errno_val = errno; 1769 if (errno_val == ERANGE || errno_val == EDOM) 1770 return true; 1771 #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1772 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1773 return true; 1774 #endif 1775 return false; 1776 } 1777 1778 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1779 Type *Ty) { 1780 llvm_fenv_clearexcept(); 1781 double Result = NativeFP(V.convertToDouble()); 1782 if (llvm_fenv_testexcept()) { 1783 llvm_fenv_clearexcept(); 1784 return nullptr; 1785 } 1786 1787 return GetConstantFoldFPValue(Result, Ty); 1788 } 1789 1790 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 1791 Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V, 1792 Type *Ty) { 1793 llvm_fenv_clearexcept(); 1794 float128 Result = NativeFP(V.convertToQuad()); 1795 if (llvm_fenv_testexcept()) { 1796 llvm_fenv_clearexcept(); 1797 return nullptr; 1798 } 1799 1800 return GetConstantFoldFPValue128(Result, Ty); 1801 } 1802 #endif 1803 1804 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1805 const APFloat &V, const APFloat &W, Type *Ty) { 1806 llvm_fenv_clearexcept(); 1807 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1808 if (llvm_fenv_testexcept()) { 1809 llvm_fenv_clearexcept(); 1810 return nullptr; 1811 } 1812 1813 return GetConstantFoldFPValue(Result, Ty); 1814 } 1815 1816 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1817 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1818 if (!VT) 1819 return nullptr; 1820 1821 // This isn't strictly necessary, but handle the special/common case of zero: 1822 // all integer reductions of a zero input produce zero. 1823 if (isa<ConstantAggregateZero>(Op)) 1824 return ConstantInt::get(VT->getElementType(), 0); 1825 1826 // This is the same as the underlying binops - poison propagates. 1827 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1828 return PoisonValue::get(VT->getElementType()); 1829 1830 // TODO: Handle undef. 1831 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1832 return nullptr; 1833 1834 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1835 if (!EltC) 1836 return nullptr; 1837 1838 APInt Acc = EltC->getValue(); 1839 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1840 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1841 return nullptr; 1842 const APInt &X = EltC->getValue(); 1843 switch (IID) { 1844 case Intrinsic::vector_reduce_add: 1845 Acc = Acc + X; 1846 break; 1847 case Intrinsic::vector_reduce_mul: 1848 Acc = Acc * X; 1849 break; 1850 case Intrinsic::vector_reduce_and: 1851 Acc = Acc & X; 1852 break; 1853 case Intrinsic::vector_reduce_or: 1854 Acc = Acc | X; 1855 break; 1856 case Intrinsic::vector_reduce_xor: 1857 Acc = Acc ^ X; 1858 break; 1859 case Intrinsic::vector_reduce_smin: 1860 Acc = APIntOps::smin(Acc, X); 1861 break; 1862 case Intrinsic::vector_reduce_smax: 1863 Acc = APIntOps::smax(Acc, X); 1864 break; 1865 case Intrinsic::vector_reduce_umin: 1866 Acc = APIntOps::umin(Acc, X); 1867 break; 1868 case Intrinsic::vector_reduce_umax: 1869 Acc = APIntOps::umax(Acc, X); 1870 break; 1871 } 1872 } 1873 1874 return ConstantInt::get(Op->getContext(), Acc); 1875 } 1876 1877 /// Attempt to fold an SSE floating point to integer conversion of a constant 1878 /// floating point. If roundTowardZero is false, the default IEEE rounding is 1879 /// used (toward nearest, ties to even). This matches the behavior of the 1880 /// non-truncating SSE instructions in the default rounding mode. The desired 1881 /// integer type Ty is used to select how many bits are available for the 1882 /// result. Returns null if the conversion cannot be performed, otherwise 1883 /// returns the Constant value resulting from the conversion. 1884 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 1885 Type *Ty, bool IsSigned) { 1886 // All of these conversion intrinsics form an integer of at most 64bits. 1887 unsigned ResultWidth = Ty->getIntegerBitWidth(); 1888 assert(ResultWidth <= 64 && 1889 "Can only constant fold conversions to 64 and 32 bit ints"); 1890 1891 uint64_t UIntVal; 1892 bool isExact = false; 1893 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 1894 : APFloat::rmNearestTiesToEven; 1895 APFloat::opStatus status = 1896 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth, 1897 IsSigned, mode, &isExact); 1898 if (status != APFloat::opOK && 1899 (!roundTowardZero || status != APFloat::opInexact)) 1900 return nullptr; 1901 return ConstantInt::get(Ty, UIntVal, IsSigned); 1902 } 1903 1904 double getValueAsDouble(ConstantFP *Op) { 1905 Type *Ty = Op->getType(); 1906 1907 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 1908 return Op->getValueAPF().convertToDouble(); 1909 1910 bool unused; 1911 APFloat APF = Op->getValueAPF(); 1912 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 1913 return APF.convertToDouble(); 1914 } 1915 1916 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 1917 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 1918 C = &CI->getValue(); 1919 return true; 1920 } 1921 if (isa<UndefValue>(Op)) { 1922 C = nullptr; 1923 return true; 1924 } 1925 return false; 1926 } 1927 1928 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 1929 /// to be folded. 1930 /// 1931 /// \param CI Constrained intrinsic call. 1932 /// \param St Exception flags raised during constant evaluation. 1933 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 1934 APFloat::opStatus St) { 1935 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 1936 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 1937 1938 // If the operation does not change exception status flags, it is safe 1939 // to fold. 1940 if (St == APFloat::opStatus::opOK) 1941 return true; 1942 1943 // If evaluation raised FP exception, the result can depend on rounding 1944 // mode. If the latter is unknown, folding is not possible. 1945 if (ORM && *ORM == RoundingMode::Dynamic) 1946 return false; 1947 1948 // If FP exceptions are ignored, fold the call, even if such exception is 1949 // raised. 1950 if (EB && *EB != fp::ExceptionBehavior::ebStrict) 1951 return true; 1952 1953 // Leave the calculation for runtime so that exception flags be correctly set 1954 // in hardware. 1955 return false; 1956 } 1957 1958 /// Returns the rounding mode that should be used for constant evaluation. 1959 static RoundingMode 1960 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 1961 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 1962 if (!ORM || *ORM == RoundingMode::Dynamic) 1963 // Even if the rounding mode is unknown, try evaluating the operation. 1964 // If it does not raise inexact exception, rounding was not applied, 1965 // so the result is exact and does not depend on rounding mode. Whether 1966 // other FP exceptions are raised, it does not depend on rounding mode. 1967 return RoundingMode::NearestTiesToEven; 1968 return *ORM; 1969 } 1970 1971 /// Try to constant fold llvm.canonicalize for the given caller and value. 1972 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI, 1973 const APFloat &Src) { 1974 // Zero, positive and negative, is always OK to fold. 1975 if (Src.isZero()) { 1976 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros. 1977 return ConstantFP::get( 1978 CI->getContext(), 1979 APFloat::getZero(Src.getSemantics(), Src.isNegative())); 1980 } 1981 1982 if (!Ty->isIEEELikeFPTy()) 1983 return nullptr; 1984 1985 // Zero is always canonical and the sign must be preserved. 1986 // 1987 // Denorms and nans may have special encodings, but it should be OK to fold a 1988 // totally average number. 1989 if (Src.isNormal() || Src.isInfinity()) 1990 return ConstantFP::get(CI->getContext(), Src); 1991 1992 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) { 1993 DenormalMode DenormMode = 1994 CI->getFunction()->getDenormalMode(Src.getSemantics()); 1995 1996 if (DenormMode == DenormalMode::getIEEE()) 1997 return ConstantFP::get(CI->getContext(), Src); 1998 1999 if (DenormMode.Input == DenormalMode::Dynamic) 2000 return nullptr; 2001 2002 // If we know if either input or output is flushed, we can fold. 2003 if ((DenormMode.Input == DenormalMode::Dynamic && 2004 DenormMode.Output == DenormalMode::IEEE) || 2005 (DenormMode.Input == DenormalMode::IEEE && 2006 DenormMode.Output == DenormalMode::Dynamic)) 2007 return nullptr; 2008 2009 bool IsPositive = 2010 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero || 2011 (DenormMode.Output == DenormalMode::PositiveZero && 2012 DenormMode.Input == DenormalMode::IEEE)); 2013 2014 return ConstantFP::get(CI->getContext(), 2015 APFloat::getZero(Src.getSemantics(), !IsPositive)); 2016 } 2017 2018 return nullptr; 2019 } 2020 2021 static Constant *ConstantFoldScalarCall1(StringRef Name, 2022 Intrinsic::ID IntrinsicID, 2023 Type *Ty, 2024 ArrayRef<Constant *> Operands, 2025 const TargetLibraryInfo *TLI, 2026 const CallBase *Call) { 2027 assert(Operands.size() == 1 && "Wrong number of operands."); 2028 2029 if (IntrinsicID == Intrinsic::is_constant) { 2030 // We know we have a "Constant" argument. But we want to only 2031 // return true for manifest constants, not those that depend on 2032 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 2033 if (Operands[0]->isManifestConstant()) 2034 return ConstantInt::getTrue(Ty->getContext()); 2035 return nullptr; 2036 } 2037 2038 if (isa<PoisonValue>(Operands[0])) { 2039 // TODO: All of these operations should probably propagate poison. 2040 if (IntrinsicID == Intrinsic::canonicalize) 2041 return PoisonValue::get(Ty); 2042 } 2043 2044 if (isa<UndefValue>(Operands[0])) { 2045 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 2046 // ctpop() is between 0 and bitwidth, pick 0 for undef. 2047 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 2048 if (IntrinsicID == Intrinsic::cos || 2049 IntrinsicID == Intrinsic::ctpop || 2050 IntrinsicID == Intrinsic::fptoui_sat || 2051 IntrinsicID == Intrinsic::fptosi_sat || 2052 IntrinsicID == Intrinsic::canonicalize) 2053 return Constant::getNullValue(Ty); 2054 if (IntrinsicID == Intrinsic::bswap || 2055 IntrinsicID == Intrinsic::bitreverse || 2056 IntrinsicID == Intrinsic::launder_invariant_group || 2057 IntrinsicID == Intrinsic::strip_invariant_group) 2058 return Operands[0]; 2059 } 2060 2061 if (isa<ConstantPointerNull>(Operands[0])) { 2062 // launder(null) == null == strip(null) iff in addrspace 0 2063 if (IntrinsicID == Intrinsic::launder_invariant_group || 2064 IntrinsicID == Intrinsic::strip_invariant_group) { 2065 // If instruction is not yet put in a basic block (e.g. when cloning 2066 // a function during inlining), Call's caller may not be available. 2067 // So check Call's BB first before querying Call->getCaller. 2068 const Function *Caller = 2069 Call->getParent() ? Call->getCaller() : nullptr; 2070 if (Caller && 2071 !NullPointerIsDefined( 2072 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 2073 return Operands[0]; 2074 } 2075 return nullptr; 2076 } 2077 } 2078 2079 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 2080 if (IntrinsicID == Intrinsic::convert_to_fp16) { 2081 APFloat Val(Op->getValueAPF()); 2082 2083 bool lost = false; 2084 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 2085 2086 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 2087 } 2088 2089 APFloat U = Op->getValueAPF(); 2090 2091 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 2092 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 2093 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 2094 2095 if (U.isNaN()) 2096 return nullptr; 2097 2098 unsigned Width = Ty->getIntegerBitWidth(); 2099 APSInt Int(Width, !Signed); 2100 bool IsExact = false; 2101 APFloat::opStatus Status = 2102 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2103 2104 if (Status == APFloat::opOK || Status == APFloat::opInexact) 2105 return ConstantInt::get(Ty, Int); 2106 2107 return nullptr; 2108 } 2109 2110 if (IntrinsicID == Intrinsic::fptoui_sat || 2111 IntrinsicID == Intrinsic::fptosi_sat) { 2112 // convertToInteger() already has the desired saturation semantics. 2113 APSInt Int(Ty->getIntegerBitWidth(), 2114 IntrinsicID == Intrinsic::fptoui_sat); 2115 bool IsExact; 2116 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2117 return ConstantInt::get(Ty, Int); 2118 } 2119 2120 if (IntrinsicID == Intrinsic::canonicalize) 2121 return constantFoldCanonicalize(Ty, Call, U); 2122 2123 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 2124 if (Ty->isFP128Ty()) { 2125 if (IntrinsicID == Intrinsic::log) { 2126 float128 Result = logf128(Op->getValueAPF().convertToQuad()); 2127 return GetConstantFoldFPValue128(Result, Ty); 2128 } 2129 2130 LibFunc Fp128Func = NotLibFunc; 2131 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) && 2132 Fp128Func == LibFunc_logl) 2133 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty); 2134 } 2135 #endif 2136 2137 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() && 2138 !Ty->isIntegerTy()) 2139 return nullptr; 2140 2141 // Use internal versions of these intrinsics. 2142 2143 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 2144 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2145 return ConstantFP::get(Ty->getContext(), U); 2146 } 2147 2148 if (IntrinsicID == Intrinsic::round) { 2149 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2150 return ConstantFP::get(Ty->getContext(), U); 2151 } 2152 2153 if (IntrinsicID == Intrinsic::roundeven) { 2154 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2155 return ConstantFP::get(Ty->getContext(), U); 2156 } 2157 2158 if (IntrinsicID == Intrinsic::ceil) { 2159 U.roundToIntegral(APFloat::rmTowardPositive); 2160 return ConstantFP::get(Ty->getContext(), U); 2161 } 2162 2163 if (IntrinsicID == Intrinsic::floor) { 2164 U.roundToIntegral(APFloat::rmTowardNegative); 2165 return ConstantFP::get(Ty->getContext(), U); 2166 } 2167 2168 if (IntrinsicID == Intrinsic::trunc) { 2169 U.roundToIntegral(APFloat::rmTowardZero); 2170 return ConstantFP::get(Ty->getContext(), U); 2171 } 2172 2173 if (IntrinsicID == Intrinsic::fabs) { 2174 U.clearSign(); 2175 return ConstantFP::get(Ty->getContext(), U); 2176 } 2177 2178 if (IntrinsicID == Intrinsic::amdgcn_fract) { 2179 // The v_fract instruction behaves like the OpenCL spec, which defines 2180 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 2181 // there to prevent fract(-small) from returning 1.0. It returns the 2182 // largest positive floating-point number less than 1.0." 2183 APFloat FloorU(U); 2184 FloorU.roundToIntegral(APFloat::rmTowardNegative); 2185 APFloat FractU(U - FloorU); 2186 APFloat AlmostOne(U.getSemantics(), 1); 2187 AlmostOne.next(/*nextDown*/ true); 2188 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 2189 } 2190 2191 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 2192 // raise FP exceptions, unless the argument is signaling NaN. 2193 2194 std::optional<APFloat::roundingMode> RM; 2195 switch (IntrinsicID) { 2196 default: 2197 break; 2198 case Intrinsic::experimental_constrained_nearbyint: 2199 case Intrinsic::experimental_constrained_rint: { 2200 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2201 RM = CI->getRoundingMode(); 2202 if (!RM || *RM == RoundingMode::Dynamic) 2203 return nullptr; 2204 break; 2205 } 2206 case Intrinsic::experimental_constrained_round: 2207 RM = APFloat::rmNearestTiesToAway; 2208 break; 2209 case Intrinsic::experimental_constrained_ceil: 2210 RM = APFloat::rmTowardPositive; 2211 break; 2212 case Intrinsic::experimental_constrained_floor: 2213 RM = APFloat::rmTowardNegative; 2214 break; 2215 case Intrinsic::experimental_constrained_trunc: 2216 RM = APFloat::rmTowardZero; 2217 break; 2218 } 2219 if (RM) { 2220 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2221 if (U.isFinite()) { 2222 APFloat::opStatus St = U.roundToIntegral(*RM); 2223 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2224 St == APFloat::opInexact) { 2225 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2226 if (EB && *EB == fp::ebStrict) 2227 return nullptr; 2228 } 2229 } else if (U.isSignaling()) { 2230 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2231 if (EB && *EB != fp::ebIgnore) 2232 return nullptr; 2233 U = APFloat::getQNaN(U.getSemantics()); 2234 } 2235 return ConstantFP::get(Ty->getContext(), U); 2236 } 2237 2238 /// We only fold functions with finite arguments. Folding NaN and inf is 2239 /// likely to be aborted with an exception anyway, and some host libms 2240 /// have known errors raising exceptions. 2241 if (!U.isFinite()) 2242 return nullptr; 2243 2244 /// Currently APFloat versions of these functions do not exist, so we use 2245 /// the host native double versions. Float versions are not called 2246 /// directly but for all these it is true (float)(f((double)arg)) == 2247 /// f(arg). Long double not supported yet. 2248 const APFloat &APF = Op->getValueAPF(); 2249 2250 switch (IntrinsicID) { 2251 default: break; 2252 case Intrinsic::log: 2253 return ConstantFoldFP(log, APF, Ty); 2254 case Intrinsic::log2: 2255 // TODO: What about hosts that lack a C99 library? 2256 return ConstantFoldFP(log2, APF, Ty); 2257 case Intrinsic::log10: 2258 // TODO: What about hosts that lack a C99 library? 2259 return ConstantFoldFP(log10, APF, Ty); 2260 case Intrinsic::exp: 2261 return ConstantFoldFP(exp, APF, Ty); 2262 case Intrinsic::exp2: 2263 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2264 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2265 case Intrinsic::exp10: 2266 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library. 2267 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty); 2268 case Intrinsic::sin: 2269 return ConstantFoldFP(sin, APF, Ty); 2270 case Intrinsic::cos: 2271 return ConstantFoldFP(cos, APF, Ty); 2272 case Intrinsic::sqrt: 2273 return ConstantFoldFP(sqrt, APF, Ty); 2274 case Intrinsic::amdgcn_cos: 2275 case Intrinsic::amdgcn_sin: { 2276 double V = getValueAsDouble(Op); 2277 if (V < -256.0 || V > 256.0) 2278 // The gfx8 and gfx9 architectures handle arguments outside the range 2279 // [-256, 256] differently. This should be a rare case so bail out 2280 // rather than trying to handle the difference. 2281 return nullptr; 2282 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2283 double V4 = V * 4.0; 2284 if (V4 == floor(V4)) { 2285 // Force exact results for quarter-integer inputs. 2286 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2287 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2288 } else { 2289 if (IsCos) 2290 V = cos(V * 2.0 * numbers::pi); 2291 else 2292 V = sin(V * 2.0 * numbers::pi); 2293 } 2294 return GetConstantFoldFPValue(V, Ty); 2295 } 2296 } 2297 2298 if (!TLI) 2299 return nullptr; 2300 2301 LibFunc Func = NotLibFunc; 2302 if (!TLI->getLibFunc(Name, Func)) 2303 return nullptr; 2304 2305 switch (Func) { 2306 default: 2307 break; 2308 case LibFunc_acos: 2309 case LibFunc_acosf: 2310 case LibFunc_acos_finite: 2311 case LibFunc_acosf_finite: 2312 if (TLI->has(Func)) 2313 return ConstantFoldFP(acos, APF, Ty); 2314 break; 2315 case LibFunc_asin: 2316 case LibFunc_asinf: 2317 case LibFunc_asin_finite: 2318 case LibFunc_asinf_finite: 2319 if (TLI->has(Func)) 2320 return ConstantFoldFP(asin, APF, Ty); 2321 break; 2322 case LibFunc_atan: 2323 case LibFunc_atanf: 2324 if (TLI->has(Func)) 2325 return ConstantFoldFP(atan, APF, Ty); 2326 break; 2327 case LibFunc_ceil: 2328 case LibFunc_ceilf: 2329 if (TLI->has(Func)) { 2330 U.roundToIntegral(APFloat::rmTowardPositive); 2331 return ConstantFP::get(Ty->getContext(), U); 2332 } 2333 break; 2334 case LibFunc_cos: 2335 case LibFunc_cosf: 2336 if (TLI->has(Func)) 2337 return ConstantFoldFP(cos, APF, Ty); 2338 break; 2339 case LibFunc_cosh: 2340 case LibFunc_coshf: 2341 case LibFunc_cosh_finite: 2342 case LibFunc_coshf_finite: 2343 if (TLI->has(Func)) 2344 return ConstantFoldFP(cosh, APF, Ty); 2345 break; 2346 case LibFunc_exp: 2347 case LibFunc_expf: 2348 case LibFunc_exp_finite: 2349 case LibFunc_expf_finite: 2350 if (TLI->has(Func)) 2351 return ConstantFoldFP(exp, APF, Ty); 2352 break; 2353 case LibFunc_exp2: 2354 case LibFunc_exp2f: 2355 case LibFunc_exp2_finite: 2356 case LibFunc_exp2f_finite: 2357 if (TLI->has(Func)) 2358 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2359 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2360 break; 2361 case LibFunc_fabs: 2362 case LibFunc_fabsf: 2363 if (TLI->has(Func)) { 2364 U.clearSign(); 2365 return ConstantFP::get(Ty->getContext(), U); 2366 } 2367 break; 2368 case LibFunc_floor: 2369 case LibFunc_floorf: 2370 if (TLI->has(Func)) { 2371 U.roundToIntegral(APFloat::rmTowardNegative); 2372 return ConstantFP::get(Ty->getContext(), U); 2373 } 2374 break; 2375 case LibFunc_log: 2376 case LibFunc_logf: 2377 case LibFunc_log_finite: 2378 case LibFunc_logf_finite: 2379 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2380 return ConstantFoldFP(log, APF, Ty); 2381 break; 2382 case LibFunc_log2: 2383 case LibFunc_log2f: 2384 case LibFunc_log2_finite: 2385 case LibFunc_log2f_finite: 2386 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2387 // TODO: What about hosts that lack a C99 library? 2388 return ConstantFoldFP(log2, APF, Ty); 2389 break; 2390 case LibFunc_log10: 2391 case LibFunc_log10f: 2392 case LibFunc_log10_finite: 2393 case LibFunc_log10f_finite: 2394 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2395 // TODO: What about hosts that lack a C99 library? 2396 return ConstantFoldFP(log10, APF, Ty); 2397 break; 2398 case LibFunc_ilogb: 2399 case LibFunc_ilogbf: 2400 if (!APF.isZero() && TLI->has(Func)) 2401 return ConstantInt::get(Ty, ilogb(APF), true); 2402 break; 2403 case LibFunc_logb: 2404 case LibFunc_logbf: 2405 if (!APF.isZero() && TLI->has(Func)) 2406 return ConstantFoldFP(logb, APF, Ty); 2407 break; 2408 case LibFunc_log1p: 2409 case LibFunc_log1pf: 2410 // Implement optional behavior from C's Annex F for +/-0.0. 2411 if (U.isZero()) 2412 return ConstantFP::get(Ty->getContext(), U); 2413 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func)) 2414 return ConstantFoldFP(log1p, APF, Ty); 2415 break; 2416 case LibFunc_logl: 2417 return nullptr; 2418 case LibFunc_erf: 2419 case LibFunc_erff: 2420 if (TLI->has(Func)) 2421 return ConstantFoldFP(erf, APF, Ty); 2422 break; 2423 case LibFunc_nearbyint: 2424 case LibFunc_nearbyintf: 2425 case LibFunc_rint: 2426 case LibFunc_rintf: 2427 if (TLI->has(Func)) { 2428 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2429 return ConstantFP::get(Ty->getContext(), U); 2430 } 2431 break; 2432 case LibFunc_round: 2433 case LibFunc_roundf: 2434 if (TLI->has(Func)) { 2435 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2436 return ConstantFP::get(Ty->getContext(), U); 2437 } 2438 break; 2439 case LibFunc_sin: 2440 case LibFunc_sinf: 2441 if (TLI->has(Func)) 2442 return ConstantFoldFP(sin, APF, Ty); 2443 break; 2444 case LibFunc_sinh: 2445 case LibFunc_sinhf: 2446 case LibFunc_sinh_finite: 2447 case LibFunc_sinhf_finite: 2448 if (TLI->has(Func)) 2449 return ConstantFoldFP(sinh, APF, Ty); 2450 break; 2451 case LibFunc_sqrt: 2452 case LibFunc_sqrtf: 2453 if (!APF.isNegative() && TLI->has(Func)) 2454 return ConstantFoldFP(sqrt, APF, Ty); 2455 break; 2456 case LibFunc_tan: 2457 case LibFunc_tanf: 2458 if (TLI->has(Func)) 2459 return ConstantFoldFP(tan, APF, Ty); 2460 break; 2461 case LibFunc_tanh: 2462 case LibFunc_tanhf: 2463 if (TLI->has(Func)) 2464 return ConstantFoldFP(tanh, APF, Ty); 2465 break; 2466 case LibFunc_trunc: 2467 case LibFunc_truncf: 2468 if (TLI->has(Func)) { 2469 U.roundToIntegral(APFloat::rmTowardZero); 2470 return ConstantFP::get(Ty->getContext(), U); 2471 } 2472 break; 2473 } 2474 return nullptr; 2475 } 2476 2477 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2478 switch (IntrinsicID) { 2479 case Intrinsic::bswap: 2480 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2481 case Intrinsic::ctpop: 2482 return ConstantInt::get(Ty, Op->getValue().popcount()); 2483 case Intrinsic::bitreverse: 2484 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2485 case Intrinsic::convert_from_fp16: { 2486 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2487 2488 bool lost = false; 2489 APFloat::opStatus status = Val.convert( 2490 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2491 2492 // Conversion is always precise. 2493 (void)status; 2494 assert(status != APFloat::opInexact && !lost && 2495 "Precision lost during fp16 constfolding"); 2496 2497 return ConstantFP::get(Ty->getContext(), Val); 2498 } 2499 2500 case Intrinsic::amdgcn_s_wqm: { 2501 uint64_t Val = Op->getZExtValue(); 2502 Val |= (Val & 0x5555555555555555ULL) << 1 | 2503 ((Val >> 1) & 0x5555555555555555ULL); 2504 Val |= (Val & 0x3333333333333333ULL) << 2 | 2505 ((Val >> 2) & 0x3333333333333333ULL); 2506 return ConstantInt::get(Ty, Val); 2507 } 2508 2509 case Intrinsic::amdgcn_s_quadmask: { 2510 uint64_t Val = Op->getZExtValue(); 2511 uint64_t QuadMask = 0; 2512 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) { 2513 if (!(Val & 0xF)) 2514 continue; 2515 2516 QuadMask |= (1ULL << I); 2517 } 2518 return ConstantInt::get(Ty, QuadMask); 2519 } 2520 2521 case Intrinsic::amdgcn_s_bitreplicate: { 2522 uint64_t Val = Op->getZExtValue(); 2523 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16; 2524 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8; 2525 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4; 2526 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2; 2527 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1; 2528 Val = Val | Val << 1; 2529 return ConstantInt::get(Ty, Val); 2530 } 2531 2532 default: 2533 return nullptr; 2534 } 2535 } 2536 2537 switch (IntrinsicID) { 2538 default: break; 2539 case Intrinsic::vector_reduce_add: 2540 case Intrinsic::vector_reduce_mul: 2541 case Intrinsic::vector_reduce_and: 2542 case Intrinsic::vector_reduce_or: 2543 case Intrinsic::vector_reduce_xor: 2544 case Intrinsic::vector_reduce_smin: 2545 case Intrinsic::vector_reduce_smax: 2546 case Intrinsic::vector_reduce_umin: 2547 case Intrinsic::vector_reduce_umax: 2548 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2549 return C; 2550 break; 2551 } 2552 2553 // Support ConstantVector in case we have an Undef in the top. 2554 if (isa<ConstantVector>(Operands[0]) || 2555 isa<ConstantDataVector>(Operands[0])) { 2556 auto *Op = cast<Constant>(Operands[0]); 2557 switch (IntrinsicID) { 2558 default: break; 2559 case Intrinsic::x86_sse_cvtss2si: 2560 case Intrinsic::x86_sse_cvtss2si64: 2561 case Intrinsic::x86_sse2_cvtsd2si: 2562 case Intrinsic::x86_sse2_cvtsd2si64: 2563 if (ConstantFP *FPOp = 2564 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2565 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2566 /*roundTowardZero=*/false, Ty, 2567 /*IsSigned*/true); 2568 break; 2569 case Intrinsic::x86_sse_cvttss2si: 2570 case Intrinsic::x86_sse_cvttss2si64: 2571 case Intrinsic::x86_sse2_cvttsd2si: 2572 case Intrinsic::x86_sse2_cvttsd2si64: 2573 if (ConstantFP *FPOp = 2574 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2575 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2576 /*roundTowardZero=*/true, Ty, 2577 /*IsSigned*/true); 2578 break; 2579 } 2580 } 2581 2582 return nullptr; 2583 } 2584 2585 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, 2586 const ConstrainedFPIntrinsic *Call) { 2587 APFloat::opStatus St = APFloat::opOK; 2588 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call); 2589 FCmpInst::Predicate Cond = FCmp->getPredicate(); 2590 if (FCmp->isSignaling()) { 2591 if (Op1.isNaN() || Op2.isNaN()) 2592 St = APFloat::opInvalidOp; 2593 } else { 2594 if (Op1.isSignaling() || Op2.isSignaling()) 2595 St = APFloat::opInvalidOp; 2596 } 2597 bool Result = FCmpInst::compare(Op1, Op2, Cond); 2598 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St)) 2599 return ConstantInt::get(Call->getType()->getScalarType(), Result); 2600 return nullptr; 2601 } 2602 2603 static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty, 2604 ArrayRef<Constant *> Operands, 2605 const TargetLibraryInfo *TLI) { 2606 if (!TLI) 2607 return nullptr; 2608 2609 LibFunc Func = NotLibFunc; 2610 if (!TLI->getLibFunc(Name, Func)) 2611 return nullptr; 2612 2613 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]); 2614 if (!Op1) 2615 return nullptr; 2616 2617 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]); 2618 if (!Op2) 2619 return nullptr; 2620 2621 const APFloat &Op1V = Op1->getValueAPF(); 2622 const APFloat &Op2V = Op2->getValueAPF(); 2623 2624 switch (Func) { 2625 default: 2626 break; 2627 case LibFunc_pow: 2628 case LibFunc_powf: 2629 case LibFunc_pow_finite: 2630 case LibFunc_powf_finite: 2631 if (TLI->has(Func)) 2632 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2633 break; 2634 case LibFunc_fmod: 2635 case LibFunc_fmodf: 2636 if (TLI->has(Func)) { 2637 APFloat V = Op1->getValueAPF(); 2638 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2639 return ConstantFP::get(Ty->getContext(), V); 2640 } 2641 break; 2642 case LibFunc_remainder: 2643 case LibFunc_remainderf: 2644 if (TLI->has(Func)) { 2645 APFloat V = Op1->getValueAPF(); 2646 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2647 return ConstantFP::get(Ty->getContext(), V); 2648 } 2649 break; 2650 case LibFunc_atan2: 2651 case LibFunc_atan2f: 2652 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm 2653 // (Solaris), so we do not assume a known result for that. 2654 if (Op1V.isZero() && Op2V.isZero()) 2655 return nullptr; 2656 [[fallthrough]]; 2657 case LibFunc_atan2_finite: 2658 case LibFunc_atan2f_finite: 2659 if (TLI->has(Func)) 2660 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2661 break; 2662 } 2663 2664 return nullptr; 2665 } 2666 2667 static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty, 2668 ArrayRef<Constant *> Operands, 2669 const CallBase *Call) { 2670 assert(Operands.size() == 2 && "Wrong number of operands."); 2671 2672 if (Ty->isFloatingPointTy()) { 2673 // TODO: We should have undef handling for all of the FP intrinsics that 2674 // are attempted to be folded in this function. 2675 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2676 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2677 switch (IntrinsicID) { 2678 case Intrinsic::maxnum: 2679 case Intrinsic::minnum: 2680 case Intrinsic::maximum: 2681 case Intrinsic::minimum: 2682 // If one argument is undef, return the other argument. 2683 if (IsOp0Undef) 2684 return Operands[1]; 2685 if (IsOp1Undef) 2686 return Operands[0]; 2687 break; 2688 } 2689 } 2690 2691 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2692 const APFloat &Op1V = Op1->getValueAPF(); 2693 2694 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2695 if (Op2->getType() != Op1->getType()) 2696 return nullptr; 2697 const APFloat &Op2V = Op2->getValueAPF(); 2698 2699 if (const auto *ConstrIntr = 2700 dyn_cast_if_present<ConstrainedFPIntrinsic>(Call)) { 2701 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2702 APFloat Res = Op1V; 2703 APFloat::opStatus St; 2704 switch (IntrinsicID) { 2705 default: 2706 return nullptr; 2707 case Intrinsic::experimental_constrained_fadd: 2708 St = Res.add(Op2V, RM); 2709 break; 2710 case Intrinsic::experimental_constrained_fsub: 2711 St = Res.subtract(Op2V, RM); 2712 break; 2713 case Intrinsic::experimental_constrained_fmul: 2714 St = Res.multiply(Op2V, RM); 2715 break; 2716 case Intrinsic::experimental_constrained_fdiv: 2717 St = Res.divide(Op2V, RM); 2718 break; 2719 case Intrinsic::experimental_constrained_frem: 2720 St = Res.mod(Op2V); 2721 break; 2722 case Intrinsic::experimental_constrained_fcmp: 2723 case Intrinsic::experimental_constrained_fcmps: 2724 return evaluateCompare(Op1V, Op2V, ConstrIntr); 2725 } 2726 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2727 St)) 2728 return ConstantFP::get(Ty->getContext(), Res); 2729 return nullptr; 2730 } 2731 2732 switch (IntrinsicID) { 2733 default: 2734 break; 2735 case Intrinsic::copysign: 2736 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2737 case Intrinsic::minnum: 2738 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2739 case Intrinsic::maxnum: 2740 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2741 case Intrinsic::minimum: 2742 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2743 case Intrinsic::maximum: 2744 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2745 } 2746 2747 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2748 return nullptr; 2749 2750 switch (IntrinsicID) { 2751 default: 2752 break; 2753 case Intrinsic::pow: 2754 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2755 case Intrinsic::amdgcn_fmul_legacy: 2756 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2757 // NaN or infinity, gives +0.0. 2758 if (Op1V.isZero() || Op2V.isZero()) 2759 return ConstantFP::getZero(Ty); 2760 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2761 } 2762 2763 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2764 switch (IntrinsicID) { 2765 case Intrinsic::ldexp: { 2766 return ConstantFP::get( 2767 Ty->getContext(), 2768 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven)); 2769 } 2770 case Intrinsic::is_fpclass: { 2771 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue()); 2772 bool Result = 2773 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) || 2774 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) || 2775 ((Mask & fcNegInf) && Op1V.isNegInfinity()) || 2776 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) || 2777 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) || 2778 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) || 2779 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) || 2780 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) || 2781 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) || 2782 ((Mask & fcPosInf) && Op1V.isPosInfinity()); 2783 return ConstantInt::get(Ty, Result); 2784 } 2785 case Intrinsic::powi: { 2786 int Exp = static_cast<int>(Op2C->getSExtValue()); 2787 switch (Ty->getTypeID()) { 2788 case Type::HalfTyID: 2789 case Type::FloatTyID: { 2790 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp))); 2791 if (Ty->isHalfTy()) { 2792 bool Unused; 2793 Res.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 2794 &Unused); 2795 } 2796 return ConstantFP::get(Ty->getContext(), Res); 2797 } 2798 case Type::DoubleTyID: 2799 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp)); 2800 default: 2801 return nullptr; 2802 } 2803 } 2804 default: 2805 break; 2806 } 2807 } 2808 return nullptr; 2809 } 2810 2811 if (Operands[0]->getType()->isIntegerTy() && 2812 Operands[1]->getType()->isIntegerTy()) { 2813 const APInt *C0, *C1; 2814 if (!getConstIntOrUndef(Operands[0], C0) || 2815 !getConstIntOrUndef(Operands[1], C1)) 2816 return nullptr; 2817 2818 switch (IntrinsicID) { 2819 default: break; 2820 case Intrinsic::smax: 2821 case Intrinsic::smin: 2822 case Intrinsic::umax: 2823 case Intrinsic::umin: 2824 // This is the same as for binary ops - poison propagates. 2825 // TODO: Poison handling should be consolidated. 2826 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2827 return PoisonValue::get(Ty); 2828 2829 if (!C0 && !C1) 2830 return UndefValue::get(Ty); 2831 if (!C0 || !C1) 2832 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); 2833 return ConstantInt::get( 2834 Ty, ICmpInst::compare(*C0, *C1, 2835 MinMaxIntrinsic::getPredicate(IntrinsicID)) 2836 ? *C0 2837 : *C1); 2838 2839 case Intrinsic::scmp: 2840 case Intrinsic::ucmp: 2841 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2842 return PoisonValue::get(Ty); 2843 2844 if (!C0 || !C1) 2845 return ConstantInt::get(Ty, 0); 2846 2847 int Res; 2848 if (IntrinsicID == Intrinsic::scmp) 2849 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0; 2850 else 2851 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0; 2852 return ConstantInt::get(Ty, Res, /*IsSigned=*/true); 2853 2854 case Intrinsic::usub_with_overflow: 2855 case Intrinsic::ssub_with_overflow: 2856 // X - undef -> { 0, false } 2857 // undef - X -> { 0, false } 2858 if (!C0 || !C1) 2859 return Constant::getNullValue(Ty); 2860 [[fallthrough]]; 2861 case Intrinsic::uadd_with_overflow: 2862 case Intrinsic::sadd_with_overflow: 2863 // X + undef -> { -1, false } 2864 // undef + x -> { -1, false } 2865 if (!C0 || !C1) { 2866 return ConstantStruct::get( 2867 cast<StructType>(Ty), 2868 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 2869 Constant::getNullValue(Ty->getStructElementType(1))}); 2870 } 2871 [[fallthrough]]; 2872 case Intrinsic::smul_with_overflow: 2873 case Intrinsic::umul_with_overflow: { 2874 // undef * X -> { 0, false } 2875 // X * undef -> { 0, false } 2876 if (!C0 || !C1) 2877 return Constant::getNullValue(Ty); 2878 2879 APInt Res; 2880 bool Overflow; 2881 switch (IntrinsicID) { 2882 default: llvm_unreachable("Invalid case"); 2883 case Intrinsic::sadd_with_overflow: 2884 Res = C0->sadd_ov(*C1, Overflow); 2885 break; 2886 case Intrinsic::uadd_with_overflow: 2887 Res = C0->uadd_ov(*C1, Overflow); 2888 break; 2889 case Intrinsic::ssub_with_overflow: 2890 Res = C0->ssub_ov(*C1, Overflow); 2891 break; 2892 case Intrinsic::usub_with_overflow: 2893 Res = C0->usub_ov(*C1, Overflow); 2894 break; 2895 case Intrinsic::smul_with_overflow: 2896 Res = C0->smul_ov(*C1, Overflow); 2897 break; 2898 case Intrinsic::umul_with_overflow: 2899 Res = C0->umul_ov(*C1, Overflow); 2900 break; 2901 } 2902 Constant *Ops[] = { 2903 ConstantInt::get(Ty->getContext(), Res), 2904 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 2905 }; 2906 return ConstantStruct::get(cast<StructType>(Ty), Ops); 2907 } 2908 case Intrinsic::uadd_sat: 2909 case Intrinsic::sadd_sat: 2910 // This is the same as for binary ops - poison propagates. 2911 // TODO: Poison handling should be consolidated. 2912 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2913 return PoisonValue::get(Ty); 2914 2915 if (!C0 && !C1) 2916 return UndefValue::get(Ty); 2917 if (!C0 || !C1) 2918 return Constant::getAllOnesValue(Ty); 2919 if (IntrinsicID == Intrinsic::uadd_sat) 2920 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 2921 else 2922 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 2923 case Intrinsic::usub_sat: 2924 case Intrinsic::ssub_sat: 2925 // This is the same as for binary ops - poison propagates. 2926 // TODO: Poison handling should be consolidated. 2927 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 2928 return PoisonValue::get(Ty); 2929 2930 if (!C0 && !C1) 2931 return UndefValue::get(Ty); 2932 if (!C0 || !C1) 2933 return Constant::getNullValue(Ty); 2934 if (IntrinsicID == Intrinsic::usub_sat) 2935 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 2936 else 2937 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 2938 case Intrinsic::cttz: 2939 case Intrinsic::ctlz: 2940 assert(C1 && "Must be constant int"); 2941 2942 // cttz(0, 1) and ctlz(0, 1) are poison. 2943 if (C1->isOne() && (!C0 || C0->isZero())) 2944 return PoisonValue::get(Ty); 2945 if (!C0) 2946 return Constant::getNullValue(Ty); 2947 if (IntrinsicID == Intrinsic::cttz) 2948 return ConstantInt::get(Ty, C0->countr_zero()); 2949 else 2950 return ConstantInt::get(Ty, C0->countl_zero()); 2951 2952 case Intrinsic::abs: 2953 assert(C1 && "Must be constant int"); 2954 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); 2955 2956 // Undef or minimum val operand with poison min --> undef 2957 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 2958 return UndefValue::get(Ty); 2959 2960 // Undef operand with no poison min --> 0 (sign bit must be clear) 2961 if (!C0) 2962 return Constant::getNullValue(Ty); 2963 2964 return ConstantInt::get(Ty, C0->abs()); 2965 case Intrinsic::amdgcn_wave_reduce_umin: 2966 case Intrinsic::amdgcn_wave_reduce_umax: 2967 return dyn_cast<Constant>(Operands[0]); 2968 } 2969 2970 return nullptr; 2971 } 2972 2973 // Support ConstantVector in case we have an Undef in the top. 2974 if ((isa<ConstantVector>(Operands[0]) || 2975 isa<ConstantDataVector>(Operands[0])) && 2976 // Check for default rounding mode. 2977 // FIXME: Support other rounding modes? 2978 isa<ConstantInt>(Operands[1]) && 2979 cast<ConstantInt>(Operands[1])->getValue() == 4) { 2980 auto *Op = cast<Constant>(Operands[0]); 2981 switch (IntrinsicID) { 2982 default: break; 2983 case Intrinsic::x86_avx512_vcvtss2si32: 2984 case Intrinsic::x86_avx512_vcvtss2si64: 2985 case Intrinsic::x86_avx512_vcvtsd2si32: 2986 case Intrinsic::x86_avx512_vcvtsd2si64: 2987 if (ConstantFP *FPOp = 2988 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2989 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2990 /*roundTowardZero=*/false, Ty, 2991 /*IsSigned*/true); 2992 break; 2993 case Intrinsic::x86_avx512_vcvtss2usi32: 2994 case Intrinsic::x86_avx512_vcvtss2usi64: 2995 case Intrinsic::x86_avx512_vcvtsd2usi32: 2996 case Intrinsic::x86_avx512_vcvtsd2usi64: 2997 if (ConstantFP *FPOp = 2998 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2999 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 3000 /*roundTowardZero=*/false, Ty, 3001 /*IsSigned*/false); 3002 break; 3003 case Intrinsic::x86_avx512_cvttss2si: 3004 case Intrinsic::x86_avx512_cvttss2si64: 3005 case Intrinsic::x86_avx512_cvttsd2si: 3006 case Intrinsic::x86_avx512_cvttsd2si64: 3007 if (ConstantFP *FPOp = 3008 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 3009 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 3010 /*roundTowardZero=*/true, Ty, 3011 /*IsSigned*/true); 3012 break; 3013 case Intrinsic::x86_avx512_cvttss2usi: 3014 case Intrinsic::x86_avx512_cvttss2usi64: 3015 case Intrinsic::x86_avx512_cvttsd2usi: 3016 case Intrinsic::x86_avx512_cvttsd2usi64: 3017 if (ConstantFP *FPOp = 3018 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 3019 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 3020 /*roundTowardZero=*/true, Ty, 3021 /*IsSigned*/false); 3022 break; 3023 } 3024 } 3025 return nullptr; 3026 } 3027 3028 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 3029 const APFloat &S0, 3030 const APFloat &S1, 3031 const APFloat &S2) { 3032 unsigned ID; 3033 const fltSemantics &Sem = S0.getSemantics(); 3034 APFloat MA(Sem), SC(Sem), TC(Sem); 3035 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 3036 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 3037 // S2 < 0 3038 ID = 5; 3039 SC = -S0; 3040 } else { 3041 ID = 4; 3042 SC = S0; 3043 } 3044 MA = S2; 3045 TC = -S1; 3046 } else if (abs(S1) >= abs(S0)) { 3047 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 3048 // S1 < 0 3049 ID = 3; 3050 TC = -S2; 3051 } else { 3052 ID = 2; 3053 TC = S2; 3054 } 3055 MA = S1; 3056 SC = S0; 3057 } else { 3058 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 3059 // S0 < 0 3060 ID = 1; 3061 SC = S2; 3062 } else { 3063 ID = 0; 3064 SC = -S2; 3065 } 3066 MA = S0; 3067 TC = -S1; 3068 } 3069 switch (IntrinsicID) { 3070 default: 3071 llvm_unreachable("unhandled amdgcn cube intrinsic"); 3072 case Intrinsic::amdgcn_cubeid: 3073 return APFloat(Sem, ID); 3074 case Intrinsic::amdgcn_cubema: 3075 return MA + MA; 3076 case Intrinsic::amdgcn_cubesc: 3077 return SC; 3078 case Intrinsic::amdgcn_cubetc: 3079 return TC; 3080 } 3081 } 3082 3083 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 3084 Type *Ty) { 3085 const APInt *C0, *C1, *C2; 3086 if (!getConstIntOrUndef(Operands[0], C0) || 3087 !getConstIntOrUndef(Operands[1], C1) || 3088 !getConstIntOrUndef(Operands[2], C2)) 3089 return nullptr; 3090 3091 if (!C2) 3092 return UndefValue::get(Ty); 3093 3094 APInt Val(32, 0); 3095 unsigned NumUndefBytes = 0; 3096 for (unsigned I = 0; I < 32; I += 8) { 3097 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 3098 unsigned B = 0; 3099 3100 if (Sel >= 13) 3101 B = 0xff; 3102 else if (Sel == 12) 3103 B = 0x00; 3104 else { 3105 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 3106 if (!Src) 3107 ++NumUndefBytes; 3108 else if (Sel < 8) 3109 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 3110 else 3111 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 3112 } 3113 3114 Val.insertBits(B, I, 8); 3115 } 3116 3117 if (NumUndefBytes == 4) 3118 return UndefValue::get(Ty); 3119 3120 return ConstantInt::get(Ty, Val); 3121 } 3122 3123 static Constant *ConstantFoldScalarCall3(StringRef Name, 3124 Intrinsic::ID IntrinsicID, 3125 Type *Ty, 3126 ArrayRef<Constant *> Operands, 3127 const TargetLibraryInfo *TLI, 3128 const CallBase *Call) { 3129 assert(Operands.size() == 3 && "Wrong number of operands."); 3130 3131 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 3132 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 3133 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 3134 const APFloat &C1 = Op1->getValueAPF(); 3135 const APFloat &C2 = Op2->getValueAPF(); 3136 const APFloat &C3 = Op3->getValueAPF(); 3137 3138 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 3139 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 3140 APFloat Res = C1; 3141 APFloat::opStatus St; 3142 switch (IntrinsicID) { 3143 default: 3144 return nullptr; 3145 case Intrinsic::experimental_constrained_fma: 3146 case Intrinsic::experimental_constrained_fmuladd: 3147 St = Res.fusedMultiplyAdd(C2, C3, RM); 3148 break; 3149 } 3150 if (mayFoldConstrained( 3151 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 3152 return ConstantFP::get(Ty->getContext(), Res); 3153 return nullptr; 3154 } 3155 3156 switch (IntrinsicID) { 3157 default: break; 3158 case Intrinsic::amdgcn_fma_legacy: { 3159 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 3160 // NaN or infinity, gives +0.0. 3161 if (C1.isZero() || C2.isZero()) { 3162 // It's tempting to just return C3 here, but that would give the 3163 // wrong result if C3 was -0.0. 3164 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 3165 } 3166 [[fallthrough]]; 3167 } 3168 case Intrinsic::fma: 3169 case Intrinsic::fmuladd: { 3170 APFloat V = C1; 3171 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 3172 return ConstantFP::get(Ty->getContext(), V); 3173 } 3174 case Intrinsic::amdgcn_cubeid: 3175 case Intrinsic::amdgcn_cubema: 3176 case Intrinsic::amdgcn_cubesc: 3177 case Intrinsic::amdgcn_cubetc: { 3178 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 3179 return ConstantFP::get(Ty->getContext(), V); 3180 } 3181 } 3182 } 3183 } 3184 } 3185 3186 if (IntrinsicID == Intrinsic::smul_fix || 3187 IntrinsicID == Intrinsic::smul_fix_sat) { 3188 // poison * C -> poison 3189 // C * poison -> poison 3190 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3191 return PoisonValue::get(Ty); 3192 3193 const APInt *C0, *C1; 3194 if (!getConstIntOrUndef(Operands[0], C0) || 3195 !getConstIntOrUndef(Operands[1], C1)) 3196 return nullptr; 3197 3198 // undef * C -> 0 3199 // C * undef -> 0 3200 if (!C0 || !C1) 3201 return Constant::getNullValue(Ty); 3202 3203 // This code performs rounding towards negative infinity in case the result 3204 // cannot be represented exactly for the given scale. Targets that do care 3205 // about rounding should use a target hook for specifying how rounding 3206 // should be done, and provide their own folding to be consistent with 3207 // rounding. This is the same approach as used by 3208 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 3209 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 3210 unsigned Width = C0->getBitWidth(); 3211 assert(Scale < Width && "Illegal scale."); 3212 unsigned ExtendedWidth = Width * 2; 3213 APInt Product = 3214 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale); 3215 if (IntrinsicID == Intrinsic::smul_fix_sat) { 3216 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth); 3217 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth); 3218 Product = APIntOps::smin(Product, Max); 3219 Product = APIntOps::smax(Product, Min); 3220 } 3221 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 3222 } 3223 3224 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 3225 const APInt *C0, *C1, *C2; 3226 if (!getConstIntOrUndef(Operands[0], C0) || 3227 !getConstIntOrUndef(Operands[1], C1) || 3228 !getConstIntOrUndef(Operands[2], C2)) 3229 return nullptr; 3230 3231 bool IsRight = IntrinsicID == Intrinsic::fshr; 3232 if (!C2) 3233 return Operands[IsRight ? 1 : 0]; 3234 if (!C0 && !C1) 3235 return UndefValue::get(Ty); 3236 3237 // The shift amount is interpreted as modulo the bitwidth. If the shift 3238 // amount is effectively 0, avoid UB due to oversized inverse shift below. 3239 unsigned BitWidth = C2->getBitWidth(); 3240 unsigned ShAmt = C2->urem(BitWidth); 3241 if (!ShAmt) 3242 return Operands[IsRight ? 1 : 0]; 3243 3244 // (C0 << ShlAmt) | (C1 >> LshrAmt) 3245 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 3246 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 3247 if (!C0) 3248 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 3249 if (!C1) 3250 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 3251 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 3252 } 3253 3254 if (IntrinsicID == Intrinsic::amdgcn_perm) 3255 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 3256 3257 return nullptr; 3258 } 3259 3260 static Constant *ConstantFoldScalarCall(StringRef Name, 3261 Intrinsic::ID IntrinsicID, 3262 Type *Ty, 3263 ArrayRef<Constant *> Operands, 3264 const TargetLibraryInfo *TLI, 3265 const CallBase *Call) { 3266 if (Operands.size() == 1) 3267 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 3268 3269 if (Operands.size() == 2) { 3270 if (Constant *FoldedLibCall = 3271 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) { 3272 return FoldedLibCall; 3273 } 3274 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call); 3275 } 3276 3277 if (Operands.size() == 3) 3278 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 3279 3280 return nullptr; 3281 } 3282 3283 static Constant *ConstantFoldFixedVectorCall( 3284 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 3285 ArrayRef<Constant *> Operands, const DataLayout &DL, 3286 const TargetLibraryInfo *TLI, const CallBase *Call) { 3287 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 3288 SmallVector<Constant *, 4> Lane(Operands.size()); 3289 Type *Ty = FVTy->getElementType(); 3290 3291 switch (IntrinsicID) { 3292 case Intrinsic::masked_load: { 3293 auto *SrcPtr = Operands[0]; 3294 auto *Mask = Operands[2]; 3295 auto *Passthru = Operands[3]; 3296 3297 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 3298 3299 SmallVector<Constant *, 32> NewElements; 3300 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3301 auto *MaskElt = Mask->getAggregateElement(I); 3302 if (!MaskElt) 3303 break; 3304 auto *PassthruElt = Passthru->getAggregateElement(I); 3305 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 3306 if (isa<UndefValue>(MaskElt)) { 3307 if (PassthruElt) 3308 NewElements.push_back(PassthruElt); 3309 else if (VecElt) 3310 NewElements.push_back(VecElt); 3311 else 3312 return nullptr; 3313 } 3314 if (MaskElt->isNullValue()) { 3315 if (!PassthruElt) 3316 return nullptr; 3317 NewElements.push_back(PassthruElt); 3318 } else if (MaskElt->isOneValue()) { 3319 if (!VecElt) 3320 return nullptr; 3321 NewElements.push_back(VecElt); 3322 } else { 3323 return nullptr; 3324 } 3325 } 3326 if (NewElements.size() != FVTy->getNumElements()) 3327 return nullptr; 3328 return ConstantVector::get(NewElements); 3329 } 3330 case Intrinsic::arm_mve_vctp8: 3331 case Intrinsic::arm_mve_vctp16: 3332 case Intrinsic::arm_mve_vctp32: 3333 case Intrinsic::arm_mve_vctp64: { 3334 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 3335 unsigned Lanes = FVTy->getNumElements(); 3336 uint64_t Limit = Op->getZExtValue(); 3337 3338 SmallVector<Constant *, 16> NCs; 3339 for (unsigned i = 0; i < Lanes; i++) { 3340 if (i < Limit) 3341 NCs.push_back(ConstantInt::getTrue(Ty)); 3342 else 3343 NCs.push_back(ConstantInt::getFalse(Ty)); 3344 } 3345 return ConstantVector::get(NCs); 3346 } 3347 return nullptr; 3348 } 3349 case Intrinsic::get_active_lane_mask: { 3350 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 3351 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 3352 if (Op0 && Op1) { 3353 unsigned Lanes = FVTy->getNumElements(); 3354 uint64_t Base = Op0->getZExtValue(); 3355 uint64_t Limit = Op1->getZExtValue(); 3356 3357 SmallVector<Constant *, 16> NCs; 3358 for (unsigned i = 0; i < Lanes; i++) { 3359 if (Base + i < Limit) 3360 NCs.push_back(ConstantInt::getTrue(Ty)); 3361 else 3362 NCs.push_back(ConstantInt::getFalse(Ty)); 3363 } 3364 return ConstantVector::get(NCs); 3365 } 3366 return nullptr; 3367 } 3368 default: 3369 break; 3370 } 3371 3372 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3373 // Gather a column of constants. 3374 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3375 // Some intrinsics use a scalar type for certain arguments. 3376 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) { 3377 Lane[J] = Operands[J]; 3378 continue; 3379 } 3380 3381 Constant *Agg = Operands[J]->getAggregateElement(I); 3382 if (!Agg) 3383 return nullptr; 3384 3385 Lane[J] = Agg; 3386 } 3387 3388 // Use the regular scalar folding to simplify this column. 3389 Constant *Folded = 3390 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3391 if (!Folded) 3392 return nullptr; 3393 Result[I] = Folded; 3394 } 3395 3396 return ConstantVector::get(Result); 3397 } 3398 3399 static Constant *ConstantFoldScalableVectorCall( 3400 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3401 ArrayRef<Constant *> Operands, const DataLayout &DL, 3402 const TargetLibraryInfo *TLI, const CallBase *Call) { 3403 switch (IntrinsicID) { 3404 case Intrinsic::aarch64_sve_convert_from_svbool: { 3405 auto *Src = dyn_cast<Constant>(Operands[0]); 3406 if (!Src || !Src->isNullValue()) 3407 break; 3408 3409 return ConstantInt::getFalse(SVTy); 3410 } 3411 default: 3412 break; 3413 } 3414 return nullptr; 3415 } 3416 3417 static std::pair<Constant *, Constant *> 3418 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) { 3419 if (isa<PoisonValue>(Op)) 3420 return {Op, PoisonValue::get(IntTy)}; 3421 3422 auto *ConstFP = dyn_cast<ConstantFP>(Op); 3423 if (!ConstFP) 3424 return {}; 3425 3426 const APFloat &U = ConstFP->getValueAPF(); 3427 int FrexpExp; 3428 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven); 3429 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant); 3430 3431 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid 3432 // using undef. 3433 Constant *Result1 = FrexpMant.isFinite() 3434 ? ConstantInt::getSigned(IntTy, FrexpExp) 3435 : ConstantInt::getNullValue(IntTy); 3436 return {Result0, Result1}; 3437 } 3438 3439 /// Handle intrinsics that return tuples, which may be tuples of vectors. 3440 static Constant * 3441 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID, 3442 StructType *StTy, ArrayRef<Constant *> Operands, 3443 const DataLayout &DL, const TargetLibraryInfo *TLI, 3444 const CallBase *Call) { 3445 3446 switch (IntrinsicID) { 3447 case Intrinsic::frexp: { 3448 Type *Ty0 = StTy->getContainedType(0); 3449 Type *Ty1 = StTy->getContainedType(1)->getScalarType(); 3450 3451 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) { 3452 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements()); 3453 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements()); 3454 3455 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) { 3456 Constant *Lane = Operands[0]->getAggregateElement(I); 3457 std::tie(Results0[I], Results1[I]) = 3458 ConstantFoldScalarFrexpCall(Lane, Ty1); 3459 if (!Results0[I]) 3460 return nullptr; 3461 } 3462 3463 return ConstantStruct::get(StTy, ConstantVector::get(Results0), 3464 ConstantVector::get(Results1)); 3465 } 3466 3467 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1); 3468 if (!Result0) 3469 return nullptr; 3470 return ConstantStruct::get(StTy, Result0, Result1); 3471 } 3472 default: 3473 // TODO: Constant folding of vector intrinsics that fall through here does 3474 // not work (e.g. overflow intrinsics) 3475 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call); 3476 } 3477 3478 return nullptr; 3479 } 3480 3481 } // end anonymous namespace 3482 3483 Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, 3484 Constant *RHS, Type *Ty, 3485 Instruction *FMFSource) { 3486 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, 3487 dyn_cast_if_present<CallBase>(FMFSource)); 3488 } 3489 3490 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3491 ArrayRef<Constant *> Operands, 3492 const TargetLibraryInfo *TLI, 3493 bool AllowNonDeterministic) { 3494 if (Call->isNoBuiltin()) 3495 return nullptr; 3496 if (!F->hasName()) 3497 return nullptr; 3498 3499 // If this is not an intrinsic and not recognized as a library call, bail out. 3500 Intrinsic::ID IID = F->getIntrinsicID(); 3501 if (IID == Intrinsic::not_intrinsic) { 3502 if (!TLI) 3503 return nullptr; 3504 LibFunc LibF; 3505 if (!TLI->getLibFunc(*F, LibF)) 3506 return nullptr; 3507 } 3508 3509 // Conservatively assume that floating-point libcalls may be 3510 // non-deterministic. 3511 Type *Ty = F->getReturnType(); 3512 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy()) 3513 return nullptr; 3514 3515 StringRef Name = F->getName(); 3516 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3517 return ConstantFoldFixedVectorCall( 3518 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call); 3519 3520 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3521 return ConstantFoldScalableVectorCall( 3522 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call); 3523 3524 if (auto *StTy = dyn_cast<StructType>(Ty)) 3525 return ConstantFoldStructCall(Name, IID, StTy, Operands, 3526 F->getDataLayout(), TLI, Call); 3527 3528 // TODO: If this is a library function, we already discovered that above, 3529 // so we should pass the LibFunc, not the name (and it might be better 3530 // still to separate intrinsic handling from libcalls). 3531 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call); 3532 } 3533 3534 bool llvm::isMathLibCallNoop(const CallBase *Call, 3535 const TargetLibraryInfo *TLI) { 3536 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3537 // (and to some extent ConstantFoldScalarCall). 3538 if (Call->isNoBuiltin() || Call->isStrictFP()) 3539 return false; 3540 Function *F = Call->getCalledFunction(); 3541 if (!F) 3542 return false; 3543 3544 LibFunc Func; 3545 if (!TLI || !TLI->getLibFunc(*F, Func)) 3546 return false; 3547 3548 if (Call->arg_size() == 1) { 3549 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3550 const APFloat &Op = OpC->getValueAPF(); 3551 switch (Func) { 3552 case LibFunc_logl: 3553 case LibFunc_log: 3554 case LibFunc_logf: 3555 case LibFunc_log2l: 3556 case LibFunc_log2: 3557 case LibFunc_log2f: 3558 case LibFunc_log10l: 3559 case LibFunc_log10: 3560 case LibFunc_log10f: 3561 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3562 3563 case LibFunc_expl: 3564 case LibFunc_exp: 3565 case LibFunc_expf: 3566 // FIXME: These boundaries are slightly conservative. 3567 if (OpC->getType()->isDoubleTy()) 3568 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3569 if (OpC->getType()->isFloatTy()) 3570 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3571 break; 3572 3573 case LibFunc_exp2l: 3574 case LibFunc_exp2: 3575 case LibFunc_exp2f: 3576 // FIXME: These boundaries are slightly conservative. 3577 if (OpC->getType()->isDoubleTy()) 3578 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3579 if (OpC->getType()->isFloatTy()) 3580 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3581 break; 3582 3583 case LibFunc_sinl: 3584 case LibFunc_sin: 3585 case LibFunc_sinf: 3586 case LibFunc_cosl: 3587 case LibFunc_cos: 3588 case LibFunc_cosf: 3589 return !Op.isInfinity(); 3590 3591 case LibFunc_tanl: 3592 case LibFunc_tan: 3593 case LibFunc_tanf: { 3594 // FIXME: Stop using the host math library. 3595 // FIXME: The computation isn't done in the right precision. 3596 Type *Ty = OpC->getType(); 3597 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3598 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3599 break; 3600 } 3601 3602 case LibFunc_atan: 3603 case LibFunc_atanf: 3604 case LibFunc_atanl: 3605 // Per POSIX, this MAY fail if Op is denormal. We choose not failing. 3606 return true; 3607 3608 case LibFunc_asinl: 3609 case LibFunc_asin: 3610 case LibFunc_asinf: 3611 case LibFunc_acosl: 3612 case LibFunc_acos: 3613 case LibFunc_acosf: 3614 return !(Op < APFloat::getOne(Op.getSemantics(), true) || 3615 Op > APFloat::getOne(Op.getSemantics())); 3616 3617 case LibFunc_sinh: 3618 case LibFunc_cosh: 3619 case LibFunc_sinhf: 3620 case LibFunc_coshf: 3621 case LibFunc_sinhl: 3622 case LibFunc_coshl: 3623 // FIXME: These boundaries are slightly conservative. 3624 if (OpC->getType()->isDoubleTy()) 3625 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3626 if (OpC->getType()->isFloatTy()) 3627 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3628 break; 3629 3630 case LibFunc_sqrtl: 3631 case LibFunc_sqrt: 3632 case LibFunc_sqrtf: 3633 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3634 3635 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3636 // maybe others? 3637 default: 3638 break; 3639 } 3640 } 3641 } 3642 3643 if (Call->arg_size() == 2) { 3644 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3645 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3646 if (Op0C && Op1C) { 3647 const APFloat &Op0 = Op0C->getValueAPF(); 3648 const APFloat &Op1 = Op1C->getValueAPF(); 3649 3650 switch (Func) { 3651 case LibFunc_powl: 3652 case LibFunc_pow: 3653 case LibFunc_powf: { 3654 // FIXME: Stop using the host math library. 3655 // FIXME: The computation isn't done in the right precision. 3656 Type *Ty = Op0C->getType(); 3657 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3658 if (Ty == Op1C->getType()) 3659 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3660 } 3661 break; 3662 } 3663 3664 case LibFunc_fmodl: 3665 case LibFunc_fmod: 3666 case LibFunc_fmodf: 3667 case LibFunc_remainderl: 3668 case LibFunc_remainder: 3669 case LibFunc_remainderf: 3670 return Op0.isNaN() || Op1.isNaN() || 3671 (!Op0.isInfinity() && !Op1.isZero()); 3672 3673 case LibFunc_atan2: 3674 case LibFunc_atan2f: 3675 case LibFunc_atan2l: 3676 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and 3677 // GLIBC and MSVC do not appear to raise an error on those, we 3678 // cannot rely on that behavior. POSIX and C11 say that a domain error 3679 // may occur, so allow for that possibility. 3680 return !Op0.isZero() || !Op1.isZero(); 3681 3682 default: 3683 break; 3684 } 3685 } 3686 } 3687 3688 return false; 3689 } 3690 3691 void TargetFolder::anchor() {} 3692