1 //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines routines for folding instructions into constants. 10 // 11 // Also, to supplement the basic IR ConstantExpr simplifications, 12 // this file defines some additional folding routines that can make use of 13 // DataLayout information. These functions cannot go in IR due to library 14 // dependency issues. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Analysis/ConstantFolding.h" 19 #include "llvm/ADT/APFloat.h" 20 #include "llvm/ADT/APInt.h" 21 #include "llvm/ADT/APSInt.h" 22 #include "llvm/ADT/ArrayRef.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/STLExtras.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/Analysis/TargetFolder.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/Config/config.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/ConstantFold.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DerivedTypes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/InstrTypes.h" 41 #include "llvm/IR/Instruction.h" 42 #include "llvm/IR/Instructions.h" 43 #include "llvm/IR/IntrinsicInst.h" 44 #include "llvm/IR/Intrinsics.h" 45 #include "llvm/IR/IntrinsicsAArch64.h" 46 #include "llvm/IR/IntrinsicsAMDGPU.h" 47 #include "llvm/IR/IntrinsicsARM.h" 48 #include "llvm/IR/IntrinsicsNVPTX.h" 49 #include "llvm/IR/IntrinsicsWebAssembly.h" 50 #include "llvm/IR/IntrinsicsX86.h" 51 #include "llvm/IR/NVVMIntrinsicUtils.h" 52 #include "llvm/IR/Operator.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Value.h" 55 #include "llvm/Support/Casting.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/KnownBits.h" 58 #include "llvm/Support/MathExtras.h" 59 #include <cassert> 60 #include <cerrno> 61 #include <cfenv> 62 #include <cmath> 63 #include <cstdint> 64 65 using namespace llvm; 66 67 namespace { 68 69 //===----------------------------------------------------------------------===// 70 // Constant Folding internal helper functions 71 //===----------------------------------------------------------------------===// 72 73 static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, 74 Constant *C, Type *SrcEltTy, 75 unsigned NumSrcElts, 76 const DataLayout &DL) { 77 // Now that we know that the input value is a vector of integers, just shift 78 // and insert them into our result. 79 unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); 80 for (unsigned i = 0; i != NumSrcElts; ++i) { 81 Constant *Element; 82 if (DL.isLittleEndian()) 83 Element = C->getAggregateElement(NumSrcElts - i - 1); 84 else 85 Element = C->getAggregateElement(i); 86 87 if (isa_and_nonnull<UndefValue>(Element)) { 88 Result <<= BitShift; 89 continue; 90 } 91 92 auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); 93 if (!ElementCI) 94 return ConstantExpr::getBitCast(C, DestTy); 95 96 Result <<= BitShift; 97 Result |= ElementCI->getValue().zext(Result.getBitWidth()); 98 } 99 100 return nullptr; 101 } 102 103 /// Constant fold bitcast, symbolically evaluating it with DataLayout. 104 /// This always returns a non-null constant, but it may be a 105 /// ConstantExpr if unfoldable. 106 Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { 107 assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && 108 "Invalid constantexpr bitcast!"); 109 110 // Catch the obvious splat cases. 111 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL)) 112 return Res; 113 114 if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 115 // Handle a vector->scalar integer/fp cast. 116 if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { 117 unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); 118 Type *SrcEltTy = VTy->getElementType(); 119 120 // If the vector is a vector of floating point, convert it to vector of int 121 // to simplify things. 122 if (SrcEltTy->isFloatingPointTy()) { 123 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 124 auto *SrcIVTy = FixedVectorType::get( 125 IntegerType::get(C->getContext(), FPWidth), NumSrcElts); 126 // Ask IR to do the conversion now that #elts line up. 127 C = ConstantExpr::getBitCast(C, SrcIVTy); 128 } 129 130 APInt Result(DL.getTypeSizeInBits(DestTy), 0); 131 if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, 132 SrcEltTy, NumSrcElts, DL)) 133 return CE; 134 135 if (isa<IntegerType>(DestTy)) 136 return ConstantInt::get(DestTy, Result); 137 138 APFloat FP(DestTy->getFltSemantics(), Result); 139 return ConstantFP::get(DestTy->getContext(), FP); 140 } 141 } 142 143 // The code below only handles casts to vectors currently. 144 auto *DestVTy = dyn_cast<VectorType>(DestTy); 145 if (!DestVTy) 146 return ConstantExpr::getBitCast(C, DestTy); 147 148 // If this is a scalar -> vector cast, convert the input into a <1 x scalar> 149 // vector so the code below can handle it uniformly. 150 if (!isa<VectorType>(C->getType()) && 151 (isa<ConstantFP>(C) || isa<ConstantInt>(C))) { 152 Constant *Ops = C; // don't take the address of C! 153 return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); 154 } 155 156 // Some of what follows may extend to cover scalable vectors but the current 157 // implementation is fixed length specific. 158 if (!isa<FixedVectorType>(C->getType())) 159 return ConstantExpr::getBitCast(C, DestTy); 160 161 // If this is a bitcast from constant vector -> vector, fold it. 162 if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C) && 163 !isa<ConstantInt>(C) && !isa<ConstantFP>(C)) 164 return ConstantExpr::getBitCast(C, DestTy); 165 166 // If the element types match, IR can fold it. 167 unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); 168 unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); 169 if (NumDstElt == NumSrcElt) 170 return ConstantExpr::getBitCast(C, DestTy); 171 172 Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); 173 Type *DstEltTy = DestVTy->getElementType(); 174 175 // Otherwise, we're changing the number of elements in a vector, which 176 // requires endianness information to do the right thing. For example, 177 // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 178 // folds to (little endian): 179 // <4 x i32> <i32 0, i32 0, i32 1, i32 0> 180 // and to (big endian): 181 // <4 x i32> <i32 0, i32 0, i32 0, i32 1> 182 183 // First thing is first. We only want to think about integer here, so if 184 // we have something in FP form, recast it as integer. 185 if (DstEltTy->isFloatingPointTy()) { 186 // Fold to an vector of integers with same size as our FP type. 187 unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); 188 auto *DestIVTy = FixedVectorType::get( 189 IntegerType::get(C->getContext(), FPWidth), NumDstElt); 190 // Recursively handle this integer conversion, if possible. 191 C = FoldBitCast(C, DestIVTy, DL); 192 193 // Finally, IR can handle this now that #elts line up. 194 return ConstantExpr::getBitCast(C, DestTy); 195 } 196 197 // Okay, we know the destination is integer, if the input is FP, convert 198 // it to integer first. 199 if (SrcEltTy->isFloatingPointTy()) { 200 unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); 201 auto *SrcIVTy = FixedVectorType::get( 202 IntegerType::get(C->getContext(), FPWidth), NumSrcElt); 203 // Ask IR to do the conversion now that #elts line up. 204 C = ConstantExpr::getBitCast(C, SrcIVTy); 205 assert((isa<ConstantVector>(C) || // FIXME: Remove ConstantVector. 206 isa<ConstantDataVector>(C) || isa<ConstantInt>(C)) && 207 "Constant folding cannot fail for plain fp->int bitcast!"); 208 } 209 210 // Now we know that the input and output vectors are both integer vectors 211 // of the same size, and that their #elements is not the same. Do the 212 // conversion here, which depends on whether the input or output has 213 // more elements. 214 bool isLittleEndian = DL.isLittleEndian(); 215 216 SmallVector<Constant*, 32> Result; 217 if (NumDstElt < NumSrcElt) { 218 // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) 219 Constant *Zero = Constant::getNullValue(DstEltTy); 220 unsigned Ratio = NumSrcElt/NumDstElt; 221 unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); 222 unsigned SrcElt = 0; 223 for (unsigned i = 0; i != NumDstElt; ++i) { 224 // Build each element of the result. 225 Constant *Elt = Zero; 226 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); 227 for (unsigned j = 0; j != Ratio; ++j) { 228 Constant *Src = C->getAggregateElement(SrcElt++); 229 if (isa_and_nonnull<UndefValue>(Src)) 230 Src = Constant::getNullValue( 231 cast<VectorType>(C->getType())->getElementType()); 232 else 233 Src = dyn_cast_or_null<ConstantInt>(Src); 234 if (!Src) // Reject constantexpr elements. 235 return ConstantExpr::getBitCast(C, DestTy); 236 237 // Zero extend the element to the right size. 238 Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(), 239 DL); 240 assert(Src && "Constant folding cannot fail on plain integers"); 241 242 // Shift it to the right place, depending on endianness. 243 Src = ConstantFoldBinaryOpOperands( 244 Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt), 245 DL); 246 assert(Src && "Constant folding cannot fail on plain integers"); 247 248 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; 249 250 // Mix it in. 251 Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL); 252 assert(Elt && "Constant folding cannot fail on plain integers"); 253 } 254 Result.push_back(Elt); 255 } 256 return ConstantVector::get(Result); 257 } 258 259 // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) 260 unsigned Ratio = NumDstElt/NumSrcElt; 261 unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); 262 263 // Loop over each source value, expanding into multiple results. 264 for (unsigned i = 0; i != NumSrcElt; ++i) { 265 auto *Element = C->getAggregateElement(i); 266 267 if (!Element) // Reject constantexpr elements. 268 return ConstantExpr::getBitCast(C, DestTy); 269 270 if (isa<UndefValue>(Element)) { 271 // Correctly Propagate undef values. 272 Result.append(Ratio, UndefValue::get(DstEltTy)); 273 continue; 274 } 275 276 auto *Src = dyn_cast<ConstantInt>(Element); 277 if (!Src) 278 return ConstantExpr::getBitCast(C, DestTy); 279 280 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); 281 for (unsigned j = 0; j != Ratio; ++j) { 282 // Shift the piece of the value into the right place, depending on 283 // endianness. 284 APInt Elt = Src->getValue().lshr(ShiftAmt); 285 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; 286 287 // Truncate and remember this piece. 288 Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize))); 289 } 290 } 291 292 return ConstantVector::get(Result); 293 } 294 295 } // end anonymous namespace 296 297 /// If this constant is a constant offset from a global, return the global and 298 /// the constant. Because of constantexprs, this function is recursive. 299 bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, 300 APInt &Offset, const DataLayout &DL, 301 DSOLocalEquivalent **DSOEquiv) { 302 if (DSOEquiv) 303 *DSOEquiv = nullptr; 304 305 // Trivial case, constant is the global. 306 if ((GV = dyn_cast<GlobalValue>(C))) { 307 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 308 Offset = APInt(BitWidth, 0); 309 return true; 310 } 311 312 if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { 313 if (DSOEquiv) 314 *DSOEquiv = FoundDSOEquiv; 315 GV = FoundDSOEquiv->getGlobalValue(); 316 unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); 317 Offset = APInt(BitWidth, 0); 318 return true; 319 } 320 321 // Otherwise, if this isn't a constant expr, bail out. 322 auto *CE = dyn_cast<ConstantExpr>(C); 323 if (!CE) return false; 324 325 // Look through ptr->int and ptr->ptr casts. 326 if (CE->getOpcode() == Instruction::PtrToInt || 327 CE->getOpcode() == Instruction::BitCast) 328 return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, 329 DSOEquiv); 330 331 // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) 332 auto *GEP = dyn_cast<GEPOperator>(CE); 333 if (!GEP) 334 return false; 335 336 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 337 APInt TmpOffset(BitWidth, 0); 338 339 // If the base isn't a global+constant, we aren't either. 340 if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, 341 DSOEquiv)) 342 return false; 343 344 // Otherwise, add any offset that our operands provide. 345 if (!GEP->accumulateConstantOffset(DL, TmpOffset)) 346 return false; 347 348 Offset = TmpOffset; 349 return true; 350 } 351 352 Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, 353 const DataLayout &DL) { 354 do { 355 Type *SrcTy = C->getType(); 356 if (SrcTy == DestTy) 357 return C; 358 359 TypeSize DestSize = DL.getTypeSizeInBits(DestTy); 360 TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); 361 if (!TypeSize::isKnownGE(SrcSize, DestSize)) 362 return nullptr; 363 364 // Catch the obvious splat cases (since all-zeros can coerce non-integral 365 // pointers legally). 366 if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy, DL)) 367 return Res; 368 369 // If the type sizes are the same and a cast is legal, just directly 370 // cast the constant. 371 // But be careful not to coerce non-integral pointers illegally. 372 if (SrcSize == DestSize && 373 DL.isNonIntegralPointerType(SrcTy->getScalarType()) == 374 DL.isNonIntegralPointerType(DestTy->getScalarType())) { 375 Instruction::CastOps Cast = Instruction::BitCast; 376 // If we are going from a pointer to int or vice versa, we spell the cast 377 // differently. 378 if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) 379 Cast = Instruction::IntToPtr; 380 else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) 381 Cast = Instruction::PtrToInt; 382 383 if (CastInst::castIsValid(Cast, C, DestTy)) 384 return ConstantFoldCastOperand(Cast, C, DestTy, DL); 385 } 386 387 // If this isn't an aggregate type, there is nothing we can do to drill down 388 // and find a bitcastable constant. 389 if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) 390 return nullptr; 391 392 // We're simulating a load through a pointer that was bitcast to point to 393 // a different type, so we can try to walk down through the initial 394 // elements of an aggregate to see if some part of the aggregate is 395 // castable to implement the "load" semantic model. 396 if (SrcTy->isStructTy()) { 397 // Struct types might have leading zero-length elements like [0 x i32], 398 // which are certainly not what we are looking for, so skip them. 399 unsigned Elem = 0; 400 Constant *ElemC; 401 do { 402 ElemC = C->getAggregateElement(Elem++); 403 } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); 404 C = ElemC; 405 } else { 406 // For non-byte-sized vector elements, the first element is not 407 // necessarily located at the vector base address. 408 if (auto *VT = dyn_cast<VectorType>(SrcTy)) 409 if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) 410 return nullptr; 411 412 C = C->getAggregateElement(0u); 413 } 414 } while (C); 415 416 return nullptr; 417 } 418 419 namespace { 420 421 /// Recursive helper to read bits out of global. C is the constant being copied 422 /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy 423 /// results into and BytesLeft is the number of bytes left in 424 /// the CurPtr buffer. DL is the DataLayout. 425 bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, 426 unsigned BytesLeft, const DataLayout &DL) { 427 assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && 428 "Out of range access"); 429 430 // If this element is zero or undefined, we can just return since *CurPtr is 431 // zero initialized. 432 if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) 433 return true; 434 435 if (auto *CI = dyn_cast<ConstantInt>(C)) { 436 if ((CI->getBitWidth() & 7) != 0) 437 return false; 438 const APInt &Val = CI->getValue(); 439 unsigned IntBytes = unsigned(CI->getBitWidth()/8); 440 441 for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { 442 unsigned n = ByteOffset; 443 if (!DL.isLittleEndian()) 444 n = IntBytes - n - 1; 445 CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue(); 446 ++ByteOffset; 447 } 448 return true; 449 } 450 451 if (auto *CFP = dyn_cast<ConstantFP>(C)) { 452 if (CFP->getType()->isDoubleTy()) { 453 C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); 454 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 455 } 456 if (CFP->getType()->isFloatTy()){ 457 C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); 458 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 459 } 460 if (CFP->getType()->isHalfTy()){ 461 C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); 462 return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); 463 } 464 return false; 465 } 466 467 if (auto *CS = dyn_cast<ConstantStruct>(C)) { 468 const StructLayout *SL = DL.getStructLayout(CS->getType()); 469 unsigned Index = SL->getElementContainingOffset(ByteOffset); 470 uint64_t CurEltOffset = SL->getElementOffset(Index); 471 ByteOffset -= CurEltOffset; 472 473 while (true) { 474 // If the element access is to the element itself and not to tail padding, 475 // read the bytes from the element. 476 uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); 477 478 if (ByteOffset < EltSize && 479 !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, 480 BytesLeft, DL)) 481 return false; 482 483 ++Index; 484 485 // Check to see if we read from the last struct element, if so we're done. 486 if (Index == CS->getType()->getNumElements()) 487 return true; 488 489 // If we read all of the bytes we needed from this element we're done. 490 uint64_t NextEltOffset = SL->getElementOffset(Index); 491 492 if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) 493 return true; 494 495 // Move to the next element of the struct. 496 CurPtr += NextEltOffset - CurEltOffset - ByteOffset; 497 BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; 498 ByteOffset = 0; 499 CurEltOffset = NextEltOffset; 500 } 501 // not reached. 502 } 503 504 if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || 505 isa<ConstantDataSequential>(C)) { 506 uint64_t NumElts, EltSize; 507 Type *EltTy; 508 if (auto *AT = dyn_cast<ArrayType>(C->getType())) { 509 NumElts = AT->getNumElements(); 510 EltTy = AT->getElementType(); 511 EltSize = DL.getTypeAllocSize(EltTy); 512 } else { 513 NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); 514 EltTy = cast<FixedVectorType>(C->getType())->getElementType(); 515 // TODO: For non-byte-sized vectors, current implementation assumes there is 516 // padding to the next byte boundary between elements. 517 if (!DL.typeSizeEqualsStoreSize(EltTy)) 518 return false; 519 520 EltSize = DL.getTypeStoreSize(EltTy); 521 } 522 uint64_t Index = ByteOffset / EltSize; 523 uint64_t Offset = ByteOffset - Index * EltSize; 524 525 for (; Index != NumElts; ++Index) { 526 if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, 527 BytesLeft, DL)) 528 return false; 529 530 uint64_t BytesWritten = EltSize - Offset; 531 assert(BytesWritten <= EltSize && "Not indexing into this element?"); 532 if (BytesWritten >= BytesLeft) 533 return true; 534 535 Offset = 0; 536 BytesLeft -= BytesWritten; 537 CurPtr += BytesWritten; 538 } 539 return true; 540 } 541 542 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 543 if (CE->getOpcode() == Instruction::IntToPtr && 544 CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { 545 return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, 546 BytesLeft, DL); 547 } 548 } 549 550 // Otherwise, unknown initializer type. 551 return false; 552 } 553 554 Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, 555 int64_t Offset, const DataLayout &DL) { 556 // Bail out early. Not expect to load from scalable global variable. 557 if (isa<ScalableVectorType>(LoadTy)) 558 return nullptr; 559 560 auto *IntType = dyn_cast<IntegerType>(LoadTy); 561 562 // If this isn't an integer load we can't fold it directly. 563 if (!IntType) { 564 // If this is a non-integer load, we can try folding it as an int load and 565 // then bitcast the result. This can be useful for union cases. Note 566 // that address spaces don't matter here since we're not going to result in 567 // an actual new load. 568 if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && 569 !LoadTy->isVectorTy()) 570 return nullptr; 571 572 Type *MapTy = Type::getIntNTy(C->getContext(), 573 DL.getTypeSizeInBits(LoadTy).getFixedValue()); 574 if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { 575 if (Res->isNullValue() && !LoadTy->isX86_AMXTy()) 576 // Materializing a zero can be done trivially without a bitcast 577 return Constant::getNullValue(LoadTy); 578 Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; 579 Res = FoldBitCast(Res, CastTy, DL); 580 if (LoadTy->isPtrOrPtrVectorTy()) { 581 // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr 582 if (Res->isNullValue() && !LoadTy->isX86_AMXTy()) 583 return Constant::getNullValue(LoadTy); 584 if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) 585 // Be careful not to replace a load of an addrspace value with an inttoptr here 586 return nullptr; 587 Res = ConstantExpr::getIntToPtr(Res, LoadTy); 588 } 589 return Res; 590 } 591 return nullptr; 592 } 593 594 unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; 595 if (BytesLoaded > 32 || BytesLoaded == 0) 596 return nullptr; 597 598 // If we're not accessing anything in this constant, the result is undefined. 599 if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) 600 return PoisonValue::get(IntType); 601 602 // TODO: We should be able to support scalable types. 603 TypeSize InitializerSize = DL.getTypeAllocSize(C->getType()); 604 if (InitializerSize.isScalable()) 605 return nullptr; 606 607 // If we're not accessing anything in this constant, the result is undefined. 608 if (Offset >= (int64_t)InitializerSize.getFixedValue()) 609 return PoisonValue::get(IntType); 610 611 unsigned char RawBytes[32] = {0}; 612 unsigned char *CurPtr = RawBytes; 613 unsigned BytesLeft = BytesLoaded; 614 615 // If we're loading off the beginning of the global, some bytes may be valid. 616 if (Offset < 0) { 617 CurPtr += -Offset; 618 BytesLeft += Offset; 619 Offset = 0; 620 } 621 622 if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) 623 return nullptr; 624 625 APInt ResultVal = APInt(IntType->getBitWidth(), 0); 626 if (DL.isLittleEndian()) { 627 ResultVal = RawBytes[BytesLoaded - 1]; 628 for (unsigned i = 1; i != BytesLoaded; ++i) { 629 ResultVal <<= 8; 630 ResultVal |= RawBytes[BytesLoaded - 1 - i]; 631 } 632 } else { 633 ResultVal = RawBytes[0]; 634 for (unsigned i = 1; i != BytesLoaded; ++i) { 635 ResultVal <<= 8; 636 ResultVal |= RawBytes[i]; 637 } 638 } 639 640 return ConstantInt::get(IntType->getContext(), ResultVal); 641 } 642 643 } // anonymous namespace 644 645 // If GV is a constant with an initializer read its representation starting 646 // at Offset and return it as a constant array of unsigned char. Otherwise 647 // return null. 648 Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV, 649 uint64_t Offset) { 650 if (!GV->isConstant() || !GV->hasDefinitiveInitializer()) 651 return nullptr; 652 653 const DataLayout &DL = GV->getDataLayout(); 654 Constant *Init = const_cast<Constant *>(GV->getInitializer()); 655 TypeSize InitSize = DL.getTypeAllocSize(Init->getType()); 656 if (InitSize < Offset) 657 return nullptr; 658 659 uint64_t NBytes = InitSize - Offset; 660 if (NBytes > UINT16_MAX) 661 // Bail for large initializers in excess of 64K to avoid allocating 662 // too much memory. 663 // Offset is assumed to be less than or equal than InitSize (this 664 // is enforced in ReadDataFromGlobal). 665 return nullptr; 666 667 SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes)); 668 unsigned char *CurPtr = RawBytes.data(); 669 670 if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL)) 671 return nullptr; 672 673 return ConstantDataArray::get(GV->getContext(), RawBytes); 674 } 675 676 /// If this Offset points exactly to the start of an aggregate element, return 677 /// that element, otherwise return nullptr. 678 Constant *getConstantAtOffset(Constant *Base, APInt Offset, 679 const DataLayout &DL) { 680 if (Offset.isZero()) 681 return Base; 682 683 if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) 684 return nullptr; 685 686 Type *ElemTy = Base->getType(); 687 SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); 688 if (!Offset.isZero() || !Indices[0].isZero()) 689 return nullptr; 690 691 Constant *C = Base; 692 for (const APInt &Index : drop_begin(Indices)) { 693 if (Index.isNegative() || Index.getActiveBits() >= 32) 694 return nullptr; 695 696 C = C->getAggregateElement(Index.getZExtValue()); 697 if (!C) 698 return nullptr; 699 } 700 701 return C; 702 } 703 704 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 705 const APInt &Offset, 706 const DataLayout &DL) { 707 if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) 708 if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) 709 return Result; 710 711 // Explicitly check for out-of-bounds access, so we return poison even if the 712 // constant is a uniform value. 713 TypeSize Size = DL.getTypeAllocSize(C->getType()); 714 if (!Size.isScalable() && Offset.sge(Size.getFixedValue())) 715 return PoisonValue::get(Ty); 716 717 // Try an offset-independent fold of a uniform value. 718 if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty, DL)) 719 return Result; 720 721 // Try hard to fold loads from bitcasted strange and non-type-safe things. 722 if (Offset.getSignificantBits() <= 64) 723 if (Constant *Result = 724 FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) 725 return Result; 726 727 return nullptr; 728 } 729 730 Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, 731 const DataLayout &DL) { 732 return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); 733 } 734 735 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 736 APInt Offset, 737 const DataLayout &DL) { 738 // We can only fold loads from constant globals with a definitive initializer. 739 // Check this upfront, to skip expensive offset calculations. 740 auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); 741 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) 742 return nullptr; 743 744 C = cast<Constant>(C->stripAndAccumulateConstantOffsets( 745 DL, Offset, /* AllowNonInbounds */ true)); 746 747 if (C == GV) 748 if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, 749 Offset, DL)) 750 return Result; 751 752 // If this load comes from anywhere in a uniform constant global, the value 753 // is always the same, regardless of the loaded offset. 754 return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty, DL); 755 } 756 757 Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, 758 const DataLayout &DL) { 759 APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); 760 return ConstantFoldLoadFromConstPtr(C, Ty, std::move(Offset), DL); 761 } 762 763 Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty, 764 const DataLayout &DL) { 765 if (isa<PoisonValue>(C)) 766 return PoisonValue::get(Ty); 767 if (isa<UndefValue>(C)) 768 return UndefValue::get(Ty); 769 // If padding is needed when storing C to memory, then it isn't considered as 770 // uniform. 771 if (!DL.typeSizeEqualsStoreSize(C->getType())) 772 return nullptr; 773 if (C->isNullValue() && !Ty->isX86_AMXTy()) 774 return Constant::getNullValue(Ty); 775 if (C->isAllOnesValue() && 776 (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) 777 return Constant::getAllOnesValue(Ty); 778 return nullptr; 779 } 780 781 namespace { 782 783 /// One of Op0/Op1 is a constant expression. 784 /// Attempt to symbolically evaluate the result of a binary operator merging 785 /// these together. If target data info is available, it is provided as DL, 786 /// otherwise DL is null. 787 Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, 788 const DataLayout &DL) { 789 // SROA 790 791 // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. 792 // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute 793 // bits. 794 795 if (Opc == Instruction::And) { 796 KnownBits Known0 = computeKnownBits(Op0, DL); 797 KnownBits Known1 = computeKnownBits(Op1, DL); 798 if ((Known1.One | Known0.Zero).isAllOnes()) { 799 // All the bits of Op0 that the 'and' could be masking are already zero. 800 return Op0; 801 } 802 if ((Known0.One | Known1.Zero).isAllOnes()) { 803 // All the bits of Op1 that the 'and' could be masking are already zero. 804 return Op1; 805 } 806 807 Known0 &= Known1; 808 if (Known0.isConstant()) 809 return ConstantInt::get(Op0->getType(), Known0.getConstant()); 810 } 811 812 // If the constant expr is something like &A[123] - &A[4].f, fold this into a 813 // constant. This happens frequently when iterating over a global array. 814 if (Opc == Instruction::Sub) { 815 GlobalValue *GV1, *GV2; 816 APInt Offs1, Offs2; 817 818 if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) 819 if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { 820 unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); 821 822 // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. 823 // PtrToInt may change the bitwidth so we have convert to the right size 824 // first. 825 return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - 826 Offs2.zextOrTrunc(OpSize)); 827 } 828 } 829 830 return nullptr; 831 } 832 833 /// If array indices are not pointer-sized integers, explicitly cast them so 834 /// that they aren't implicitly casted by the getelementptr. 835 Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, 836 Type *ResultTy, GEPNoWrapFlags NW, 837 std::optional<ConstantRange> InRange, 838 const DataLayout &DL, const TargetLibraryInfo *TLI) { 839 Type *IntIdxTy = DL.getIndexType(ResultTy); 840 Type *IntIdxScalarTy = IntIdxTy->getScalarType(); 841 842 bool Any = false; 843 SmallVector<Constant*, 32> NewIdxs; 844 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 845 if ((i == 1 || 846 !isa<StructType>(GetElementPtrInst::getIndexedType( 847 SrcElemTy, Ops.slice(1, i - 1)))) && 848 Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { 849 Any = true; 850 Type *NewType = 851 Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy; 852 Constant *NewIdx = ConstantFoldCastOperand( 853 CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType, 854 DL); 855 if (!NewIdx) 856 return nullptr; 857 NewIdxs.push_back(NewIdx); 858 } else 859 NewIdxs.push_back(Ops[i]); 860 } 861 862 if (!Any) 863 return nullptr; 864 865 Constant *C = 866 ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], NewIdxs, NW, InRange); 867 return ConstantFoldConstant(C, DL, TLI); 868 } 869 870 /// If we can symbolically evaluate the GEP constant expression, do so. 871 Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, 872 ArrayRef<Constant *> Ops, 873 const DataLayout &DL, 874 const TargetLibraryInfo *TLI) { 875 Type *SrcElemTy = GEP->getSourceElementType(); 876 Type *ResTy = GEP->getType(); 877 if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) 878 return nullptr; 879 880 if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, GEP->getNoWrapFlags(), 881 GEP->getInRange(), DL, TLI)) 882 return C; 883 884 Constant *Ptr = Ops[0]; 885 if (!Ptr->getType()->isPointerTy()) 886 return nullptr; 887 888 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 889 890 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 891 if (!isa<ConstantInt>(Ops[i]) || !Ops[i]->getType()->isIntegerTy()) 892 return nullptr; 893 894 unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); 895 APInt Offset = APInt( 896 BitWidth, 897 DL.getIndexedOffsetInType( 898 SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1)), 899 /*isSigned=*/true, /*implicitTrunc=*/true); 900 901 std::optional<ConstantRange> InRange = GEP->getInRange(); 902 if (InRange) 903 InRange = InRange->sextOrTrunc(BitWidth); 904 905 // If this is a GEP of a GEP, fold it all into a single GEP. 906 GEPNoWrapFlags NW = GEP->getNoWrapFlags(); 907 bool Overflow = false; 908 while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { 909 NW &= GEP->getNoWrapFlags(); 910 911 SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); 912 913 // Do not try the incorporate the sub-GEP if some index is not a number. 914 bool AllConstantInt = true; 915 for (Value *NestedOp : NestedOps) 916 if (!isa<ConstantInt>(NestedOp)) { 917 AllConstantInt = false; 918 break; 919 } 920 if (!AllConstantInt) 921 break; 922 923 // TODO: Try to intersect two inrange attributes? 924 if (!InRange) { 925 InRange = GEP->getInRange(); 926 if (InRange) 927 // Adjust inrange by offset until now. 928 InRange = InRange->sextOrTrunc(BitWidth).subtract(Offset); 929 } 930 931 Ptr = cast<Constant>(GEP->getOperand(0)); 932 SrcElemTy = GEP->getSourceElementType(); 933 Offset = Offset.sadd_ov( 934 APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps), 935 /*isSigned=*/true, /*implicitTrunc=*/true), 936 Overflow); 937 } 938 939 // Preserving nusw (without inbounds) also requires that the offset 940 // additions did not overflow. 941 if (NW.hasNoUnsignedSignedWrap() && !NW.isInBounds() && Overflow) 942 NW = NW.withoutNoUnsignedSignedWrap(); 943 944 // If the base value for this address is a literal integer value, fold the 945 // getelementptr to the resulting integer value casted to the pointer type. 946 APInt BasePtr(BitWidth, 0); 947 if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { 948 if (CE->getOpcode() == Instruction::IntToPtr) { 949 if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) 950 BasePtr = Base->getValue().zextOrTrunc(BitWidth); 951 } 952 } 953 954 auto *PTy = cast<PointerType>(Ptr->getType()); 955 if ((Ptr->isNullValue() || BasePtr != 0) && 956 !DL.isNonIntegralPointerType(PTy)) { 957 Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); 958 return ConstantExpr::getIntToPtr(C, ResTy); 959 } 960 961 // Try to infer inbounds for GEPs of globals. 962 if (!NW.isInBounds() && Offset.isNonNegative()) { 963 bool CanBeNull, CanBeFreed; 964 uint64_t DerefBytes = 965 Ptr->getPointerDereferenceableBytes(DL, CanBeNull, CanBeFreed); 966 if (DerefBytes != 0 && !CanBeNull && Offset.sle(DerefBytes)) 967 NW |= GEPNoWrapFlags::inBounds(); 968 } 969 970 // nusw + nneg -> nuw 971 if (NW.hasNoUnsignedSignedWrap() && Offset.isNonNegative()) 972 NW |= GEPNoWrapFlags::noUnsignedWrap(); 973 974 // Otherwise canonicalize this to a single ptradd. 975 LLVMContext &Ctx = Ptr->getContext(); 976 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ctx), Ptr, 977 ConstantInt::get(Ctx, Offset), NW, 978 InRange); 979 } 980 981 /// Attempt to constant fold an instruction with the 982 /// specified opcode and operands. If successful, the constant result is 983 /// returned, if not, null is returned. Note that this function can fail when 984 /// attempting to fold instructions like loads and stores, which have no 985 /// constant expression form. 986 Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, 987 ArrayRef<Constant *> Ops, 988 const DataLayout &DL, 989 const TargetLibraryInfo *TLI, 990 bool AllowNonDeterministic) { 991 Type *DestTy = InstOrCE->getType(); 992 993 if (Instruction::isUnaryOp(Opcode)) 994 return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); 995 996 if (Instruction::isBinaryOp(Opcode)) { 997 switch (Opcode) { 998 default: 999 break; 1000 case Instruction::FAdd: 1001 case Instruction::FSub: 1002 case Instruction::FMul: 1003 case Instruction::FDiv: 1004 case Instruction::FRem: 1005 // Handle floating point instructions separately to account for denormals 1006 // TODO: If a constant expression is being folded rather than an 1007 // instruction, denormals will not be flushed/treated as zero 1008 if (const auto *I = dyn_cast<Instruction>(InstOrCE)) { 1009 return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I, 1010 AllowNonDeterministic); 1011 } 1012 } 1013 return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); 1014 } 1015 1016 if (Instruction::isCast(Opcode)) 1017 return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); 1018 1019 if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { 1020 Type *SrcElemTy = GEP->getSourceElementType(); 1021 if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy)) 1022 return nullptr; 1023 1024 if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) 1025 return C; 1026 1027 return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1), 1028 GEP->getNoWrapFlags(), 1029 GEP->getInRange()); 1030 } 1031 1032 if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) 1033 return CE->getWithOperands(Ops); 1034 1035 switch (Opcode) { 1036 default: return nullptr; 1037 case Instruction::ICmp: 1038 case Instruction::FCmp: { 1039 auto *C = cast<CmpInst>(InstOrCE); 1040 return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1], 1041 DL, TLI, C); 1042 } 1043 case Instruction::Freeze: 1044 return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; 1045 case Instruction::Call: 1046 if (auto *F = dyn_cast<Function>(Ops.back())) { 1047 const auto *Call = cast<CallBase>(InstOrCE); 1048 if (canConstantFoldCallTo(Call, F)) 1049 return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI, 1050 AllowNonDeterministic); 1051 } 1052 return nullptr; 1053 case Instruction::Select: 1054 return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]); 1055 case Instruction::ExtractElement: 1056 return ConstantExpr::getExtractElement(Ops[0], Ops[1]); 1057 case Instruction::ExtractValue: 1058 return ConstantFoldExtractValueInstruction( 1059 Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); 1060 case Instruction::InsertElement: 1061 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); 1062 case Instruction::InsertValue: 1063 return ConstantFoldInsertValueInstruction( 1064 Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices()); 1065 case Instruction::ShuffleVector: 1066 return ConstantExpr::getShuffleVector( 1067 Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); 1068 case Instruction::Load: { 1069 const auto *LI = dyn_cast<LoadInst>(InstOrCE); 1070 if (LI->isVolatile()) 1071 return nullptr; 1072 return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); 1073 } 1074 } 1075 } 1076 1077 } // end anonymous namespace 1078 1079 //===----------------------------------------------------------------------===// 1080 // Constant Folding public APIs 1081 //===----------------------------------------------------------------------===// 1082 1083 namespace { 1084 1085 Constant * 1086 ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, 1087 const TargetLibraryInfo *TLI, 1088 SmallDenseMap<Constant *, Constant *> &FoldedOps) { 1089 if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) 1090 return const_cast<Constant *>(C); 1091 1092 SmallVector<Constant *, 8> Ops; 1093 for (const Use &OldU : C->operands()) { 1094 Constant *OldC = cast<Constant>(&OldU); 1095 Constant *NewC = OldC; 1096 // Recursively fold the ConstantExpr's operands. If we have already folded 1097 // a ConstantExpr, we don't have to process it again. 1098 if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { 1099 auto It = FoldedOps.find(OldC); 1100 if (It == FoldedOps.end()) { 1101 NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); 1102 FoldedOps.insert({OldC, NewC}); 1103 } else { 1104 NewC = It->second; 1105 } 1106 } 1107 Ops.push_back(NewC); 1108 } 1109 1110 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1111 if (Constant *Res = ConstantFoldInstOperandsImpl( 1112 CE, CE->getOpcode(), Ops, DL, TLI, /*AllowNonDeterministic=*/true)) 1113 return Res; 1114 return const_cast<Constant *>(C); 1115 } 1116 1117 assert(isa<ConstantVector>(C)); 1118 return ConstantVector::get(Ops); 1119 } 1120 1121 } // end anonymous namespace 1122 1123 Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, 1124 const TargetLibraryInfo *TLI) { 1125 // Handle PHI nodes quickly here... 1126 if (auto *PN = dyn_cast<PHINode>(I)) { 1127 Constant *CommonValue = nullptr; 1128 1129 SmallDenseMap<Constant *, Constant *> FoldedOps; 1130 for (Value *Incoming : PN->incoming_values()) { 1131 // If the incoming value is undef then skip it. Note that while we could 1132 // skip the value if it is equal to the phi node itself we choose not to 1133 // because that would break the rule that constant folding only applies if 1134 // all operands are constants. 1135 if (isa<UndefValue>(Incoming)) 1136 continue; 1137 // If the incoming value is not a constant, then give up. 1138 auto *C = dyn_cast<Constant>(Incoming); 1139 if (!C) 1140 return nullptr; 1141 // Fold the PHI's operands. 1142 C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1143 // If the incoming value is a different constant to 1144 // the one we saw previously, then give up. 1145 if (CommonValue && C != CommonValue) 1146 return nullptr; 1147 CommonValue = C; 1148 } 1149 1150 // If we reach here, all incoming values are the same constant or undef. 1151 return CommonValue ? CommonValue : UndefValue::get(PN->getType()); 1152 } 1153 1154 // Scan the operand list, checking to see if they are all constants, if so, 1155 // hand off to ConstantFoldInstOperandsImpl. 1156 if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) 1157 return nullptr; 1158 1159 SmallDenseMap<Constant *, Constant *> FoldedOps; 1160 SmallVector<Constant *, 8> Ops; 1161 for (const Use &OpU : I->operands()) { 1162 auto *Op = cast<Constant>(&OpU); 1163 // Fold the Instruction's operands. 1164 Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); 1165 Ops.push_back(Op); 1166 } 1167 1168 return ConstantFoldInstOperands(I, Ops, DL, TLI); 1169 } 1170 1171 Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, 1172 const TargetLibraryInfo *TLI) { 1173 SmallDenseMap<Constant *, Constant *> FoldedOps; 1174 return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); 1175 } 1176 1177 Constant *llvm::ConstantFoldInstOperands(Instruction *I, 1178 ArrayRef<Constant *> Ops, 1179 const DataLayout &DL, 1180 const TargetLibraryInfo *TLI, 1181 bool AllowNonDeterministic) { 1182 return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI, 1183 AllowNonDeterministic); 1184 } 1185 1186 Constant *llvm::ConstantFoldCompareInstOperands( 1187 unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, 1188 const TargetLibraryInfo *TLI, const Instruction *I) { 1189 CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; 1190 // fold: icmp (inttoptr x), null -> icmp x, 0 1191 // fold: icmp null, (inttoptr x) -> icmp 0, x 1192 // fold: icmp (ptrtoint x), 0 -> icmp x, null 1193 // fold: icmp 0, (ptrtoint x) -> icmp null, x 1194 // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y 1195 // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y 1196 // 1197 // FIXME: The following comment is out of data and the DataLayout is here now. 1198 // ConstantExpr::getCompare cannot do this, because it doesn't have DL 1199 // around to know if bit truncation is happening. 1200 if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { 1201 if (Ops1->isNullValue()) { 1202 if (CE0->getOpcode() == Instruction::IntToPtr) { 1203 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1204 // Convert the integer value to the right size to ensure we get the 1205 // proper extension or truncation. 1206 if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, 1207 /*IsSigned*/ false, DL)) { 1208 Constant *Null = Constant::getNullValue(C->getType()); 1209 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1210 } 1211 } 1212 1213 // Only do this transformation if the int is intptrty in size, otherwise 1214 // there is a truncation or extension that we aren't modeling. 1215 if (CE0->getOpcode() == Instruction::PtrToInt) { 1216 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1217 if (CE0->getType() == IntPtrTy) { 1218 Constant *C = CE0->getOperand(0); 1219 Constant *Null = Constant::getNullValue(C->getType()); 1220 return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); 1221 } 1222 } 1223 } 1224 1225 if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { 1226 if (CE0->getOpcode() == CE1->getOpcode()) { 1227 if (CE0->getOpcode() == Instruction::IntToPtr) { 1228 Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); 1229 1230 // Convert the integer value to the right size to ensure we get the 1231 // proper extension or truncation. 1232 Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, 1233 /*IsSigned*/ false, DL); 1234 Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy, 1235 /*IsSigned*/ false, DL); 1236 if (C0 && C1) 1237 return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); 1238 } 1239 1240 // Only do this transformation if the int is intptrty in size, otherwise 1241 // there is a truncation or extension that we aren't modeling. 1242 if (CE0->getOpcode() == Instruction::PtrToInt) { 1243 Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); 1244 if (CE0->getType() == IntPtrTy && 1245 CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { 1246 return ConstantFoldCompareInstOperands( 1247 Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); 1248 } 1249 } 1250 } 1251 } 1252 1253 // Convert pointer comparison (base+offset1) pred (base+offset2) into 1254 // offset1 pred offset2, for the case where the offset is inbounds. This 1255 // only works for equality and unsigned comparison, as inbounds permits 1256 // crossing the sign boundary. However, the offset comparison itself is 1257 // signed. 1258 if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { 1259 unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); 1260 APInt Offset0(IndexWidth, 0); 1261 Value *Stripped0 = 1262 Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); 1263 APInt Offset1(IndexWidth, 0); 1264 Value *Stripped1 = 1265 Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); 1266 if (Stripped0 == Stripped1) 1267 return ConstantInt::getBool( 1268 Ops0->getContext(), 1269 ICmpInst::compare(Offset0, Offset1, 1270 ICmpInst::getSignedPredicate(Predicate))); 1271 } 1272 } else if (isa<ConstantExpr>(Ops1)) { 1273 // If RHS is a constant expression, but the left side isn't, swap the 1274 // operands and try again. 1275 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1276 return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); 1277 } 1278 1279 if (CmpInst::isFPPredicate(Predicate)) { 1280 // Flush any denormal constant float input according to denormal handling 1281 // mode. 1282 Ops0 = FlushFPConstant(Ops0, I, /*IsOutput=*/false); 1283 if (!Ops0) 1284 return nullptr; 1285 Ops1 = FlushFPConstant(Ops1, I, /*IsOutput=*/false); 1286 if (!Ops1) 1287 return nullptr; 1288 } 1289 1290 return ConstantFoldCompareInstruction(Predicate, Ops0, Ops1); 1291 } 1292 1293 Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, 1294 const DataLayout &DL) { 1295 assert(Instruction::isUnaryOp(Opcode)); 1296 1297 return ConstantFoldUnaryInstruction(Opcode, Op); 1298 } 1299 1300 Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, 1301 Constant *RHS, 1302 const DataLayout &DL) { 1303 assert(Instruction::isBinaryOp(Opcode)); 1304 if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) 1305 if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) 1306 return C; 1307 1308 if (ConstantExpr::isDesirableBinOp(Opcode)) 1309 return ConstantExpr::get(Opcode, LHS, RHS); 1310 return ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 1311 } 1312 1313 static ConstantFP *flushDenormalConstant(Type *Ty, const APFloat &APF, 1314 DenormalMode::DenormalModeKind Mode) { 1315 switch (Mode) { 1316 case DenormalMode::Dynamic: 1317 return nullptr; 1318 case DenormalMode::IEEE: 1319 return ConstantFP::get(Ty->getContext(), APF); 1320 case DenormalMode::PreserveSign: 1321 return ConstantFP::get( 1322 Ty->getContext(), 1323 APFloat::getZero(APF.getSemantics(), APF.isNegative())); 1324 case DenormalMode::PositiveZero: 1325 return ConstantFP::get(Ty->getContext(), 1326 APFloat::getZero(APF.getSemantics(), false)); 1327 default: 1328 break; 1329 } 1330 1331 llvm_unreachable("unknown denormal mode"); 1332 } 1333 1334 /// Return the denormal mode that can be assumed when executing a floating point 1335 /// operation at \p CtxI. 1336 static DenormalMode getInstrDenormalMode(const Instruction *CtxI, Type *Ty) { 1337 if (!CtxI || !CtxI->getParent() || !CtxI->getFunction()) 1338 return DenormalMode::getDynamic(); 1339 return CtxI->getFunction()->getDenormalMode(Ty->getFltSemantics()); 1340 } 1341 1342 static ConstantFP *flushDenormalConstantFP(ConstantFP *CFP, 1343 const Instruction *Inst, 1344 bool IsOutput) { 1345 const APFloat &APF = CFP->getValueAPF(); 1346 if (!APF.isDenormal()) 1347 return CFP; 1348 1349 DenormalMode Mode = getInstrDenormalMode(Inst, CFP->getType()); 1350 return flushDenormalConstant(CFP->getType(), APF, 1351 IsOutput ? Mode.Output : Mode.Input); 1352 } 1353 1354 Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *Inst, 1355 bool IsOutput) { 1356 if (ConstantFP *CFP = dyn_cast<ConstantFP>(Operand)) 1357 return flushDenormalConstantFP(CFP, Inst, IsOutput); 1358 1359 if (isa<ConstantAggregateZero, UndefValue, ConstantExpr>(Operand)) 1360 return Operand; 1361 1362 Type *Ty = Operand->getType(); 1363 VectorType *VecTy = dyn_cast<VectorType>(Ty); 1364 if (VecTy) { 1365 if (auto *Splat = dyn_cast_or_null<ConstantFP>(Operand->getSplatValue())) { 1366 ConstantFP *Folded = flushDenormalConstantFP(Splat, Inst, IsOutput); 1367 if (!Folded) 1368 return nullptr; 1369 return ConstantVector::getSplat(VecTy->getElementCount(), Folded); 1370 } 1371 1372 Ty = VecTy->getElementType(); 1373 } 1374 1375 if (const auto *CV = dyn_cast<ConstantVector>(Operand)) { 1376 SmallVector<Constant *, 16> NewElts; 1377 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) { 1378 Constant *Element = CV->getAggregateElement(i); 1379 if (isa<UndefValue>(Element)) { 1380 NewElts.push_back(Element); 1381 continue; 1382 } 1383 1384 ConstantFP *CFP = dyn_cast<ConstantFP>(Element); 1385 if (!CFP) 1386 return nullptr; 1387 1388 ConstantFP *Folded = flushDenormalConstantFP(CFP, Inst, IsOutput); 1389 if (!Folded) 1390 return nullptr; 1391 NewElts.push_back(Folded); 1392 } 1393 1394 return ConstantVector::get(NewElts); 1395 } 1396 1397 if (const auto *CDV = dyn_cast<ConstantDataVector>(Operand)) { 1398 SmallVector<Constant *, 16> NewElts; 1399 for (unsigned I = 0, E = CDV->getNumElements(); I < E; ++I) { 1400 const APFloat &Elt = CDV->getElementAsAPFloat(I); 1401 if (!Elt.isDenormal()) { 1402 NewElts.push_back(ConstantFP::get(Ty, Elt)); 1403 } else { 1404 DenormalMode Mode = getInstrDenormalMode(Inst, Ty); 1405 ConstantFP *Folded = 1406 flushDenormalConstant(Ty, Elt, IsOutput ? Mode.Output : Mode.Input); 1407 if (!Folded) 1408 return nullptr; 1409 NewElts.push_back(Folded); 1410 } 1411 } 1412 1413 return ConstantVector::get(NewElts); 1414 } 1415 1416 return nullptr; 1417 } 1418 1419 Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, 1420 Constant *RHS, const DataLayout &DL, 1421 const Instruction *I, 1422 bool AllowNonDeterministic) { 1423 if (Instruction::isBinaryOp(Opcode)) { 1424 // Flush denormal inputs if needed. 1425 Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false); 1426 if (!Op0) 1427 return nullptr; 1428 Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false); 1429 if (!Op1) 1430 return nullptr; 1431 1432 // If nsz or an algebraic FMF flag is set, the result of the FP operation 1433 // may change due to future optimization. Don't constant fold them if 1434 // non-deterministic results are not allowed. 1435 if (!AllowNonDeterministic) 1436 if (auto *FP = dyn_cast_or_null<FPMathOperator>(I)) 1437 if (FP->hasNoSignedZeros() || FP->hasAllowReassoc() || 1438 FP->hasAllowContract() || FP->hasAllowReciprocal()) 1439 return nullptr; 1440 1441 // Calculate constant result. 1442 Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL); 1443 if (!C) 1444 return nullptr; 1445 1446 // Flush denormal output if needed. 1447 C = FlushFPConstant(C, I, /* IsOutput */ true); 1448 if (!C) 1449 return nullptr; 1450 1451 // The precise NaN value is non-deterministic. 1452 if (!AllowNonDeterministic && C->isNaN()) 1453 return nullptr; 1454 1455 return C; 1456 } 1457 // If instruction lacks a parent/function and the denormal mode cannot be 1458 // determined, use the default (IEEE). 1459 return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL); 1460 } 1461 1462 Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, 1463 Type *DestTy, const DataLayout &DL) { 1464 assert(Instruction::isCast(Opcode)); 1465 switch (Opcode) { 1466 default: 1467 llvm_unreachable("Missing case"); 1468 case Instruction::PtrToInt: 1469 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1470 Constant *FoldedValue = nullptr; 1471 // If the input is a inttoptr, eliminate the pair. This requires knowing 1472 // the width of a pointer, so it can't be done in ConstantExpr::getCast. 1473 if (CE->getOpcode() == Instruction::IntToPtr) { 1474 // zext/trunc the inttoptr to pointer size. 1475 FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), 1476 DL.getIntPtrType(CE->getType()), 1477 /*IsSigned=*/false, DL); 1478 } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 1479 // If we have GEP, we can perform the following folds: 1480 // (ptrtoint (gep null, x)) -> x 1481 // (ptrtoint (gep (gep null, x), y) -> x + y, etc. 1482 unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); 1483 APInt BaseOffset(BitWidth, 0); 1484 auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( 1485 DL, BaseOffset, /*AllowNonInbounds=*/true)); 1486 if (Base->isNullValue()) { 1487 FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); 1488 } else { 1489 // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V 1490 if (GEP->getNumIndices() == 1 && 1491 GEP->getSourceElementType()->isIntegerTy(8)) { 1492 auto *Ptr = cast<Constant>(GEP->getPointerOperand()); 1493 auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1)); 1494 Type *IntIdxTy = DL.getIndexType(Ptr->getType()); 1495 if (Sub && Sub->getType() == IntIdxTy && 1496 Sub->getOpcode() == Instruction::Sub && 1497 Sub->getOperand(0)->isNullValue()) 1498 FoldedValue = ConstantExpr::getSub( 1499 ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); 1500 } 1501 } 1502 } 1503 if (FoldedValue) { 1504 // Do a zext or trunc to get to the ptrtoint dest size. 1505 return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false, 1506 DL); 1507 } 1508 } 1509 break; 1510 case Instruction::IntToPtr: 1511 // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if 1512 // the int size is >= the ptr size and the address spaces are the same. 1513 // This requires knowing the width of a pointer, so it can't be done in 1514 // ConstantExpr::getCast. 1515 if (auto *CE = dyn_cast<ConstantExpr>(C)) { 1516 if (CE->getOpcode() == Instruction::PtrToInt) { 1517 Constant *SrcPtr = CE->getOperand(0); 1518 unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); 1519 unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); 1520 1521 if (MidIntSize >= SrcPtrSize) { 1522 unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); 1523 if (SrcAS == DestTy->getPointerAddressSpace()) 1524 return FoldBitCast(CE->getOperand(0), DestTy, DL); 1525 } 1526 } 1527 } 1528 break; 1529 case Instruction::Trunc: 1530 case Instruction::ZExt: 1531 case Instruction::SExt: 1532 case Instruction::FPTrunc: 1533 case Instruction::FPExt: 1534 case Instruction::UIToFP: 1535 case Instruction::SIToFP: 1536 case Instruction::FPToUI: 1537 case Instruction::FPToSI: 1538 case Instruction::AddrSpaceCast: 1539 break; 1540 case Instruction::BitCast: 1541 return FoldBitCast(C, DestTy, DL); 1542 } 1543 1544 if (ConstantExpr::isDesirableCastOp(Opcode)) 1545 return ConstantExpr::getCast(Opcode, C, DestTy); 1546 return ConstantFoldCastInstruction(Opcode, C, DestTy); 1547 } 1548 1549 Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy, 1550 bool IsSigned, const DataLayout &DL) { 1551 Type *SrcTy = C->getType(); 1552 if (SrcTy == DestTy) 1553 return C; 1554 if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) 1555 return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL); 1556 if (IsSigned) 1557 return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL); 1558 return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL); 1559 } 1560 1561 //===----------------------------------------------------------------------===// 1562 // Constant Folding for Calls 1563 // 1564 1565 bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { 1566 if (Call->isNoBuiltin()) 1567 return false; 1568 if (Call->getFunctionType() != F->getFunctionType()) 1569 return false; 1570 switch (F->getIntrinsicID()) { 1571 // Operations that do not operate floating-point numbers and do not depend on 1572 // FP environment can be folded even in strictfp functions. 1573 case Intrinsic::bswap: 1574 case Intrinsic::ctpop: 1575 case Intrinsic::ctlz: 1576 case Intrinsic::cttz: 1577 case Intrinsic::fshl: 1578 case Intrinsic::fshr: 1579 case Intrinsic::launder_invariant_group: 1580 case Intrinsic::strip_invariant_group: 1581 case Intrinsic::masked_load: 1582 case Intrinsic::get_active_lane_mask: 1583 case Intrinsic::abs: 1584 case Intrinsic::smax: 1585 case Intrinsic::smin: 1586 case Intrinsic::umax: 1587 case Intrinsic::umin: 1588 case Intrinsic::scmp: 1589 case Intrinsic::ucmp: 1590 case Intrinsic::sadd_with_overflow: 1591 case Intrinsic::uadd_with_overflow: 1592 case Intrinsic::ssub_with_overflow: 1593 case Intrinsic::usub_with_overflow: 1594 case Intrinsic::smul_with_overflow: 1595 case Intrinsic::umul_with_overflow: 1596 case Intrinsic::sadd_sat: 1597 case Intrinsic::uadd_sat: 1598 case Intrinsic::ssub_sat: 1599 case Intrinsic::usub_sat: 1600 case Intrinsic::smul_fix: 1601 case Intrinsic::smul_fix_sat: 1602 case Intrinsic::bitreverse: 1603 case Intrinsic::is_constant: 1604 case Intrinsic::vector_reduce_add: 1605 case Intrinsic::vector_reduce_mul: 1606 case Intrinsic::vector_reduce_and: 1607 case Intrinsic::vector_reduce_or: 1608 case Intrinsic::vector_reduce_xor: 1609 case Intrinsic::vector_reduce_smin: 1610 case Intrinsic::vector_reduce_smax: 1611 case Intrinsic::vector_reduce_umin: 1612 case Intrinsic::vector_reduce_umax: 1613 // Target intrinsics 1614 case Intrinsic::amdgcn_perm: 1615 case Intrinsic::amdgcn_wave_reduce_umin: 1616 case Intrinsic::amdgcn_wave_reduce_umax: 1617 case Intrinsic::amdgcn_s_wqm: 1618 case Intrinsic::amdgcn_s_quadmask: 1619 case Intrinsic::amdgcn_s_bitreplicate: 1620 case Intrinsic::arm_mve_vctp8: 1621 case Intrinsic::arm_mve_vctp16: 1622 case Intrinsic::arm_mve_vctp32: 1623 case Intrinsic::arm_mve_vctp64: 1624 case Intrinsic::aarch64_sve_convert_from_svbool: 1625 // WebAssembly float semantics are always known 1626 case Intrinsic::wasm_trunc_signed: 1627 case Intrinsic::wasm_trunc_unsigned: 1628 return true; 1629 1630 // Floating point operations cannot be folded in strictfp functions in 1631 // general case. They can be folded if FP environment is known to compiler. 1632 case Intrinsic::minnum: 1633 case Intrinsic::maxnum: 1634 case Intrinsic::minimum: 1635 case Intrinsic::maximum: 1636 case Intrinsic::log: 1637 case Intrinsic::log2: 1638 case Intrinsic::log10: 1639 case Intrinsic::exp: 1640 case Intrinsic::exp2: 1641 case Intrinsic::exp10: 1642 case Intrinsic::sqrt: 1643 case Intrinsic::sin: 1644 case Intrinsic::cos: 1645 case Intrinsic::sincos: 1646 case Intrinsic::pow: 1647 case Intrinsic::powi: 1648 case Intrinsic::ldexp: 1649 case Intrinsic::fma: 1650 case Intrinsic::fmuladd: 1651 case Intrinsic::frexp: 1652 case Intrinsic::fptoui_sat: 1653 case Intrinsic::fptosi_sat: 1654 case Intrinsic::convert_from_fp16: 1655 case Intrinsic::convert_to_fp16: 1656 case Intrinsic::amdgcn_cos: 1657 case Intrinsic::amdgcn_cubeid: 1658 case Intrinsic::amdgcn_cubema: 1659 case Intrinsic::amdgcn_cubesc: 1660 case Intrinsic::amdgcn_cubetc: 1661 case Intrinsic::amdgcn_fmul_legacy: 1662 case Intrinsic::amdgcn_fma_legacy: 1663 case Intrinsic::amdgcn_fract: 1664 case Intrinsic::amdgcn_sin: 1665 // The intrinsics below depend on rounding mode in MXCSR. 1666 case Intrinsic::x86_sse_cvtss2si: 1667 case Intrinsic::x86_sse_cvtss2si64: 1668 case Intrinsic::x86_sse_cvttss2si: 1669 case Intrinsic::x86_sse_cvttss2si64: 1670 case Intrinsic::x86_sse2_cvtsd2si: 1671 case Intrinsic::x86_sse2_cvtsd2si64: 1672 case Intrinsic::x86_sse2_cvttsd2si: 1673 case Intrinsic::x86_sse2_cvttsd2si64: 1674 case Intrinsic::x86_avx512_vcvtss2si32: 1675 case Intrinsic::x86_avx512_vcvtss2si64: 1676 case Intrinsic::x86_avx512_cvttss2si: 1677 case Intrinsic::x86_avx512_cvttss2si64: 1678 case Intrinsic::x86_avx512_vcvtsd2si32: 1679 case Intrinsic::x86_avx512_vcvtsd2si64: 1680 case Intrinsic::x86_avx512_cvttsd2si: 1681 case Intrinsic::x86_avx512_cvttsd2si64: 1682 case Intrinsic::x86_avx512_vcvtss2usi32: 1683 case Intrinsic::x86_avx512_vcvtss2usi64: 1684 case Intrinsic::x86_avx512_cvttss2usi: 1685 case Intrinsic::x86_avx512_cvttss2usi64: 1686 case Intrinsic::x86_avx512_vcvtsd2usi32: 1687 case Intrinsic::x86_avx512_vcvtsd2usi64: 1688 case Intrinsic::x86_avx512_cvttsd2usi: 1689 case Intrinsic::x86_avx512_cvttsd2usi64: 1690 return !Call->isStrictFP(); 1691 1692 // NVVM float/double to int32/uint32 conversion intrinsics 1693 case Intrinsic::nvvm_f2i_rm: 1694 case Intrinsic::nvvm_f2i_rn: 1695 case Intrinsic::nvvm_f2i_rp: 1696 case Intrinsic::nvvm_f2i_rz: 1697 case Intrinsic::nvvm_f2i_rm_ftz: 1698 case Intrinsic::nvvm_f2i_rn_ftz: 1699 case Intrinsic::nvvm_f2i_rp_ftz: 1700 case Intrinsic::nvvm_f2i_rz_ftz: 1701 case Intrinsic::nvvm_f2ui_rm: 1702 case Intrinsic::nvvm_f2ui_rn: 1703 case Intrinsic::nvvm_f2ui_rp: 1704 case Intrinsic::nvvm_f2ui_rz: 1705 case Intrinsic::nvvm_f2ui_rm_ftz: 1706 case Intrinsic::nvvm_f2ui_rn_ftz: 1707 case Intrinsic::nvvm_f2ui_rp_ftz: 1708 case Intrinsic::nvvm_f2ui_rz_ftz: 1709 case Intrinsic::nvvm_d2i_rm: 1710 case Intrinsic::nvvm_d2i_rn: 1711 case Intrinsic::nvvm_d2i_rp: 1712 case Intrinsic::nvvm_d2i_rz: 1713 case Intrinsic::nvvm_d2ui_rm: 1714 case Intrinsic::nvvm_d2ui_rn: 1715 case Intrinsic::nvvm_d2ui_rp: 1716 case Intrinsic::nvvm_d2ui_rz: 1717 1718 // NVVM float/double to int64/uint64 conversion intrinsics 1719 case Intrinsic::nvvm_f2ll_rm: 1720 case Intrinsic::nvvm_f2ll_rn: 1721 case Intrinsic::nvvm_f2ll_rp: 1722 case Intrinsic::nvvm_f2ll_rz: 1723 case Intrinsic::nvvm_f2ll_rm_ftz: 1724 case Intrinsic::nvvm_f2ll_rn_ftz: 1725 case Intrinsic::nvvm_f2ll_rp_ftz: 1726 case Intrinsic::nvvm_f2ll_rz_ftz: 1727 case Intrinsic::nvvm_f2ull_rm: 1728 case Intrinsic::nvvm_f2ull_rn: 1729 case Intrinsic::nvvm_f2ull_rp: 1730 case Intrinsic::nvvm_f2ull_rz: 1731 case Intrinsic::nvvm_f2ull_rm_ftz: 1732 case Intrinsic::nvvm_f2ull_rn_ftz: 1733 case Intrinsic::nvvm_f2ull_rp_ftz: 1734 case Intrinsic::nvvm_f2ull_rz_ftz: 1735 case Intrinsic::nvvm_d2ll_rm: 1736 case Intrinsic::nvvm_d2ll_rn: 1737 case Intrinsic::nvvm_d2ll_rp: 1738 case Intrinsic::nvvm_d2ll_rz: 1739 case Intrinsic::nvvm_d2ull_rm: 1740 case Intrinsic::nvvm_d2ull_rn: 1741 case Intrinsic::nvvm_d2ull_rp: 1742 case Intrinsic::nvvm_d2ull_rz: 1743 1744 // Sign operations are actually bitwise operations, they do not raise 1745 // exceptions even for SNANs. 1746 case Intrinsic::fabs: 1747 case Intrinsic::copysign: 1748 case Intrinsic::is_fpclass: 1749 // Non-constrained variants of rounding operations means default FP 1750 // environment, they can be folded in any case. 1751 case Intrinsic::ceil: 1752 case Intrinsic::floor: 1753 case Intrinsic::round: 1754 case Intrinsic::roundeven: 1755 case Intrinsic::trunc: 1756 case Intrinsic::nearbyint: 1757 case Intrinsic::rint: 1758 case Intrinsic::canonicalize: 1759 // Constrained intrinsics can be folded if FP environment is known 1760 // to compiler. 1761 case Intrinsic::experimental_constrained_fma: 1762 case Intrinsic::experimental_constrained_fmuladd: 1763 case Intrinsic::experimental_constrained_fadd: 1764 case Intrinsic::experimental_constrained_fsub: 1765 case Intrinsic::experimental_constrained_fmul: 1766 case Intrinsic::experimental_constrained_fdiv: 1767 case Intrinsic::experimental_constrained_frem: 1768 case Intrinsic::experimental_constrained_ceil: 1769 case Intrinsic::experimental_constrained_floor: 1770 case Intrinsic::experimental_constrained_round: 1771 case Intrinsic::experimental_constrained_roundeven: 1772 case Intrinsic::experimental_constrained_trunc: 1773 case Intrinsic::experimental_constrained_nearbyint: 1774 case Intrinsic::experimental_constrained_rint: 1775 case Intrinsic::experimental_constrained_fcmp: 1776 case Intrinsic::experimental_constrained_fcmps: 1777 return true; 1778 default: 1779 return false; 1780 case Intrinsic::not_intrinsic: break; 1781 } 1782 1783 if (!F->hasName() || Call->isStrictFP()) 1784 return false; 1785 1786 // In these cases, the check of the length is required. We don't want to 1787 // return true for a name like "cos\0blah" which strcmp would return equal to 1788 // "cos", but has length 8. 1789 StringRef Name = F->getName(); 1790 switch (Name[0]) { 1791 default: 1792 return false; 1793 case 'a': 1794 return Name == "acos" || Name == "acosf" || 1795 Name == "asin" || Name == "asinf" || 1796 Name == "atan" || Name == "atanf" || 1797 Name == "atan2" || Name == "atan2f"; 1798 case 'c': 1799 return Name == "ceil" || Name == "ceilf" || 1800 Name == "cos" || Name == "cosf" || 1801 Name == "cosh" || Name == "coshf"; 1802 case 'e': 1803 return Name == "exp" || Name == "expf" || Name == "exp2" || 1804 Name == "exp2f" || Name == "erf" || Name == "erff"; 1805 case 'f': 1806 return Name == "fabs" || Name == "fabsf" || 1807 Name == "floor" || Name == "floorf" || 1808 Name == "fmod" || Name == "fmodf"; 1809 case 'i': 1810 return Name == "ilogb" || Name == "ilogbf"; 1811 case 'l': 1812 return Name == "log" || Name == "logf" || Name == "logl" || 1813 Name == "log2" || Name == "log2f" || Name == "log10" || 1814 Name == "log10f" || Name == "logb" || Name == "logbf" || 1815 Name == "log1p" || Name == "log1pf"; 1816 case 'n': 1817 return Name == "nearbyint" || Name == "nearbyintf"; 1818 case 'p': 1819 return Name == "pow" || Name == "powf"; 1820 case 'r': 1821 return Name == "remainder" || Name == "remainderf" || 1822 Name == "rint" || Name == "rintf" || 1823 Name == "round" || Name == "roundf"; 1824 case 's': 1825 return Name == "sin" || Name == "sinf" || 1826 Name == "sinh" || Name == "sinhf" || 1827 Name == "sqrt" || Name == "sqrtf"; 1828 case 't': 1829 return Name == "tan" || Name == "tanf" || 1830 Name == "tanh" || Name == "tanhf" || 1831 Name == "trunc" || Name == "truncf"; 1832 case '_': 1833 // Check for various function names that get used for the math functions 1834 // when the header files are preprocessed with the macro 1835 // __FINITE_MATH_ONLY__ enabled. 1836 // The '12' here is the length of the shortest name that can match. 1837 // We need to check the size before looking at Name[1] and Name[2] 1838 // so we may as well check a limit that will eliminate mismatches. 1839 if (Name.size() < 12 || Name[1] != '_') 1840 return false; 1841 switch (Name[2]) { 1842 default: 1843 return false; 1844 case 'a': 1845 return Name == "__acos_finite" || Name == "__acosf_finite" || 1846 Name == "__asin_finite" || Name == "__asinf_finite" || 1847 Name == "__atan2_finite" || Name == "__atan2f_finite"; 1848 case 'c': 1849 return Name == "__cosh_finite" || Name == "__coshf_finite"; 1850 case 'e': 1851 return Name == "__exp_finite" || Name == "__expf_finite" || 1852 Name == "__exp2_finite" || Name == "__exp2f_finite"; 1853 case 'l': 1854 return Name == "__log_finite" || Name == "__logf_finite" || 1855 Name == "__log10_finite" || Name == "__log10f_finite"; 1856 case 'p': 1857 return Name == "__pow_finite" || Name == "__powf_finite"; 1858 case 's': 1859 return Name == "__sinh_finite" || Name == "__sinhf_finite"; 1860 } 1861 } 1862 } 1863 1864 namespace { 1865 1866 Constant *GetConstantFoldFPValue(double V, Type *Ty) { 1867 if (Ty->isHalfTy() || Ty->isFloatTy()) { 1868 APFloat APF(V); 1869 bool unused; 1870 APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); 1871 return ConstantFP::get(Ty->getContext(), APF); 1872 } 1873 if (Ty->isDoubleTy()) 1874 return ConstantFP::get(Ty->getContext(), APFloat(V)); 1875 llvm_unreachable("Can only constant fold half/float/double"); 1876 } 1877 1878 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 1879 Constant *GetConstantFoldFPValue128(float128 V, Type *Ty) { 1880 if (Ty->isFP128Ty()) 1881 return ConstantFP::get(Ty, V); 1882 llvm_unreachable("Can only constant fold fp128"); 1883 } 1884 #endif 1885 1886 /// Clear the floating-point exception state. 1887 inline void llvm_fenv_clearexcept() { 1888 #if HAVE_DECL_FE_ALL_EXCEPT 1889 feclearexcept(FE_ALL_EXCEPT); 1890 #endif 1891 errno = 0; 1892 } 1893 1894 /// Test if a floating-point exception was raised. 1895 inline bool llvm_fenv_testexcept() { 1896 int errno_val = errno; 1897 if (errno_val == ERANGE || errno_val == EDOM) 1898 return true; 1899 #if HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT 1900 if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) 1901 return true; 1902 #endif 1903 return false; 1904 } 1905 1906 static const APFloat FTZPreserveSign(const APFloat &V) { 1907 if (V.isDenormal()) 1908 return APFloat::getZero(V.getSemantics(), V.isNegative()); 1909 return V; 1910 } 1911 1912 Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, 1913 Type *Ty) { 1914 llvm_fenv_clearexcept(); 1915 double Result = NativeFP(V.convertToDouble()); 1916 if (llvm_fenv_testexcept()) { 1917 llvm_fenv_clearexcept(); 1918 return nullptr; 1919 } 1920 1921 return GetConstantFoldFPValue(Result, Ty); 1922 } 1923 1924 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 1925 Constant *ConstantFoldFP128(float128 (*NativeFP)(float128), const APFloat &V, 1926 Type *Ty) { 1927 llvm_fenv_clearexcept(); 1928 float128 Result = NativeFP(V.convertToQuad()); 1929 if (llvm_fenv_testexcept()) { 1930 llvm_fenv_clearexcept(); 1931 return nullptr; 1932 } 1933 1934 return GetConstantFoldFPValue128(Result, Ty); 1935 } 1936 #endif 1937 1938 Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), 1939 const APFloat &V, const APFloat &W, Type *Ty) { 1940 llvm_fenv_clearexcept(); 1941 double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); 1942 if (llvm_fenv_testexcept()) { 1943 llvm_fenv_clearexcept(); 1944 return nullptr; 1945 } 1946 1947 return GetConstantFoldFPValue(Result, Ty); 1948 } 1949 1950 Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { 1951 FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); 1952 if (!VT) 1953 return nullptr; 1954 1955 // This isn't strictly necessary, but handle the special/common case of zero: 1956 // all integer reductions of a zero input produce zero. 1957 if (isa<ConstantAggregateZero>(Op)) 1958 return ConstantInt::get(VT->getElementType(), 0); 1959 1960 // This is the same as the underlying binops - poison propagates. 1961 if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) 1962 return PoisonValue::get(VT->getElementType()); 1963 1964 // TODO: Handle undef. 1965 if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) 1966 return nullptr; 1967 1968 auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); 1969 if (!EltC) 1970 return nullptr; 1971 1972 APInt Acc = EltC->getValue(); 1973 for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { 1974 if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) 1975 return nullptr; 1976 const APInt &X = EltC->getValue(); 1977 switch (IID) { 1978 case Intrinsic::vector_reduce_add: 1979 Acc = Acc + X; 1980 break; 1981 case Intrinsic::vector_reduce_mul: 1982 Acc = Acc * X; 1983 break; 1984 case Intrinsic::vector_reduce_and: 1985 Acc = Acc & X; 1986 break; 1987 case Intrinsic::vector_reduce_or: 1988 Acc = Acc | X; 1989 break; 1990 case Intrinsic::vector_reduce_xor: 1991 Acc = Acc ^ X; 1992 break; 1993 case Intrinsic::vector_reduce_smin: 1994 Acc = APIntOps::smin(Acc, X); 1995 break; 1996 case Intrinsic::vector_reduce_smax: 1997 Acc = APIntOps::smax(Acc, X); 1998 break; 1999 case Intrinsic::vector_reduce_umin: 2000 Acc = APIntOps::umin(Acc, X); 2001 break; 2002 case Intrinsic::vector_reduce_umax: 2003 Acc = APIntOps::umax(Acc, X); 2004 break; 2005 } 2006 } 2007 2008 return ConstantInt::get(Op->getContext(), Acc); 2009 } 2010 2011 /// Attempt to fold an SSE floating point to integer conversion of a constant 2012 /// floating point. If roundTowardZero is false, the default IEEE rounding is 2013 /// used (toward nearest, ties to even). This matches the behavior of the 2014 /// non-truncating SSE instructions in the default rounding mode. The desired 2015 /// integer type Ty is used to select how many bits are available for the 2016 /// result. Returns null if the conversion cannot be performed, otherwise 2017 /// returns the Constant value resulting from the conversion. 2018 Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, 2019 Type *Ty, bool IsSigned) { 2020 // All of these conversion intrinsics form an integer of at most 64bits. 2021 unsigned ResultWidth = Ty->getIntegerBitWidth(); 2022 assert(ResultWidth <= 64 && 2023 "Can only constant fold conversions to 64 and 32 bit ints"); 2024 2025 uint64_t UIntVal; 2026 bool isExact = false; 2027 APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero 2028 : APFloat::rmNearestTiesToEven; 2029 APFloat::opStatus status = 2030 Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth, 2031 IsSigned, mode, &isExact); 2032 if (status != APFloat::opOK && 2033 (!roundTowardZero || status != APFloat::opInexact)) 2034 return nullptr; 2035 return ConstantInt::get(Ty, UIntVal, IsSigned); 2036 } 2037 2038 double getValueAsDouble(ConstantFP *Op) { 2039 Type *Ty = Op->getType(); 2040 2041 if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) 2042 return Op->getValueAPF().convertToDouble(); 2043 2044 bool unused; 2045 APFloat APF = Op->getValueAPF(); 2046 APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); 2047 return APF.convertToDouble(); 2048 } 2049 2050 static bool getConstIntOrUndef(Value *Op, const APInt *&C) { 2051 if (auto *CI = dyn_cast<ConstantInt>(Op)) { 2052 C = &CI->getValue(); 2053 return true; 2054 } 2055 if (isa<UndefValue>(Op)) { 2056 C = nullptr; 2057 return true; 2058 } 2059 return false; 2060 } 2061 2062 /// Checks if the given intrinsic call, which evaluates to constant, is allowed 2063 /// to be folded. 2064 /// 2065 /// \param CI Constrained intrinsic call. 2066 /// \param St Exception flags raised during constant evaluation. 2067 static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, 2068 APFloat::opStatus St) { 2069 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 2070 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2071 2072 // If the operation does not change exception status flags, it is safe 2073 // to fold. 2074 if (St == APFloat::opStatus::opOK) 2075 return true; 2076 2077 // If evaluation raised FP exception, the result can depend on rounding 2078 // mode. If the latter is unknown, folding is not possible. 2079 if (ORM && *ORM == RoundingMode::Dynamic) 2080 return false; 2081 2082 // If FP exceptions are ignored, fold the call, even if such exception is 2083 // raised. 2084 if (EB && *EB != fp::ExceptionBehavior::ebStrict) 2085 return true; 2086 2087 // Leave the calculation for runtime so that exception flags be correctly set 2088 // in hardware. 2089 return false; 2090 } 2091 2092 /// Returns the rounding mode that should be used for constant evaluation. 2093 static RoundingMode 2094 getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { 2095 std::optional<RoundingMode> ORM = CI->getRoundingMode(); 2096 if (!ORM || *ORM == RoundingMode::Dynamic) 2097 // Even if the rounding mode is unknown, try evaluating the operation. 2098 // If it does not raise inexact exception, rounding was not applied, 2099 // so the result is exact and does not depend on rounding mode. Whether 2100 // other FP exceptions are raised, it does not depend on rounding mode. 2101 return RoundingMode::NearestTiesToEven; 2102 return *ORM; 2103 } 2104 2105 /// Try to constant fold llvm.canonicalize for the given caller and value. 2106 static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI, 2107 const APFloat &Src) { 2108 // Zero, positive and negative, is always OK to fold. 2109 if (Src.isZero()) { 2110 // Get a fresh 0, since ppc_fp128 does have non-canonical zeros. 2111 return ConstantFP::get( 2112 CI->getContext(), 2113 APFloat::getZero(Src.getSemantics(), Src.isNegative())); 2114 } 2115 2116 if (!Ty->isIEEELikeFPTy()) 2117 return nullptr; 2118 2119 // Zero is always canonical and the sign must be preserved. 2120 // 2121 // Denorms and nans may have special encodings, but it should be OK to fold a 2122 // totally average number. 2123 if (Src.isNormal() || Src.isInfinity()) 2124 return ConstantFP::get(CI->getContext(), Src); 2125 2126 if (Src.isDenormal() && CI->getParent() && CI->getFunction()) { 2127 DenormalMode DenormMode = 2128 CI->getFunction()->getDenormalMode(Src.getSemantics()); 2129 2130 if (DenormMode == DenormalMode::getIEEE()) 2131 return ConstantFP::get(CI->getContext(), Src); 2132 2133 if (DenormMode.Input == DenormalMode::Dynamic) 2134 return nullptr; 2135 2136 // If we know if either input or output is flushed, we can fold. 2137 if ((DenormMode.Input == DenormalMode::Dynamic && 2138 DenormMode.Output == DenormalMode::IEEE) || 2139 (DenormMode.Input == DenormalMode::IEEE && 2140 DenormMode.Output == DenormalMode::Dynamic)) 2141 return nullptr; 2142 2143 bool IsPositive = 2144 (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero || 2145 (DenormMode.Output == DenormalMode::PositiveZero && 2146 DenormMode.Input == DenormalMode::IEEE)); 2147 2148 return ConstantFP::get(CI->getContext(), 2149 APFloat::getZero(Src.getSemantics(), !IsPositive)); 2150 } 2151 2152 return nullptr; 2153 } 2154 2155 static Constant *ConstantFoldScalarCall1(StringRef Name, 2156 Intrinsic::ID IntrinsicID, 2157 Type *Ty, 2158 ArrayRef<Constant *> Operands, 2159 const TargetLibraryInfo *TLI, 2160 const CallBase *Call) { 2161 assert(Operands.size() == 1 && "Wrong number of operands."); 2162 2163 if (IntrinsicID == Intrinsic::is_constant) { 2164 // We know we have a "Constant" argument. But we want to only 2165 // return true for manifest constants, not those that depend on 2166 // constants with unknowable values, e.g. GlobalValue or BlockAddress. 2167 if (Operands[0]->isManifestConstant()) 2168 return ConstantInt::getTrue(Ty->getContext()); 2169 return nullptr; 2170 } 2171 2172 if (isa<PoisonValue>(Operands[0])) { 2173 // TODO: All of these operations should probably propagate poison. 2174 if (IntrinsicID == Intrinsic::canonicalize) 2175 return PoisonValue::get(Ty); 2176 } 2177 2178 if (isa<UndefValue>(Operands[0])) { 2179 // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. 2180 // ctpop() is between 0 and bitwidth, pick 0 for undef. 2181 // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). 2182 if (IntrinsicID == Intrinsic::cos || 2183 IntrinsicID == Intrinsic::ctpop || 2184 IntrinsicID == Intrinsic::fptoui_sat || 2185 IntrinsicID == Intrinsic::fptosi_sat || 2186 IntrinsicID == Intrinsic::canonicalize) 2187 return Constant::getNullValue(Ty); 2188 if (IntrinsicID == Intrinsic::bswap || 2189 IntrinsicID == Intrinsic::bitreverse || 2190 IntrinsicID == Intrinsic::launder_invariant_group || 2191 IntrinsicID == Intrinsic::strip_invariant_group) 2192 return Operands[0]; 2193 } 2194 2195 if (isa<ConstantPointerNull>(Operands[0])) { 2196 // launder(null) == null == strip(null) iff in addrspace 0 2197 if (IntrinsicID == Intrinsic::launder_invariant_group || 2198 IntrinsicID == Intrinsic::strip_invariant_group) { 2199 // If instruction is not yet put in a basic block (e.g. when cloning 2200 // a function during inlining), Call's caller may not be available. 2201 // So check Call's BB first before querying Call->getCaller. 2202 const Function *Caller = 2203 Call->getParent() ? Call->getCaller() : nullptr; 2204 if (Caller && 2205 !NullPointerIsDefined( 2206 Caller, Operands[0]->getType()->getPointerAddressSpace())) { 2207 return Operands[0]; 2208 } 2209 return nullptr; 2210 } 2211 } 2212 2213 if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { 2214 if (IntrinsicID == Intrinsic::convert_to_fp16) { 2215 APFloat Val(Op->getValueAPF()); 2216 2217 bool lost = false; 2218 Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); 2219 2220 return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); 2221 } 2222 2223 APFloat U = Op->getValueAPF(); 2224 2225 if (IntrinsicID == Intrinsic::wasm_trunc_signed || 2226 IntrinsicID == Intrinsic::wasm_trunc_unsigned) { 2227 bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; 2228 2229 if (U.isNaN()) 2230 return nullptr; 2231 2232 unsigned Width = Ty->getIntegerBitWidth(); 2233 APSInt Int(Width, !Signed); 2234 bool IsExact = false; 2235 APFloat::opStatus Status = 2236 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2237 2238 if (Status == APFloat::opOK || Status == APFloat::opInexact) 2239 return ConstantInt::get(Ty, Int); 2240 2241 return nullptr; 2242 } 2243 2244 if (IntrinsicID == Intrinsic::fptoui_sat || 2245 IntrinsicID == Intrinsic::fptosi_sat) { 2246 // convertToInteger() already has the desired saturation semantics. 2247 APSInt Int(Ty->getIntegerBitWidth(), 2248 IntrinsicID == Intrinsic::fptoui_sat); 2249 bool IsExact; 2250 U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); 2251 return ConstantInt::get(Ty, Int); 2252 } 2253 2254 if (IntrinsicID == Intrinsic::canonicalize) 2255 return constantFoldCanonicalize(Ty, Call, U); 2256 2257 #if defined(HAS_IEE754_FLOAT128) && defined(HAS_LOGF128) 2258 if (Ty->isFP128Ty()) { 2259 if (IntrinsicID == Intrinsic::log) { 2260 float128 Result = logf128(Op->getValueAPF().convertToQuad()); 2261 return GetConstantFoldFPValue128(Result, Ty); 2262 } 2263 2264 LibFunc Fp128Func = NotLibFunc; 2265 if (TLI && TLI->getLibFunc(Name, Fp128Func) && TLI->has(Fp128Func) && 2266 Fp128Func == LibFunc_logl) 2267 return ConstantFoldFP128(logf128, Op->getValueAPF(), Ty); 2268 } 2269 #endif 2270 2271 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy() && 2272 !Ty->isIntegerTy()) 2273 return nullptr; 2274 2275 // Use internal versions of these intrinsics. 2276 2277 if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { 2278 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2279 return ConstantFP::get(Ty->getContext(), U); 2280 } 2281 2282 if (IntrinsicID == Intrinsic::round) { 2283 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2284 return ConstantFP::get(Ty->getContext(), U); 2285 } 2286 2287 if (IntrinsicID == Intrinsic::roundeven) { 2288 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2289 return ConstantFP::get(Ty->getContext(), U); 2290 } 2291 2292 if (IntrinsicID == Intrinsic::ceil) { 2293 U.roundToIntegral(APFloat::rmTowardPositive); 2294 return ConstantFP::get(Ty->getContext(), U); 2295 } 2296 2297 if (IntrinsicID == Intrinsic::floor) { 2298 U.roundToIntegral(APFloat::rmTowardNegative); 2299 return ConstantFP::get(Ty->getContext(), U); 2300 } 2301 2302 if (IntrinsicID == Intrinsic::trunc) { 2303 U.roundToIntegral(APFloat::rmTowardZero); 2304 return ConstantFP::get(Ty->getContext(), U); 2305 } 2306 2307 if (IntrinsicID == Intrinsic::fabs) { 2308 U.clearSign(); 2309 return ConstantFP::get(Ty->getContext(), U); 2310 } 2311 2312 if (IntrinsicID == Intrinsic::amdgcn_fract) { 2313 // The v_fract instruction behaves like the OpenCL spec, which defines 2314 // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is 2315 // there to prevent fract(-small) from returning 1.0. It returns the 2316 // largest positive floating-point number less than 1.0." 2317 APFloat FloorU(U); 2318 FloorU.roundToIntegral(APFloat::rmTowardNegative); 2319 APFloat FractU(U - FloorU); 2320 APFloat AlmostOne(U.getSemantics(), 1); 2321 AlmostOne.next(/*nextDown*/ true); 2322 return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); 2323 } 2324 2325 // Rounding operations (floor, trunc, ceil, round and nearbyint) do not 2326 // raise FP exceptions, unless the argument is signaling NaN. 2327 2328 std::optional<APFloat::roundingMode> RM; 2329 switch (IntrinsicID) { 2330 default: 2331 break; 2332 case Intrinsic::experimental_constrained_nearbyint: 2333 case Intrinsic::experimental_constrained_rint: { 2334 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2335 RM = CI->getRoundingMode(); 2336 if (!RM || *RM == RoundingMode::Dynamic) 2337 return nullptr; 2338 break; 2339 } 2340 case Intrinsic::experimental_constrained_round: 2341 RM = APFloat::rmNearestTiesToAway; 2342 break; 2343 case Intrinsic::experimental_constrained_ceil: 2344 RM = APFloat::rmTowardPositive; 2345 break; 2346 case Intrinsic::experimental_constrained_floor: 2347 RM = APFloat::rmTowardNegative; 2348 break; 2349 case Intrinsic::experimental_constrained_trunc: 2350 RM = APFloat::rmTowardZero; 2351 break; 2352 } 2353 if (RM) { 2354 auto CI = cast<ConstrainedFPIntrinsic>(Call); 2355 if (U.isFinite()) { 2356 APFloat::opStatus St = U.roundToIntegral(*RM); 2357 if (IntrinsicID == Intrinsic::experimental_constrained_rint && 2358 St == APFloat::opInexact) { 2359 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2360 if (EB && *EB == fp::ebStrict) 2361 return nullptr; 2362 } 2363 } else if (U.isSignaling()) { 2364 std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); 2365 if (EB && *EB != fp::ebIgnore) 2366 return nullptr; 2367 U = APFloat::getQNaN(U.getSemantics()); 2368 } 2369 return ConstantFP::get(Ty->getContext(), U); 2370 } 2371 2372 // NVVM float/double to signed/unsigned int32/int64 conversions: 2373 switch (IntrinsicID) { 2374 // f2i 2375 case Intrinsic::nvvm_f2i_rm: 2376 case Intrinsic::nvvm_f2i_rn: 2377 case Intrinsic::nvvm_f2i_rp: 2378 case Intrinsic::nvvm_f2i_rz: 2379 case Intrinsic::nvvm_f2i_rm_ftz: 2380 case Intrinsic::nvvm_f2i_rn_ftz: 2381 case Intrinsic::nvvm_f2i_rp_ftz: 2382 case Intrinsic::nvvm_f2i_rz_ftz: 2383 // f2ui 2384 case Intrinsic::nvvm_f2ui_rm: 2385 case Intrinsic::nvvm_f2ui_rn: 2386 case Intrinsic::nvvm_f2ui_rp: 2387 case Intrinsic::nvvm_f2ui_rz: 2388 case Intrinsic::nvvm_f2ui_rm_ftz: 2389 case Intrinsic::nvvm_f2ui_rn_ftz: 2390 case Intrinsic::nvvm_f2ui_rp_ftz: 2391 case Intrinsic::nvvm_f2ui_rz_ftz: 2392 // d2i 2393 case Intrinsic::nvvm_d2i_rm: 2394 case Intrinsic::nvvm_d2i_rn: 2395 case Intrinsic::nvvm_d2i_rp: 2396 case Intrinsic::nvvm_d2i_rz: 2397 // d2ui 2398 case Intrinsic::nvvm_d2ui_rm: 2399 case Intrinsic::nvvm_d2ui_rn: 2400 case Intrinsic::nvvm_d2ui_rp: 2401 case Intrinsic::nvvm_d2ui_rz: 2402 // f2ll 2403 case Intrinsic::nvvm_f2ll_rm: 2404 case Intrinsic::nvvm_f2ll_rn: 2405 case Intrinsic::nvvm_f2ll_rp: 2406 case Intrinsic::nvvm_f2ll_rz: 2407 case Intrinsic::nvvm_f2ll_rm_ftz: 2408 case Intrinsic::nvvm_f2ll_rn_ftz: 2409 case Intrinsic::nvvm_f2ll_rp_ftz: 2410 case Intrinsic::nvvm_f2ll_rz_ftz: 2411 // f2ull 2412 case Intrinsic::nvvm_f2ull_rm: 2413 case Intrinsic::nvvm_f2ull_rn: 2414 case Intrinsic::nvvm_f2ull_rp: 2415 case Intrinsic::nvvm_f2ull_rz: 2416 case Intrinsic::nvvm_f2ull_rm_ftz: 2417 case Intrinsic::nvvm_f2ull_rn_ftz: 2418 case Intrinsic::nvvm_f2ull_rp_ftz: 2419 case Intrinsic::nvvm_f2ull_rz_ftz: 2420 // d2ll 2421 case Intrinsic::nvvm_d2ll_rm: 2422 case Intrinsic::nvvm_d2ll_rn: 2423 case Intrinsic::nvvm_d2ll_rp: 2424 case Intrinsic::nvvm_d2ll_rz: 2425 // d2ull 2426 case Intrinsic::nvvm_d2ull_rm: 2427 case Intrinsic::nvvm_d2ull_rn: 2428 case Intrinsic::nvvm_d2ull_rp: 2429 case Intrinsic::nvvm_d2ull_rz: { 2430 // In float-to-integer conversion, NaN inputs are converted to 0. 2431 if (U.isNaN()) 2432 return ConstantInt::get(Ty, 0); 2433 2434 APFloat::roundingMode RMode = nvvm::IntrinsicGetRoundingMode(IntrinsicID); 2435 bool IsFTZ = nvvm::IntrinsicShouldFTZ(IntrinsicID); 2436 bool IsSigned = nvvm::IntrinsicConvertsToSignedInteger(IntrinsicID); 2437 2438 APSInt ResInt(Ty->getIntegerBitWidth(), !IsSigned); 2439 auto FloatToRound = IsFTZ ? FTZPreserveSign(U) : U; 2440 2441 bool IsExact = false; 2442 APFloat::opStatus Status = 2443 FloatToRound.convertToInteger(ResInt, RMode, &IsExact); 2444 2445 if (Status != APFloat::opInvalidOp) 2446 return ConstantInt::get(Ty, ResInt); 2447 return nullptr; 2448 } 2449 } 2450 2451 /// We only fold functions with finite arguments. Folding NaN and inf is 2452 /// likely to be aborted with an exception anyway, and some host libms 2453 /// have known errors raising exceptions. 2454 if (!U.isFinite()) 2455 return nullptr; 2456 2457 /// Currently APFloat versions of these functions do not exist, so we use 2458 /// the host native double versions. Float versions are not called 2459 /// directly but for all these it is true (float)(f((double)arg)) == 2460 /// f(arg). Long double not supported yet. 2461 const APFloat &APF = Op->getValueAPF(); 2462 2463 switch (IntrinsicID) { 2464 default: break; 2465 case Intrinsic::log: 2466 return ConstantFoldFP(log, APF, Ty); 2467 case Intrinsic::log2: 2468 // TODO: What about hosts that lack a C99 library? 2469 return ConstantFoldFP(log2, APF, Ty); 2470 case Intrinsic::log10: 2471 // TODO: What about hosts that lack a C99 library? 2472 return ConstantFoldFP(log10, APF, Ty); 2473 case Intrinsic::exp: 2474 return ConstantFoldFP(exp, APF, Ty); 2475 case Intrinsic::exp2: 2476 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2477 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2478 case Intrinsic::exp10: 2479 // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library. 2480 return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty); 2481 case Intrinsic::sin: 2482 return ConstantFoldFP(sin, APF, Ty); 2483 case Intrinsic::cos: 2484 return ConstantFoldFP(cos, APF, Ty); 2485 case Intrinsic::sqrt: 2486 return ConstantFoldFP(sqrt, APF, Ty); 2487 case Intrinsic::amdgcn_cos: 2488 case Intrinsic::amdgcn_sin: { 2489 double V = getValueAsDouble(Op); 2490 if (V < -256.0 || V > 256.0) 2491 // The gfx8 and gfx9 architectures handle arguments outside the range 2492 // [-256, 256] differently. This should be a rare case so bail out 2493 // rather than trying to handle the difference. 2494 return nullptr; 2495 bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; 2496 double V4 = V * 4.0; 2497 if (V4 == floor(V4)) { 2498 // Force exact results for quarter-integer inputs. 2499 const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; 2500 V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; 2501 } else { 2502 if (IsCos) 2503 V = cos(V * 2.0 * numbers::pi); 2504 else 2505 V = sin(V * 2.0 * numbers::pi); 2506 } 2507 return GetConstantFoldFPValue(V, Ty); 2508 } 2509 } 2510 2511 if (!TLI) 2512 return nullptr; 2513 2514 LibFunc Func = NotLibFunc; 2515 if (!TLI->getLibFunc(Name, Func)) 2516 return nullptr; 2517 2518 switch (Func) { 2519 default: 2520 break; 2521 case LibFunc_acos: 2522 case LibFunc_acosf: 2523 case LibFunc_acos_finite: 2524 case LibFunc_acosf_finite: 2525 if (TLI->has(Func)) 2526 return ConstantFoldFP(acos, APF, Ty); 2527 break; 2528 case LibFunc_asin: 2529 case LibFunc_asinf: 2530 case LibFunc_asin_finite: 2531 case LibFunc_asinf_finite: 2532 if (TLI->has(Func)) 2533 return ConstantFoldFP(asin, APF, Ty); 2534 break; 2535 case LibFunc_atan: 2536 case LibFunc_atanf: 2537 if (TLI->has(Func)) 2538 return ConstantFoldFP(atan, APF, Ty); 2539 break; 2540 case LibFunc_ceil: 2541 case LibFunc_ceilf: 2542 if (TLI->has(Func)) { 2543 U.roundToIntegral(APFloat::rmTowardPositive); 2544 return ConstantFP::get(Ty->getContext(), U); 2545 } 2546 break; 2547 case LibFunc_cos: 2548 case LibFunc_cosf: 2549 if (TLI->has(Func)) 2550 return ConstantFoldFP(cos, APF, Ty); 2551 break; 2552 case LibFunc_cosh: 2553 case LibFunc_coshf: 2554 case LibFunc_cosh_finite: 2555 case LibFunc_coshf_finite: 2556 if (TLI->has(Func)) 2557 return ConstantFoldFP(cosh, APF, Ty); 2558 break; 2559 case LibFunc_exp: 2560 case LibFunc_expf: 2561 case LibFunc_exp_finite: 2562 case LibFunc_expf_finite: 2563 if (TLI->has(Func)) 2564 return ConstantFoldFP(exp, APF, Ty); 2565 break; 2566 case LibFunc_exp2: 2567 case LibFunc_exp2f: 2568 case LibFunc_exp2_finite: 2569 case LibFunc_exp2f_finite: 2570 if (TLI->has(Func)) 2571 // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. 2572 return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); 2573 break; 2574 case LibFunc_fabs: 2575 case LibFunc_fabsf: 2576 if (TLI->has(Func)) { 2577 U.clearSign(); 2578 return ConstantFP::get(Ty->getContext(), U); 2579 } 2580 break; 2581 case LibFunc_floor: 2582 case LibFunc_floorf: 2583 if (TLI->has(Func)) { 2584 U.roundToIntegral(APFloat::rmTowardNegative); 2585 return ConstantFP::get(Ty->getContext(), U); 2586 } 2587 break; 2588 case LibFunc_log: 2589 case LibFunc_logf: 2590 case LibFunc_log_finite: 2591 case LibFunc_logf_finite: 2592 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2593 return ConstantFoldFP(log, APF, Ty); 2594 break; 2595 case LibFunc_log2: 2596 case LibFunc_log2f: 2597 case LibFunc_log2_finite: 2598 case LibFunc_log2f_finite: 2599 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2600 // TODO: What about hosts that lack a C99 library? 2601 return ConstantFoldFP(log2, APF, Ty); 2602 break; 2603 case LibFunc_log10: 2604 case LibFunc_log10f: 2605 case LibFunc_log10_finite: 2606 case LibFunc_log10f_finite: 2607 if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) 2608 // TODO: What about hosts that lack a C99 library? 2609 return ConstantFoldFP(log10, APF, Ty); 2610 break; 2611 case LibFunc_ilogb: 2612 case LibFunc_ilogbf: 2613 if (!APF.isZero() && TLI->has(Func)) 2614 return ConstantInt::get(Ty, ilogb(APF), true); 2615 break; 2616 case LibFunc_logb: 2617 case LibFunc_logbf: 2618 if (!APF.isZero() && TLI->has(Func)) 2619 return ConstantFoldFP(logb, APF, Ty); 2620 break; 2621 case LibFunc_log1p: 2622 case LibFunc_log1pf: 2623 // Implement optional behavior from C's Annex F for +/-0.0. 2624 if (U.isZero()) 2625 return ConstantFP::get(Ty->getContext(), U); 2626 if (APF > APFloat::getOne(APF.getSemantics(), true) && TLI->has(Func)) 2627 return ConstantFoldFP(log1p, APF, Ty); 2628 break; 2629 case LibFunc_logl: 2630 return nullptr; 2631 case LibFunc_erf: 2632 case LibFunc_erff: 2633 if (TLI->has(Func)) 2634 return ConstantFoldFP(erf, APF, Ty); 2635 break; 2636 case LibFunc_nearbyint: 2637 case LibFunc_nearbyintf: 2638 case LibFunc_rint: 2639 case LibFunc_rintf: 2640 if (TLI->has(Func)) { 2641 U.roundToIntegral(APFloat::rmNearestTiesToEven); 2642 return ConstantFP::get(Ty->getContext(), U); 2643 } 2644 break; 2645 case LibFunc_round: 2646 case LibFunc_roundf: 2647 if (TLI->has(Func)) { 2648 U.roundToIntegral(APFloat::rmNearestTiesToAway); 2649 return ConstantFP::get(Ty->getContext(), U); 2650 } 2651 break; 2652 case LibFunc_sin: 2653 case LibFunc_sinf: 2654 if (TLI->has(Func)) 2655 return ConstantFoldFP(sin, APF, Ty); 2656 break; 2657 case LibFunc_sinh: 2658 case LibFunc_sinhf: 2659 case LibFunc_sinh_finite: 2660 case LibFunc_sinhf_finite: 2661 if (TLI->has(Func)) 2662 return ConstantFoldFP(sinh, APF, Ty); 2663 break; 2664 case LibFunc_sqrt: 2665 case LibFunc_sqrtf: 2666 if (!APF.isNegative() && TLI->has(Func)) 2667 return ConstantFoldFP(sqrt, APF, Ty); 2668 break; 2669 case LibFunc_tan: 2670 case LibFunc_tanf: 2671 if (TLI->has(Func)) 2672 return ConstantFoldFP(tan, APF, Ty); 2673 break; 2674 case LibFunc_tanh: 2675 case LibFunc_tanhf: 2676 if (TLI->has(Func)) 2677 return ConstantFoldFP(tanh, APF, Ty); 2678 break; 2679 case LibFunc_trunc: 2680 case LibFunc_truncf: 2681 if (TLI->has(Func)) { 2682 U.roundToIntegral(APFloat::rmTowardZero); 2683 return ConstantFP::get(Ty->getContext(), U); 2684 } 2685 break; 2686 } 2687 return nullptr; 2688 } 2689 2690 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 2691 switch (IntrinsicID) { 2692 case Intrinsic::bswap: 2693 return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); 2694 case Intrinsic::ctpop: 2695 return ConstantInt::get(Ty, Op->getValue().popcount()); 2696 case Intrinsic::bitreverse: 2697 return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); 2698 case Intrinsic::convert_from_fp16: { 2699 APFloat Val(APFloat::IEEEhalf(), Op->getValue()); 2700 2701 bool lost = false; 2702 APFloat::opStatus status = Val.convert( 2703 Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); 2704 2705 // Conversion is always precise. 2706 (void)status; 2707 assert(status != APFloat::opInexact && !lost && 2708 "Precision lost during fp16 constfolding"); 2709 2710 return ConstantFP::get(Ty->getContext(), Val); 2711 } 2712 2713 case Intrinsic::amdgcn_s_wqm: { 2714 uint64_t Val = Op->getZExtValue(); 2715 Val |= (Val & 0x5555555555555555ULL) << 1 | 2716 ((Val >> 1) & 0x5555555555555555ULL); 2717 Val |= (Val & 0x3333333333333333ULL) << 2 | 2718 ((Val >> 2) & 0x3333333333333333ULL); 2719 return ConstantInt::get(Ty, Val); 2720 } 2721 2722 case Intrinsic::amdgcn_s_quadmask: { 2723 uint64_t Val = Op->getZExtValue(); 2724 uint64_t QuadMask = 0; 2725 for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) { 2726 if (!(Val & 0xF)) 2727 continue; 2728 2729 QuadMask |= (1ULL << I); 2730 } 2731 return ConstantInt::get(Ty, QuadMask); 2732 } 2733 2734 case Intrinsic::amdgcn_s_bitreplicate: { 2735 uint64_t Val = Op->getZExtValue(); 2736 Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16; 2737 Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8; 2738 Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4; 2739 Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2; 2740 Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1; 2741 Val = Val | Val << 1; 2742 return ConstantInt::get(Ty, Val); 2743 } 2744 2745 default: 2746 return nullptr; 2747 } 2748 } 2749 2750 switch (IntrinsicID) { 2751 default: break; 2752 case Intrinsic::vector_reduce_add: 2753 case Intrinsic::vector_reduce_mul: 2754 case Intrinsic::vector_reduce_and: 2755 case Intrinsic::vector_reduce_or: 2756 case Intrinsic::vector_reduce_xor: 2757 case Intrinsic::vector_reduce_smin: 2758 case Intrinsic::vector_reduce_smax: 2759 case Intrinsic::vector_reduce_umin: 2760 case Intrinsic::vector_reduce_umax: 2761 if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) 2762 return C; 2763 break; 2764 } 2765 2766 // Support ConstantVector in case we have an Undef in the top. 2767 if (isa<ConstantVector>(Operands[0]) || 2768 isa<ConstantDataVector>(Operands[0])) { 2769 auto *Op = cast<Constant>(Operands[0]); 2770 switch (IntrinsicID) { 2771 default: break; 2772 case Intrinsic::x86_sse_cvtss2si: 2773 case Intrinsic::x86_sse_cvtss2si64: 2774 case Intrinsic::x86_sse2_cvtsd2si: 2775 case Intrinsic::x86_sse2_cvtsd2si64: 2776 if (ConstantFP *FPOp = 2777 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2778 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2779 /*roundTowardZero=*/false, Ty, 2780 /*IsSigned*/true); 2781 break; 2782 case Intrinsic::x86_sse_cvttss2si: 2783 case Intrinsic::x86_sse_cvttss2si64: 2784 case Intrinsic::x86_sse2_cvttsd2si: 2785 case Intrinsic::x86_sse2_cvttsd2si64: 2786 if (ConstantFP *FPOp = 2787 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 2788 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 2789 /*roundTowardZero=*/true, Ty, 2790 /*IsSigned*/true); 2791 break; 2792 } 2793 } 2794 2795 return nullptr; 2796 } 2797 2798 static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, 2799 const ConstrainedFPIntrinsic *Call) { 2800 APFloat::opStatus St = APFloat::opOK; 2801 auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call); 2802 FCmpInst::Predicate Cond = FCmp->getPredicate(); 2803 if (FCmp->isSignaling()) { 2804 if (Op1.isNaN() || Op2.isNaN()) 2805 St = APFloat::opInvalidOp; 2806 } else { 2807 if (Op1.isSignaling() || Op2.isSignaling()) 2808 St = APFloat::opInvalidOp; 2809 } 2810 bool Result = FCmpInst::compare(Op1, Op2, Cond); 2811 if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St)) 2812 return ConstantInt::get(Call->getType()->getScalarType(), Result); 2813 return nullptr; 2814 } 2815 2816 static Constant *ConstantFoldLibCall2(StringRef Name, Type *Ty, 2817 ArrayRef<Constant *> Operands, 2818 const TargetLibraryInfo *TLI) { 2819 if (!TLI) 2820 return nullptr; 2821 2822 LibFunc Func = NotLibFunc; 2823 if (!TLI->getLibFunc(Name, Func)) 2824 return nullptr; 2825 2826 const auto *Op1 = dyn_cast<ConstantFP>(Operands[0]); 2827 if (!Op1) 2828 return nullptr; 2829 2830 const auto *Op2 = dyn_cast<ConstantFP>(Operands[1]); 2831 if (!Op2) 2832 return nullptr; 2833 2834 const APFloat &Op1V = Op1->getValueAPF(); 2835 const APFloat &Op2V = Op2->getValueAPF(); 2836 2837 switch (Func) { 2838 default: 2839 break; 2840 case LibFunc_pow: 2841 case LibFunc_powf: 2842 case LibFunc_pow_finite: 2843 case LibFunc_powf_finite: 2844 if (TLI->has(Func)) 2845 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2846 break; 2847 case LibFunc_fmod: 2848 case LibFunc_fmodf: 2849 if (TLI->has(Func)) { 2850 APFloat V = Op1->getValueAPF(); 2851 if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) 2852 return ConstantFP::get(Ty->getContext(), V); 2853 } 2854 break; 2855 case LibFunc_remainder: 2856 case LibFunc_remainderf: 2857 if (TLI->has(Func)) { 2858 APFloat V = Op1->getValueAPF(); 2859 if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) 2860 return ConstantFP::get(Ty->getContext(), V); 2861 } 2862 break; 2863 case LibFunc_atan2: 2864 case LibFunc_atan2f: 2865 // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm 2866 // (Solaris), so we do not assume a known result for that. 2867 if (Op1V.isZero() && Op2V.isZero()) 2868 return nullptr; 2869 [[fallthrough]]; 2870 case LibFunc_atan2_finite: 2871 case LibFunc_atan2f_finite: 2872 if (TLI->has(Func)) 2873 return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); 2874 break; 2875 } 2876 2877 return nullptr; 2878 } 2879 2880 static Constant *ConstantFoldIntrinsicCall2(Intrinsic::ID IntrinsicID, Type *Ty, 2881 ArrayRef<Constant *> Operands, 2882 const CallBase *Call) { 2883 assert(Operands.size() == 2 && "Wrong number of operands."); 2884 2885 if (Ty->isFloatingPointTy()) { 2886 // TODO: We should have undef handling for all of the FP intrinsics that 2887 // are attempted to be folded in this function. 2888 bool IsOp0Undef = isa<UndefValue>(Operands[0]); 2889 bool IsOp1Undef = isa<UndefValue>(Operands[1]); 2890 switch (IntrinsicID) { 2891 case Intrinsic::maxnum: 2892 case Intrinsic::minnum: 2893 case Intrinsic::maximum: 2894 case Intrinsic::minimum: 2895 // If one argument is undef, return the other argument. 2896 if (IsOp0Undef) 2897 return Operands[1]; 2898 if (IsOp1Undef) 2899 return Operands[0]; 2900 break; 2901 } 2902 } 2903 2904 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 2905 const APFloat &Op1V = Op1->getValueAPF(); 2906 2907 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 2908 if (Op2->getType() != Op1->getType()) 2909 return nullptr; 2910 const APFloat &Op2V = Op2->getValueAPF(); 2911 2912 if (const auto *ConstrIntr = 2913 dyn_cast_if_present<ConstrainedFPIntrinsic>(Call)) { 2914 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 2915 APFloat Res = Op1V; 2916 APFloat::opStatus St; 2917 switch (IntrinsicID) { 2918 default: 2919 return nullptr; 2920 case Intrinsic::experimental_constrained_fadd: 2921 St = Res.add(Op2V, RM); 2922 break; 2923 case Intrinsic::experimental_constrained_fsub: 2924 St = Res.subtract(Op2V, RM); 2925 break; 2926 case Intrinsic::experimental_constrained_fmul: 2927 St = Res.multiply(Op2V, RM); 2928 break; 2929 case Intrinsic::experimental_constrained_fdiv: 2930 St = Res.divide(Op2V, RM); 2931 break; 2932 case Intrinsic::experimental_constrained_frem: 2933 St = Res.mod(Op2V); 2934 break; 2935 case Intrinsic::experimental_constrained_fcmp: 2936 case Intrinsic::experimental_constrained_fcmps: 2937 return evaluateCompare(Op1V, Op2V, ConstrIntr); 2938 } 2939 if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), 2940 St)) 2941 return ConstantFP::get(Ty->getContext(), Res); 2942 return nullptr; 2943 } 2944 2945 switch (IntrinsicID) { 2946 default: 2947 break; 2948 case Intrinsic::copysign: 2949 return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); 2950 case Intrinsic::minnum: 2951 return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); 2952 case Intrinsic::maxnum: 2953 return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); 2954 case Intrinsic::minimum: 2955 return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); 2956 case Intrinsic::maximum: 2957 return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); 2958 } 2959 2960 if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) 2961 return nullptr; 2962 2963 switch (IntrinsicID) { 2964 default: 2965 break; 2966 case Intrinsic::pow: 2967 return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); 2968 case Intrinsic::amdgcn_fmul_legacy: 2969 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 2970 // NaN or infinity, gives +0.0. 2971 if (Op1V.isZero() || Op2V.isZero()) 2972 return ConstantFP::getZero(Ty); 2973 return ConstantFP::get(Ty->getContext(), Op1V * Op2V); 2974 } 2975 2976 } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { 2977 switch (IntrinsicID) { 2978 case Intrinsic::ldexp: { 2979 return ConstantFP::get( 2980 Ty->getContext(), 2981 scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven)); 2982 } 2983 case Intrinsic::is_fpclass: { 2984 FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue()); 2985 bool Result = 2986 ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) || 2987 ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) || 2988 ((Mask & fcNegInf) && Op1V.isNegInfinity()) || 2989 ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) || 2990 ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) || 2991 ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) || 2992 ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) || 2993 ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) || 2994 ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) || 2995 ((Mask & fcPosInf) && Op1V.isPosInfinity()); 2996 return ConstantInt::get(Ty, Result); 2997 } 2998 case Intrinsic::powi: { 2999 int Exp = static_cast<int>(Op2C->getSExtValue()); 3000 switch (Ty->getTypeID()) { 3001 case Type::HalfTyID: 3002 case Type::FloatTyID: { 3003 APFloat Res(static_cast<float>(std::pow(Op1V.convertToFloat(), Exp))); 3004 if (Ty->isHalfTy()) { 3005 bool Unused; 3006 Res.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 3007 &Unused); 3008 } 3009 return ConstantFP::get(Ty->getContext(), Res); 3010 } 3011 case Type::DoubleTyID: 3012 return ConstantFP::get(Ty, std::pow(Op1V.convertToDouble(), Exp)); 3013 default: 3014 return nullptr; 3015 } 3016 } 3017 default: 3018 break; 3019 } 3020 } 3021 return nullptr; 3022 } 3023 3024 if (Operands[0]->getType()->isIntegerTy() && 3025 Operands[1]->getType()->isIntegerTy()) { 3026 const APInt *C0, *C1; 3027 if (!getConstIntOrUndef(Operands[0], C0) || 3028 !getConstIntOrUndef(Operands[1], C1)) 3029 return nullptr; 3030 3031 switch (IntrinsicID) { 3032 default: break; 3033 case Intrinsic::smax: 3034 case Intrinsic::smin: 3035 case Intrinsic::umax: 3036 case Intrinsic::umin: 3037 // This is the same as for binary ops - poison propagates. 3038 // TODO: Poison handling should be consolidated. 3039 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3040 return PoisonValue::get(Ty); 3041 3042 if (!C0 && !C1) 3043 return UndefValue::get(Ty); 3044 if (!C0 || !C1) 3045 return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); 3046 return ConstantInt::get( 3047 Ty, ICmpInst::compare(*C0, *C1, 3048 MinMaxIntrinsic::getPredicate(IntrinsicID)) 3049 ? *C0 3050 : *C1); 3051 3052 case Intrinsic::scmp: 3053 case Intrinsic::ucmp: 3054 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3055 return PoisonValue::get(Ty); 3056 3057 if (!C0 || !C1) 3058 return ConstantInt::get(Ty, 0); 3059 3060 int Res; 3061 if (IntrinsicID == Intrinsic::scmp) 3062 Res = C0->sgt(*C1) ? 1 : C0->slt(*C1) ? -1 : 0; 3063 else 3064 Res = C0->ugt(*C1) ? 1 : C0->ult(*C1) ? -1 : 0; 3065 return ConstantInt::get(Ty, Res, /*IsSigned=*/true); 3066 3067 case Intrinsic::usub_with_overflow: 3068 case Intrinsic::ssub_with_overflow: 3069 // X - undef -> { 0, false } 3070 // undef - X -> { 0, false } 3071 if (!C0 || !C1) 3072 return Constant::getNullValue(Ty); 3073 [[fallthrough]]; 3074 case Intrinsic::uadd_with_overflow: 3075 case Intrinsic::sadd_with_overflow: 3076 // X + undef -> { -1, false } 3077 // undef + x -> { -1, false } 3078 if (!C0 || !C1) { 3079 return ConstantStruct::get( 3080 cast<StructType>(Ty), 3081 {Constant::getAllOnesValue(Ty->getStructElementType(0)), 3082 Constant::getNullValue(Ty->getStructElementType(1))}); 3083 } 3084 [[fallthrough]]; 3085 case Intrinsic::smul_with_overflow: 3086 case Intrinsic::umul_with_overflow: { 3087 // undef * X -> { 0, false } 3088 // X * undef -> { 0, false } 3089 if (!C0 || !C1) 3090 return Constant::getNullValue(Ty); 3091 3092 APInt Res; 3093 bool Overflow; 3094 switch (IntrinsicID) { 3095 default: llvm_unreachable("Invalid case"); 3096 case Intrinsic::sadd_with_overflow: 3097 Res = C0->sadd_ov(*C1, Overflow); 3098 break; 3099 case Intrinsic::uadd_with_overflow: 3100 Res = C0->uadd_ov(*C1, Overflow); 3101 break; 3102 case Intrinsic::ssub_with_overflow: 3103 Res = C0->ssub_ov(*C1, Overflow); 3104 break; 3105 case Intrinsic::usub_with_overflow: 3106 Res = C0->usub_ov(*C1, Overflow); 3107 break; 3108 case Intrinsic::smul_with_overflow: 3109 Res = C0->smul_ov(*C1, Overflow); 3110 break; 3111 case Intrinsic::umul_with_overflow: 3112 Res = C0->umul_ov(*C1, Overflow); 3113 break; 3114 } 3115 Constant *Ops[] = { 3116 ConstantInt::get(Ty->getContext(), Res), 3117 ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) 3118 }; 3119 return ConstantStruct::get(cast<StructType>(Ty), Ops); 3120 } 3121 case Intrinsic::uadd_sat: 3122 case Intrinsic::sadd_sat: 3123 // This is the same as for binary ops - poison propagates. 3124 // TODO: Poison handling should be consolidated. 3125 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3126 return PoisonValue::get(Ty); 3127 3128 if (!C0 && !C1) 3129 return UndefValue::get(Ty); 3130 if (!C0 || !C1) 3131 return Constant::getAllOnesValue(Ty); 3132 if (IntrinsicID == Intrinsic::uadd_sat) 3133 return ConstantInt::get(Ty, C0->uadd_sat(*C1)); 3134 else 3135 return ConstantInt::get(Ty, C0->sadd_sat(*C1)); 3136 case Intrinsic::usub_sat: 3137 case Intrinsic::ssub_sat: 3138 // This is the same as for binary ops - poison propagates. 3139 // TODO: Poison handling should be consolidated. 3140 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3141 return PoisonValue::get(Ty); 3142 3143 if (!C0 && !C1) 3144 return UndefValue::get(Ty); 3145 if (!C0 || !C1) 3146 return Constant::getNullValue(Ty); 3147 if (IntrinsicID == Intrinsic::usub_sat) 3148 return ConstantInt::get(Ty, C0->usub_sat(*C1)); 3149 else 3150 return ConstantInt::get(Ty, C0->ssub_sat(*C1)); 3151 case Intrinsic::cttz: 3152 case Intrinsic::ctlz: 3153 assert(C1 && "Must be constant int"); 3154 3155 // cttz(0, 1) and ctlz(0, 1) are poison. 3156 if (C1->isOne() && (!C0 || C0->isZero())) 3157 return PoisonValue::get(Ty); 3158 if (!C0) 3159 return Constant::getNullValue(Ty); 3160 if (IntrinsicID == Intrinsic::cttz) 3161 return ConstantInt::get(Ty, C0->countr_zero()); 3162 else 3163 return ConstantInt::get(Ty, C0->countl_zero()); 3164 3165 case Intrinsic::abs: 3166 assert(C1 && "Must be constant int"); 3167 assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); 3168 3169 // Undef or minimum val operand with poison min --> poison 3170 if (C1->isOne() && (!C0 || C0->isMinSignedValue())) 3171 return PoisonValue::get(Ty); 3172 3173 // Undef operand with no poison min --> 0 (sign bit must be clear) 3174 if (!C0) 3175 return Constant::getNullValue(Ty); 3176 3177 return ConstantInt::get(Ty, C0->abs()); 3178 case Intrinsic::amdgcn_wave_reduce_umin: 3179 case Intrinsic::amdgcn_wave_reduce_umax: 3180 return dyn_cast<Constant>(Operands[0]); 3181 } 3182 3183 return nullptr; 3184 } 3185 3186 // Support ConstantVector in case we have an Undef in the top. 3187 if ((isa<ConstantVector>(Operands[0]) || 3188 isa<ConstantDataVector>(Operands[0])) && 3189 // Check for default rounding mode. 3190 // FIXME: Support other rounding modes? 3191 isa<ConstantInt>(Operands[1]) && 3192 cast<ConstantInt>(Operands[1])->getValue() == 4) { 3193 auto *Op = cast<Constant>(Operands[0]); 3194 switch (IntrinsicID) { 3195 default: break; 3196 case Intrinsic::x86_avx512_vcvtss2si32: 3197 case Intrinsic::x86_avx512_vcvtss2si64: 3198 case Intrinsic::x86_avx512_vcvtsd2si32: 3199 case Intrinsic::x86_avx512_vcvtsd2si64: 3200 if (ConstantFP *FPOp = 3201 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 3202 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 3203 /*roundTowardZero=*/false, Ty, 3204 /*IsSigned*/true); 3205 break; 3206 case Intrinsic::x86_avx512_vcvtss2usi32: 3207 case Intrinsic::x86_avx512_vcvtss2usi64: 3208 case Intrinsic::x86_avx512_vcvtsd2usi32: 3209 case Intrinsic::x86_avx512_vcvtsd2usi64: 3210 if (ConstantFP *FPOp = 3211 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 3212 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 3213 /*roundTowardZero=*/false, Ty, 3214 /*IsSigned*/false); 3215 break; 3216 case Intrinsic::x86_avx512_cvttss2si: 3217 case Intrinsic::x86_avx512_cvttss2si64: 3218 case Intrinsic::x86_avx512_cvttsd2si: 3219 case Intrinsic::x86_avx512_cvttsd2si64: 3220 if (ConstantFP *FPOp = 3221 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 3222 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 3223 /*roundTowardZero=*/true, Ty, 3224 /*IsSigned*/true); 3225 break; 3226 case Intrinsic::x86_avx512_cvttss2usi: 3227 case Intrinsic::x86_avx512_cvttss2usi64: 3228 case Intrinsic::x86_avx512_cvttsd2usi: 3229 case Intrinsic::x86_avx512_cvttsd2usi64: 3230 if (ConstantFP *FPOp = 3231 dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) 3232 return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), 3233 /*roundTowardZero=*/true, Ty, 3234 /*IsSigned*/false); 3235 break; 3236 } 3237 } 3238 return nullptr; 3239 } 3240 3241 static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, 3242 const APFloat &S0, 3243 const APFloat &S1, 3244 const APFloat &S2) { 3245 unsigned ID; 3246 const fltSemantics &Sem = S0.getSemantics(); 3247 APFloat MA(Sem), SC(Sem), TC(Sem); 3248 if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { 3249 if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { 3250 // S2 < 0 3251 ID = 5; 3252 SC = -S0; 3253 } else { 3254 ID = 4; 3255 SC = S0; 3256 } 3257 MA = S2; 3258 TC = -S1; 3259 } else if (abs(S1) >= abs(S0)) { 3260 if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { 3261 // S1 < 0 3262 ID = 3; 3263 TC = -S2; 3264 } else { 3265 ID = 2; 3266 TC = S2; 3267 } 3268 MA = S1; 3269 SC = S0; 3270 } else { 3271 if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { 3272 // S0 < 0 3273 ID = 1; 3274 SC = S2; 3275 } else { 3276 ID = 0; 3277 SC = -S2; 3278 } 3279 MA = S0; 3280 TC = -S1; 3281 } 3282 switch (IntrinsicID) { 3283 default: 3284 llvm_unreachable("unhandled amdgcn cube intrinsic"); 3285 case Intrinsic::amdgcn_cubeid: 3286 return APFloat(Sem, ID); 3287 case Intrinsic::amdgcn_cubema: 3288 return MA + MA; 3289 case Intrinsic::amdgcn_cubesc: 3290 return SC; 3291 case Intrinsic::amdgcn_cubetc: 3292 return TC; 3293 } 3294 } 3295 3296 static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, 3297 Type *Ty) { 3298 const APInt *C0, *C1, *C2; 3299 if (!getConstIntOrUndef(Operands[0], C0) || 3300 !getConstIntOrUndef(Operands[1], C1) || 3301 !getConstIntOrUndef(Operands[2], C2)) 3302 return nullptr; 3303 3304 if (!C2) 3305 return UndefValue::get(Ty); 3306 3307 APInt Val(32, 0); 3308 unsigned NumUndefBytes = 0; 3309 for (unsigned I = 0; I < 32; I += 8) { 3310 unsigned Sel = C2->extractBitsAsZExtValue(8, I); 3311 unsigned B = 0; 3312 3313 if (Sel >= 13) 3314 B = 0xff; 3315 else if (Sel == 12) 3316 B = 0x00; 3317 else { 3318 const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; 3319 if (!Src) 3320 ++NumUndefBytes; 3321 else if (Sel < 8) 3322 B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); 3323 else 3324 B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; 3325 } 3326 3327 Val.insertBits(B, I, 8); 3328 } 3329 3330 if (NumUndefBytes == 4) 3331 return UndefValue::get(Ty); 3332 3333 return ConstantInt::get(Ty, Val); 3334 } 3335 3336 static Constant *ConstantFoldScalarCall3(StringRef Name, 3337 Intrinsic::ID IntrinsicID, 3338 Type *Ty, 3339 ArrayRef<Constant *> Operands, 3340 const TargetLibraryInfo *TLI, 3341 const CallBase *Call) { 3342 assert(Operands.size() == 3 && "Wrong number of operands."); 3343 3344 if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { 3345 if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { 3346 if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { 3347 const APFloat &C1 = Op1->getValueAPF(); 3348 const APFloat &C2 = Op2->getValueAPF(); 3349 const APFloat &C3 = Op3->getValueAPF(); 3350 3351 if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { 3352 RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); 3353 APFloat Res = C1; 3354 APFloat::opStatus St; 3355 switch (IntrinsicID) { 3356 default: 3357 return nullptr; 3358 case Intrinsic::experimental_constrained_fma: 3359 case Intrinsic::experimental_constrained_fmuladd: 3360 St = Res.fusedMultiplyAdd(C2, C3, RM); 3361 break; 3362 } 3363 if (mayFoldConstrained( 3364 const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) 3365 return ConstantFP::get(Ty->getContext(), Res); 3366 return nullptr; 3367 } 3368 3369 switch (IntrinsicID) { 3370 default: break; 3371 case Intrinsic::amdgcn_fma_legacy: { 3372 // The legacy behaviour is that multiplying +/- 0.0 by anything, even 3373 // NaN or infinity, gives +0.0. 3374 if (C1.isZero() || C2.isZero()) { 3375 // It's tempting to just return C3 here, but that would give the 3376 // wrong result if C3 was -0.0. 3377 return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); 3378 } 3379 [[fallthrough]]; 3380 } 3381 case Intrinsic::fma: 3382 case Intrinsic::fmuladd: { 3383 APFloat V = C1; 3384 V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); 3385 return ConstantFP::get(Ty->getContext(), V); 3386 } 3387 case Intrinsic::amdgcn_cubeid: 3388 case Intrinsic::amdgcn_cubema: 3389 case Intrinsic::amdgcn_cubesc: 3390 case Intrinsic::amdgcn_cubetc: { 3391 APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); 3392 return ConstantFP::get(Ty->getContext(), V); 3393 } 3394 } 3395 } 3396 } 3397 } 3398 3399 if (IntrinsicID == Intrinsic::smul_fix || 3400 IntrinsicID == Intrinsic::smul_fix_sat) { 3401 // poison * C -> poison 3402 // C * poison -> poison 3403 if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) 3404 return PoisonValue::get(Ty); 3405 3406 const APInt *C0, *C1; 3407 if (!getConstIntOrUndef(Operands[0], C0) || 3408 !getConstIntOrUndef(Operands[1], C1)) 3409 return nullptr; 3410 3411 // undef * C -> 0 3412 // C * undef -> 0 3413 if (!C0 || !C1) 3414 return Constant::getNullValue(Ty); 3415 3416 // This code performs rounding towards negative infinity in case the result 3417 // cannot be represented exactly for the given scale. Targets that do care 3418 // about rounding should use a target hook for specifying how rounding 3419 // should be done, and provide their own folding to be consistent with 3420 // rounding. This is the same approach as used by 3421 // DAGTypeLegalizer::ExpandIntRes_MULFIX. 3422 unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); 3423 unsigned Width = C0->getBitWidth(); 3424 assert(Scale < Width && "Illegal scale."); 3425 unsigned ExtendedWidth = Width * 2; 3426 APInt Product = 3427 (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale); 3428 if (IntrinsicID == Intrinsic::smul_fix_sat) { 3429 APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth); 3430 APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth); 3431 Product = APIntOps::smin(Product, Max); 3432 Product = APIntOps::smax(Product, Min); 3433 } 3434 return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); 3435 } 3436 3437 if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { 3438 const APInt *C0, *C1, *C2; 3439 if (!getConstIntOrUndef(Operands[0], C0) || 3440 !getConstIntOrUndef(Operands[1], C1) || 3441 !getConstIntOrUndef(Operands[2], C2)) 3442 return nullptr; 3443 3444 bool IsRight = IntrinsicID == Intrinsic::fshr; 3445 if (!C2) 3446 return Operands[IsRight ? 1 : 0]; 3447 if (!C0 && !C1) 3448 return UndefValue::get(Ty); 3449 3450 // The shift amount is interpreted as modulo the bitwidth. If the shift 3451 // amount is effectively 0, avoid UB due to oversized inverse shift below. 3452 unsigned BitWidth = C2->getBitWidth(); 3453 unsigned ShAmt = C2->urem(BitWidth); 3454 if (!ShAmt) 3455 return Operands[IsRight ? 1 : 0]; 3456 3457 // (C0 << ShlAmt) | (C1 >> LshrAmt) 3458 unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; 3459 unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; 3460 if (!C0) 3461 return ConstantInt::get(Ty, C1->lshr(LshrAmt)); 3462 if (!C1) 3463 return ConstantInt::get(Ty, C0->shl(ShlAmt)); 3464 return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); 3465 } 3466 3467 if (IntrinsicID == Intrinsic::amdgcn_perm) 3468 return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); 3469 3470 return nullptr; 3471 } 3472 3473 static Constant *ConstantFoldScalarCall(StringRef Name, 3474 Intrinsic::ID IntrinsicID, 3475 Type *Ty, 3476 ArrayRef<Constant *> Operands, 3477 const TargetLibraryInfo *TLI, 3478 const CallBase *Call) { 3479 if (Operands.size() == 1) 3480 return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); 3481 3482 if (Operands.size() == 2) { 3483 if (Constant *FoldedLibCall = 3484 ConstantFoldLibCall2(Name, Ty, Operands, TLI)) { 3485 return FoldedLibCall; 3486 } 3487 return ConstantFoldIntrinsicCall2(IntrinsicID, Ty, Operands, Call); 3488 } 3489 3490 if (Operands.size() == 3) 3491 return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); 3492 3493 return nullptr; 3494 } 3495 3496 static Constant *ConstantFoldFixedVectorCall( 3497 StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, 3498 ArrayRef<Constant *> Operands, const DataLayout &DL, 3499 const TargetLibraryInfo *TLI, const CallBase *Call) { 3500 SmallVector<Constant *, 4> Result(FVTy->getNumElements()); 3501 SmallVector<Constant *, 4> Lane(Operands.size()); 3502 Type *Ty = FVTy->getElementType(); 3503 3504 switch (IntrinsicID) { 3505 case Intrinsic::masked_load: { 3506 auto *SrcPtr = Operands[0]; 3507 auto *Mask = Operands[2]; 3508 auto *Passthru = Operands[3]; 3509 3510 Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); 3511 3512 SmallVector<Constant *, 32> NewElements; 3513 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3514 auto *MaskElt = Mask->getAggregateElement(I); 3515 if (!MaskElt) 3516 break; 3517 auto *PassthruElt = Passthru->getAggregateElement(I); 3518 auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; 3519 if (isa<UndefValue>(MaskElt)) { 3520 if (PassthruElt) 3521 NewElements.push_back(PassthruElt); 3522 else if (VecElt) 3523 NewElements.push_back(VecElt); 3524 else 3525 return nullptr; 3526 } 3527 if (MaskElt->isNullValue()) { 3528 if (!PassthruElt) 3529 return nullptr; 3530 NewElements.push_back(PassthruElt); 3531 } else if (MaskElt->isOneValue()) { 3532 if (!VecElt) 3533 return nullptr; 3534 NewElements.push_back(VecElt); 3535 } else { 3536 return nullptr; 3537 } 3538 } 3539 if (NewElements.size() != FVTy->getNumElements()) 3540 return nullptr; 3541 return ConstantVector::get(NewElements); 3542 } 3543 case Intrinsic::arm_mve_vctp8: 3544 case Intrinsic::arm_mve_vctp16: 3545 case Intrinsic::arm_mve_vctp32: 3546 case Intrinsic::arm_mve_vctp64: { 3547 if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { 3548 unsigned Lanes = FVTy->getNumElements(); 3549 uint64_t Limit = Op->getZExtValue(); 3550 3551 SmallVector<Constant *, 16> NCs; 3552 for (unsigned i = 0; i < Lanes; i++) { 3553 if (i < Limit) 3554 NCs.push_back(ConstantInt::getTrue(Ty)); 3555 else 3556 NCs.push_back(ConstantInt::getFalse(Ty)); 3557 } 3558 return ConstantVector::get(NCs); 3559 } 3560 return nullptr; 3561 } 3562 case Intrinsic::get_active_lane_mask: { 3563 auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); 3564 auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); 3565 if (Op0 && Op1) { 3566 unsigned Lanes = FVTy->getNumElements(); 3567 uint64_t Base = Op0->getZExtValue(); 3568 uint64_t Limit = Op1->getZExtValue(); 3569 3570 SmallVector<Constant *, 16> NCs; 3571 for (unsigned i = 0; i < Lanes; i++) { 3572 if (Base + i < Limit) 3573 NCs.push_back(ConstantInt::getTrue(Ty)); 3574 else 3575 NCs.push_back(ConstantInt::getFalse(Ty)); 3576 } 3577 return ConstantVector::get(NCs); 3578 } 3579 return nullptr; 3580 } 3581 default: 3582 break; 3583 } 3584 3585 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3586 // Gather a column of constants. 3587 for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { 3588 // Some intrinsics use a scalar type for certain arguments. 3589 if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J, /*TTI=*/nullptr)) { 3590 Lane[J] = Operands[J]; 3591 continue; 3592 } 3593 3594 Constant *Agg = Operands[J]->getAggregateElement(I); 3595 if (!Agg) 3596 return nullptr; 3597 3598 Lane[J] = Agg; 3599 } 3600 3601 // Use the regular scalar folding to simplify this column. 3602 Constant *Folded = 3603 ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); 3604 if (!Folded) 3605 return nullptr; 3606 Result[I] = Folded; 3607 } 3608 3609 return ConstantVector::get(Result); 3610 } 3611 3612 static Constant *ConstantFoldScalableVectorCall( 3613 StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, 3614 ArrayRef<Constant *> Operands, const DataLayout &DL, 3615 const TargetLibraryInfo *TLI, const CallBase *Call) { 3616 switch (IntrinsicID) { 3617 case Intrinsic::aarch64_sve_convert_from_svbool: { 3618 auto *Src = dyn_cast<Constant>(Operands[0]); 3619 if (!Src || !Src->isNullValue()) 3620 break; 3621 3622 return ConstantInt::getFalse(SVTy); 3623 } 3624 default: 3625 break; 3626 } 3627 return nullptr; 3628 } 3629 3630 static std::pair<Constant *, Constant *> 3631 ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) { 3632 if (isa<PoisonValue>(Op)) 3633 return {Op, PoisonValue::get(IntTy)}; 3634 3635 auto *ConstFP = dyn_cast<ConstantFP>(Op); 3636 if (!ConstFP) 3637 return {}; 3638 3639 const APFloat &U = ConstFP->getValueAPF(); 3640 int FrexpExp; 3641 APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven); 3642 Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant); 3643 3644 // The exponent is an "unspecified value" for inf/nan. We use zero to avoid 3645 // using undef. 3646 Constant *Result1 = FrexpMant.isFinite() 3647 ? ConstantInt::getSigned(IntTy, FrexpExp) 3648 : ConstantInt::getNullValue(IntTy); 3649 return {Result0, Result1}; 3650 } 3651 3652 /// Handle intrinsics that return tuples, which may be tuples of vectors. 3653 static Constant * 3654 ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID, 3655 StructType *StTy, ArrayRef<Constant *> Operands, 3656 const DataLayout &DL, const TargetLibraryInfo *TLI, 3657 const CallBase *Call) { 3658 3659 switch (IntrinsicID) { 3660 case Intrinsic::frexp: { 3661 Type *Ty0 = StTy->getContainedType(0); 3662 Type *Ty1 = StTy->getContainedType(1)->getScalarType(); 3663 3664 if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) { 3665 SmallVector<Constant *, 4> Results0(FVTy0->getNumElements()); 3666 SmallVector<Constant *, 4> Results1(FVTy0->getNumElements()); 3667 3668 for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) { 3669 Constant *Lane = Operands[0]->getAggregateElement(I); 3670 std::tie(Results0[I], Results1[I]) = 3671 ConstantFoldScalarFrexpCall(Lane, Ty1); 3672 if (!Results0[I]) 3673 return nullptr; 3674 } 3675 3676 return ConstantStruct::get(StTy, ConstantVector::get(Results0), 3677 ConstantVector::get(Results1)); 3678 } 3679 3680 auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1); 3681 if (!Result0) 3682 return nullptr; 3683 return ConstantStruct::get(StTy, Result0, Result1); 3684 } 3685 case Intrinsic::sincos: { 3686 Type *Ty = StTy->getContainedType(0); 3687 Type *TyScalar = Ty->getScalarType(); 3688 3689 auto ConstantFoldScalarSincosCall = 3690 [&](Constant *Op) -> std::pair<Constant *, Constant *> { 3691 Constant *SinResult = 3692 ConstantFoldScalarCall(Name, Intrinsic::sin, TyScalar, Op, TLI, Call); 3693 Constant *CosResult = 3694 ConstantFoldScalarCall(Name, Intrinsic::cos, TyScalar, Op, TLI, Call); 3695 return std::make_pair(SinResult, CosResult); 3696 }; 3697 3698 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) { 3699 SmallVector<Constant *> SinResults(FVTy->getNumElements()); 3700 SmallVector<Constant *> CosResults(FVTy->getNumElements()); 3701 3702 for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { 3703 Constant *Lane = Operands[0]->getAggregateElement(I); 3704 std::tie(SinResults[I], CosResults[I]) = 3705 ConstantFoldScalarSincosCall(Lane); 3706 if (!SinResults[I] || !CosResults[I]) 3707 return nullptr; 3708 } 3709 3710 return ConstantStruct::get(StTy, ConstantVector::get(SinResults), 3711 ConstantVector::get(CosResults)); 3712 } 3713 3714 auto [SinResult, CosResult] = ConstantFoldScalarSincosCall(Operands[0]); 3715 if (!SinResult || !CosResult) 3716 return nullptr; 3717 return ConstantStruct::get(StTy, SinResult, CosResult); 3718 } 3719 default: 3720 // TODO: Constant folding of vector intrinsics that fall through here does 3721 // not work (e.g. overflow intrinsics) 3722 return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call); 3723 } 3724 3725 return nullptr; 3726 } 3727 3728 } // end anonymous namespace 3729 3730 Constant *llvm::ConstantFoldBinaryIntrinsic(Intrinsic::ID ID, Constant *LHS, 3731 Constant *RHS, Type *Ty, 3732 Instruction *FMFSource) { 3733 return ConstantFoldIntrinsicCall2(ID, Ty, {LHS, RHS}, 3734 dyn_cast_if_present<CallBase>(FMFSource)); 3735 } 3736 3737 Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, 3738 ArrayRef<Constant *> Operands, 3739 const TargetLibraryInfo *TLI, 3740 bool AllowNonDeterministic) { 3741 if (Call->isNoBuiltin()) 3742 return nullptr; 3743 if (!F->hasName()) 3744 return nullptr; 3745 3746 // If this is not an intrinsic and not recognized as a library call, bail out. 3747 Intrinsic::ID IID = F->getIntrinsicID(); 3748 if (IID == Intrinsic::not_intrinsic) { 3749 if (!TLI) 3750 return nullptr; 3751 LibFunc LibF; 3752 if (!TLI->getLibFunc(*F, LibF)) 3753 return nullptr; 3754 } 3755 3756 // Conservatively assume that floating-point libcalls may be 3757 // non-deterministic. 3758 Type *Ty = F->getReturnType(); 3759 if (!AllowNonDeterministic && Ty->isFPOrFPVectorTy()) 3760 return nullptr; 3761 3762 StringRef Name = F->getName(); 3763 if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) 3764 return ConstantFoldFixedVectorCall( 3765 Name, IID, FVTy, Operands, F->getDataLayout(), TLI, Call); 3766 3767 if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) 3768 return ConstantFoldScalableVectorCall( 3769 Name, IID, SVTy, Operands, F->getDataLayout(), TLI, Call); 3770 3771 if (auto *StTy = dyn_cast<StructType>(Ty)) 3772 return ConstantFoldStructCall(Name, IID, StTy, Operands, 3773 F->getDataLayout(), TLI, Call); 3774 3775 // TODO: If this is a library function, we already discovered that above, 3776 // so we should pass the LibFunc, not the name (and it might be better 3777 // still to separate intrinsic handling from libcalls). 3778 return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call); 3779 } 3780 3781 bool llvm::isMathLibCallNoop(const CallBase *Call, 3782 const TargetLibraryInfo *TLI) { 3783 // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap 3784 // (and to some extent ConstantFoldScalarCall). 3785 if (Call->isNoBuiltin() || Call->isStrictFP()) 3786 return false; 3787 Function *F = Call->getCalledFunction(); 3788 if (!F) 3789 return false; 3790 3791 LibFunc Func; 3792 if (!TLI || !TLI->getLibFunc(*F, Func)) 3793 return false; 3794 3795 if (Call->arg_size() == 1) { 3796 if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { 3797 const APFloat &Op = OpC->getValueAPF(); 3798 switch (Func) { 3799 case LibFunc_logl: 3800 case LibFunc_log: 3801 case LibFunc_logf: 3802 case LibFunc_log2l: 3803 case LibFunc_log2: 3804 case LibFunc_log2f: 3805 case LibFunc_log10l: 3806 case LibFunc_log10: 3807 case LibFunc_log10f: 3808 return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); 3809 3810 case LibFunc_expl: 3811 case LibFunc_exp: 3812 case LibFunc_expf: 3813 // FIXME: These boundaries are slightly conservative. 3814 if (OpC->getType()->isDoubleTy()) 3815 return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); 3816 if (OpC->getType()->isFloatTy()) 3817 return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); 3818 break; 3819 3820 case LibFunc_exp2l: 3821 case LibFunc_exp2: 3822 case LibFunc_exp2f: 3823 // FIXME: These boundaries are slightly conservative. 3824 if (OpC->getType()->isDoubleTy()) 3825 return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); 3826 if (OpC->getType()->isFloatTy()) 3827 return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); 3828 break; 3829 3830 case LibFunc_sinl: 3831 case LibFunc_sin: 3832 case LibFunc_sinf: 3833 case LibFunc_cosl: 3834 case LibFunc_cos: 3835 case LibFunc_cosf: 3836 return !Op.isInfinity(); 3837 3838 case LibFunc_tanl: 3839 case LibFunc_tan: 3840 case LibFunc_tanf: { 3841 // FIXME: Stop using the host math library. 3842 // FIXME: The computation isn't done in the right precision. 3843 Type *Ty = OpC->getType(); 3844 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) 3845 return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; 3846 break; 3847 } 3848 3849 case LibFunc_atan: 3850 case LibFunc_atanf: 3851 case LibFunc_atanl: 3852 // Per POSIX, this MAY fail if Op is denormal. We choose not failing. 3853 return true; 3854 3855 case LibFunc_asinl: 3856 case LibFunc_asin: 3857 case LibFunc_asinf: 3858 case LibFunc_acosl: 3859 case LibFunc_acos: 3860 case LibFunc_acosf: 3861 return !(Op < APFloat::getOne(Op.getSemantics(), true) || 3862 Op > APFloat::getOne(Op.getSemantics())); 3863 3864 case LibFunc_sinh: 3865 case LibFunc_cosh: 3866 case LibFunc_sinhf: 3867 case LibFunc_coshf: 3868 case LibFunc_sinhl: 3869 case LibFunc_coshl: 3870 // FIXME: These boundaries are slightly conservative. 3871 if (OpC->getType()->isDoubleTy()) 3872 return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); 3873 if (OpC->getType()->isFloatTy()) 3874 return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); 3875 break; 3876 3877 case LibFunc_sqrtl: 3878 case LibFunc_sqrt: 3879 case LibFunc_sqrtf: 3880 return Op.isNaN() || Op.isZero() || !Op.isNegative(); 3881 3882 // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, 3883 // maybe others? 3884 default: 3885 break; 3886 } 3887 } 3888 } 3889 3890 if (Call->arg_size() == 2) { 3891 ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); 3892 ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); 3893 if (Op0C && Op1C) { 3894 const APFloat &Op0 = Op0C->getValueAPF(); 3895 const APFloat &Op1 = Op1C->getValueAPF(); 3896 3897 switch (Func) { 3898 case LibFunc_powl: 3899 case LibFunc_pow: 3900 case LibFunc_powf: { 3901 // FIXME: Stop using the host math library. 3902 // FIXME: The computation isn't done in the right precision. 3903 Type *Ty = Op0C->getType(); 3904 if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { 3905 if (Ty == Op1C->getType()) 3906 return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; 3907 } 3908 break; 3909 } 3910 3911 case LibFunc_fmodl: 3912 case LibFunc_fmod: 3913 case LibFunc_fmodf: 3914 case LibFunc_remainderl: 3915 case LibFunc_remainder: 3916 case LibFunc_remainderf: 3917 return Op0.isNaN() || Op1.isNaN() || 3918 (!Op0.isInfinity() && !Op1.isZero()); 3919 3920 case LibFunc_atan2: 3921 case LibFunc_atan2f: 3922 case LibFunc_atan2l: 3923 // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and 3924 // GLIBC and MSVC do not appear to raise an error on those, we 3925 // cannot rely on that behavior. POSIX and C11 say that a domain error 3926 // may occur, so allow for that possibility. 3927 return !Op0.isZero() || !Op1.isZero(); 3928 3929 default: 3930 break; 3931 } 3932 } 3933 } 3934 3935 return false; 3936 } 3937 3938 void TargetFolder::anchor() {} 3939