xref: /llvm-project/llvm/examples/ParallelJIT/ParallelJIT.cpp (revision fadf25068e32b44b010e6e03c6ab93bec41eae82)
1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Parallel JIT
10 //
11 // This test program creates two LLVM functions then calls them from three
12 // separate threads.  It requires the pthreads library.
13 // The three threads are created and then block waiting on a condition variable.
14 // Once all threads are blocked on the conditional variable, the main thread
15 // wakes them up. This complicated work is performed so that all three threads
16 // call into the JIT at the same time (or the best possible approximation of the
17 // same time). This test had assertion errors until I got the locking right.
18 //
19 //===----------------------------------------------------------------------===//
20 
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ExecutionEngine/ExecutionEngine.h"
24 #include "llvm/ExecutionEngine/GenericValue.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/LLVMContext.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/TargetSelect.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <cstddef>
41 #include <cstdint>
42 #include <iostream>
43 #include <memory>
44 #include <vector>
45 #include <pthread.h>
46 
47 using namespace llvm;
48 
49 static Function* createAdd1(Module *M) {
50   // Create the add1 function entry and insert this entry into module M.  The
51   // function will have a return type of "int" and take an argument of "int".
52   // The '0' terminates the list of argument types.
53   Function *Add1F =
54     cast<Function>(M->getOrInsertFunction("add1",
55                                           Type::getInt32Ty(M->getContext()),
56                                           Type::getInt32Ty(M->getContext())));
57 
58   // Add a basic block to the function. As before, it automatically inserts
59   // because of the last argument.
60   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
61 
62   // Get pointers to the constant `1'.
63   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
64 
65   // Get pointers to the integer argument of the add1 function...
66   assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
67   Argument *ArgX = &*Add1F->arg_begin();          // Get the arg
68   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
69 
70   // Create the add instruction, inserting it into the end of BB.
71   Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
72 
73   // Create the return instruction and add it to the basic block
74   ReturnInst::Create(M->getContext(), Add, BB);
75 
76   // Now, function add1 is ready.
77   return Add1F;
78 }
79 
80 static Function *CreateFibFunction(Module *M) {
81   // Create the fib function and insert it into module M.  This function is said
82   // to return an int and take an int parameter.
83   Function *FibF =
84     cast<Function>(M->getOrInsertFunction("fib",
85                                           Type::getInt32Ty(M->getContext()),
86                                           Type::getInt32Ty(M->getContext())));
87 
88   // Add a basic block to the function.
89   BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
90 
91   // Get pointers to the constants.
92   Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
93   Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
94 
95   // Get pointer to the integer argument of the add1 function...
96   Argument *ArgX = &*FibF->arg_begin(); // Get the arg.
97   ArgX->setName("AnArg");            // Give it a nice symbolic name for fun.
98 
99   // Create the true_block.
100   BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
101   // Create an exit block.
102   BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
103 
104   // Create the "if (arg < 2) goto exitbb"
105   Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
106   BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
107 
108   // Create: ret int 1
109   ReturnInst::Create(M->getContext(), One, RetBB);
110 
111   // create fib(x-1)
112   Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
113   Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
114 
115   // create fib(x-2)
116   Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
117   Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
118 
119   // fib(x-1)+fib(x-2)
120   Value *Sum =
121     BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
122 
123   // Create the return instruction and add it to the basic block
124   ReturnInst::Create(M->getContext(), Sum, RecurseBB);
125 
126   return FibF;
127 }
128 
129 struct threadParams {
130   ExecutionEngine* EE;
131   Function* F;
132   int value;
133 };
134 
135 // We block the subthreads just before they begin to execute:
136 // we want all of them to call into the JIT at the same time,
137 // to verify that the locking is working correctly.
138 class WaitForThreads
139 {
140 public:
141   WaitForThreads()
142   {
143     n = 0;
144     waitFor = 0;
145 
146     int result = pthread_cond_init( &condition, nullptr );
147     (void)result;
148     assert( result == 0 );
149 
150     result = pthread_mutex_init( &mutex, nullptr );
151     assert( result == 0 );
152   }
153 
154   ~WaitForThreads()
155   {
156     int result = pthread_cond_destroy( &condition );
157     (void)result;
158     assert( result == 0 );
159 
160     result = pthread_mutex_destroy( &mutex );
161     assert( result == 0 );
162   }
163 
164   // All threads will stop here until another thread calls releaseThreads
165   void block()
166   {
167     int result = pthread_mutex_lock( &mutex );
168     (void)result;
169     assert( result == 0 );
170     n ++;
171     //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
172 
173     assert( waitFor == 0 || n <= waitFor );
174     if ( waitFor > 0 && n == waitFor )
175     {
176       // There are enough threads blocked that we can release all of them
177       std::cout << "Unblocking threads from block()" << std::endl;
178       unblockThreads();
179     }
180     else
181     {
182       // We just need to wait until someone unblocks us
183       result = pthread_cond_wait( &condition, &mutex );
184       assert( result == 0 );
185     }
186 
187     // unlock the mutex before returning
188     result = pthread_mutex_unlock( &mutex );
189     assert( result == 0 );
190   }
191 
192   // If there are num or more threads blocked, it will signal them all
193   // Otherwise, this thread blocks until there are enough OTHER threads
194   // blocked
195   void releaseThreads( size_t num )
196   {
197     int result = pthread_mutex_lock( &mutex );
198     (void)result;
199     assert( result == 0 );
200 
201     if ( n >= num ) {
202       std::cout << "Unblocking threads from releaseThreads()" << std::endl;
203       unblockThreads();
204     }
205     else
206     {
207       waitFor = num;
208       pthread_cond_wait( &condition, &mutex );
209     }
210 
211     // unlock the mutex before returning
212     result = pthread_mutex_unlock( &mutex );
213     assert( result == 0 );
214   }
215 
216 private:
217   void unblockThreads()
218   {
219     // Reset the counters to zero: this way, if any new threads
220     // enter while threads are exiting, they will block instead
221     // of triggering a new release of threads
222     n = 0;
223 
224     // Reset waitFor to zero: this way, if waitFor threads enter
225     // while threads are exiting, they will block instead of
226     // triggering a new release of threads
227     waitFor = 0;
228 
229     int result = pthread_cond_broadcast( &condition );
230     (void)result;
231     assert(result == 0);
232   }
233 
234   size_t n;
235   size_t waitFor;
236   pthread_cond_t condition;
237   pthread_mutex_t mutex;
238 };
239 
240 static WaitForThreads synchronize;
241 
242 void* callFunc( void* param )
243 {
244   struct threadParams* p = (struct threadParams*) param;
245 
246   // Call the `foo' function with no arguments:
247   std::vector<GenericValue> Args(1);
248   Args[0].IntVal = APInt(32, p->value);
249 
250   synchronize.block(); // wait until other threads are at this point
251   GenericValue gv = p->EE->runFunction(p->F, Args);
252 
253   return (void*)(intptr_t)gv.IntVal.getZExtValue();
254 }
255 
256 int main() {
257   InitializeNativeTarget();
258   LLVMContext Context;
259 
260   // Create some module to put our function into it.
261   std::unique_ptr<Module> Owner = make_unique<Module>("test", Context);
262   Module *M = Owner.get();
263 
264   Function* add1F = createAdd1( M );
265   Function* fibF = CreateFibFunction( M );
266 
267   // Now we create the JIT.
268   ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create();
269 
270   //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
271   //~ std::cout << "\n\nRunning foo: " << std::flush;
272 
273   // Create one thread for add1 and two threads for fib
274   struct threadParams add1 = { EE, add1F, 1000 };
275   struct threadParams fib1 = { EE, fibF, 39 };
276   struct threadParams fib2 = { EE, fibF, 42 };
277 
278   pthread_t add1Thread;
279   int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 );
280   if ( result != 0 ) {
281           std::cerr << "Could not create thread" << std::endl;
282           return 1;
283   }
284 
285   pthread_t fibThread1;
286   result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 );
287   if ( result != 0 ) {
288           std::cerr << "Could not create thread" << std::endl;
289           return 1;
290   }
291 
292   pthread_t fibThread2;
293   result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 );
294   if ( result != 0 ) {
295           std::cerr << "Could not create thread" << std::endl;
296           return 1;
297   }
298 
299   synchronize.releaseThreads(3); // wait until other threads are at this point
300 
301   void* returnValue;
302   result = pthread_join( add1Thread, &returnValue );
303   if ( result != 0 ) {
304           std::cerr << "Could not join thread" << std::endl;
305           return 1;
306   }
307   std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
308 
309   result = pthread_join( fibThread1, &returnValue );
310   if ( result != 0 ) {
311           std::cerr << "Could not join thread" << std::endl;
312           return 1;
313   }
314   std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
315 
316   result = pthread_join( fibThread2, &returnValue );
317   if ( result != 0 ) {
318           std::cerr << "Could not join thread" << std::endl;
319           return 1;
320   }
321   std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
322 
323   return 0;
324 }
325