1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Parallel JIT 10 // 11 // This test program creates two LLVM functions then calls them from three 12 // separate threads. It requires the pthreads library. 13 // The three threads are created and then block waiting on a condition variable. 14 // Once all threads are blocked on the conditional variable, the main thread 15 // wakes them up. This complicated work is performed so that all three threads 16 // call into the JIT at the same time (or the best possible approximation of the 17 // same time). This test had assertion errors until I got the locking right. 18 // 19 //===----------------------------------------------------------------------===// 20 21 #include "llvm/ADT/APInt.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ExecutionEngine/ExecutionEngine.h" 24 #include "llvm/ExecutionEngine/GenericValue.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/InstrTypes.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/LLVMContext.h" 34 #include "llvm/IR/Module.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/Support/Casting.h" 37 #include "llvm/Support/TargetSelect.h" 38 #include <algorithm> 39 #include <cassert> 40 #include <cstddef> 41 #include <cstdint> 42 #include <iostream> 43 #include <memory> 44 #include <vector> 45 #include <pthread.h> 46 47 using namespace llvm; 48 49 static Function* createAdd1(Module *M) { 50 // Create the add1 function entry and insert this entry into module M. The 51 // function will have a return type of "int" and take an argument of "int". 52 Function *Add1F = 53 Function::Create(FunctionType::get(Type::getInt32Ty(Context), 54 {Type::getInt32Ty(Context)}, false), 55 Function::ExternalLinkage, "add1", M); 56 57 // Add a basic block to the function. As before, it automatically inserts 58 // because of the last argument. 59 BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F); 60 61 // Get pointers to the constant `1'. 62 Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); 63 64 // Get pointers to the integer argument of the add1 function... 65 assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg 66 Argument *ArgX = &*Add1F->arg_begin(); // Get the arg 67 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 68 69 // Create the add instruction, inserting it into the end of BB. 70 Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB); 71 72 // Create the return instruction and add it to the basic block 73 ReturnInst::Create(M->getContext(), Add, BB); 74 75 // Now, function add1 is ready. 76 return Add1F; 77 } 78 79 static Function *CreateFibFunction(Module *M) { 80 // Create the fib function and insert it into module M. This function is said 81 // to return an int and take an int parameter. 82 FunctionType *FibFTy = FunctionType::get(Type::getInt32Ty(Context), 83 {Type::getInt32Ty(Context)}, false); 84 Function *FibF = 85 Function::Create(FibFTy, Function::ExternalLinkage, "fib", M); 86 87 // Add a basic block to the function. 88 BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF); 89 90 // Get pointers to the constants. 91 Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1); 92 Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2); 93 94 // Get pointer to the integer argument of the add1 function... 95 Argument *ArgX = &*FibF->arg_begin(); // Get the arg. 96 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 97 98 // Create the true_block. 99 BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF); 100 // Create an exit block. 101 BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF); 102 103 // Create the "if (arg < 2) goto exitbb" 104 Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond"); 105 BranchInst::Create(RetBB, RecurseBB, CondInst, BB); 106 107 // Create: ret int 1 108 ReturnInst::Create(M->getContext(), One, RetBB); 109 110 // create fib(x-1) 111 Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB); 112 Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB); 113 114 // create fib(x-2) 115 Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB); 116 Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB); 117 118 // fib(x-1)+fib(x-2) 119 Value *Sum = 120 BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); 121 122 // Create the return instruction and add it to the basic block 123 ReturnInst::Create(M->getContext(), Sum, RecurseBB); 124 125 return FibF; 126 } 127 128 struct threadParams { 129 ExecutionEngine* EE; 130 Function* F; 131 int value; 132 }; 133 134 // We block the subthreads just before they begin to execute: 135 // we want all of them to call into the JIT at the same time, 136 // to verify that the locking is working correctly. 137 class WaitForThreads 138 { 139 public: 140 WaitForThreads() 141 { 142 n = 0; 143 waitFor = 0; 144 145 int result = pthread_cond_init( &condition, nullptr ); 146 (void)result; 147 assert( result == 0 ); 148 149 result = pthread_mutex_init( &mutex, nullptr ); 150 assert( result == 0 ); 151 } 152 153 ~WaitForThreads() 154 { 155 int result = pthread_cond_destroy( &condition ); 156 (void)result; 157 assert( result == 0 ); 158 159 result = pthread_mutex_destroy( &mutex ); 160 assert( result == 0 ); 161 } 162 163 // All threads will stop here until another thread calls releaseThreads 164 void block() 165 { 166 int result = pthread_mutex_lock( &mutex ); 167 (void)result; 168 assert( result == 0 ); 169 n ++; 170 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; 171 172 assert( waitFor == 0 || n <= waitFor ); 173 if ( waitFor > 0 && n == waitFor ) 174 { 175 // There are enough threads blocked that we can release all of them 176 std::cout << "Unblocking threads from block()" << std::endl; 177 unblockThreads(); 178 } 179 else 180 { 181 // We just need to wait until someone unblocks us 182 result = pthread_cond_wait( &condition, &mutex ); 183 assert( result == 0 ); 184 } 185 186 // unlock the mutex before returning 187 result = pthread_mutex_unlock( &mutex ); 188 assert( result == 0 ); 189 } 190 191 // If there are num or more threads blocked, it will signal them all 192 // Otherwise, this thread blocks until there are enough OTHER threads 193 // blocked 194 void releaseThreads( size_t num ) 195 { 196 int result = pthread_mutex_lock( &mutex ); 197 (void)result; 198 assert( result == 0 ); 199 200 if ( n >= num ) { 201 std::cout << "Unblocking threads from releaseThreads()" << std::endl; 202 unblockThreads(); 203 } 204 else 205 { 206 waitFor = num; 207 pthread_cond_wait( &condition, &mutex ); 208 } 209 210 // unlock the mutex before returning 211 result = pthread_mutex_unlock( &mutex ); 212 assert( result == 0 ); 213 } 214 215 private: 216 void unblockThreads() 217 { 218 // Reset the counters to zero: this way, if any new threads 219 // enter while threads are exiting, they will block instead 220 // of triggering a new release of threads 221 n = 0; 222 223 // Reset waitFor to zero: this way, if waitFor threads enter 224 // while threads are exiting, they will block instead of 225 // triggering a new release of threads 226 waitFor = 0; 227 228 int result = pthread_cond_broadcast( &condition ); 229 (void)result; 230 assert(result == 0); 231 } 232 233 size_t n; 234 size_t waitFor; 235 pthread_cond_t condition; 236 pthread_mutex_t mutex; 237 }; 238 239 static WaitForThreads synchronize; 240 241 void* callFunc( void* param ) 242 { 243 struct threadParams* p = (struct threadParams*) param; 244 245 // Call the `foo' function with no arguments: 246 std::vector<GenericValue> Args(1); 247 Args[0].IntVal = APInt(32, p->value); 248 249 synchronize.block(); // wait until other threads are at this point 250 GenericValue gv = p->EE->runFunction(p->F, Args); 251 252 return (void*)(intptr_t)gv.IntVal.getZExtValue(); 253 } 254 255 int main() { 256 InitializeNativeTarget(); 257 LLVMContext Context; 258 259 // Create some module to put our function into it. 260 std::unique_ptr<Module> Owner = make_unique<Module>("test", Context); 261 Module *M = Owner.get(); 262 263 Function* add1F = createAdd1( M ); 264 Function* fibF = CreateFibFunction( M ); 265 266 // Now we create the JIT. 267 ExecutionEngine* EE = EngineBuilder(std::move(Owner)).create(); 268 269 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M; 270 //~ std::cout << "\n\nRunning foo: " << std::flush; 271 272 // Create one thread for add1 and two threads for fib 273 struct threadParams add1 = { EE, add1F, 1000 }; 274 struct threadParams fib1 = { EE, fibF, 39 }; 275 struct threadParams fib2 = { EE, fibF, 42 }; 276 277 pthread_t add1Thread; 278 int result = pthread_create( &add1Thread, nullptr, callFunc, &add1 ); 279 if ( result != 0 ) { 280 std::cerr << "Could not create thread" << std::endl; 281 return 1; 282 } 283 284 pthread_t fibThread1; 285 result = pthread_create( &fibThread1, nullptr, callFunc, &fib1 ); 286 if ( result != 0 ) { 287 std::cerr << "Could not create thread" << std::endl; 288 return 1; 289 } 290 291 pthread_t fibThread2; 292 result = pthread_create( &fibThread2, nullptr, callFunc, &fib2 ); 293 if ( result != 0 ) { 294 std::cerr << "Could not create thread" << std::endl; 295 return 1; 296 } 297 298 synchronize.releaseThreads(3); // wait until other threads are at this point 299 300 void* returnValue; 301 result = pthread_join( add1Thread, &returnValue ); 302 if ( result != 0 ) { 303 std::cerr << "Could not join thread" << std::endl; 304 return 1; 305 } 306 std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; 307 308 result = pthread_join( fibThread1, &returnValue ); 309 if ( result != 0 ) { 310 std::cerr << "Could not join thread" << std::endl; 311 return 1; 312 } 313 std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; 314 315 result = pthread_join( fibThread2, &returnValue ); 316 if ( result != 0 ) { 317 std::cerr << "Could not join thread" << std::endl; 318 return 1; 319 } 320 std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; 321 322 return 0; 323 } 324