1 //===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by Evan Jones and is distributed under the 6 // University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // Parallel JIT 11 // 12 // This test program creates two LLVM functions then calls them from three 13 // separate threads. It requires the pthreads library. 14 // The three threads are created and then block waiting on a condition variable. 15 // Once all threads are blocked on the conditional variable, the main thread 16 // wakes them up. This complicated work is performed so that all three threads 17 // call into the JIT at the same time (or the best possible approximation of the 18 // same time). This test had assertion errors until I got the locking right. 19 20 #include <pthread.h> 21 #include "llvm/Module.h" 22 #include "llvm/Constants.h" 23 #include "llvm/Type.h" 24 #include "llvm/Instructions.h" 25 #include "llvm/ModuleProvider.h" 26 #include "llvm/ExecutionEngine/ExecutionEngine.h" 27 #include "llvm/ExecutionEngine/GenericValue.h" 28 #include <iostream> 29 using namespace llvm; 30 31 static Function* createAdd1(Module* M) 32 { 33 // Create the add1 function entry and insert this entry into module M. The 34 // function will have a return type of "int" and take an argument of "int". 35 // The '0' terminates the list of argument types. 36 Function *Add1F = M->getOrInsertFunction("add1", Type::IntTy, Type::IntTy, 37 (Type *)0); 38 39 // Add a basic block to the function. As before, it automatically inserts 40 // because of the last argument. 41 BasicBlock *BB = new BasicBlock("EntryBlock", Add1F); 42 43 // Get pointers to the constant `1'. 44 Value *One = ConstantSInt::get(Type::IntTy, 1); 45 46 // Get pointers to the integer argument of the add1 function... 47 assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg 48 Argument *ArgX = Add1F->arg_begin(); // Get the arg 49 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 50 51 // Create the add instruction, inserting it into the end of BB. 52 Instruction *Add = BinaryOperator::createAdd(One, ArgX, "addresult", BB); 53 54 // Create the return instruction and add it to the basic block 55 new ReturnInst(Add, BB); 56 57 // Now, function add1 is ready. 58 return Add1F; 59 } 60 61 static Function *CreateFibFunction(Module *M) 62 { 63 // Create the fib function and insert it into module M. This function is said 64 // to return an int and take an int parameter. 65 Function *FibF = M->getOrInsertFunction("fib", Type::IntTy, Type::IntTy, 66 (Type *)0); 67 68 // Add a basic block to the function. 69 BasicBlock *BB = new BasicBlock("EntryBlock", FibF); 70 71 // Get pointers to the constants. 72 Value *One = ConstantSInt::get(Type::IntTy, 1); 73 Value *Two = ConstantSInt::get(Type::IntTy, 2); 74 75 // Get pointer to the integer argument of the add1 function... 76 Argument *ArgX = FibF->arg_begin(); // Get the arg. 77 ArgX->setName("AnArg"); // Give it a nice symbolic name for fun. 78 79 // Create the true_block. 80 BasicBlock *RetBB = new BasicBlock("return", FibF); 81 // Create an exit block. 82 BasicBlock* RecurseBB = new BasicBlock("recurse", FibF); 83 84 // Create the "if (arg < 2) goto exitbb" 85 Value *CondInst = BinaryOperator::createSetLE(ArgX, Two, "cond", BB); 86 new BranchInst(RetBB, RecurseBB, CondInst, BB); 87 88 // Create: ret int 1 89 new ReturnInst(One, RetBB); 90 91 // create fib(x-1) 92 Value *Sub = BinaryOperator::createSub(ArgX, One, "arg", RecurseBB); 93 Value *CallFibX1 = new CallInst(FibF, Sub, "fibx1", RecurseBB); 94 95 // create fib(x-2) 96 Sub = BinaryOperator::createSub(ArgX, Two, "arg", RecurseBB); 97 Value *CallFibX2 = new CallInst(FibF, Sub, "fibx2", RecurseBB); 98 99 // fib(x-1)+fib(x-2) 100 Value *Sum = 101 BinaryOperator::createAdd(CallFibX1, CallFibX2, "addresult", RecurseBB); 102 103 // Create the return instruction and add it to the basic block 104 new ReturnInst(Sum, RecurseBB); 105 106 return FibF; 107 } 108 109 struct threadParams { 110 ExecutionEngine* EE; 111 Function* F; 112 int value; 113 }; 114 115 // We block the subthreads just before they begin to execute: 116 // we want all of them to call into the JIT at the same time, 117 // to verify that the locking is working correctly. 118 class WaitForThreads 119 { 120 public: 121 WaitForThreads() 122 { 123 n = 0; 124 waitFor = 0; 125 126 int result = pthread_cond_init( &condition, NULL ); 127 assert( result == 0 ); 128 129 result = pthread_mutex_init( &mutex, NULL ); 130 assert( result == 0 ); 131 } 132 133 ~WaitForThreads() 134 { 135 int result = pthread_cond_destroy( &condition ); 136 assert( result == 0 ); 137 138 result = pthread_mutex_destroy( &mutex ); 139 assert( result == 0 ); 140 } 141 142 // All threads will stop here until another thread calls releaseThreads 143 void block() 144 { 145 int result = pthread_mutex_lock( &mutex ); 146 assert( result == 0 ); 147 n ++; 148 //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl; 149 150 assert( waitFor == 0 || n <= waitFor ); 151 if ( waitFor > 0 && n == waitFor ) 152 { 153 // There are enough threads blocked that we can release all of them 154 std::cout << "Unblocking threads from block()" << std::endl; 155 unblockThreads(); 156 } 157 else 158 { 159 // We just need to wait until someone unblocks us 160 result = pthread_cond_wait( &condition, &mutex ); 161 assert( result == 0 ); 162 } 163 164 // unlock the mutex before returning 165 result = pthread_mutex_unlock( &mutex ); 166 assert( result == 0 ); 167 } 168 169 // If there are num or more threads blocked, it will signal them all 170 // Otherwise, this thread blocks until there are enough OTHER threads 171 // blocked 172 void releaseThreads( size_t num ) 173 { 174 int result = pthread_mutex_lock( &mutex ); 175 assert( result == 0 ); 176 177 if ( n >= num ) { 178 std::cout << "Unblocking threads from releaseThreads()" << std::endl; 179 unblockThreads(); 180 } 181 else 182 { 183 waitFor = num; 184 pthread_cond_wait( &condition, &mutex ); 185 } 186 187 // unlock the mutex before returning 188 result = pthread_mutex_unlock( &mutex ); 189 assert( result == 0 ); 190 } 191 192 private: 193 void unblockThreads() 194 { 195 // Reset the counters to zero: this way, if any new threads 196 // enter while threads are exiting, they will block instead 197 // of triggering a new release of threads 198 n = 0; 199 200 // Reset waitFor to zero: this way, if waitFor threads enter 201 // while threads are exiting, they will block instead of 202 // triggering a new release of threads 203 waitFor = 0; 204 205 int result = pthread_cond_broadcast( &condition ); 206 assert( result == 0 ); 207 } 208 209 size_t n; 210 size_t waitFor; 211 pthread_cond_t condition; 212 pthread_mutex_t mutex; 213 }; 214 215 static WaitForThreads synchronize; 216 217 void* callFunc( void* param ) 218 { 219 struct threadParams* p = (struct threadParams*) param; 220 221 // Call the `foo' function with no arguments: 222 std::vector<GenericValue> Args(1); 223 Args[0].IntVal = p->value; 224 225 synchronize.block(); // wait until other threads are at this point 226 GenericValue gv = p->EE->runFunction(p->F, Args); 227 228 return (void*) intptr_t(gv.IntVal); 229 } 230 231 int main() 232 { 233 // Create some module to put our function into it. 234 Module *M = new Module("test"); 235 236 Function* add1F = createAdd1( M ); 237 Function* fibF = CreateFibFunction( M ); 238 239 // Now we create the JIT. 240 ExistingModuleProvider* MP = new ExistingModuleProvider(M); 241 ExecutionEngine* EE = ExecutionEngine::create(MP, false); 242 243 //~ std::cout << "We just constructed this LLVM module:\n\n" << *M; 244 //~ std::cout << "\n\nRunning foo: " << std::flush; 245 246 // Create one thread for add1 and two threads for fib 247 struct threadParams add1 = { EE, add1F, 1000 }; 248 struct threadParams fib1 = { EE, fibF, 39 }; 249 struct threadParams fib2 = { EE, fibF, 42 }; 250 251 pthread_t add1Thread; 252 int result = pthread_create( &add1Thread, NULL, callFunc, &add1 ); 253 if ( result != 0 ) { 254 std::cerr << "Could not create thread" << std::endl; 255 return 1; 256 } 257 258 pthread_t fibThread1; 259 result = pthread_create( &fibThread1, NULL, callFunc, &fib1 ); 260 if ( result != 0 ) { 261 std::cerr << "Could not create thread" << std::endl; 262 return 1; 263 } 264 265 pthread_t fibThread2; 266 result = pthread_create( &fibThread2, NULL, callFunc, &fib2 ); 267 if ( result != 0 ) { 268 std::cerr << "Could not create thread" << std::endl; 269 return 1; 270 } 271 272 synchronize.releaseThreads(3); // wait until other threads are at this point 273 274 void* returnValue; 275 result = pthread_join( add1Thread, &returnValue ); 276 if ( result != 0 ) { 277 std::cerr << "Could not join thread" << std::endl; 278 return 1; 279 } 280 std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl; 281 282 result = pthread_join( fibThread1, &returnValue ); 283 if ( result != 0 ) { 284 std::cerr << "Could not join thread" << std::endl; 285 return 1; 286 } 287 std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl; 288 289 result = pthread_join( fibThread2, &returnValue ); 290 if ( result != 0 ) { 291 std::cerr << "Could not join thread" << std::endl; 292 return 1; 293 } 294 std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl; 295 296 return 0; 297 } 298