xref: /llvm-project/llvm/examples/Kaleidoscope/BuildingAJIT/Chapter2/toy.cpp (revision 575515fddf9003c0a5f680c52bfa9893ceb4c20c)
1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/TargetSelect.h"
14 #include "llvm/Target/TargetMachine.h"
15 #include "KaleidoscopeJIT.h"
16 #include <algorithm>
17 #include <cassert>
18 #include <cctype>
19 #include <cstdint>
20 #include <cstdio>
21 #include <cstdlib>
22 #include <map>
23 #include <memory>
24 #include <string>
25 #include <utility>
26 #include <vector>
27 
28 using namespace llvm;
29 using namespace llvm::orc;
30 
31 //===----------------------------------------------------------------------===//
32 // Lexer
33 //===----------------------------------------------------------------------===//
34 
35 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
36 // of these for known things.
37 enum Token {
38   tok_eof = -1,
39 
40   // commands
41   tok_def = -2,
42   tok_extern = -3,
43 
44   // primary
45   tok_identifier = -4,
46   tok_number = -5,
47 
48   // control
49   tok_if = -6,
50   tok_then = -7,
51   tok_else = -8,
52   tok_for = -9,
53   tok_in = -10,
54 
55   // operators
56   tok_binary = -11,
57   tok_unary = -12,
58 
59   // var definition
60   tok_var = -13
61 };
62 
63 static std::string IdentifierStr; // Filled in if tok_identifier
64 static double NumVal;             // Filled in if tok_number
65 
66 /// gettok - Return the next token from standard input.
67 static int gettok() {
68   static int LastChar = ' ';
69 
70   // Skip any whitespace.
71   while (isspace(LastChar))
72     LastChar = getchar();
73 
74   if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75     IdentifierStr = LastChar;
76     while (isalnum((LastChar = getchar())))
77       IdentifierStr += LastChar;
78 
79     if (IdentifierStr == "def")
80       return tok_def;
81     if (IdentifierStr == "extern")
82       return tok_extern;
83     if (IdentifierStr == "if")
84       return tok_if;
85     if (IdentifierStr == "then")
86       return tok_then;
87     if (IdentifierStr == "else")
88       return tok_else;
89     if (IdentifierStr == "for")
90       return tok_for;
91     if (IdentifierStr == "in")
92       return tok_in;
93     if (IdentifierStr == "binary")
94       return tok_binary;
95     if (IdentifierStr == "unary")
96       return tok_unary;
97     if (IdentifierStr == "var")
98       return tok_var;
99     return tok_identifier;
100   }
101 
102   if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
103     std::string NumStr;
104     do {
105       NumStr += LastChar;
106       LastChar = getchar();
107     } while (isdigit(LastChar) || LastChar == '.');
108 
109     NumVal = strtod(NumStr.c_str(), nullptr);
110     return tok_number;
111   }
112 
113   if (LastChar == '#') {
114     // Comment until end of line.
115     do
116       LastChar = getchar();
117     while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
118 
119     if (LastChar != EOF)
120       return gettok();
121   }
122 
123   // Check for end of file.  Don't eat the EOF.
124   if (LastChar == EOF)
125     return tok_eof;
126 
127   // Otherwise, just return the character as its ascii value.
128   int ThisChar = LastChar;
129   LastChar = getchar();
130   return ThisChar;
131 }
132 
133 //===----------------------------------------------------------------------===//
134 // Abstract Syntax Tree (aka Parse Tree)
135 //===----------------------------------------------------------------------===//
136 
137 namespace {
138 
139 /// ExprAST - Base class for all expression nodes.
140 class ExprAST {
141 public:
142   virtual ~ExprAST() = default;
143 
144   virtual Value *codegen() = 0;
145 };
146 
147 /// NumberExprAST - Expression class for numeric literals like "1.0".
148 class NumberExprAST : public ExprAST {
149   double Val;
150 
151 public:
152   NumberExprAST(double Val) : Val(Val) {}
153 
154   Value *codegen() override;
155 };
156 
157 /// VariableExprAST - Expression class for referencing a variable, like "a".
158 class VariableExprAST : public ExprAST {
159   std::string Name;
160 
161 public:
162   VariableExprAST(const std::string &Name) : Name(Name) {}
163 
164   Value *codegen() override;
165   const std::string &getName() const { return Name; }
166 };
167 
168 /// UnaryExprAST - Expression class for a unary operator.
169 class UnaryExprAST : public ExprAST {
170   char Opcode;
171   std::unique_ptr<ExprAST> Operand;
172 
173 public:
174   UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
175       : Opcode(Opcode), Operand(std::move(Operand)) {}
176 
177   Value *codegen() override;
178 };
179 
180 /// BinaryExprAST - Expression class for a binary operator.
181 class BinaryExprAST : public ExprAST {
182   char Op;
183   std::unique_ptr<ExprAST> LHS, RHS;
184 
185 public:
186   BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
187                 std::unique_ptr<ExprAST> RHS)
188       : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
189 
190   Value *codegen() override;
191 };
192 
193 /// CallExprAST - Expression class for function calls.
194 class CallExprAST : public ExprAST {
195   std::string Callee;
196   std::vector<std::unique_ptr<ExprAST>> Args;
197 
198 public:
199   CallExprAST(const std::string &Callee,
200               std::vector<std::unique_ptr<ExprAST>> Args)
201       : Callee(Callee), Args(std::move(Args)) {}
202 
203   Value *codegen() override;
204 };
205 
206 /// IfExprAST - Expression class for if/then/else.
207 class IfExprAST : public ExprAST {
208   std::unique_ptr<ExprAST> Cond, Then, Else;
209 
210 public:
211   IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
212             std::unique_ptr<ExprAST> Else)
213       : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
214 
215   Value *codegen() override;
216 };
217 
218 /// ForExprAST - Expression class for for/in.
219 class ForExprAST : public ExprAST {
220   std::string VarName;
221   std::unique_ptr<ExprAST> Start, End, Step, Body;
222 
223 public:
224   ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
225              std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
226              std::unique_ptr<ExprAST> Body)
227       : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
228         Step(std::move(Step)), Body(std::move(Body)) {}
229 
230   Value *codegen() override;
231 };
232 
233 /// VarExprAST - Expression class for var/in
234 class VarExprAST : public ExprAST {
235   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
236   std::unique_ptr<ExprAST> Body;
237 
238 public:
239   VarExprAST(
240       std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
241       std::unique_ptr<ExprAST> Body)
242       : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
243 
244   Value *codegen() override;
245 };
246 
247 /// PrototypeAST - This class represents the "prototype" for a function,
248 /// which captures its name, and its argument names (thus implicitly the number
249 /// of arguments the function takes), as well as if it is an operator.
250 class PrototypeAST {
251   std::string Name;
252   std::vector<std::string> Args;
253   bool IsOperator;
254   unsigned Precedence; // Precedence if a binary op.
255 
256 public:
257   PrototypeAST(const std::string &Name, std::vector<std::string> Args,
258                bool IsOperator = false, unsigned Prec = 0)
259       : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
260         Precedence(Prec) {}
261 
262   Function *codegen();
263   const std::string &getName() const { return Name; }
264 
265   bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
266   bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
267 
268   char getOperatorName() const {
269     assert(isUnaryOp() || isBinaryOp());
270     return Name[Name.size() - 1];
271   }
272 
273   unsigned getBinaryPrecedence() const { return Precedence; }
274 };
275 
276 /// FunctionAST - This class represents a function definition itself.
277 class FunctionAST {
278   std::unique_ptr<PrototypeAST> Proto;
279   std::unique_ptr<ExprAST> Body;
280 
281 public:
282   FunctionAST(std::unique_ptr<PrototypeAST> Proto,
283               std::unique_ptr<ExprAST> Body)
284       : Proto(std::move(Proto)), Body(std::move(Body)) {}
285 
286   Function *codegen();
287 };
288 
289 } // end anonymous namespace
290 
291 //===----------------------------------------------------------------------===//
292 // Parser
293 //===----------------------------------------------------------------------===//
294 
295 /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current
296 /// token the parser is looking at.  getNextToken reads another token from the
297 /// lexer and updates CurTok with its results.
298 static int CurTok;
299 static int getNextToken() { return CurTok = gettok(); }
300 
301 /// BinopPrecedence - This holds the precedence for each binary operator that is
302 /// defined.
303 static std::map<char, int> BinopPrecedence;
304 
305 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
306 static int GetTokPrecedence() {
307   if (!isascii(CurTok))
308     return -1;
309 
310   // Make sure it's a declared binop.
311   int TokPrec = BinopPrecedence[CurTok];
312   if (TokPrec <= 0)
313     return -1;
314   return TokPrec;
315 }
316 
317 /// LogError* - These are little helper functions for error handling.
318 std::unique_ptr<ExprAST> LogError(const char *Str) {
319   fprintf(stderr, "Error: %s\n", Str);
320   return nullptr;
321 }
322 
323 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
324   LogError(Str);
325   return nullptr;
326 }
327 
328 static std::unique_ptr<ExprAST> ParseExpression();
329 
330 /// numberexpr ::= number
331 static std::unique_ptr<ExprAST> ParseNumberExpr() {
332   auto Result = llvm::make_unique<NumberExprAST>(NumVal);
333   getNextToken(); // consume the number
334   return std::move(Result);
335 }
336 
337 /// parenexpr ::= '(' expression ')'
338 static std::unique_ptr<ExprAST> ParseParenExpr() {
339   getNextToken(); // eat (.
340   auto V = ParseExpression();
341   if (!V)
342     return nullptr;
343 
344   if (CurTok != ')')
345     return LogError("expected ')'");
346   getNextToken(); // eat ).
347   return V;
348 }
349 
350 /// identifierexpr
351 ///   ::= identifier
352 ///   ::= identifier '(' expression* ')'
353 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
354   std::string IdName = IdentifierStr;
355 
356   getNextToken(); // eat identifier.
357 
358   if (CurTok != '(') // Simple variable ref.
359     return llvm::make_unique<VariableExprAST>(IdName);
360 
361   // Call.
362   getNextToken(); // eat (
363   std::vector<std::unique_ptr<ExprAST>> Args;
364   if (CurTok != ')') {
365     while (true) {
366       if (auto Arg = ParseExpression())
367         Args.push_back(std::move(Arg));
368       else
369         return nullptr;
370 
371       if (CurTok == ')')
372         break;
373 
374       if (CurTok != ',')
375         return LogError("Expected ')' or ',' in argument list");
376       getNextToken();
377     }
378   }
379 
380   // Eat the ')'.
381   getNextToken();
382 
383   return llvm::make_unique<CallExprAST>(IdName, std::move(Args));
384 }
385 
386 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
387 static std::unique_ptr<ExprAST> ParseIfExpr() {
388   getNextToken(); // eat the if.
389 
390   // condition.
391   auto Cond = ParseExpression();
392   if (!Cond)
393     return nullptr;
394 
395   if (CurTok != tok_then)
396     return LogError("expected then");
397   getNextToken(); // eat the then
398 
399   auto Then = ParseExpression();
400   if (!Then)
401     return nullptr;
402 
403   if (CurTok != tok_else)
404     return LogError("expected else");
405 
406   getNextToken();
407 
408   auto Else = ParseExpression();
409   if (!Else)
410     return nullptr;
411 
412   return llvm::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
413                                       std::move(Else));
414 }
415 
416 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
417 static std::unique_ptr<ExprAST> ParseForExpr() {
418   getNextToken(); // eat the for.
419 
420   if (CurTok != tok_identifier)
421     return LogError("expected identifier after for");
422 
423   std::string IdName = IdentifierStr;
424   getNextToken(); // eat identifier.
425 
426   if (CurTok != '=')
427     return LogError("expected '=' after for");
428   getNextToken(); // eat '='.
429 
430   auto Start = ParseExpression();
431   if (!Start)
432     return nullptr;
433   if (CurTok != ',')
434     return LogError("expected ',' after for start value");
435   getNextToken();
436 
437   auto End = ParseExpression();
438   if (!End)
439     return nullptr;
440 
441   // The step value is optional.
442   std::unique_ptr<ExprAST> Step;
443   if (CurTok == ',') {
444     getNextToken();
445     Step = ParseExpression();
446     if (!Step)
447       return nullptr;
448   }
449 
450   if (CurTok != tok_in)
451     return LogError("expected 'in' after for");
452   getNextToken(); // eat 'in'.
453 
454   auto Body = ParseExpression();
455   if (!Body)
456     return nullptr;
457 
458   return llvm::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
459                                        std::move(Step), std::move(Body));
460 }
461 
462 /// varexpr ::= 'var' identifier ('=' expression)?
463 //                    (',' identifier ('=' expression)?)* 'in' expression
464 static std::unique_ptr<ExprAST> ParseVarExpr() {
465   getNextToken(); // eat the var.
466 
467   std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
468 
469   // At least one variable name is required.
470   if (CurTok != tok_identifier)
471     return LogError("expected identifier after var");
472 
473   while (true) {
474     std::string Name = IdentifierStr;
475     getNextToken(); // eat identifier.
476 
477     // Read the optional initializer.
478     std::unique_ptr<ExprAST> Init = nullptr;
479     if (CurTok == '=') {
480       getNextToken(); // eat the '='.
481 
482       Init = ParseExpression();
483       if (!Init)
484         return nullptr;
485     }
486 
487     VarNames.push_back(std::make_pair(Name, std::move(Init)));
488 
489     // End of var list, exit loop.
490     if (CurTok != ',')
491       break;
492     getNextToken(); // eat the ','.
493 
494     if (CurTok != tok_identifier)
495       return LogError("expected identifier list after var");
496   }
497 
498   // At this point, we have to have 'in'.
499   if (CurTok != tok_in)
500     return LogError("expected 'in' keyword after 'var'");
501   getNextToken(); // eat 'in'.
502 
503   auto Body = ParseExpression();
504   if (!Body)
505     return nullptr;
506 
507   return llvm::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
508 }
509 
510 /// primary
511 ///   ::= identifierexpr
512 ///   ::= numberexpr
513 ///   ::= parenexpr
514 ///   ::= ifexpr
515 ///   ::= forexpr
516 ///   ::= varexpr
517 static std::unique_ptr<ExprAST> ParsePrimary() {
518   switch (CurTok) {
519   default:
520     return LogError("unknown token when expecting an expression");
521   case tok_identifier:
522     return ParseIdentifierExpr();
523   case tok_number:
524     return ParseNumberExpr();
525   case '(':
526     return ParseParenExpr();
527   case tok_if:
528     return ParseIfExpr();
529   case tok_for:
530     return ParseForExpr();
531   case tok_var:
532     return ParseVarExpr();
533   }
534 }
535 
536 /// unary
537 ///   ::= primary
538 ///   ::= '!' unary
539 static std::unique_ptr<ExprAST> ParseUnary() {
540   // If the current token is not an operator, it must be a primary expr.
541   if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
542     return ParsePrimary();
543 
544   // If this is a unary operator, read it.
545   int Opc = CurTok;
546   getNextToken();
547   if (auto Operand = ParseUnary())
548     return llvm::make_unique<UnaryExprAST>(Opc, std::move(Operand));
549   return nullptr;
550 }
551 
552 /// binoprhs
553 ///   ::= ('+' unary)*
554 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
555                                               std::unique_ptr<ExprAST> LHS) {
556   // If this is a binop, find its precedence.
557   while (true) {
558     int TokPrec = GetTokPrecedence();
559 
560     // If this is a binop that binds at least as tightly as the current binop,
561     // consume it, otherwise we are done.
562     if (TokPrec < ExprPrec)
563       return LHS;
564 
565     // Okay, we know this is a binop.
566     int BinOp = CurTok;
567     getNextToken(); // eat binop
568 
569     // Parse the unary expression after the binary operator.
570     auto RHS = ParseUnary();
571     if (!RHS)
572       return nullptr;
573 
574     // If BinOp binds less tightly with RHS than the operator after RHS, let
575     // the pending operator take RHS as its LHS.
576     int NextPrec = GetTokPrecedence();
577     if (TokPrec < NextPrec) {
578       RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
579       if (!RHS)
580         return nullptr;
581     }
582 
583     // Merge LHS/RHS.
584     LHS =
585         llvm::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
586   }
587 }
588 
589 /// expression
590 ///   ::= unary binoprhs
591 ///
592 static std::unique_ptr<ExprAST> ParseExpression() {
593   auto LHS = ParseUnary();
594   if (!LHS)
595     return nullptr;
596 
597   return ParseBinOpRHS(0, std::move(LHS));
598 }
599 
600 /// prototype
601 ///   ::= id '(' id* ')'
602 ///   ::= binary LETTER number? (id, id)
603 ///   ::= unary LETTER (id)
604 static std::unique_ptr<PrototypeAST> ParsePrototype() {
605   std::string FnName;
606 
607   unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
608   unsigned BinaryPrecedence = 30;
609 
610   switch (CurTok) {
611   default:
612     return LogErrorP("Expected function name in prototype");
613   case tok_identifier:
614     FnName = IdentifierStr;
615     Kind = 0;
616     getNextToken();
617     break;
618   case tok_unary:
619     getNextToken();
620     if (!isascii(CurTok))
621       return LogErrorP("Expected unary operator");
622     FnName = "unary";
623     FnName += (char)CurTok;
624     Kind = 1;
625     getNextToken();
626     break;
627   case tok_binary:
628     getNextToken();
629     if (!isascii(CurTok))
630       return LogErrorP("Expected binary operator");
631     FnName = "binary";
632     FnName += (char)CurTok;
633     Kind = 2;
634     getNextToken();
635 
636     // Read the precedence if present.
637     if (CurTok == tok_number) {
638       if (NumVal < 1 || NumVal > 100)
639         return LogErrorP("Invalid precedecnce: must be 1..100");
640       BinaryPrecedence = (unsigned)NumVal;
641       getNextToken();
642     }
643     break;
644   }
645 
646   if (CurTok != '(')
647     return LogErrorP("Expected '(' in prototype");
648 
649   std::vector<std::string> ArgNames;
650   while (getNextToken() == tok_identifier)
651     ArgNames.push_back(IdentifierStr);
652   if (CurTok != ')')
653     return LogErrorP("Expected ')' in prototype");
654 
655   // success.
656   getNextToken(); // eat ')'.
657 
658   // Verify right number of names for operator.
659   if (Kind && ArgNames.size() != Kind)
660     return LogErrorP("Invalid number of operands for operator");
661 
662   return llvm::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
663                                          BinaryPrecedence);
664 }
665 
666 /// definition ::= 'def' prototype expression
667 static std::unique_ptr<FunctionAST> ParseDefinition() {
668   getNextToken(); // eat def.
669   auto Proto = ParsePrototype();
670   if (!Proto)
671     return nullptr;
672 
673   if (auto E = ParseExpression())
674     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
675   return nullptr;
676 }
677 
678 /// toplevelexpr ::= expression
679 static std::unique_ptr<FunctionAST> ParseTopLevelExpr(unsigned ExprCount) {
680   if (auto E = ParseExpression()) {
681     // Make an anonymous proto.
682     auto Proto = llvm::make_unique<PrototypeAST>(("__anon_expr" +
683                                                   Twine(ExprCount)).str(),
684                                                  std::vector<std::string>());
685     return llvm::make_unique<FunctionAST>(std::move(Proto), std::move(E));
686   }
687   return nullptr;
688 }
689 
690 /// external ::= 'extern' prototype
691 static std::unique_ptr<PrototypeAST> ParseExtern() {
692   getNextToken(); // eat extern.
693   return ParsePrototype();
694 }
695 
696 //===----------------------------------------------------------------------===//
697 // Code Generation
698 //===----------------------------------------------------------------------===//
699 
700 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
701 static LLVMContext *TheContext;
702 static std::unique_ptr<IRBuilder<>> Builder;
703 static std::unique_ptr<Module> TheModule;
704 static std::map<std::string, AllocaInst *> NamedValues;
705 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
706 static ExitOnError ExitOnErr;
707 
708 Value *LogErrorV(const char *Str) {
709   LogError(Str);
710   return nullptr;
711 }
712 
713 Function *getFunction(std::string Name) {
714   // First, see if the function has already been added to the current module.
715   if (auto *F = TheModule->getFunction(Name))
716     return F;
717 
718   // If not, check whether we can codegen the declaration from some existing
719   // prototype.
720   auto FI = FunctionProtos.find(Name);
721   if (FI != FunctionProtos.end())
722     return FI->second->codegen();
723 
724   // If no existing prototype exists, return null.
725   return nullptr;
726 }
727 
728 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
729 /// the function.  This is used for mutable variables etc.
730 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
731                                           const std::string &VarName) {
732   IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
733                    TheFunction->getEntryBlock().begin());
734   return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
735 }
736 
737 Value *NumberExprAST::codegen() {
738   return ConstantFP::get(*TheContext, APFloat(Val));
739 }
740 
741 Value *VariableExprAST::codegen() {
742   // Look this variable up in the function.
743   Value *V = NamedValues[Name];
744   if (!V)
745     return LogErrorV("Unknown variable name");
746 
747   // Load the value.
748   return Builder->CreateLoad(V, Name.c_str());
749 }
750 
751 Value *UnaryExprAST::codegen() {
752   Value *OperandV = Operand->codegen();
753   if (!OperandV)
754     return nullptr;
755 
756   Function *F = getFunction(std::string("unary") + Opcode);
757   if (!F)
758     return LogErrorV("Unknown unary operator");
759 
760   return Builder->CreateCall(F, OperandV, "unop");
761 }
762 
763 Value *BinaryExprAST::codegen() {
764   // Special case '=' because we don't want to emit the LHS as an expression.
765   if (Op == '=') {
766     // Assignment requires the LHS to be an identifier.
767     // This assume we're building without RTTI because LLVM builds that way by
768     // default.  If you build LLVM with RTTI this can be changed to a
769     // dynamic_cast for automatic error checking.
770     VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
771     if (!LHSE)
772       return LogErrorV("destination of '=' must be a variable");
773     // Codegen the RHS.
774     Value *Val = RHS->codegen();
775     if (!Val)
776       return nullptr;
777 
778     // Look up the name.
779     Value *Variable = NamedValues[LHSE->getName()];
780     if (!Variable)
781       return LogErrorV("Unknown variable name");
782 
783     Builder->CreateStore(Val, Variable);
784     return Val;
785   }
786 
787   Value *L = LHS->codegen();
788   Value *R = RHS->codegen();
789   if (!L || !R)
790     return nullptr;
791 
792   switch (Op) {
793   case '+':
794     return Builder->CreateFAdd(L, R, "addtmp");
795   case '-':
796     return Builder->CreateFSub(L, R, "subtmp");
797   case '*':
798     return Builder->CreateFMul(L, R, "multmp");
799   case '<':
800     L = Builder->CreateFCmpULT(L, R, "cmptmp");
801     // Convert bool 0/1 to double 0.0 or 1.0
802     return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
803   default:
804     break;
805   }
806 
807   // If it wasn't a builtin binary operator, it must be a user defined one. Emit
808   // a call to it.
809   Function *F = getFunction(std::string("binary") + Op);
810   assert(F && "binary operator not found!");
811 
812   Value *Ops[] = {L, R};
813   return Builder->CreateCall(F, Ops, "binop");
814 }
815 
816 Value *CallExprAST::codegen() {
817   // Look up the name in the global module table.
818   Function *CalleeF = getFunction(Callee);
819   if (!CalleeF)
820     return LogErrorV("Unknown function referenced");
821 
822   // If argument mismatch error.
823   if (CalleeF->arg_size() != Args.size())
824     return LogErrorV("Incorrect # arguments passed");
825 
826   std::vector<Value *> ArgsV;
827   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
828     ArgsV.push_back(Args[i]->codegen());
829     if (!ArgsV.back())
830       return nullptr;
831   }
832 
833   return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
834 }
835 
836 Value *IfExprAST::codegen() {
837   Value *CondV = Cond->codegen();
838   if (!CondV)
839     return nullptr;
840 
841   // Convert condition to a bool by comparing equal to 0.0.
842   CondV = Builder->CreateFCmpONE(
843       CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
844 
845   Function *TheFunction = Builder->GetInsertBlock()->getParent();
846 
847   // Create blocks for the then and else cases.  Insert the 'then' block at the
848   // end of the function.
849   BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
850   BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
851   BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
852 
853   Builder->CreateCondBr(CondV, ThenBB, ElseBB);
854 
855   // Emit then value.
856   Builder->SetInsertPoint(ThenBB);
857 
858   Value *ThenV = Then->codegen();
859   if (!ThenV)
860     return nullptr;
861 
862   Builder->CreateBr(MergeBB);
863   // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
864   ThenBB = Builder->GetInsertBlock();
865 
866   // Emit else block.
867   TheFunction->getBasicBlockList().push_back(ElseBB);
868   Builder->SetInsertPoint(ElseBB);
869 
870   Value *ElseV = Else->codegen();
871   if (!ElseV)
872     return nullptr;
873 
874   Builder->CreateBr(MergeBB);
875   // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
876   ElseBB = Builder->GetInsertBlock();
877 
878   // Emit merge block.
879   TheFunction->getBasicBlockList().push_back(MergeBB);
880   Builder->SetInsertPoint(MergeBB);
881   PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
882 
883   PN->addIncoming(ThenV, ThenBB);
884   PN->addIncoming(ElseV, ElseBB);
885   return PN;
886 }
887 
888 // Output for-loop as:
889 //   var = alloca double
890 //   ...
891 //   start = startexpr
892 //   store start -> var
893 //   goto loop
894 // loop:
895 //   ...
896 //   bodyexpr
897 //   ...
898 // loopend:
899 //   step = stepexpr
900 //   endcond = endexpr
901 //
902 //   curvar = load var
903 //   nextvar = curvar + step
904 //   store nextvar -> var
905 //   br endcond, loop, endloop
906 // outloop:
907 Value *ForExprAST::codegen() {
908   Function *TheFunction = Builder->GetInsertBlock()->getParent();
909 
910   // Create an alloca for the variable in the entry block.
911   AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
912 
913   // Emit the start code first, without 'variable' in scope.
914   Value *StartVal = Start->codegen();
915   if (!StartVal)
916     return nullptr;
917 
918   // Store the value into the alloca.
919   Builder->CreateStore(StartVal, Alloca);
920 
921   // Make the new basic block for the loop header, inserting after current
922   // block.
923   BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
924 
925   // Insert an explicit fall through from the current block to the LoopBB.
926   Builder->CreateBr(LoopBB);
927 
928   // Start insertion in LoopBB.
929   Builder->SetInsertPoint(LoopBB);
930 
931   // Within the loop, the variable is defined equal to the PHI node.  If it
932   // shadows an existing variable, we have to restore it, so save it now.
933   AllocaInst *OldVal = NamedValues[VarName];
934   NamedValues[VarName] = Alloca;
935 
936   // Emit the body of the loop.  This, like any other expr, can change the
937   // current BB.  Note that we ignore the value computed by the body, but don't
938   // allow an error.
939   if (!Body->codegen())
940     return nullptr;
941 
942   // Emit the step value.
943   Value *StepVal = nullptr;
944   if (Step) {
945     StepVal = Step->codegen();
946     if (!StepVal)
947       return nullptr;
948   } else {
949     // If not specified, use 1.0.
950     StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
951   }
952 
953   // Compute the end condition.
954   Value *EndCond = End->codegen();
955   if (!EndCond)
956     return nullptr;
957 
958   // Reload, increment, and restore the alloca.  This handles the case where
959   // the body of the loop mutates the variable.
960   Value *CurVar = Builder->CreateLoad(Alloca, VarName.c_str());
961   Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
962   Builder->CreateStore(NextVar, Alloca);
963 
964   // Convert condition to a bool by comparing equal to 0.0.
965   EndCond = Builder->CreateFCmpONE(
966       EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
967 
968   // Create the "after loop" block and insert it.
969   BasicBlock *AfterBB =
970       BasicBlock::Create(*TheContext, "afterloop", TheFunction);
971 
972   // Insert the conditional branch into the end of LoopEndBB.
973   Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
974 
975   // Any new code will be inserted in AfterBB.
976   Builder->SetInsertPoint(AfterBB);
977 
978   // Restore the unshadowed variable.
979   if (OldVal)
980     NamedValues[VarName] = OldVal;
981   else
982     NamedValues.erase(VarName);
983 
984   // for expr always returns 0.0.
985   return Constant::getNullValue(Type::getDoubleTy(*TheContext));
986 }
987 
988 Value *VarExprAST::codegen() {
989   std::vector<AllocaInst *> OldBindings;
990 
991   Function *TheFunction = Builder->GetInsertBlock()->getParent();
992 
993   // Register all variables and emit their initializer.
994   for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
995     const std::string &VarName = VarNames[i].first;
996     ExprAST *Init = VarNames[i].second.get();
997 
998     // Emit the initializer before adding the variable to scope, this prevents
999     // the initializer from referencing the variable itself, and permits stuff
1000     // like this:
1001     //  var a = 1 in
1002     //    var a = a in ...   # refers to outer 'a'.
1003     Value *InitVal;
1004     if (Init) {
1005       InitVal = Init->codegen();
1006       if (!InitVal)
1007         return nullptr;
1008     } else { // If not specified, use 0.0.
1009       InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
1010     }
1011 
1012     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
1013     Builder->CreateStore(InitVal, Alloca);
1014 
1015     // Remember the old variable binding so that we can restore the binding when
1016     // we unrecurse.
1017     OldBindings.push_back(NamedValues[VarName]);
1018 
1019     // Remember this binding.
1020     NamedValues[VarName] = Alloca;
1021   }
1022 
1023   // Codegen the body, now that all vars are in scope.
1024   Value *BodyVal = Body->codegen();
1025   if (!BodyVal)
1026     return nullptr;
1027 
1028   // Pop all our variables from scope.
1029   for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1030     NamedValues[VarNames[i].first] = OldBindings[i];
1031 
1032   // Return the body computation.
1033   return BodyVal;
1034 }
1035 
1036 Function *PrototypeAST::codegen() {
1037   // Make the function type:  double(double,double) etc.
1038   std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
1039   FunctionType *FT =
1040       FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
1041 
1042   Function *F =
1043       Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1044 
1045   // Set names for all arguments.
1046   unsigned Idx = 0;
1047   for (auto &Arg : F->args())
1048     Arg.setName(Args[Idx++]);
1049 
1050   return F;
1051 }
1052 
1053 Function *FunctionAST::codegen() {
1054   // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1055   // reference to it for use below.
1056   auto &P = *Proto;
1057   FunctionProtos[Proto->getName()] = std::move(Proto);
1058   Function *TheFunction = getFunction(P.getName());
1059   if (!TheFunction)
1060     return nullptr;
1061 
1062   // If this is an operator, install it.
1063   if (P.isBinaryOp())
1064     BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1065 
1066   // Create a new basic block to start insertion into.
1067   BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
1068   Builder->SetInsertPoint(BB);
1069 
1070   // Record the function arguments in the NamedValues map.
1071   NamedValues.clear();
1072   for (auto &Arg : TheFunction->args()) {
1073     // Create an alloca for this variable.
1074     AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1075 
1076     // Store the initial value into the alloca.
1077     Builder->CreateStore(&Arg, Alloca);
1078 
1079     // Add arguments to variable symbol table.
1080     NamedValues[Arg.getName()] = Alloca;
1081   }
1082 
1083   if (Value *RetVal = Body->codegen()) {
1084     // Finish off the function.
1085     Builder->CreateRet(RetVal);
1086 
1087     // Validate the generated code, checking for consistency.
1088     verifyFunction(*TheFunction);
1089 
1090     return TheFunction;
1091   }
1092 
1093   // Error reading body, remove function.
1094   TheFunction->eraseFromParent();
1095 
1096   if (P.isBinaryOp())
1097     BinopPrecedence.erase(P.getOperatorName());
1098   return nullptr;
1099 }
1100 
1101 //===----------------------------------------------------------------------===//
1102 // Top-Level parsing and JIT Driver
1103 //===----------------------------------------------------------------------===//
1104 
1105 static void InitializeModule() {
1106   // Open a new module.
1107   TheModule = llvm::make_unique<Module>("my cool jit", *TheContext);
1108   TheModule->setDataLayout(TheJIT->getDataLayout());
1109 
1110   // Create a new builder for the module.
1111   Builder = llvm::make_unique<IRBuilder<>>(*TheContext);
1112 }
1113 
1114 static void HandleDefinition() {
1115   if (auto FnAST = ParseDefinition()) {
1116     if (auto *FnIR = FnAST->codegen()) {
1117       fprintf(stderr, "Read function definition:");
1118       FnIR->print(errs());
1119       fprintf(stderr, "\n");
1120       ExitOnErr(TheJIT->addModule(std::move(TheModule)));
1121       InitializeModule();
1122     }
1123   } else {
1124     // Skip token for error recovery.
1125     getNextToken();
1126   }
1127 }
1128 
1129 static void HandleExtern() {
1130   if (auto ProtoAST = ParseExtern()) {
1131     if (auto *FnIR = ProtoAST->codegen()) {
1132       fprintf(stderr, "Read extern: ");
1133       FnIR->print(errs());
1134       fprintf(stderr, "\n");
1135       FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1136     }
1137   } else {
1138     // Skip token for error recovery.
1139     getNextToken();
1140   }
1141 }
1142 
1143 static void HandleTopLevelExpression() {
1144   static unsigned ExprCount = 0;
1145 
1146   // Update ExprCount. This number will be added to anonymous expressions to
1147   // prevent them from clashing.
1148   ++ExprCount;
1149 
1150   // Evaluate a top-level expression into an anonymous function.
1151   if (auto FnAST = ParseTopLevelExpr(ExprCount)) {
1152     if (FnAST->codegen()) {
1153       // JIT the module containing the anonymous expression, keeping a handle so
1154       // we can free it later.
1155       ExitOnErr(TheJIT->addModule(std::move(TheModule)));
1156       InitializeModule();
1157 
1158       // Get the anonymous expression's JITSymbol.
1159       auto Sym =
1160         ExitOnErr(TheJIT->lookup(("__anon_expr" + Twine(ExprCount)).str()));
1161 
1162       auto *FP = (double (*)())(intptr_t)Sym.getAddress();
1163       assert(FP && "Failed to codegen function");
1164       fprintf(stderr, "Evaluated to %f\n", FP());
1165     }
1166   } else {
1167     // Skip token for error recovery.
1168     getNextToken();
1169   }
1170 }
1171 
1172 /// top ::= definition | external | expression | ';'
1173 static void MainLoop() {
1174   while (true) {
1175     fprintf(stderr, "ready> ");
1176     switch (CurTok) {
1177     case tok_eof:
1178       return;
1179     case ';': // ignore top-level semicolons.
1180       getNextToken();
1181       break;
1182     case tok_def:
1183       HandleDefinition();
1184       break;
1185     case tok_extern:
1186       HandleExtern();
1187       break;
1188     default:
1189       HandleTopLevelExpression();
1190       break;
1191     }
1192   }
1193 }
1194 
1195 //===----------------------------------------------------------------------===//
1196 // "Library" functions that can be "extern'd" from user code.
1197 //===----------------------------------------------------------------------===//
1198 
1199 /// putchard - putchar that takes a double and returns 0.
1200 extern "C" double putchard(double X) {
1201   fputc((char)X, stderr);
1202   return 0;
1203 }
1204 
1205 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1206 extern "C" double printd(double X) {
1207   fprintf(stderr, "%f\n", X);
1208   return 0;
1209 }
1210 
1211 //===----------------------------------------------------------------------===//
1212 // Main driver code.
1213 //===----------------------------------------------------------------------===//
1214 
1215 int main() {
1216   InitializeNativeTarget();
1217   InitializeNativeTargetAsmPrinter();
1218   InitializeNativeTargetAsmParser();
1219 
1220   // Install standard binary operators.
1221   // 1 is lowest precedence.
1222   BinopPrecedence['='] = 2;
1223   BinopPrecedence['<'] = 10;
1224   BinopPrecedence['+'] = 20;
1225   BinopPrecedence['-'] = 20;
1226   BinopPrecedence['*'] = 40; // highest.
1227 
1228   // Prime the first token.
1229   fprintf(stderr, "ready> ");
1230   getNextToken();
1231 
1232   TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
1233   TheContext = &TheJIT->getContext();
1234 
1235   InitializeModule();
1236 
1237   // Run the main "interpreter loop" now.
1238   MainLoop();
1239 
1240   return 0;
1241 }
1242