1 //===-- Process.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include <atomic> 10 #include <memory> 11 #include <mutex> 12 #include <optional> 13 14 #include "llvm/ADT/ScopeExit.h" 15 #include "llvm/Support/ScopedPrinter.h" 16 #include "llvm/Support/Threading.h" 17 18 #include "lldb/Breakpoint/BreakpointLocation.h" 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/Progress.h" 25 #include "lldb/Expression/DiagnosticManager.h" 26 #include "lldb/Expression/DynamicCheckerFunctions.h" 27 #include "lldb/Expression/UserExpression.h" 28 #include "lldb/Expression/UtilityFunction.h" 29 #include "lldb/Host/ConnectionFileDescriptor.h" 30 #include "lldb/Host/FileSystem.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/HostInfo.h" 33 #include "lldb/Host/OptionParser.h" 34 #include "lldb/Host/Pipe.h" 35 #include "lldb/Host/Terminal.h" 36 #include "lldb/Host/ThreadLauncher.h" 37 #include "lldb/Interpreter/CommandInterpreter.h" 38 #include "lldb/Interpreter/OptionArgParser.h" 39 #include "lldb/Interpreter/OptionValueProperties.h" 40 #include "lldb/Symbol/Function.h" 41 #include "lldb/Symbol/Symbol.h" 42 #include "lldb/Target/ABI.h" 43 #include "lldb/Target/AssertFrameRecognizer.h" 44 #include "lldb/Target/DynamicLoader.h" 45 #include "lldb/Target/InstrumentationRuntime.h" 46 #include "lldb/Target/JITLoader.h" 47 #include "lldb/Target/JITLoaderList.h" 48 #include "lldb/Target/Language.h" 49 #include "lldb/Target/LanguageRuntime.h" 50 #include "lldb/Target/MemoryHistory.h" 51 #include "lldb/Target/MemoryRegionInfo.h" 52 #include "lldb/Target/OperatingSystem.h" 53 #include "lldb/Target/Platform.h" 54 #include "lldb/Target/Process.h" 55 #include "lldb/Target/RegisterContext.h" 56 #include "lldb/Target/StopInfo.h" 57 #include "lldb/Target/StructuredDataPlugin.h" 58 #include "lldb/Target/SystemRuntime.h" 59 #include "lldb/Target/Target.h" 60 #include "lldb/Target/TargetList.h" 61 #include "lldb/Target/Thread.h" 62 #include "lldb/Target/ThreadPlan.h" 63 #include "lldb/Target/ThreadPlanBase.h" 64 #include "lldb/Target/ThreadPlanCallFunction.h" 65 #include "lldb/Target/ThreadPlanStack.h" 66 #include "lldb/Target/UnixSignals.h" 67 #include "lldb/Target/VerboseTrapFrameRecognizer.h" 68 #include "lldb/Utility/AddressableBits.h" 69 #include "lldb/Utility/Event.h" 70 #include "lldb/Utility/LLDBLog.h" 71 #include "lldb/Utility/Log.h" 72 #include "lldb/Utility/NameMatches.h" 73 #include "lldb/Utility/ProcessInfo.h" 74 #include "lldb/Utility/SelectHelper.h" 75 #include "lldb/Utility/State.h" 76 #include "lldb/Utility/Timer.h" 77 78 using namespace lldb; 79 using namespace lldb_private; 80 using namespace std::chrono; 81 82 // Comment out line below to disable memory caching, overriding the process 83 // setting target.process.disable-memory-cache 84 #define ENABLE_MEMORY_CACHING 85 86 #ifdef ENABLE_MEMORY_CACHING 87 #define DISABLE_MEM_CACHE_DEFAULT false 88 #else 89 #define DISABLE_MEM_CACHE_DEFAULT true 90 #endif 91 92 class ProcessOptionValueProperties 93 : public Cloneable<ProcessOptionValueProperties, OptionValueProperties> { 94 public: 95 ProcessOptionValueProperties(llvm::StringRef name) : Cloneable(name) {} 96 97 const Property * 98 GetPropertyAtIndex(size_t idx, 99 const ExecutionContext *exe_ctx) const override { 100 // When getting the value for a key from the process options, we will 101 // always try and grab the setting from the current process if there is 102 // one. Else we just use the one from this instance. 103 if (exe_ctx) { 104 Process *process = exe_ctx->GetProcessPtr(); 105 if (process) { 106 ProcessOptionValueProperties *instance_properties = 107 static_cast<ProcessOptionValueProperties *>( 108 process->GetValueProperties().get()); 109 if (this != instance_properties) 110 return instance_properties->ProtectedGetPropertyAtIndex(idx); 111 } 112 } 113 return ProtectedGetPropertyAtIndex(idx); 114 } 115 }; 116 117 static constexpr OptionEnumValueElement g_follow_fork_mode_values[] = { 118 { 119 eFollowParent, 120 "parent", 121 "Continue tracing the parent process and detach the child.", 122 }, 123 { 124 eFollowChild, 125 "child", 126 "Trace the child process and detach the parent.", 127 }, 128 }; 129 130 #define LLDB_PROPERTIES_process 131 #include "TargetProperties.inc" 132 133 enum { 134 #define LLDB_PROPERTIES_process 135 #include "TargetPropertiesEnum.inc" 136 ePropertyExperimental, 137 }; 138 139 #define LLDB_PROPERTIES_process_experimental 140 #include "TargetProperties.inc" 141 142 enum { 143 #define LLDB_PROPERTIES_process_experimental 144 #include "TargetPropertiesEnum.inc" 145 }; 146 147 class ProcessExperimentalOptionValueProperties 148 : public Cloneable<ProcessExperimentalOptionValueProperties, 149 OptionValueProperties> { 150 public: 151 ProcessExperimentalOptionValueProperties() 152 : Cloneable(Properties::GetExperimentalSettingsName()) {} 153 }; 154 155 ProcessExperimentalProperties::ProcessExperimentalProperties() 156 : Properties(OptionValuePropertiesSP( 157 new ProcessExperimentalOptionValueProperties())) { 158 m_collection_sp->Initialize(g_process_experimental_properties); 159 } 160 161 ProcessProperties::ProcessProperties(lldb_private::Process *process) 162 : Properties(), 163 m_process(process) // Can be nullptr for global ProcessProperties 164 { 165 if (process == nullptr) { 166 // Global process properties, set them up one time 167 m_collection_sp = std::make_shared<ProcessOptionValueProperties>("process"); 168 m_collection_sp->Initialize(g_process_properties); 169 m_collection_sp->AppendProperty( 170 "thread", "Settings specific to threads.", true, 171 Thread::GetGlobalProperties().GetValueProperties()); 172 } else { 173 m_collection_sp = 174 OptionValueProperties::CreateLocalCopy(Process::GetGlobalProperties()); 175 m_collection_sp->SetValueChangedCallback( 176 ePropertyPythonOSPluginPath, 177 [this] { m_process->LoadOperatingSystemPlugin(true); }); 178 } 179 180 m_experimental_properties_up = 181 std::make_unique<ProcessExperimentalProperties>(); 182 m_collection_sp->AppendProperty( 183 Properties::GetExperimentalSettingsName(), 184 "Experimental settings - setting these won't produce " 185 "errors if the setting is not present.", 186 true, m_experimental_properties_up->GetValueProperties()); 187 } 188 189 ProcessProperties::~ProcessProperties() = default; 190 191 bool ProcessProperties::GetDisableMemoryCache() const { 192 const uint32_t idx = ePropertyDisableMemCache; 193 return GetPropertyAtIndexAs<bool>( 194 idx, g_process_properties[idx].default_uint_value != 0); 195 } 196 197 uint64_t ProcessProperties::GetMemoryCacheLineSize() const { 198 const uint32_t idx = ePropertyMemCacheLineSize; 199 return GetPropertyAtIndexAs<uint64_t>( 200 idx, g_process_properties[idx].default_uint_value); 201 } 202 203 Args ProcessProperties::GetExtraStartupCommands() const { 204 Args args; 205 const uint32_t idx = ePropertyExtraStartCommand; 206 m_collection_sp->GetPropertyAtIndexAsArgs(idx, args); 207 return args; 208 } 209 210 void ProcessProperties::SetExtraStartupCommands(const Args &args) { 211 const uint32_t idx = ePropertyExtraStartCommand; 212 m_collection_sp->SetPropertyAtIndexFromArgs(idx, args); 213 } 214 215 FileSpec ProcessProperties::GetPythonOSPluginPath() const { 216 const uint32_t idx = ePropertyPythonOSPluginPath; 217 return GetPropertyAtIndexAs<FileSpec>(idx, {}); 218 } 219 220 uint32_t ProcessProperties::GetVirtualAddressableBits() const { 221 const uint32_t idx = ePropertyVirtualAddressableBits; 222 return GetPropertyAtIndexAs<uint64_t>( 223 idx, g_process_properties[idx].default_uint_value); 224 } 225 226 void ProcessProperties::SetVirtualAddressableBits(uint32_t bits) { 227 const uint32_t idx = ePropertyVirtualAddressableBits; 228 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); 229 } 230 231 uint32_t ProcessProperties::GetHighmemVirtualAddressableBits() const { 232 const uint32_t idx = ePropertyHighmemVirtualAddressableBits; 233 return GetPropertyAtIndexAs<uint64_t>( 234 idx, g_process_properties[idx].default_uint_value); 235 } 236 237 void ProcessProperties::SetHighmemVirtualAddressableBits(uint32_t bits) { 238 const uint32_t idx = ePropertyHighmemVirtualAddressableBits; 239 SetPropertyAtIndex(idx, static_cast<uint64_t>(bits)); 240 } 241 242 void ProcessProperties::SetPythonOSPluginPath(const FileSpec &file) { 243 const uint32_t idx = ePropertyPythonOSPluginPath; 244 SetPropertyAtIndex(idx, file); 245 } 246 247 bool ProcessProperties::GetIgnoreBreakpointsInExpressions() const { 248 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 249 return GetPropertyAtIndexAs<bool>( 250 idx, g_process_properties[idx].default_uint_value != 0); 251 } 252 253 void ProcessProperties::SetIgnoreBreakpointsInExpressions(bool ignore) { 254 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 255 SetPropertyAtIndex(idx, ignore); 256 } 257 258 bool ProcessProperties::GetUnwindOnErrorInExpressions() const { 259 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 260 return GetPropertyAtIndexAs<bool>( 261 idx, g_process_properties[idx].default_uint_value != 0); 262 } 263 264 void ProcessProperties::SetUnwindOnErrorInExpressions(bool ignore) { 265 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 266 SetPropertyAtIndex(idx, ignore); 267 } 268 269 bool ProcessProperties::GetStopOnSharedLibraryEvents() const { 270 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 271 return GetPropertyAtIndexAs<bool>( 272 idx, g_process_properties[idx].default_uint_value != 0); 273 } 274 275 void ProcessProperties::SetStopOnSharedLibraryEvents(bool stop) { 276 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 277 SetPropertyAtIndex(idx, stop); 278 } 279 280 bool ProcessProperties::GetDisableLangRuntimeUnwindPlans() const { 281 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 282 return GetPropertyAtIndexAs<bool>( 283 idx, g_process_properties[idx].default_uint_value != 0); 284 } 285 286 void ProcessProperties::SetDisableLangRuntimeUnwindPlans(bool disable) { 287 const uint32_t idx = ePropertyDisableLangRuntimeUnwindPlans; 288 SetPropertyAtIndex(idx, disable); 289 m_process->Flush(); 290 } 291 292 bool ProcessProperties::GetDetachKeepsStopped() const { 293 const uint32_t idx = ePropertyDetachKeepsStopped; 294 return GetPropertyAtIndexAs<bool>( 295 idx, g_process_properties[idx].default_uint_value != 0); 296 } 297 298 void ProcessProperties::SetDetachKeepsStopped(bool stop) { 299 const uint32_t idx = ePropertyDetachKeepsStopped; 300 SetPropertyAtIndex(idx, stop); 301 } 302 303 bool ProcessProperties::GetWarningsOptimization() const { 304 const uint32_t idx = ePropertyWarningOptimization; 305 return GetPropertyAtIndexAs<bool>( 306 idx, g_process_properties[idx].default_uint_value != 0); 307 } 308 309 bool ProcessProperties::GetWarningsUnsupportedLanguage() const { 310 const uint32_t idx = ePropertyWarningUnsupportedLanguage; 311 return GetPropertyAtIndexAs<bool>( 312 idx, g_process_properties[idx].default_uint_value != 0); 313 } 314 315 bool ProcessProperties::GetStopOnExec() const { 316 const uint32_t idx = ePropertyStopOnExec; 317 return GetPropertyAtIndexAs<bool>( 318 idx, g_process_properties[idx].default_uint_value != 0); 319 } 320 321 std::chrono::seconds ProcessProperties::GetUtilityExpressionTimeout() const { 322 const uint32_t idx = ePropertyUtilityExpressionTimeout; 323 uint64_t value = GetPropertyAtIndexAs<uint64_t>( 324 idx, g_process_properties[idx].default_uint_value); 325 return std::chrono::seconds(value); 326 } 327 328 std::chrono::seconds ProcessProperties::GetInterruptTimeout() const { 329 const uint32_t idx = ePropertyInterruptTimeout; 330 uint64_t value = GetPropertyAtIndexAs<uint64_t>( 331 idx, g_process_properties[idx].default_uint_value); 332 return std::chrono::seconds(value); 333 } 334 335 bool ProcessProperties::GetSteppingRunsAllThreads() const { 336 const uint32_t idx = ePropertySteppingRunsAllThreads; 337 return GetPropertyAtIndexAs<bool>( 338 idx, g_process_properties[idx].default_uint_value != 0); 339 } 340 341 bool ProcessProperties::GetOSPluginReportsAllThreads() const { 342 const bool fail_value = true; 343 const Property *exp_property = 344 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); 345 OptionValueProperties *exp_values = 346 exp_property->GetValue()->GetAsProperties(); 347 if (!exp_values) 348 return fail_value; 349 350 return exp_values 351 ->GetPropertyAtIndexAs<bool>(ePropertyOSPluginReportsAllThreads) 352 .value_or(fail_value); 353 } 354 355 void ProcessProperties::SetOSPluginReportsAllThreads(bool does_report) { 356 const Property *exp_property = 357 m_collection_sp->GetPropertyAtIndex(ePropertyExperimental); 358 OptionValueProperties *exp_values = 359 exp_property->GetValue()->GetAsProperties(); 360 if (exp_values) 361 exp_values->SetPropertyAtIndex(ePropertyOSPluginReportsAllThreads, 362 does_report); 363 } 364 365 FollowForkMode ProcessProperties::GetFollowForkMode() const { 366 const uint32_t idx = ePropertyFollowForkMode; 367 return GetPropertyAtIndexAs<FollowForkMode>( 368 idx, static_cast<FollowForkMode>( 369 g_process_properties[idx].default_uint_value)); 370 } 371 372 ProcessSP Process::FindPlugin(lldb::TargetSP target_sp, 373 llvm::StringRef plugin_name, 374 ListenerSP listener_sp, 375 const FileSpec *crash_file_path, 376 bool can_connect) { 377 static uint32_t g_process_unique_id = 0; 378 379 ProcessSP process_sp; 380 ProcessCreateInstance create_callback = nullptr; 381 if (!plugin_name.empty()) { 382 create_callback = 383 PluginManager::GetProcessCreateCallbackForPluginName(plugin_name); 384 if (create_callback) { 385 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 386 can_connect); 387 if (process_sp) { 388 if (process_sp->CanDebug(target_sp, true)) { 389 process_sp->m_process_unique_id = ++g_process_unique_id; 390 } else 391 process_sp.reset(); 392 } 393 } 394 } else { 395 for (uint32_t idx = 0; 396 (create_callback = 397 PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; 398 ++idx) { 399 process_sp = create_callback(target_sp, listener_sp, crash_file_path, 400 can_connect); 401 if (process_sp) { 402 if (process_sp->CanDebug(target_sp, false)) { 403 process_sp->m_process_unique_id = ++g_process_unique_id; 404 break; 405 } else 406 process_sp.reset(); 407 } 408 } 409 } 410 return process_sp; 411 } 412 413 llvm::StringRef Process::GetStaticBroadcasterClass() { 414 static constexpr llvm::StringLiteral class_name("lldb.process"); 415 return class_name; 416 } 417 418 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) 419 : Process(target_sp, listener_sp, UnixSignals::CreateForHost()) { 420 // This constructor just delegates to the full Process constructor, 421 // defaulting to using the Host's UnixSignals. 422 } 423 424 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, 425 const UnixSignalsSP &unix_signals_sp) 426 : ProcessProperties(this), 427 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), 428 Process::GetStaticBroadcasterClass().str()), 429 m_target_wp(target_sp), m_public_state(eStateUnloaded), 430 m_private_state(eStateUnloaded), 431 m_private_state_broadcaster(nullptr, 432 "lldb.process.internal_state_broadcaster"), 433 m_private_state_control_broadcaster( 434 nullptr, "lldb.process.internal_state_control_broadcaster"), 435 m_private_state_listener_sp( 436 Listener::MakeListener("lldb.process.internal_state_listener")), 437 m_mod_id(), m_process_unique_id(0), m_thread_index_id(0), 438 m_thread_id_to_index_id_map(), m_exit_status(-1), 439 m_thread_list_real(*this), m_thread_list(*this), m_thread_plans(*this), 440 m_extended_thread_list(*this), m_extended_thread_stop_id(0), 441 m_queue_list(this), m_queue_list_stop_id(0), 442 m_unix_signals_sp(unix_signals_sp), m_abi_sp(), m_process_input_reader(), 443 m_stdio_communication("process.stdio"), m_stdio_communication_mutex(), 444 m_stdin_forward(false), m_stdout_data(), m_stderr_data(), 445 m_profile_data_comm_mutex(), m_profile_data(), m_iohandler_sync(0), 446 m_memory_cache(*this), m_allocated_memory_cache(*this), 447 m_should_detach(false), m_next_event_action_up(), m_public_run_lock(), 448 m_private_run_lock(), m_currently_handling_do_on_removals(false), 449 m_resume_requested(false), m_last_run_direction(eRunForward), 450 m_interrupt_tid(LLDB_INVALID_THREAD_ID), 451 m_finalizing(false), m_destructing(false), 452 m_clear_thread_plans_on_stop(false), m_force_next_event_delivery(false), 453 m_last_broadcast_state(eStateInvalid), m_destroy_in_process(false), 454 m_can_interpret_function_calls(false), m_run_thread_plan_lock(), 455 m_can_jit(eCanJITDontKnow), 456 m_crash_info_dict_sp(new StructuredData::Dictionary()) { 457 CheckInWithManager(); 458 459 Log *log = GetLog(LLDBLog::Object); 460 LLDB_LOGF(log, "%p Process::Process()", static_cast<void *>(this)); 461 462 if (!m_unix_signals_sp) 463 m_unix_signals_sp = std::make_shared<UnixSignals>(); 464 465 SetEventName(eBroadcastBitStateChanged, "state-changed"); 466 SetEventName(eBroadcastBitInterrupt, "interrupt"); 467 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 468 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 469 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 470 SetEventName(eBroadcastBitStructuredData, "structured-data-available"); 471 472 m_private_state_control_broadcaster.SetEventName( 473 eBroadcastInternalStateControlStop, "control-stop"); 474 m_private_state_control_broadcaster.SetEventName( 475 eBroadcastInternalStateControlPause, "control-pause"); 476 m_private_state_control_broadcaster.SetEventName( 477 eBroadcastInternalStateControlResume, "control-resume"); 478 479 // The listener passed into process creation is the primary listener: 480 // It always listens for all the event bits for Process: 481 SetPrimaryListener(listener_sp); 482 483 m_private_state_listener_sp->StartListeningForEvents( 484 &m_private_state_broadcaster, 485 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 486 487 m_private_state_listener_sp->StartListeningForEvents( 488 &m_private_state_control_broadcaster, 489 eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 490 eBroadcastInternalStateControlResume); 491 // We need something valid here, even if just the default UnixSignalsSP. 492 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 493 494 // Allow the platform to override the default cache line size 495 OptionValueSP value_sp = 496 m_collection_sp->GetPropertyAtIndex(ePropertyMemCacheLineSize) 497 ->GetValue(); 498 uint64_t platform_cache_line_size = 499 target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 500 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 501 value_sp->SetValueAs(platform_cache_line_size); 502 503 // FIXME: Frame recognizer registration should not be done in Target. 504 // We should have a plugin do the registration instead, for example, a 505 // common C LanguageRuntime plugin. 506 RegisterAssertFrameRecognizer(this); 507 RegisterVerboseTrapFrameRecognizer(*this); 508 } 509 510 Process::~Process() { 511 Log *log = GetLog(LLDBLog::Object); 512 LLDB_LOGF(log, "%p Process::~Process()", static_cast<void *>(this)); 513 StopPrivateStateThread(); 514 515 // ThreadList::Clear() will try to acquire this process's mutex, so 516 // explicitly clear the thread list here to ensure that the mutex is not 517 // destroyed before the thread list. 518 m_thread_list.Clear(); 519 } 520 521 ProcessProperties &Process::GetGlobalProperties() { 522 // NOTE: intentional leak so we don't crash if global destructor chain gets 523 // called as other threads still use the result of this function 524 static ProcessProperties *g_settings_ptr = 525 new ProcessProperties(nullptr); 526 return *g_settings_ptr; 527 } 528 529 void Process::Finalize(bool destructing) { 530 if (m_finalizing.exchange(true)) 531 return; 532 if (destructing) 533 m_destructing.exchange(true); 534 535 // Destroy the process. This will call the virtual function DoDestroy under 536 // the hood, giving our derived class a chance to do the ncessary tear down. 537 DestroyImpl(false); 538 539 // Clear our broadcaster before we proceed with destroying 540 Broadcaster::Clear(); 541 542 // Do any cleanup needed prior to being destructed... Subclasses that 543 // override this method should call this superclass method as well. 544 545 // We need to destroy the loader before the derived Process class gets 546 // destroyed since it is very likely that undoing the loader will require 547 // access to the real process. 548 m_dynamic_checkers_up.reset(); 549 m_abi_sp.reset(); 550 m_os_up.reset(); 551 m_system_runtime_up.reset(); 552 m_dyld_up.reset(); 553 m_jit_loaders_up.reset(); 554 m_thread_plans.Clear(); 555 m_thread_list_real.Destroy(); 556 m_thread_list.Destroy(); 557 m_extended_thread_list.Destroy(); 558 m_queue_list.Clear(); 559 m_queue_list_stop_id = 0; 560 m_watchpoint_resource_list.Clear(); 561 std::vector<Notifications> empty_notifications; 562 m_notifications.swap(empty_notifications); 563 m_image_tokens.clear(); 564 m_memory_cache.Clear(); 565 m_allocated_memory_cache.Clear(/*deallocate_memory=*/true); 566 { 567 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 568 m_language_runtimes.clear(); 569 } 570 m_instrumentation_runtimes.clear(); 571 m_next_event_action_up.reset(); 572 // Clear the last natural stop ID since it has a strong reference to this 573 // process 574 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 575 // We have to be very careful here as the m_private_state_listener might 576 // contain events that have ProcessSP values in them which can keep this 577 // process around forever. These events need to be cleared out. 578 m_private_state_listener_sp->Clear(); 579 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 580 m_public_run_lock.SetStopped(); 581 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 582 m_private_run_lock.SetStopped(); 583 m_structured_data_plugin_map.clear(); 584 } 585 586 void Process::RegisterNotificationCallbacks(const Notifications &callbacks) { 587 m_notifications.push_back(callbacks); 588 if (callbacks.initialize != nullptr) 589 callbacks.initialize(callbacks.baton, this); 590 } 591 592 bool Process::UnregisterNotificationCallbacks(const Notifications &callbacks) { 593 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 594 for (pos = m_notifications.begin(); pos != end; ++pos) { 595 if (pos->baton == callbacks.baton && 596 pos->initialize == callbacks.initialize && 597 pos->process_state_changed == callbacks.process_state_changed) { 598 m_notifications.erase(pos); 599 return true; 600 } 601 } 602 return false; 603 } 604 605 void Process::SynchronouslyNotifyStateChanged(StateType state) { 606 std::vector<Notifications>::iterator notification_pos, 607 notification_end = m_notifications.end(); 608 for (notification_pos = m_notifications.begin(); 609 notification_pos != notification_end; ++notification_pos) { 610 if (notification_pos->process_state_changed) 611 notification_pos->process_state_changed(notification_pos->baton, this, 612 state); 613 } 614 } 615 616 // FIXME: We need to do some work on events before the general Listener sees 617 // them. 618 // For instance if we are continuing from a breakpoint, we need to ensure that 619 // we do the little "insert real insn, step & stop" trick. But we can't do 620 // that when the event is delivered by the broadcaster - since that is done on 621 // the thread that is waiting for new events, so if we needed more than one 622 // event for our handling, we would stall. So instead we do it when we fetch 623 // the event off of the queue. 624 // 625 626 StateType Process::GetNextEvent(EventSP &event_sp) { 627 StateType state = eStateInvalid; 628 629 if (GetPrimaryListener()->GetEventForBroadcaster(this, event_sp, 630 std::chrono::seconds(0)) && 631 event_sp) 632 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 633 634 return state; 635 } 636 637 void Process::SyncIOHandler(uint32_t iohandler_id, 638 const Timeout<std::micro> &timeout) { 639 // don't sync (potentially context switch) in case where there is no process 640 // IO 641 if (!ProcessIOHandlerExists()) 642 return; 643 644 auto Result = m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, timeout); 645 646 Log *log = GetLog(LLDBLog::Process); 647 if (Result) { 648 LLDB_LOG( 649 log, 650 "waited from m_iohandler_sync to change from {0}. New value is {1}.", 651 iohandler_id, *Result); 652 } else { 653 LLDB_LOG(log, "timed out waiting for m_iohandler_sync to change from {0}.", 654 iohandler_id); 655 } 656 } 657 658 StateType Process::WaitForProcessToStop( 659 const Timeout<std::micro> &timeout, EventSP *event_sp_ptr, bool wait_always, 660 ListenerSP hijack_listener_sp, Stream *stream, bool use_run_lock, 661 SelectMostRelevant select_most_relevant) { 662 // We can't just wait for a "stopped" event, because the stopped event may 663 // have restarted the target. We have to actually check each event, and in 664 // the case of a stopped event check the restarted flag on the event. 665 if (event_sp_ptr) 666 event_sp_ptr->reset(); 667 StateType state = GetState(); 668 // If we are exited or detached, we won't ever get back to any other valid 669 // state... 670 if (state == eStateDetached || state == eStateExited) 671 return state; 672 673 Log *log = GetLog(LLDBLog::Process); 674 LLDB_LOG(log, "timeout = {0}", timeout); 675 676 if (!wait_always && StateIsStoppedState(state, true) && 677 StateIsStoppedState(GetPrivateState(), true)) { 678 LLDB_LOGF(log, 679 "Process::%s returning without waiting for events; process " 680 "private and public states are already 'stopped'.", 681 __FUNCTION__); 682 // We need to toggle the run lock as this won't get done in 683 // SetPublicState() if the process is hijacked. 684 if (hijack_listener_sp && use_run_lock) 685 m_public_run_lock.SetStopped(); 686 return state; 687 } 688 689 while (state != eStateInvalid) { 690 EventSP event_sp; 691 state = GetStateChangedEvents(event_sp, timeout, hijack_listener_sp); 692 if (event_sp_ptr && event_sp) 693 *event_sp_ptr = event_sp; 694 695 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 696 Process::HandleProcessStateChangedEvent( 697 event_sp, stream, select_most_relevant, pop_process_io_handler); 698 699 switch (state) { 700 case eStateCrashed: 701 case eStateDetached: 702 case eStateExited: 703 case eStateUnloaded: 704 // We need to toggle the run lock as this won't get done in 705 // SetPublicState() if the process is hijacked. 706 if (hijack_listener_sp && use_run_lock) 707 m_public_run_lock.SetStopped(); 708 return state; 709 case eStateStopped: 710 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 711 continue; 712 else { 713 // We need to toggle the run lock as this won't get done in 714 // SetPublicState() if the process is hijacked. 715 if (hijack_listener_sp && use_run_lock) 716 m_public_run_lock.SetStopped(); 717 return state; 718 } 719 default: 720 continue; 721 } 722 } 723 return state; 724 } 725 726 bool Process::HandleProcessStateChangedEvent( 727 const EventSP &event_sp, Stream *stream, 728 SelectMostRelevant select_most_relevant, 729 bool &pop_process_io_handler) { 730 const bool handle_pop = pop_process_io_handler; 731 732 pop_process_io_handler = false; 733 ProcessSP process_sp = 734 Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 735 736 if (!process_sp) 737 return false; 738 739 StateType event_state = 740 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 741 if (event_state == eStateInvalid) 742 return false; 743 744 switch (event_state) { 745 case eStateInvalid: 746 case eStateUnloaded: 747 case eStateAttaching: 748 case eStateLaunching: 749 case eStateStepping: 750 case eStateDetached: 751 if (stream) 752 stream->Printf("Process %" PRIu64 " %s\n", process_sp->GetID(), 753 StateAsCString(event_state)); 754 if (event_state == eStateDetached) 755 pop_process_io_handler = true; 756 break; 757 758 case eStateConnected: 759 case eStateRunning: 760 // Don't be chatty when we run... 761 break; 762 763 case eStateExited: 764 if (stream) 765 process_sp->GetStatus(*stream); 766 pop_process_io_handler = true; 767 break; 768 769 case eStateStopped: 770 case eStateCrashed: 771 case eStateSuspended: 772 // Make sure the program hasn't been auto-restarted: 773 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 774 if (stream) { 775 size_t num_reasons = 776 Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 777 if (num_reasons > 0) { 778 // FIXME: Do we want to report this, or would that just be annoyingly 779 // chatty? 780 if (num_reasons == 1) { 781 const char *reason = 782 Process::ProcessEventData::GetRestartedReasonAtIndex( 783 event_sp.get(), 0); 784 stream->Printf("Process %" PRIu64 " stopped and restarted: %s\n", 785 process_sp->GetID(), 786 reason ? reason : "<UNKNOWN REASON>"); 787 } else { 788 stream->Printf("Process %" PRIu64 789 " stopped and restarted, reasons:\n", 790 process_sp->GetID()); 791 792 for (size_t i = 0; i < num_reasons; i++) { 793 const char *reason = 794 Process::ProcessEventData::GetRestartedReasonAtIndex( 795 event_sp.get(), i); 796 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 797 } 798 } 799 } 800 } 801 } else { 802 StopInfoSP curr_thread_stop_info_sp; 803 // Lock the thread list so it doesn't change on us, this is the scope for 804 // the locker: 805 { 806 ThreadList &thread_list = process_sp->GetThreadList(); 807 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 808 809 ThreadSP curr_thread(thread_list.GetSelectedThread()); 810 ThreadSP thread; 811 StopReason curr_thread_stop_reason = eStopReasonInvalid; 812 bool prefer_curr_thread = false; 813 if (curr_thread && curr_thread->IsValid()) { 814 curr_thread_stop_reason = curr_thread->GetStopReason(); 815 switch (curr_thread_stop_reason) { 816 case eStopReasonNone: 817 case eStopReasonInvalid: 818 // Don't prefer the current thread if it didn't stop for a reason. 819 break; 820 case eStopReasonSignal: { 821 // We need to do the same computation we do for other threads 822 // below in case the current thread happens to be the one that 823 // stopped for the no-stop signal. 824 uint64_t signo = curr_thread->GetStopInfo()->GetValue(); 825 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 826 prefer_curr_thread = true; 827 } break; 828 default: 829 prefer_curr_thread = true; 830 break; 831 } 832 curr_thread_stop_info_sp = curr_thread->GetStopInfo(); 833 } 834 835 if (!prefer_curr_thread) { 836 // Prefer a thread that has just completed its plan over another 837 // thread as current thread. 838 ThreadSP plan_thread; 839 ThreadSP other_thread; 840 841 const size_t num_threads = thread_list.GetSize(); 842 size_t i; 843 for (i = 0; i < num_threads; ++i) { 844 thread = thread_list.GetThreadAtIndex(i); 845 StopReason thread_stop_reason = thread->GetStopReason(); 846 switch (thread_stop_reason) { 847 case eStopReasonInvalid: 848 case eStopReasonNone: 849 case eStopReasonHistoryBoundary: 850 break; 851 852 case eStopReasonSignal: { 853 // Don't select a signal thread if we weren't going to stop at 854 // that signal. We have to have had another reason for stopping 855 // here, and the user doesn't want to see this thread. 856 uint64_t signo = thread->GetStopInfo()->GetValue(); 857 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) { 858 if (!other_thread) 859 other_thread = thread; 860 } 861 break; 862 } 863 case eStopReasonTrace: 864 case eStopReasonBreakpoint: 865 case eStopReasonWatchpoint: 866 case eStopReasonException: 867 case eStopReasonExec: 868 case eStopReasonFork: 869 case eStopReasonVFork: 870 case eStopReasonVForkDone: 871 case eStopReasonThreadExiting: 872 case eStopReasonInstrumentation: 873 case eStopReasonProcessorTrace: 874 case eStopReasonInterrupt: 875 if (!other_thread) 876 other_thread = thread; 877 break; 878 case eStopReasonPlanComplete: 879 if (!plan_thread) 880 plan_thread = thread; 881 break; 882 } 883 } 884 if (plan_thread) 885 thread_list.SetSelectedThreadByID(plan_thread->GetID()); 886 else if (other_thread) 887 thread_list.SetSelectedThreadByID(other_thread->GetID()); 888 else { 889 if (curr_thread && curr_thread->IsValid()) 890 thread = curr_thread; 891 else 892 thread = thread_list.GetThreadAtIndex(0); 893 894 if (thread) 895 thread_list.SetSelectedThreadByID(thread->GetID()); 896 } 897 } 898 } 899 // Drop the ThreadList mutex by here, since GetThreadStatus below might 900 // have to run code, e.g. for Data formatters, and if we hold the 901 // ThreadList mutex, then the process is going to have a hard time 902 // restarting the process. 903 if (stream) { 904 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 905 if (debugger.GetTargetList().GetSelectedTarget().get() == 906 &process_sp->GetTarget()) { 907 ThreadSP thread_sp = process_sp->GetThreadList().GetSelectedThread(); 908 909 if (!thread_sp || !thread_sp->IsValid()) 910 return false; 911 912 const bool only_threads_with_stop_reason = true; 913 const uint32_t start_frame = 914 thread_sp->GetSelectedFrameIndex(select_most_relevant); 915 const uint32_t num_frames = 1; 916 const uint32_t num_frames_with_source = 1; 917 const bool stop_format = true; 918 919 process_sp->GetStatus(*stream); 920 process_sp->GetThreadStatus(*stream, only_threads_with_stop_reason, 921 start_frame, num_frames, 922 num_frames_with_source, 923 stop_format); 924 if (curr_thread_stop_info_sp) { 925 lldb::addr_t crashing_address; 926 ValueObjectSP valobj_sp = StopInfo::GetCrashingDereference( 927 curr_thread_stop_info_sp, &crashing_address); 928 if (valobj_sp) { 929 const ValueObject::GetExpressionPathFormat format = 930 ValueObject::GetExpressionPathFormat:: 931 eGetExpressionPathFormatHonorPointers; 932 stream->PutCString("Likely cause: "); 933 valobj_sp->GetExpressionPath(*stream, format); 934 stream->Printf(" accessed 0x%" PRIx64 "\n", crashing_address); 935 } 936 } 937 } else { 938 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget( 939 process_sp->GetTarget().shared_from_this()); 940 if (target_idx != UINT32_MAX) 941 stream->Printf("Target %d: (", target_idx); 942 else 943 stream->Printf("Target <unknown index>: ("); 944 process_sp->GetTarget().Dump(stream, eDescriptionLevelBrief); 945 stream->Printf(") stopped.\n"); 946 } 947 } 948 949 // Pop the process IO handler 950 pop_process_io_handler = true; 951 } 952 break; 953 } 954 955 if (handle_pop && pop_process_io_handler) 956 process_sp->PopProcessIOHandler(); 957 958 return true; 959 } 960 961 bool Process::HijackProcessEvents(ListenerSP listener_sp) { 962 if (listener_sp) { 963 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | 964 eBroadcastBitInterrupt); 965 } else 966 return false; 967 } 968 969 void Process::RestoreProcessEvents() { RestoreBroadcaster(); } 970 971 StateType Process::GetStateChangedEvents(EventSP &event_sp, 972 const Timeout<std::micro> &timeout, 973 ListenerSP hijack_listener_sp) { 974 Log *log = GetLog(LLDBLog::Process); 975 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 976 977 ListenerSP listener_sp = hijack_listener_sp; 978 if (!listener_sp) 979 listener_sp = GetPrimaryListener(); 980 981 StateType state = eStateInvalid; 982 if (listener_sp->GetEventForBroadcasterWithType( 983 this, eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 984 timeout)) { 985 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 986 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 987 else 988 LLDB_LOG(log, "got no event or was interrupted."); 989 } 990 991 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, state); 992 return state; 993 } 994 995 Event *Process::PeekAtStateChangedEvents() { 996 Log *log = GetLog(LLDBLog::Process); 997 998 LLDB_LOGF(log, "Process::%s...", __FUNCTION__); 999 1000 Event *event_ptr; 1001 event_ptr = GetPrimaryListener()->PeekAtNextEventForBroadcasterWithType( 1002 this, eBroadcastBitStateChanged); 1003 if (log) { 1004 if (event_ptr) { 1005 LLDB_LOGF(log, "Process::%s (event_ptr) => %s", __FUNCTION__, 1006 StateAsCString(ProcessEventData::GetStateFromEvent(event_ptr))); 1007 } else { 1008 LLDB_LOGF(log, "Process::%s no events found", __FUNCTION__); 1009 } 1010 } 1011 return event_ptr; 1012 } 1013 1014 StateType 1015 Process::GetStateChangedEventsPrivate(EventSP &event_sp, 1016 const Timeout<std::micro> &timeout) { 1017 Log *log = GetLog(LLDBLog::Process); 1018 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1019 1020 StateType state = eStateInvalid; 1021 if (m_private_state_listener_sp->GetEventForBroadcasterWithType( 1022 &m_private_state_broadcaster, 1023 eBroadcastBitStateChanged | eBroadcastBitInterrupt, event_sp, 1024 timeout)) 1025 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1026 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1027 1028 LLDB_LOG(log, "timeout = {0}, event_sp) => {1}", timeout, 1029 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1030 return state; 1031 } 1032 1033 bool Process::GetEventsPrivate(EventSP &event_sp, 1034 const Timeout<std::micro> &timeout, 1035 bool control_only) { 1036 Log *log = GetLog(LLDBLog::Process); 1037 LLDB_LOG(log, "timeout = {0}, event_sp)...", timeout); 1038 1039 if (control_only) 1040 return m_private_state_listener_sp->GetEventForBroadcaster( 1041 &m_private_state_control_broadcaster, event_sp, timeout); 1042 else 1043 return m_private_state_listener_sp->GetEvent(event_sp, timeout); 1044 } 1045 1046 bool Process::IsRunning() const { 1047 return StateIsRunningState(m_public_state.GetValue()); 1048 } 1049 1050 int Process::GetExitStatus() { 1051 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1052 1053 if (m_public_state.GetValue() == eStateExited) 1054 return m_exit_status; 1055 return -1; 1056 } 1057 1058 const char *Process::GetExitDescription() { 1059 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1060 1061 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1062 return m_exit_string.c_str(); 1063 return nullptr; 1064 } 1065 1066 bool Process::SetExitStatus(int status, llvm::StringRef exit_string) { 1067 // Use a mutex to protect setting the exit status. 1068 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1069 1070 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1071 LLDB_LOG(log, "(plugin = {0} status = {1} ({1:x8}), description=\"{2}\")", 1072 GetPluginName(), status, exit_string); 1073 1074 // We were already in the exited state 1075 if (m_private_state.GetValue() == eStateExited) { 1076 LLDB_LOG( 1077 log, 1078 "(plugin = {0}) ignoring exit status because state was already set " 1079 "to eStateExited", 1080 GetPluginName()); 1081 return false; 1082 } 1083 1084 m_exit_status = status; 1085 if (!exit_string.empty()) 1086 m_exit_string = exit_string.str(); 1087 else 1088 m_exit_string.clear(); 1089 1090 // Clear the last natural stop ID since it has a strong reference to this 1091 // process 1092 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1093 1094 SetPrivateState(eStateExited); 1095 1096 // Allow subclasses to do some cleanup 1097 DidExit(); 1098 1099 return true; 1100 } 1101 1102 bool Process::IsAlive() { 1103 switch (m_private_state.GetValue()) { 1104 case eStateConnected: 1105 case eStateAttaching: 1106 case eStateLaunching: 1107 case eStateStopped: 1108 case eStateRunning: 1109 case eStateStepping: 1110 case eStateCrashed: 1111 case eStateSuspended: 1112 return true; 1113 default: 1114 return false; 1115 } 1116 } 1117 1118 // This static callback can be used to watch for local child processes on the 1119 // current host. The child process exits, the process will be found in the 1120 // global target list (we want to be completely sure that the 1121 // lldb_private::Process doesn't go away before we can deliver the signal. 1122 bool Process::SetProcessExitStatus( 1123 lldb::pid_t pid, bool exited, 1124 int signo, // Zero for no signal 1125 int exit_status // Exit value of process if signal is zero 1126 ) { 1127 Log *log = GetLog(LLDBLog::Process); 1128 LLDB_LOGF(log, 1129 "Process::SetProcessExitStatus (pid=%" PRIu64 1130 ", exited=%i, signal=%i, exit_status=%i)\n", 1131 pid, exited, signo, exit_status); 1132 1133 if (exited) { 1134 TargetSP target_sp(Debugger::FindTargetWithProcessID(pid)); 1135 if (target_sp) { 1136 ProcessSP process_sp(target_sp->GetProcessSP()); 1137 if (process_sp) { 1138 llvm::StringRef signal_str = 1139 process_sp->GetUnixSignals()->GetSignalAsStringRef(signo); 1140 process_sp->SetExitStatus(exit_status, signal_str); 1141 } 1142 } 1143 return true; 1144 } 1145 return false; 1146 } 1147 1148 bool Process::UpdateThreadList(ThreadList &old_thread_list, 1149 ThreadList &new_thread_list) { 1150 m_thread_plans.ClearThreadCache(); 1151 return DoUpdateThreadList(old_thread_list, new_thread_list); 1152 } 1153 1154 void Process::UpdateThreadListIfNeeded() { 1155 const uint32_t stop_id = GetStopID(); 1156 if (m_thread_list.GetSize(false) == 0 || 1157 stop_id != m_thread_list.GetStopID()) { 1158 bool clear_unused_threads = true; 1159 const StateType state = GetPrivateState(); 1160 if (StateIsStoppedState(state, true)) { 1161 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1162 m_thread_list.SetStopID(stop_id); 1163 1164 // m_thread_list does have its own mutex, but we need to hold onto the 1165 // mutex between the call to UpdateThreadList(...) and the 1166 // os->UpdateThreadList(...) so it doesn't change on us 1167 ThreadList &old_thread_list = m_thread_list; 1168 ThreadList real_thread_list(*this); 1169 ThreadList new_thread_list(*this); 1170 // Always update the thread list with the protocol specific thread list, 1171 // but only update if "true" is returned 1172 if (UpdateThreadList(m_thread_list_real, real_thread_list)) { 1173 // Don't call into the OperatingSystem to update the thread list if we 1174 // are shutting down, since that may call back into the SBAPI's, 1175 // requiring the API lock which is already held by whoever is shutting 1176 // us down, causing a deadlock. 1177 OperatingSystem *os = GetOperatingSystem(); 1178 if (os && !m_destroy_in_process) { 1179 // Clear any old backing threads where memory threads might have been 1180 // backed by actual threads from the lldb_private::Process subclass 1181 size_t num_old_threads = old_thread_list.GetSize(false); 1182 for (size_t i = 0; i < num_old_threads; ++i) 1183 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1184 // See if the OS plugin reports all threads. If it does, then 1185 // it is safe to clear unseen thread's plans here. Otherwise we 1186 // should preserve them in case they show up again: 1187 clear_unused_threads = GetOSPluginReportsAllThreads(); 1188 1189 // Turn off dynamic types to ensure we don't run any expressions. 1190 // Objective-C can run an expression to determine if a SBValue is a 1191 // dynamic type or not and we need to avoid this. OperatingSystem 1192 // plug-ins can't run expressions that require running code... 1193 1194 Target &target = GetTarget(); 1195 const lldb::DynamicValueType saved_prefer_dynamic = 1196 target.GetPreferDynamicValue(); 1197 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1198 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1199 1200 // Now let the OperatingSystem plug-in update the thread list 1201 1202 os->UpdateThreadList( 1203 old_thread_list, // Old list full of threads created by OS plug-in 1204 real_thread_list, // The actual thread list full of threads 1205 // created by each lldb_private::Process 1206 // subclass 1207 new_thread_list); // The new thread list that we will show to the 1208 // user that gets filled in 1209 1210 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1211 target.SetPreferDynamicValue(saved_prefer_dynamic); 1212 } else { 1213 // No OS plug-in, the new thread list is the same as the real thread 1214 // list. 1215 new_thread_list = real_thread_list; 1216 } 1217 1218 m_thread_list_real.Update(real_thread_list); 1219 m_thread_list.Update(new_thread_list); 1220 m_thread_list.SetStopID(stop_id); 1221 1222 if (GetLastNaturalStopID() != m_extended_thread_stop_id) { 1223 // Clear any extended threads that we may have accumulated previously 1224 m_extended_thread_list.Clear(); 1225 m_extended_thread_stop_id = GetLastNaturalStopID(); 1226 1227 m_queue_list.Clear(); 1228 m_queue_list_stop_id = GetLastNaturalStopID(); 1229 } 1230 } 1231 // Now update the plan stack map. 1232 // If we do have an OS plugin, any absent real threads in the 1233 // m_thread_list have already been removed from the ThreadPlanStackMap. 1234 // So any remaining threads are OS Plugin threads, and those we want to 1235 // preserve in case they show up again. 1236 m_thread_plans.Update(m_thread_list, clear_unused_threads); 1237 } 1238 } 1239 } 1240 1241 ThreadPlanStack *Process::FindThreadPlans(lldb::tid_t tid) { 1242 return m_thread_plans.Find(tid); 1243 } 1244 1245 bool Process::PruneThreadPlansForTID(lldb::tid_t tid) { 1246 return m_thread_plans.PrunePlansForTID(tid); 1247 } 1248 1249 void Process::PruneThreadPlans() { 1250 m_thread_plans.Update(GetThreadList(), true, false); 1251 } 1252 1253 bool Process::DumpThreadPlansForTID(Stream &strm, lldb::tid_t tid, 1254 lldb::DescriptionLevel desc_level, 1255 bool internal, bool condense_trivial, 1256 bool skip_unreported_plans) { 1257 return m_thread_plans.DumpPlansForTID( 1258 strm, tid, desc_level, internal, condense_trivial, skip_unreported_plans); 1259 } 1260 void Process::DumpThreadPlans(Stream &strm, lldb::DescriptionLevel desc_level, 1261 bool internal, bool condense_trivial, 1262 bool skip_unreported_plans) { 1263 m_thread_plans.DumpPlans(strm, desc_level, internal, condense_trivial, 1264 skip_unreported_plans); 1265 } 1266 1267 void Process::UpdateQueueListIfNeeded() { 1268 if (m_system_runtime_up) { 1269 if (m_queue_list.GetSize() == 0 || 1270 m_queue_list_stop_id != GetLastNaturalStopID()) { 1271 const StateType state = GetPrivateState(); 1272 if (StateIsStoppedState(state, true)) { 1273 m_system_runtime_up->PopulateQueueList(m_queue_list); 1274 m_queue_list_stop_id = GetLastNaturalStopID(); 1275 } 1276 } 1277 } 1278 } 1279 1280 ThreadSP Process::CreateOSPluginThread(lldb::tid_t tid, lldb::addr_t context) { 1281 OperatingSystem *os = GetOperatingSystem(); 1282 if (os) 1283 return os->CreateThread(tid, context); 1284 return ThreadSP(); 1285 } 1286 1287 uint32_t Process::GetNextThreadIndexID(uint64_t thread_id) { 1288 return AssignIndexIDToThread(thread_id); 1289 } 1290 1291 bool Process::HasAssignedIndexIDToThread(uint64_t thread_id) { 1292 return (m_thread_id_to_index_id_map.find(thread_id) != 1293 m_thread_id_to_index_id_map.end()); 1294 } 1295 1296 uint32_t Process::AssignIndexIDToThread(uint64_t thread_id) { 1297 uint32_t result = 0; 1298 std::map<uint64_t, uint32_t>::iterator iterator = 1299 m_thread_id_to_index_id_map.find(thread_id); 1300 if (iterator == m_thread_id_to_index_id_map.end()) { 1301 result = ++m_thread_index_id; 1302 m_thread_id_to_index_id_map[thread_id] = result; 1303 } else { 1304 result = iterator->second; 1305 } 1306 1307 return result; 1308 } 1309 1310 StateType Process::GetState() { 1311 if (CurrentThreadIsPrivateStateThread()) 1312 return m_private_state.GetValue(); 1313 else 1314 return m_public_state.GetValue(); 1315 } 1316 1317 void Process::SetPublicState(StateType new_state, bool restarted) { 1318 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1319 if (new_state_is_stopped) { 1320 // This will only set the time if the public stop time has no value, so 1321 // it is ok to call this multiple times. With a public stop we can't look 1322 // at the stop ID because many private stops might have happened, so we 1323 // can't check for a stop ID of zero. This allows the "statistics" command 1324 // to dump the time it takes to reach somewhere in your code, like a 1325 // breakpoint you set. 1326 GetTarget().GetStatistics().SetFirstPublicStopTime(); 1327 } 1328 1329 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1330 LLDB_LOGF(log, "(plugin = %s, state = %s, restarted = %i)", 1331 GetPluginName().data(), StateAsCString(new_state), restarted); 1332 const StateType old_state = m_public_state.GetValue(); 1333 m_public_state.SetValue(new_state); 1334 1335 // On the transition from Run to Stopped, we unlock the writer end of the run 1336 // lock. The lock gets locked in Resume, which is the public API to tell the 1337 // program to run. 1338 if (!StateChangedIsExternallyHijacked()) { 1339 if (new_state == eStateDetached) { 1340 LLDB_LOGF(log, 1341 "(plugin = %s, state = %s) -- unlocking run lock for detach", 1342 GetPluginName().data(), StateAsCString(new_state)); 1343 m_public_run_lock.SetStopped(); 1344 } else { 1345 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1346 if ((old_state_is_stopped != new_state_is_stopped)) { 1347 if (new_state_is_stopped && !restarted) { 1348 LLDB_LOGF(log, "(plugin = %s, state = %s) -- unlocking run lock", 1349 GetPluginName().data(), StateAsCString(new_state)); 1350 m_public_run_lock.SetStopped(); 1351 } 1352 } 1353 } 1354 } 1355 } 1356 1357 Status Process::Resume(RunDirection direction) { 1358 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1359 LLDB_LOGF(log, "(plugin = %s) -- locking run lock", GetPluginName().data()); 1360 if (!m_public_run_lock.TrySetRunning()) { 1361 LLDB_LOGF(log, "(plugin = %s) -- TrySetRunning failed, not resuming.", 1362 GetPluginName().data()); 1363 return Status::FromErrorString( 1364 "Resume request failed - process still running."); 1365 } 1366 Status error = PrivateResume(direction); 1367 if (!error.Success()) { 1368 // Undo running state change 1369 m_public_run_lock.SetStopped(); 1370 } 1371 return error; 1372 } 1373 1374 Status Process::ResumeSynchronous(Stream *stream, RunDirection direction) { 1375 Log *log(GetLog(LLDBLog::State | LLDBLog::Process)); 1376 LLDB_LOGF(log, "Process::ResumeSynchronous -- locking run lock"); 1377 if (!m_public_run_lock.TrySetRunning()) { 1378 LLDB_LOGF(log, "Process::Resume: -- TrySetRunning failed, not resuming."); 1379 return Status::FromErrorString( 1380 "Resume request failed - process still running."); 1381 } 1382 1383 ListenerSP listener_sp( 1384 Listener::MakeListener(ResumeSynchronousHijackListenerName.data())); 1385 HijackProcessEvents(listener_sp); 1386 1387 Status error = PrivateResume(direction); 1388 if (error.Success()) { 1389 StateType state = 1390 WaitForProcessToStop(std::nullopt, nullptr, true, listener_sp, stream, 1391 true /* use_run_lock */, SelectMostRelevantFrame); 1392 const bool must_be_alive = 1393 false; // eStateExited is ok, so this must be false 1394 if (!StateIsStoppedState(state, must_be_alive)) 1395 error = Status::FromErrorStringWithFormat( 1396 "process not in stopped state after synchronous resume: %s", 1397 StateAsCString(state)); 1398 } else { 1399 // Undo running state change 1400 m_public_run_lock.SetStopped(); 1401 } 1402 1403 // Undo the hijacking of process events... 1404 RestoreProcessEvents(); 1405 1406 return error; 1407 } 1408 1409 bool Process::StateChangedIsExternallyHijacked() { 1410 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1411 llvm::StringRef hijacking_name = GetHijackingListenerName(); 1412 if (!hijacking_name.starts_with("lldb.internal")) 1413 return true; 1414 } 1415 return false; 1416 } 1417 1418 bool Process::StateChangedIsHijackedForSynchronousResume() { 1419 if (IsHijackedForEvent(eBroadcastBitStateChanged)) { 1420 llvm::StringRef hijacking_name = GetHijackingListenerName(); 1421 if (hijacking_name == ResumeSynchronousHijackListenerName) 1422 return true; 1423 } 1424 return false; 1425 } 1426 1427 StateType Process::GetPrivateState() { return m_private_state.GetValue(); } 1428 1429 void Process::SetPrivateState(StateType new_state) { 1430 // Use m_destructing not m_finalizing here. If we are finalizing a process 1431 // that we haven't started tearing down, we'd like to be able to nicely 1432 // detach if asked, but that requires the event system be live. That will 1433 // not be true for an in-the-middle-of-being-destructed Process, since the 1434 // event system relies on Process::shared_from_this, which may have already 1435 // been destroyed. 1436 if (m_destructing) 1437 return; 1438 1439 Log *log(GetLog(LLDBLog::State | LLDBLog::Process | LLDBLog::Unwind)); 1440 bool state_changed = false; 1441 1442 LLDB_LOGF(log, "(plugin = %s, state = %s)", GetPluginName().data(), 1443 StateAsCString(new_state)); 1444 1445 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1446 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1447 1448 const StateType old_state = m_private_state.GetValueNoLock(); 1449 state_changed = old_state != new_state; 1450 1451 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1452 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1453 if (old_state_is_stopped != new_state_is_stopped) { 1454 if (new_state_is_stopped) 1455 m_private_run_lock.SetStopped(); 1456 else 1457 m_private_run_lock.SetRunning(); 1458 } 1459 1460 if (state_changed) { 1461 m_private_state.SetValueNoLock(new_state); 1462 EventSP event_sp( 1463 new Event(eBroadcastBitStateChanged, 1464 new ProcessEventData(shared_from_this(), new_state))); 1465 if (StateIsStoppedState(new_state, false)) { 1466 // Note, this currently assumes that all threads in the list stop when 1467 // the process stops. In the future we will want to support a debugging 1468 // model where some threads continue to run while others are stopped. 1469 // When that happens we will either need a way for the thread list to 1470 // identify which threads are stopping or create a special thread list 1471 // containing only threads which actually stopped. 1472 // 1473 // The process plugin is responsible for managing the actual behavior of 1474 // the threads and should have stopped any threads that are going to stop 1475 // before we get here. 1476 m_thread_list.DidStop(); 1477 1478 if (m_mod_id.BumpStopID() == 0) 1479 GetTarget().GetStatistics().SetFirstPrivateStopTime(); 1480 1481 if (!m_mod_id.IsLastResumeForUserExpression()) 1482 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1483 m_memory_cache.Clear(); 1484 LLDB_LOGF(log, "(plugin = %s, state = %s, stop_id = %u", 1485 GetPluginName().data(), StateAsCString(new_state), 1486 m_mod_id.GetStopID()); 1487 } 1488 1489 m_private_state_broadcaster.BroadcastEvent(event_sp); 1490 } else { 1491 LLDB_LOGF(log, "(plugin = %s, state = %s) state didn't change. Ignoring...", 1492 GetPluginName().data(), StateAsCString(new_state)); 1493 } 1494 } 1495 1496 void Process::SetRunningUserExpression(bool on) { 1497 m_mod_id.SetRunningUserExpression(on); 1498 } 1499 1500 void Process::SetRunningUtilityFunction(bool on) { 1501 m_mod_id.SetRunningUtilityFunction(on); 1502 } 1503 1504 addr_t Process::GetImageInfoAddress() { return LLDB_INVALID_ADDRESS; } 1505 1506 const lldb::ABISP &Process::GetABI() { 1507 if (!m_abi_sp) 1508 m_abi_sp = ABI::FindPlugin(shared_from_this(), GetTarget().GetArchitecture()); 1509 return m_abi_sp; 1510 } 1511 1512 std::vector<LanguageRuntime *> Process::GetLanguageRuntimes() { 1513 std::vector<LanguageRuntime *> language_runtimes; 1514 1515 if (m_finalizing) 1516 return language_runtimes; 1517 1518 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1519 // Before we pass off a copy of the language runtimes, we must make sure that 1520 // our collection is properly populated. It's possible that some of the 1521 // language runtimes were not loaded yet, either because nobody requested it 1522 // yet or the proper condition for loading wasn't yet met (e.g. libc++.so 1523 // hadn't been loaded). 1524 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 1525 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 1526 language_runtimes.emplace_back(runtime); 1527 } 1528 1529 return language_runtimes; 1530 } 1531 1532 LanguageRuntime *Process::GetLanguageRuntime(lldb::LanguageType language) { 1533 if (m_finalizing) 1534 return nullptr; 1535 1536 LanguageRuntime *runtime = nullptr; 1537 1538 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 1539 LanguageRuntimeCollection::iterator pos; 1540 pos = m_language_runtimes.find(language); 1541 if (pos == m_language_runtimes.end() || !pos->second) { 1542 lldb::LanguageRuntimeSP runtime_sp( 1543 LanguageRuntime::FindPlugin(this, language)); 1544 1545 m_language_runtimes[language] = runtime_sp; 1546 runtime = runtime_sp.get(); 1547 } else 1548 runtime = pos->second.get(); 1549 1550 if (runtime) 1551 // It's possible that a language runtime can support multiple LanguageTypes, 1552 // for example, CPPLanguageRuntime will support eLanguageTypeC_plus_plus, 1553 // eLanguageTypeC_plus_plus_03, etc. Because of this, we should get the 1554 // primary language type and make sure that our runtime supports it. 1555 assert(runtime->GetLanguageType() == Language::GetPrimaryLanguage(language)); 1556 1557 return runtime; 1558 } 1559 1560 bool Process::IsPossibleDynamicValue(ValueObject &in_value) { 1561 if (m_finalizing) 1562 return false; 1563 1564 if (in_value.IsDynamic()) 1565 return false; 1566 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1567 1568 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) { 1569 LanguageRuntime *runtime = GetLanguageRuntime(known_type); 1570 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1571 } 1572 1573 for (LanguageRuntime *runtime : GetLanguageRuntimes()) { 1574 if (runtime->CouldHaveDynamicValue(in_value)) 1575 return true; 1576 } 1577 1578 return false; 1579 } 1580 1581 void Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) { 1582 m_dynamic_checkers_up.reset(dynamic_checkers); 1583 } 1584 1585 StopPointSiteList<BreakpointSite> &Process::GetBreakpointSiteList() { 1586 return m_breakpoint_site_list; 1587 } 1588 1589 const StopPointSiteList<BreakpointSite> & 1590 Process::GetBreakpointSiteList() const { 1591 return m_breakpoint_site_list; 1592 } 1593 1594 void Process::DisableAllBreakpointSites() { 1595 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1596 // bp_site->SetEnabled(true); 1597 DisableBreakpointSite(bp_site); 1598 }); 1599 } 1600 1601 Status Process::ClearBreakpointSiteByID(lldb::user_id_t break_id) { 1602 Status error(DisableBreakpointSiteByID(break_id)); 1603 1604 if (error.Success()) 1605 m_breakpoint_site_list.Remove(break_id); 1606 1607 return error; 1608 } 1609 1610 Status Process::DisableBreakpointSiteByID(lldb::user_id_t break_id) { 1611 Status error; 1612 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1613 if (bp_site_sp) { 1614 if (bp_site_sp->IsEnabled()) 1615 error = DisableBreakpointSite(bp_site_sp.get()); 1616 } else { 1617 error = Status::FromErrorStringWithFormat( 1618 "invalid breakpoint site ID: %" PRIu64, break_id); 1619 } 1620 1621 return error; 1622 } 1623 1624 Status Process::EnableBreakpointSiteByID(lldb::user_id_t break_id) { 1625 Status error; 1626 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID(break_id); 1627 if (bp_site_sp) { 1628 if (!bp_site_sp->IsEnabled()) 1629 error = EnableBreakpointSite(bp_site_sp.get()); 1630 } else { 1631 error = Status::FromErrorStringWithFormat( 1632 "invalid breakpoint site ID: %" PRIu64, break_id); 1633 } 1634 return error; 1635 } 1636 1637 lldb::break_id_t 1638 Process::CreateBreakpointSite(const BreakpointLocationSP &constituent, 1639 bool use_hardware) { 1640 addr_t load_addr = LLDB_INVALID_ADDRESS; 1641 1642 bool show_error = true; 1643 switch (GetState()) { 1644 case eStateInvalid: 1645 case eStateUnloaded: 1646 case eStateConnected: 1647 case eStateAttaching: 1648 case eStateLaunching: 1649 case eStateDetached: 1650 case eStateExited: 1651 show_error = false; 1652 break; 1653 1654 case eStateStopped: 1655 case eStateRunning: 1656 case eStateStepping: 1657 case eStateCrashed: 1658 case eStateSuspended: 1659 show_error = IsAlive(); 1660 break; 1661 } 1662 1663 // Reset the IsIndirect flag here, in case the location changes from pointing 1664 // to a indirect symbol to a regular symbol. 1665 constituent->SetIsIndirect(false); 1666 1667 if (constituent->ShouldResolveIndirectFunctions()) { 1668 Symbol *symbol = constituent->GetAddress().CalculateSymbolContextSymbol(); 1669 if (symbol && symbol->IsIndirect()) { 1670 Status error; 1671 Address symbol_address = symbol->GetAddress(); 1672 load_addr = ResolveIndirectFunction(&symbol_address, error); 1673 if (!error.Success() && show_error) { 1674 GetTarget().GetDebugger().GetErrorStream().Printf( 1675 "warning: failed to resolve indirect function at 0x%" PRIx64 1676 " for breakpoint %i.%i: %s\n", 1677 symbol->GetLoadAddress(&GetTarget()), 1678 constituent->GetBreakpoint().GetID(), constituent->GetID(), 1679 error.AsCString() ? error.AsCString() : "unknown error"); 1680 return LLDB_INVALID_BREAK_ID; 1681 } 1682 Address resolved_address(load_addr); 1683 load_addr = resolved_address.GetOpcodeLoadAddress(&GetTarget()); 1684 constituent->SetIsIndirect(true); 1685 } else 1686 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1687 } else 1688 load_addr = constituent->GetAddress().GetOpcodeLoadAddress(&GetTarget()); 1689 1690 if (load_addr != LLDB_INVALID_ADDRESS) { 1691 BreakpointSiteSP bp_site_sp; 1692 1693 // Look up this breakpoint site. If it exists, then add this new 1694 // constituent, otherwise create a new breakpoint site and add it. 1695 1696 bp_site_sp = m_breakpoint_site_list.FindByAddress(load_addr); 1697 1698 if (bp_site_sp) { 1699 bp_site_sp->AddConstituent(constituent); 1700 constituent->SetBreakpointSite(bp_site_sp); 1701 return bp_site_sp->GetID(); 1702 } else { 1703 bp_site_sp.reset( 1704 new BreakpointSite(constituent, load_addr, use_hardware)); 1705 if (bp_site_sp) { 1706 Status error = EnableBreakpointSite(bp_site_sp.get()); 1707 if (error.Success()) { 1708 constituent->SetBreakpointSite(bp_site_sp); 1709 return m_breakpoint_site_list.Add(bp_site_sp); 1710 } else { 1711 if (show_error || use_hardware) { 1712 // Report error for setting breakpoint... 1713 GetTarget().GetDebugger().GetErrorStream().Printf( 1714 "warning: failed to set breakpoint site at 0x%" PRIx64 1715 " for breakpoint %i.%i: %s\n", 1716 load_addr, constituent->GetBreakpoint().GetID(), 1717 constituent->GetID(), 1718 error.AsCString() ? error.AsCString() : "unknown error"); 1719 } 1720 } 1721 } 1722 } 1723 } 1724 // We failed to enable the breakpoint 1725 return LLDB_INVALID_BREAK_ID; 1726 } 1727 1728 void Process::RemoveConstituentFromBreakpointSite( 1729 lldb::user_id_t constituent_id, lldb::user_id_t constituent_loc_id, 1730 BreakpointSiteSP &bp_site_sp) { 1731 uint32_t num_constituents = 1732 bp_site_sp->RemoveConstituent(constituent_id, constituent_loc_id); 1733 if (num_constituents == 0) { 1734 // Don't try to disable the site if we don't have a live process anymore. 1735 if (IsAlive()) 1736 DisableBreakpointSite(bp_site_sp.get()); 1737 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 1738 } 1739 } 1740 1741 size_t Process::RemoveBreakpointOpcodesFromBuffer(addr_t bp_addr, size_t size, 1742 uint8_t *buf) const { 1743 size_t bytes_removed = 0; 1744 StopPointSiteList<BreakpointSite> bp_sites_in_range; 1745 1746 if (m_breakpoint_site_list.FindInRange(bp_addr, bp_addr + size, 1747 bp_sites_in_range)) { 1748 bp_sites_in_range.ForEach([bp_addr, size, 1749 buf](BreakpointSite *bp_site) -> void { 1750 if (bp_site->GetType() == BreakpointSite::eSoftware) { 1751 addr_t intersect_addr; 1752 size_t intersect_size; 1753 size_t opcode_offset; 1754 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, 1755 &intersect_size, &opcode_offset)) { 1756 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 1757 assert(bp_addr < intersect_addr + intersect_size && 1758 intersect_addr + intersect_size <= bp_addr + size); 1759 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 1760 size_t buf_offset = intersect_addr - bp_addr; 1761 ::memcpy(buf + buf_offset, 1762 bp_site->GetSavedOpcodeBytes() + opcode_offset, 1763 intersect_size); 1764 } 1765 } 1766 }); 1767 } 1768 return bytes_removed; 1769 } 1770 1771 size_t Process::GetSoftwareBreakpointTrapOpcode(BreakpointSite *bp_site) { 1772 PlatformSP platform_sp(GetTarget().GetPlatform()); 1773 if (platform_sp) 1774 return platform_sp->GetSoftwareBreakpointTrapOpcode(GetTarget(), bp_site); 1775 return 0; 1776 } 1777 1778 Status Process::EnableSoftwareBreakpoint(BreakpointSite *bp_site) { 1779 Status error; 1780 assert(bp_site != nullptr); 1781 Log *log = GetLog(LLDBLog::Breakpoints); 1782 const addr_t bp_addr = bp_site->GetLoadAddress(); 1783 LLDB_LOGF( 1784 log, "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, 1785 bp_site->GetID(), (uint64_t)bp_addr); 1786 if (bp_site->IsEnabled()) { 1787 LLDB_LOGF( 1788 log, 1789 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1790 " -- already enabled", 1791 bp_site->GetID(), (uint64_t)bp_addr); 1792 return error; 1793 } 1794 1795 if (bp_addr == LLDB_INVALID_ADDRESS) { 1796 error = Status::FromErrorString( 1797 "BreakpointSite contains an invalid load address."); 1798 return error; 1799 } 1800 // Ask the lldb::Process subclass to fill in the correct software breakpoint 1801 // trap for the breakpoint site 1802 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 1803 1804 if (bp_opcode_size == 0) { 1805 error = Status::FromErrorStringWithFormat( 1806 "Process::GetSoftwareBreakpointTrapOpcode() " 1807 "returned zero, unable to get breakpoint " 1808 "trap for address 0x%" PRIx64, 1809 bp_addr); 1810 } else { 1811 const uint8_t *const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 1812 1813 if (bp_opcode_bytes == nullptr) { 1814 error = Status::FromErrorString( 1815 "BreakpointSite doesn't contain a valid breakpoint trap opcode."); 1816 return error; 1817 } 1818 1819 // Save the original opcode by reading it 1820 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, 1821 error) == bp_opcode_size) { 1822 // Write a software breakpoint in place of the original opcode 1823 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == 1824 bp_opcode_size) { 1825 uint8_t verify_bp_opcode_bytes[64]; 1826 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, 1827 error) == bp_opcode_size) { 1828 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, 1829 bp_opcode_size) == 0) { 1830 bp_site->SetEnabled(true); 1831 bp_site->SetType(BreakpointSite::eSoftware); 1832 LLDB_LOGF(log, 1833 "Process::EnableSoftwareBreakpoint (site_id = %d) " 1834 "addr = 0x%" PRIx64 " -- SUCCESS", 1835 bp_site->GetID(), (uint64_t)bp_addr); 1836 } else 1837 error = Status::FromErrorString( 1838 "failed to verify the breakpoint trap in memory."); 1839 } else 1840 error = Status::FromErrorString( 1841 "Unable to read memory to verify breakpoint trap."); 1842 } else 1843 error = Status::FromErrorString( 1844 "Unable to write breakpoint trap to memory."); 1845 } else 1846 error = Status::FromErrorString( 1847 "Unable to read memory at breakpoint address."); 1848 } 1849 if (log && error.Fail()) 1850 LLDB_LOGF( 1851 log, 1852 "Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1853 " -- FAILED: %s", 1854 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1855 return error; 1856 } 1857 1858 Status Process::DisableSoftwareBreakpoint(BreakpointSite *bp_site) { 1859 Status error; 1860 assert(bp_site != nullptr); 1861 Log *log = GetLog(LLDBLog::Breakpoints); 1862 addr_t bp_addr = bp_site->GetLoadAddress(); 1863 lldb::user_id_t breakID = bp_site->GetID(); 1864 LLDB_LOGF(log, 1865 "Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 1866 ") addr = 0x%" PRIx64, 1867 breakID, (uint64_t)bp_addr); 1868 1869 if (bp_site->IsHardware()) { 1870 error = 1871 Status::FromErrorString("Breakpoint site is a hardware breakpoint."); 1872 } else if (bp_site->IsEnabled()) { 1873 const size_t break_op_size = bp_site->GetByteSize(); 1874 const uint8_t *const break_op = bp_site->GetTrapOpcodeBytes(); 1875 if (break_op_size > 0) { 1876 // Clear a software breakpoint instruction 1877 uint8_t curr_break_op[8]; 1878 assert(break_op_size <= sizeof(curr_break_op)); 1879 bool break_op_found = false; 1880 1881 // Read the breakpoint opcode 1882 if (DoReadMemory(bp_addr, curr_break_op, break_op_size, error) == 1883 break_op_size) { 1884 bool verify = false; 1885 // Make sure the breakpoint opcode exists at this address 1886 if (::memcmp(curr_break_op, break_op, break_op_size) == 0) { 1887 break_op_found = true; 1888 // We found a valid breakpoint opcode at this address, now restore 1889 // the saved opcode. 1890 if (DoWriteMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), 1891 break_op_size, error) == break_op_size) { 1892 verify = true; 1893 } else 1894 error = Status::FromErrorString( 1895 "Memory write failed when restoring original opcode."); 1896 } else { 1897 error = Status::FromErrorString( 1898 "Original breakpoint trap is no longer in memory."); 1899 // Set verify to true and so we can check if the original opcode has 1900 // already been restored 1901 verify = true; 1902 } 1903 1904 if (verify) { 1905 uint8_t verify_opcode[8]; 1906 assert(break_op_size < sizeof(verify_opcode)); 1907 // Verify that our original opcode made it back to the inferior 1908 if (DoReadMemory(bp_addr, verify_opcode, break_op_size, error) == 1909 break_op_size) { 1910 // compare the memory we just read with the original opcode 1911 if (::memcmp(bp_site->GetSavedOpcodeBytes(), verify_opcode, 1912 break_op_size) == 0) { 1913 // SUCCESS 1914 bp_site->SetEnabled(false); 1915 LLDB_LOGF(log, 1916 "Process::DisableSoftwareBreakpoint (site_id = %d) " 1917 "addr = 0x%" PRIx64 " -- SUCCESS", 1918 bp_site->GetID(), (uint64_t)bp_addr); 1919 return error; 1920 } else { 1921 if (break_op_found) 1922 error = Status::FromErrorString( 1923 "Failed to restore original opcode."); 1924 } 1925 } else 1926 error = 1927 Status::FromErrorString("Failed to read memory to verify that " 1928 "breakpoint trap was restored."); 1929 } 1930 } else 1931 error = Status::FromErrorString( 1932 "Unable to read memory that should contain the breakpoint trap."); 1933 } 1934 } else { 1935 LLDB_LOGF( 1936 log, 1937 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1938 " -- already disabled", 1939 bp_site->GetID(), (uint64_t)bp_addr); 1940 return error; 1941 } 1942 1943 LLDB_LOGF( 1944 log, 1945 "Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 1946 " -- FAILED: %s", 1947 bp_site->GetID(), (uint64_t)bp_addr, error.AsCString()); 1948 return error; 1949 } 1950 1951 // Uncomment to verify memory caching works after making changes to caching 1952 // code 1953 //#define VERIFY_MEMORY_READS 1954 1955 size_t Process::ReadMemory(addr_t addr, void *buf, size_t size, Status &error) { 1956 if (ABISP abi_sp = GetABI()) 1957 addr = abi_sp->FixAnyAddress(addr); 1958 1959 error.Clear(); 1960 if (!GetDisableMemoryCache()) { 1961 #if defined(VERIFY_MEMORY_READS) 1962 // Memory caching is enabled, with debug verification 1963 1964 if (buf && size) { 1965 // Uncomment the line below to make sure memory caching is working. 1966 // I ran this through the test suite and got no assertions, so I am 1967 // pretty confident this is working well. If any changes are made to 1968 // memory caching, uncomment the line below and test your changes! 1969 1970 // Verify all memory reads by using the cache first, then redundantly 1971 // reading the same memory from the inferior and comparing to make sure 1972 // everything is exactly the same. 1973 std::string verify_buf(size, '\0'); 1974 assert(verify_buf.size() == size); 1975 const size_t cache_bytes_read = 1976 m_memory_cache.Read(this, addr, buf, size, error); 1977 Status verify_error; 1978 const size_t verify_bytes_read = 1979 ReadMemoryFromInferior(addr, const_cast<char *>(verify_buf.data()), 1980 verify_buf.size(), verify_error); 1981 assert(cache_bytes_read == verify_bytes_read); 1982 assert(memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 1983 assert(verify_error.Success() == error.Success()); 1984 return cache_bytes_read; 1985 } 1986 return 0; 1987 #else // !defined(VERIFY_MEMORY_READS) 1988 // Memory caching is enabled, without debug verification 1989 1990 return m_memory_cache.Read(addr, buf, size, error); 1991 #endif // defined (VERIFY_MEMORY_READS) 1992 } else { 1993 // Memory caching is disabled 1994 1995 return ReadMemoryFromInferior(addr, buf, size, error); 1996 } 1997 } 1998 1999 void Process::DoFindInMemory(lldb::addr_t start_addr, lldb::addr_t end_addr, 2000 const uint8_t *buf, size_t size, 2001 AddressRanges &matches, size_t alignment, 2002 size_t max_matches) { 2003 // Inputs are already validated in FindInMemory() functions. 2004 assert(buf != nullptr); 2005 assert(size > 0); 2006 assert(alignment > 0); 2007 assert(max_matches > 0); 2008 assert(start_addr != LLDB_INVALID_ADDRESS); 2009 assert(end_addr != LLDB_INVALID_ADDRESS); 2010 assert(start_addr < end_addr); 2011 2012 lldb::addr_t start = llvm::alignTo(start_addr, alignment); 2013 while (matches.size() < max_matches && (start + size) < end_addr) { 2014 const lldb::addr_t found_addr = FindInMemory(start, end_addr, buf, size); 2015 if (found_addr == LLDB_INVALID_ADDRESS) 2016 break; 2017 2018 if (found_addr % alignment) { 2019 // We need to check the alignment because the FindInMemory uses a special 2020 // algorithm to efficiently search mememory but doesn't support alignment. 2021 start = llvm::alignTo(start + 1, alignment); 2022 continue; 2023 } 2024 2025 matches.emplace_back(found_addr, size); 2026 start = found_addr + alignment; 2027 } 2028 } 2029 2030 AddressRanges Process::FindRangesInMemory(const uint8_t *buf, uint64_t size, 2031 const AddressRanges &ranges, 2032 size_t alignment, size_t max_matches, 2033 Status &error) { 2034 AddressRanges matches; 2035 if (buf == nullptr) { 2036 error = Status::FromErrorString("buffer is null"); 2037 return matches; 2038 } 2039 if (size == 0) { 2040 error = Status::FromErrorString("buffer size is zero"); 2041 return matches; 2042 } 2043 if (ranges.empty()) { 2044 error = Status::FromErrorString("empty ranges"); 2045 return matches; 2046 } 2047 if (alignment == 0) { 2048 error = Status::FromErrorString("alignment must be greater than zero"); 2049 return matches; 2050 } 2051 if (max_matches == 0) { 2052 error = Status::FromErrorString("max_matches must be greater than zero"); 2053 return matches; 2054 } 2055 2056 int resolved_ranges = 0; 2057 Target &target = GetTarget(); 2058 for (size_t i = 0; i < ranges.size(); ++i) { 2059 if (matches.size() >= max_matches) 2060 break; 2061 const AddressRange &range = ranges[i]; 2062 if (range.IsValid() == false) 2063 continue; 2064 2065 const lldb::addr_t start_addr = 2066 range.GetBaseAddress().GetLoadAddress(&target); 2067 if (start_addr == LLDB_INVALID_ADDRESS) 2068 continue; 2069 2070 ++resolved_ranges; 2071 const lldb::addr_t end_addr = start_addr + range.GetByteSize(); 2072 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 2073 max_matches); 2074 } 2075 2076 if (resolved_ranges > 0) 2077 error.Clear(); 2078 else 2079 error = Status::FromErrorString("unable to resolve any ranges"); 2080 2081 return matches; 2082 } 2083 2084 lldb::addr_t Process::FindInMemory(const uint8_t *buf, uint64_t size, 2085 const AddressRange &range, size_t alignment, 2086 Status &error) { 2087 if (buf == nullptr) { 2088 error = Status::FromErrorString("buffer is null"); 2089 return LLDB_INVALID_ADDRESS; 2090 } 2091 if (size == 0) { 2092 error = Status::FromErrorString("buffer size is zero"); 2093 return LLDB_INVALID_ADDRESS; 2094 } 2095 if (!range.IsValid()) { 2096 error = Status::FromErrorString("range is invalid"); 2097 return LLDB_INVALID_ADDRESS; 2098 } 2099 if (alignment == 0) { 2100 error = Status::FromErrorString("alignment must be greater than zero"); 2101 return LLDB_INVALID_ADDRESS; 2102 } 2103 2104 Target &target = GetTarget(); 2105 const lldb::addr_t start_addr = 2106 range.GetBaseAddress().GetLoadAddress(&target); 2107 if (start_addr == LLDB_INVALID_ADDRESS) { 2108 error = Status::FromErrorString("range load address is invalid"); 2109 return LLDB_INVALID_ADDRESS; 2110 } 2111 const lldb::addr_t end_addr = start_addr + range.GetByteSize(); 2112 2113 AddressRanges matches; 2114 DoFindInMemory(start_addr, end_addr, buf, size, matches, alignment, 1); 2115 if (matches.empty()) 2116 return LLDB_INVALID_ADDRESS; 2117 2118 error.Clear(); 2119 return matches[0].GetBaseAddress().GetLoadAddress(&target); 2120 } 2121 2122 size_t Process::ReadCStringFromMemory(addr_t addr, std::string &out_str, 2123 Status &error) { 2124 char buf[256]; 2125 out_str.clear(); 2126 addr_t curr_addr = addr; 2127 while (true) { 2128 size_t length = ReadCStringFromMemory(curr_addr, buf, sizeof(buf), error); 2129 if (length == 0) 2130 break; 2131 out_str.append(buf, length); 2132 // If we got "length - 1" bytes, we didn't get the whole C string, we need 2133 // to read some more characters 2134 if (length == sizeof(buf) - 1) 2135 curr_addr += length; 2136 else 2137 break; 2138 } 2139 return out_str.size(); 2140 } 2141 2142 // Deprecated in favor of ReadStringFromMemory which has wchar support and 2143 // correct code to find null terminators. 2144 size_t Process::ReadCStringFromMemory(addr_t addr, char *dst, 2145 size_t dst_max_len, 2146 Status &result_error) { 2147 size_t total_cstr_len = 0; 2148 if (dst && dst_max_len) { 2149 result_error.Clear(); 2150 // NULL out everything just to be safe 2151 memset(dst, 0, dst_max_len); 2152 addr_t curr_addr = addr; 2153 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2154 size_t bytes_left = dst_max_len - 1; 2155 char *curr_dst = dst; 2156 2157 while (bytes_left > 0) { 2158 addr_t cache_line_bytes_left = 2159 cache_line_size - (curr_addr % cache_line_size); 2160 addr_t bytes_to_read = 2161 std::min<addr_t>(bytes_left, cache_line_bytes_left); 2162 Status error; 2163 size_t bytes_read = ReadMemory(curr_addr, curr_dst, bytes_to_read, error); 2164 2165 if (bytes_read == 0) { 2166 result_error = std::move(error); 2167 dst[total_cstr_len] = '\0'; 2168 break; 2169 } 2170 const size_t len = strlen(curr_dst); 2171 2172 total_cstr_len += len; 2173 2174 if (len < bytes_to_read) 2175 break; 2176 2177 curr_dst += bytes_read; 2178 curr_addr += bytes_read; 2179 bytes_left -= bytes_read; 2180 } 2181 } else { 2182 if (dst == nullptr) 2183 result_error = Status::FromErrorString("invalid arguments"); 2184 else 2185 result_error.Clear(); 2186 } 2187 return total_cstr_len; 2188 } 2189 2190 size_t Process::ReadMemoryFromInferior(addr_t addr, void *buf, size_t size, 2191 Status &error) { 2192 LLDB_SCOPED_TIMER(); 2193 2194 if (ABISP abi_sp = GetABI()) 2195 addr = abi_sp->FixAnyAddress(addr); 2196 2197 if (buf == nullptr || size == 0) 2198 return 0; 2199 2200 size_t bytes_read = 0; 2201 uint8_t *bytes = (uint8_t *)buf; 2202 2203 while (bytes_read < size) { 2204 const size_t curr_size = size - bytes_read; 2205 const size_t curr_bytes_read = 2206 DoReadMemory(addr + bytes_read, bytes + bytes_read, curr_size, error); 2207 bytes_read += curr_bytes_read; 2208 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2209 break; 2210 } 2211 2212 // Replace any software breakpoint opcodes that fall into this range back 2213 // into "buf" before we return 2214 if (bytes_read > 0) 2215 RemoveBreakpointOpcodesFromBuffer(addr, bytes_read, (uint8_t *)buf); 2216 return bytes_read; 2217 } 2218 2219 uint64_t Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, 2220 size_t integer_byte_size, 2221 uint64_t fail_value, 2222 Status &error) { 2223 Scalar scalar; 2224 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, 2225 error)) 2226 return scalar.ULongLong(fail_value); 2227 return fail_value; 2228 } 2229 2230 int64_t Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, 2231 size_t integer_byte_size, 2232 int64_t fail_value, 2233 Status &error) { 2234 Scalar scalar; 2235 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, 2236 error)) 2237 return scalar.SLongLong(fail_value); 2238 return fail_value; 2239 } 2240 2241 addr_t Process::ReadPointerFromMemory(lldb::addr_t vm_addr, Status &error) { 2242 Scalar scalar; 2243 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, 2244 error)) 2245 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2246 return LLDB_INVALID_ADDRESS; 2247 } 2248 2249 bool Process::WritePointerToMemory(lldb::addr_t vm_addr, lldb::addr_t ptr_value, 2250 Status &error) { 2251 Scalar scalar; 2252 const uint32_t addr_byte_size = GetAddressByteSize(); 2253 if (addr_byte_size <= 4) 2254 scalar = (uint32_t)ptr_value; 2255 else 2256 scalar = ptr_value; 2257 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == 2258 addr_byte_size; 2259 } 2260 2261 size_t Process::WriteMemoryPrivate(addr_t addr, const void *buf, size_t size, 2262 Status &error) { 2263 size_t bytes_written = 0; 2264 const uint8_t *bytes = (const uint8_t *)buf; 2265 2266 while (bytes_written < size) { 2267 const size_t curr_size = size - bytes_written; 2268 const size_t curr_bytes_written = DoWriteMemory( 2269 addr + bytes_written, bytes + bytes_written, curr_size, error); 2270 bytes_written += curr_bytes_written; 2271 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2272 break; 2273 } 2274 return bytes_written; 2275 } 2276 2277 size_t Process::WriteMemory(addr_t addr, const void *buf, size_t size, 2278 Status &error) { 2279 if (ABISP abi_sp = GetABI()) 2280 addr = abi_sp->FixAnyAddress(addr); 2281 2282 #if defined(ENABLE_MEMORY_CACHING) 2283 m_memory_cache.Flush(addr, size); 2284 #endif 2285 2286 if (buf == nullptr || size == 0) 2287 return 0; 2288 2289 m_mod_id.BumpMemoryID(); 2290 2291 // We need to write any data that would go where any current software traps 2292 // (enabled software breakpoints) any software traps (breakpoints) that we 2293 // may have placed in our tasks memory. 2294 2295 StopPointSiteList<BreakpointSite> bp_sites_in_range; 2296 if (!m_breakpoint_site_list.FindInRange(addr, addr + size, bp_sites_in_range)) 2297 return WriteMemoryPrivate(addr, buf, size, error); 2298 2299 // No breakpoint sites overlap 2300 if (bp_sites_in_range.IsEmpty()) 2301 return WriteMemoryPrivate(addr, buf, size, error); 2302 2303 const uint8_t *ubuf = (const uint8_t *)buf; 2304 uint64_t bytes_written = 0; 2305 2306 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, 2307 &error](BreakpointSite *bp) -> void { 2308 if (error.Fail()) 2309 return; 2310 2311 if (bp->GetType() != BreakpointSite::eSoftware) 2312 return; 2313 2314 addr_t intersect_addr; 2315 size_t intersect_size; 2316 size_t opcode_offset; 2317 const bool intersects = bp->IntersectsRange( 2318 addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2319 UNUSED_IF_ASSERT_DISABLED(intersects); 2320 assert(intersects); 2321 assert(addr <= intersect_addr && intersect_addr < addr + size); 2322 assert(addr < intersect_addr + intersect_size && 2323 intersect_addr + intersect_size <= addr + size); 2324 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2325 2326 // Check for bytes before this breakpoint 2327 const addr_t curr_addr = addr + bytes_written; 2328 if (intersect_addr > curr_addr) { 2329 // There are some bytes before this breakpoint that we need to just 2330 // write to memory 2331 size_t curr_size = intersect_addr - curr_addr; 2332 size_t curr_bytes_written = 2333 WriteMemoryPrivate(curr_addr, ubuf + bytes_written, curr_size, error); 2334 bytes_written += curr_bytes_written; 2335 if (curr_bytes_written != curr_size) { 2336 // We weren't able to write all of the requested bytes, we are 2337 // done looping and will return the number of bytes that we have 2338 // written so far. 2339 if (error.Success()) 2340 error = Status::FromErrorString("could not write all bytes"); 2341 } 2342 } 2343 // Now write any bytes that would cover up any software breakpoints 2344 // directly into the breakpoint opcode buffer 2345 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, 2346 intersect_size); 2347 bytes_written += intersect_size; 2348 }); 2349 2350 // Write any remaining bytes after the last breakpoint if we have any left 2351 if (bytes_written < size) 2352 bytes_written += 2353 WriteMemoryPrivate(addr + bytes_written, ubuf + bytes_written, 2354 size - bytes_written, error); 2355 2356 return bytes_written; 2357 } 2358 2359 size_t Process::WriteScalarToMemory(addr_t addr, const Scalar &scalar, 2360 size_t byte_size, Status &error) { 2361 if (byte_size == UINT32_MAX) 2362 byte_size = scalar.GetByteSize(); 2363 if (byte_size > 0) { 2364 uint8_t buf[32]; 2365 const size_t mem_size = 2366 scalar.GetAsMemoryData(buf, byte_size, GetByteOrder(), error); 2367 if (mem_size > 0) 2368 return WriteMemory(addr, buf, mem_size, error); 2369 else 2370 error = Status::FromErrorString("failed to get scalar as memory data"); 2371 } else { 2372 error = Status::FromErrorString("invalid scalar value"); 2373 } 2374 return 0; 2375 } 2376 2377 size_t Process::ReadScalarIntegerFromMemory(addr_t addr, uint32_t byte_size, 2378 bool is_signed, Scalar &scalar, 2379 Status &error) { 2380 uint64_t uval = 0; 2381 if (byte_size == 0) { 2382 error = Status::FromErrorString("byte size is zero"); 2383 } else if (byte_size & (byte_size - 1)) { 2384 error = Status::FromErrorStringWithFormat( 2385 "byte size %u is not a power of 2", byte_size); 2386 } else if (byte_size <= sizeof(uval)) { 2387 const size_t bytes_read = ReadMemory(addr, &uval, byte_size, error); 2388 if (bytes_read == byte_size) { 2389 DataExtractor data(&uval, sizeof(uval), GetByteOrder(), 2390 GetAddressByteSize()); 2391 lldb::offset_t offset = 0; 2392 if (byte_size <= 4) 2393 scalar = data.GetMaxU32(&offset, byte_size); 2394 else 2395 scalar = data.GetMaxU64(&offset, byte_size); 2396 if (is_signed) 2397 scalar.SignExtend(byte_size * 8); 2398 return bytes_read; 2399 } 2400 } else { 2401 error = Status::FromErrorStringWithFormat( 2402 "byte size of %u is too large for integer scalar type", byte_size); 2403 } 2404 return 0; 2405 } 2406 2407 Status Process::WriteObjectFile(std::vector<ObjectFile::LoadableData> entries) { 2408 Status error; 2409 for (const auto &Entry : entries) { 2410 WriteMemory(Entry.Dest, Entry.Contents.data(), Entry.Contents.size(), 2411 error); 2412 if (!error.Success()) 2413 break; 2414 } 2415 return error; 2416 } 2417 2418 #define USE_ALLOCATE_MEMORY_CACHE 1 2419 addr_t Process::AllocateMemory(size_t size, uint32_t permissions, 2420 Status &error) { 2421 if (GetPrivateState() != eStateStopped) { 2422 error = Status::FromErrorString( 2423 "cannot allocate memory while process is running"); 2424 return LLDB_INVALID_ADDRESS; 2425 } 2426 2427 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2428 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2429 #else 2430 addr_t allocated_addr = DoAllocateMemory(size, permissions, error); 2431 Log *log = GetLog(LLDBLog::Process); 2432 LLDB_LOGF(log, 2433 "Process::AllocateMemory(size=%" PRIu64 2434 ", permissions=%s) => 0x%16.16" PRIx64 2435 " (m_stop_id = %u m_memory_id = %u)", 2436 (uint64_t)size, GetPermissionsAsCString(permissions), 2437 (uint64_t)allocated_addr, m_mod_id.GetStopID(), 2438 m_mod_id.GetMemoryID()); 2439 return allocated_addr; 2440 #endif 2441 } 2442 2443 addr_t Process::CallocateMemory(size_t size, uint32_t permissions, 2444 Status &error) { 2445 addr_t return_addr = AllocateMemory(size, permissions, error); 2446 if (error.Success()) { 2447 std::string buffer(size, 0); 2448 WriteMemory(return_addr, buffer.c_str(), size, error); 2449 } 2450 return return_addr; 2451 } 2452 2453 bool Process::CanJIT() { 2454 if (m_can_jit == eCanJITDontKnow) { 2455 Log *log = GetLog(LLDBLog::Process); 2456 Status err; 2457 2458 uint64_t allocated_memory = AllocateMemory( 2459 8, ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2460 err); 2461 2462 if (err.Success()) { 2463 m_can_jit = eCanJITYes; 2464 LLDB_LOGF(log, 2465 "Process::%s pid %" PRIu64 2466 " allocation test passed, CanJIT () is true", 2467 __FUNCTION__, GetID()); 2468 } else { 2469 m_can_jit = eCanJITNo; 2470 LLDB_LOGF(log, 2471 "Process::%s pid %" PRIu64 2472 " allocation test failed, CanJIT () is false: %s", 2473 __FUNCTION__, GetID(), err.AsCString()); 2474 } 2475 2476 DeallocateMemory(allocated_memory); 2477 } 2478 2479 return m_can_jit == eCanJITYes; 2480 } 2481 2482 void Process::SetCanJIT(bool can_jit) { 2483 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2484 } 2485 2486 void Process::SetCanRunCode(bool can_run_code) { 2487 SetCanJIT(can_run_code); 2488 m_can_interpret_function_calls = can_run_code; 2489 } 2490 2491 Status Process::DeallocateMemory(addr_t ptr) { 2492 Status error; 2493 #if defined(USE_ALLOCATE_MEMORY_CACHE) 2494 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) { 2495 error = Status::FromErrorStringWithFormat( 2496 "deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2497 } 2498 #else 2499 error = DoDeallocateMemory(ptr); 2500 2501 Log *log = GetLog(LLDBLog::Process); 2502 LLDB_LOGF(log, 2503 "Process::DeallocateMemory(addr=0x%16.16" PRIx64 2504 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2505 ptr, error.AsCString("SUCCESS"), m_mod_id.GetStopID(), 2506 m_mod_id.GetMemoryID()); 2507 #endif 2508 return error; 2509 } 2510 2511 bool Process::GetWatchpointReportedAfter() { 2512 if (std::optional<bool> subclass_override = DoGetWatchpointReportedAfter()) 2513 return *subclass_override; 2514 2515 bool reported_after = true; 2516 const ArchSpec &arch = GetTarget().GetArchitecture(); 2517 if (!arch.IsValid()) 2518 return reported_after; 2519 llvm::Triple triple = arch.GetTriple(); 2520 2521 if (triple.isMIPS() || triple.isPPC64() || triple.isRISCV() || 2522 triple.isAArch64() || triple.isArmMClass() || triple.isARM()) 2523 reported_after = false; 2524 2525 return reported_after; 2526 } 2527 2528 ModuleSP Process::ReadModuleFromMemory(const FileSpec &file_spec, 2529 lldb::addr_t header_addr, 2530 size_t size_to_read) { 2531 Log *log = GetLog(LLDBLog::Host); 2532 if (log) { 2533 LLDB_LOGF(log, 2534 "Process::ReadModuleFromMemory reading %s binary from memory", 2535 file_spec.GetPath().c_str()); 2536 } 2537 ModuleSP module_sp(new Module(file_spec, ArchSpec())); 2538 if (module_sp) { 2539 Status error; 2540 std::unique_ptr<Progress> progress_up; 2541 // Reading an ObjectFile from a local corefile is very fast, 2542 // only print a progress update if we're reading from a 2543 // live session which might go over gdb remote serial protocol. 2544 if (IsLiveDebugSession()) 2545 progress_up = std::make_unique<Progress>( 2546 "Reading binary from memory", file_spec.GetFilename().GetString()); 2547 2548 ObjectFile *objfile = module_sp->GetMemoryObjectFile( 2549 shared_from_this(), header_addr, error, size_to_read); 2550 if (objfile) 2551 return module_sp; 2552 } 2553 return ModuleSP(); 2554 } 2555 2556 bool Process::GetLoadAddressPermissions(lldb::addr_t load_addr, 2557 uint32_t &permissions) { 2558 MemoryRegionInfo range_info; 2559 permissions = 0; 2560 Status error(GetMemoryRegionInfo(load_addr, range_info)); 2561 if (!error.Success()) 2562 return false; 2563 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow || 2564 range_info.GetWritable() == MemoryRegionInfo::eDontKnow || 2565 range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) { 2566 return false; 2567 } 2568 permissions = range_info.GetLLDBPermissions(); 2569 return true; 2570 } 2571 2572 Status Process::EnableWatchpoint(WatchpointSP wp_sp, bool notify) { 2573 Status error; 2574 error = Status::FromErrorString("watchpoints are not supported"); 2575 return error; 2576 } 2577 2578 Status Process::DisableWatchpoint(WatchpointSP wp_sp, bool notify) { 2579 Status error; 2580 error = Status::FromErrorString("watchpoints are not supported"); 2581 return error; 2582 } 2583 2584 StateType 2585 Process::WaitForProcessStopPrivate(EventSP &event_sp, 2586 const Timeout<std::micro> &timeout) { 2587 StateType state; 2588 2589 while (true) { 2590 event_sp.reset(); 2591 state = GetStateChangedEventsPrivate(event_sp, timeout); 2592 2593 if (StateIsStoppedState(state, false)) 2594 break; 2595 2596 // If state is invalid, then we timed out 2597 if (state == eStateInvalid) 2598 break; 2599 2600 if (event_sp) 2601 HandlePrivateEvent(event_sp); 2602 } 2603 return state; 2604 } 2605 2606 void Process::LoadOperatingSystemPlugin(bool flush) { 2607 std::lock_guard<std::recursive_mutex> guard(m_thread_mutex); 2608 if (flush) 2609 m_thread_list.Clear(); 2610 m_os_up.reset(OperatingSystem::FindPlugin(this, nullptr)); 2611 if (flush) 2612 Flush(); 2613 } 2614 2615 Status Process::Launch(ProcessLaunchInfo &launch_info) { 2616 StateType state_after_launch = eStateInvalid; 2617 EventSP first_stop_event_sp; 2618 Status status = 2619 LaunchPrivate(launch_info, state_after_launch, first_stop_event_sp); 2620 if (status.Fail()) 2621 return status; 2622 2623 if (state_after_launch != eStateStopped && 2624 state_after_launch != eStateCrashed) 2625 return Status(); 2626 2627 // Note, the stop event was consumed above, but not handled. This 2628 // was done to give DidLaunch a chance to run. The target is either 2629 // stopped or crashed. Directly set the state. This is done to 2630 // prevent a stop message with a bunch of spurious output on thread 2631 // status, as well as not pop a ProcessIOHandler. 2632 SetPublicState(state_after_launch, false); 2633 2634 if (PrivateStateThreadIsValid()) 2635 ResumePrivateStateThread(); 2636 else 2637 StartPrivateStateThread(); 2638 2639 // Target was stopped at entry as was intended. Need to notify the 2640 // listeners about it. 2641 if (launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 2642 HandlePrivateEvent(first_stop_event_sp); 2643 2644 return Status(); 2645 } 2646 2647 Status Process::LaunchPrivate(ProcessLaunchInfo &launch_info, StateType &state, 2648 EventSP &event_sp) { 2649 Status error; 2650 m_abi_sp.reset(); 2651 m_dyld_up.reset(); 2652 m_jit_loaders_up.reset(); 2653 m_system_runtime_up.reset(); 2654 m_os_up.reset(); 2655 2656 { 2657 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 2658 m_process_input_reader.reset(); 2659 } 2660 2661 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2662 2663 // The "remote executable path" is hooked up to the local Executable 2664 // module. But we should be able to debug a remote process even if the 2665 // executable module only exists on the remote. However, there needs to 2666 // be a way to express this path, without actually having a module. 2667 // The way to do that is to set the ExecutableFile in the LaunchInfo. 2668 // Figure that out here: 2669 2670 FileSpec exe_spec_to_use; 2671 if (!exe_module) { 2672 if (!launch_info.GetExecutableFile() && !launch_info.IsScriptedProcess()) { 2673 error = Status::FromErrorString("executable module does not exist"); 2674 return error; 2675 } 2676 exe_spec_to_use = launch_info.GetExecutableFile(); 2677 } else 2678 exe_spec_to_use = exe_module->GetFileSpec(); 2679 2680 if (exe_module && FileSystem::Instance().Exists(exe_module->GetFileSpec())) { 2681 // Install anything that might need to be installed prior to launching. 2682 // For host systems, this will do nothing, but if we are connected to a 2683 // remote platform it will install any needed binaries 2684 error = GetTarget().Install(&launch_info); 2685 if (error.Fail()) 2686 return error; 2687 } 2688 2689 // Listen and queue events that are broadcasted during the process launch. 2690 ListenerSP listener_sp(Listener::MakeListener("LaunchEventHijack")); 2691 HijackProcessEvents(listener_sp); 2692 auto on_exit = llvm::make_scope_exit([this]() { RestoreProcessEvents(); }); 2693 2694 if (PrivateStateThreadIsValid()) 2695 PausePrivateStateThread(); 2696 2697 error = WillLaunch(exe_module); 2698 if (error.Fail()) { 2699 std::string local_exec_file_path = exe_spec_to_use.GetPath(); 2700 return Status::FromErrorStringWithFormat("file doesn't exist: '%s'", 2701 local_exec_file_path.c_str()); 2702 } 2703 2704 const bool restarted = false; 2705 SetPublicState(eStateLaunching, restarted); 2706 m_should_detach = false; 2707 2708 if (m_public_run_lock.TrySetRunning()) { 2709 // Now launch using these arguments. 2710 error = DoLaunch(exe_module, launch_info); 2711 } else { 2712 // This shouldn't happen 2713 error = Status::FromErrorString("failed to acquire process run lock"); 2714 } 2715 2716 if (error.Fail()) { 2717 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2718 SetID(LLDB_INVALID_PROCESS_ID); 2719 const char *error_string = error.AsCString(); 2720 if (error_string == nullptr) 2721 error_string = "launch failed"; 2722 SetExitStatus(-1, error_string); 2723 } 2724 return error; 2725 } 2726 2727 // Now wait for the process to launch and return control to us, and then 2728 // call DidLaunch: 2729 state = WaitForProcessStopPrivate(event_sp, seconds(10)); 2730 2731 if (state == eStateInvalid || !event_sp) { 2732 // We were able to launch the process, but we failed to catch the 2733 // initial stop. 2734 error = Status::FromErrorString("failed to catch stop after launch"); 2735 SetExitStatus(0, error.AsCString()); 2736 Destroy(false); 2737 return error; 2738 } 2739 2740 if (state == eStateExited) { 2741 // We exited while trying to launch somehow. Don't call DidLaunch 2742 // as that's not likely to work, and return an invalid pid. 2743 HandlePrivateEvent(event_sp); 2744 return Status(); 2745 } 2746 2747 if (state == eStateStopped || state == eStateCrashed) { 2748 DidLaunch(); 2749 2750 // Now that we know the process type, update its signal responses from the 2751 // ones stored in the Target: 2752 if (m_unix_signals_sp) { 2753 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 2754 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 2755 } 2756 2757 DynamicLoader *dyld = GetDynamicLoader(); 2758 if (dyld) 2759 dyld->DidLaunch(); 2760 2761 GetJITLoaders().DidLaunch(); 2762 2763 SystemRuntime *system_runtime = GetSystemRuntime(); 2764 if (system_runtime) 2765 system_runtime->DidLaunch(); 2766 2767 if (!m_os_up) 2768 LoadOperatingSystemPlugin(false); 2769 2770 // We successfully launched the process and stopped, now it the 2771 // right time to set up signal filters before resuming. 2772 UpdateAutomaticSignalFiltering(); 2773 return Status(); 2774 } 2775 2776 return Status::FromErrorStringWithFormat( 2777 "Unexpected process state after the launch: %s, expected %s, " 2778 "%s, %s or %s", 2779 StateAsCString(state), StateAsCString(eStateInvalid), 2780 StateAsCString(eStateExited), StateAsCString(eStateStopped), 2781 StateAsCString(eStateCrashed)); 2782 } 2783 2784 Status Process::LoadCore() { 2785 Status error = DoLoadCore(); 2786 if (error.Success()) { 2787 ListenerSP listener_sp( 2788 Listener::MakeListener("lldb.process.load_core_listener")); 2789 HijackProcessEvents(listener_sp); 2790 2791 if (PrivateStateThreadIsValid()) 2792 ResumePrivateStateThread(); 2793 else 2794 StartPrivateStateThread(); 2795 2796 DynamicLoader *dyld = GetDynamicLoader(); 2797 if (dyld) 2798 dyld->DidAttach(); 2799 2800 GetJITLoaders().DidAttach(); 2801 2802 SystemRuntime *system_runtime = GetSystemRuntime(); 2803 if (system_runtime) 2804 system_runtime->DidAttach(); 2805 2806 if (!m_os_up) 2807 LoadOperatingSystemPlugin(false); 2808 2809 // We successfully loaded a core file, now pretend we stopped so we can 2810 // show all of the threads in the core file and explore the crashed state. 2811 SetPrivateState(eStateStopped); 2812 2813 // Wait for a stopped event since we just posted one above... 2814 lldb::EventSP event_sp; 2815 StateType state = 2816 WaitForProcessToStop(std::nullopt, &event_sp, true, listener_sp, 2817 nullptr, true, SelectMostRelevantFrame); 2818 2819 if (!StateIsStoppedState(state, false)) { 2820 Log *log = GetLog(LLDBLog::Process); 2821 LLDB_LOGF(log, "Process::Halt() failed to stop, state is: %s", 2822 StateAsCString(state)); 2823 error = Status::FromErrorString( 2824 "Did not get stopped event after loading the core file."); 2825 } 2826 RestoreProcessEvents(); 2827 } 2828 return error; 2829 } 2830 2831 DynamicLoader *Process::GetDynamicLoader() { 2832 if (!m_dyld_up) 2833 m_dyld_up.reset(DynamicLoader::FindPlugin(this, "")); 2834 return m_dyld_up.get(); 2835 } 2836 2837 void Process::SetDynamicLoader(DynamicLoaderUP dyld_up) { 2838 m_dyld_up = std::move(dyld_up); 2839 } 2840 2841 DataExtractor Process::GetAuxvData() { return DataExtractor(); } 2842 2843 llvm::Expected<bool> Process::SaveCore(llvm::StringRef outfile) { 2844 return false; 2845 } 2846 2847 JITLoaderList &Process::GetJITLoaders() { 2848 if (!m_jit_loaders_up) { 2849 m_jit_loaders_up = std::make_unique<JITLoaderList>(); 2850 JITLoader::LoadPlugins(this, *m_jit_loaders_up); 2851 } 2852 return *m_jit_loaders_up; 2853 } 2854 2855 SystemRuntime *Process::GetSystemRuntime() { 2856 if (!m_system_runtime_up) 2857 m_system_runtime_up.reset(SystemRuntime::FindPlugin(this)); 2858 return m_system_runtime_up.get(); 2859 } 2860 2861 Process::AttachCompletionHandler::AttachCompletionHandler(Process *process, 2862 uint32_t exec_count) 2863 : NextEventAction(process), m_exec_count(exec_count) { 2864 Log *log = GetLog(LLDBLog::Process); 2865 LLDB_LOGF( 2866 log, 2867 "Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, 2868 __FUNCTION__, static_cast<void *>(process), exec_count); 2869 } 2870 2871 Process::NextEventAction::EventActionResult 2872 Process::AttachCompletionHandler::PerformAction(lldb::EventSP &event_sp) { 2873 Log *log = GetLog(LLDBLog::Process); 2874 2875 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 2876 LLDB_LOGF(log, 2877 "Process::AttachCompletionHandler::%s called with state %s (%d)", 2878 __FUNCTION__, StateAsCString(state), static_cast<int>(state)); 2879 2880 switch (state) { 2881 case eStateAttaching: 2882 return eEventActionSuccess; 2883 2884 case eStateRunning: 2885 case eStateConnected: 2886 return eEventActionRetry; 2887 2888 case eStateStopped: 2889 case eStateCrashed: 2890 // During attach, prior to sending the eStateStopped event, 2891 // lldb_private::Process subclasses must set the new process ID. 2892 assert(m_process->GetID() != LLDB_INVALID_PROCESS_ID); 2893 // We don't want these events to be reported, so go set the 2894 // ShouldReportStop here: 2895 m_process->GetThreadList().SetShouldReportStop(eVoteNo); 2896 2897 if (m_exec_count > 0) { 2898 --m_exec_count; 2899 2900 LLDB_LOGF(log, 2901 "Process::AttachCompletionHandler::%s state %s: reduced " 2902 "remaining exec count to %" PRIu32 ", requesting resume", 2903 __FUNCTION__, StateAsCString(state), m_exec_count); 2904 2905 RequestResume(); 2906 return eEventActionRetry; 2907 } else { 2908 LLDB_LOGF(log, 2909 "Process::AttachCompletionHandler::%s state %s: no more " 2910 "execs expected to start, continuing with attach", 2911 __FUNCTION__, StateAsCString(state)); 2912 2913 m_process->CompleteAttach(); 2914 return eEventActionSuccess; 2915 } 2916 break; 2917 2918 default: 2919 case eStateExited: 2920 case eStateInvalid: 2921 break; 2922 } 2923 2924 m_exit_string.assign("No valid Process"); 2925 return eEventActionExit; 2926 } 2927 2928 Process::NextEventAction::EventActionResult 2929 Process::AttachCompletionHandler::HandleBeingInterrupted() { 2930 return eEventActionSuccess; 2931 } 2932 2933 const char *Process::AttachCompletionHandler::GetExitString() { 2934 return m_exit_string.c_str(); 2935 } 2936 2937 ListenerSP ProcessAttachInfo::GetListenerForProcess(Debugger &debugger) { 2938 if (m_listener_sp) 2939 return m_listener_sp; 2940 else 2941 return debugger.GetListener(); 2942 } 2943 2944 Status Process::WillLaunch(Module *module) { 2945 return DoWillLaunch(module); 2946 } 2947 2948 Status Process::WillAttachToProcessWithID(lldb::pid_t pid) { 2949 return DoWillAttachToProcessWithID(pid); 2950 } 2951 2952 Status Process::WillAttachToProcessWithName(const char *process_name, 2953 bool wait_for_launch) { 2954 return DoWillAttachToProcessWithName(process_name, wait_for_launch); 2955 } 2956 2957 Status Process::Attach(ProcessAttachInfo &attach_info) { 2958 m_abi_sp.reset(); 2959 { 2960 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 2961 m_process_input_reader.reset(); 2962 } 2963 m_dyld_up.reset(); 2964 m_jit_loaders_up.reset(); 2965 m_system_runtime_up.reset(); 2966 m_os_up.reset(); 2967 2968 lldb::pid_t attach_pid = attach_info.GetProcessID(); 2969 Status error; 2970 if (attach_pid == LLDB_INVALID_PROCESS_ID) { 2971 char process_name[PATH_MAX]; 2972 2973 if (attach_info.GetExecutableFile().GetPath(process_name, 2974 sizeof(process_name))) { 2975 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 2976 2977 if (wait_for_launch) { 2978 error = WillAttachToProcessWithName(process_name, wait_for_launch); 2979 if (error.Success()) { 2980 if (m_public_run_lock.TrySetRunning()) { 2981 m_should_detach = true; 2982 const bool restarted = false; 2983 SetPublicState(eStateAttaching, restarted); 2984 // Now attach using these arguments. 2985 error = DoAttachToProcessWithName(process_name, attach_info); 2986 } else { 2987 // This shouldn't happen 2988 error = 2989 Status::FromErrorString("failed to acquire process run lock"); 2990 } 2991 2992 if (error.Fail()) { 2993 if (GetID() != LLDB_INVALID_PROCESS_ID) { 2994 SetID(LLDB_INVALID_PROCESS_ID); 2995 if (error.AsCString() == nullptr) 2996 error = Status::FromErrorString("attach failed"); 2997 2998 SetExitStatus(-1, error.AsCString()); 2999 } 3000 } else { 3001 SetNextEventAction(new Process::AttachCompletionHandler( 3002 this, attach_info.GetResumeCount())); 3003 StartPrivateStateThread(); 3004 } 3005 return error; 3006 } 3007 } else { 3008 ProcessInstanceInfoList process_infos; 3009 PlatformSP platform_sp(GetTarget().GetPlatform()); 3010 3011 if (platform_sp) { 3012 ProcessInstanceInfoMatch match_info; 3013 match_info.GetProcessInfo() = attach_info; 3014 match_info.SetNameMatchType(NameMatch::Equals); 3015 platform_sp->FindProcesses(match_info, process_infos); 3016 const uint32_t num_matches = process_infos.size(); 3017 if (num_matches == 1) { 3018 attach_pid = process_infos[0].GetProcessID(); 3019 // Fall through and attach using the above process ID 3020 } else { 3021 match_info.GetProcessInfo().GetExecutableFile().GetPath( 3022 process_name, sizeof(process_name)); 3023 if (num_matches > 1) { 3024 StreamString s; 3025 ProcessInstanceInfo::DumpTableHeader(s, true, false); 3026 for (size_t i = 0; i < num_matches; i++) { 3027 process_infos[i].DumpAsTableRow( 3028 s, platform_sp->GetUserIDResolver(), true, false); 3029 } 3030 error = Status::FromErrorStringWithFormat( 3031 "more than one process named %s:\n%s", process_name, 3032 s.GetData()); 3033 } else 3034 error = Status::FromErrorStringWithFormat( 3035 "could not find a process named %s", process_name); 3036 } 3037 } else { 3038 error = Status::FromErrorString( 3039 "invalid platform, can't find processes by name"); 3040 return error; 3041 } 3042 } 3043 } else { 3044 error = Status::FromErrorString("invalid process name"); 3045 } 3046 } 3047 3048 if (attach_pid != LLDB_INVALID_PROCESS_ID) { 3049 error = WillAttachToProcessWithID(attach_pid); 3050 if (error.Success()) { 3051 3052 if (m_public_run_lock.TrySetRunning()) { 3053 // Now attach using these arguments. 3054 m_should_detach = true; 3055 const bool restarted = false; 3056 SetPublicState(eStateAttaching, restarted); 3057 error = DoAttachToProcessWithID(attach_pid, attach_info); 3058 } else { 3059 // This shouldn't happen 3060 error = Status::FromErrorString("failed to acquire process run lock"); 3061 } 3062 3063 if (error.Success()) { 3064 SetNextEventAction(new Process::AttachCompletionHandler( 3065 this, attach_info.GetResumeCount())); 3066 StartPrivateStateThread(); 3067 } else { 3068 if (GetID() != LLDB_INVALID_PROCESS_ID) 3069 SetID(LLDB_INVALID_PROCESS_ID); 3070 3071 const char *error_string = error.AsCString(); 3072 if (error_string == nullptr) 3073 error_string = "attach failed"; 3074 3075 SetExitStatus(-1, error_string); 3076 } 3077 } 3078 } 3079 return error; 3080 } 3081 3082 void Process::CompleteAttach() { 3083 Log *log(GetLog(LLDBLog::Process | LLDBLog::Target)); 3084 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 3085 3086 // Let the process subclass figure out at much as it can about the process 3087 // before we go looking for a dynamic loader plug-in. 3088 ArchSpec process_arch; 3089 DidAttach(process_arch); 3090 3091 if (process_arch.IsValid()) { 3092 LLDB_LOG(log, 3093 "Process::{0} replacing process architecture with DidAttach() " 3094 "architecture: \"{1}\"", 3095 __FUNCTION__, process_arch.GetTriple().getTriple()); 3096 GetTarget().SetArchitecture(process_arch); 3097 } 3098 3099 // We just attached. If we have a platform, ask it for the process 3100 // architecture, and if it isn't the same as the one we've already set, 3101 // switch architectures. 3102 PlatformSP platform_sp(GetTarget().GetPlatform()); 3103 assert(platform_sp); 3104 ArchSpec process_host_arch = GetSystemArchitecture(); 3105 if (platform_sp) { 3106 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3107 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture( 3108 target_arch, process_host_arch, 3109 ArchSpec::CompatibleMatch, nullptr)) { 3110 ArchSpec platform_arch; 3111 platform_sp = GetTarget().GetDebugger().GetPlatformList().GetOrCreate( 3112 target_arch, process_host_arch, &platform_arch); 3113 if (platform_sp) { 3114 GetTarget().SetPlatform(platform_sp); 3115 GetTarget().SetArchitecture(platform_arch); 3116 LLDB_LOG(log, 3117 "switching platform to {0} and architecture to {1} based on " 3118 "info from attach", 3119 platform_sp->GetName(), platform_arch.GetTriple().getTriple()); 3120 } 3121 } else if (!process_arch.IsValid()) { 3122 ProcessInstanceInfo process_info; 3123 GetProcessInfo(process_info); 3124 const ArchSpec &process_arch = process_info.GetArchitecture(); 3125 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3126 if (process_arch.IsValid() && 3127 target_arch.IsCompatibleMatch(process_arch) && 3128 !target_arch.IsExactMatch(process_arch)) { 3129 GetTarget().SetArchitecture(process_arch); 3130 LLDB_LOGF(log, 3131 "Process::%s switching architecture to %s based on info " 3132 "the platform retrieved for pid %" PRIu64, 3133 __FUNCTION__, process_arch.GetTriple().getTriple().c_str(), 3134 GetID()); 3135 } 3136 } 3137 } 3138 // Now that we know the process type, update its signal responses from the 3139 // ones stored in the Target: 3140 if (m_unix_signals_sp) { 3141 StreamSP warning_strm = GetTarget().GetDebugger().GetAsyncErrorStream(); 3142 GetTarget().UpdateSignalsFromDummy(m_unix_signals_sp, warning_strm); 3143 } 3144 3145 // We have completed the attach, now it is time to find the dynamic loader 3146 // plug-in 3147 DynamicLoader *dyld = GetDynamicLoader(); 3148 if (dyld) { 3149 dyld->DidAttach(); 3150 if (log) { 3151 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3152 LLDB_LOG(log, 3153 "after DynamicLoader::DidAttach(), target " 3154 "executable is {0} (using {1} plugin)", 3155 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 3156 dyld->GetPluginName()); 3157 } 3158 } 3159 3160 GetJITLoaders().DidAttach(); 3161 3162 SystemRuntime *system_runtime = GetSystemRuntime(); 3163 if (system_runtime) { 3164 system_runtime->DidAttach(); 3165 if (log) { 3166 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3167 LLDB_LOG(log, 3168 "after SystemRuntime::DidAttach(), target " 3169 "executable is {0} (using {1} plugin)", 3170 exe_module_sp ? exe_module_sp->GetFileSpec() : FileSpec(), 3171 system_runtime->GetPluginName()); 3172 } 3173 } 3174 3175 if (!m_os_up) { 3176 LoadOperatingSystemPlugin(false); 3177 if (m_os_up) { 3178 // Somebody might have gotten threads before now, but we need to force the 3179 // update after we've loaded the OperatingSystem plugin or it won't get a 3180 // chance to process the threads. 3181 m_thread_list.Clear(); 3182 UpdateThreadListIfNeeded(); 3183 } 3184 } 3185 // Figure out which one is the executable, and set that in our target: 3186 ModuleSP new_executable_module_sp; 3187 for (ModuleSP module_sp : GetTarget().GetImages().Modules()) { 3188 if (module_sp && module_sp->IsExecutable()) { 3189 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3190 new_executable_module_sp = module_sp; 3191 break; 3192 } 3193 } 3194 if (new_executable_module_sp) { 3195 GetTarget().SetExecutableModule(new_executable_module_sp, 3196 eLoadDependentsNo); 3197 if (log) { 3198 ModuleSP exe_module_sp = GetTarget().GetExecutableModule(); 3199 LLDB_LOGF( 3200 log, 3201 "Process::%s after looping through modules, target executable is %s", 3202 __FUNCTION__, 3203 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str() 3204 : "<none>"); 3205 } 3206 } 3207 } 3208 3209 Status Process::ConnectRemote(llvm::StringRef remote_url) { 3210 m_abi_sp.reset(); 3211 { 3212 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 3213 m_process_input_reader.reset(); 3214 } 3215 3216 // Find the process and its architecture. Make sure it matches the 3217 // architecture of the current Target, and if not adjust it. 3218 3219 Status error(DoConnectRemote(remote_url)); 3220 if (error.Success()) { 3221 if (GetID() != LLDB_INVALID_PROCESS_ID) { 3222 EventSP event_sp; 3223 StateType state = WaitForProcessStopPrivate(event_sp, std::nullopt); 3224 3225 if (state == eStateStopped || state == eStateCrashed) { 3226 // If we attached and actually have a process on the other end, then 3227 // this ended up being the equivalent of an attach. 3228 CompleteAttach(); 3229 3230 // This delays passing the stopped event to listeners till 3231 // CompleteAttach gets a chance to complete... 3232 HandlePrivateEvent(event_sp); 3233 } 3234 } 3235 3236 if (PrivateStateThreadIsValid()) 3237 ResumePrivateStateThread(); 3238 else 3239 StartPrivateStateThread(); 3240 } 3241 return error; 3242 } 3243 3244 Status Process::PrivateResume(RunDirection direction) { 3245 Log *log(GetLog(LLDBLog::Process | LLDBLog::Step)); 3246 LLDB_LOGF(log, 3247 "Process::PrivateResume() m_stop_id = %u, public state: %s " 3248 "private state: %s", 3249 m_mod_id.GetStopID(), StateAsCString(m_public_state.GetValue()), 3250 StateAsCString(m_private_state.GetValue())); 3251 3252 // If signals handing status changed we might want to update our signal 3253 // filters before resuming. 3254 UpdateAutomaticSignalFiltering(); 3255 // Clear any crash info we accumulated for this stop, but don't do so if we 3256 // are running functions; we don't want to wipe out the real stop's info. 3257 if (!GetModID().IsLastResumeForUserExpression()) 3258 ResetExtendedCrashInfoDict(); 3259 3260 if (m_last_run_direction != direction) { 3261 // In the future we might want to support mixed-direction plans, 3262 // e.g. a forward step-over stops at a breakpoint, the user does 3263 // a reverse-step, then disables the breakpoint and continues forward. 3264 // This code will need to be changed to support that. 3265 m_thread_list.DiscardThreadPlans(); 3266 m_last_run_direction = direction; 3267 } 3268 3269 Status error(WillResume()); 3270 // Tell the process it is about to resume before the thread list 3271 if (error.Success()) { 3272 // Now let the thread list know we are about to resume so it can let all of 3273 // our threads know that they are about to be resumed. Threads will each be 3274 // called with Thread::WillResume(StateType) where StateType contains the 3275 // state that they are supposed to have when the process is resumed 3276 // (suspended/running/stepping). Threads should also check their resume 3277 // signal in lldb::Thread::GetResumeSignal() to see if they are supposed to 3278 // start back up with a signal. 3279 if (m_thread_list.WillResume()) { 3280 // Last thing, do the PreResumeActions. 3281 if (!RunPreResumeActions()) { 3282 error = Status::FromErrorString( 3283 "Process::PrivateResume PreResumeActions failed, not resuming."); 3284 } else { 3285 m_mod_id.BumpResumeID(); 3286 error = DoResume(direction); 3287 if (error.Success()) { 3288 DidResume(); 3289 m_thread_list.DidResume(); 3290 LLDB_LOGF(log, "Process thinks the process has resumed."); 3291 } else { 3292 LLDB_LOGF(log, "Process::PrivateResume() DoResume failed."); 3293 return error; 3294 } 3295 } 3296 } else { 3297 // Somebody wanted to run without running (e.g. we were faking a step 3298 // from one frame of a set of inlined frames that share the same PC to 3299 // another.) So generate a continue & a stopped event, and let the world 3300 // handle them. 3301 LLDB_LOGF(log, 3302 "Process::PrivateResume() asked to simulate a start & stop."); 3303 3304 SetPrivateState(eStateRunning); 3305 SetPrivateState(eStateStopped); 3306 } 3307 } else 3308 LLDB_LOGF(log, "Process::PrivateResume() got an error \"%s\".", 3309 error.AsCString("<unknown error>")); 3310 return error; 3311 } 3312 3313 Status Process::Halt(bool clear_thread_plans, bool use_run_lock) { 3314 if (!StateIsRunningState(m_public_state.GetValue())) 3315 return Status::FromErrorString("Process is not running."); 3316 3317 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if in 3318 // case it was already set and some thread plan logic calls halt on its own. 3319 m_clear_thread_plans_on_stop |= clear_thread_plans; 3320 3321 ListenerSP halt_listener_sp( 3322 Listener::MakeListener("lldb.process.halt_listener")); 3323 HijackProcessEvents(halt_listener_sp); 3324 3325 EventSP event_sp; 3326 3327 SendAsyncInterrupt(); 3328 3329 if (m_public_state.GetValue() == eStateAttaching) { 3330 // Don't hijack and eat the eStateExited as the code that was doing the 3331 // attach will be waiting for this event... 3332 RestoreProcessEvents(); 3333 Destroy(false); 3334 SetExitStatus(SIGKILL, "Cancelled async attach."); 3335 return Status(); 3336 } 3337 3338 // Wait for the process halt timeout seconds for the process to stop. 3339 // If we are going to use the run lock, that means we're stopping out to the 3340 // user, so we should also select the most relevant frame. 3341 SelectMostRelevant select_most_relevant = 3342 use_run_lock ? SelectMostRelevantFrame : DoNoSelectMostRelevantFrame; 3343 StateType state = WaitForProcessToStop(GetInterruptTimeout(), &event_sp, true, 3344 halt_listener_sp, nullptr, 3345 use_run_lock, select_most_relevant); 3346 RestoreProcessEvents(); 3347 3348 if (state == eStateInvalid || !event_sp) { 3349 // We timed out and didn't get a stop event... 3350 return Status::FromErrorStringWithFormat("Halt timed out. State = %s", 3351 StateAsCString(GetState())); 3352 } 3353 3354 BroadcastEvent(event_sp); 3355 3356 return Status(); 3357 } 3358 3359 lldb::addr_t Process::FindInMemory(lldb::addr_t low, lldb::addr_t high, 3360 const uint8_t *buf, size_t size) { 3361 const size_t region_size = high - low; 3362 3363 if (region_size < size) 3364 return LLDB_INVALID_ADDRESS; 3365 3366 // See "Boyer-Moore string search algorithm". 3367 std::vector<size_t> bad_char_heuristic(256, size); 3368 for (size_t idx = 0; idx < size - 1; idx++) { 3369 decltype(bad_char_heuristic)::size_type bcu_idx = buf[idx]; 3370 bad_char_heuristic[bcu_idx] = size - idx - 1; 3371 } 3372 3373 // Memory we're currently searching through. 3374 llvm::SmallVector<uint8_t, 0> mem; 3375 // Position of the memory buffer. 3376 addr_t mem_pos = low; 3377 // Maximum number of bytes read (and buffered). We need to read at least 3378 // `size` bytes for a successful match. 3379 const size_t max_read_size = std::max<size_t>(size, 0x10000); 3380 3381 for (addr_t cur_addr = low; cur_addr <= (high - size);) { 3382 if (cur_addr + size > mem_pos + mem.size()) { 3383 // We need to read more data. We don't attempt to reuse the data we've 3384 // already read (up to `size-1` bytes from `cur_addr` to 3385 // `mem_pos+mem.size()`). This is fine for patterns much smaller than 3386 // max_read_size. For very 3387 // long patterns we may need to do something more elaborate. 3388 mem.resize_for_overwrite(max_read_size); 3389 Status error; 3390 mem.resize(ReadMemory(cur_addr, mem.data(), 3391 std::min<addr_t>(mem.size(), high - cur_addr), 3392 error)); 3393 mem_pos = cur_addr; 3394 if (size > mem.size()) { 3395 // We didn't read enough data. Skip to the next memory region. 3396 MemoryRegionInfo info; 3397 error = GetMemoryRegionInfo(mem_pos + mem.size(), info); 3398 if (error.Fail()) 3399 break; 3400 cur_addr = info.GetRange().GetRangeEnd(); 3401 continue; 3402 } 3403 } 3404 int64_t j = size - 1; 3405 while (j >= 0 && buf[j] == mem[cur_addr + j - mem_pos]) 3406 j--; 3407 if (j < 0) 3408 return cur_addr; // We have a match. 3409 cur_addr += bad_char_heuristic[mem[cur_addr + size - 1 - mem_pos]]; 3410 } 3411 3412 return LLDB_INVALID_ADDRESS; 3413 } 3414 3415 Status Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) { 3416 Status error; 3417 3418 // Check both the public & private states here. If we're hung evaluating an 3419 // expression, for instance, then the public state will be stopped, but we 3420 // still need to interrupt. 3421 if (m_public_state.GetValue() == eStateRunning || 3422 m_private_state.GetValue() == eStateRunning) { 3423 Log *log = GetLog(LLDBLog::Process); 3424 LLDB_LOGF(log, "Process::%s() About to stop.", __FUNCTION__); 3425 3426 ListenerSP listener_sp( 3427 Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3428 HijackProcessEvents(listener_sp); 3429 3430 SendAsyncInterrupt(); 3431 3432 // Consume the interrupt event. 3433 StateType state = WaitForProcessToStop(GetInterruptTimeout(), 3434 &exit_event_sp, true, listener_sp); 3435 3436 RestoreProcessEvents(); 3437 3438 // If the process exited while we were waiting for it to stop, put the 3439 // exited event into the shared pointer passed in and return. Our caller 3440 // doesn't need to do anything else, since they don't have a process 3441 // anymore... 3442 3443 if (state == eStateExited || m_private_state.GetValue() == eStateExited) { 3444 LLDB_LOGF(log, "Process::%s() Process exited while waiting to stop.", 3445 __FUNCTION__); 3446 return error; 3447 } else 3448 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3449 3450 if (state != eStateStopped) { 3451 LLDB_LOGF(log, "Process::%s() failed to stop, state is: %s", __FUNCTION__, 3452 StateAsCString(state)); 3453 // If we really couldn't stop the process then we should just error out 3454 // here, but if the lower levels just bobbled sending the event and we 3455 // really are stopped, then continue on. 3456 StateType private_state = m_private_state.GetValue(); 3457 if (private_state != eStateStopped) { 3458 return Status::FromErrorStringWithFormat( 3459 "Attempt to stop the target in order to detach timed out. " 3460 "State = %s", 3461 StateAsCString(GetState())); 3462 } 3463 } 3464 } 3465 return error; 3466 } 3467 3468 Status Process::Detach(bool keep_stopped) { 3469 EventSP exit_event_sp; 3470 Status error; 3471 m_destroy_in_process = true; 3472 3473 error = WillDetach(); 3474 3475 if (error.Success()) { 3476 if (DetachRequiresHalt()) { 3477 error = StopForDestroyOrDetach(exit_event_sp); 3478 if (!error.Success()) { 3479 m_destroy_in_process = false; 3480 return error; 3481 } else if (exit_event_sp) { 3482 // We shouldn't need to do anything else here. There's no process left 3483 // to detach from... 3484 StopPrivateStateThread(); 3485 m_destroy_in_process = false; 3486 return error; 3487 } 3488 } 3489 3490 m_thread_list.DiscardThreadPlans(); 3491 DisableAllBreakpointSites(); 3492 3493 error = DoDetach(keep_stopped); 3494 if (error.Success()) { 3495 DidDetach(); 3496 StopPrivateStateThread(); 3497 } else { 3498 return error; 3499 } 3500 } 3501 m_destroy_in_process = false; 3502 3503 // If we exited when we were waiting for a process to stop, then forward the 3504 // event here so we don't lose the event 3505 if (exit_event_sp) { 3506 // Directly broadcast our exited event because we shut down our private 3507 // state thread above 3508 BroadcastEvent(exit_event_sp); 3509 } 3510 3511 // If we have been interrupted (to kill us) in the middle of running, we may 3512 // not end up propagating the last events through the event system, in which 3513 // case we might strand the write lock. Unlock it here so when we do to tear 3514 // down the process we don't get an error destroying the lock. 3515 3516 m_public_run_lock.SetStopped(); 3517 return error; 3518 } 3519 3520 Status Process::Destroy(bool force_kill) { 3521 // If we've already called Process::Finalize then there's nothing useful to 3522 // be done here. Finalize has actually called Destroy already. 3523 if (m_finalizing) 3524 return {}; 3525 return DestroyImpl(force_kill); 3526 } 3527 3528 Status Process::DestroyImpl(bool force_kill) { 3529 // Tell ourselves we are in the process of destroying the process, so that we 3530 // don't do any unnecessary work that might hinder the destruction. Remember 3531 // to set this back to false when we are done. That way if the attempt 3532 // failed and the process stays around for some reason it won't be in a 3533 // confused state. 3534 3535 if (force_kill) 3536 m_should_detach = false; 3537 3538 if (GetShouldDetach()) { 3539 // FIXME: This will have to be a process setting: 3540 bool keep_stopped = false; 3541 Detach(keep_stopped); 3542 } 3543 3544 m_destroy_in_process = true; 3545 3546 Status error(WillDestroy()); 3547 if (error.Success()) { 3548 EventSP exit_event_sp; 3549 if (DestroyRequiresHalt()) { 3550 error = StopForDestroyOrDetach(exit_event_sp); 3551 } 3552 3553 if (m_public_state.GetValue() == eStateStopped) { 3554 // Ditch all thread plans, and remove all our breakpoints: in case we 3555 // have to restart the target to kill it, we don't want it hitting a 3556 // breakpoint... Only do this if we've stopped, however, since if we 3557 // didn't manage to halt it above, then we're not going to have much luck 3558 // doing this now. 3559 m_thread_list.DiscardThreadPlans(); 3560 DisableAllBreakpointSites(); 3561 } 3562 3563 error = DoDestroy(); 3564 if (error.Success()) { 3565 DidDestroy(); 3566 StopPrivateStateThread(); 3567 } 3568 m_stdio_communication.StopReadThread(); 3569 m_stdio_communication.Disconnect(); 3570 m_stdin_forward = false; 3571 3572 { 3573 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 3574 if (m_process_input_reader) { 3575 m_process_input_reader->SetIsDone(true); 3576 m_process_input_reader->Cancel(); 3577 m_process_input_reader.reset(); 3578 } 3579 } 3580 3581 // If we exited when we were waiting for a process to stop, then forward 3582 // the event here so we don't lose the event 3583 if (exit_event_sp) { 3584 // Directly broadcast our exited event because we shut down our private 3585 // state thread above 3586 BroadcastEvent(exit_event_sp); 3587 } 3588 3589 // If we have been interrupted (to kill us) in the middle of running, we 3590 // may not end up propagating the last events through the event system, in 3591 // which case we might strand the write lock. Unlock it here so when we do 3592 // to tear down the process we don't get an error destroying the lock. 3593 m_public_run_lock.SetStopped(); 3594 } 3595 3596 m_destroy_in_process = false; 3597 3598 return error; 3599 } 3600 3601 Status Process::Signal(int signal) { 3602 Status error(WillSignal()); 3603 if (error.Success()) { 3604 error = DoSignal(signal); 3605 if (error.Success()) 3606 DidSignal(); 3607 } 3608 return error; 3609 } 3610 3611 void Process::SetUnixSignals(UnixSignalsSP &&signals_sp) { 3612 assert(signals_sp && "null signals_sp"); 3613 m_unix_signals_sp = std::move(signals_sp); 3614 } 3615 3616 const lldb::UnixSignalsSP &Process::GetUnixSignals() { 3617 assert(m_unix_signals_sp && "null m_unix_signals_sp"); 3618 return m_unix_signals_sp; 3619 } 3620 3621 lldb::ByteOrder Process::GetByteOrder() const { 3622 return GetTarget().GetArchitecture().GetByteOrder(); 3623 } 3624 3625 uint32_t Process::GetAddressByteSize() const { 3626 return GetTarget().GetArchitecture().GetAddressByteSize(); 3627 } 3628 3629 bool Process::ShouldBroadcastEvent(Event *event_ptr) { 3630 const StateType state = 3631 Process::ProcessEventData::GetStateFromEvent(event_ptr); 3632 bool return_value = true; 3633 Log *log(GetLog(LLDBLog::Events | LLDBLog::Process)); 3634 3635 switch (state) { 3636 case eStateDetached: 3637 case eStateExited: 3638 case eStateUnloaded: 3639 m_stdio_communication.SynchronizeWithReadThread(); 3640 m_stdio_communication.StopReadThread(); 3641 m_stdio_communication.Disconnect(); 3642 m_stdin_forward = false; 3643 3644 [[fallthrough]]; 3645 case eStateConnected: 3646 case eStateAttaching: 3647 case eStateLaunching: 3648 // These events indicate changes in the state of the debugging session, 3649 // always report them. 3650 return_value = true; 3651 break; 3652 case eStateInvalid: 3653 // We stopped for no apparent reason, don't report it. 3654 return_value = false; 3655 break; 3656 case eStateRunning: 3657 case eStateStepping: 3658 // If we've started the target running, we handle the cases where we are 3659 // already running and where there is a transition from stopped to running 3660 // differently. running -> running: Automatically suppress extra running 3661 // events stopped -> running: Report except when there is one or more no 3662 // votes 3663 // and no yes votes. 3664 SynchronouslyNotifyStateChanged(state); 3665 if (m_force_next_event_delivery) 3666 return_value = true; 3667 else { 3668 switch (m_last_broadcast_state) { 3669 case eStateRunning: 3670 case eStateStepping: 3671 // We always suppress multiple runnings with no PUBLIC stop in between. 3672 return_value = false; 3673 break; 3674 default: 3675 // TODO: make this work correctly. For now always report 3676 // run if we aren't running so we don't miss any running events. If I 3677 // run the lldb/test/thread/a.out file and break at main.cpp:58, run 3678 // and hit the breakpoints on multiple threads, then somehow during the 3679 // stepping over of all breakpoints no run gets reported. 3680 3681 // This is a transition from stop to run. 3682 switch (m_thread_list.ShouldReportRun(event_ptr)) { 3683 case eVoteYes: 3684 case eVoteNoOpinion: 3685 return_value = true; 3686 break; 3687 case eVoteNo: 3688 return_value = false; 3689 break; 3690 } 3691 break; 3692 } 3693 } 3694 break; 3695 case eStateStopped: 3696 case eStateCrashed: 3697 case eStateSuspended: 3698 // We've stopped. First see if we're going to restart the target. If we 3699 // are going to stop, then we always broadcast the event. If we aren't 3700 // going to stop, let the thread plans decide if we're going to report this 3701 // event. If no thread has an opinion, we don't report it. 3702 3703 m_stdio_communication.SynchronizeWithReadThread(); 3704 RefreshStateAfterStop(); 3705 if (ProcessEventData::GetInterruptedFromEvent(event_ptr)) { 3706 LLDB_LOGF(log, 3707 "Process::ShouldBroadcastEvent (%p) stopped due to an " 3708 "interrupt, state: %s", 3709 static_cast<void *>(event_ptr), StateAsCString(state)); 3710 // Even though we know we are going to stop, we should let the threads 3711 // have a look at the stop, so they can properly set their state. 3712 m_thread_list.ShouldStop(event_ptr); 3713 return_value = true; 3714 } else { 3715 bool was_restarted = ProcessEventData::GetRestartedFromEvent(event_ptr); 3716 bool should_resume = false; 3717 3718 // It makes no sense to ask "ShouldStop" if we've already been 3719 // restarted... Asking the thread list is also not likely to go well, 3720 // since we are running again. So in that case just report the event. 3721 3722 if (!was_restarted) 3723 should_resume = !m_thread_list.ShouldStop(event_ptr); 3724 3725 if (was_restarted || should_resume || m_resume_requested) { 3726 Vote report_stop_vote = m_thread_list.ShouldReportStop(event_ptr); 3727 LLDB_LOGF(log, 3728 "Process::ShouldBroadcastEvent: should_resume: %i state: " 3729 "%s was_restarted: %i report_stop_vote: %d.", 3730 should_resume, StateAsCString(state), was_restarted, 3731 report_stop_vote); 3732 3733 switch (report_stop_vote) { 3734 case eVoteYes: 3735 return_value = true; 3736 break; 3737 case eVoteNoOpinion: 3738 case eVoteNo: 3739 return_value = false; 3740 break; 3741 } 3742 3743 if (!was_restarted) { 3744 LLDB_LOGF(log, 3745 "Process::ShouldBroadcastEvent (%p) Restarting process " 3746 "from state: %s", 3747 static_cast<void *>(event_ptr), StateAsCString(state)); 3748 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3749 PrivateResume(m_last_run_direction); 3750 } 3751 } else { 3752 return_value = true; 3753 SynchronouslyNotifyStateChanged(state); 3754 } 3755 } 3756 break; 3757 } 3758 3759 // Forcing the next event delivery is a one shot deal. So reset it here. 3760 m_force_next_event_delivery = false; 3761 3762 // We do some coalescing of events (for instance two consecutive running 3763 // events get coalesced.) But we only coalesce against events we actually 3764 // broadcast. So we use m_last_broadcast_state to track that. NB - you 3765 // can't use "m_public_state.GetValue()" for that purpose, as was originally 3766 // done, because the PublicState reflects the last event pulled off the 3767 // queue, and there may be several events stacked up on the queue unserviced. 3768 // So the PublicState may not reflect the last broadcasted event yet. 3769 // m_last_broadcast_state gets updated here. 3770 3771 if (return_value) 3772 m_last_broadcast_state = state; 3773 3774 LLDB_LOGF(log, 3775 "Process::ShouldBroadcastEvent (%p) => new state: %s, last " 3776 "broadcast state: %s - %s", 3777 static_cast<void *>(event_ptr), StateAsCString(state), 3778 StateAsCString(m_last_broadcast_state), 3779 return_value ? "YES" : "NO"); 3780 return return_value; 3781 } 3782 3783 bool Process::StartPrivateStateThread(bool is_secondary_thread) { 3784 Log *log = GetLog(LLDBLog::Events); 3785 3786 bool already_running = PrivateStateThreadIsValid(); 3787 LLDB_LOGF(log, "Process::%s()%s ", __FUNCTION__, 3788 already_running ? " already running" 3789 : " starting private state thread"); 3790 3791 if (!is_secondary_thread && already_running) 3792 return true; 3793 3794 // Create a thread that watches our internal state and controls which events 3795 // make it to clients (into the DCProcess event queue). 3796 char thread_name[1024]; 3797 uint32_t max_len = llvm::get_max_thread_name_length(); 3798 if (max_len > 0 && max_len <= 30) { 3799 // On platforms with abbreviated thread name lengths, choose thread names 3800 // that fit within the limit. 3801 if (already_running) 3802 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 3803 else 3804 snprintf(thread_name, sizeof(thread_name), "intern-state"); 3805 } else { 3806 if (already_running) 3807 snprintf(thread_name, sizeof(thread_name), 3808 "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", 3809 GetID()); 3810 else 3811 snprintf(thread_name, sizeof(thread_name), 3812 "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 3813 } 3814 3815 llvm::Expected<HostThread> private_state_thread = 3816 ThreadLauncher::LaunchThread( 3817 thread_name, 3818 [this, is_secondary_thread] { 3819 return RunPrivateStateThread(is_secondary_thread); 3820 }, 3821 8 * 1024 * 1024); 3822 if (!private_state_thread) { 3823 LLDB_LOG_ERROR(GetLog(LLDBLog::Host), private_state_thread.takeError(), 3824 "failed to launch host thread: {0}"); 3825 return false; 3826 } 3827 3828 assert(private_state_thread->IsJoinable()); 3829 m_private_state_thread = *private_state_thread; 3830 ResumePrivateStateThread(); 3831 return true; 3832 } 3833 3834 void Process::PausePrivateStateThread() { 3835 ControlPrivateStateThread(eBroadcastInternalStateControlPause); 3836 } 3837 3838 void Process::ResumePrivateStateThread() { 3839 ControlPrivateStateThread(eBroadcastInternalStateControlResume); 3840 } 3841 3842 void Process::StopPrivateStateThread() { 3843 if (m_private_state_thread.IsJoinable()) 3844 ControlPrivateStateThread(eBroadcastInternalStateControlStop); 3845 else { 3846 Log *log = GetLog(LLDBLog::Process); 3847 LLDB_LOGF( 3848 log, 3849 "Went to stop the private state thread, but it was already invalid."); 3850 } 3851 } 3852 3853 void Process::ControlPrivateStateThread(uint32_t signal) { 3854 Log *log = GetLog(LLDBLog::Process); 3855 3856 assert(signal == eBroadcastInternalStateControlStop || 3857 signal == eBroadcastInternalStateControlPause || 3858 signal == eBroadcastInternalStateControlResume); 3859 3860 LLDB_LOGF(log, "Process::%s (signal = %d)", __FUNCTION__, signal); 3861 3862 // Signal the private state thread 3863 if (m_private_state_thread.IsJoinable()) { 3864 // Broadcast the event. 3865 // It is important to do this outside of the if below, because it's 3866 // possible that the thread state is invalid but that the thread is waiting 3867 // on a control event instead of simply being on its way out (this should 3868 // not happen, but it apparently can). 3869 LLDB_LOGF(log, "Sending control event of type: %d.", signal); 3870 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 3871 m_private_state_control_broadcaster.BroadcastEvent(signal, 3872 event_receipt_sp); 3873 3874 // Wait for the event receipt or for the private state thread to exit 3875 bool receipt_received = false; 3876 if (PrivateStateThreadIsValid()) { 3877 while (!receipt_received) { 3878 // Check for a receipt for n seconds and then check if the private 3879 // state thread is still around. 3880 receipt_received = 3881 event_receipt_sp->WaitForEventReceived(GetUtilityExpressionTimeout()); 3882 if (!receipt_received) { 3883 // Check if the private state thread is still around. If it isn't 3884 // then we are done waiting 3885 if (!PrivateStateThreadIsValid()) 3886 break; // Private state thread exited or is exiting, we are done 3887 } 3888 } 3889 } 3890 3891 if (signal == eBroadcastInternalStateControlStop) { 3892 thread_result_t result = {}; 3893 m_private_state_thread.Join(&result); 3894 m_private_state_thread.Reset(); 3895 } 3896 } else { 3897 LLDB_LOGF( 3898 log, 3899 "Private state thread already dead, no need to signal it to stop."); 3900 } 3901 } 3902 3903 void Process::SendAsyncInterrupt(Thread *thread) { 3904 if (thread != nullptr) 3905 m_interrupt_tid = thread->GetProtocolID(); 3906 else 3907 m_interrupt_tid = LLDB_INVALID_THREAD_ID; 3908 if (PrivateStateThreadIsValid()) 3909 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, 3910 nullptr); 3911 else 3912 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 3913 } 3914 3915 void Process::HandlePrivateEvent(EventSP &event_sp) { 3916 Log *log = GetLog(LLDBLog::Process); 3917 m_resume_requested = false; 3918 3919 const StateType new_state = 3920 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 3921 3922 // First check to see if anybody wants a shot at this event: 3923 if (m_next_event_action_up) { 3924 NextEventAction::EventActionResult action_result = 3925 m_next_event_action_up->PerformAction(event_sp); 3926 LLDB_LOGF(log, "Ran next event action, result was %d.", action_result); 3927 3928 switch (action_result) { 3929 case NextEventAction::eEventActionSuccess: 3930 SetNextEventAction(nullptr); 3931 break; 3932 3933 case NextEventAction::eEventActionRetry: 3934 break; 3935 3936 case NextEventAction::eEventActionExit: 3937 // Handle Exiting Here. If we already got an exited event, we should 3938 // just propagate it. Otherwise, swallow this event, and set our state 3939 // to exit so the next event will kill us. 3940 if (new_state != eStateExited) { 3941 // FIXME: should cons up an exited event, and discard this one. 3942 SetExitStatus(0, m_next_event_action_up->GetExitString()); 3943 SetNextEventAction(nullptr); 3944 return; 3945 } 3946 SetNextEventAction(nullptr); 3947 break; 3948 } 3949 } 3950 3951 // See if we should broadcast this state to external clients? 3952 const bool should_broadcast = ShouldBroadcastEvent(event_sp.get()); 3953 3954 if (should_broadcast) { 3955 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 3956 if (log) { 3957 LLDB_LOGF(log, 3958 "Process::%s (pid = %" PRIu64 3959 ") broadcasting new state %s (old state %s) to %s", 3960 __FUNCTION__, GetID(), StateAsCString(new_state), 3961 StateAsCString(GetState()), 3962 is_hijacked ? "hijacked" : "public"); 3963 } 3964 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 3965 if (StateIsRunningState(new_state)) { 3966 // Only push the input handler if we aren't fowarding events, as this 3967 // means the curses GUI is in use... Or don't push it if we are launching 3968 // since it will come up stopped. 3969 if (!GetTarget().GetDebugger().IsForwardingEvents() && 3970 new_state != eStateLaunching && new_state != eStateAttaching) { 3971 PushProcessIOHandler(); 3972 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue() + 1, 3973 eBroadcastAlways); 3974 LLDB_LOGF(log, "Process::%s updated m_iohandler_sync to %d", 3975 __FUNCTION__, m_iohandler_sync.GetValue()); 3976 } 3977 } else if (StateIsStoppedState(new_state, false)) { 3978 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) { 3979 // If the lldb_private::Debugger is handling the events, we don't want 3980 // to pop the process IOHandler here, we want to do it when we receive 3981 // the stopped event so we can carefully control when the process 3982 // IOHandler is popped because when we stop we want to display some 3983 // text stating how and why we stopped, then maybe some 3984 // process/thread/frame info, and then we want the "(lldb) " prompt to 3985 // show up. If we pop the process IOHandler here, then we will cause 3986 // the command interpreter to become the top IOHandler after the 3987 // process pops off and it will update its prompt right away... See the 3988 // Debugger.cpp file where it calls the function as 3989 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 3990 // Otherwise we end up getting overlapping "(lldb) " prompts and 3991 // garbled output. 3992 // 3993 // If we aren't handling the events in the debugger (which is indicated 3994 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or 3995 // we are hijacked, then we always pop the process IO handler manually. 3996 // Hijacking happens when the internal process state thread is running 3997 // thread plans, or when commands want to run in synchronous mode and 3998 // they call "process->WaitForProcessToStop()". An example of something 3999 // that will hijack the events is a simple expression: 4000 // 4001 // (lldb) expr (int)puts("hello") 4002 // 4003 // This will cause the internal process state thread to resume and halt 4004 // the process (and _it_ will hijack the eBroadcastBitStateChanged 4005 // events) and we do need the IO handler to be pushed and popped 4006 // correctly. 4007 4008 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 4009 PopProcessIOHandler(); 4010 } 4011 } 4012 4013 BroadcastEvent(event_sp); 4014 } else { 4015 if (log) { 4016 LLDB_LOGF( 4017 log, 4018 "Process::%s (pid = %" PRIu64 4019 ") suppressing state %s (old state %s): should_broadcast == false", 4020 __FUNCTION__, GetID(), StateAsCString(new_state), 4021 StateAsCString(GetState())); 4022 } 4023 } 4024 } 4025 4026 Status Process::HaltPrivate() { 4027 EventSP event_sp; 4028 Status error(WillHalt()); 4029 if (error.Fail()) 4030 return error; 4031 4032 // Ask the process subclass to actually halt our process 4033 bool caused_stop; 4034 error = DoHalt(caused_stop); 4035 4036 DidHalt(); 4037 return error; 4038 } 4039 4040 thread_result_t Process::RunPrivateStateThread(bool is_secondary_thread) { 4041 bool control_only = true; 4042 4043 Log *log = GetLog(LLDBLog::Process); 4044 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 4045 __FUNCTION__, static_cast<void *>(this), GetID()); 4046 4047 bool exit_now = false; 4048 bool interrupt_requested = false; 4049 while (!exit_now) { 4050 EventSP event_sp; 4051 GetEventsPrivate(event_sp, std::nullopt, control_only); 4052 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) { 4053 LLDB_LOGF(log, 4054 "Process::%s (arg = %p, pid = %" PRIu64 4055 ") got a control event: %d", 4056 __FUNCTION__, static_cast<void *>(this), GetID(), 4057 event_sp->GetType()); 4058 4059 switch (event_sp->GetType()) { 4060 case eBroadcastInternalStateControlStop: 4061 exit_now = true; 4062 break; // doing any internal state management below 4063 4064 case eBroadcastInternalStateControlPause: 4065 control_only = true; 4066 break; 4067 4068 case eBroadcastInternalStateControlResume: 4069 control_only = false; 4070 break; 4071 } 4072 4073 continue; 4074 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 4075 if (m_public_state.GetValue() == eStateAttaching) { 4076 LLDB_LOGF(log, 4077 "Process::%s (arg = %p, pid = %" PRIu64 4078 ") woke up with an interrupt while attaching - " 4079 "forwarding interrupt.", 4080 __FUNCTION__, static_cast<void *>(this), GetID()); 4081 // The server may be spinning waiting for a process to appear, in which 4082 // case we should tell it to stop doing that. Normally, we don't NEED 4083 // to do that because we will next close the communication to the stub 4084 // and that will get it to shut down. But there are remote debugging 4085 // cases where relying on that side-effect causes the shutdown to be 4086 // flakey, so we should send a positive signal to interrupt the wait. 4087 Status error = HaltPrivate(); 4088 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4089 } else if (StateIsRunningState(m_last_broadcast_state)) { 4090 LLDB_LOGF(log, 4091 "Process::%s (arg = %p, pid = %" PRIu64 4092 ") woke up with an interrupt - Halting.", 4093 __FUNCTION__, static_cast<void *>(this), GetID()); 4094 Status error = HaltPrivate(); 4095 if (error.Fail() && log) 4096 LLDB_LOGF(log, 4097 "Process::%s (arg = %p, pid = %" PRIu64 4098 ") failed to halt the process: %s", 4099 __FUNCTION__, static_cast<void *>(this), GetID(), 4100 error.AsCString()); 4101 // Halt should generate a stopped event. Make a note of the fact that 4102 // we were doing the interrupt, so we can set the interrupted flag 4103 // after we receive the event. We deliberately set this to true even if 4104 // HaltPrivate failed, so that we can interrupt on the next natural 4105 // stop. 4106 interrupt_requested = true; 4107 } else { 4108 // This can happen when someone (e.g. Process::Halt) sees that we are 4109 // running and sends an interrupt request, but the process actually 4110 // stops before we receive it. In that case, we can just ignore the 4111 // request. We use m_last_broadcast_state, because the Stopped event 4112 // may not have been popped of the event queue yet, which is when the 4113 // public state gets updated. 4114 LLDB_LOGF(log, 4115 "Process::%s ignoring interrupt as we have already stopped.", 4116 __FUNCTION__); 4117 } 4118 continue; 4119 } 4120 4121 const StateType internal_state = 4122 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4123 4124 if (internal_state != eStateInvalid) { 4125 if (m_clear_thread_plans_on_stop && 4126 StateIsStoppedState(internal_state, true)) { 4127 m_clear_thread_plans_on_stop = false; 4128 m_thread_list.DiscardThreadPlans(); 4129 } 4130 4131 if (interrupt_requested) { 4132 if (StateIsStoppedState(internal_state, true)) { 4133 // Only mark interrupt event if it is not thread specific async 4134 // interrupt. 4135 if (m_interrupt_tid == LLDB_INVALID_THREAD_ID) { 4136 // We requested the interrupt, so mark this as such in the stop 4137 // event so clients can tell an interrupted process from a natural 4138 // stop 4139 ProcessEventData::SetInterruptedInEvent(event_sp.get(), true); 4140 } 4141 interrupt_requested = false; 4142 } else if (log) { 4143 LLDB_LOGF(log, 4144 "Process::%s interrupt_requested, but a non-stopped " 4145 "state '%s' received.", 4146 __FUNCTION__, StateAsCString(internal_state)); 4147 } 4148 } 4149 4150 HandlePrivateEvent(event_sp); 4151 } 4152 4153 if (internal_state == eStateInvalid || internal_state == eStateExited || 4154 internal_state == eStateDetached) { 4155 LLDB_LOGF(log, 4156 "Process::%s (arg = %p, pid = %" PRIu64 4157 ") about to exit with internal state %s...", 4158 __FUNCTION__, static_cast<void *>(this), GetID(), 4159 StateAsCString(internal_state)); 4160 4161 break; 4162 } 4163 } 4164 4165 // Verify log is still enabled before attempting to write to it... 4166 LLDB_LOGF(log, "Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4167 __FUNCTION__, static_cast<void *>(this), GetID()); 4168 4169 // If we are a secondary thread, then the primary thread we are working for 4170 // will have already acquired the public_run_lock, and isn't done with what 4171 // it was doing yet, so don't try to change it on the way out. 4172 if (!is_secondary_thread) 4173 m_public_run_lock.SetStopped(); 4174 return {}; 4175 } 4176 4177 // Process Event Data 4178 4179 Process::ProcessEventData::ProcessEventData() : EventData(), m_process_wp() {} 4180 4181 Process::ProcessEventData::ProcessEventData(const ProcessSP &process_sp, 4182 StateType state) 4183 : EventData(), m_process_wp(), m_state(state) { 4184 if (process_sp) 4185 m_process_wp = process_sp; 4186 } 4187 4188 Process::ProcessEventData::~ProcessEventData() = default; 4189 4190 llvm::StringRef Process::ProcessEventData::GetFlavorString() { 4191 return "Process::ProcessEventData"; 4192 } 4193 4194 llvm::StringRef Process::ProcessEventData::GetFlavor() const { 4195 return ProcessEventData::GetFlavorString(); 4196 } 4197 4198 bool Process::ProcessEventData::ShouldStop(Event *event_ptr, 4199 bool &found_valid_stopinfo) { 4200 found_valid_stopinfo = false; 4201 4202 ProcessSP process_sp(m_process_wp.lock()); 4203 if (!process_sp) 4204 return false; 4205 4206 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4207 uint32_t num_threads = curr_thread_list.GetSize(); 4208 4209 // The actions might change one of the thread's stop_info's opinions about 4210 // whether we should stop the process, so we need to query that as we go. 4211 4212 // One other complication here, is that we try to catch any case where the 4213 // target has run (except for expressions) and immediately exit, but if we 4214 // get that wrong (which is possible) then the thread list might have 4215 // changed, and that would cause our iteration here to crash. We could 4216 // make a copy of the thread list, but we'd really like to also know if it 4217 // has changed at all, so we store the original thread ID's of all threads and 4218 // check what we get back against this list & bag out if anything differs. 4219 std::vector<std::pair<ThreadSP, size_t>> not_suspended_threads; 4220 for (uint32_t idx = 0; idx < num_threads; ++idx) { 4221 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4222 4223 /* 4224 Filter out all suspended threads, they could not be the reason 4225 of stop and no need to perform any actions on them. 4226 */ 4227 if (thread_sp->GetResumeState() != eStateSuspended) 4228 not_suspended_threads.emplace_back(thread_sp, thread_sp->GetIndexID()); 4229 } 4230 4231 // Use this to track whether we should continue from here. We will only 4232 // continue the target running if no thread says we should stop. Of course 4233 // if some thread's PerformAction actually sets the target running, then it 4234 // doesn't matter what the other threads say... 4235 4236 bool still_should_stop = false; 4237 4238 // Sometimes - for instance if we have a bug in the stub we are talking to, 4239 // we stop but no thread has a valid stop reason. In that case we should 4240 // just stop, because we have no way of telling what the right thing to do 4241 // is, and it's better to let the user decide than continue behind their 4242 // backs. 4243 4244 for (auto [thread_sp, thread_index] : not_suspended_threads) { 4245 if (curr_thread_list.GetSize() != num_threads) { 4246 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4247 LLDB_LOGF( 4248 log, 4249 "Number of threads changed from %u to %u while processing event.", 4250 num_threads, curr_thread_list.GetSize()); 4251 break; 4252 } 4253 4254 if (thread_sp->GetIndexID() != thread_index) { 4255 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 4256 LLDB_LOG(log, 4257 "The thread {0} changed from {1} to {2} while processing event.", 4258 thread_sp.get(), thread_index, thread_sp->GetIndexID()); 4259 break; 4260 } 4261 4262 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4263 if (stop_info_sp && stop_info_sp->IsValid()) { 4264 found_valid_stopinfo = true; 4265 bool this_thread_wants_to_stop; 4266 if (stop_info_sp->GetOverrideShouldStop()) { 4267 this_thread_wants_to_stop = 4268 stop_info_sp->GetOverriddenShouldStopValue(); 4269 } else { 4270 stop_info_sp->PerformAction(event_ptr); 4271 // The stop action might restart the target. If it does, then we 4272 // want to mark that in the event so that whoever is receiving it 4273 // will know to wait for the running event and reflect that state 4274 // appropriately. We also need to stop processing actions, since they 4275 // aren't expecting the target to be running. 4276 4277 // FIXME: we might have run. 4278 if (stop_info_sp->HasTargetRunSinceMe()) { 4279 SetRestarted(true); 4280 break; 4281 } 4282 4283 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4284 } 4285 4286 if (!still_should_stop) 4287 still_should_stop = this_thread_wants_to_stop; 4288 } 4289 } 4290 4291 return still_should_stop; 4292 } 4293 4294 bool Process::ProcessEventData::ForwardEventToPendingListeners( 4295 Event *event_ptr) { 4296 // STDIO and the other async event notifications should always be forwarded. 4297 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) 4298 return true; 4299 4300 // For state changed events, if the update state is zero, we are handling 4301 // this on the private state thread. We should wait for the public event. 4302 return m_update_state == 1; 4303 } 4304 4305 void Process::ProcessEventData::DoOnRemoval(Event *event_ptr) { 4306 // We only have work to do for state changed events: 4307 if (event_ptr->GetType() != Process::eBroadcastBitStateChanged) 4308 return; 4309 4310 ProcessSP process_sp(m_process_wp.lock()); 4311 4312 if (!process_sp) 4313 return; 4314 4315 // This function gets called twice for each event, once when the event gets 4316 // pulled off of the private process event queue, and then any number of 4317 // times, first when it gets pulled off of the public event queue, then other 4318 // times when we're pretending that this is where we stopped at the end of 4319 // expression evaluation. m_update_state is used to distinguish these three 4320 // cases; it is 0 when we're just pulling it off for private handling, and > 4321 // 1 for expression evaluation, and we don't want to do the breakpoint 4322 // command handling then. 4323 if (m_update_state != 1) 4324 return; 4325 4326 process_sp->SetPublicState( 4327 m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4328 4329 if (m_state == eStateStopped && !m_restarted) { 4330 // Let process subclasses know we are about to do a public stop and do 4331 // anything they might need to in order to speed up register and memory 4332 // accesses. 4333 process_sp->WillPublicStop(); 4334 } 4335 4336 // If this is a halt event, even if the halt stopped with some reason other 4337 // than a plain interrupt (e.g. we had already stopped for a breakpoint when 4338 // the halt request came through) don't do the StopInfo actions, as they may 4339 // end up restarting the process. 4340 if (m_interrupted) 4341 return; 4342 4343 // If we're not stopped or have restarted, then skip the StopInfo actions: 4344 if (m_state != eStateStopped || m_restarted) { 4345 return; 4346 } 4347 4348 bool does_anybody_have_an_opinion = false; 4349 bool still_should_stop = ShouldStop(event_ptr, does_anybody_have_an_opinion); 4350 4351 if (GetRestarted()) { 4352 return; 4353 } 4354 4355 if (!still_should_stop && does_anybody_have_an_opinion) { 4356 // We've been asked to continue, so do that here. 4357 SetRestarted(true); 4358 // Use the private resume method here, since we aren't changing the run 4359 // lock state. 4360 process_sp->PrivateResume(process_sp->m_last_run_direction); 4361 } else { 4362 bool hijacked = process_sp->IsHijackedForEvent(eBroadcastBitStateChanged) && 4363 !process_sp->StateChangedIsHijackedForSynchronousResume(); 4364 4365 if (!hijacked) { 4366 // If we didn't restart, run the Stop Hooks here. 4367 // Don't do that if state changed events aren't hooked up to the 4368 // public (or SyncResume) broadcasters. StopHooks are just for 4369 // real public stops. They might also restart the target, 4370 // so watch for that. 4371 if (process_sp->GetTarget().RunStopHooks()) 4372 SetRestarted(true); 4373 } 4374 } 4375 } 4376 4377 void Process::ProcessEventData::Dump(Stream *s) const { 4378 ProcessSP process_sp(m_process_wp.lock()); 4379 4380 if (process_sp) 4381 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4382 static_cast<void *>(process_sp.get()), process_sp->GetID()); 4383 else 4384 s->PutCString(" process = NULL, "); 4385 4386 s->Printf("state = %s", StateAsCString(GetState())); 4387 } 4388 4389 const Process::ProcessEventData * 4390 Process::ProcessEventData::GetEventDataFromEvent(const Event *event_ptr) { 4391 if (event_ptr) { 4392 const EventData *event_data = event_ptr->GetData(); 4393 if (event_data && 4394 event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4395 return static_cast<const ProcessEventData *>(event_ptr->GetData()); 4396 } 4397 return nullptr; 4398 } 4399 4400 ProcessSP 4401 Process::ProcessEventData::GetProcessFromEvent(const Event *event_ptr) { 4402 ProcessSP process_sp; 4403 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4404 if (data) 4405 process_sp = data->GetProcessSP(); 4406 return process_sp; 4407 } 4408 4409 StateType Process::ProcessEventData::GetStateFromEvent(const Event *event_ptr) { 4410 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4411 if (data == nullptr) 4412 return eStateInvalid; 4413 else 4414 return data->GetState(); 4415 } 4416 4417 bool Process::ProcessEventData::GetRestartedFromEvent(const Event *event_ptr) { 4418 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4419 if (data == nullptr) 4420 return false; 4421 else 4422 return data->GetRestarted(); 4423 } 4424 4425 void Process::ProcessEventData::SetRestartedInEvent(Event *event_ptr, 4426 bool new_value) { 4427 ProcessEventData *data = 4428 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4429 if (data != nullptr) 4430 data->SetRestarted(new_value); 4431 } 4432 4433 size_t 4434 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) { 4435 ProcessEventData *data = 4436 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4437 if (data != nullptr) 4438 return data->GetNumRestartedReasons(); 4439 else 4440 return 0; 4441 } 4442 4443 const char * 4444 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, 4445 size_t idx) { 4446 ProcessEventData *data = 4447 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4448 if (data != nullptr) 4449 return data->GetRestartedReasonAtIndex(idx); 4450 else 4451 return nullptr; 4452 } 4453 4454 void Process::ProcessEventData::AddRestartedReason(Event *event_ptr, 4455 const char *reason) { 4456 ProcessEventData *data = 4457 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4458 if (data != nullptr) 4459 data->AddRestartedReason(reason); 4460 } 4461 4462 bool Process::ProcessEventData::GetInterruptedFromEvent( 4463 const Event *event_ptr) { 4464 const ProcessEventData *data = GetEventDataFromEvent(event_ptr); 4465 if (data == nullptr) 4466 return false; 4467 else 4468 return data->GetInterrupted(); 4469 } 4470 4471 void Process::ProcessEventData::SetInterruptedInEvent(Event *event_ptr, 4472 bool new_value) { 4473 ProcessEventData *data = 4474 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4475 if (data != nullptr) 4476 data->SetInterrupted(new_value); 4477 } 4478 4479 bool Process::ProcessEventData::SetUpdateStateOnRemoval(Event *event_ptr) { 4480 ProcessEventData *data = 4481 const_cast<ProcessEventData *>(GetEventDataFromEvent(event_ptr)); 4482 if (data) { 4483 data->SetUpdateStateOnRemoval(); 4484 return true; 4485 } 4486 return false; 4487 } 4488 4489 lldb::TargetSP Process::CalculateTarget() { return m_target_wp.lock(); } 4490 4491 void Process::CalculateExecutionContext(ExecutionContext &exe_ctx) { 4492 exe_ctx.SetTargetPtr(&GetTarget()); 4493 exe_ctx.SetProcessPtr(this); 4494 exe_ctx.SetThreadPtr(nullptr); 4495 exe_ctx.SetFramePtr(nullptr); 4496 } 4497 4498 // uint32_t 4499 // Process::ListProcessesMatchingName (const char *name, StringList &matches, 4500 // std::vector<lldb::pid_t> &pids) 4501 //{ 4502 // return 0; 4503 //} 4504 // 4505 // ArchSpec 4506 // Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4507 //{ 4508 // return Host::GetArchSpecForExistingProcess (pid); 4509 //} 4510 // 4511 // ArchSpec 4512 // Process::GetArchSpecForExistingProcess (const char *process_name) 4513 //{ 4514 // return Host::GetArchSpecForExistingProcess (process_name); 4515 //} 4516 4517 EventSP Process::CreateEventFromProcessState(uint32_t event_type) { 4518 auto event_data_sp = 4519 std::make_shared<ProcessEventData>(shared_from_this(), GetState()); 4520 return std::make_shared<Event>(event_type, event_data_sp); 4521 } 4522 4523 void Process::AppendSTDOUT(const char *s, size_t len) { 4524 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4525 m_stdout_data.append(s, len); 4526 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDOUT); 4527 BroadcastEventIfUnique(event_sp); 4528 } 4529 4530 void Process::AppendSTDERR(const char *s, size_t len) { 4531 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4532 m_stderr_data.append(s, len); 4533 auto event_sp = CreateEventFromProcessState(eBroadcastBitSTDERR); 4534 BroadcastEventIfUnique(event_sp); 4535 } 4536 4537 void Process::BroadcastAsyncProfileData(const std::string &one_profile_data) { 4538 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4539 m_profile_data.push_back(one_profile_data); 4540 auto event_sp = CreateEventFromProcessState(eBroadcastBitProfileData); 4541 BroadcastEventIfUnique(event_sp); 4542 } 4543 4544 void Process::BroadcastStructuredData(const StructuredData::ObjectSP &object_sp, 4545 const StructuredDataPluginSP &plugin_sp) { 4546 auto data_sp = std::make_shared<EventDataStructuredData>( 4547 shared_from_this(), object_sp, plugin_sp); 4548 BroadcastEvent(eBroadcastBitStructuredData, data_sp); 4549 } 4550 4551 StructuredDataPluginSP 4552 Process::GetStructuredDataPlugin(llvm::StringRef type_name) const { 4553 auto find_it = m_structured_data_plugin_map.find(type_name); 4554 if (find_it != m_structured_data_plugin_map.end()) 4555 return find_it->second; 4556 else 4557 return StructuredDataPluginSP(); 4558 } 4559 4560 size_t Process::GetAsyncProfileData(char *buf, size_t buf_size, Status &error) { 4561 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4562 if (m_profile_data.empty()) 4563 return 0; 4564 4565 std::string &one_profile_data = m_profile_data.front(); 4566 size_t bytes_available = one_profile_data.size(); 4567 if (bytes_available > 0) { 4568 Log *log = GetLog(LLDBLog::Process); 4569 LLDB_LOGF(log, "Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4570 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4571 if (bytes_available > buf_size) { 4572 memcpy(buf, one_profile_data.c_str(), buf_size); 4573 one_profile_data.erase(0, buf_size); 4574 bytes_available = buf_size; 4575 } else { 4576 memcpy(buf, one_profile_data.c_str(), bytes_available); 4577 m_profile_data.erase(m_profile_data.begin()); 4578 } 4579 } 4580 return bytes_available; 4581 } 4582 4583 // Process STDIO 4584 4585 size_t Process::GetSTDOUT(char *buf, size_t buf_size, Status &error) { 4586 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4587 size_t bytes_available = m_stdout_data.size(); 4588 if (bytes_available > 0) { 4589 Log *log = GetLog(LLDBLog::Process); 4590 LLDB_LOGF(log, "Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4591 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4592 if (bytes_available > buf_size) { 4593 memcpy(buf, m_stdout_data.c_str(), buf_size); 4594 m_stdout_data.erase(0, buf_size); 4595 bytes_available = buf_size; 4596 } else { 4597 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4598 m_stdout_data.clear(); 4599 } 4600 } 4601 return bytes_available; 4602 } 4603 4604 size_t Process::GetSTDERR(char *buf, size_t buf_size, Status &error) { 4605 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4606 size_t bytes_available = m_stderr_data.size(); 4607 if (bytes_available > 0) { 4608 Log *log = GetLog(LLDBLog::Process); 4609 LLDB_LOGF(log, "Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4610 static_cast<void *>(buf), static_cast<uint64_t>(buf_size)); 4611 if (bytes_available > buf_size) { 4612 memcpy(buf, m_stderr_data.c_str(), buf_size); 4613 m_stderr_data.erase(0, buf_size); 4614 bytes_available = buf_size; 4615 } else { 4616 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4617 m_stderr_data.clear(); 4618 } 4619 } 4620 return bytes_available; 4621 } 4622 4623 void Process::STDIOReadThreadBytesReceived(void *baton, const void *src, 4624 size_t src_len) { 4625 Process *process = (Process *)baton; 4626 process->AppendSTDOUT(static_cast<const char *>(src), src_len); 4627 } 4628 4629 class IOHandlerProcessSTDIO : public IOHandler { 4630 public: 4631 IOHandlerProcessSTDIO(Process *process, int write_fd) 4632 : IOHandler(process->GetTarget().GetDebugger(), 4633 IOHandler::Type::ProcessIO), 4634 m_process(process), 4635 m_read_file(GetInputFD(), File::eOpenOptionReadOnly, false), 4636 m_write_file(write_fd, File::eOpenOptionWriteOnly, false) { 4637 m_pipe.CreateNew(false); 4638 } 4639 4640 ~IOHandlerProcessSTDIO() override = default; 4641 4642 void SetIsRunning(bool running) { 4643 std::lock_guard<std::mutex> guard(m_mutex); 4644 SetIsDone(!running); 4645 m_is_running = running; 4646 } 4647 4648 // Each IOHandler gets to run until it is done. It should read data from the 4649 // "in" and place output into "out" and "err and return when done. 4650 void Run() override { 4651 if (!m_read_file.IsValid() || !m_write_file.IsValid() || 4652 !m_pipe.CanRead() || !m_pipe.CanWrite()) { 4653 SetIsDone(true); 4654 return; 4655 } 4656 4657 SetIsDone(false); 4658 const int read_fd = m_read_file.GetDescriptor(); 4659 Terminal terminal(read_fd); 4660 TerminalState terminal_state(terminal, false); 4661 // FIXME: error handling? 4662 llvm::consumeError(terminal.SetCanonical(false)); 4663 llvm::consumeError(terminal.SetEcho(false)); 4664 // FD_ZERO, FD_SET are not supported on windows 4665 #ifndef _WIN32 4666 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4667 SetIsRunning(true); 4668 while (true) { 4669 { 4670 std::lock_guard<std::mutex> guard(m_mutex); 4671 if (GetIsDone()) 4672 break; 4673 } 4674 4675 SelectHelper select_helper; 4676 select_helper.FDSetRead(read_fd); 4677 select_helper.FDSetRead(pipe_read_fd); 4678 Status error = select_helper.Select(); 4679 4680 if (error.Fail()) 4681 break; 4682 4683 char ch = 0; 4684 size_t n; 4685 if (select_helper.FDIsSetRead(read_fd)) { 4686 n = 1; 4687 if (m_read_file.Read(&ch, n).Success() && n == 1) { 4688 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4689 break; 4690 } else 4691 break; 4692 } 4693 4694 if (select_helper.FDIsSetRead(pipe_read_fd)) { 4695 size_t bytes_read; 4696 // Consume the interrupt byte 4697 Status error = m_pipe.Read(&ch, 1, bytes_read); 4698 if (error.Success()) { 4699 if (ch == 'q') 4700 break; 4701 if (ch == 'i') 4702 if (StateIsRunningState(m_process->GetState())) 4703 m_process->SendAsyncInterrupt(); 4704 } 4705 } 4706 } 4707 SetIsRunning(false); 4708 #endif 4709 } 4710 4711 void Cancel() override { 4712 std::lock_guard<std::mutex> guard(m_mutex); 4713 SetIsDone(true); 4714 // Only write to our pipe to cancel if we are in 4715 // IOHandlerProcessSTDIO::Run(). We can end up with a python command that 4716 // is being run from the command interpreter: 4717 // 4718 // (lldb) step_process_thousands_of_times 4719 // 4720 // In this case the command interpreter will be in the middle of handling 4721 // the command and if the process pushes and pops the IOHandler thousands 4722 // of times, we can end up writing to m_pipe without ever consuming the 4723 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 4724 // deadlocking when the pipe gets fed up and blocks until data is consumed. 4725 if (m_is_running) { 4726 char ch = 'q'; // Send 'q' for quit 4727 size_t bytes_written = 0; 4728 m_pipe.Write(&ch, 1, bytes_written); 4729 } 4730 } 4731 4732 bool Interrupt() override { 4733 // Do only things that are safe to do in an interrupt context (like in a 4734 // SIGINT handler), like write 1 byte to a file descriptor. This will 4735 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 4736 // that was written to the pipe and then call 4737 // m_process->SendAsyncInterrupt() from a much safer location in code. 4738 if (m_active) { 4739 char ch = 'i'; // Send 'i' for interrupt 4740 size_t bytes_written = 0; 4741 Status result = m_pipe.Write(&ch, 1, bytes_written); 4742 return result.Success(); 4743 } else { 4744 // This IOHandler might be pushed on the stack, but not being run 4745 // currently so do the right thing if we aren't actively watching for 4746 // STDIN by sending the interrupt to the process. Otherwise the write to 4747 // the pipe above would do nothing. This can happen when the command 4748 // interpreter is running and gets a "expression ...". It will be on the 4749 // IOHandler thread and sending the input is complete to the delegate 4750 // which will cause the expression to run, which will push the process IO 4751 // handler, but not run it. 4752 4753 if (StateIsRunningState(m_process->GetState())) { 4754 m_process->SendAsyncInterrupt(); 4755 return true; 4756 } 4757 } 4758 return false; 4759 } 4760 4761 void GotEOF() override {} 4762 4763 protected: 4764 Process *m_process; 4765 NativeFile m_read_file; // Read from this file (usually actual STDIN for LLDB 4766 NativeFile m_write_file; // Write to this file (usually the primary pty for 4767 // getting io to debuggee) 4768 Pipe m_pipe; 4769 std::mutex m_mutex; 4770 bool m_is_running = false; 4771 }; 4772 4773 void Process::SetSTDIOFileDescriptor(int fd) { 4774 // First set up the Read Thread for reading/handling process I/O 4775 m_stdio_communication.SetConnection( 4776 std::make_unique<ConnectionFileDescriptor>(fd, true)); 4777 if (m_stdio_communication.IsConnected()) { 4778 m_stdio_communication.SetReadThreadBytesReceivedCallback( 4779 STDIOReadThreadBytesReceived, this); 4780 m_stdio_communication.StartReadThread(); 4781 4782 // Now read thread is set up, set up input reader. 4783 { 4784 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4785 if (!m_process_input_reader) 4786 m_process_input_reader = 4787 std::make_shared<IOHandlerProcessSTDIO>(this, fd); 4788 } 4789 } 4790 } 4791 4792 bool Process::ProcessIOHandlerIsActive() { 4793 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4794 IOHandlerSP io_handler_sp(m_process_input_reader); 4795 if (io_handler_sp) 4796 return GetTarget().GetDebugger().IsTopIOHandler(io_handler_sp); 4797 return false; 4798 } 4799 4800 bool Process::PushProcessIOHandler() { 4801 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4802 IOHandlerSP io_handler_sp(m_process_input_reader); 4803 if (io_handler_sp) { 4804 Log *log = GetLog(LLDBLog::Process); 4805 LLDB_LOGF(log, "Process::%s pushing IO handler", __FUNCTION__); 4806 4807 io_handler_sp->SetIsDone(false); 4808 // If we evaluate an utility function, then we don't cancel the current 4809 // IOHandler. Our IOHandler is non-interactive and shouldn't disturb the 4810 // existing IOHandler that potentially provides the user interface (e.g. 4811 // the IOHandler for Editline). 4812 bool cancel_top_handler = !m_mod_id.IsRunningUtilityFunction(); 4813 GetTarget().GetDebugger().RunIOHandlerAsync(io_handler_sp, 4814 cancel_top_handler); 4815 return true; 4816 } 4817 return false; 4818 } 4819 4820 bool Process::PopProcessIOHandler() { 4821 std::lock_guard<std::mutex> guard(m_process_input_reader_mutex); 4822 IOHandlerSP io_handler_sp(m_process_input_reader); 4823 if (io_handler_sp) 4824 return GetTarget().GetDebugger().RemoveIOHandler(io_handler_sp); 4825 return false; 4826 } 4827 4828 // The process needs to know about installed plug-ins 4829 void Process::SettingsInitialize() { Thread::SettingsInitialize(); } 4830 4831 void Process::SettingsTerminate() { Thread::SettingsTerminate(); } 4832 4833 namespace { 4834 // RestorePlanState is used to record the "is private", "is controlling" and 4835 // "okay 4836 // to discard" fields of the plan we are running, and reset it on Clean or on 4837 // destruction. It will only reset the state once, so you can call Clean and 4838 // then monkey with the state and it won't get reset on you again. 4839 4840 class RestorePlanState { 4841 public: 4842 RestorePlanState(lldb::ThreadPlanSP thread_plan_sp) 4843 : m_thread_plan_sp(thread_plan_sp) { 4844 if (m_thread_plan_sp) { 4845 m_private = m_thread_plan_sp->GetPrivate(); 4846 m_is_controlling = m_thread_plan_sp->IsControllingPlan(); 4847 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 4848 } 4849 } 4850 4851 ~RestorePlanState() { Clean(); } 4852 4853 void Clean() { 4854 if (!m_already_reset && m_thread_plan_sp) { 4855 m_already_reset = true; 4856 m_thread_plan_sp->SetPrivate(m_private); 4857 m_thread_plan_sp->SetIsControllingPlan(m_is_controlling); 4858 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 4859 } 4860 } 4861 4862 private: 4863 lldb::ThreadPlanSP m_thread_plan_sp; 4864 bool m_already_reset = false; 4865 bool m_private = false; 4866 bool m_is_controlling = false; 4867 bool m_okay_to_discard = false; 4868 }; 4869 } // anonymous namespace 4870 4871 static microseconds 4872 GetOneThreadExpressionTimeout(const EvaluateExpressionOptions &options) { 4873 const milliseconds default_one_thread_timeout(250); 4874 4875 // If the overall wait is forever, then we don't need to worry about it. 4876 if (!options.GetTimeout()) { 4877 return options.GetOneThreadTimeout() ? *options.GetOneThreadTimeout() 4878 : default_one_thread_timeout; 4879 } 4880 4881 // If the one thread timeout is set, use it. 4882 if (options.GetOneThreadTimeout()) 4883 return *options.GetOneThreadTimeout(); 4884 4885 // Otherwise use half the total timeout, bounded by the 4886 // default_one_thread_timeout. 4887 return std::min<microseconds>(default_one_thread_timeout, 4888 *options.GetTimeout() / 2); 4889 } 4890 4891 static Timeout<std::micro> 4892 GetExpressionTimeout(const EvaluateExpressionOptions &options, 4893 bool before_first_timeout) { 4894 // If we are going to run all threads the whole time, or if we are only going 4895 // to run one thread, we can just return the overall timeout. 4896 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 4897 return options.GetTimeout(); 4898 4899 if (before_first_timeout) 4900 return GetOneThreadExpressionTimeout(options); 4901 4902 if (!options.GetTimeout()) 4903 return std::nullopt; 4904 else 4905 return *options.GetTimeout() - GetOneThreadExpressionTimeout(options); 4906 } 4907 4908 static std::optional<ExpressionResults> 4909 HandleStoppedEvent(lldb::tid_t thread_id, const ThreadPlanSP &thread_plan_sp, 4910 RestorePlanState &restorer, const EventSP &event_sp, 4911 EventSP &event_to_broadcast_sp, 4912 const EvaluateExpressionOptions &options, 4913 bool handle_interrupts) { 4914 Log *log = GetLog(LLDBLog::Step | LLDBLog::Process); 4915 4916 ThreadSP thread_sp = thread_plan_sp->GetTarget() 4917 .GetProcessSP() 4918 ->GetThreadList() 4919 .FindThreadByID(thread_id); 4920 if (!thread_sp) { 4921 LLDB_LOG(log, 4922 "The thread on which we were running the " 4923 "expression: tid = {0}, exited while " 4924 "the expression was running.", 4925 thread_id); 4926 return eExpressionThreadVanished; 4927 } 4928 4929 ThreadPlanSP plan = thread_sp->GetCompletedPlan(); 4930 if (plan == thread_plan_sp && plan->PlanSucceeded()) { 4931 LLDB_LOG(log, "execution completed successfully"); 4932 4933 // Restore the plan state so it will get reported as intended when we are 4934 // done. 4935 restorer.Clean(); 4936 return eExpressionCompleted; 4937 } 4938 4939 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 4940 if (stop_info_sp && stop_info_sp->GetStopReason() == eStopReasonBreakpoint && 4941 stop_info_sp->ShouldNotify(event_sp.get())) { 4942 LLDB_LOG(log, "stopped for breakpoint: {0}.", stop_info_sp->GetDescription()); 4943 if (!options.DoesIgnoreBreakpoints()) { 4944 // Restore the plan state and then force Private to false. We are going 4945 // to stop because of this plan so we need it to become a public plan or 4946 // it won't report correctly when we continue to its termination later 4947 // on. 4948 restorer.Clean(); 4949 thread_plan_sp->SetPrivate(false); 4950 event_to_broadcast_sp = event_sp; 4951 } 4952 return eExpressionHitBreakpoint; 4953 } 4954 4955 if (!handle_interrupts && 4956 Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 4957 return std::nullopt; 4958 4959 LLDB_LOG(log, "thread plan did not successfully complete"); 4960 if (!options.DoesUnwindOnError()) 4961 event_to_broadcast_sp = event_sp; 4962 return eExpressionInterrupted; 4963 } 4964 4965 ExpressionResults 4966 Process::RunThreadPlan(ExecutionContext &exe_ctx, 4967 lldb::ThreadPlanSP &thread_plan_sp, 4968 const EvaluateExpressionOptions &options, 4969 DiagnosticManager &diagnostic_manager) { 4970 ExpressionResults return_value = eExpressionSetupError; 4971 4972 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 4973 4974 if (!thread_plan_sp) { 4975 diagnostic_manager.PutString( 4976 lldb::eSeverityError, "RunThreadPlan called with empty thread plan."); 4977 return eExpressionSetupError; 4978 } 4979 4980 if (!thread_plan_sp->ValidatePlan(nullptr)) { 4981 diagnostic_manager.PutString( 4982 lldb::eSeverityError, 4983 "RunThreadPlan called with an invalid thread plan."); 4984 return eExpressionSetupError; 4985 } 4986 4987 if (exe_ctx.GetProcessPtr() != this) { 4988 diagnostic_manager.PutString(lldb::eSeverityError, 4989 "RunThreadPlan called on wrong process."); 4990 return eExpressionSetupError; 4991 } 4992 4993 Thread *thread = exe_ctx.GetThreadPtr(); 4994 if (thread == nullptr) { 4995 diagnostic_manager.PutString(lldb::eSeverityError, 4996 "RunThreadPlan called with invalid thread."); 4997 return eExpressionSetupError; 4998 } 4999 5000 // Record the thread's id so we can tell when a thread we were using 5001 // to run the expression exits during the expression evaluation. 5002 lldb::tid_t expr_thread_id = thread->GetID(); 5003 5004 // We need to change some of the thread plan attributes for the thread plan 5005 // runner. This will restore them when we are done: 5006 5007 RestorePlanState thread_plan_restorer(thread_plan_sp); 5008 5009 // We rely on the thread plan we are running returning "PlanCompleted" if 5010 // when it successfully completes. For that to be true the plan can't be 5011 // private - since private plans suppress themselves in the GetCompletedPlan 5012 // call. 5013 5014 thread_plan_sp->SetPrivate(false); 5015 5016 // The plans run with RunThreadPlan also need to be terminal controlling plans 5017 // or when they are done we will end up asking the plan above us whether we 5018 // should stop, which may give the wrong answer. 5019 5020 thread_plan_sp->SetIsControllingPlan(true); 5021 thread_plan_sp->SetOkayToDiscard(false); 5022 5023 // If we are running some utility expression for LLDB, we now have to mark 5024 // this in the ProcesModID of this process. This RAII takes care of marking 5025 // and reverting the mark it once we are done running the expression. 5026 UtilityFunctionScope util_scope(options.IsForUtilityExpr() ? this : nullptr); 5027 5028 if (m_private_state.GetValue() != eStateStopped) { 5029 diagnostic_manager.PutString( 5030 lldb::eSeverityError, 5031 "RunThreadPlan called while the private state was not stopped."); 5032 return eExpressionSetupError; 5033 } 5034 5035 // Save the thread & frame from the exe_ctx for restoration after we run 5036 const uint32_t thread_idx_id = thread->GetIndexID(); 5037 StackFrameSP selected_frame_sp = 5038 thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); 5039 if (!selected_frame_sp) { 5040 thread->SetSelectedFrame(nullptr); 5041 selected_frame_sp = thread->GetSelectedFrame(DoNoSelectMostRelevantFrame); 5042 if (!selected_frame_sp) { 5043 diagnostic_manager.Printf( 5044 lldb::eSeverityError, 5045 "RunThreadPlan called without a selected frame on thread %d", 5046 thread_idx_id); 5047 return eExpressionSetupError; 5048 } 5049 } 5050 5051 // Make sure the timeout values make sense. The one thread timeout needs to 5052 // be smaller than the overall timeout. 5053 if (options.GetOneThreadTimeout() && options.GetTimeout() && 5054 *options.GetTimeout() < *options.GetOneThreadTimeout()) { 5055 diagnostic_manager.PutString(lldb::eSeverityError, 5056 "RunThreadPlan called with one thread " 5057 "timeout greater than total timeout"); 5058 return eExpressionSetupError; 5059 } 5060 5061 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 5062 5063 // N.B. Running the target may unset the currently selected thread and frame. 5064 // We don't want to do that either, so we should arrange to reset them as 5065 // well. 5066 5067 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 5068 5069 uint32_t selected_tid; 5070 StackID selected_stack_id; 5071 if (selected_thread_sp) { 5072 selected_tid = selected_thread_sp->GetIndexID(); 5073 selected_stack_id = 5074 selected_thread_sp->GetSelectedFrame(DoNoSelectMostRelevantFrame) 5075 ->GetStackID(); 5076 } else { 5077 selected_tid = LLDB_INVALID_THREAD_ID; 5078 } 5079 5080 HostThread backup_private_state_thread; 5081 lldb::StateType old_state = eStateInvalid; 5082 lldb::ThreadPlanSP stopper_base_plan_sp; 5083 5084 Log *log(GetLog(LLDBLog::Step | LLDBLog::Process)); 5085 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) { 5086 // Yikes, we are running on the private state thread! So we can't wait for 5087 // public events on this thread, since we are the thread that is generating 5088 // public events. The simplest thing to do is to spin up a temporary thread 5089 // to handle private state thread events while we are fielding public 5090 // events here. 5091 LLDB_LOGF(log, "Running thread plan on private state thread, spinning up " 5092 "another state thread to handle the events."); 5093 5094 backup_private_state_thread = m_private_state_thread; 5095 5096 // One other bit of business: we want to run just this thread plan and 5097 // anything it pushes, and then stop, returning control here. But in the 5098 // normal course of things, the plan above us on the stack would be given a 5099 // shot at the stop event before deciding to stop, and we don't want that. 5100 // So we insert a "stopper" base plan on the stack before the plan we want 5101 // to run. Since base plans always stop and return control to the user, 5102 // that will do just what we want. 5103 stopper_base_plan_sp.reset(new ThreadPlanBase(*thread)); 5104 thread->QueueThreadPlan(stopper_base_plan_sp, false); 5105 // Have to make sure our public state is stopped, since otherwise the 5106 // reporting logic below doesn't work correctly. 5107 old_state = m_public_state.GetValue(); 5108 m_public_state.SetValueNoLock(eStateStopped); 5109 5110 // Now spin up the private state thread: 5111 StartPrivateStateThread(true); 5112 } 5113 5114 thread->QueueThreadPlan( 5115 thread_plan_sp, false); // This used to pass "true" does that make sense? 5116 5117 if (options.GetDebug()) { 5118 // In this case, we aren't actually going to run, we just want to stop 5119 // right away. Flush this thread so we will refetch the stacks and show the 5120 // correct backtrace. 5121 // FIXME: To make this prettier we should invent some stop reason for this, 5122 // but that 5123 // is only cosmetic, and this functionality is only of use to lldb 5124 // developers who can live with not pretty... 5125 thread->Flush(); 5126 return eExpressionStoppedForDebug; 5127 } 5128 5129 ListenerSP listener_sp( 5130 Listener::MakeListener("lldb.process.listener.run-thread-plan")); 5131 5132 lldb::EventSP event_to_broadcast_sp; 5133 5134 { 5135 // This process event hijacker Hijacks the Public events and its destructor 5136 // makes sure that the process events get restored on exit to the function. 5137 // 5138 // If the event needs to propagate beyond the hijacker (e.g., the process 5139 // exits during execution), then the event is put into 5140 // event_to_broadcast_sp for rebroadcasting. 5141 5142 ProcessEventHijacker run_thread_plan_hijacker(*this, listener_sp); 5143 5144 if (log) { 5145 StreamString s; 5146 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5147 LLDB_LOGF(log, 5148 "Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 5149 " to run thread plan \"%s\".", 5150 thread_idx_id, expr_thread_id, s.GetData()); 5151 } 5152 5153 bool got_event; 5154 lldb::EventSP event_sp; 5155 lldb::StateType stop_state = lldb::eStateInvalid; 5156 5157 bool before_first_timeout = true; // This is set to false the first time 5158 // that we have to halt the target. 5159 bool do_resume = true; 5160 bool handle_running_event = true; 5161 5162 // This is just for accounting: 5163 uint32_t num_resumes = 0; 5164 5165 // If we are going to run all threads the whole time, or if we are only 5166 // going to run one thread, then we don't need the first timeout. So we 5167 // pretend we are after the first timeout already. 5168 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5169 before_first_timeout = false; 5170 5171 LLDB_LOGF(log, "Stop others: %u, try all: %u, before_first: %u.\n", 5172 options.GetStopOthers(), options.GetTryAllThreads(), 5173 before_first_timeout); 5174 5175 // This isn't going to work if there are unfetched events on the queue. Are 5176 // there cases where we might want to run the remaining events here, and 5177 // then try to call the function? That's probably being too tricky for our 5178 // own good. 5179 5180 Event *other_events = listener_sp->PeekAtNextEvent(); 5181 if (other_events != nullptr) { 5182 diagnostic_manager.PutString( 5183 lldb::eSeverityError, 5184 "RunThreadPlan called with pending events on the queue."); 5185 return eExpressionSetupError; 5186 } 5187 5188 // We also need to make sure that the next event is delivered. We might be 5189 // calling a function as part of a thread plan, in which case the last 5190 // delivered event could be the running event, and we don't want event 5191 // coalescing to cause us to lose OUR running event... 5192 ForceNextEventDelivery(); 5193 5194 // This while loop must exit out the bottom, there's cleanup that we need to do 5195 // when we are done. So don't call return anywhere within it. 5196 5197 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5198 // It's pretty much impossible to write test cases for things like: One 5199 // thread timeout expires, I go to halt, but the process already stopped on 5200 // the function call stop breakpoint. Turning on this define will make us 5201 // not fetch the first event till after the halt. So if you run a quick 5202 // function, it will have completed, and the completion event will be 5203 // waiting, when you interrupt for halt. The expression evaluation should 5204 // still succeed. 5205 bool miss_first_event = true; 5206 #endif 5207 while (true) { 5208 // We usually want to resume the process if we get to the top of the 5209 // loop. The only exception is if we get two running events with no 5210 // intervening stop, which can happen, we will just wait for then next 5211 // stop event. 5212 LLDB_LOGF(log, 5213 "Top of while loop: do_resume: %i handle_running_event: %i " 5214 "before_first_timeout: %i.", 5215 do_resume, handle_running_event, before_first_timeout); 5216 5217 if (do_resume || handle_running_event) { 5218 // Do the initial resume and wait for the running event before going 5219 // further. 5220 5221 if (do_resume) { 5222 num_resumes++; 5223 Status resume_error = PrivateResume(); 5224 if (!resume_error.Success()) { 5225 diagnostic_manager.Printf( 5226 lldb::eSeverityError, 5227 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5228 resume_error.AsCString()); 5229 return_value = eExpressionSetupError; 5230 break; 5231 } 5232 } 5233 5234 got_event = 5235 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5236 if (!got_event) { 5237 LLDB_LOGF(log, 5238 "Process::RunThreadPlan(): didn't get any event after " 5239 "resume %" PRIu32 ", exiting.", 5240 num_resumes); 5241 5242 diagnostic_manager.Printf(lldb::eSeverityError, 5243 "didn't get any event after resume %" PRIu32 5244 ", exiting.", 5245 num_resumes); 5246 return_value = eExpressionSetupError; 5247 break; 5248 } 5249 5250 stop_state = 5251 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5252 5253 if (stop_state != eStateRunning) { 5254 bool restarted = false; 5255 5256 if (stop_state == eStateStopped) { 5257 restarted = Process::ProcessEventData::GetRestartedFromEvent( 5258 event_sp.get()); 5259 LLDB_LOGF( 5260 log, 5261 "Process::RunThreadPlan(): didn't get running event after " 5262 "resume %d, got %s instead (restarted: %i, do_resume: %i, " 5263 "handle_running_event: %i).", 5264 num_resumes, StateAsCString(stop_state), restarted, do_resume, 5265 handle_running_event); 5266 } 5267 5268 if (restarted) { 5269 // This is probably an overabundance of caution, I don't think I 5270 // should ever get a stopped & restarted event here. But if I do, 5271 // the best thing is to Halt and then get out of here. 5272 const bool clear_thread_plans = false; 5273 const bool use_run_lock = false; 5274 Halt(clear_thread_plans, use_run_lock); 5275 } 5276 5277 diagnostic_manager.Printf( 5278 lldb::eSeverityError, 5279 "didn't get running event after initial resume, got %s instead.", 5280 StateAsCString(stop_state)); 5281 return_value = eExpressionSetupError; 5282 break; 5283 } 5284 5285 if (log) 5286 log->PutCString("Process::RunThreadPlan(): resuming succeeded."); 5287 // We need to call the function synchronously, so spin waiting for it 5288 // to return. If we get interrupted while executing, we're going to 5289 // lose our context, and won't be able to gather the result at this 5290 // point. We set the timeout AFTER the resume, since the resume takes 5291 // some time and we don't want to charge that to the timeout. 5292 } else { 5293 if (log) 5294 log->PutCString("Process::RunThreadPlan(): waiting for next event."); 5295 } 5296 5297 do_resume = true; 5298 handle_running_event = true; 5299 5300 // Now wait for the process to stop again: 5301 event_sp.reset(); 5302 5303 Timeout<std::micro> timeout = 5304 GetExpressionTimeout(options, before_first_timeout); 5305 if (log) { 5306 if (timeout) { 5307 auto now = system_clock::now(); 5308 LLDB_LOGF(log, 5309 "Process::RunThreadPlan(): about to wait - now is %s - " 5310 "endpoint is %s", 5311 llvm::to_string(now).c_str(), 5312 llvm::to_string(now + *timeout).c_str()); 5313 } else { 5314 LLDB_LOGF(log, "Process::RunThreadPlan(): about to wait forever."); 5315 } 5316 } 5317 5318 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5319 // See comment above... 5320 if (miss_first_event) { 5321 std::this_thread::sleep_for(std::chrono::milliseconds(1)); 5322 miss_first_event = false; 5323 got_event = false; 5324 } else 5325 #endif 5326 got_event = listener_sp->GetEvent(event_sp, timeout); 5327 5328 if (got_event) { 5329 if (event_sp) { 5330 bool keep_going = false; 5331 if (event_sp->GetType() == eBroadcastBitInterrupt) { 5332 const bool clear_thread_plans = false; 5333 const bool use_run_lock = false; 5334 Halt(clear_thread_plans, use_run_lock); 5335 return_value = eExpressionInterrupted; 5336 diagnostic_manager.PutString(lldb::eSeverityInfo, 5337 "execution halted by user interrupt."); 5338 LLDB_LOGF(log, "Process::RunThreadPlan(): Got interrupted by " 5339 "eBroadcastBitInterrupted, exiting."); 5340 break; 5341 } else { 5342 stop_state = 5343 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5344 LLDB_LOGF(log, 5345 "Process::RunThreadPlan(): in while loop, got event: %s.", 5346 StateAsCString(stop_state)); 5347 5348 switch (stop_state) { 5349 case lldb::eStateStopped: { 5350 if (Process::ProcessEventData::GetRestartedFromEvent( 5351 event_sp.get())) { 5352 // If we were restarted, we just need to go back up to fetch 5353 // another event. 5354 LLDB_LOGF(log, "Process::RunThreadPlan(): Got a stop and " 5355 "restart, so we'll continue waiting."); 5356 keep_going = true; 5357 do_resume = false; 5358 handle_running_event = true; 5359 } else { 5360 const bool handle_interrupts = true; 5361 return_value = *HandleStoppedEvent( 5362 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5363 event_sp, event_to_broadcast_sp, options, 5364 handle_interrupts); 5365 if (return_value == eExpressionThreadVanished) 5366 keep_going = false; 5367 } 5368 } break; 5369 5370 case lldb::eStateRunning: 5371 // This shouldn't really happen, but sometimes we do get two 5372 // running events without an intervening stop, and in that case 5373 // we should just go back to waiting for the stop. 5374 do_resume = false; 5375 keep_going = true; 5376 handle_running_event = false; 5377 break; 5378 5379 default: 5380 LLDB_LOGF(log, 5381 "Process::RunThreadPlan(): execution stopped with " 5382 "unexpected state: %s.", 5383 StateAsCString(stop_state)); 5384 5385 if (stop_state == eStateExited) 5386 event_to_broadcast_sp = event_sp; 5387 5388 diagnostic_manager.PutString( 5389 lldb::eSeverityError, 5390 "execution stopped with unexpected state."); 5391 return_value = eExpressionInterrupted; 5392 break; 5393 } 5394 } 5395 5396 if (keep_going) 5397 continue; 5398 else 5399 break; 5400 } else { 5401 if (log) 5402 log->PutCString("Process::RunThreadPlan(): got_event was true, but " 5403 "the event pointer was null. How odd..."); 5404 return_value = eExpressionInterrupted; 5405 break; 5406 } 5407 } else { 5408 // If we didn't get an event that means we've timed out... We will 5409 // interrupt the process here. Depending on what we were asked to do 5410 // we will either exit, or try with all threads running for the same 5411 // timeout. 5412 5413 if (log) { 5414 if (options.GetTryAllThreads()) { 5415 if (before_first_timeout) { 5416 LLDB_LOG(log, 5417 "Running function with one thread timeout timed out."); 5418 } else 5419 LLDB_LOG(log, "Restarting function with all threads enabled and " 5420 "timeout: {0} timed out, abandoning execution.", 5421 timeout); 5422 } else 5423 LLDB_LOG(log, "Running function with timeout: {0} timed out, " 5424 "abandoning execution.", 5425 timeout); 5426 } 5427 5428 // It is possible that between the time we issued the Halt, and we get 5429 // around to calling Halt the target could have stopped. That's fine, 5430 // Halt will figure that out and send the appropriate Stopped event. 5431 // BUT it is also possible that we stopped & restarted (e.g. hit a 5432 // signal with "stop" set to false.) In 5433 // that case, we'll get the stopped & restarted event, and we should go 5434 // back to waiting for the Halt's stopped event. That's what this 5435 // while loop does. 5436 5437 bool back_to_top = true; 5438 uint32_t try_halt_again = 0; 5439 bool do_halt = true; 5440 const uint32_t num_retries = 5; 5441 while (try_halt_again < num_retries) { 5442 Status halt_error; 5443 if (do_halt) { 5444 LLDB_LOGF(log, "Process::RunThreadPlan(): Running Halt."); 5445 const bool clear_thread_plans = false; 5446 const bool use_run_lock = false; 5447 Halt(clear_thread_plans, use_run_lock); 5448 } 5449 if (halt_error.Success()) { 5450 if (log) 5451 log->PutCString("Process::RunThreadPlan(): Halt succeeded."); 5452 5453 got_event = 5454 listener_sp->GetEvent(event_sp, GetUtilityExpressionTimeout()); 5455 5456 if (got_event) { 5457 stop_state = 5458 Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5459 if (log) { 5460 LLDB_LOGF(log, 5461 "Process::RunThreadPlan(): Stopped with event: %s", 5462 StateAsCString(stop_state)); 5463 if (stop_state == lldb::eStateStopped && 5464 Process::ProcessEventData::GetInterruptedFromEvent( 5465 event_sp.get())) 5466 log->PutCString(" Event was the Halt interruption event."); 5467 } 5468 5469 if (stop_state == lldb::eStateStopped) { 5470 if (Process::ProcessEventData::GetRestartedFromEvent( 5471 event_sp.get())) { 5472 if (log) 5473 log->PutCString("Process::RunThreadPlan(): Went to halt " 5474 "but got a restarted event, there must be " 5475 "an un-restarted stopped event so try " 5476 "again... " 5477 "Exiting wait loop."); 5478 try_halt_again++; 5479 do_halt = false; 5480 continue; 5481 } 5482 5483 // Between the time we initiated the Halt and the time we 5484 // delivered it, the process could have already finished its 5485 // job. Check that here: 5486 const bool handle_interrupts = false; 5487 if (auto result = HandleStoppedEvent( 5488 expr_thread_id, thread_plan_sp, thread_plan_restorer, 5489 event_sp, event_to_broadcast_sp, options, 5490 handle_interrupts)) { 5491 return_value = *result; 5492 back_to_top = false; 5493 break; 5494 } 5495 5496 if (!options.GetTryAllThreads()) { 5497 if (log) 5498 log->PutCString("Process::RunThreadPlan(): try_all_threads " 5499 "was false, we stopped so now we're " 5500 "quitting."); 5501 return_value = eExpressionInterrupted; 5502 back_to_top = false; 5503 break; 5504 } 5505 5506 if (before_first_timeout) { 5507 // Set all the other threads to run, and return to the top of 5508 // the loop, which will continue; 5509 before_first_timeout = false; 5510 thread_plan_sp->SetStopOthers(false); 5511 if (log) 5512 log->PutCString( 5513 "Process::RunThreadPlan(): about to resume."); 5514 5515 back_to_top = true; 5516 break; 5517 } else { 5518 // Running all threads failed, so return Interrupted. 5519 if (log) 5520 log->PutCString("Process::RunThreadPlan(): running all " 5521 "threads timed out."); 5522 return_value = eExpressionInterrupted; 5523 back_to_top = false; 5524 break; 5525 } 5526 } 5527 } else { 5528 if (log) 5529 log->PutCString("Process::RunThreadPlan(): halt said it " 5530 "succeeded, but I got no event. " 5531 "I'm getting out of here passing Interrupted."); 5532 return_value = eExpressionInterrupted; 5533 back_to_top = false; 5534 break; 5535 } 5536 } else { 5537 try_halt_again++; 5538 continue; 5539 } 5540 } 5541 5542 if (!back_to_top || try_halt_again > num_retries) 5543 break; 5544 else 5545 continue; 5546 } 5547 } // END WAIT LOOP 5548 5549 // If we had to start up a temporary private state thread to run this 5550 // thread plan, shut it down now. 5551 if (backup_private_state_thread.IsJoinable()) { 5552 StopPrivateStateThread(); 5553 Status error; 5554 m_private_state_thread = backup_private_state_thread; 5555 if (stopper_base_plan_sp) { 5556 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5557 } 5558 if (old_state != eStateInvalid) 5559 m_public_state.SetValueNoLock(old_state); 5560 } 5561 5562 // If our thread went away on us, we need to get out of here without 5563 // doing any more work. We don't have to clean up the thread plan, that 5564 // will have happened when the Thread was destroyed. 5565 if (return_value == eExpressionThreadVanished) { 5566 return return_value; 5567 } 5568 5569 if (return_value != eExpressionCompleted && log) { 5570 // Print a backtrace into the log so we can figure out where we are: 5571 StreamString s; 5572 s.PutCString("Thread state after unsuccessful completion: \n"); 5573 thread->GetStackFrameStatus(s, 0, UINT32_MAX, true, UINT32_MAX, 5574 /*show_hidden*/ true); 5575 log->PutString(s.GetString()); 5576 } 5577 // Restore the thread state if we are going to discard the plan execution. 5578 // There are three cases where this could happen: 1) The execution 5579 // successfully completed 2) We hit a breakpoint, and ignore_breakpoints 5580 // was true 3) We got some other error, and discard_on_error was true 5581 bool should_unwind = (return_value == eExpressionInterrupted && 5582 options.DoesUnwindOnError()) || 5583 (return_value == eExpressionHitBreakpoint && 5584 options.DoesIgnoreBreakpoints()); 5585 5586 if (return_value == eExpressionCompleted || should_unwind) { 5587 thread_plan_sp->RestoreThreadState(); 5588 } 5589 5590 // Now do some processing on the results of the run: 5591 if (return_value == eExpressionInterrupted || 5592 return_value == eExpressionHitBreakpoint) { 5593 if (log) { 5594 StreamString s; 5595 if (event_sp) 5596 event_sp->Dump(&s); 5597 else { 5598 log->PutCString("Process::RunThreadPlan(): Stop event that " 5599 "interrupted us is NULL."); 5600 } 5601 5602 StreamString ts; 5603 5604 const char *event_explanation = nullptr; 5605 5606 do { 5607 if (!event_sp) { 5608 event_explanation = "<no event>"; 5609 break; 5610 } else if (event_sp->GetType() == eBroadcastBitInterrupt) { 5611 event_explanation = "<user interrupt>"; 5612 break; 5613 } else { 5614 const Process::ProcessEventData *event_data = 5615 Process::ProcessEventData::GetEventDataFromEvent( 5616 event_sp.get()); 5617 5618 if (!event_data) { 5619 event_explanation = "<no event data>"; 5620 break; 5621 } 5622 5623 Process *process = event_data->GetProcessSP().get(); 5624 5625 if (!process) { 5626 event_explanation = "<no process>"; 5627 break; 5628 } 5629 5630 ThreadList &thread_list = process->GetThreadList(); 5631 5632 uint32_t num_threads = thread_list.GetSize(); 5633 uint32_t thread_index; 5634 5635 ts.Printf("<%u threads> ", num_threads); 5636 5637 for (thread_index = 0; thread_index < num_threads; ++thread_index) { 5638 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 5639 5640 if (!thread) { 5641 ts.Printf("<?> "); 5642 continue; 5643 } 5644 5645 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 5646 RegisterContext *register_context = 5647 thread->GetRegisterContext().get(); 5648 5649 if (register_context) 5650 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 5651 else 5652 ts.Printf("[ip unknown] "); 5653 5654 // Show the private stop info here, the public stop info will be 5655 // from the last natural stop. 5656 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 5657 if (stop_info_sp) { 5658 const char *stop_desc = stop_info_sp->GetDescription(); 5659 if (stop_desc) 5660 ts.PutCString(stop_desc); 5661 } 5662 ts.Printf(">"); 5663 } 5664 5665 event_explanation = ts.GetData(); 5666 } 5667 } while (false); 5668 5669 if (event_explanation) 5670 LLDB_LOGF(log, 5671 "Process::RunThreadPlan(): execution interrupted: %s %s", 5672 s.GetData(), event_explanation); 5673 else 5674 LLDB_LOGF(log, "Process::RunThreadPlan(): execution interrupted: %s", 5675 s.GetData()); 5676 } 5677 5678 if (should_unwind) { 5679 LLDB_LOGF(log, 5680 "Process::RunThreadPlan: ExecutionInterrupted - " 5681 "discarding thread plans up to %p.", 5682 static_cast<void *>(thread_plan_sp.get())); 5683 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5684 } else { 5685 LLDB_LOGF(log, 5686 "Process::RunThreadPlan: ExecutionInterrupted - for " 5687 "plan: %p not discarding.", 5688 static_cast<void *>(thread_plan_sp.get())); 5689 } 5690 } else if (return_value == eExpressionSetupError) { 5691 if (log) 5692 log->PutCString("Process::RunThreadPlan(): execution set up error."); 5693 5694 if (options.DoesUnwindOnError()) { 5695 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5696 } 5697 } else { 5698 if (thread->IsThreadPlanDone(thread_plan_sp.get())) { 5699 if (log) 5700 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 5701 return_value = eExpressionCompleted; 5702 } else if (thread->WasThreadPlanDiscarded(thread_plan_sp.get())) { 5703 if (log) 5704 log->PutCString( 5705 "Process::RunThreadPlan(): thread plan was discarded"); 5706 return_value = eExpressionDiscarded; 5707 } else { 5708 if (log) 5709 log->PutCString( 5710 "Process::RunThreadPlan(): thread plan stopped in mid course"); 5711 if (options.DoesUnwindOnError() && thread_plan_sp) { 5712 if (log) 5713 log->PutCString("Process::RunThreadPlan(): discarding thread plan " 5714 "'cause unwind_on_error is set."); 5715 thread->DiscardThreadPlansUpToPlan(thread_plan_sp); 5716 } 5717 } 5718 } 5719 5720 // Thread we ran the function in may have gone away because we ran the 5721 // target Check that it's still there, and if it is put it back in the 5722 // context. Also restore the frame in the context if it is still present. 5723 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 5724 if (thread) { 5725 exe_ctx.SetFrameSP(thread->GetFrameWithStackID(ctx_frame_id)); 5726 } 5727 5728 // Also restore the current process'es selected frame & thread, since this 5729 // function calling may be done behind the user's back. 5730 5731 if (selected_tid != LLDB_INVALID_THREAD_ID) { 5732 if (GetThreadList().SetSelectedThreadByIndexID(selected_tid) && 5733 selected_stack_id.IsValid()) { 5734 // We were able to restore the selected thread, now restore the frame: 5735 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5736 StackFrameSP old_frame_sp = 5737 GetThreadList().GetSelectedThread()->GetFrameWithStackID( 5738 selected_stack_id); 5739 if (old_frame_sp) 5740 GetThreadList().GetSelectedThread()->SetSelectedFrame( 5741 old_frame_sp.get()); 5742 } 5743 } 5744 } 5745 5746 // If the process exited during the run of the thread plan, notify everyone. 5747 5748 if (event_to_broadcast_sp) { 5749 if (log) 5750 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 5751 BroadcastEvent(event_to_broadcast_sp); 5752 } 5753 5754 return return_value; 5755 } 5756 5757 void Process::GetStatus(Stream &strm) { 5758 const StateType state = GetState(); 5759 if (StateIsStoppedState(state, false)) { 5760 if (state == eStateExited) { 5761 int exit_status = GetExitStatus(); 5762 const char *exit_description = GetExitDescription(); 5763 strm.Printf("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 5764 GetID(), exit_status, exit_status, 5765 exit_description ? exit_description : ""); 5766 } else { 5767 if (state == eStateConnected) 5768 strm.Printf("Connected to remote target.\n"); 5769 else 5770 strm.Printf("Process %" PRIu64 " %s\n", GetID(), StateAsCString(state)); 5771 } 5772 } else { 5773 strm.Printf("Process %" PRIu64 " is running.\n", GetID()); 5774 } 5775 } 5776 5777 size_t Process::GetThreadStatus(Stream &strm, 5778 bool only_threads_with_stop_reason, 5779 uint32_t start_frame, uint32_t num_frames, 5780 uint32_t num_frames_with_source, 5781 bool stop_format) { 5782 size_t num_thread_infos_dumped = 0; 5783 5784 // You can't hold the thread list lock while calling Thread::GetStatus. That 5785 // very well might run code (e.g. if we need it to get return values or 5786 // arguments.) For that to work the process has to be able to acquire it. 5787 // So instead copy the thread ID's, and look them up one by one: 5788 5789 uint32_t num_threads; 5790 std::vector<lldb::tid_t> thread_id_array; 5791 // Scope for thread list locker; 5792 { 5793 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 5794 ThreadList &curr_thread_list = GetThreadList(); 5795 num_threads = curr_thread_list.GetSize(); 5796 uint32_t idx; 5797 thread_id_array.resize(num_threads); 5798 for (idx = 0; idx < num_threads; ++idx) 5799 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 5800 } 5801 5802 for (uint32_t i = 0; i < num_threads; i++) { 5803 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 5804 if (thread_sp) { 5805 if (only_threads_with_stop_reason) { 5806 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 5807 if (!stop_info_sp || !stop_info_sp->IsValid()) 5808 continue; 5809 } 5810 thread_sp->GetStatus(strm, start_frame, num_frames, 5811 num_frames_with_source, stop_format, 5812 /*show_hidden*/ num_frames <= 1); 5813 ++num_thread_infos_dumped; 5814 } else { 5815 Log *log = GetLog(LLDBLog::Process); 5816 LLDB_LOGF(log, "Process::GetThreadStatus - thread 0x" PRIu64 5817 " vanished while running Thread::GetStatus."); 5818 } 5819 } 5820 return num_thread_infos_dumped; 5821 } 5822 5823 void Process::AddInvalidMemoryRegion(const LoadRange ®ion) { 5824 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 5825 } 5826 5827 bool Process::RemoveInvalidMemoryRange(const LoadRange ®ion) { 5828 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), 5829 region.GetByteSize()); 5830 } 5831 5832 void Process::AddPreResumeAction(PreResumeActionCallback callback, 5833 void *baton) { 5834 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton(callback, baton)); 5835 } 5836 5837 bool Process::RunPreResumeActions() { 5838 bool result = true; 5839 while (!m_pre_resume_actions.empty()) { 5840 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 5841 m_pre_resume_actions.pop_back(); 5842 bool this_result = action.callback(action.baton); 5843 if (result) 5844 result = this_result; 5845 } 5846 return result; 5847 } 5848 5849 void Process::ClearPreResumeActions() { m_pre_resume_actions.clear(); } 5850 5851 void Process::ClearPreResumeAction(PreResumeActionCallback callback, void *baton) 5852 { 5853 PreResumeCallbackAndBaton element(callback, baton); 5854 auto found_iter = std::find(m_pre_resume_actions.begin(), m_pre_resume_actions.end(), element); 5855 if (found_iter != m_pre_resume_actions.end()) 5856 { 5857 m_pre_resume_actions.erase(found_iter); 5858 } 5859 } 5860 5861 ProcessRunLock &Process::GetRunLock() { 5862 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5863 return m_private_run_lock; 5864 else 5865 return m_public_run_lock; 5866 } 5867 5868 bool Process::CurrentThreadIsPrivateStateThread() 5869 { 5870 return m_private_state_thread.EqualsThread(Host::GetCurrentThread()); 5871 } 5872 5873 5874 void Process::Flush() { 5875 m_thread_list.Flush(); 5876 m_extended_thread_list.Flush(); 5877 m_extended_thread_stop_id = 0; 5878 m_queue_list.Clear(); 5879 m_queue_list_stop_id = 0; 5880 } 5881 5882 lldb::addr_t Process::GetCodeAddressMask() { 5883 if (uint32_t num_bits_setting = GetVirtualAddressableBits()) 5884 return AddressableBits::AddressableBitToMask(num_bits_setting); 5885 5886 return m_code_address_mask; 5887 } 5888 5889 lldb::addr_t Process::GetDataAddressMask() { 5890 if (uint32_t num_bits_setting = GetVirtualAddressableBits()) 5891 return AddressableBits::AddressableBitToMask(num_bits_setting); 5892 5893 return m_data_address_mask; 5894 } 5895 5896 lldb::addr_t Process::GetHighmemCodeAddressMask() { 5897 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) 5898 return AddressableBits::AddressableBitToMask(num_bits_setting); 5899 5900 if (m_highmem_code_address_mask != LLDB_INVALID_ADDRESS_MASK) 5901 return m_highmem_code_address_mask; 5902 return GetCodeAddressMask(); 5903 } 5904 5905 lldb::addr_t Process::GetHighmemDataAddressMask() { 5906 if (uint32_t num_bits_setting = GetHighmemVirtualAddressableBits()) 5907 return AddressableBits::AddressableBitToMask(num_bits_setting); 5908 5909 if (m_highmem_data_address_mask != LLDB_INVALID_ADDRESS_MASK) 5910 return m_highmem_data_address_mask; 5911 return GetDataAddressMask(); 5912 } 5913 5914 void Process::SetCodeAddressMask(lldb::addr_t code_address_mask) { 5915 LLDB_LOG(GetLog(LLDBLog::Process), 5916 "Setting Process code address mask to {0:x}", code_address_mask); 5917 m_code_address_mask = code_address_mask; 5918 } 5919 5920 void Process::SetDataAddressMask(lldb::addr_t data_address_mask) { 5921 LLDB_LOG(GetLog(LLDBLog::Process), 5922 "Setting Process data address mask to {0:x}", data_address_mask); 5923 m_data_address_mask = data_address_mask; 5924 } 5925 5926 void Process::SetHighmemCodeAddressMask(lldb::addr_t code_address_mask) { 5927 LLDB_LOG(GetLog(LLDBLog::Process), 5928 "Setting Process highmem code address mask to {0:x}", 5929 code_address_mask); 5930 m_highmem_code_address_mask = code_address_mask; 5931 } 5932 5933 void Process::SetHighmemDataAddressMask(lldb::addr_t data_address_mask) { 5934 LLDB_LOG(GetLog(LLDBLog::Process), 5935 "Setting Process highmem data address mask to {0:x}", 5936 data_address_mask); 5937 m_highmem_data_address_mask = data_address_mask; 5938 } 5939 5940 addr_t Process::FixCodeAddress(addr_t addr) { 5941 if (ABISP abi_sp = GetABI()) 5942 addr = abi_sp->FixCodeAddress(addr); 5943 return addr; 5944 } 5945 5946 addr_t Process::FixDataAddress(addr_t addr) { 5947 if (ABISP abi_sp = GetABI()) 5948 addr = abi_sp->FixDataAddress(addr); 5949 return addr; 5950 } 5951 5952 addr_t Process::FixAnyAddress(addr_t addr) { 5953 if (ABISP abi_sp = GetABI()) 5954 addr = abi_sp->FixAnyAddress(addr); 5955 return addr; 5956 } 5957 5958 void Process::DidExec() { 5959 Log *log = GetLog(LLDBLog::Process); 5960 LLDB_LOGF(log, "Process::%s()", __FUNCTION__); 5961 5962 Target &target = GetTarget(); 5963 target.CleanupProcess(); 5964 target.ClearModules(false); 5965 m_dynamic_checkers_up.reset(); 5966 m_abi_sp.reset(); 5967 m_system_runtime_up.reset(); 5968 m_os_up.reset(); 5969 m_dyld_up.reset(); 5970 m_jit_loaders_up.reset(); 5971 m_image_tokens.clear(); 5972 // After an exec, the inferior is a new process and these memory regions are 5973 // no longer allocated. 5974 m_allocated_memory_cache.Clear(/*deallocte_memory=*/false); 5975 { 5976 std::lock_guard<std::recursive_mutex> guard(m_language_runtimes_mutex); 5977 m_language_runtimes.clear(); 5978 } 5979 m_instrumentation_runtimes.clear(); 5980 m_thread_list.DiscardThreadPlans(); 5981 m_memory_cache.Clear(true); 5982 DoDidExec(); 5983 CompleteAttach(); 5984 // Flush the process (threads and all stack frames) after running 5985 // CompleteAttach() in case the dynamic loader loaded things in new 5986 // locations. 5987 Flush(); 5988 5989 // After we figure out what was loaded/unloaded in CompleteAttach, we need to 5990 // let the target know so it can do any cleanup it needs to. 5991 target.DidExec(); 5992 } 5993 5994 addr_t Process::ResolveIndirectFunction(const Address *address, Status &error) { 5995 if (address == nullptr) { 5996 error = Status::FromErrorString("Invalid address argument"); 5997 return LLDB_INVALID_ADDRESS; 5998 } 5999 6000 addr_t function_addr = LLDB_INVALID_ADDRESS; 6001 6002 addr_t addr = address->GetLoadAddress(&GetTarget()); 6003 std::map<addr_t, addr_t>::const_iterator iter = 6004 m_resolved_indirect_addresses.find(addr); 6005 if (iter != m_resolved_indirect_addresses.end()) { 6006 function_addr = (*iter).second; 6007 } else { 6008 if (!CallVoidArgVoidPtrReturn(address, function_addr)) { 6009 Symbol *symbol = address->CalculateSymbolContextSymbol(); 6010 error = Status::FromErrorStringWithFormat( 6011 "Unable to call resolver for indirect function %s", 6012 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 6013 function_addr = LLDB_INVALID_ADDRESS; 6014 } else { 6015 if (ABISP abi_sp = GetABI()) 6016 function_addr = abi_sp->FixCodeAddress(function_addr); 6017 m_resolved_indirect_addresses.insert( 6018 std::pair<addr_t, addr_t>(addr, function_addr)); 6019 } 6020 } 6021 return function_addr; 6022 } 6023 6024 void Process::ModulesDidLoad(ModuleList &module_list) { 6025 // Inform the system runtime of the modified modules. 6026 SystemRuntime *sys_runtime = GetSystemRuntime(); 6027 if (sys_runtime) 6028 sys_runtime->ModulesDidLoad(module_list); 6029 6030 GetJITLoaders().ModulesDidLoad(module_list); 6031 6032 // Give the instrumentation runtimes a chance to be created before informing 6033 // them of the modified modules. 6034 InstrumentationRuntime::ModulesDidLoad(module_list, this, 6035 m_instrumentation_runtimes); 6036 for (auto &runtime : m_instrumentation_runtimes) 6037 runtime.second->ModulesDidLoad(module_list); 6038 6039 // Give the language runtimes a chance to be created before informing them of 6040 // the modified modules. 6041 for (const lldb::LanguageType lang_type : Language::GetSupportedLanguages()) { 6042 if (LanguageRuntime *runtime = GetLanguageRuntime(lang_type)) 6043 runtime->ModulesDidLoad(module_list); 6044 } 6045 6046 // If we don't have an operating system plug-in, try to load one since 6047 // loading shared libraries might cause a new one to try and load 6048 if (!m_os_up) 6049 LoadOperatingSystemPlugin(false); 6050 6051 // Inform the structured-data plugins of the modified modules. 6052 for (auto &pair : m_structured_data_plugin_map) { 6053 if (pair.second) 6054 pair.second->ModulesDidLoad(*this, module_list); 6055 } 6056 } 6057 6058 void Process::PrintWarningOptimization(const SymbolContext &sc) { 6059 if (!GetWarningsOptimization()) 6060 return; 6061 if (!sc.module_sp || !sc.function || !sc.function->GetIsOptimized()) 6062 return; 6063 sc.module_sp->ReportWarningOptimization(GetTarget().GetDebugger().GetID()); 6064 } 6065 6066 void Process::PrintWarningUnsupportedLanguage(const SymbolContext &sc) { 6067 if (!GetWarningsUnsupportedLanguage()) 6068 return; 6069 if (!sc.module_sp) 6070 return; 6071 LanguageType language = sc.GetLanguage(); 6072 if (language == eLanguageTypeUnknown || 6073 language == lldb::eLanguageTypeAssembly || 6074 language == lldb::eLanguageTypeMipsAssembler) 6075 return; 6076 LanguageSet plugins = 6077 PluginManager::GetAllTypeSystemSupportedLanguagesForTypes(); 6078 if (plugins[language]) 6079 return; 6080 sc.module_sp->ReportWarningUnsupportedLanguage( 6081 language, GetTarget().GetDebugger().GetID()); 6082 } 6083 6084 bool Process::GetProcessInfo(ProcessInstanceInfo &info) { 6085 info.Clear(); 6086 6087 PlatformSP platform_sp = GetTarget().GetPlatform(); 6088 if (!platform_sp) 6089 return false; 6090 6091 return platform_sp->GetProcessInfo(GetID(), info); 6092 } 6093 6094 ThreadCollectionSP Process::GetHistoryThreads(lldb::addr_t addr) { 6095 ThreadCollectionSP threads; 6096 6097 const MemoryHistorySP &memory_history = 6098 MemoryHistory::FindPlugin(shared_from_this()); 6099 6100 if (!memory_history) { 6101 return threads; 6102 } 6103 6104 threads = std::make_shared<ThreadCollection>( 6105 memory_history->GetHistoryThreads(addr)); 6106 6107 return threads; 6108 } 6109 6110 InstrumentationRuntimeSP 6111 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) { 6112 InstrumentationRuntimeCollection::iterator pos; 6113 pos = m_instrumentation_runtimes.find(type); 6114 if (pos == m_instrumentation_runtimes.end()) { 6115 return InstrumentationRuntimeSP(); 6116 } else 6117 return (*pos).second; 6118 } 6119 6120 bool Process::GetModuleSpec(const FileSpec &module_file_spec, 6121 const ArchSpec &arch, ModuleSpec &module_spec) { 6122 module_spec.Clear(); 6123 return false; 6124 } 6125 6126 size_t Process::AddImageToken(lldb::addr_t image_ptr) { 6127 m_image_tokens.push_back(image_ptr); 6128 return m_image_tokens.size() - 1; 6129 } 6130 6131 lldb::addr_t Process::GetImagePtrFromToken(size_t token) const { 6132 if (token < m_image_tokens.size()) 6133 return m_image_tokens[token]; 6134 return LLDB_INVALID_IMAGE_TOKEN; 6135 } 6136 6137 void Process::ResetImageToken(size_t token) { 6138 if (token < m_image_tokens.size()) 6139 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6140 } 6141 6142 Address 6143 Process::AdvanceAddressToNextBranchInstruction(Address default_stop_addr, 6144 AddressRange range_bounds) { 6145 Target &target = GetTarget(); 6146 DisassemblerSP disassembler_sp; 6147 InstructionList *insn_list = nullptr; 6148 6149 Address retval = default_stop_addr; 6150 6151 if (!target.GetUseFastStepping()) 6152 return retval; 6153 if (!default_stop_addr.IsValid()) 6154 return retval; 6155 6156 const char *plugin_name = nullptr; 6157 const char *flavor = nullptr; 6158 disassembler_sp = Disassembler::DisassembleRange( 6159 target.GetArchitecture(), plugin_name, flavor, GetTarget(), range_bounds); 6160 if (disassembler_sp) 6161 insn_list = &disassembler_sp->GetInstructionList(); 6162 6163 if (insn_list == nullptr) { 6164 return retval; 6165 } 6166 6167 size_t insn_offset = 6168 insn_list->GetIndexOfInstructionAtAddress(default_stop_addr); 6169 if (insn_offset == UINT32_MAX) { 6170 return retval; 6171 } 6172 6173 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction( 6174 insn_offset, false /* ignore_calls*/, nullptr); 6175 if (branch_index == UINT32_MAX) { 6176 return retval; 6177 } 6178 6179 if (branch_index > insn_offset) { 6180 Address next_branch_insn_address = 6181 insn_list->GetInstructionAtIndex(branch_index)->GetAddress(); 6182 if (next_branch_insn_address.IsValid() && 6183 range_bounds.ContainsFileAddress(next_branch_insn_address)) { 6184 retval = next_branch_insn_address; 6185 } 6186 } 6187 6188 return retval; 6189 } 6190 6191 Status Process::GetMemoryRegionInfo(lldb::addr_t load_addr, 6192 MemoryRegionInfo &range_info) { 6193 if (const lldb::ABISP &abi = GetABI()) 6194 load_addr = abi->FixAnyAddress(load_addr); 6195 return DoGetMemoryRegionInfo(load_addr, range_info); 6196 } 6197 6198 Status Process::GetMemoryRegions(lldb_private::MemoryRegionInfos ®ion_list) { 6199 Status error; 6200 6201 lldb::addr_t range_end = 0; 6202 const lldb::ABISP &abi = GetABI(); 6203 6204 region_list.clear(); 6205 do { 6206 lldb_private::MemoryRegionInfo region_info; 6207 error = GetMemoryRegionInfo(range_end, region_info); 6208 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6209 if (error.Fail()) { 6210 region_list.clear(); 6211 break; 6212 } 6213 6214 // We only check the end address, not start and end, because we assume that 6215 // the start will not have non-address bits until the first unmappable 6216 // region. We will have exited the loop by that point because the previous 6217 // region, the last mappable region, will have non-address bits in its end 6218 // address. 6219 range_end = region_info.GetRange().GetRangeEnd(); 6220 if (region_info.GetMapped() == MemoryRegionInfo::eYes) { 6221 region_list.push_back(std::move(region_info)); 6222 } 6223 } while ( 6224 // For a process with no non-address bits, all address bits 6225 // set means the end of memory. 6226 range_end != LLDB_INVALID_ADDRESS && 6227 // If we have non-address bits and some are set then the end 6228 // is at or beyond the end of mappable memory. 6229 !(abi && (abi->FixAnyAddress(range_end) != range_end))); 6230 6231 return error; 6232 } 6233 6234 Status 6235 Process::ConfigureStructuredData(llvm::StringRef type_name, 6236 const StructuredData::ObjectSP &config_sp) { 6237 // If you get this, the Process-derived class needs to implement a method to 6238 // enable an already-reported asynchronous structured data feature. See 6239 // ProcessGDBRemote for an example implementation over gdb-remote. 6240 return Status::FromErrorString("unimplemented"); 6241 } 6242 6243 void Process::MapSupportedStructuredDataPlugins( 6244 const StructuredData::Array &supported_type_names) { 6245 Log *log = GetLog(LLDBLog::Process); 6246 6247 // Bail out early if there are no type names to map. 6248 if (supported_type_names.GetSize() == 0) { 6249 LLDB_LOG(log, "no structured data types supported"); 6250 return; 6251 } 6252 6253 // These StringRefs are backed by the input parameter. 6254 std::set<llvm::StringRef> type_names; 6255 6256 LLDB_LOG(log, 6257 "the process supports the following async structured data types:"); 6258 6259 supported_type_names.ForEach( 6260 [&type_names, &log](StructuredData::Object *object) { 6261 // There shouldn't be null objects in the array. 6262 if (!object) 6263 return false; 6264 6265 // All type names should be strings. 6266 const llvm::StringRef type_name = object->GetStringValue(); 6267 if (type_name.empty()) 6268 return false; 6269 6270 type_names.insert(type_name); 6271 LLDB_LOG(log, "- {0}", type_name); 6272 return true; 6273 }); 6274 6275 // For each StructuredDataPlugin, if the plugin handles any of the types in 6276 // the supported_type_names, map that type name to that plugin. Stop when 6277 // we've consumed all the type names. 6278 // FIXME: should we return an error if there are type names nobody 6279 // supports? 6280 for (uint32_t plugin_index = 0; !type_names.empty(); plugin_index++) { 6281 auto create_instance = 6282 PluginManager::GetStructuredDataPluginCreateCallbackAtIndex( 6283 plugin_index); 6284 if (!create_instance) 6285 break; 6286 6287 // Create the plugin. 6288 StructuredDataPluginSP plugin_sp = (*create_instance)(*this); 6289 if (!plugin_sp) { 6290 // This plugin doesn't think it can work with the process. Move on to the 6291 // next. 6292 continue; 6293 } 6294 6295 // For any of the remaining type names, map any that this plugin supports. 6296 std::vector<llvm::StringRef> names_to_remove; 6297 for (llvm::StringRef type_name : type_names) { 6298 if (plugin_sp->SupportsStructuredDataType(type_name)) { 6299 m_structured_data_plugin_map.insert( 6300 std::make_pair(type_name, plugin_sp)); 6301 names_to_remove.push_back(type_name); 6302 LLDB_LOG(log, "using plugin {0} for type name {1}", 6303 plugin_sp->GetPluginName(), type_name); 6304 } 6305 } 6306 6307 // Remove the type names that were consumed by this plugin. 6308 for (llvm::StringRef type_name : names_to_remove) 6309 type_names.erase(type_name); 6310 } 6311 } 6312 6313 bool Process::RouteAsyncStructuredData( 6314 const StructuredData::ObjectSP object_sp) { 6315 // Nothing to do if there's no data. 6316 if (!object_sp) 6317 return false; 6318 6319 // The contract is this must be a dictionary, so we can look up the routing 6320 // key via the top-level 'type' string value within the dictionary. 6321 StructuredData::Dictionary *dictionary = object_sp->GetAsDictionary(); 6322 if (!dictionary) 6323 return false; 6324 6325 // Grab the async structured type name (i.e. the feature/plugin name). 6326 llvm::StringRef type_name; 6327 if (!dictionary->GetValueForKeyAsString("type", type_name)) 6328 return false; 6329 6330 // Check if there's a plugin registered for this type name. 6331 auto find_it = m_structured_data_plugin_map.find(type_name); 6332 if (find_it == m_structured_data_plugin_map.end()) { 6333 // We don't have a mapping for this structured data type. 6334 return false; 6335 } 6336 6337 // Route the structured data to the plugin. 6338 find_it->second->HandleArrivalOfStructuredData(*this, type_name, object_sp); 6339 return true; 6340 } 6341 6342 Status Process::UpdateAutomaticSignalFiltering() { 6343 // Default implementation does nothign. 6344 // No automatic signal filtering to speak of. 6345 return Status(); 6346 } 6347 6348 UtilityFunction *Process::GetLoadImageUtilityFunction( 6349 Platform *platform, 6350 llvm::function_ref<std::unique_ptr<UtilityFunction>()> factory) { 6351 if (platform != GetTarget().GetPlatform().get()) 6352 return nullptr; 6353 llvm::call_once(m_dlopen_utility_func_flag_once, 6354 [&] { m_dlopen_utility_func_up = factory(); }); 6355 return m_dlopen_utility_func_up.get(); 6356 } 6357 6358 llvm::Expected<TraceSupportedResponse> Process::TraceSupported() { 6359 if (!IsLiveDebugSession()) 6360 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6361 "Can't trace a non-live process."); 6362 return llvm::make_error<UnimplementedError>(); 6363 } 6364 6365 bool Process::CallVoidArgVoidPtrReturn(const Address *address, 6366 addr_t &returned_func, 6367 bool trap_exceptions) { 6368 Thread *thread = GetThreadList().GetExpressionExecutionThread().get(); 6369 if (thread == nullptr || address == nullptr) 6370 return false; 6371 6372 EvaluateExpressionOptions options; 6373 options.SetStopOthers(true); 6374 options.SetUnwindOnError(true); 6375 options.SetIgnoreBreakpoints(true); 6376 options.SetTryAllThreads(true); 6377 options.SetDebug(false); 6378 options.SetTimeout(GetUtilityExpressionTimeout()); 6379 options.SetTrapExceptions(trap_exceptions); 6380 6381 auto type_system_or_err = 6382 GetTarget().GetScratchTypeSystemForLanguage(eLanguageTypeC); 6383 if (!type_system_or_err) { 6384 llvm::consumeError(type_system_or_err.takeError()); 6385 return false; 6386 } 6387 auto ts = *type_system_or_err; 6388 if (!ts) 6389 return false; 6390 CompilerType void_ptr_type = 6391 ts->GetBasicTypeFromAST(eBasicTypeVoid).GetPointerType(); 6392 lldb::ThreadPlanSP call_plan_sp(new ThreadPlanCallFunction( 6393 *thread, *address, void_ptr_type, llvm::ArrayRef<addr_t>(), options)); 6394 if (call_plan_sp) { 6395 DiagnosticManager diagnostics; 6396 6397 StackFrame *frame = thread->GetStackFrameAtIndex(0).get(); 6398 if (frame) { 6399 ExecutionContext exe_ctx; 6400 frame->CalculateExecutionContext(exe_ctx); 6401 ExpressionResults result = 6402 RunThreadPlan(exe_ctx, call_plan_sp, options, diagnostics); 6403 if (result == eExpressionCompleted) { 6404 returned_func = 6405 call_plan_sp->GetReturnValueObject()->GetValueAsUnsigned( 6406 LLDB_INVALID_ADDRESS); 6407 6408 if (GetAddressByteSize() == 4) { 6409 if (returned_func == UINT32_MAX) 6410 return false; 6411 } else if (GetAddressByteSize() == 8) { 6412 if (returned_func == UINT64_MAX) 6413 return false; 6414 } 6415 return true; 6416 } 6417 } 6418 } 6419 6420 return false; 6421 } 6422 6423 llvm::Expected<const MemoryTagManager *> Process::GetMemoryTagManager() { 6424 Architecture *arch = GetTarget().GetArchitecturePlugin(); 6425 const MemoryTagManager *tag_manager = 6426 arch ? arch->GetMemoryTagManager() : nullptr; 6427 if (!arch || !tag_manager) { 6428 return llvm::createStringError( 6429 llvm::inconvertibleErrorCode(), 6430 "This architecture does not support memory tagging"); 6431 } 6432 6433 if (!SupportsMemoryTagging()) { 6434 return llvm::createStringError(llvm::inconvertibleErrorCode(), 6435 "Process does not support memory tagging"); 6436 } 6437 6438 return tag_manager; 6439 } 6440 6441 llvm::Expected<std::vector<lldb::addr_t>> 6442 Process::ReadMemoryTags(lldb::addr_t addr, size_t len) { 6443 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6444 GetMemoryTagManager(); 6445 if (!tag_manager_or_err) 6446 return tag_manager_or_err.takeError(); 6447 6448 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6449 llvm::Expected<std::vector<uint8_t>> tag_data = 6450 DoReadMemoryTags(addr, len, tag_manager->GetAllocationTagType()); 6451 if (!tag_data) 6452 return tag_data.takeError(); 6453 6454 return tag_manager->UnpackTagsData(*tag_data, 6455 len / tag_manager->GetGranuleSize()); 6456 } 6457 6458 Status Process::WriteMemoryTags(lldb::addr_t addr, size_t len, 6459 const std::vector<lldb::addr_t> &tags) { 6460 llvm::Expected<const MemoryTagManager *> tag_manager_or_err = 6461 GetMemoryTagManager(); 6462 if (!tag_manager_or_err) 6463 return Status::FromError(tag_manager_or_err.takeError()); 6464 6465 const MemoryTagManager *tag_manager = *tag_manager_or_err; 6466 llvm::Expected<std::vector<uint8_t>> packed_tags = 6467 tag_manager->PackTags(tags); 6468 if (!packed_tags) { 6469 return Status::FromError(packed_tags.takeError()); 6470 } 6471 6472 return DoWriteMemoryTags(addr, len, tag_manager->GetAllocationTagType(), 6473 *packed_tags); 6474 } 6475 6476 // Create a CoreFileMemoryRange from a MemoryRegionInfo 6477 static CoreFileMemoryRange 6478 CreateCoreFileMemoryRange(const MemoryRegionInfo ®ion) { 6479 const addr_t addr = region.GetRange().GetRangeBase(); 6480 llvm::AddressRange range(addr, addr + region.GetRange().GetByteSize()); 6481 return {range, region.GetLLDBPermissions()}; 6482 } 6483 6484 // Add dirty pages to the core file ranges and return true if dirty pages 6485 // were added. Return false if the dirty page information is not valid or in 6486 // the region. 6487 static bool AddDirtyPages(const MemoryRegionInfo ®ion, 6488 CoreFileMemoryRanges &ranges) { 6489 const auto &dirty_page_list = region.GetDirtyPageList(); 6490 if (!dirty_page_list) 6491 return false; 6492 const uint32_t lldb_permissions = region.GetLLDBPermissions(); 6493 const addr_t page_size = region.GetPageSize(); 6494 if (page_size == 0) 6495 return false; 6496 llvm::AddressRange range(0, 0); 6497 for (addr_t page_addr : *dirty_page_list) { 6498 if (range.empty()) { 6499 // No range yet, initialize the range with the current dirty page. 6500 range = llvm::AddressRange(page_addr, page_addr + page_size); 6501 } else { 6502 if (range.end() == page_addr) { 6503 // Combine consective ranges. 6504 range = llvm::AddressRange(range.start(), page_addr + page_size); 6505 } else { 6506 // Add previous contiguous range and init the new range with the 6507 // current dirty page. 6508 ranges.Append(range.start(), range.size(), {range, lldb_permissions}); 6509 range = llvm::AddressRange(page_addr, page_addr + page_size); 6510 } 6511 } 6512 } 6513 // The last range 6514 if (!range.empty()) 6515 ranges.Append(range.start(), range.size(), {range, lldb_permissions}); 6516 return true; 6517 } 6518 6519 // Given a region, add the region to \a ranges. 6520 // 6521 // Only add the region if it isn't empty and if it has some permissions. 6522 // If \a try_dirty_pages is true, then try to add only the dirty pages for a 6523 // given region. If the region has dirty page information, only dirty pages 6524 // will be added to \a ranges, else the entire range will be added to \a 6525 // ranges. 6526 static void AddRegion(const MemoryRegionInfo ®ion, bool try_dirty_pages, 6527 CoreFileMemoryRanges &ranges) { 6528 // Don't add empty ranges. 6529 if (region.GetRange().GetByteSize() == 0) 6530 return; 6531 // Don't add ranges with no read permissions. 6532 if ((region.GetLLDBPermissions() & lldb::ePermissionsReadable) == 0) 6533 return; 6534 if (try_dirty_pages && AddDirtyPages(region, ranges)) 6535 return; 6536 6537 ranges.Append(region.GetRange().GetRangeBase(), 6538 region.GetRange().GetByteSize(), 6539 CreateCoreFileMemoryRange(region)); 6540 } 6541 6542 static void SaveDynamicLoaderSections(Process &process, 6543 const SaveCoreOptions &options, 6544 CoreFileMemoryRanges &ranges, 6545 std::set<addr_t> &stack_ends) { 6546 DynamicLoader *dyld = process.GetDynamicLoader(); 6547 if (!dyld) 6548 return; 6549 6550 std::vector<MemoryRegionInfo> dynamic_loader_mem_regions; 6551 std::function<bool(const lldb_private::Thread &)> save_thread_predicate = 6552 [&](const lldb_private::Thread &t) -> bool { 6553 return options.ShouldThreadBeSaved(t.GetID()); 6554 }; 6555 dyld->CalculateDynamicSaveCoreRanges(process, dynamic_loader_mem_regions, 6556 save_thread_predicate); 6557 for (const auto ®ion : dynamic_loader_mem_regions) { 6558 // The Dynamic Loader can give us regions that could include a truncated 6559 // stack 6560 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) 6561 AddRegion(region, true, ranges); 6562 } 6563 } 6564 6565 static void SaveOffRegionsWithStackPointers(Process &process, 6566 const SaveCoreOptions &core_options, 6567 const MemoryRegionInfos ®ions, 6568 CoreFileMemoryRanges &ranges, 6569 std::set<addr_t> &stack_ends) { 6570 const bool try_dirty_pages = true; 6571 6572 // Before we take any dump, we want to save off the used portions of the 6573 // stacks and mark those memory regions as saved. This prevents us from saving 6574 // the unused portion of the stack below the stack pointer. Saving space on 6575 // the dump. 6576 for (lldb::ThreadSP thread_sp : process.GetThreadList().Threads()) { 6577 if (!thread_sp) 6578 continue; 6579 StackFrameSP frame_sp = thread_sp->GetStackFrameAtIndex(0); 6580 if (!frame_sp) 6581 continue; 6582 RegisterContextSP reg_ctx_sp = frame_sp->GetRegisterContext(); 6583 if (!reg_ctx_sp) 6584 continue; 6585 const addr_t sp = reg_ctx_sp->GetSP(); 6586 const size_t red_zone = process.GetABI()->GetRedZoneSize(); 6587 lldb_private::MemoryRegionInfo sp_region; 6588 if (process.GetMemoryRegionInfo(sp, sp_region).Success()) { 6589 const size_t stack_head = (sp - red_zone); 6590 const size_t stack_size = sp_region.GetRange().GetRangeEnd() - stack_head; 6591 // Even if the SaveCoreOption doesn't want us to save the stack 6592 // we still need to populate the stack_ends set so it doesn't get saved 6593 // off in other calls 6594 sp_region.GetRange().SetRangeBase(stack_head); 6595 sp_region.GetRange().SetByteSize(stack_size); 6596 const addr_t range_end = sp_region.GetRange().GetRangeEnd(); 6597 stack_ends.insert(range_end); 6598 // This will return true if the threadlist the user specified is empty, 6599 // or contains the thread id from thread_sp. 6600 if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) { 6601 AddRegion(sp_region, try_dirty_pages, ranges); 6602 } 6603 } 6604 } 6605 } 6606 6607 // Save all memory regions that are not empty or have at least some permissions 6608 // for a full core file style. 6609 static void GetCoreFileSaveRangesFull(Process &process, 6610 const MemoryRegionInfos ®ions, 6611 CoreFileMemoryRanges &ranges, 6612 std::set<addr_t> &stack_ends) { 6613 6614 // Don't add only dirty pages, add full regions. 6615 const bool try_dirty_pages = false; 6616 for (const auto ®ion : regions) 6617 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0) 6618 AddRegion(region, try_dirty_pages, ranges); 6619 } 6620 6621 // Save only the dirty pages to the core file. Make sure the process has at 6622 // least some dirty pages, as some OS versions don't support reporting what 6623 // pages are dirty within an memory region. If no memory regions have dirty 6624 // page information fall back to saving out all ranges with write permissions. 6625 static void GetCoreFileSaveRangesDirtyOnly(Process &process, 6626 const MemoryRegionInfos ®ions, 6627 CoreFileMemoryRanges &ranges, 6628 std::set<addr_t> &stack_ends) { 6629 6630 // Iterate over the regions and find all dirty pages. 6631 bool have_dirty_page_info = false; 6632 for (const auto ®ion : regions) { 6633 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6634 AddDirtyPages(region, ranges)) 6635 have_dirty_page_info = true; 6636 } 6637 6638 if (!have_dirty_page_info) { 6639 // We didn't find support for reporting dirty pages from the process 6640 // plug-in so fall back to any region with write access permissions. 6641 const bool try_dirty_pages = false; 6642 for (const auto ®ion : regions) 6643 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6644 region.GetWritable() == MemoryRegionInfo::eYes) 6645 AddRegion(region, try_dirty_pages, ranges); 6646 } 6647 } 6648 6649 // Save all thread stacks to the core file. Some OS versions support reporting 6650 // when a memory region is stack related. We check on this information, but we 6651 // also use the stack pointers of each thread and add those in case the OS 6652 // doesn't support reporting stack memory. This function also attempts to only 6653 // emit dirty pages from the stack if the memory regions support reporting 6654 // dirty regions as this will make the core file smaller. If the process 6655 // doesn't support dirty regions, then it will fall back to adding the full 6656 // stack region. 6657 static void GetCoreFileSaveRangesStackOnly(Process &process, 6658 const MemoryRegionInfos ®ions, 6659 CoreFileMemoryRanges &ranges, 6660 std::set<addr_t> &stack_ends) { 6661 const bool try_dirty_pages = true; 6662 // Some platforms support annotating the region information that tell us that 6663 // it comes from a thread stack. So look for those regions first. 6664 6665 for (const auto ®ion : regions) { 6666 // Save all the stack memory ranges not associated with a stack pointer. 6667 if (stack_ends.count(region.GetRange().GetRangeEnd()) == 0 && 6668 region.IsStackMemory() == MemoryRegionInfo::eYes) 6669 AddRegion(region, try_dirty_pages, ranges); 6670 } 6671 } 6672 6673 static void GetUserSpecifiedCoreFileSaveRanges(Process &process, 6674 const MemoryRegionInfos ®ions, 6675 const SaveCoreOptions &options, 6676 CoreFileMemoryRanges &ranges) { 6677 const auto &option_ranges = options.GetCoreFileMemoryRanges(); 6678 if (option_ranges.IsEmpty()) 6679 return; 6680 6681 for (const auto &range : regions) { 6682 auto entry = option_ranges.FindEntryThatContains(range.GetRange()); 6683 if (entry) { 6684 ranges.Append(range.GetRange().GetRangeBase(), 6685 range.GetRange().GetByteSize(), 6686 CreateCoreFileMemoryRange(range)); 6687 } 6688 } 6689 } 6690 6691 Status Process::CalculateCoreFileSaveRanges(const SaveCoreOptions &options, 6692 CoreFileMemoryRanges &ranges) { 6693 lldb_private::MemoryRegionInfos regions; 6694 Status err = GetMemoryRegions(regions); 6695 SaveCoreStyle core_style = options.GetStyle(); 6696 if (err.Fail()) 6697 return err; 6698 if (regions.empty()) 6699 return Status::FromErrorString( 6700 "failed to get any valid memory regions from the process"); 6701 if (core_style == eSaveCoreUnspecified) 6702 return Status::FromErrorString( 6703 "callers must set the core_style to something other than " 6704 "eSaveCoreUnspecified"); 6705 6706 GetUserSpecifiedCoreFileSaveRanges(*this, regions, options, ranges); 6707 6708 std::set<addr_t> stack_ends; 6709 // For fully custom set ups, we don't want to even look at threads if there 6710 // are no threads specified. 6711 if (core_style != lldb::eSaveCoreCustomOnly || 6712 options.HasSpecifiedThreads()) { 6713 SaveOffRegionsWithStackPointers(*this, options, regions, ranges, 6714 stack_ends); 6715 // Save off the dynamic loader sections, so if we are on an architecture 6716 // that supports Thread Locals, that we include those as well. 6717 SaveDynamicLoaderSections(*this, options, ranges, stack_ends); 6718 } 6719 6720 switch (core_style) { 6721 case eSaveCoreUnspecified: 6722 case eSaveCoreCustomOnly: 6723 break; 6724 6725 case eSaveCoreFull: 6726 GetCoreFileSaveRangesFull(*this, regions, ranges, stack_ends); 6727 break; 6728 6729 case eSaveCoreDirtyOnly: 6730 GetCoreFileSaveRangesDirtyOnly(*this, regions, ranges, stack_ends); 6731 break; 6732 6733 case eSaveCoreStackOnly: 6734 GetCoreFileSaveRangesStackOnly(*this, regions, ranges, stack_ends); 6735 break; 6736 } 6737 6738 if (err.Fail()) 6739 return err; 6740 6741 if (ranges.IsEmpty()) 6742 return Status::FromErrorStringWithFormat( 6743 "no valid address ranges found for core style"); 6744 6745 return ranges.FinalizeCoreFileSaveRanges(); 6746 } 6747 6748 std::vector<ThreadSP> 6749 Process::CalculateCoreFileThreadList(const SaveCoreOptions &core_options) { 6750 std::vector<ThreadSP> thread_list; 6751 for (const lldb::ThreadSP &thread_sp : m_thread_list.Threads()) { 6752 if (core_options.ShouldThreadBeSaved(thread_sp->GetID())) { 6753 thread_list.push_back(thread_sp); 6754 } 6755 } 6756 6757 return thread_list; 6758 } 6759 6760 void Process::SetAddressableBitMasks(AddressableBits bit_masks) { 6761 uint32_t low_memory_addr_bits = bit_masks.GetLowmemAddressableBits(); 6762 uint32_t high_memory_addr_bits = bit_masks.GetHighmemAddressableBits(); 6763 6764 if (low_memory_addr_bits == 0 && high_memory_addr_bits == 0) 6765 return; 6766 6767 if (low_memory_addr_bits != 0) { 6768 addr_t low_addr_mask = 6769 AddressableBits::AddressableBitToMask(low_memory_addr_bits); 6770 SetCodeAddressMask(low_addr_mask); 6771 SetDataAddressMask(low_addr_mask); 6772 } 6773 6774 if (high_memory_addr_bits != 0) { 6775 addr_t high_addr_mask = 6776 AddressableBits::AddressableBitToMask(high_memory_addr_bits); 6777 SetHighmemCodeAddressMask(high_addr_mask); 6778 SetHighmemDataAddressMask(high_addr_mask); 6779 } 6780 } 6781