1 //===-- LibiptDecoder.cpp --======-----------------------------------------===// 2 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 3 // See https://llvm.org/LICENSE.txt for license information. 4 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 5 // 6 //===----------------------------------------------------------------------===// 7 8 #include "LibiptDecoder.h" 9 #include "TraceIntelPT.h" 10 #include "lldb/Target/Process.h" 11 #include <optional> 12 13 using namespace lldb; 14 using namespace lldb_private; 15 using namespace lldb_private::trace_intel_pt; 16 using namespace llvm; 17 18 bool IsLibiptError(int status) { return status < 0; } 19 20 bool IsEndOfStream(int status) { 21 assert(status >= 0 && "We can't check if we reached the end of the stream if " 22 "we got a failed status"); 23 return status & pts_eos; 24 } 25 26 bool HasEvents(int status) { 27 assert(status >= 0 && "We can't check for events if we got a failed status"); 28 return status & pts_event_pending; 29 } 30 31 // RAII deleter for libipt's decoders 32 auto InsnDecoderDeleter = [](pt_insn_decoder *decoder) { 33 pt_insn_free_decoder(decoder); 34 }; 35 36 auto QueryDecoderDeleter = [](pt_query_decoder *decoder) { 37 pt_qry_free_decoder(decoder); 38 }; 39 40 using PtInsnDecoderUP = 41 std::unique_ptr<pt_insn_decoder, decltype(InsnDecoderDeleter)>; 42 43 using PtQueryDecoderUP = 44 std::unique_ptr<pt_query_decoder, decltype(QueryDecoderDeleter)>; 45 46 /// Create a basic configuration object limited to a given buffer that can be 47 /// used for many different decoders. 48 static Expected<pt_config> CreateBasicLibiptConfig(TraceIntelPT &trace_intel_pt, 49 ArrayRef<uint8_t> buffer) { 50 Expected<pt_cpu> cpu_info = trace_intel_pt.GetCPUInfo(); 51 if (!cpu_info) 52 return cpu_info.takeError(); 53 54 pt_config config; 55 pt_config_init(&config); 56 config.cpu = *cpu_info; 57 58 int status = pt_cpu_errata(&config.errata, &config.cpu); 59 if (IsLibiptError(status)) 60 return make_error<IntelPTError>(status); 61 62 // The libipt library does not modify the trace buffer, hence the 63 // following casts are safe. 64 config.begin = const_cast<uint8_t *>(buffer.data()); 65 config.end = const_cast<uint8_t *>(buffer.data() + buffer.size()); 66 return config; 67 } 68 69 /// Callback used by libipt for reading the process memory. 70 /// 71 /// More information can be found in 72 /// https://github.com/intel/libipt/blob/master/doc/man/pt_image_set_callback.3.md 73 static int ReadProcessMemory(uint8_t *buffer, size_t size, 74 const pt_asid * /* unused */, uint64_t pc, 75 void *context) { 76 Process *process = static_cast<Process *>(context); 77 78 Status error; 79 int bytes_read = process->ReadMemory(pc, buffer, size, error); 80 if (error.Fail()) 81 return -pte_nomap; 82 return bytes_read; 83 } 84 85 /// Set up the memory image callback for the given decoder. 86 static Error SetupMemoryImage(pt_insn_decoder *decoder, Process &process) { 87 pt_image *image = pt_insn_get_image(decoder); 88 89 int status = pt_image_set_callback(image, ReadProcessMemory, &process); 90 if (IsLibiptError(status)) 91 return make_error<IntelPTError>(status); 92 return Error::success(); 93 } 94 95 /// Create an instruction decoder for the given buffer and the given process. 96 static Expected<PtInsnDecoderUP> 97 CreateInstructionDecoder(TraceIntelPT &trace_intel_pt, ArrayRef<uint8_t> buffer, 98 Process &process) { 99 Expected<pt_config> config = CreateBasicLibiptConfig(trace_intel_pt, buffer); 100 if (!config) 101 return config.takeError(); 102 103 pt_insn_decoder *decoder_ptr = pt_insn_alloc_decoder(&*config); 104 if (!decoder_ptr) 105 return make_error<IntelPTError>(-pte_nomem); 106 107 PtInsnDecoderUP decoder_up(decoder_ptr, InsnDecoderDeleter); 108 109 if (Error err = SetupMemoryImage(decoder_ptr, process)) 110 return std::move(err); 111 112 return decoder_up; 113 } 114 115 /// Create a query decoder for the given buffer. The query decoder is the 116 /// highest level decoder that operates directly on packets and doesn't perform 117 /// actual instruction decoding. That's why it can be useful for inspecting a 118 /// raw trace without pinning it to a particular process. 119 static Expected<PtQueryDecoderUP> 120 CreateQueryDecoder(TraceIntelPT &trace_intel_pt, ArrayRef<uint8_t> buffer) { 121 Expected<pt_config> config = CreateBasicLibiptConfig(trace_intel_pt, buffer); 122 if (!config) 123 return config.takeError(); 124 125 pt_query_decoder *decoder_ptr = pt_qry_alloc_decoder(&*config); 126 if (!decoder_ptr) 127 return make_error<IntelPTError>(-pte_nomem); 128 129 return PtQueryDecoderUP(decoder_ptr, QueryDecoderDeleter); 130 } 131 132 /// Class used to identify anomalies in traces, which should often indicate a 133 /// fatal error in the trace. 134 class PSBBlockAnomalyDetector { 135 public: 136 PSBBlockAnomalyDetector(pt_insn_decoder &decoder, 137 TraceIntelPT &trace_intel_pt, 138 DecodedThread &decoded_thread) 139 : m_decoder(decoder), m_decoded_thread(decoded_thread) { 140 m_infinite_decoding_loop_threshold = 141 trace_intel_pt.GetGlobalProperties() 142 .GetInfiniteDecodingLoopVerificationThreshold(); 143 m_extremely_large_decoding_threshold = 144 trace_intel_pt.GetGlobalProperties() 145 .GetExtremelyLargeDecodingThreshold(); 146 m_next_infinite_decoding_loop_threshold = 147 m_infinite_decoding_loop_threshold; 148 } 149 150 /// \return 151 /// An \a llvm::Error if an anomaly that includes the last instruction item 152 /// in the trace, or \a llvm::Error::success otherwise. 153 Error DetectAnomaly() { 154 RefreshPacketOffset(); 155 uint64_t insn_added_since_last_packet_offset = 156 m_decoded_thread.GetTotalInstructionCount() - 157 m_insn_count_at_last_packet_offset; 158 159 // We want to check if we might have fallen in an infinite loop. As this 160 // check is not a no-op, we want to do it when we have a strong suggestion 161 // that things went wrong. First, we check how many instructions we have 162 // decoded since we processed an Intel PT packet for the last time. This 163 // number should be low, because at some point we should see branches, jumps 164 // or interrupts that require a new packet to be processed. Once we reach 165 // certain threshold we start analyzing the trace. 166 // 167 // We use the number of decoded instructions since the last Intel PT packet 168 // as a proxy because, in fact, we don't expect a single packet to give, 169 // say, 100k instructions. That would mean that there are 100k sequential 170 // instructions without any single branch, which is highly unlikely, or that 171 // we found an infinite loop using direct jumps, e.g. 172 // 173 // 0x0A: nop or pause 174 // 0x0C: jump to 0x0A 175 // 176 // which is indeed code that is found in the kernel. I presume we reach 177 // this kind of code in the decoder because we don't handle self-modified 178 // code in post-mortem kernel traces. 179 // 180 // We are right now only signaling the anomaly as a trace error, but it 181 // would be more conservative to also discard all the trace items found in 182 // this PSB. I prefer not to do that for the time being to give more 183 // exposure to this kind of anomalies and help debugging. Discarding the 184 // trace items would just make investigation harded. 185 // 186 // Finally, if the user wants to see if a specific thread has an anomaly, 187 // it's enough to run the `thread trace dump info` command and look for the 188 // count of this kind of errors. 189 190 if (insn_added_since_last_packet_offset >= 191 m_extremely_large_decoding_threshold) { 192 // In this case, we have decoded a massive amount of sequential 193 // instructions that don't loop. Honestly I wonder if this will ever 194 // happen, but better safe than sorry. 195 return createStringError( 196 inconvertibleErrorCode(), 197 "anomalous trace: possible infinite trace detected"); 198 } 199 if (insn_added_since_last_packet_offset == 200 m_next_infinite_decoding_loop_threshold) { 201 if (Optional<uint64_t> loop_size = TryIdentifyInfiniteLoop()) { 202 return createStringError( 203 inconvertibleErrorCode(), 204 "anomalous trace: possible infinite loop detected of size %" PRIu64, 205 *loop_size); 206 } 207 m_next_infinite_decoding_loop_threshold *= 2; 208 } 209 return Error::success(); 210 } 211 212 private: 213 Optional<uint64_t> TryIdentifyInfiniteLoop() { 214 // The infinite decoding loops we'll encounter are due to sequential 215 // instructions that repeat themselves due to direct jumps, therefore in a 216 // cycle each individual address will only appear once. We use this 217 // information to detect cycles by finding the last 2 ocurrences of the last 218 // instruction added to the trace. Then we traverse the trace making sure 219 // that these two instructions where the ends of a repeating loop. 220 221 // This is a utility that returns the most recent instruction index given a 222 // position in the trace. If the given position is an instruction, that 223 // position is returned. It skips non-instruction items. 224 auto most_recent_insn_index = 225 [&](uint64_t item_index) -> Optional<uint64_t> { 226 while (true) { 227 if (m_decoded_thread.GetItemKindByIndex(item_index) == 228 lldb::eTraceItemKindInstruction) { 229 return item_index; 230 } 231 if (item_index == 0) 232 return std::nullopt; 233 item_index--; 234 } 235 return std::nullopt; 236 }; 237 // Similar to most_recent_insn_index but skips the starting position. 238 auto prev_insn_index = [&](uint64_t item_index) -> Optional<uint64_t> { 239 if (item_index == 0) 240 return std::nullopt; 241 return most_recent_insn_index(item_index - 1); 242 }; 243 244 // We first find the most recent instruction. 245 Optional<uint64_t> last_insn_index_opt = 246 *prev_insn_index(m_decoded_thread.GetItemsCount()); 247 if (!last_insn_index_opt) 248 return std::nullopt; 249 uint64_t last_insn_index = *last_insn_index_opt; 250 251 // We then find the most recent previous occurrence of that last 252 // instruction. 253 Optional<uint64_t> last_insn_copy_index = prev_insn_index(last_insn_index); 254 uint64_t loop_size = 1; 255 while (last_insn_copy_index && 256 m_decoded_thread.GetInstructionLoadAddress(*last_insn_copy_index) != 257 m_decoded_thread.GetInstructionLoadAddress(last_insn_index)) { 258 last_insn_copy_index = prev_insn_index(*last_insn_copy_index); 259 loop_size++; 260 } 261 if (!last_insn_copy_index) 262 return std::nullopt; 263 264 // Now we check if the segment between these last positions of the last 265 // instruction address is in fact a repeating loop. 266 uint64_t loop_elements_visited = 1; 267 uint64_t insn_index_a = last_insn_index, 268 insn_index_b = *last_insn_copy_index; 269 while (loop_elements_visited < loop_size) { 270 if (Optional<uint64_t> prev = prev_insn_index(insn_index_a)) 271 insn_index_a = *prev; 272 else 273 return std::nullopt; 274 if (Optional<uint64_t> prev = prev_insn_index(insn_index_b)) 275 insn_index_b = *prev; 276 else 277 return std::nullopt; 278 if (m_decoded_thread.GetInstructionLoadAddress(insn_index_a) != 279 m_decoded_thread.GetInstructionLoadAddress(insn_index_b)) 280 return std::nullopt; 281 loop_elements_visited++; 282 } 283 return loop_size; 284 } 285 286 // Refresh the internal counters if a new packet offset has been visited 287 void RefreshPacketOffset() { 288 lldb::addr_t new_packet_offset; 289 if (!IsLibiptError(pt_insn_get_offset(&m_decoder, &new_packet_offset)) && 290 new_packet_offset != m_last_packet_offset) { 291 m_last_packet_offset = new_packet_offset; 292 m_next_infinite_decoding_loop_threshold = 293 m_infinite_decoding_loop_threshold; 294 m_insn_count_at_last_packet_offset = 295 m_decoded_thread.GetTotalInstructionCount(); 296 } 297 } 298 299 pt_insn_decoder &m_decoder; 300 DecodedThread &m_decoded_thread; 301 lldb::addr_t m_last_packet_offset = LLDB_INVALID_ADDRESS; 302 uint64_t m_insn_count_at_last_packet_offset = 0; 303 uint64_t m_infinite_decoding_loop_threshold; 304 uint64_t m_next_infinite_decoding_loop_threshold; 305 uint64_t m_extremely_large_decoding_threshold; 306 }; 307 308 /// Class that decodes a raw buffer for a single PSB block using the low level 309 /// libipt library. It assumes that kernel and user mode instructions are not 310 /// mixed in the same PSB block. 311 /// 312 /// Throughout this code, the status of the decoder will be used to identify 313 /// events needed to be processed or errors in the decoder. The values can be 314 /// - negative: actual errors 315 /// - positive or zero: not an error, but a list of bits signaling the status 316 /// of the decoder, e.g. whether there are events that need to be decoded or 317 /// not. 318 class PSBBlockDecoder { 319 public: 320 /// \param[in] decoder 321 /// A decoder configured to start and end within the boundaries of the 322 /// given \p psb_block. 323 /// 324 /// \param[in] psb_block 325 /// The PSB block to decode. 326 /// 327 /// \param[in] next_block_ip 328 /// The starting ip at the next PSB block of the same thread if available. 329 /// 330 /// \param[in] decoded_thread 331 /// A \a DecodedThread object where the decoded instructions will be 332 /// appended to. It might have already some instructions. 333 /// 334 /// \param[in] tsc_upper_bound 335 /// Maximum allowed value of TSCs decoded from this PSB block. 336 /// Any of this PSB's data occurring after this TSC will be excluded. 337 PSBBlockDecoder(PtInsnDecoderUP &&decoder_up, const PSBBlock &psb_block, 338 Optional<lldb::addr_t> next_block_ip, 339 DecodedThread &decoded_thread, TraceIntelPT &trace_intel_pt, 340 llvm::Optional<DecodedThread::TSC> tsc_upper_bound) 341 : m_decoder_up(std::move(decoder_up)), m_psb_block(psb_block), 342 m_next_block_ip(next_block_ip), m_decoded_thread(decoded_thread), 343 m_anomaly_detector(*m_decoder_up, trace_intel_pt, decoded_thread), 344 m_tsc_upper_bound(tsc_upper_bound) {} 345 346 /// \param[in] trace_intel_pt 347 /// The main Trace object that own the PSB block. 348 /// 349 /// \param[in] decoder 350 /// A decoder configured to start and end within the boundaries of the 351 /// given \p psb_block. 352 /// 353 /// \param[in] psb_block 354 /// The PSB block to decode. 355 /// 356 /// \param[in] buffer 357 /// The raw intel pt trace for this block. 358 /// 359 /// \param[in] process 360 /// The process to decode. It provides the memory image to use for 361 /// decoding. 362 /// 363 /// \param[in] next_block_ip 364 /// The starting ip at the next PSB block of the same thread if available. 365 /// 366 /// \param[in] decoded_thread 367 /// A \a DecodedThread object where the decoded instructions will be 368 /// appended to. It might have already some instructions. 369 static Expected<PSBBlockDecoder> 370 Create(TraceIntelPT &trace_intel_pt, const PSBBlock &psb_block, 371 ArrayRef<uint8_t> buffer, Process &process, 372 Optional<lldb::addr_t> next_block_ip, DecodedThread &decoded_thread, 373 llvm::Optional<DecodedThread::TSC> tsc_upper_bound) { 374 Expected<PtInsnDecoderUP> decoder_up = 375 CreateInstructionDecoder(trace_intel_pt, buffer, process); 376 if (!decoder_up) 377 return decoder_up.takeError(); 378 379 return PSBBlockDecoder(std::move(*decoder_up), psb_block, next_block_ip, 380 decoded_thread, trace_intel_pt, tsc_upper_bound); 381 } 382 383 void DecodePSBBlock() { 384 int status = pt_insn_sync_forward(m_decoder_up.get()); 385 assert(status >= 0 && 386 "Synchronization shouldn't fail because this PSB was previously " 387 "decoded correctly."); 388 389 // We emit a TSC before a sync event to more easily associate a timestamp to 390 // the sync event. If present, the current block's TSC would be the first 391 // TSC we'll see when processing events. 392 if (m_psb_block.tsc) 393 m_decoded_thread.NotifyTsc(*m_psb_block.tsc); 394 395 m_decoded_thread.NotifySyncPoint(m_psb_block.psb_offset); 396 397 DecodeInstructionsAndEvents(status); 398 } 399 400 private: 401 /// Append an instruction and return \b false if and only if a serious anomaly 402 /// has been detected. 403 bool AppendInstructionAndDetectAnomalies(const pt_insn &insn) { 404 m_decoded_thread.AppendInstruction(insn); 405 406 if (Error err = m_anomaly_detector.DetectAnomaly()) { 407 m_decoded_thread.AppendCustomError(toString(std::move(err)), 408 /*fatal=*/true); 409 return false; 410 } 411 return true; 412 } 413 /// Decode all the instructions and events of the given PSB block. The 414 /// decoding loop might stop abruptly if an infinite decoding loop is 415 /// detected. 416 void DecodeInstructionsAndEvents(int status) { 417 pt_insn insn; 418 419 while (true) { 420 status = ProcessPTEvents(status); 421 422 if (IsLibiptError(status)) 423 return; 424 else if (IsEndOfStream(status)) 425 break; 426 427 // The status returned by pt_insn_next will need to be processed 428 // by ProcessPTEvents in the next loop if it is not an error. 429 std::memset(&insn, 0, sizeof insn); 430 status = pt_insn_next(m_decoder_up.get(), &insn, sizeof(insn)); 431 432 if (IsLibiptError(status)) { 433 m_decoded_thread.AppendError(IntelPTError(status, insn.ip)); 434 return; 435 } else if (IsEndOfStream(status)) { 436 break; 437 } 438 439 if (!AppendInstructionAndDetectAnomalies(insn)) 440 return; 441 } 442 443 // We need to keep querying non-branching instructions until we hit the 444 // starting point of the next PSB. We won't see events at this point. This 445 // is based on 446 // https://github.com/intel/libipt/blob/master/doc/howto_libipt.md#parallel-decode 447 if (m_next_block_ip && insn.ip != 0) { 448 while (insn.ip != *m_next_block_ip) { 449 if (!AppendInstructionAndDetectAnomalies(insn)) 450 return; 451 452 status = pt_insn_next(m_decoder_up.get(), &insn, sizeof(insn)); 453 454 if (IsLibiptError(status)) { 455 m_decoded_thread.AppendError(IntelPTError(status, insn.ip)); 456 return; 457 } 458 } 459 } 460 } 461 462 /// Process the TSC of a decoded PT event. Specifically, check if this TSC 463 /// is below the TSC upper bound for this PSB. If the TSC exceeds the upper 464 /// bound, return an error to abort decoding. Otherwise add the it to the 465 /// underlying DecodedThread and decoding should continue as expected. 466 /// 467 /// \param[in] tsc 468 /// The TSC of the a decoded event. 469 Error ProcessPTEventTSC(DecodedThread::TSC tsc) { 470 if (m_tsc_upper_bound && tsc >= *m_tsc_upper_bound) { 471 // This event and all the remaining events of this PSB have a TSC 472 // outside the range of the "owning" ThreadContinuousExecution. For 473 // now we drop all of these events/instructions, future work can 474 // improve upon this by determining the "owning" 475 // ThreadContinuousExecution of the remaining PSB data. 476 std::string err_msg = formatv("decoding truncated: TSC {0} exceeds " 477 "maximum TSC value {1}, will skip decoding" 478 " the remaining data of the PSB", 479 tsc, *m_tsc_upper_bound) 480 .str(); 481 482 uint64_t offset; 483 int status = pt_insn_get_offset(m_decoder_up.get(), &offset); 484 if (!IsLibiptError(status)) { 485 err_msg = formatv("{2} (skipping {0} of {1} bytes)", offset, 486 m_psb_block.size, err_msg) 487 .str(); 488 } 489 m_decoded_thread.AppendCustomError(err_msg); 490 return createStringError(inconvertibleErrorCode(), err_msg); 491 } else { 492 m_decoded_thread.NotifyTsc(tsc); 493 return Error::success(); 494 } 495 } 496 497 /// Before querying instructions, we need to query the events associated with 498 /// that instruction, e.g. timing and trace disablement events. 499 /// 500 /// \param[in] status 501 /// The status gotten from the previous instruction decoding or PSB 502 /// synchronization. 503 /// 504 /// \return 505 /// The pte_status after decoding events. 506 int ProcessPTEvents(int status) { 507 while (HasEvents(status)) { 508 pt_event event; 509 std::memset(&event, 0, sizeof event); 510 status = pt_insn_event(m_decoder_up.get(), &event, sizeof(event)); 511 512 if (IsLibiptError(status)) { 513 m_decoded_thread.AppendError(IntelPTError(status)); 514 return status; 515 } 516 517 if (event.has_tsc) { 518 if (Error err = ProcessPTEventTSC(event.tsc)) { 519 consumeError(std::move(err)); 520 return -pte_internal; 521 } 522 } 523 524 switch (event.type) { 525 case ptev_disabled: 526 // The CPU paused tracing the program, e.g. due to ip filtering. 527 m_decoded_thread.AppendEvent(lldb::eTraceEventDisabledHW); 528 break; 529 case ptev_async_disabled: 530 // The kernel or user code paused tracing the program, e.g. 531 // a breakpoint or a ioctl invocation pausing the trace, or a 532 // context switch happened. 533 m_decoded_thread.AppendEvent(lldb::eTraceEventDisabledSW); 534 break; 535 case ptev_overflow: 536 // The CPU internal buffer had an overflow error and some instructions 537 // were lost. A OVF packet comes with an FUP packet (harcoded address) 538 // according to the documentation, so we'll continue seeing instructions 539 // after this event. 540 m_decoded_thread.AppendError(IntelPTError(-pte_overflow)); 541 break; 542 default: 543 break; 544 } 545 } 546 547 return status; 548 } 549 550 private: 551 PtInsnDecoderUP m_decoder_up; 552 PSBBlock m_psb_block; 553 Optional<lldb::addr_t> m_next_block_ip; 554 DecodedThread &m_decoded_thread; 555 PSBBlockAnomalyDetector m_anomaly_detector; 556 llvm::Optional<DecodedThread::TSC> m_tsc_upper_bound; 557 }; 558 559 Error lldb_private::trace_intel_pt::DecodeSingleTraceForThread( 560 DecodedThread &decoded_thread, TraceIntelPT &trace_intel_pt, 561 ArrayRef<uint8_t> buffer) { 562 Expected<std::vector<PSBBlock>> blocks = 563 SplitTraceIntoPSBBlock(trace_intel_pt, buffer, /*expect_tscs=*/false); 564 if (!blocks) 565 return blocks.takeError(); 566 567 for (size_t i = 0; i < blocks->size(); i++) { 568 PSBBlock &block = blocks->at(i); 569 570 Expected<PSBBlockDecoder> decoder = PSBBlockDecoder::Create( 571 trace_intel_pt, block, buffer.slice(block.psb_offset, block.size), 572 *decoded_thread.GetThread()->GetProcess(), 573 i + 1 < blocks->size() ? blocks->at(i + 1).starting_ip : None, 574 decoded_thread, std::nullopt); 575 if (!decoder) 576 return decoder.takeError(); 577 578 decoder->DecodePSBBlock(); 579 } 580 581 return Error::success(); 582 } 583 584 Error lldb_private::trace_intel_pt::DecodeSystemWideTraceForThread( 585 DecodedThread &decoded_thread, TraceIntelPT &trace_intel_pt, 586 const DenseMap<lldb::cpu_id_t, llvm::ArrayRef<uint8_t>> &buffers, 587 const std::vector<IntelPTThreadContinousExecution> &executions) { 588 bool has_seen_psbs = false; 589 for (size_t i = 0; i < executions.size(); i++) { 590 const IntelPTThreadContinousExecution &execution = executions[i]; 591 592 auto variant = execution.thread_execution.variant; 593 594 // We emit the first valid tsc 595 if (execution.psb_blocks.empty()) { 596 decoded_thread.NotifyTsc(execution.thread_execution.GetLowestKnownTSC()); 597 } else { 598 assert(execution.psb_blocks.front().tsc && 599 "per cpu decoding expects TSCs"); 600 decoded_thread.NotifyTsc( 601 std::min(execution.thread_execution.GetLowestKnownTSC(), 602 *execution.psb_blocks.front().tsc)); 603 } 604 605 // We then emit the CPU, which will be correctly associated with a tsc. 606 decoded_thread.NotifyCPU(execution.thread_execution.cpu_id); 607 608 // If we haven't seen a PSB yet, then it's fine not to show errors 609 if (has_seen_psbs) { 610 if (execution.psb_blocks.empty()) { 611 decoded_thread.AppendCustomError( 612 formatv("Unable to find intel pt data a thread " 613 "execution on cpu id = {0}", 614 execution.thread_execution.cpu_id) 615 .str()); 616 } 617 618 // A hinted start is a non-initial execution that doesn't have a switch 619 // in. An only end is an initial execution that doesn't have a switch in. 620 // Any of those cases represent a gap because we have seen a PSB before. 621 if (variant == ThreadContinuousExecution::Variant::HintedStart || 622 variant == ThreadContinuousExecution::Variant::OnlyEnd) { 623 decoded_thread.AppendCustomError( 624 formatv("Unable to find the context switch in for a thread " 625 "execution on cpu id = {0}", 626 execution.thread_execution.cpu_id) 627 .str()); 628 } 629 } 630 631 for (size_t j = 0; j < execution.psb_blocks.size(); j++) { 632 const PSBBlock &psb_block = execution.psb_blocks[j]; 633 634 Expected<PSBBlockDecoder> decoder = PSBBlockDecoder::Create( 635 trace_intel_pt, psb_block, 636 buffers.lookup(execution.thread_execution.cpu_id) 637 .slice(psb_block.psb_offset, psb_block.size), 638 *decoded_thread.GetThread()->GetProcess(), 639 j + 1 < execution.psb_blocks.size() 640 ? execution.psb_blocks[j + 1].starting_ip 641 : None, 642 decoded_thread, execution.thread_execution.GetEndTSC()); 643 if (!decoder) 644 return decoder.takeError(); 645 646 has_seen_psbs = true; 647 decoder->DecodePSBBlock(); 648 } 649 650 // If we haven't seen a PSB yet, then it's fine not to show errors 651 if (has_seen_psbs) { 652 // A hinted end is a non-ending execution that doesn't have a switch out. 653 // An only start is an ending execution that doesn't have a switch out. 654 // Any of those cases represent a gap if we still have executions to 655 // process and we have seen a PSB before. 656 if (i + 1 != executions.size() && 657 (variant == ThreadContinuousExecution::Variant::OnlyStart || 658 variant == ThreadContinuousExecution::Variant::HintedEnd)) { 659 decoded_thread.AppendCustomError( 660 formatv("Unable to find the context switch out for a thread " 661 "execution on cpu id = {0}", 662 execution.thread_execution.cpu_id) 663 .str()); 664 } 665 } 666 } 667 return Error::success(); 668 } 669 670 bool IntelPTThreadContinousExecution::operator<( 671 const IntelPTThreadContinousExecution &o) const { 672 // As the context switch might be incomplete, we look first for the first real 673 // PSB packet, which is a valid TSC. Otherwise, We query the thread execution 674 // itself for some tsc. 675 auto get_tsc = [](const IntelPTThreadContinousExecution &exec) { 676 return exec.psb_blocks.empty() ? exec.thread_execution.GetLowestKnownTSC() 677 : exec.psb_blocks.front().tsc; 678 }; 679 680 return get_tsc(*this) < get_tsc(o); 681 } 682 683 Expected<std::vector<PSBBlock>> 684 lldb_private::trace_intel_pt::SplitTraceIntoPSBBlock( 685 TraceIntelPT &trace_intel_pt, llvm::ArrayRef<uint8_t> buffer, 686 bool expect_tscs) { 687 // This follows 688 // https://github.com/intel/libipt/blob/master/doc/howto_libipt.md#parallel-decode 689 690 Expected<PtQueryDecoderUP> decoder_up = 691 CreateQueryDecoder(trace_intel_pt, buffer); 692 if (!decoder_up) 693 return decoder_up.takeError(); 694 695 pt_query_decoder *decoder = decoder_up.get().get(); 696 697 std::vector<PSBBlock> executions; 698 699 while (true) { 700 uint64_t maybe_ip = LLDB_INVALID_ADDRESS; 701 int decoding_status = pt_qry_sync_forward(decoder, &maybe_ip); 702 if (IsLibiptError(decoding_status)) 703 break; 704 705 uint64_t psb_offset; 706 int offset_status = pt_qry_get_sync_offset(decoder, &psb_offset); 707 assert(offset_status >= 0 && 708 "This can't fail because we were able to synchronize"); 709 710 Optional<uint64_t> ip; 711 if (!(pts_ip_suppressed & decoding_status)) 712 ip = maybe_ip; 713 714 Optional<uint64_t> tsc; 715 // Now we fetch the first TSC that comes after the PSB. 716 while (HasEvents(decoding_status)) { 717 pt_event event; 718 decoding_status = pt_qry_event(decoder, &event, sizeof(event)); 719 if (IsLibiptError(decoding_status)) 720 break; 721 if (event.has_tsc) { 722 tsc = event.tsc; 723 break; 724 } 725 } 726 if (IsLibiptError(decoding_status)) { 727 // We continue to the next PSB. This effectively merges this PSB with the 728 // previous one, and that should be fine because this PSB might be the 729 // direct continuation of the previous thread and it's better to show an 730 // error in the decoded thread than to hide it. If this is the first PSB, 731 // we are okay losing it. Besides that, an error at processing events 732 // means that we wouldn't be able to get any instruction out of it. 733 continue; 734 } 735 736 if (expect_tscs && !tsc) 737 return createStringError(inconvertibleErrorCode(), 738 "Found a PSB without TSC."); 739 740 executions.push_back({ 741 psb_offset, 742 tsc, 743 0, 744 ip, 745 }); 746 } 747 if (!executions.empty()) { 748 // We now adjust the sizes of each block 749 executions.back().size = buffer.size() - executions.back().psb_offset; 750 for (int i = (int)executions.size() - 2; i >= 0; i--) { 751 executions[i].size = 752 executions[i + 1].psb_offset - executions[i].psb_offset; 753 } 754 } 755 return executions; 756 } 757 758 Expected<Optional<uint64_t>> 759 lldb_private::trace_intel_pt::FindLowestTSCInTrace(TraceIntelPT &trace_intel_pt, 760 ArrayRef<uint8_t> buffer) { 761 Expected<PtQueryDecoderUP> decoder_up = 762 CreateQueryDecoder(trace_intel_pt, buffer); 763 if (!decoder_up) 764 return decoder_up.takeError(); 765 766 pt_query_decoder *decoder = decoder_up.get().get(); 767 uint64_t ip = LLDB_INVALID_ADDRESS; 768 int status = pt_qry_sync_forward(decoder, &ip); 769 if (IsLibiptError(status)) 770 return std::nullopt; 771 772 while (HasEvents(status)) { 773 pt_event event; 774 status = pt_qry_event(decoder, &event, sizeof(event)); 775 if (IsLibiptError(status)) 776 return std::nullopt; 777 if (event.has_tsc) 778 return event.tsc; 779 } 780 return std::nullopt; 781 } 782