xref: /llvm-project/lldb/source/Plugins/Process/gdb-remote/GDBRemoteRegisterContext.cpp (revision 00e704bf080ffeeb9e334fb3ab71594f9aa50969)
1 //===-- GDBRemoteRegisterContext.cpp --------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "GDBRemoteRegisterContext.h"
10 
11 #include "lldb/Target/ExecutionContext.h"
12 #include "lldb/Target/Target.h"
13 #include "lldb/Utility/DataBufferHeap.h"
14 #include "lldb/Utility/DataExtractor.h"
15 #include "lldb/Utility/RegisterValue.h"
16 #include "lldb/Utility/Scalar.h"
17 #include "lldb/Utility/StreamString.h"
18 #include "ProcessGDBRemote.h"
19 #include "ProcessGDBRemoteLog.h"
20 #include "ThreadGDBRemote.h"
21 #include "Utility/ARM_DWARF_Registers.h"
22 #include "Utility/ARM_ehframe_Registers.h"
23 #include "lldb/Utility/StringExtractorGDBRemote.h"
24 
25 #include <memory>
26 
27 using namespace lldb;
28 using namespace lldb_private;
29 using namespace lldb_private::process_gdb_remote;
30 
31 // GDBRemoteRegisterContext constructor
32 GDBRemoteRegisterContext::GDBRemoteRegisterContext(
33     ThreadGDBRemote &thread, uint32_t concrete_frame_idx,
34     GDBRemoteDynamicRegisterInfoSP reg_info_sp, bool read_all_at_once,
35     bool write_all_at_once)
36     : RegisterContext(thread, concrete_frame_idx),
37       m_reg_info_sp(std::move(reg_info_sp)), m_reg_valid(), m_reg_data(),
38       m_read_all_at_once(read_all_at_once),
39       m_write_all_at_once(write_all_at_once), m_gpacket_cached(false) {
40   // Resize our vector of bools to contain one bool for every register. We will
41   // use these boolean values to know when a register value is valid in
42   // m_reg_data.
43   m_reg_valid.resize(m_reg_info_sp->GetNumRegisters());
44 
45   // Make a heap based buffer that is big enough to store all registers
46   DataBufferSP reg_data_sp(
47       new DataBufferHeap(m_reg_info_sp->GetRegisterDataByteSize(), 0));
48   m_reg_data.SetData(reg_data_sp);
49   m_reg_data.SetByteOrder(thread.GetProcess()->GetByteOrder());
50 }
51 
52 // Destructor
53 GDBRemoteRegisterContext::~GDBRemoteRegisterContext() = default;
54 
55 void GDBRemoteRegisterContext::InvalidateAllRegisters() {
56   SetAllRegisterValid(false);
57 }
58 
59 void GDBRemoteRegisterContext::SetAllRegisterValid(bool b) {
60   m_gpacket_cached = b;
61   std::vector<bool>::iterator pos, end = m_reg_valid.end();
62   for (pos = m_reg_valid.begin(); pos != end; ++pos)
63     *pos = b;
64 }
65 
66 size_t GDBRemoteRegisterContext::GetRegisterCount() {
67   return m_reg_info_sp->GetNumRegisters();
68 }
69 
70 const RegisterInfo *
71 GDBRemoteRegisterContext::GetRegisterInfoAtIndex(size_t reg) {
72   return m_reg_info_sp->GetRegisterInfoAtIndex(reg);
73 }
74 
75 size_t GDBRemoteRegisterContext::GetRegisterSetCount() {
76   return m_reg_info_sp->GetNumRegisterSets();
77 }
78 
79 const RegisterSet *GDBRemoteRegisterContext::GetRegisterSet(size_t reg_set) {
80   return m_reg_info_sp->GetRegisterSet(reg_set);
81 }
82 
83 bool GDBRemoteRegisterContext::ReadRegister(const RegisterInfo *reg_info,
84                                             RegisterValue &value) {
85   // Read the register
86   if (ReadRegisterBytes(reg_info)) {
87     const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
88     if (m_reg_valid[reg] == false)
89       return false;
90     const bool partial_data_ok = false;
91     Status error(value.SetValueFromData(
92         reg_info, m_reg_data, reg_info->byte_offset, partial_data_ok));
93     return error.Success();
94   }
95   return false;
96 }
97 
98 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(
99     uint32_t reg, llvm::ArrayRef<uint8_t> data) {
100   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
101   if (reg_info == nullptr)
102     return false;
103 
104   // Invalidate if needed
105   InvalidateIfNeeded(false);
106 
107   const size_t reg_byte_size = reg_info->byte_size;
108   memcpy(const_cast<uint8_t *>(
109              m_reg_data.PeekData(reg_info->byte_offset, reg_byte_size)),
110          data.data(), std::min(data.size(), reg_byte_size));
111   bool success = data.size() >= reg_byte_size;
112   if (success) {
113     SetRegisterIsValid(reg, true);
114   } else if (data.size() > 0) {
115     // Only set register is valid to false if we copied some bytes, else leave
116     // it as it was.
117     SetRegisterIsValid(reg, false);
118   }
119   return success;
120 }
121 
122 bool GDBRemoteRegisterContext::PrivateSetRegisterValue(uint32_t reg,
123                                                        uint64_t new_reg_val) {
124   const RegisterInfo *reg_info = GetRegisterInfoAtIndex(reg);
125   if (reg_info == nullptr)
126     return false;
127 
128   // Early in process startup, we can get a thread that has an invalid byte
129   // order because the process hasn't been completely set up yet (see the ctor
130   // where the byte order is setfrom the process).  If that's the case, we
131   // can't set the value here.
132   if (m_reg_data.GetByteOrder() == eByteOrderInvalid) {
133     return false;
134   }
135 
136   // Invalidate if needed
137   InvalidateIfNeeded(false);
138 
139   DataBufferSP buffer_sp(new DataBufferHeap(&new_reg_val, sizeof(new_reg_val)));
140   DataExtractor data(buffer_sp, endian::InlHostByteOrder(), sizeof(void *));
141 
142   // If our register context and our register info disagree, which should never
143   // happen, don't overwrite past the end of the buffer.
144   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
145     return false;
146 
147   // Grab a pointer to where we are going to put this register
148   uint8_t *dst = const_cast<uint8_t *>(
149       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
150 
151   if (dst == nullptr)
152     return false;
153 
154   if (data.CopyByteOrderedData(0,                          // src offset
155                                reg_info->byte_size,        // src length
156                                dst,                        // dst
157                                reg_info->byte_size,        // dst length
158                                m_reg_data.GetByteOrder())) // dst byte order
159   {
160     SetRegisterIsValid(reg, true);
161     return true;
162   }
163   return false;
164 }
165 
166 // Helper function for GDBRemoteRegisterContext::ReadRegisterBytes().
167 bool GDBRemoteRegisterContext::GetPrimordialRegister(
168     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
169   const uint32_t lldb_reg = reg_info->kinds[eRegisterKindLLDB];
170   const uint32_t remote_reg = reg_info->kinds[eRegisterKindProcessPlugin];
171 
172   if (DataBufferSP buffer_sp =
173           gdb_comm.ReadRegister(m_thread.GetProtocolID(), remote_reg))
174     return PrivateSetRegisterValue(
175         lldb_reg, llvm::ArrayRef<uint8_t>(buffer_sp->GetBytes(),
176                                           buffer_sp->GetByteSize()));
177   return false;
178 }
179 
180 bool GDBRemoteRegisterContext::ReadRegisterBytes(const RegisterInfo *reg_info) {
181   ExecutionContext exe_ctx(CalculateThread());
182 
183   Process *process = exe_ctx.GetProcessPtr();
184   Thread *thread = exe_ctx.GetThreadPtr();
185   if (process == nullptr || thread == nullptr)
186     return false;
187 
188   GDBRemoteCommunicationClient &gdb_comm(
189       ((ProcessGDBRemote *)process)->GetGDBRemote());
190 
191   InvalidateIfNeeded(false);
192 
193   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
194 
195   if (!GetRegisterIsValid(reg)) {
196     if (m_read_all_at_once && !m_gpacket_cached) {
197       if (DataBufferSP buffer_sp =
198               gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())) {
199         memcpy(const_cast<uint8_t *>(m_reg_data.GetDataStart()),
200                buffer_sp->GetBytes(),
201                std::min(buffer_sp->GetByteSize(), m_reg_data.GetByteSize()));
202         if (buffer_sp->GetByteSize() >= m_reg_data.GetByteSize()) {
203           SetAllRegisterValid(true);
204           return true;
205         } else if (buffer_sp->GetByteSize() > 0) {
206           const int regcount = m_reg_info_sp->GetNumRegisters();
207           for (int i = 0; i < regcount; i++) {
208             struct RegisterInfo *reginfo =
209                 m_reg_info_sp->GetRegisterInfoAtIndex(i);
210             if (reginfo->byte_offset + reginfo->byte_size <=
211                 buffer_sp->GetByteSize()) {
212               m_reg_valid[i] = true;
213             } else {
214               m_reg_valid[i] = false;
215             }
216           }
217 
218           m_gpacket_cached = true;
219           if (GetRegisterIsValid(reg))
220             return true;
221         } else {
222           Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
223                                                                 GDBR_LOG_PACKETS));
224           LLDB_LOGF(
225               log,
226               "error: GDBRemoteRegisterContext::ReadRegisterBytes tried "
227               "to read the "
228               "entire register context at once, expected at least %" PRId64
229               " bytes "
230               "but only got %" PRId64 " bytes.",
231               m_reg_data.GetByteSize(), buffer_sp->GetByteSize());
232           return false;
233         }
234       }
235     }
236     if (reg_info->value_regs) {
237       // Process this composite register request by delegating to the
238       // constituent primordial registers.
239 
240       // Index of the primordial register.
241       bool success = true;
242       for (uint32_t idx = 0; success; ++idx) {
243         const uint32_t prim_reg = reg_info->value_regs[idx];
244         if (prim_reg == LLDB_INVALID_REGNUM)
245           break;
246         // We have a valid primordial register as our constituent. Grab the
247         // corresponding register info.
248         const RegisterInfo *prim_reg_info =
249             GetRegisterInfo(eRegisterKindLLDB, prim_reg);
250         if (prim_reg_info == nullptr)
251           success = false;
252         else {
253           // Read the containing register if it hasn't already been read
254           if (!GetRegisterIsValid(prim_reg))
255             success = GetPrimordialRegister(prim_reg_info, gdb_comm);
256         }
257       }
258 
259       if (success) {
260         // If we reach this point, all primordial register requests have
261         // succeeded. Validate this composite register.
262         SetRegisterIsValid(reg_info, true);
263       }
264     } else {
265       // Get each register individually
266       GetPrimordialRegister(reg_info, gdb_comm);
267     }
268 
269     // Make sure we got a valid register value after reading it
270     if (!GetRegisterIsValid(reg))
271       return false;
272   }
273 
274   return true;
275 }
276 
277 bool GDBRemoteRegisterContext::WriteRegister(const RegisterInfo *reg_info,
278                                              const RegisterValue &value) {
279   DataExtractor data;
280   if (value.GetData(data))
281     return WriteRegisterBytes(reg_info, data, 0);
282   return false;
283 }
284 
285 // Helper function for GDBRemoteRegisterContext::WriteRegisterBytes().
286 bool GDBRemoteRegisterContext::SetPrimordialRegister(
287     const RegisterInfo *reg_info, GDBRemoteCommunicationClient &gdb_comm) {
288   StreamString packet;
289   StringExtractorGDBRemote response;
290   const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
291   // Invalidate just this register
292   SetRegisterIsValid(reg, false);
293 
294   return gdb_comm.WriteRegister(
295       m_thread.GetProtocolID(), reg_info->kinds[eRegisterKindProcessPlugin],
296       {m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size),
297        reg_info->byte_size});
298 }
299 
300 bool GDBRemoteRegisterContext::WriteRegisterBytes(const RegisterInfo *reg_info,
301                                                   DataExtractor &data,
302                                                   uint32_t data_offset) {
303   ExecutionContext exe_ctx(CalculateThread());
304 
305   Process *process = exe_ctx.GetProcessPtr();
306   Thread *thread = exe_ctx.GetThreadPtr();
307   if (process == nullptr || thread == nullptr)
308     return false;
309 
310   GDBRemoteCommunicationClient &gdb_comm(
311       ((ProcessGDBRemote *)process)->GetGDBRemote());
312 
313   assert(m_reg_data.GetByteSize() >=
314          reg_info->byte_offset + reg_info->byte_size);
315 
316   // If our register context and our register info disagree, which should never
317   // happen, don't overwrite past the end of the buffer.
318   if (m_reg_data.GetByteSize() < reg_info->byte_offset + reg_info->byte_size)
319     return false;
320 
321   // Grab a pointer to where we are going to put this register
322   uint8_t *dst = const_cast<uint8_t *>(
323       m_reg_data.PeekData(reg_info->byte_offset, reg_info->byte_size));
324 
325   if (dst == nullptr)
326     return false;
327 
328   // Code below is specific to AArch64 target in SVE state
329   // If vector granule (vg) register is being written then thread's
330   // register context reconfiguration is triggered on success.
331   bool do_reconfigure_arm64_sve = false;
332   const ArchSpec &arch = process->GetTarget().GetArchitecture();
333   if (arch.IsValid() && arch.GetTriple().isAArch64())
334     if (strcmp(reg_info->name, "vg") == 0)
335       do_reconfigure_arm64_sve = true;
336 
337   if (data.CopyByteOrderedData(data_offset,                // src offset
338                                reg_info->byte_size,        // src length
339                                dst,                        // dst
340                                reg_info->byte_size,        // dst length
341                                m_reg_data.GetByteOrder())) // dst byte order
342   {
343     GDBRemoteClientBase::Lock lock(gdb_comm);
344     if (lock) {
345       if (m_write_all_at_once) {
346         // Invalidate all register values
347         InvalidateIfNeeded(true);
348 
349         // Set all registers in one packet
350         if (gdb_comm.WriteAllRegisters(
351                 m_thread.GetProtocolID(),
352                 {m_reg_data.GetDataStart(), size_t(m_reg_data.GetByteSize())}))
353 
354         {
355           SetAllRegisterValid(false);
356 
357           if (do_reconfigure_arm64_sve)
358             AArch64SVEReconfigure();
359 
360           return true;
361         }
362       } else {
363         bool success = true;
364 
365         if (reg_info->value_regs) {
366           // This register is part of another register. In this case we read
367           // the actual register data for any "value_regs", and once all that
368           // data is read, we will have enough data in our register context
369           // bytes for the value of this register
370 
371           // Invalidate this composite register first.
372 
373           for (uint32_t idx = 0; success; ++idx) {
374             const uint32_t reg = reg_info->value_regs[idx];
375             if (reg == LLDB_INVALID_REGNUM)
376               break;
377             // We have a valid primordial register as our constituent. Grab the
378             // corresponding register info.
379             const RegisterInfo *value_reg_info =
380                 GetRegisterInfo(eRegisterKindLLDB, reg);
381             if (value_reg_info == nullptr)
382               success = false;
383             else
384               success = SetPrimordialRegister(value_reg_info, gdb_comm);
385           }
386         } else {
387           // This is an actual register, write it
388           success = SetPrimordialRegister(reg_info, gdb_comm);
389 
390           if (success && do_reconfigure_arm64_sve)
391             AArch64SVEReconfigure();
392         }
393 
394         // Check if writing this register will invalidate any other register
395         // values? If so, invalidate them
396         if (reg_info->invalidate_regs) {
397           for (uint32_t idx = 0, reg = reg_info->invalidate_regs[0];
398                reg != LLDB_INVALID_REGNUM;
399                reg = reg_info->invalidate_regs[++idx])
400             SetRegisterIsValid(ConvertRegisterKindToRegisterNumber(
401                                    eRegisterKindLLDB, reg),
402                                false);
403         }
404 
405         return success;
406       }
407     } else {
408       Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
409                                                              GDBR_LOG_PACKETS));
410       if (log) {
411         if (log->GetVerbose()) {
412           StreamString strm;
413           gdb_comm.DumpHistory(strm);
414           LLDB_LOGF(log,
415                     "error: failed to get packet sequence mutex, not sending "
416                     "write register for \"%s\":\n%s",
417                     reg_info->name, strm.GetData());
418         } else
419           LLDB_LOGF(log,
420                     "error: failed to get packet sequence mutex, not sending "
421                     "write register for \"%s\"",
422                     reg_info->name);
423       }
424     }
425   }
426   return false;
427 }
428 
429 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
430     RegisterCheckpoint &reg_checkpoint) {
431   ExecutionContext exe_ctx(CalculateThread());
432 
433   Process *process = exe_ctx.GetProcessPtr();
434   Thread *thread = exe_ctx.GetThreadPtr();
435   if (process == nullptr || thread == nullptr)
436     return false;
437 
438   GDBRemoteCommunicationClient &gdb_comm(
439       ((ProcessGDBRemote *)process)->GetGDBRemote());
440 
441   uint32_t save_id = 0;
442   if (gdb_comm.SaveRegisterState(thread->GetProtocolID(), save_id)) {
443     reg_checkpoint.SetID(save_id);
444     reg_checkpoint.GetData().reset();
445     return true;
446   } else {
447     reg_checkpoint.SetID(0); // Invalid save ID is zero
448     return ReadAllRegisterValues(reg_checkpoint.GetData());
449   }
450 }
451 
452 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
453     const RegisterCheckpoint &reg_checkpoint) {
454   uint32_t save_id = reg_checkpoint.GetID();
455   if (save_id != 0) {
456     ExecutionContext exe_ctx(CalculateThread());
457 
458     Process *process = exe_ctx.GetProcessPtr();
459     Thread *thread = exe_ctx.GetThreadPtr();
460     if (process == nullptr || thread == nullptr)
461       return false;
462 
463     GDBRemoteCommunicationClient &gdb_comm(
464         ((ProcessGDBRemote *)process)->GetGDBRemote());
465 
466     return gdb_comm.RestoreRegisterState(m_thread.GetProtocolID(), save_id);
467   } else {
468     return WriteAllRegisterValues(reg_checkpoint.GetData());
469   }
470 }
471 
472 bool GDBRemoteRegisterContext::ReadAllRegisterValues(
473     lldb::DataBufferSP &data_sp) {
474   ExecutionContext exe_ctx(CalculateThread());
475 
476   Process *process = exe_ctx.GetProcessPtr();
477   Thread *thread = exe_ctx.GetThreadPtr();
478   if (process == nullptr || thread == nullptr)
479     return false;
480 
481   GDBRemoteCommunicationClient &gdb_comm(
482       ((ProcessGDBRemote *)process)->GetGDBRemote());
483 
484   const bool use_g_packet =
485       !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
486 
487   GDBRemoteClientBase::Lock lock(gdb_comm);
488   if (lock) {
489     if (gdb_comm.SyncThreadState(m_thread.GetProtocolID()))
490       InvalidateAllRegisters();
491 
492     if (use_g_packet &&
493         (data_sp = gdb_comm.ReadAllRegisters(m_thread.GetProtocolID())))
494       return true;
495 
496     // We're going to read each register
497     // individually and store them as binary data in a buffer.
498     const RegisterInfo *reg_info;
499 
500     for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
501          i++) {
502       if (reg_info
503               ->value_regs) // skip registers that are slices of real registers
504         continue;
505       ReadRegisterBytes(reg_info);
506       // ReadRegisterBytes saves the contents of the register in to the
507       // m_reg_data buffer
508     }
509     data_sp = std::make_shared<DataBufferHeap>(
510         m_reg_data.GetDataStart(), m_reg_info_sp->GetRegisterDataByteSize());
511     return true;
512   } else {
513 
514     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
515                                                            GDBR_LOG_PACKETS));
516     if (log) {
517       if (log->GetVerbose()) {
518         StreamString strm;
519         gdb_comm.DumpHistory(strm);
520         LLDB_LOGF(log,
521                   "error: failed to get packet sequence mutex, not sending "
522                   "read all registers:\n%s",
523                   strm.GetData());
524       } else
525         LLDB_LOGF(log,
526                   "error: failed to get packet sequence mutex, not sending "
527                   "read all registers");
528     }
529   }
530 
531   data_sp.reset();
532   return false;
533 }
534 
535 bool GDBRemoteRegisterContext::WriteAllRegisterValues(
536     const lldb::DataBufferSP &data_sp) {
537   if (!data_sp || data_sp->GetBytes() == nullptr || data_sp->GetByteSize() == 0)
538     return false;
539 
540   ExecutionContext exe_ctx(CalculateThread());
541 
542   Process *process = exe_ctx.GetProcessPtr();
543   Thread *thread = exe_ctx.GetThreadPtr();
544   if (process == nullptr || thread == nullptr)
545     return false;
546 
547   GDBRemoteCommunicationClient &gdb_comm(
548       ((ProcessGDBRemote *)process)->GetGDBRemote());
549 
550   const bool use_g_packet =
551       !gdb_comm.AvoidGPackets((ProcessGDBRemote *)process);
552 
553   GDBRemoteClientBase::Lock lock(gdb_comm);
554   if (lock) {
555     // The data_sp contains the G response packet.
556     if (use_g_packet) {
557       if (gdb_comm.WriteAllRegisters(
558               m_thread.GetProtocolID(),
559               {data_sp->GetBytes(), size_t(data_sp->GetByteSize())}))
560         return true;
561 
562       uint32_t num_restored = 0;
563       // We need to manually go through all of the registers and restore them
564       // manually
565       DataExtractor restore_data(data_sp, m_reg_data.GetByteOrder(),
566                                  m_reg_data.GetAddressByteSize());
567 
568       const RegisterInfo *reg_info;
569 
570       // The g packet contents may either include the slice registers
571       // (registers defined in terms of other registers, e.g. eax is a subset
572       // of rax) or not.  The slice registers should NOT be in the g packet,
573       // but some implementations may incorrectly include them.
574       //
575       // If the slice registers are included in the packet, we must step over
576       // the slice registers when parsing the packet -- relying on the
577       // RegisterInfo byte_offset field would be incorrect. If the slice
578       // registers are not included, then using the byte_offset values into the
579       // data buffer is the best way to find individual register values.
580 
581       uint64_t size_including_slice_registers = 0;
582       uint64_t size_not_including_slice_registers = 0;
583       uint64_t size_by_highest_offset = 0;
584 
585       for (uint32_t reg_idx = 0;
586            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr; ++reg_idx) {
587         size_including_slice_registers += reg_info->byte_size;
588         if (reg_info->value_regs == nullptr)
589           size_not_including_slice_registers += reg_info->byte_size;
590         if (reg_info->byte_offset >= size_by_highest_offset)
591           size_by_highest_offset = reg_info->byte_offset + reg_info->byte_size;
592       }
593 
594       bool use_byte_offset_into_buffer;
595       if (size_by_highest_offset == restore_data.GetByteSize()) {
596         // The size of the packet agrees with the highest offset: + size in the
597         // register file
598         use_byte_offset_into_buffer = true;
599       } else if (size_not_including_slice_registers ==
600                  restore_data.GetByteSize()) {
601         // The size of the packet is the same as concatenating all of the
602         // registers sequentially, skipping the slice registers
603         use_byte_offset_into_buffer = true;
604       } else if (size_including_slice_registers == restore_data.GetByteSize()) {
605         // The slice registers are present in the packet (when they shouldn't
606         // be). Don't try to use the RegisterInfo byte_offset into the
607         // restore_data, it will point to the wrong place.
608         use_byte_offset_into_buffer = false;
609       } else {
610         // None of our expected sizes match the actual g packet data we're
611         // looking at. The most conservative approach here is to use the
612         // running total byte offset.
613         use_byte_offset_into_buffer = false;
614       }
615 
616       // In case our register definitions don't include the correct offsets,
617       // keep track of the size of each reg & compute offset based on that.
618       uint32_t running_byte_offset = 0;
619       for (uint32_t reg_idx = 0;
620            (reg_info = GetRegisterInfoAtIndex(reg_idx)) != nullptr;
621            ++reg_idx, running_byte_offset += reg_info->byte_size) {
622         // Skip composite aka slice registers (e.g. eax is a slice of rax).
623         if (reg_info->value_regs)
624           continue;
625 
626         const uint32_t reg = reg_info->kinds[eRegisterKindLLDB];
627 
628         uint32_t register_offset;
629         if (use_byte_offset_into_buffer) {
630           register_offset = reg_info->byte_offset;
631         } else {
632           register_offset = running_byte_offset;
633         }
634 
635         const uint32_t reg_byte_size = reg_info->byte_size;
636 
637         const uint8_t *restore_src =
638             restore_data.PeekData(register_offset, reg_byte_size);
639         if (restore_src) {
640           SetRegisterIsValid(reg, false);
641           if (gdb_comm.WriteRegister(
642                   m_thread.GetProtocolID(),
643                   reg_info->kinds[eRegisterKindProcessPlugin],
644                   {restore_src, reg_byte_size}))
645             ++num_restored;
646         }
647       }
648       return num_restored > 0;
649     } else {
650       // For the use_g_packet == false case, we're going to write each register
651       // individually.  The data buffer is binary data in this case, instead of
652       // ascii characters.
653 
654       bool arm64_debugserver = false;
655       if (m_thread.GetProcess().get()) {
656         const ArchSpec &arch =
657             m_thread.GetProcess()->GetTarget().GetArchitecture();
658         if (arch.IsValid() && (arch.GetMachine() == llvm::Triple::aarch64 ||
659                                arch.GetMachine() == llvm::Triple::aarch64_32) &&
660             arch.GetTriple().getVendor() == llvm::Triple::Apple &&
661             arch.GetTriple().getOS() == llvm::Triple::IOS) {
662           arm64_debugserver = true;
663         }
664       }
665       uint32_t num_restored = 0;
666       const RegisterInfo *reg_info;
667       for (uint32_t i = 0; (reg_info = GetRegisterInfoAtIndex(i)) != nullptr;
668            i++) {
669         if (reg_info->value_regs) // skip registers that are slices of real
670                                   // registers
671           continue;
672         // Skip the fpsr and fpcr floating point status/control register
673         // writing to work around a bug in an older version of debugserver that
674         // would lead to register context corruption when writing fpsr/fpcr.
675         if (arm64_debugserver && (strcmp(reg_info->name, "fpsr") == 0 ||
676                                   strcmp(reg_info->name, "fpcr") == 0)) {
677           continue;
678         }
679 
680         SetRegisterIsValid(reg_info, false);
681         if (gdb_comm.WriteRegister(m_thread.GetProtocolID(),
682                                    reg_info->kinds[eRegisterKindProcessPlugin],
683                                    {data_sp->GetBytes() + reg_info->byte_offset,
684                                     reg_info->byte_size}))
685           ++num_restored;
686       }
687       return num_restored > 0;
688     }
689   } else {
690     Log *log(ProcessGDBRemoteLog::GetLogIfAnyCategoryIsSet(GDBR_LOG_THREAD |
691                                                            GDBR_LOG_PACKETS));
692     if (log) {
693       if (log->GetVerbose()) {
694         StreamString strm;
695         gdb_comm.DumpHistory(strm);
696         LLDB_LOGF(log,
697                   "error: failed to get packet sequence mutex, not sending "
698                   "write all registers:\n%s",
699                   strm.GetData());
700       } else
701         LLDB_LOGF(log,
702                   "error: failed to get packet sequence mutex, not sending "
703                   "write all registers");
704     }
705   }
706   return false;
707 }
708 
709 uint32_t GDBRemoteRegisterContext::ConvertRegisterKindToRegisterNumber(
710     lldb::RegisterKind kind, uint32_t num) {
711   return m_reg_info_sp->ConvertRegisterKindToRegisterNumber(kind, num);
712 }
713 
714 bool GDBRemoteRegisterContext::AArch64SVEReconfigure() {
715   if (!m_reg_info_sp)
716     return false;
717 
718   const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("vg");
719   if (!reg_info)
720     return false;
721 
722   uint64_t fail_value = LLDB_INVALID_ADDRESS;
723   uint32_t vg_reg_num = reg_info->kinds[eRegisterKindLLDB];
724   uint64_t vg_reg_value = ReadRegisterAsUnsigned(vg_reg_num, fail_value);
725 
726   if (vg_reg_value != fail_value && vg_reg_value <= 32) {
727     const RegisterInfo *reg_info = m_reg_info_sp->GetRegisterInfo("p0");
728     if (!reg_info || vg_reg_value == reg_info->byte_size)
729       return false;
730 
731     if (m_reg_info_sp->UpdateARM64SVERegistersInfos(vg_reg_value)) {
732       // Make a heap based buffer that is big enough to store all registers
733       m_reg_data.SetData(std::make_shared<DataBufferHeap>(
734           m_reg_info_sp->GetRegisterDataByteSize(), 0));
735       m_reg_data.SetByteOrder(GetByteOrder());
736 
737       InvalidateAllRegisters();
738 
739       return true;
740     }
741   }
742 
743   return false;
744 }
745 
746 bool GDBRemoteDynamicRegisterInfo::UpdateARM64SVERegistersInfos(uint64_t vg) {
747   // SVE Z register size is vg x 8 bytes.
748   uint32_t z_reg_byte_size = vg * 8;
749 
750   // SVE vector length has changed, accordingly set size of Z, P and FFR
751   // registers. Also invalidate register offsets it will be recalculated
752   // after SVE register size update.
753   for (auto &reg : m_regs) {
754     if (reg.value_regs == nullptr) {
755       if (reg.name[0] == 'z' && isdigit(reg.name[1]))
756         reg.byte_size = z_reg_byte_size;
757       else if (reg.name[0] == 'p' && isdigit(reg.name[1]))
758         reg.byte_size = vg;
759       else if (strcmp(reg.name, "ffr") == 0)
760         reg.byte_size = vg;
761     }
762     reg.byte_offset = LLDB_INVALID_INDEX32;
763   }
764 
765   // Re-calculate register offsets
766   ConfigureOffsets();
767   return true;
768 }
769 
770 void GDBRemoteDynamicRegisterInfo::HardcodeARMRegisters(bool from_scratch) {
771   // For Advanced SIMD and VFP register mapping.
772   static uint32_t g_d0_regs[] = {26, 27, LLDB_INVALID_REGNUM};  // (s0, s1)
773   static uint32_t g_d1_regs[] = {28, 29, LLDB_INVALID_REGNUM};  // (s2, s3)
774   static uint32_t g_d2_regs[] = {30, 31, LLDB_INVALID_REGNUM};  // (s4, s5)
775   static uint32_t g_d3_regs[] = {32, 33, LLDB_INVALID_REGNUM};  // (s6, s7)
776   static uint32_t g_d4_regs[] = {34, 35, LLDB_INVALID_REGNUM};  // (s8, s9)
777   static uint32_t g_d5_regs[] = {36, 37, LLDB_INVALID_REGNUM};  // (s10, s11)
778   static uint32_t g_d6_regs[] = {38, 39, LLDB_INVALID_REGNUM};  // (s12, s13)
779   static uint32_t g_d7_regs[] = {40, 41, LLDB_INVALID_REGNUM};  // (s14, s15)
780   static uint32_t g_d8_regs[] = {42, 43, LLDB_INVALID_REGNUM};  // (s16, s17)
781   static uint32_t g_d9_regs[] = {44, 45, LLDB_INVALID_REGNUM};  // (s18, s19)
782   static uint32_t g_d10_regs[] = {46, 47, LLDB_INVALID_REGNUM}; // (s20, s21)
783   static uint32_t g_d11_regs[] = {48, 49, LLDB_INVALID_REGNUM}; // (s22, s23)
784   static uint32_t g_d12_regs[] = {50, 51, LLDB_INVALID_REGNUM}; // (s24, s25)
785   static uint32_t g_d13_regs[] = {52, 53, LLDB_INVALID_REGNUM}; // (s26, s27)
786   static uint32_t g_d14_regs[] = {54, 55, LLDB_INVALID_REGNUM}; // (s28, s29)
787   static uint32_t g_d15_regs[] = {56, 57, LLDB_INVALID_REGNUM}; // (s30, s31)
788   static uint32_t g_q0_regs[] = {
789       26, 27, 28, 29, LLDB_INVALID_REGNUM}; // (d0, d1) -> (s0, s1, s2, s3)
790   static uint32_t g_q1_regs[] = {
791       30, 31, 32, 33, LLDB_INVALID_REGNUM}; // (d2, d3) -> (s4, s5, s6, s7)
792   static uint32_t g_q2_regs[] = {
793       34, 35, 36, 37, LLDB_INVALID_REGNUM}; // (d4, d5) -> (s8, s9, s10, s11)
794   static uint32_t g_q3_regs[] = {
795       38, 39, 40, 41, LLDB_INVALID_REGNUM}; // (d6, d7) -> (s12, s13, s14, s15)
796   static uint32_t g_q4_regs[] = {
797       42, 43, 44, 45, LLDB_INVALID_REGNUM}; // (d8, d9) -> (s16, s17, s18, s19)
798   static uint32_t g_q5_regs[] = {
799       46, 47, 48, 49,
800       LLDB_INVALID_REGNUM}; // (d10, d11) -> (s20, s21, s22, s23)
801   static uint32_t g_q6_regs[] = {
802       50, 51, 52, 53,
803       LLDB_INVALID_REGNUM}; // (d12, d13) -> (s24, s25, s26, s27)
804   static uint32_t g_q7_regs[] = {
805       54, 55, 56, 57,
806       LLDB_INVALID_REGNUM}; // (d14, d15) -> (s28, s29, s30, s31)
807   static uint32_t g_q8_regs[] = {59, 60, LLDB_INVALID_REGNUM};  // (d16, d17)
808   static uint32_t g_q9_regs[] = {61, 62, LLDB_INVALID_REGNUM};  // (d18, d19)
809   static uint32_t g_q10_regs[] = {63, 64, LLDB_INVALID_REGNUM}; // (d20, d21)
810   static uint32_t g_q11_regs[] = {65, 66, LLDB_INVALID_REGNUM}; // (d22, d23)
811   static uint32_t g_q12_regs[] = {67, 68, LLDB_INVALID_REGNUM}; // (d24, d25)
812   static uint32_t g_q13_regs[] = {69, 70, LLDB_INVALID_REGNUM}; // (d26, d27)
813   static uint32_t g_q14_regs[] = {71, 72, LLDB_INVALID_REGNUM}; // (d28, d29)
814   static uint32_t g_q15_regs[] = {73, 74, LLDB_INVALID_REGNUM}; // (d30, d31)
815 
816   // This is our array of composite registers, with each element coming from
817   // the above register mappings.
818   static uint32_t *g_composites[] = {
819       g_d0_regs,  g_d1_regs,  g_d2_regs,  g_d3_regs,  g_d4_regs,  g_d5_regs,
820       g_d6_regs,  g_d7_regs,  g_d8_regs,  g_d9_regs,  g_d10_regs, g_d11_regs,
821       g_d12_regs, g_d13_regs, g_d14_regs, g_d15_regs, g_q0_regs,  g_q1_regs,
822       g_q2_regs,  g_q3_regs,  g_q4_regs,  g_q5_regs,  g_q6_regs,  g_q7_regs,
823       g_q8_regs,  g_q9_regs,  g_q10_regs, g_q11_regs, g_q12_regs, g_q13_regs,
824       g_q14_regs, g_q15_regs};
825 
826   // clang-format off
827     static RegisterInfo g_register_infos[] = {
828 //   NAME     ALT     SZ   OFF  ENCODING          FORMAT          EH_FRAME             DWARF                GENERIC                 PROCESS PLUGIN  LLDB    VALUE REGS    INVALIDATE REGS
829 //   ======   ======  ===  ===  =============     ==========      ===================  ===================  ======================  =============   ====    ==========    ===============
830     { "r0",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r0,          dwarf_r0,            LLDB_REGNUM_GENERIC_ARG1,0,               0 },     nullptr,           nullptr },
831     { "r1",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r1,          dwarf_r1,            LLDB_REGNUM_GENERIC_ARG2,1,               1 },     nullptr,           nullptr },
832     { "r2",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r2,          dwarf_r2,            LLDB_REGNUM_GENERIC_ARG3,2,               2 },     nullptr,           nullptr },
833     { "r3",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r3,          dwarf_r3,            LLDB_REGNUM_GENERIC_ARG4,3,               3 },     nullptr,           nullptr },
834     { "r4",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r4,          dwarf_r4,            LLDB_INVALID_REGNUM,     4,               4 },     nullptr,           nullptr },
835     { "r5",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r5,          dwarf_r5,            LLDB_INVALID_REGNUM,     5,               5 },     nullptr,           nullptr },
836     { "r6",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r6,          dwarf_r6,            LLDB_INVALID_REGNUM,     6,               6 },     nullptr,           nullptr },
837     { "r7",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r7,          dwarf_r7,            LLDB_REGNUM_GENERIC_FP,  7,               7 },     nullptr,           nullptr },
838     { "r8",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r8,          dwarf_r8,            LLDB_INVALID_REGNUM,     8,               8 },     nullptr,           nullptr },
839     { "r9",  nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r9,          dwarf_r9,            LLDB_INVALID_REGNUM,     9,               9 },     nullptr,           nullptr },
840     { "r10", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r10,         dwarf_r10,           LLDB_INVALID_REGNUM,    10,              10 },     nullptr,           nullptr },
841     { "r11", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r11,         dwarf_r11,           LLDB_INVALID_REGNUM,    11,              11 },     nullptr,           nullptr },
842     { "r12", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { ehframe_r12,         dwarf_r12,           LLDB_INVALID_REGNUM,    12,              12 },     nullptr,           nullptr },
843     { "sp",     "r13",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_sp,          dwarf_sp,            LLDB_REGNUM_GENERIC_SP, 13,              13 },     nullptr,           nullptr },
844     { "lr",     "r14",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_lr,          dwarf_lr,            LLDB_REGNUM_GENERIC_RA, 14,              14 },     nullptr,           nullptr },
845     { "pc",     "r15",  4,   0, eEncodingUint,    eFormatHex,   { ehframe_pc,          dwarf_pc,            LLDB_REGNUM_GENERIC_PC, 15,              15 },     nullptr,           nullptr },
846     { "f0",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    16,              16 },     nullptr,           nullptr },
847     { "f1",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    17,              17 },     nullptr,           nullptr },
848     { "f2",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    18,              18 },     nullptr,           nullptr },
849     { "f3",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    19,              19 },     nullptr,           nullptr },
850     { "f4",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    20,              20 },     nullptr,           nullptr },
851     { "f5",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    21,              21 },     nullptr,           nullptr },
852     { "f6",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    22,              22 },     nullptr,           nullptr },
853     { "f7",  nullptr,  12,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    23,              23 },     nullptr,           nullptr },
854     { "fps", nullptr,   4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    24,              24 },     nullptr,           nullptr },
855     { "cpsr","flags",   4,   0, eEncodingUint,    eFormatHex,   { ehframe_cpsr,        dwarf_cpsr,          LLDB_INVALID_REGNUM,    25,              25 },     nullptr,           nullptr },
856     { "s0",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s0,            LLDB_INVALID_REGNUM,    26,              26 },     nullptr,           nullptr },
857     { "s1",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s1,            LLDB_INVALID_REGNUM,    27,              27 },     nullptr,           nullptr },
858     { "s2",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s2,            LLDB_INVALID_REGNUM,    28,              28 },     nullptr,           nullptr },
859     { "s3",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s3,            LLDB_INVALID_REGNUM,    29,              29 },     nullptr,           nullptr },
860     { "s4",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s4,            LLDB_INVALID_REGNUM,    30,              30 },     nullptr,           nullptr },
861     { "s5",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s5,            LLDB_INVALID_REGNUM,    31,              31 },     nullptr,           nullptr },
862     { "s6",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s6,            LLDB_INVALID_REGNUM,    32,              32 },     nullptr,           nullptr },
863     { "s7",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s7,            LLDB_INVALID_REGNUM,    33,              33 },     nullptr,           nullptr },
864     { "s8",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s8,            LLDB_INVALID_REGNUM,    34,              34 },     nullptr,           nullptr },
865     { "s9",  nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s9,            LLDB_INVALID_REGNUM,    35,              35 },     nullptr,           nullptr },
866     { "s10", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s10,           LLDB_INVALID_REGNUM,    36,              36 },     nullptr,           nullptr },
867     { "s11", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s11,           LLDB_INVALID_REGNUM,    37,              37 },     nullptr,           nullptr },
868     { "s12", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s12,           LLDB_INVALID_REGNUM,    38,              38 },     nullptr,           nullptr },
869     { "s13", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s13,           LLDB_INVALID_REGNUM,    39,              39 },     nullptr,           nullptr },
870     { "s14", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s14,           LLDB_INVALID_REGNUM,    40,              40 },     nullptr,           nullptr },
871     { "s15", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s15,           LLDB_INVALID_REGNUM,    41,              41 },     nullptr,           nullptr },
872     { "s16", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s16,           LLDB_INVALID_REGNUM,    42,              42 },     nullptr,           nullptr },
873     { "s17", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s17,           LLDB_INVALID_REGNUM,    43,              43 },     nullptr,           nullptr },
874     { "s18", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s18,           LLDB_INVALID_REGNUM,    44,              44 },     nullptr,           nullptr },
875     { "s19", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s19,           LLDB_INVALID_REGNUM,    45,              45 },     nullptr,           nullptr },
876     { "s20", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s20,           LLDB_INVALID_REGNUM,    46,              46 },     nullptr,           nullptr },
877     { "s21", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s21,           LLDB_INVALID_REGNUM,    47,              47 },     nullptr,           nullptr },
878     { "s22", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s22,           LLDB_INVALID_REGNUM,    48,              48 },     nullptr,           nullptr },
879     { "s23", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s23,           LLDB_INVALID_REGNUM,    49,              49 },     nullptr,           nullptr },
880     { "s24", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s24,           LLDB_INVALID_REGNUM,    50,              50 },     nullptr,           nullptr },
881     { "s25", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s25,           LLDB_INVALID_REGNUM,    51,              51 },     nullptr,           nullptr },
882     { "s26", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s26,           LLDB_INVALID_REGNUM,    52,              52 },     nullptr,           nullptr },
883     { "s27", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s27,           LLDB_INVALID_REGNUM,    53,              53 },     nullptr,           nullptr },
884     { "s28", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s28,           LLDB_INVALID_REGNUM,    54,              54 },     nullptr,           nullptr },
885     { "s29", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s29,           LLDB_INVALID_REGNUM,    55,              55 },     nullptr,           nullptr },
886     { "s30", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s30,           LLDB_INVALID_REGNUM,    56,              56 },     nullptr,           nullptr },
887     { "s31", nullptr,   4,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_s31,           LLDB_INVALID_REGNUM,    57,              57 },     nullptr,           nullptr },
888     { "fpscr",nullptr,  4,   0, eEncodingUint,    eFormatHex,   { LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM, LLDB_INVALID_REGNUM,    58,              58 },     nullptr,           nullptr },
889     { "d16", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d16,           LLDB_INVALID_REGNUM,    59,              59 },     nullptr,           nullptr },
890     { "d17", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d17,           LLDB_INVALID_REGNUM,    60,              60 },     nullptr,           nullptr },
891     { "d18", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d18,           LLDB_INVALID_REGNUM,    61,              61 },     nullptr,           nullptr },
892     { "d19", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d19,           LLDB_INVALID_REGNUM,    62,              62 },     nullptr,           nullptr },
893     { "d20", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d20,           LLDB_INVALID_REGNUM,    63,              63 },     nullptr,           nullptr },
894     { "d21", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d21,           LLDB_INVALID_REGNUM,    64,              64 },     nullptr,           nullptr },
895     { "d22", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d22,           LLDB_INVALID_REGNUM,    65,              65 },     nullptr,           nullptr },
896     { "d23", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d23,           LLDB_INVALID_REGNUM,    66,              66 },     nullptr,           nullptr },
897     { "d24", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d24,           LLDB_INVALID_REGNUM,    67,              67 },     nullptr,           nullptr },
898     { "d25", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d25,           LLDB_INVALID_REGNUM,    68,              68 },     nullptr,           nullptr },
899     { "d26", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d26,           LLDB_INVALID_REGNUM,    69,              69 },     nullptr,           nullptr },
900     { "d27", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d27,           LLDB_INVALID_REGNUM,    70,              70 },     nullptr,           nullptr },
901     { "d28", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d28,           LLDB_INVALID_REGNUM,    71,              71 },     nullptr,           nullptr },
902     { "d29", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d29,           LLDB_INVALID_REGNUM,    72,              72 },     nullptr,           nullptr },
903     { "d30", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d30,           LLDB_INVALID_REGNUM,    73,              73 },     nullptr,           nullptr },
904     { "d31", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d31,           LLDB_INVALID_REGNUM,    74,              74 },     nullptr,           nullptr },
905     { "d0",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d0,            LLDB_INVALID_REGNUM,    75,              75 },   g_d0_regs,           nullptr },
906     { "d1",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d1,            LLDB_INVALID_REGNUM,    76,              76 },   g_d1_regs,           nullptr },
907     { "d2",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d2,            LLDB_INVALID_REGNUM,    77,              77 },   g_d2_regs,           nullptr },
908     { "d3",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d3,            LLDB_INVALID_REGNUM,    78,              78 },   g_d3_regs,           nullptr },
909     { "d4",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d4,            LLDB_INVALID_REGNUM,    79,              79 },   g_d4_regs,           nullptr },
910     { "d5",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d5,            LLDB_INVALID_REGNUM,    80,              80 },   g_d5_regs,           nullptr },
911     { "d6",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d6,            LLDB_INVALID_REGNUM,    81,              81 },   g_d6_regs,           nullptr },
912     { "d7",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d7,            LLDB_INVALID_REGNUM,    82,              82 },   g_d7_regs,           nullptr },
913     { "d8",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d8,            LLDB_INVALID_REGNUM,    83,              83 },   g_d8_regs,           nullptr },
914     { "d9",  nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d9,            LLDB_INVALID_REGNUM,    84,              84 },   g_d9_regs,           nullptr },
915     { "d10", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d10,           LLDB_INVALID_REGNUM,    85,              85 },  g_d10_regs,           nullptr },
916     { "d11", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d11,           LLDB_INVALID_REGNUM,    86,              86 },  g_d11_regs,           nullptr },
917     { "d12", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d12,           LLDB_INVALID_REGNUM,    87,              87 },  g_d12_regs,           nullptr },
918     { "d13", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d13,           LLDB_INVALID_REGNUM,    88,              88 },  g_d13_regs,           nullptr },
919     { "d14", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d14,           LLDB_INVALID_REGNUM,    89,              89 },  g_d14_regs,           nullptr },
920     { "d15", nullptr,   8,   0, eEncodingIEEE754, eFormatFloat, { LLDB_INVALID_REGNUM, dwarf_d15,           LLDB_INVALID_REGNUM,    90,              90 },  g_d15_regs,           nullptr },
921     { "q0",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q0,    LLDB_INVALID_REGNUM,    91,              91 },   g_q0_regs,           nullptr },
922     { "q1",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q1,    LLDB_INVALID_REGNUM,    92,              92 },   g_q1_regs,           nullptr },
923     { "q2",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q2,    LLDB_INVALID_REGNUM,    93,              93 },   g_q2_regs,           nullptr },
924     { "q3",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q3,    LLDB_INVALID_REGNUM,    94,              94 },   g_q3_regs,           nullptr },
925     { "q4",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q4,    LLDB_INVALID_REGNUM,    95,              95 },   g_q4_regs,           nullptr },
926     { "q5",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q5,    LLDB_INVALID_REGNUM,    96,              96 },   g_q5_regs,           nullptr },
927     { "q6",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q6,    LLDB_INVALID_REGNUM,    97,              97 },   g_q6_regs,           nullptr },
928     { "q7",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q7,    LLDB_INVALID_REGNUM,    98,              98 },   g_q7_regs,           nullptr },
929     { "q8",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q8,    LLDB_INVALID_REGNUM,    99,              99 },   g_q8_regs,           nullptr },
930     { "q9",  nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q9,    LLDB_INVALID_REGNUM,   100,             100 },   g_q9_regs,           nullptr },
931     { "q10", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q10,   LLDB_INVALID_REGNUM,   101,             101 },  g_q10_regs,           nullptr },
932     { "q11", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q11,   LLDB_INVALID_REGNUM,   102,             102 },  g_q11_regs,           nullptr },
933     { "q12", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q12,   LLDB_INVALID_REGNUM,   103,             103 },  g_q12_regs,           nullptr },
934     { "q13", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q13,   LLDB_INVALID_REGNUM,   104,             104 },  g_q13_regs,           nullptr },
935     { "q14", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q14,   LLDB_INVALID_REGNUM,   105,             105 },  g_q14_regs,           nullptr },
936     { "q15", nullptr,   16,  0, eEncodingVector,  eFormatVectorOfUInt8, { LLDB_INVALID_REGNUM, dwarf_q15,   LLDB_INVALID_REGNUM,   106,             106 },  g_q15_regs,           nullptr }
937     };
938   // clang-format on
939 
940   static const uint32_t num_registers = llvm::array_lengthof(g_register_infos);
941   static ConstString gpr_reg_set("General Purpose Registers");
942   static ConstString sfp_reg_set("Software Floating Point Registers");
943   static ConstString vfp_reg_set("Floating Point Registers");
944   size_t i;
945   if (from_scratch) {
946     // Calculate the offsets of the registers
947     // Note that the layout of the "composite" registers (d0-d15 and q0-q15)
948     // which comes after the "primordial" registers is important.  This enables
949     // us to calculate the offset of the composite register by using the offset
950     // of its first primordial register.  For example, to calculate the offset
951     // of q0, use s0's offset.
952     if (g_register_infos[2].byte_offset == 0) {
953       uint32_t byte_offset = 0;
954       for (i = 0; i < num_registers; ++i) {
955         // For primordial registers, increment the byte_offset by the byte_size
956         // to arrive at the byte_offset for the next register.  Otherwise, we
957         // have a composite register whose offset can be calculated by
958         // consulting the offset of its first primordial register.
959         if (!g_register_infos[i].value_regs) {
960           g_register_infos[i].byte_offset = byte_offset;
961           byte_offset += g_register_infos[i].byte_size;
962         } else {
963           const uint32_t first_primordial_reg =
964               g_register_infos[i].value_regs[0];
965           g_register_infos[i].byte_offset =
966               g_register_infos[first_primordial_reg].byte_offset;
967         }
968       }
969     }
970     for (i = 0; i < num_registers; ++i) {
971       if (i <= 15 || i == 25)
972         AddRegister(g_register_infos[i], gpr_reg_set);
973       else if (i <= 24)
974         AddRegister(g_register_infos[i], sfp_reg_set);
975       else
976         AddRegister(g_register_infos[i], vfp_reg_set);
977     }
978   } else {
979     // Add composite registers to our primordial registers, then.
980     const size_t num_composites = llvm::array_lengthof(g_composites);
981     const size_t num_dynamic_regs = GetNumRegisters();
982     const size_t num_common_regs = num_registers - num_composites;
983     RegisterInfo *g_comp_register_infos = g_register_infos + num_common_regs;
984 
985     // First we need to validate that all registers that we already have match
986     // the non composite regs. If so, then we can add the registers, else we
987     // need to bail
988     bool match = true;
989     if (num_dynamic_regs == num_common_regs) {
990       for (i = 0; match && i < num_dynamic_regs; ++i) {
991         // Make sure all register names match
992         if (m_regs[i].name && g_register_infos[i].name) {
993           if (strcmp(m_regs[i].name, g_register_infos[i].name)) {
994             match = false;
995             break;
996           }
997         }
998 
999         // Make sure all register byte sizes match
1000         if (m_regs[i].byte_size != g_register_infos[i].byte_size) {
1001           match = false;
1002           break;
1003         }
1004       }
1005     } else {
1006       // Wrong number of registers.
1007       match = false;
1008     }
1009     // If "match" is true, then we can add extra registers.
1010     if (match) {
1011       for (i = 0; i < num_composites; ++i) {
1012         const uint32_t first_primordial_reg =
1013             g_comp_register_infos[i].value_regs[0];
1014         const char *reg_name = g_register_infos[first_primordial_reg].name;
1015         if (reg_name && reg_name[0]) {
1016           for (uint32_t j = 0; j < num_dynamic_regs; ++j) {
1017             const RegisterInfo *reg_info = GetRegisterInfoAtIndex(j);
1018             // Find a matching primordial register info entry.
1019             if (reg_info && reg_info->name &&
1020                 ::strcasecmp(reg_info->name, reg_name) == 0) {
1021               // The name matches the existing primordial entry. Find and
1022               // assign the offset, and then add this composite register entry.
1023               g_comp_register_infos[i].byte_offset = reg_info->byte_offset;
1024               AddRegister(g_comp_register_infos[i], vfp_reg_set);
1025             }
1026           }
1027         }
1028       }
1029     }
1030   }
1031 }
1032