xref: /llvm-project/lldb/source/Plugins/Process/Linux/NativeProcessLinux.cpp (revision d7d69f80836c8485c83ba55d2e5e5bac4154d975)
1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/ModuleSpec.h"
29 #include "lldb/Core/RegisterValue.h"
30 #include "lldb/Core/State.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/HostProcess.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/ProcessLauncherLinux.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/ProcessLaunchInfo.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/PseudoTerminal.h"
43 #include "lldb/Utility/StringExtractor.h"
44 
45 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
46 #include "NativeThreadLinux.h"
47 #include "ProcFileReader.h"
48 #include "Procfs.h"
49 
50 // System includes - They have to be included after framework includes because they define some
51 // macros which collide with variable names in other modules
52 #include <linux/unistd.h>
53 #include <sys/socket.h>
54 
55 #include <sys/syscall.h>
56 #include <sys/types.h>
57 #include <sys/user.h>
58 #include <sys/wait.h>
59 
60 #include "lldb/Host/linux/Personality.h"
61 #include "lldb/Host/linux/Ptrace.h"
62 #include "lldb/Host/linux/Uio.h"
63 #include "lldb/Host/android/Android.h"
64 
65 // Support hardware breakpoints in case it has not been defined
66 #ifndef TRAP_HWBKPT
67   #define TRAP_HWBKPT 4
68 #endif
69 
70 using namespace lldb;
71 using namespace lldb_private;
72 using namespace lldb_private::process_linux;
73 using namespace llvm;
74 
75 // Private bits we only need internally.
76 
77 static bool ProcessVmReadvSupported()
78 {
79     static bool is_supported;
80     static std::once_flag flag;
81 
82     std::call_once(flag, [] {
83         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
84 
85         uint32_t source = 0x47424742;
86         uint32_t dest = 0;
87 
88         struct iovec local, remote;
89         remote.iov_base = &source;
90         local.iov_base = &dest;
91         remote.iov_len = local.iov_len = sizeof source;
92 
93         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
94         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
95         is_supported = (res == sizeof(source) && source == dest);
96         if (log)
97         {
98             if (is_supported)
99                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
100                         __FUNCTION__);
101             else
102                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
103                         __FUNCTION__, strerror(errno));
104         }
105     });
106 
107     return is_supported;
108 }
109 
110 namespace
111 {
112 Error
113 ResolveProcessArchitecture(lldb::pid_t pid, ArchSpec &arch)
114 {
115     // Grab process info for the running process.
116     ProcessInstanceInfo process_info;
117     if (!Host::GetProcessInfo(pid, process_info))
118         return Error("failed to get process info");
119 
120     // Resolve the executable module.
121     ModuleSpecList module_specs;
122     if (!ObjectFile::GetModuleSpecifications(process_info.GetExecutableFile(), 0, 0, module_specs))
123         return Error("failed to get module specifications");
124     assert(module_specs.GetSize() == 1);
125 
126     arch = module_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
127     if (arch.IsValid())
128         return Error();
129     else
130         return Error("failed to retrieve a valid architecture from the exe module");
131 }
132 
133 void
134 MaybeLogLaunchInfo(const ProcessLaunchInfo &info)
135 {
136     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
137     if (!log)
138         return;
139 
140     if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
141         log->Printf("%s: setting STDIN to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
142     else
143         log->Printf("%s leaving STDIN as is", __FUNCTION__);
144 
145     if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
146         log->Printf("%s setting STDOUT to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
147     else
148         log->Printf("%s leaving STDOUT as is", __FUNCTION__);
149 
150     if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
151         log->Printf("%s setting STDERR to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
152     else
153         log->Printf("%s leaving STDERR as is", __FUNCTION__);
154 
155     int i = 0;
156     for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; ++args, ++i)
157         log->Printf("%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
158 }
159 
160 void
161 DisplayBytes(StreamString &s, void *bytes, uint32_t count)
162 {
163     uint8_t *ptr = (uint8_t *)bytes;
164     const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
165     for (uint32_t i = 0; i < loop_count; i++)
166     {
167         s.Printf("[%x]", *ptr);
168         ptr++;
169     }
170 }
171 
172     void
173     PtraceDisplayBytes(int &req, void *data, size_t data_size)
174     {
175         StreamString buf;
176         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
177                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
178 
179         if (verbose_log)
180         {
181             switch(req)
182             {
183             case PTRACE_POKETEXT:
184             {
185                 DisplayBytes(buf, &data, 8);
186                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
187                 break;
188             }
189             case PTRACE_POKEDATA:
190             {
191                 DisplayBytes(buf, &data, 8);
192                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
193                 break;
194             }
195             case PTRACE_POKEUSER:
196             {
197                 DisplayBytes(buf, &data, 8);
198                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
199                 break;
200             }
201             case PTRACE_SETREGS:
202             {
203                 DisplayBytes(buf, data, data_size);
204                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
205                 break;
206             }
207             case PTRACE_SETFPREGS:
208             {
209                 DisplayBytes(buf, data, data_size);
210                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
211                 break;
212             }
213             case PTRACE_SETSIGINFO:
214             {
215                 DisplayBytes(buf, data, sizeof(siginfo_t));
216                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
217                 break;
218             }
219             case PTRACE_SETREGSET:
220             {
221                 // Extract iov_base from data, which is a pointer to the struct IOVEC
222                 DisplayBytes(buf, *(void **)data, data_size);
223                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
224                 break;
225             }
226             default:
227             {
228             }
229             }
230         }
231     }
232 
233     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
234     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
235 } // end of anonymous namespace
236 
237 // Simple helper function to ensure flags are enabled on the given file
238 // descriptor.
239 static Error
240 EnsureFDFlags(int fd, int flags)
241 {
242     Error error;
243 
244     int status = fcntl(fd, F_GETFL);
245     if (status == -1)
246     {
247         error.SetErrorToErrno();
248         return error;
249     }
250 
251     if (fcntl(fd, F_SETFL, status | flags) == -1)
252     {
253         error.SetErrorToErrno();
254         return error;
255     }
256 
257     return error;
258 }
259 
260 // -----------------------------------------------------------------------------
261 // Public Static Methods
262 // -----------------------------------------------------------------------------
263 
264 Error
265 NativeProcessProtocol::Launch (
266     ProcessLaunchInfo &launch_info,
267     NativeProcessProtocol::NativeDelegate &native_delegate,
268     MainLoop &mainloop,
269     NativeProcessProtocolSP &native_process_sp)
270 {
271     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
272 
273     Error error;
274 
275     // Verify the working directory is valid if one was specified.
276     FileSpec working_dir{launch_info.GetWorkingDirectory()};
277     if (working_dir &&
278             (!working_dir.ResolvePath() ||
279              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
280     {
281         error.SetErrorStringWithFormat ("No such file or directory: %s",
282                 working_dir.GetCString());
283         return error;
284     }
285 
286     // Create the NativeProcessLinux in launch mode.
287     native_process_sp.reset (new NativeProcessLinux ());
288 
289     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
290     {
291         native_process_sp.reset ();
292         error.SetErrorStringWithFormat ("failed to register the native delegate");
293         return error;
294     }
295 
296     error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp)->LaunchInferior(mainloop, launch_info);
297 
298     if (error.Fail ())
299     {
300         native_process_sp.reset ();
301         if (log)
302             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
303         return error;
304     }
305 
306     launch_info.SetProcessID (native_process_sp->GetID ());
307 
308     return error;
309 }
310 
311 Error
312 NativeProcessProtocol::Attach (
313     lldb::pid_t pid,
314     NativeProcessProtocol::NativeDelegate &native_delegate,
315     MainLoop &mainloop,
316     NativeProcessProtocolSP &native_process_sp)
317 {
318     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
319     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
320         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
321 
322     // Retrieve the architecture for the running process.
323     ArchSpec process_arch;
324     Error error = ResolveProcessArchitecture(pid, process_arch);
325     if (!error.Success ())
326         return error;
327 
328     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
329 
330     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
331     {
332         error.SetErrorStringWithFormat ("failed to register the native delegate");
333         return error;
334     }
335 
336     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
337     if (!error.Success ())
338         return error;
339 
340     native_process_sp = native_process_linux_sp;
341     return error;
342 }
343 
344 // -----------------------------------------------------------------------------
345 // Public Instance Methods
346 // -----------------------------------------------------------------------------
347 
348 NativeProcessLinux::NativeProcessLinux () :
349     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
350     m_arch (),
351     m_supports_mem_region (eLazyBoolCalculate),
352     m_mem_region_cache (),
353     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
354 {
355 }
356 
357 void
358 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
359 {
360     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
361     if (log)
362         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
363 
364     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
365             [this] (MainLoopBase &) { SigchldHandler(); }, error);
366     if (! m_sigchld_handle)
367         return;
368 
369     error = ResolveProcessArchitecture(pid, m_arch);
370     if (!error.Success())
371         return;
372 
373     // Set the architecture to the exe architecture.
374     if (log)
375         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
376 
377     m_pid = pid;
378     SetState(eStateAttaching);
379 
380     Attach(pid, error);
381 }
382 
383 Error
384 NativeProcessLinux::LaunchInferior(MainLoop &mainloop, ProcessLaunchInfo &launch_info)
385 {
386     Error error;
387     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
388     if (!m_sigchld_handle)
389         return error;
390 
391     SetState(eStateLaunching);
392 
393     MaybeLogLaunchInfo(launch_info);
394 
395     ::pid_t pid = ProcessLauncherLinux().LaunchProcess(launch_info, error).GetProcessId();
396     if (error.Fail())
397         return error;
398 
399     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
400 
401     // Wait for the child process to trap on its call to execve.
402     ::pid_t wpid;
403     int status;
404     if ((wpid = waitpid(pid, &status, 0)) < 0)
405     {
406         error.SetErrorToErrno();
407         if (log)
408             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
409                     __FUNCTION__, error.AsCString ());
410 
411         // Mark the inferior as invalid.
412         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
413         SetState (StateType::eStateInvalid);
414 
415         return error;
416     }
417     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
418            "Could not sync with inferior process.");
419 
420     if (log)
421         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
422 
423     error = SetDefaultPtraceOpts(pid);
424     if (error.Fail())
425     {
426         if (log)
427             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
428                     __FUNCTION__, error.AsCString ());
429 
430         // Mark the inferior as invalid.
431         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
432         SetState (StateType::eStateInvalid);
433 
434         return error;
435     }
436 
437     // Release the master terminal descriptor and pass it off to the
438     // NativeProcessLinux instance.  Similarly stash the inferior pid.
439     m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
440     m_pid = pid;
441     launch_info.SetProcessID(pid);
442 
443     if (m_terminal_fd != -1)
444     {
445         error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
446         if (error.Fail())
447         {
448             if (log)
449                 log->Printf(
450                     "NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
451                     __FUNCTION__, error.AsCString());
452 
453             // Mark the inferior as invalid.
454             // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
455             SetState(StateType::eStateInvalid);
456 
457             return error;
458         }
459     }
460 
461     if (log)
462         log->Printf("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, uint64_t(pid));
463 
464     ResolveProcessArchitecture(m_pid, m_arch);
465     NativeThreadLinuxSP thread_sp = AddThread(pid);
466     assert (thread_sp && "AddThread() returned a nullptr thread");
467     thread_sp->SetStoppedBySignal(SIGSTOP);
468     ThreadWasCreated(*thread_sp);
469 
470     // Let our process instance know the thread has stopped.
471     SetCurrentThreadID (thread_sp->GetID ());
472     SetState (StateType::eStateStopped);
473 
474     if (log)
475     {
476         if (error.Success ())
477             log->Printf("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
478         else
479             log->Printf("NativeProcessLinux::%s inferior launching failed: %s", __FUNCTION__, error.AsCString());
480     }
481     return error;
482 }
483 
484 ::pid_t
485 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
486 {
487     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
488 
489     // Use a map to keep track of the threads which we have attached/need to attach.
490     Host::TidMap tids_to_attach;
491     if (pid <= 1)
492     {
493         error.SetErrorToGenericError();
494         error.SetErrorString("Attaching to process 1 is not allowed.");
495         return -1;
496     }
497 
498     while (Host::FindProcessThreads(pid, tids_to_attach))
499     {
500         for (Host::TidMap::iterator it = tids_to_attach.begin();
501              it != tids_to_attach.end();)
502         {
503             if (it->second == false)
504             {
505                 lldb::tid_t tid = it->first;
506 
507                 // Attach to the requested process.
508                 // An attach will cause the thread to stop with a SIGSTOP.
509                 error = PtraceWrapper(PTRACE_ATTACH, tid);
510                 if (error.Fail())
511                 {
512                     // No such thread. The thread may have exited.
513                     // More error handling may be needed.
514                     if (error.GetError() == ESRCH)
515                     {
516                         it = tids_to_attach.erase(it);
517                         continue;
518                     }
519                     else
520                         return -1;
521                 }
522 
523                 int status;
524                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
525                 // At this point we should have a thread stopped if waitpid succeeds.
526                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
527                 {
528                     // No such thread. The thread may have exited.
529                     // More error handling may be needed.
530                     if (errno == ESRCH)
531                     {
532                         it = tids_to_attach.erase(it);
533                         continue;
534                     }
535                     else
536                     {
537                         error.SetErrorToErrno();
538                         return -1;
539                     }
540                 }
541 
542                 error = SetDefaultPtraceOpts(tid);
543                 if (error.Fail())
544                     return -1;
545 
546                 if (log)
547                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
548 
549                 it->second = true;
550 
551                 // Create the thread, mark it as stopped.
552                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
553                 assert (thread_sp && "AddThread() returned a nullptr");
554 
555                 // This will notify this is a new thread and tell the system it is stopped.
556                 thread_sp->SetStoppedBySignal(SIGSTOP);
557                 ThreadWasCreated(*thread_sp);
558                 SetCurrentThreadID (thread_sp->GetID ());
559             }
560 
561             // move the loop forward
562             ++it;
563         }
564     }
565 
566     if (tids_to_attach.size() > 0)
567     {
568         m_pid = pid;
569         // Let our process instance know the thread has stopped.
570         SetState (StateType::eStateStopped);
571     }
572     else
573     {
574         error.SetErrorToGenericError();
575         error.SetErrorString("No such process.");
576         return -1;
577     }
578 
579     return pid;
580 }
581 
582 Error
583 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
584 {
585     long ptrace_opts = 0;
586 
587     // Have the child raise an event on exit.  This is used to keep the child in
588     // limbo until it is destroyed.
589     ptrace_opts |= PTRACE_O_TRACEEXIT;
590 
591     // Have the tracer trace threads which spawn in the inferior process.
592     // TODO: if we want to support tracing the inferiors' child, add the
593     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
594     ptrace_opts |= PTRACE_O_TRACECLONE;
595 
596     // Have the tracer notify us before execve returns
597     // (needed to disable legacy SIGTRAP generation)
598     ptrace_opts |= PTRACE_O_TRACEEXEC;
599 
600     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
601 }
602 
603 static ExitType convert_pid_status_to_exit_type (int status)
604 {
605     if (WIFEXITED (status))
606         return ExitType::eExitTypeExit;
607     else if (WIFSIGNALED (status))
608         return ExitType::eExitTypeSignal;
609     else if (WIFSTOPPED (status))
610         return ExitType::eExitTypeStop;
611     else
612     {
613         // We don't know what this is.
614         return ExitType::eExitTypeInvalid;
615     }
616 }
617 
618 static int convert_pid_status_to_return_code (int status)
619 {
620     if (WIFEXITED (status))
621         return WEXITSTATUS (status);
622     else if (WIFSIGNALED (status))
623         return WTERMSIG (status);
624     else if (WIFSTOPPED (status))
625         return WSTOPSIG (status);
626     else
627     {
628         // We don't know what this is.
629         return ExitType::eExitTypeInvalid;
630     }
631 }
632 
633 // Handles all waitpid events from the inferior process.
634 void
635 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
636                                     bool exited,
637                                     int signal,
638                                     int status)
639 {
640     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
641 
642     // Certain activities differ based on whether the pid is the tid of the main thread.
643     const bool is_main_thread = (pid == GetID ());
644 
645     // Handle when the thread exits.
646     if (exited)
647     {
648         if (log)
649             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
650 
651         // This is a thread that exited.  Ensure we're not tracking it anymore.
652         const bool thread_found = StopTrackingThread (pid);
653 
654         if (is_main_thread)
655         {
656             // We only set the exit status and notify the delegate if we haven't already set the process
657             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
658             // for the main thread.
659             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
660             if (!already_notified)
661             {
662                 if (log)
663                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
664                 // The main thread exited.  We're done monitoring.  Report to delegate.
665                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
666 
667                 // Notify delegate that our process has exited.
668                 SetState (StateType::eStateExited, true);
669             }
670             else
671             {
672                 if (log)
673                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
674             }
675         }
676         else
677         {
678             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
679             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
680             // and we would have done an all-stop then.
681             if (log)
682                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
683         }
684         return;
685     }
686 
687     siginfo_t info;
688     const auto info_err = GetSignalInfo(pid, &info);
689     auto thread_sp = GetThreadByID(pid);
690 
691     if (! thread_sp)
692     {
693         // Normally, the only situation when we cannot find the thread is if we have just
694         // received a new thread notification. This is indicated by GetSignalInfo() returning
695         // si_code == SI_USER and si_pid == 0
696         if (log)
697             log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
698 
699         if (info_err.Fail())
700         {
701             if (log)
702                 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
703             return;
704         }
705 
706         if (log && (info.si_code != SI_USER || info.si_pid != 0))
707             log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
708 
709         auto thread_sp = AddThread(pid);
710         // Resume the newly created thread.
711         ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
712         ThreadWasCreated(*thread_sp);
713         return;
714     }
715 
716     // Get details on the signal raised.
717     if (info_err.Success())
718     {
719         // We have retrieved the signal info.  Dispatch appropriately.
720         if (info.si_signo == SIGTRAP)
721             MonitorSIGTRAP(info, *thread_sp);
722         else
723             MonitorSignal(info, *thread_sp, exited);
724     }
725     else
726     {
727         if (info_err.GetError() == EINVAL)
728         {
729             // This is a group stop reception for this tid.
730             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
731             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
732             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
733             // generally not needed (one use case is debugging background task being managed by a
734             // shell). For general use, it is sufficient to stop the process in a signal-delivery
735             // stop which happens before the group stop. This done by MonitorSignal and works
736             // correctly for all signals.
737             if (log)
738                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
739             ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
740         }
741         else
742         {
743             // ptrace(GETSIGINFO) failed (but not due to group-stop).
744 
745             // A return value of ESRCH means the thread/process is no longer on the system,
746             // so it was killed somehow outside of our control.  Either way, we can't do anything
747             // with it anymore.
748 
749             // Stop tracking the metadata for the thread since it's entirely off the system now.
750             const bool thread_found = StopTrackingThread (pid);
751 
752             if (log)
753                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
754                              __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
755 
756             if (is_main_thread)
757             {
758                 // Notify the delegate - our process is not available but appears to have been killed outside
759                 // our control.  Is eStateExited the right exit state in this case?
760                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
761                 SetState (StateType::eStateExited, true);
762             }
763             else
764             {
765                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
766                 if (log)
767                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
768             }
769         }
770     }
771 }
772 
773 void
774 NativeProcessLinux::WaitForNewThread(::pid_t tid)
775 {
776     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
777 
778     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
779 
780     if (new_thread_sp)
781     {
782         // We are already tracking the thread - we got the event on the new thread (see
783         // MonitorSignal) before this one. We are done.
784         return;
785     }
786 
787     // The thread is not tracked yet, let's wait for it to appear.
788     int status = -1;
789     ::pid_t wait_pid;
790     do
791     {
792         if (log)
793             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
794         wait_pid = waitpid(tid, &status, __WALL);
795     }
796     while (wait_pid == -1 && errno == EINTR);
797     // Since we are waiting on a specific tid, this must be the creation event. But let's do
798     // some checks just in case.
799     if (wait_pid != tid) {
800         if (log)
801             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
802         // The only way I know of this could happen is if the whole process was
803         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
804         return;
805     }
806     if (WIFEXITED(status))
807     {
808         if (log)
809             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
810         // Also a very improbable event.
811         return;
812     }
813 
814     siginfo_t info;
815     Error error = GetSignalInfo(tid, &info);
816     if (error.Fail())
817     {
818         if (log)
819             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
820         return;
821     }
822 
823     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
824     {
825         // We should be getting a thread creation signal here, but we received something
826         // else. There isn't much we can do about it now, so we will just log that. Since the
827         // thread is alive and we are receiving events from it, we shall pretend that it was
828         // created properly.
829         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
830     }
831 
832     if (log)
833         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
834                  __FUNCTION__, GetID (), tid);
835 
836     new_thread_sp = AddThread(tid);
837     ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
838     ThreadWasCreated(*new_thread_sp);
839 }
840 
841 void
842 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
843 {
844     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
845     const bool is_main_thread = (thread.GetID() == GetID ());
846 
847     assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
848 
849     switch (info.si_code)
850     {
851     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
852     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
853     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
854 
855     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
856     {
857         // This is the notification on the parent thread which informs us of new thread
858         // creation.
859         // We don't want to do anything with the parent thread so we just resume it. In case we
860         // want to implement "break on thread creation" functionality, we would need to stop
861         // here.
862 
863         unsigned long event_message = 0;
864         if (GetEventMessage(thread.GetID(), &event_message).Fail())
865         {
866             if (log)
867                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
868         } else
869             WaitForNewThread(event_message);
870 
871         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
872         break;
873     }
874 
875     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
876     {
877         NativeThreadLinuxSP main_thread_sp;
878         if (log)
879             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
880 
881         // Exec clears any pending notifications.
882         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
883 
884         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.
885         if (log)
886             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
887 
888         for (auto thread_sp : m_threads)
889         {
890             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
891             if (is_main_thread)
892             {
893                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
894                 if (log)
895                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
896             }
897             else
898             {
899                 if (log)
900                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
901             }
902         }
903 
904         m_threads.clear ();
905 
906         if (main_thread_sp)
907         {
908             m_threads.push_back (main_thread_sp);
909             SetCurrentThreadID (main_thread_sp->GetID ());
910             main_thread_sp->SetStoppedByExec();
911         }
912         else
913         {
914             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
915             if (log)
916                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
917         }
918 
919         // Tell coordinator about about the "new" (since exec) stopped main thread.
920         ThreadWasCreated(*main_thread_sp);
921 
922         // Let our delegate know we have just exec'd.
923         NotifyDidExec ();
924 
925         // If we have a main thread, indicate we are stopped.
926         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
927 
928         // Let the process know we're stopped.
929         StopRunningThreads(main_thread_sp->GetID());
930 
931         break;
932     }
933 
934     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
935     {
936         // The inferior process or one of its threads is about to exit.
937         // We don't want to do anything with the thread so we just resume it. In case we
938         // want to implement "break on thread exit" functionality, we would need to stop
939         // here.
940 
941         unsigned long data = 0;
942         if (GetEventMessage(thread.GetID(), &data).Fail())
943             data = -1;
944 
945         if (log)
946         {
947             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
948                          __FUNCTION__,
949                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
950                          thread.GetID(),
951                     is_main_thread ? "is main thread" : "not main thread");
952         }
953 
954         if (is_main_thread)
955         {
956             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
957         }
958 
959         StateType state = thread.GetState();
960         if (! StateIsRunningState(state))
961         {
962             // Due to a kernel bug, we may sometimes get this stop after the inferior gets a
963             // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally,
964             // we should not be receiving any ptrace events while the inferior is stopped. This
965             // makes sure that the inferior is resumed and exits normally.
966             state = eStateRunning;
967         }
968         ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
969 
970         break;
971     }
972 
973     case 0:
974     case TRAP_TRACE:  // We receive this on single stepping.
975     case TRAP_HWBKPT: // We receive this on watchpoint hit
976     {
977         // If a watchpoint was hit, report it
978         uint32_t wp_index;
979         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr);
980         if (error.Fail() && log)
981             log->Printf("NativeProcessLinux::%s() "
982                         "received error while checking for watchpoint hits, "
983                         "pid = %" PRIu64 " error = %s",
984                         __FUNCTION__, thread.GetID(), error.AsCString());
985         if (wp_index != LLDB_INVALID_INDEX32)
986         {
987             MonitorWatchpoint(thread, wp_index);
988             break;
989         }
990 
991         // Otherwise, report step over
992         MonitorTrace(thread);
993         break;
994     }
995 
996     case SI_KERNEL:
997 #if defined __mips__
998         // For mips there is no special signal for watchpoint
999         // So we check for watchpoint in kernel trap
1000     {
1001         // If a watchpoint was hit, report it
1002         uint32_t wp_index;
1003         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1004         if (error.Fail() && log)
1005             log->Printf("NativeProcessLinux::%s() "
1006                         "received error while checking for watchpoint hits, "
1007                         "pid = %" PRIu64 " error = %s",
1008                         __FUNCTION__, thread.GetID(), error.AsCString());
1009         if (wp_index != LLDB_INVALID_INDEX32)
1010         {
1011             MonitorWatchpoint(thread, wp_index);
1012             break;
1013         }
1014     }
1015         // NO BREAK
1016 #endif
1017     case TRAP_BRKPT:
1018         MonitorBreakpoint(thread);
1019         break;
1020 
1021     case SIGTRAP:
1022     case (SIGTRAP | 0x80):
1023         if (log)
1024             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
1025 
1026         // Ignore these signals until we know more about them.
1027         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1028         break;
1029 
1030     default:
1031         assert(false && "Unexpected SIGTRAP code!");
1032         if (log)
1033             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1034                     __FUNCTION__, GetID(), thread.GetID(), info.si_code);
1035         break;
1036 
1037     }
1038 }
1039 
1040 void
1041 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
1042 {
1043     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1044     if (log)
1045         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1046                 __FUNCTION__, thread.GetID());
1047 
1048     // This thread is currently stopped.
1049     thread.SetStoppedByTrace();
1050 
1051     StopRunningThreads(thread.GetID());
1052 }
1053 
1054 void
1055 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
1056 {
1057     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1058     if (log)
1059         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1060                 __FUNCTION__, thread.GetID());
1061 
1062     // Mark the thread as stopped at breakpoint.
1063     thread.SetStoppedByBreakpoint();
1064     Error error = FixupBreakpointPCAsNeeded(thread);
1065     if (error.Fail())
1066         if (log)
1067             log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1068                     __FUNCTION__, thread.GetID(), error.AsCString());
1069 
1070     if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
1071         thread.SetStoppedByTrace();
1072 
1073     StopRunningThreads(thread.GetID());
1074 }
1075 
1076 void
1077 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1078 {
1079     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1080     if (log)
1081         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1082                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1083                     __FUNCTION__, thread.GetID(), wp_index);
1084 
1085     // Mark the thread as stopped at watchpoint.
1086     // The address is at (lldb::addr_t)info->si_addr if we need it.
1087     thread.SetStoppedByWatchpoint(wp_index);
1088 
1089     // We need to tell all other running threads before we notify the delegate about this stop.
1090     StopRunningThreads(thread.GetID());
1091 }
1092 
1093 void
1094 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
1095 {
1096     const int signo = info.si_signo;
1097     const bool is_from_llgs = info.si_pid == getpid ();
1098 
1099     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1100 
1101     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1102     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1103     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1104     //
1105     // IOW, user generated signals never generate what we consider to be a
1106     // "crash".
1107     //
1108     // Similarly, ACK signals generated by this monitor.
1109 
1110     // Handle the signal.
1111     if (info.si_code == SI_TKILL || info.si_code == SI_USER)
1112     {
1113         if (log)
1114             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1115                             __FUNCTION__,
1116                             Host::GetSignalAsCString(signo),
1117                             signo,
1118                             (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1119                             info.si_pid,
1120                             is_from_llgs ? "from llgs" : "not from llgs",
1121                             thread.GetID());
1122     }
1123 
1124     // Check for thread stop notification.
1125     if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
1126     {
1127         // This is a tgkill()-based stop.
1128         if (log)
1129             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1130                          __FUNCTION__,
1131                          GetID (),
1132                          thread.GetID());
1133 
1134         // Check that we're not already marked with a stop reason.
1135         // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1136         // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1137         // and that, without an intervening resume, we received another stop.  It is more likely
1138         // that we are missing the marking of a run state somewhere if we find that the thread was
1139         // marked as stopped.
1140         const StateType thread_state = thread.GetState();
1141         if (!StateIsStoppedState (thread_state, false))
1142         {
1143             // An inferior thread has stopped because of a SIGSTOP we have sent it.
1144             // Generally, these are not important stops and we don't want to report them as
1145             // they are just used to stop other threads when one thread (the one with the
1146             // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1147             // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1148             // leave the signal intact if this is the thread that was chosen as the
1149             // triggering thread.
1150             if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1151             {
1152                 if (m_pending_notification_tid == thread.GetID())
1153                     thread.SetStoppedBySignal(SIGSTOP, &info);
1154                 else
1155                     thread.SetStoppedWithNoReason();
1156 
1157                 SetCurrentThreadID (thread.GetID ());
1158                 SignalIfAllThreadsStopped();
1159             }
1160             else
1161             {
1162                 // We can end up here if stop was initiated by LLGS but by this time a
1163                 // thread stop has occurred - maybe initiated by another event.
1164                 Error error = ResumeThread(thread, thread.GetState(), 0);
1165                 if (error.Fail() && log)
1166                 {
1167                     log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1168                             __FUNCTION__, thread.GetID(), error.AsCString());
1169                 }
1170             }
1171         }
1172         else
1173         {
1174             if (log)
1175             {
1176                 // Retrieve the signal name if the thread was stopped by a signal.
1177                 int stop_signo = 0;
1178                 const bool stopped_by_signal = thread.IsStopped(&stop_signo);
1179                 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1180                 if (!signal_name)
1181                     signal_name = "<no-signal-name>";
1182 
1183                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1184                              __FUNCTION__,
1185                              GetID (),
1186                              thread.GetID(),
1187                              StateAsCString (thread_state),
1188                              stop_signo,
1189                              signal_name);
1190             }
1191             SignalIfAllThreadsStopped();
1192         }
1193 
1194         // Done handling.
1195         return;
1196     }
1197 
1198     if (log)
1199         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1200 
1201     // This thread is stopped.
1202     thread.SetStoppedBySignal(signo, &info);
1203 
1204     // Send a stop to the debugger after we get all other threads to stop.
1205     StopRunningThreads(thread.GetID());
1206 }
1207 
1208 namespace {
1209 
1210 struct EmulatorBaton
1211 {
1212     NativeProcessLinux* m_process;
1213     NativeRegisterContext* m_reg_context;
1214 
1215     // eRegisterKindDWARF -> RegsiterValue
1216     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1217 
1218     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1219             m_process(process), m_reg_context(reg_context) {}
1220 };
1221 
1222 } // anonymous namespace
1223 
1224 static size_t
1225 ReadMemoryCallback (EmulateInstruction *instruction,
1226                     void *baton,
1227                     const EmulateInstruction::Context &context,
1228                     lldb::addr_t addr,
1229                     void *dst,
1230                     size_t length)
1231 {
1232     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1233 
1234     size_t bytes_read;
1235     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1236     return bytes_read;
1237 }
1238 
1239 static bool
1240 ReadRegisterCallback (EmulateInstruction *instruction,
1241                       void *baton,
1242                       const RegisterInfo *reg_info,
1243                       RegisterValue &reg_value)
1244 {
1245     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1246 
1247     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1248     if (it != emulator_baton->m_register_values.end())
1249     {
1250         reg_value = it->second;
1251         return true;
1252     }
1253 
1254     // The emulator only fill in the dwarf regsiter numbers (and in some case
1255     // the generic register numbers). Get the full register info from the
1256     // register context based on the dwarf register numbers.
1257     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1258             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1259 
1260     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1261     if (error.Success())
1262         return true;
1263 
1264     return false;
1265 }
1266 
1267 static bool
1268 WriteRegisterCallback (EmulateInstruction *instruction,
1269                        void *baton,
1270                        const EmulateInstruction::Context &context,
1271                        const RegisterInfo *reg_info,
1272                        const RegisterValue &reg_value)
1273 {
1274     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1275     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1276     return true;
1277 }
1278 
1279 static size_t
1280 WriteMemoryCallback (EmulateInstruction *instruction,
1281                      void *baton,
1282                      const EmulateInstruction::Context &context,
1283                      lldb::addr_t addr,
1284                      const void *dst,
1285                      size_t length)
1286 {
1287     return length;
1288 }
1289 
1290 static lldb::addr_t
1291 ReadFlags (NativeRegisterContext* regsiter_context)
1292 {
1293     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1294             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1295     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1296 }
1297 
1298 Error
1299 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
1300 {
1301     Error error;
1302     NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1303 
1304     std::unique_ptr<EmulateInstruction> emulator_ap(
1305         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1306 
1307     if (emulator_ap == nullptr)
1308         return Error("Instruction emulator not found!");
1309 
1310     EmulatorBaton baton(this, register_context_sp.get());
1311     emulator_ap->SetBaton(&baton);
1312     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1313     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1314     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1315     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1316 
1317     if (!emulator_ap->ReadInstruction())
1318         return Error("Read instruction failed!");
1319 
1320     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1321 
1322     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1323     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1324 
1325     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1326     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1327 
1328     lldb::addr_t next_pc;
1329     lldb::addr_t next_flags;
1330     if (emulation_result)
1331     {
1332         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1333         next_pc = pc_it->second.GetAsUInt64();
1334 
1335         if (flags_it != baton.m_register_values.end())
1336             next_flags = flags_it->second.GetAsUInt64();
1337         else
1338             next_flags = ReadFlags (register_context_sp.get());
1339     }
1340     else if (pc_it == baton.m_register_values.end())
1341     {
1342         // Emulate instruction failed and it haven't changed PC. Advance PC
1343         // with the size of the current opcode because the emulation of all
1344         // PC modifying instruction should be successful. The failure most
1345         // likely caused by a not supported instruction which don't modify PC.
1346         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1347         next_flags = ReadFlags (register_context_sp.get());
1348     }
1349     else
1350     {
1351         // The instruction emulation failed after it modified the PC. It is an
1352         // unknown error where we can't continue because the next instruction is
1353         // modifying the PC but we don't  know how.
1354         return Error ("Instruction emulation failed unexpectedly.");
1355     }
1356 
1357     if (m_arch.GetMachine() == llvm::Triple::arm)
1358     {
1359         if (next_flags & 0x20)
1360         {
1361             // Thumb mode
1362             error = SetSoftwareBreakpoint(next_pc, 2);
1363         }
1364         else
1365         {
1366             // Arm mode
1367             error = SetSoftwareBreakpoint(next_pc, 4);
1368         }
1369     }
1370     else if (m_arch.GetMachine() == llvm::Triple::mips64
1371             || m_arch.GetMachine() == llvm::Triple::mips64el
1372             || m_arch.GetMachine() == llvm::Triple::mips
1373             || m_arch.GetMachine() == llvm::Triple::mipsel)
1374         error = SetSoftwareBreakpoint(next_pc, 4);
1375     else
1376     {
1377         // No size hint is given for the next breakpoint
1378         error = SetSoftwareBreakpoint(next_pc, 0);
1379     }
1380 
1381     if (error.Fail())
1382         return error;
1383 
1384     m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1385 
1386     return Error();
1387 }
1388 
1389 bool
1390 NativeProcessLinux::SupportHardwareSingleStepping() const
1391 {
1392     if (m_arch.GetMachine() == llvm::Triple::arm
1393         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1394         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1395         return false;
1396     return true;
1397 }
1398 
1399 Error
1400 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1401 {
1402     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1403     if (log)
1404         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1405 
1406     bool software_single_step = !SupportHardwareSingleStepping();
1407 
1408     if (software_single_step)
1409     {
1410         for (auto thread_sp : m_threads)
1411         {
1412             assert (thread_sp && "thread list should not contain NULL threads");
1413 
1414             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1415             if (action == nullptr)
1416                 continue;
1417 
1418             if (action->state == eStateStepping)
1419             {
1420                 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
1421                 if (error.Fail())
1422                     return error;
1423             }
1424         }
1425     }
1426 
1427     for (auto thread_sp : m_threads)
1428     {
1429         assert (thread_sp && "thread list should not contain NULL threads");
1430 
1431         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1432 
1433         if (action == nullptr)
1434         {
1435             if (log)
1436                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1437                     __FUNCTION__, GetID (), thread_sp->GetID ());
1438             continue;
1439         }
1440 
1441         if (log)
1442         {
1443             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1444                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1445         }
1446 
1447         switch (action->state)
1448         {
1449         case eStateRunning:
1450         case eStateStepping:
1451         {
1452             // Run the thread, possibly feeding it the signal.
1453             const int signo = action->signal;
1454             ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
1455             break;
1456         }
1457 
1458         case eStateSuspended:
1459         case eStateStopped:
1460             lldbassert(0 && "Unexpected state");
1461 
1462         default:
1463             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1464                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1465         }
1466     }
1467 
1468     return Error();
1469 }
1470 
1471 Error
1472 NativeProcessLinux::Halt ()
1473 {
1474     Error error;
1475 
1476     if (kill (GetID (), SIGSTOP) != 0)
1477         error.SetErrorToErrno ();
1478 
1479     return error;
1480 }
1481 
1482 Error
1483 NativeProcessLinux::Detach ()
1484 {
1485     Error error;
1486 
1487     // Stop monitoring the inferior.
1488     m_sigchld_handle.reset();
1489 
1490     // Tell ptrace to detach from the process.
1491     if (GetID () == LLDB_INVALID_PROCESS_ID)
1492         return error;
1493 
1494     for (auto thread_sp : m_threads)
1495     {
1496         Error e = Detach(thread_sp->GetID());
1497         if (e.Fail())
1498             error = e; // Save the error, but still attempt to detach from other threads.
1499     }
1500 
1501     return error;
1502 }
1503 
1504 Error
1505 NativeProcessLinux::Signal (int signo)
1506 {
1507     Error error;
1508 
1509     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1510     if (log)
1511         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1512                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1513 
1514     if (kill(GetID(), signo))
1515         error.SetErrorToErrno();
1516 
1517     return error;
1518 }
1519 
1520 Error
1521 NativeProcessLinux::Interrupt ()
1522 {
1523     // Pick a running thread (or if none, a not-dead stopped thread) as
1524     // the chosen thread that will be the stop-reason thread.
1525     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1526 
1527     NativeThreadProtocolSP running_thread_sp;
1528     NativeThreadProtocolSP stopped_thread_sp;
1529 
1530     if (log)
1531         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1532 
1533     for (auto thread_sp : m_threads)
1534     {
1535         // The thread shouldn't be null but lets just cover that here.
1536         if (!thread_sp)
1537             continue;
1538 
1539         // If we have a running or stepping thread, we'll call that the
1540         // target of the interrupt.
1541         const auto thread_state = thread_sp->GetState ();
1542         if (thread_state == eStateRunning ||
1543             thread_state == eStateStepping)
1544         {
1545             running_thread_sp = thread_sp;
1546             break;
1547         }
1548         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1549         {
1550             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1551             stopped_thread_sp = thread_sp;
1552         }
1553     }
1554 
1555     if (!running_thread_sp && !stopped_thread_sp)
1556     {
1557         Error error("found no running/stepping or live stopped threads as target for interrupt");
1558         if (log)
1559             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1560 
1561         return error;
1562     }
1563 
1564     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1565 
1566     if (log)
1567         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1568                      __FUNCTION__,
1569                      GetID (),
1570                      running_thread_sp ? "running" : "stopped",
1571                      deferred_signal_thread_sp->GetID ());
1572 
1573     StopRunningThreads(deferred_signal_thread_sp->GetID());
1574 
1575     return Error();
1576 }
1577 
1578 Error
1579 NativeProcessLinux::Kill ()
1580 {
1581     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1582     if (log)
1583         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1584 
1585     Error error;
1586 
1587     switch (m_state)
1588     {
1589         case StateType::eStateInvalid:
1590         case StateType::eStateExited:
1591         case StateType::eStateCrashed:
1592         case StateType::eStateDetached:
1593         case StateType::eStateUnloaded:
1594             // Nothing to do - the process is already dead.
1595             if (log)
1596                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1597             return error;
1598 
1599         case StateType::eStateConnected:
1600         case StateType::eStateAttaching:
1601         case StateType::eStateLaunching:
1602         case StateType::eStateStopped:
1603         case StateType::eStateRunning:
1604         case StateType::eStateStepping:
1605         case StateType::eStateSuspended:
1606             // We can try to kill a process in these states.
1607             break;
1608     }
1609 
1610     if (kill (GetID (), SIGKILL) != 0)
1611     {
1612         error.SetErrorToErrno ();
1613         return error;
1614     }
1615 
1616     return error;
1617 }
1618 
1619 static Error
1620 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1621 {
1622     memory_region_info.Clear();
1623 
1624     StringExtractor line_extractor (maps_line.c_str ());
1625 
1626     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1627     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1628 
1629     // Parse out the starting address
1630     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1631 
1632     // Parse out hyphen separating start and end address from range.
1633     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1634         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1635 
1636     // Parse out the ending address
1637     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1638 
1639     // Parse out the space after the address.
1640     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1641         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1642 
1643     // Save the range.
1644     memory_region_info.GetRange ().SetRangeBase (start_address);
1645     memory_region_info.GetRange ().SetRangeEnd (end_address);
1646 
1647     // Any memory region in /proc/{pid}/maps is by definition mapped into the process.
1648     memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1649 
1650     // Parse out each permission entry.
1651     if (line_extractor.GetBytesLeft () < 4)
1652         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1653 
1654     // Handle read permission.
1655     const char read_perm_char = line_extractor.GetChar ();
1656     if (read_perm_char == 'r')
1657         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1658     else if (read_perm_char == '-')
1659         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1660     else
1661         return Error ("unexpected /proc/{pid}/maps read permission char");
1662 
1663     // Handle write permission.
1664     const char write_perm_char = line_extractor.GetChar ();
1665     if (write_perm_char == 'w')
1666         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
1667     else if (write_perm_char == '-')
1668         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1669     else
1670         return Error ("unexpected /proc/{pid}/maps write permission char");
1671 
1672     // Handle execute permission.
1673     const char exec_perm_char = line_extractor.GetChar ();
1674     if (exec_perm_char == 'x')
1675         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
1676     else if (exec_perm_char == '-')
1677         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1678     else
1679         return Error ("unexpected /proc/{pid}/maps exec permission char");
1680 
1681     line_extractor.GetChar();              // Read the private bit
1682     line_extractor.SkipSpaces();           // Skip the separator
1683     line_extractor.GetHexMaxU64(false, 0); // Read the offset
1684     line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1685     line_extractor.GetChar();              // Read the device id separator
1686     line_extractor.GetHexMaxU64(false, 0); // Read the major device number
1687     line_extractor.SkipSpaces();           // Skip the separator
1688     line_extractor.GetU64(0, 10);          // Read the inode number
1689 
1690     line_extractor.SkipSpaces();
1691     const char* name = line_extractor.Peek();
1692     if (name)
1693         memory_region_info.SetName(name);
1694 
1695     return Error ();
1696 }
1697 
1698 Error
1699 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
1700 {
1701     // FIXME review that the final memory region returned extends to the end of the virtual address space,
1702     // with no perms if it is not mapped.
1703 
1704     // Use an approach that reads memory regions from /proc/{pid}/maps.
1705     // Assume proc maps entries are in ascending order.
1706     // FIXME assert if we find differently.
1707 
1708     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1709     Error error;
1710 
1711     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
1712     {
1713         // We're done.
1714         error.SetErrorString ("unsupported");
1715         return error;
1716     }
1717 
1718     // If our cache is empty, pull the latest.  There should always be at least one memory region
1719     // if memory region handling is supported.
1720     if (m_mem_region_cache.empty ())
1721     {
1722         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
1723              [&] (const std::string &line) -> bool
1724              {
1725                  MemoryRegionInfo info;
1726                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
1727                  if (parse_error.Success ())
1728                  {
1729                      m_mem_region_cache.push_back (info);
1730                      return true;
1731                  }
1732                  else
1733                  {
1734                      if (log)
1735                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
1736                      return false;
1737                  }
1738              });
1739 
1740         // If we had an error, we'll mark unsupported.
1741         if (error.Fail ())
1742         {
1743             m_supports_mem_region = LazyBool::eLazyBoolNo;
1744             return error;
1745         }
1746         else if (m_mem_region_cache.empty ())
1747         {
1748             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
1749             // is supported.  Assume we don't support map entries via procfs.
1750             if (log)
1751                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
1752             m_supports_mem_region = LazyBool::eLazyBoolNo;
1753             error.SetErrorString ("not supported");
1754             return error;
1755         }
1756 
1757         if (log)
1758             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
1759 
1760         // We support memory retrieval, remember that.
1761         m_supports_mem_region = LazyBool::eLazyBoolYes;
1762     }
1763     else
1764     {
1765         if (log)
1766             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
1767     }
1768 
1769     lldb::addr_t prev_base_address = 0;
1770 
1771     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
1772     // There can be a ton of regions on pthreads apps with lots of threads.
1773     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
1774     {
1775         MemoryRegionInfo &proc_entry_info = *it;
1776 
1777         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1778         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
1779         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
1780 
1781         // If the target address comes before this entry, indicate distance to next region.
1782         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
1783         {
1784             range_info.GetRange ().SetRangeBase (load_addr);
1785             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
1786             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1787             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1788             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1789             range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1790 
1791             return error;
1792         }
1793         else if (proc_entry_info.GetRange ().Contains (load_addr))
1794         {
1795             // The target address is within the memory region we're processing here.
1796             range_info = proc_entry_info;
1797             return error;
1798         }
1799 
1800         // The target memory address comes somewhere after the region we just parsed.
1801     }
1802 
1803     // If we made it here, we didn't find an entry that contained the given address. Return the
1804     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
1805     // size.
1806     range_info.GetRange ().SetRangeBase (load_addr);
1807     range_info.GetRange ().SetRangeEnd(LLDB_INVALID_ADDRESS);
1808     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1809     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1810     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1811     range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1812     return error;
1813 }
1814 
1815 void
1816 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
1817 {
1818     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1819     if (log)
1820         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
1821 
1822         if (log)
1823             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
1824         m_mem_region_cache.clear ();
1825 }
1826 
1827 Error
1828 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
1829 {
1830     // FIXME implementing this requires the equivalent of
1831     // InferiorCallPOSIX::InferiorCallMmap, which depends on
1832     // functional ThreadPlans working with Native*Protocol.
1833 #if 1
1834     return Error ("not implemented yet");
1835 #else
1836     addr = LLDB_INVALID_ADDRESS;
1837 
1838     unsigned prot = 0;
1839     if (permissions & lldb::ePermissionsReadable)
1840         prot |= eMmapProtRead;
1841     if (permissions & lldb::ePermissionsWritable)
1842         prot |= eMmapProtWrite;
1843     if (permissions & lldb::ePermissionsExecutable)
1844         prot |= eMmapProtExec;
1845 
1846     // TODO implement this directly in NativeProcessLinux
1847     // (and lift to NativeProcessPOSIX if/when that class is
1848     // refactored out).
1849     if (InferiorCallMmap(this, addr, 0, size, prot,
1850                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1851         m_addr_to_mmap_size[addr] = size;
1852         return Error ();
1853     } else {
1854         addr = LLDB_INVALID_ADDRESS;
1855         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
1856     }
1857 #endif
1858 }
1859 
1860 Error
1861 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
1862 {
1863     // FIXME see comments in AllocateMemory - required lower-level
1864     // bits not in place yet (ThreadPlans)
1865     return Error ("not implemented");
1866 }
1867 
1868 lldb::addr_t
1869 NativeProcessLinux::GetSharedLibraryInfoAddress ()
1870 {
1871     // punt on this for now
1872     return LLDB_INVALID_ADDRESS;
1873 }
1874 
1875 size_t
1876 NativeProcessLinux::UpdateThreads ()
1877 {
1878     // The NativeProcessLinux monitoring threads are always up to date
1879     // with respect to thread state and they keep the thread list
1880     // populated properly. All this method needs to do is return the
1881     // thread count.
1882     return m_threads.size ();
1883 }
1884 
1885 bool
1886 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
1887 {
1888     arch = m_arch;
1889     return true;
1890 }
1891 
1892 Error
1893 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
1894 {
1895     // FIXME put this behind a breakpoint protocol class that can be
1896     // set per architecture.  Need ARM, MIPS support here.
1897     static const uint8_t g_i386_opcode [] = { 0xCC };
1898     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
1899 
1900     switch (m_arch.GetMachine ())
1901     {
1902         case llvm::Triple::x86:
1903         case llvm::Triple::x86_64:
1904             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
1905             return Error ();
1906 
1907         case llvm::Triple::systemz:
1908             actual_opcode_size = static_cast<uint32_t> (sizeof(g_s390x_opcode));
1909             return Error ();
1910 
1911         case llvm::Triple::arm:
1912         case llvm::Triple::aarch64:
1913         case llvm::Triple::mips64:
1914         case llvm::Triple::mips64el:
1915         case llvm::Triple::mips:
1916         case llvm::Triple::mipsel:
1917             // On these architectures the PC don't get updated for breakpoint hits
1918             actual_opcode_size = 0;
1919             return Error ();
1920 
1921         default:
1922             assert(false && "CPU type not supported!");
1923             return Error ("CPU type not supported");
1924     }
1925 }
1926 
1927 Error
1928 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
1929 {
1930     if (hardware)
1931         return Error ("NativeProcessLinux does not support hardware breakpoints");
1932     else
1933         return SetSoftwareBreakpoint (addr, size);
1934 }
1935 
1936 Error
1937 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
1938                                                      size_t &actual_opcode_size,
1939                                                      const uint8_t *&trap_opcode_bytes)
1940 {
1941     // FIXME put this behind a breakpoint protocol class that can be set per
1942     // architecture.  Need MIPS support here.
1943     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
1944     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1945     // linux kernel does otherwise.
1946     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
1947     static const uint8_t g_i386_opcode [] = { 0xCC };
1948     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
1949     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
1950     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
1951     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
1952 
1953     switch (m_arch.GetMachine ())
1954     {
1955     case llvm::Triple::aarch64:
1956         trap_opcode_bytes = g_aarch64_opcode;
1957         actual_opcode_size = sizeof(g_aarch64_opcode);
1958         return Error ();
1959 
1960     case llvm::Triple::arm:
1961         switch (trap_opcode_size_hint)
1962         {
1963         case 2:
1964             trap_opcode_bytes = g_thumb_breakpoint_opcode;
1965             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1966             return Error ();
1967         case 4:
1968             trap_opcode_bytes = g_arm_breakpoint_opcode;
1969             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1970             return Error ();
1971         default:
1972             assert(false && "Unrecognised trap opcode size hint!");
1973             return Error ("Unrecognised trap opcode size hint!");
1974         }
1975 
1976     case llvm::Triple::x86:
1977     case llvm::Triple::x86_64:
1978         trap_opcode_bytes = g_i386_opcode;
1979         actual_opcode_size = sizeof(g_i386_opcode);
1980         return Error ();
1981 
1982     case llvm::Triple::mips:
1983     case llvm::Triple::mips64:
1984         trap_opcode_bytes = g_mips64_opcode;
1985         actual_opcode_size = sizeof(g_mips64_opcode);
1986         return Error ();
1987 
1988     case llvm::Triple::mipsel:
1989     case llvm::Triple::mips64el:
1990         trap_opcode_bytes = g_mips64el_opcode;
1991         actual_opcode_size = sizeof(g_mips64el_opcode);
1992         return Error ();
1993 
1994     case llvm::Triple::systemz:
1995         trap_opcode_bytes = g_s390x_opcode;
1996         actual_opcode_size = sizeof(g_s390x_opcode);
1997         return Error ();
1998 
1999     default:
2000         assert(false && "CPU type not supported!");
2001         return Error ("CPU type not supported");
2002     }
2003 }
2004 
2005 #if 0
2006 ProcessMessage::CrashReason
2007 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2008 {
2009     ProcessMessage::CrashReason reason;
2010     assert(info->si_signo == SIGSEGV);
2011 
2012     reason = ProcessMessage::eInvalidCrashReason;
2013 
2014     switch (info->si_code)
2015     {
2016     default:
2017         assert(false && "unexpected si_code for SIGSEGV");
2018         break;
2019     case SI_KERNEL:
2020         // Linux will occasionally send spurious SI_KERNEL codes.
2021         // (this is poorly documented in sigaction)
2022         // One way to get this is via unaligned SIMD loads.
2023         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2024         break;
2025     case SEGV_MAPERR:
2026         reason = ProcessMessage::eInvalidAddress;
2027         break;
2028     case SEGV_ACCERR:
2029         reason = ProcessMessage::ePrivilegedAddress;
2030         break;
2031     }
2032 
2033     return reason;
2034 }
2035 #endif
2036 
2037 
2038 #if 0
2039 ProcessMessage::CrashReason
2040 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2041 {
2042     ProcessMessage::CrashReason reason;
2043     assert(info->si_signo == SIGILL);
2044 
2045     reason = ProcessMessage::eInvalidCrashReason;
2046 
2047     switch (info->si_code)
2048     {
2049     default:
2050         assert(false && "unexpected si_code for SIGILL");
2051         break;
2052     case ILL_ILLOPC:
2053         reason = ProcessMessage::eIllegalOpcode;
2054         break;
2055     case ILL_ILLOPN:
2056         reason = ProcessMessage::eIllegalOperand;
2057         break;
2058     case ILL_ILLADR:
2059         reason = ProcessMessage::eIllegalAddressingMode;
2060         break;
2061     case ILL_ILLTRP:
2062         reason = ProcessMessage::eIllegalTrap;
2063         break;
2064     case ILL_PRVOPC:
2065         reason = ProcessMessage::ePrivilegedOpcode;
2066         break;
2067     case ILL_PRVREG:
2068         reason = ProcessMessage::ePrivilegedRegister;
2069         break;
2070     case ILL_COPROC:
2071         reason = ProcessMessage::eCoprocessorError;
2072         break;
2073     case ILL_BADSTK:
2074         reason = ProcessMessage::eInternalStackError;
2075         break;
2076     }
2077 
2078     return reason;
2079 }
2080 #endif
2081 
2082 #if 0
2083 ProcessMessage::CrashReason
2084 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2085 {
2086     ProcessMessage::CrashReason reason;
2087     assert(info->si_signo == SIGFPE);
2088 
2089     reason = ProcessMessage::eInvalidCrashReason;
2090 
2091     switch (info->si_code)
2092     {
2093     default:
2094         assert(false && "unexpected si_code for SIGFPE");
2095         break;
2096     case FPE_INTDIV:
2097         reason = ProcessMessage::eIntegerDivideByZero;
2098         break;
2099     case FPE_INTOVF:
2100         reason = ProcessMessage::eIntegerOverflow;
2101         break;
2102     case FPE_FLTDIV:
2103         reason = ProcessMessage::eFloatDivideByZero;
2104         break;
2105     case FPE_FLTOVF:
2106         reason = ProcessMessage::eFloatOverflow;
2107         break;
2108     case FPE_FLTUND:
2109         reason = ProcessMessage::eFloatUnderflow;
2110         break;
2111     case FPE_FLTRES:
2112         reason = ProcessMessage::eFloatInexactResult;
2113         break;
2114     case FPE_FLTINV:
2115         reason = ProcessMessage::eFloatInvalidOperation;
2116         break;
2117     case FPE_FLTSUB:
2118         reason = ProcessMessage::eFloatSubscriptRange;
2119         break;
2120     }
2121 
2122     return reason;
2123 }
2124 #endif
2125 
2126 #if 0
2127 ProcessMessage::CrashReason
2128 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2129 {
2130     ProcessMessage::CrashReason reason;
2131     assert(info->si_signo == SIGBUS);
2132 
2133     reason = ProcessMessage::eInvalidCrashReason;
2134 
2135     switch (info->si_code)
2136     {
2137     default:
2138         assert(false && "unexpected si_code for SIGBUS");
2139         break;
2140     case BUS_ADRALN:
2141         reason = ProcessMessage::eIllegalAlignment;
2142         break;
2143     case BUS_ADRERR:
2144         reason = ProcessMessage::eIllegalAddress;
2145         break;
2146     case BUS_OBJERR:
2147         reason = ProcessMessage::eHardwareError;
2148         break;
2149     }
2150 
2151     return reason;
2152 }
2153 #endif
2154 
2155 Error
2156 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2157 {
2158     if (ProcessVmReadvSupported()) {
2159         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2160         // this syscall if it is supported.
2161 
2162         const ::pid_t pid = GetID();
2163 
2164         struct iovec local_iov, remote_iov;
2165         local_iov.iov_base = buf;
2166         local_iov.iov_len = size;
2167         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2168         remote_iov.iov_len = size;
2169 
2170         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2171         const bool success = bytes_read == size;
2172 
2173         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2174         if (log)
2175             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2176                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2177 
2178         if (success)
2179             return Error();
2180         // else
2181         //     the call failed for some reason, let's retry the read using ptrace api.
2182     }
2183 
2184     unsigned char *dst = static_cast<unsigned char*>(buf);
2185     size_t remainder;
2186     long data;
2187 
2188     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2189     if (log)
2190         ProcessPOSIXLog::IncNestLevel();
2191     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2192         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2193 
2194     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2195     {
2196         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2197         if (error.Fail())
2198         {
2199             if (log)
2200                 ProcessPOSIXLog::DecNestLevel();
2201             return error;
2202         }
2203 
2204         remainder = size - bytes_read;
2205         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2206 
2207         // Copy the data into our buffer
2208         memcpy(dst, &data, remainder);
2209 
2210         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2211                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2212                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2213                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2214         {
2215             uintptr_t print_dst = 0;
2216             // Format bytes from data by moving into print_dst for log output
2217             for (unsigned i = 0; i < remainder; ++i)
2218                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2219             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2220                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2221         }
2222         addr += k_ptrace_word_size;
2223         dst += k_ptrace_word_size;
2224     }
2225 
2226     if (log)
2227         ProcessPOSIXLog::DecNestLevel();
2228     return Error();
2229 }
2230 
2231 Error
2232 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2233 {
2234     Error error = ReadMemory(addr, buf, size, bytes_read);
2235     if (error.Fail()) return error;
2236     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2237 }
2238 
2239 Error
2240 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2241 {
2242     const unsigned char *src = static_cast<const unsigned char*>(buf);
2243     size_t remainder;
2244     Error error;
2245 
2246     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2247     if (log)
2248         ProcessPOSIXLog::IncNestLevel();
2249     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2250         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2251 
2252     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2253     {
2254         remainder = size - bytes_written;
2255         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2256 
2257         if (remainder == k_ptrace_word_size)
2258         {
2259             unsigned long data = 0;
2260             memcpy(&data, src, k_ptrace_word_size);
2261 
2262             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2263                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2264                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2265                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2266                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2267                         (void*)addr, *(const unsigned long*)src, data);
2268 
2269             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2270             if (error.Fail())
2271             {
2272                 if (log)
2273                     ProcessPOSIXLog::DecNestLevel();
2274                 return error;
2275             }
2276         }
2277         else
2278         {
2279             unsigned char buff[8];
2280             size_t bytes_read;
2281             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2282             if (error.Fail())
2283             {
2284                 if (log)
2285                     ProcessPOSIXLog::DecNestLevel();
2286                 return error;
2287             }
2288 
2289             memcpy(buff, src, remainder);
2290 
2291             size_t bytes_written_rec;
2292             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2293             if (error.Fail())
2294             {
2295                 if (log)
2296                     ProcessPOSIXLog::DecNestLevel();
2297                 return error;
2298             }
2299 
2300             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2301                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2302                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2303                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2304                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2305                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2306         }
2307 
2308         addr += k_ptrace_word_size;
2309         src += k_ptrace_word_size;
2310     }
2311     if (log)
2312         ProcessPOSIXLog::DecNestLevel();
2313     return error;
2314 }
2315 
2316 Error
2317 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2318 {
2319     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2320 }
2321 
2322 Error
2323 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2324 {
2325     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2326 }
2327 
2328 Error
2329 NativeProcessLinux::Detach(lldb::tid_t tid)
2330 {
2331     if (tid == LLDB_INVALID_THREAD_ID)
2332         return Error();
2333 
2334     return PtraceWrapper(PTRACE_DETACH, tid);
2335 }
2336 
2337 bool
2338 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2339 {
2340     for (auto thread_sp : m_threads)
2341     {
2342         assert (thread_sp && "thread list should not contain NULL threads");
2343         if (thread_sp->GetID () == thread_id)
2344         {
2345             // We have this thread.
2346             return true;
2347         }
2348     }
2349 
2350     // We don't have this thread.
2351     return false;
2352 }
2353 
2354 bool
2355 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2356 {
2357     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2358 
2359     if (log)
2360         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2361 
2362     bool found = false;
2363 
2364     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2365     {
2366         if (*it && ((*it)->GetID () == thread_id))
2367         {
2368             m_threads.erase (it);
2369             found = true;
2370             break;
2371         }
2372     }
2373 
2374     SignalIfAllThreadsStopped();
2375 
2376     return found;
2377 }
2378 
2379 NativeThreadLinuxSP
2380 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2381 {
2382     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2383 
2384     if (log)
2385     {
2386         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2387                 __FUNCTION__,
2388                 GetID (),
2389                 thread_id);
2390     }
2391 
2392     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2393 
2394     // If this is the first thread, save it as the current thread
2395     if (m_threads.empty ())
2396         SetCurrentThreadID (thread_id);
2397 
2398     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2399     m_threads.push_back (thread_sp);
2400     return thread_sp;
2401 }
2402 
2403 Error
2404 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
2405 {
2406     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2407 
2408     Error error;
2409 
2410     // Find out the size of a breakpoint (might depend on where we are in the code).
2411     NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2412     if (!context_sp)
2413     {
2414         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2415         if (log)
2416             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2417         return error;
2418     }
2419 
2420     uint32_t breakpoint_size = 0;
2421     error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2422     if (error.Fail ())
2423     {
2424         if (log)
2425             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2426         return error;
2427     }
2428     else
2429     {
2430         if (log)
2431             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2432     }
2433 
2434     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2435     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2436     lldb::addr_t breakpoint_addr = initial_pc_addr;
2437     if (breakpoint_size > 0)
2438     {
2439         // Do not allow breakpoint probe to wrap around.
2440         if (breakpoint_addr >= breakpoint_size)
2441             breakpoint_addr -= breakpoint_size;
2442     }
2443 
2444     // Check if we stopped because of a breakpoint.
2445     NativeBreakpointSP breakpoint_sp;
2446     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2447     if (!error.Success () || !breakpoint_sp)
2448     {
2449         // We didn't find one at a software probe location.  Nothing to do.
2450         if (log)
2451             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2452         return Error ();
2453     }
2454 
2455     // If the breakpoint is not a software breakpoint, nothing to do.
2456     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2457     {
2458         if (log)
2459             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2460         return Error ();
2461     }
2462 
2463     //
2464     // We have a software breakpoint and need to adjust the PC.
2465     //
2466 
2467     // Sanity check.
2468     if (breakpoint_size == 0)
2469     {
2470         // Nothing to do!  How did we get here?
2471         if (log)
2472             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2473         return Error ();
2474     }
2475 
2476     // Change the program counter.
2477     if (log)
2478         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
2479 
2480     error = context_sp->SetPC (breakpoint_addr);
2481     if (error.Fail ())
2482     {
2483         if (log)
2484             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
2485         return error;
2486     }
2487 
2488     return error;
2489 }
2490 
2491 Error
2492 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2493 {
2494     FileSpec module_file_spec(module_path, true);
2495 
2496     bool found = false;
2497     file_spec.Clear();
2498     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2499         [&] (const std::string &line)
2500         {
2501             SmallVector<StringRef, 16> columns;
2502             StringRef(line).split(columns, " ", -1, false);
2503             if (columns.size() < 6)
2504                 return true; // continue searching
2505 
2506             FileSpec this_file_spec(columns[5].str().c_str(), false);
2507             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2508                 return true; // continue searching
2509 
2510             file_spec = this_file_spec;
2511             found = true;
2512             return false; // we are done
2513         });
2514 
2515     if (! found)
2516         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2517                 module_file_spec.GetFilename().AsCString(), GetID());
2518 
2519     return Error();
2520 }
2521 
2522 Error
2523 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2524 {
2525     load_addr = LLDB_INVALID_ADDRESS;
2526     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2527         [&] (const std::string &line) -> bool
2528         {
2529             StringRef maps_row(line);
2530 
2531             SmallVector<StringRef, 16> maps_columns;
2532             maps_row.split(maps_columns, StringRef(" "), -1, false);
2533 
2534             if (maps_columns.size() < 6)
2535             {
2536                 // Return true to continue reading the proc file
2537                 return true;
2538             }
2539 
2540             if (maps_columns[5] == file_name)
2541             {
2542                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2543                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2544 
2545                 // Return false to stop reading the proc file further
2546                 return false;
2547             }
2548 
2549             // Return true to continue reading the proc file
2550             return true;
2551         });
2552     return error;
2553 }
2554 
2555 NativeThreadLinuxSP
2556 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
2557 {
2558     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
2559 }
2560 
2561 Error
2562 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
2563 {
2564     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2565 
2566     if (log)
2567         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
2568                 __FUNCTION__, thread.GetID());
2569 
2570     // Before we do the resume below, first check if we have a pending
2571     // stop notification that is currently waiting for
2572     // all threads to stop.  This is potentially a buggy situation since
2573     // we're ostensibly waiting for threads to stop before we send out the
2574     // pending notification, and here we are resuming one before we send
2575     // out the pending stop notification.
2576     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
2577     {
2578         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
2579     }
2580 
2581     // Request a resume.  We expect this to be synchronous and the system
2582     // to reflect it is running after this completes.
2583     switch (state)
2584     {
2585     case eStateRunning:
2586     {
2587         const auto resume_result = thread.Resume(signo);
2588         if (resume_result.Success())
2589             SetState(eStateRunning, true);
2590         return resume_result;
2591     }
2592     case eStateStepping:
2593     {
2594         const auto step_result = thread.SingleStep(signo);
2595         if (step_result.Success())
2596             SetState(eStateRunning, true);
2597         return step_result;
2598     }
2599     default:
2600         if (log)
2601             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
2602                     __FUNCTION__, StateAsCString(state));
2603         llvm_unreachable("Unhandled state for resume");
2604     }
2605 }
2606 
2607 //===----------------------------------------------------------------------===//
2608 
2609 void
2610 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
2611 {
2612     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2613 
2614     if (log)
2615     {
2616         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
2617                 __FUNCTION__, triggering_tid);
2618     }
2619 
2620     m_pending_notification_tid = triggering_tid;
2621 
2622     // Request a stop for all the thread stops that need to be stopped
2623     // and are not already known to be stopped.
2624     for (const auto &thread_sp: m_threads)
2625     {
2626         if (StateIsRunningState(thread_sp->GetState()))
2627             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2628     }
2629 
2630     SignalIfAllThreadsStopped();
2631 
2632     if (log)
2633     {
2634         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
2635     }
2636 }
2637 
2638 void
2639 NativeProcessLinux::SignalIfAllThreadsStopped()
2640 {
2641     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2642         return; // No pending notification. Nothing to do.
2643 
2644     for (const auto &thread_sp: m_threads)
2645     {
2646         if (StateIsRunningState(thread_sp->GetState()))
2647             return; // Some threads are still running. Don't signal yet.
2648     }
2649 
2650     // We have a pending notification and all threads have stopped.
2651     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2652 
2653     // Clear any temporary breakpoints we used to implement software single stepping.
2654     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
2655     {
2656         Error error = RemoveBreakpoint (thread_info.second);
2657         if (error.Fail())
2658             if (log)
2659                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2660                         __FUNCTION__, thread_info.first, error.AsCString());
2661     }
2662     m_threads_stepping_with_breakpoint.clear();
2663 
2664     // Notify the delegate about the stop
2665     SetCurrentThreadID(m_pending_notification_tid);
2666     SetState(StateType::eStateStopped, true);
2667     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2668 }
2669 
2670 void
2671 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
2672 {
2673     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2674 
2675     if (log)
2676         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
2677 
2678     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
2679     {
2680         // We will need to wait for this new thread to stop as well before firing the
2681         // notification.
2682         thread.RequestStop();
2683     }
2684 }
2685 
2686 void
2687 NativeProcessLinux::SigchldHandler()
2688 {
2689     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2690     // Process all pending waitpid notifications.
2691     while (true)
2692     {
2693         int status = -1;
2694         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
2695 
2696         if (wait_pid == 0)
2697             break; // We are done.
2698 
2699         if (wait_pid == -1)
2700         {
2701             if (errno == EINTR)
2702                 continue;
2703 
2704             Error error(errno, eErrorTypePOSIX);
2705             if (log)
2706                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
2707                         __FUNCTION__, error.AsCString());
2708             break;
2709         }
2710 
2711         bool exited = false;
2712         int signal = 0;
2713         int exit_status = 0;
2714         const char *status_cstr = nullptr;
2715         if (WIFSTOPPED(status))
2716         {
2717             signal = WSTOPSIG(status);
2718             status_cstr = "STOPPED";
2719         }
2720         else if (WIFEXITED(status))
2721         {
2722             exit_status = WEXITSTATUS(status);
2723             status_cstr = "EXITED";
2724             exited = true;
2725         }
2726         else if (WIFSIGNALED(status))
2727         {
2728             signal = WTERMSIG(status);
2729             status_cstr = "SIGNALED";
2730             if (wait_pid == static_cast< ::pid_t>(GetID())) {
2731                 exited = true;
2732                 exit_status = -1;
2733             }
2734         }
2735         else
2736             status_cstr = "(\?\?\?)";
2737 
2738         if (log)
2739             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
2740                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
2741                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
2742 
2743         MonitorCallback (wait_pid, exited, signal, exit_status);
2744     }
2745 }
2746 
2747 // Wrapper for ptrace to catch errors and log calls.
2748 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
2749 Error
2750 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
2751 {
2752     Error error;
2753     long int ret;
2754 
2755     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
2756 
2757     PtraceDisplayBytes(req, data, data_size);
2758 
2759     errno = 0;
2760     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2761         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
2762     else
2763         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
2764 
2765     if (ret == -1)
2766         error.SetErrorToErrno();
2767 
2768     if (result)
2769         *result = ret;
2770 
2771     if (log)
2772         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
2773 
2774     PtraceDisplayBytes(req, data, data_size);
2775 
2776     if (log && error.GetError() != 0)
2777     {
2778         const char* str;
2779         switch (error.GetError())
2780         {
2781         case ESRCH:  str = "ESRCH"; break;
2782         case EINVAL: str = "EINVAL"; break;
2783         case EBUSY:  str = "EBUSY"; break;
2784         case EPERM:  str = "EPERM"; break;
2785         default:     str = error.AsCString();
2786         }
2787         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
2788     }
2789 
2790     return error;
2791 }
2792