xref: /llvm-project/lldb/source/Plugins/Process/Linux/NativeProcessLinux.cpp (revision ad00756301c73771a058f23c77226627c8e27f9a)
1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/ModuleSpec.h"
29 #include "lldb/Core/RegisterValue.h"
30 #include "lldb/Core/State.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/ThreadLauncher.h"
33 #include "lldb/Host/common/NativeBreakpoint.h"
34 #include "lldb/Host/common/NativeRegisterContext.h"
35 #include "lldb/Symbol/ObjectFile.h"
36 #include "lldb/Target/Process.h"
37 #include "lldb/Target/ProcessLaunchInfo.h"
38 #include "lldb/Target/Target.h"
39 #include "lldb/Utility/LLDBAssert.h"
40 #include "lldb/Utility/PseudoTerminal.h"
41 #include "lldb/Utility/StringExtractor.h"
42 
43 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
44 #include "NativeThreadLinux.h"
45 #include "ProcFileReader.h"
46 #include "Procfs.h"
47 
48 // System includes - They have to be included after framework includes because they define some
49 // macros which collide with variable names in other modules
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 
53 #include <sys/syscall.h>
54 #include <sys/types.h>
55 #include <sys/user.h>
56 #include <sys/wait.h>
57 
58 #include "lldb/Host/linux/Personality.h"
59 #include "lldb/Host/linux/Ptrace.h"
60 #include "lldb/Host/linux/Uio.h"
61 #include "lldb/Host/android/Android.h"
62 
63 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS  0xffffffff
64 
65 // Support hardware breakpoints in case it has not been defined
66 #ifndef TRAP_HWBKPT
67   #define TRAP_HWBKPT 4
68 #endif
69 
70 using namespace lldb;
71 using namespace lldb_private;
72 using namespace lldb_private::process_linux;
73 using namespace llvm;
74 
75 // Private bits we only need internally.
76 
77 static bool ProcessVmReadvSupported()
78 {
79     static bool is_supported;
80     static std::once_flag flag;
81 
82     std::call_once(flag, [] {
83         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
84 
85         uint32_t source = 0x47424742;
86         uint32_t dest = 0;
87 
88         struct iovec local, remote;
89         remote.iov_base = &source;
90         local.iov_base = &dest;
91         remote.iov_len = local.iov_len = sizeof source;
92 
93         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
94         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
95         is_supported = (res == sizeof(source) && source == dest);
96         if (log)
97         {
98             if (is_supported)
99                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
100                         __FUNCTION__);
101             else
102                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
103                         __FUNCTION__, strerror(errno));
104         }
105     });
106 
107     return is_supported;
108 }
109 
110 namespace
111 {
112 Error
113 ResolveProcessArchitecture(lldb::pid_t pid, ArchSpec &arch)
114 {
115     // Grab process info for the running process.
116     ProcessInstanceInfo process_info;
117     if (!Host::GetProcessInfo(pid, process_info))
118         return Error("failed to get process info");
119 
120     // Resolve the executable module.
121     ModuleSpecList module_specs;
122     if (!ObjectFile::GetModuleSpecifications(process_info.GetExecutableFile(), 0, 0, module_specs))
123         return Error("failed to get module specifications");
124     assert(module_specs.GetSize() == 1);
125 
126     arch = module_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
127     if (arch.IsValid())
128         return Error();
129     else
130         return Error("failed to retrieve a valid architecture from the exe module");
131 }
132 
133 // Used to notify the parent about which part of the launch sequence failed.
134 enum LaunchCallSpecifier
135 {
136     ePtraceFailed,
137     eDupStdinFailed,
138     eDupStdoutFailed,
139     eDupStderrFailed,
140     eChdirFailed,
141     eExecFailed,
142     eSetGidFailed,
143     eSetSigMaskFailed,
144     eLaunchCallMax = eSetSigMaskFailed
145 };
146 
147 static uint8_t LLVM_ATTRIBUTE_NORETURN
148 ExitChildAbnormally(LaunchCallSpecifier spec)
149 {
150     static_assert(eLaunchCallMax < 0x8, "Have more launch calls than we are able to represent");
151     // This may truncate the topmost bits of the errno because the exit code is only 8 bits wide.
152     // However, it should still give us a pretty good indication of what went wrong. (And the
153     // most common errors have small numbers anyway).
154     _exit(unsigned(spec) | (errno << 3));
155 }
156 
157 // The second member is the errno (or its 5 lowermost bits anyway).
158 inline std::pair<LaunchCallSpecifier, uint8_t>
159 DecodeChildExitCode(int exit_code)
160 {
161     return std::make_pair(LaunchCallSpecifier(exit_code & 0x7), exit_code >> 3);
162 }
163 
164     void
165     DisplayBytes (StreamString &s, void *bytes, uint32_t count)
166     {
167         uint8_t *ptr = (uint8_t *)bytes;
168         const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
169         for(uint32_t i=0; i<loop_count; i++)
170         {
171             s.Printf ("[%x]", *ptr);
172             ptr++;
173         }
174     }
175 
176     void
177     PtraceDisplayBytes(int &req, void *data, size_t data_size)
178     {
179         StreamString buf;
180         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
181                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
182 
183         if (verbose_log)
184         {
185             switch(req)
186             {
187             case PTRACE_POKETEXT:
188             {
189                 DisplayBytes(buf, &data, 8);
190                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
191                 break;
192             }
193             case PTRACE_POKEDATA:
194             {
195                 DisplayBytes(buf, &data, 8);
196                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
197                 break;
198             }
199             case PTRACE_POKEUSER:
200             {
201                 DisplayBytes(buf, &data, 8);
202                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
203                 break;
204             }
205             case PTRACE_SETREGS:
206             {
207                 DisplayBytes(buf, data, data_size);
208                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
209                 break;
210             }
211             case PTRACE_SETFPREGS:
212             {
213                 DisplayBytes(buf, data, data_size);
214                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
215                 break;
216             }
217             case PTRACE_SETSIGINFO:
218             {
219                 DisplayBytes(buf, data, sizeof(siginfo_t));
220                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
221                 break;
222             }
223             case PTRACE_SETREGSET:
224             {
225                 // Extract iov_base from data, which is a pointer to the struct IOVEC
226                 DisplayBytes(buf, *(void **)data, data_size);
227                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
228                 break;
229             }
230             default:
231             {
232             }
233             }
234         }
235     }
236 
237     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
238     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
239 } // end of anonymous namespace
240 
241 // Simple helper function to ensure flags are enabled on the given file
242 // descriptor.
243 static Error
244 EnsureFDFlags(int fd, int flags)
245 {
246     Error error;
247 
248     int status = fcntl(fd, F_GETFL);
249     if (status == -1)
250     {
251         error.SetErrorToErrno();
252         return error;
253     }
254 
255     if (fcntl(fd, F_SETFL, status | flags) == -1)
256     {
257         error.SetErrorToErrno();
258         return error;
259     }
260 
261     return error;
262 }
263 
264 NativeProcessLinux::LaunchArgs::LaunchArgs(char const **argv, char const **envp, const FileSpec &stdin_file_spec,
265                                            const FileSpec &stdout_file_spec, const FileSpec &stderr_file_spec,
266                                            const FileSpec &working_dir, const ProcessLaunchInfo &launch_info)
267     : m_argv(argv),
268       m_envp(envp),
269       m_stdin_file_spec(stdin_file_spec),
270       m_stdout_file_spec(stdout_file_spec),
271       m_stderr_file_spec(stderr_file_spec),
272       m_working_dir(working_dir),
273       m_launch_info(launch_info)
274 {
275 }
276 
277 NativeProcessLinux::LaunchArgs::~LaunchArgs()
278 { }
279 
280 // -----------------------------------------------------------------------------
281 // Public Static Methods
282 // -----------------------------------------------------------------------------
283 
284 Error
285 NativeProcessProtocol::Launch (
286     ProcessLaunchInfo &launch_info,
287     NativeProcessProtocol::NativeDelegate &native_delegate,
288     MainLoop &mainloop,
289     NativeProcessProtocolSP &native_process_sp)
290 {
291     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
292 
293     Error error;
294 
295     // Verify the working directory is valid if one was specified.
296     FileSpec working_dir{launch_info.GetWorkingDirectory()};
297     if (working_dir &&
298             (!working_dir.ResolvePath() ||
299              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
300     {
301         error.SetErrorStringWithFormat ("No such file or directory: %s",
302                 working_dir.GetCString());
303         return error;
304     }
305 
306     const FileAction *file_action;
307 
308     // Default of empty will mean to use existing open file descriptors.
309     FileSpec stdin_file_spec{};
310     FileSpec stdout_file_spec{};
311     FileSpec stderr_file_spec{};
312 
313     file_action = launch_info.GetFileActionForFD (STDIN_FILENO);
314     if (file_action)
315         stdin_file_spec = file_action->GetFileSpec();
316 
317     file_action = launch_info.GetFileActionForFD (STDOUT_FILENO);
318     if (file_action)
319         stdout_file_spec = file_action->GetFileSpec();
320 
321     file_action = launch_info.GetFileActionForFD (STDERR_FILENO);
322     if (file_action)
323         stderr_file_spec = file_action->GetFileSpec();
324 
325     if (log)
326     {
327         if (stdin_file_spec)
328             log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'",
329                     __FUNCTION__, stdin_file_spec.GetCString());
330         else
331             log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__);
332 
333         if (stdout_file_spec)
334             log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'",
335                     __FUNCTION__, stdout_file_spec.GetCString());
336         else
337             log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__);
338 
339         if (stderr_file_spec)
340             log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'",
341                     __FUNCTION__, stderr_file_spec.GetCString());
342         else
343             log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__);
344     }
345 
346     // Create the NativeProcessLinux in launch mode.
347     native_process_sp.reset (new NativeProcessLinux ());
348 
349     if (log)
350     {
351         int i = 0;
352         for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i)
353         {
354             log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
355             ++i;
356         }
357     }
358 
359     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
360     {
361         native_process_sp.reset ();
362         error.SetErrorStringWithFormat ("failed to register the native delegate");
363         return error;
364     }
365 
366     std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior (
367             mainloop,
368             launch_info.GetArguments ().GetConstArgumentVector (),
369             launch_info.GetEnvironmentEntries ().GetConstArgumentVector (),
370             stdin_file_spec,
371             stdout_file_spec,
372             stderr_file_spec,
373             working_dir,
374             launch_info,
375             error);
376 
377     if (error.Fail ())
378     {
379         native_process_sp.reset ();
380         if (log)
381             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
382         return error;
383     }
384 
385     launch_info.SetProcessID (native_process_sp->GetID ());
386 
387     return error;
388 }
389 
390 Error
391 NativeProcessProtocol::Attach (
392     lldb::pid_t pid,
393     NativeProcessProtocol::NativeDelegate &native_delegate,
394     MainLoop &mainloop,
395     NativeProcessProtocolSP &native_process_sp)
396 {
397     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
398     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
399         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
400 
401     // Retrieve the architecture for the running process.
402     ArchSpec process_arch;
403     Error error = ResolveProcessArchitecture(pid, process_arch);
404     if (!error.Success ())
405         return error;
406 
407     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
408 
409     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
410     {
411         error.SetErrorStringWithFormat ("failed to register the native delegate");
412         return error;
413     }
414 
415     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
416     if (!error.Success ())
417         return error;
418 
419     native_process_sp = native_process_linux_sp;
420     return error;
421 }
422 
423 // -----------------------------------------------------------------------------
424 // Public Instance Methods
425 // -----------------------------------------------------------------------------
426 
427 NativeProcessLinux::NativeProcessLinux () :
428     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
429     m_arch (),
430     m_supports_mem_region (eLazyBoolCalculate),
431     m_mem_region_cache (),
432     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
433 {
434 }
435 
436 void
437 NativeProcessLinux::LaunchInferior (
438     MainLoop &mainloop,
439     const char *argv[],
440     const char *envp[],
441     const FileSpec &stdin_file_spec,
442     const FileSpec &stdout_file_spec,
443     const FileSpec &stderr_file_spec,
444     const FileSpec &working_dir,
445     const ProcessLaunchInfo &launch_info,
446     Error &error)
447 {
448     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
449             [this] (MainLoopBase &) { SigchldHandler(); }, error);
450     if (! m_sigchld_handle)
451         return;
452 
453     SetState (eStateLaunching);
454 
455     std::unique_ptr<LaunchArgs> args(
456         new LaunchArgs(argv, envp, stdin_file_spec, stdout_file_spec, stderr_file_spec, working_dir, launch_info));
457 
458     Launch(args.get(), error);
459 }
460 
461 void
462 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
463 {
464     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
465     if (log)
466         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
467 
468     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
469             [this] (MainLoopBase &) { SigchldHandler(); }, error);
470     if (! m_sigchld_handle)
471         return;
472 
473     error = ResolveProcessArchitecture(pid, m_arch);
474     if (!error.Success())
475         return;
476 
477     // Set the architecture to the exe architecture.
478     if (log)
479         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
480 
481     m_pid = pid;
482     SetState(eStateAttaching);
483 
484     Attach(pid, error);
485 }
486 
487 void
488 NativeProcessLinux::ChildFunc(const LaunchArgs &args)
489 {
490     // Start tracing this child that is about to exec.
491     if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) == -1)
492         ExitChildAbnormally(ePtraceFailed);
493 
494     // Do not inherit setgid powers.
495     if (setgid(getgid()) != 0)
496         ExitChildAbnormally(eSetGidFailed);
497 
498     // Attempt to have our own process group.
499     if (setpgid(0, 0) != 0)
500     {
501         // FIXME log that this failed. This is common.
502         // Don't allow this to prevent an inferior exec.
503     }
504 
505     // Dup file descriptors if needed.
506     if (args.m_stdin_file_spec)
507         if (!DupDescriptor(args.m_stdin_file_spec, STDIN_FILENO, O_RDONLY))
508             ExitChildAbnormally(eDupStdinFailed);
509 
510     if (args.m_stdout_file_spec)
511         if (!DupDescriptor(args.m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
512             ExitChildAbnormally(eDupStdoutFailed);
513 
514     if (args.m_stderr_file_spec)
515         if (!DupDescriptor(args.m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC))
516             ExitChildAbnormally(eDupStderrFailed);
517 
518     // Close everything besides stdin, stdout, and stderr that has no file
519     // action to avoid leaking
520     for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd)
521         if (!args.m_launch_info.GetFileActionForFD(fd))
522             close(fd);
523 
524     // Change working directory
525     if (args.m_working_dir && 0 != ::chdir(args.m_working_dir.GetCString()))
526         ExitChildAbnormally(eChdirFailed);
527 
528     // Disable ASLR if requested.
529     if (args.m_launch_info.GetFlags().Test(lldb::eLaunchFlagDisableASLR))
530     {
531         const int old_personality = personality(LLDB_PERSONALITY_GET_CURRENT_SETTINGS);
532         if (old_personality == -1)
533         {
534             // Can't retrieve Linux personality.  Cannot disable ASLR.
535         }
536         else
537         {
538             const int new_personality = personality(ADDR_NO_RANDOMIZE | old_personality);
539             if (new_personality == -1)
540             {
541                 // Disabling ASLR failed.
542             }
543             else
544             {
545                 // Disabling ASLR succeeded.
546             }
547         }
548     }
549 
550     // Clear the signal mask to prevent the child from being affected by
551     // any masking done by the parent.
552     sigset_t set;
553     if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0)
554         ExitChildAbnormally(eSetSigMaskFailed);
555 
556     // Propagate the environment if one is not supplied.
557     const char **envp = args.m_envp;
558     if (envp == NULL || envp[0] == NULL)
559         envp = const_cast<const char **>(environ);
560 
561     // Execute.  We should never return...
562     execve(args.m_argv[0], const_cast<char *const *>(args.m_argv), const_cast<char *const *>(envp));
563 
564     // ...unless exec fails.  In which case we definitely need to end the child here.
565     ExitChildAbnormally(eExecFailed);
566 }
567 
568 ::pid_t
569 NativeProcessLinux::Launch(LaunchArgs *args, Error &error)
570 {
571     assert (args && "null args");
572 
573     lldb_utility::PseudoTerminal terminal;
574     const size_t err_len = 1024;
575     char err_str[err_len];
576     lldb::pid_t pid;
577 
578     if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1))
579     {
580         error.SetErrorToGenericError();
581         error.SetErrorStringWithFormat("Process fork failed: %s", err_str);
582         return -1;
583     }
584 
585     // Child process.
586     if (pid == 0)
587     {
588         // First, make sure we disable all logging. If we are logging to stdout, our logs can be
589         // mistaken for inferior output.
590         Log::DisableAllLogChannels(nullptr);
591 
592         // terminal has already dupped the tty descriptors to stdin/out/err.
593         // This closes original fd from which they were copied (and avoids
594         // leaking descriptors to the debugged process.
595         terminal.CloseSlaveFileDescriptor();
596 
597         ChildFunc(*args);
598     }
599 
600     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
601 
602     // Wait for the child process to trap on its call to execve.
603     ::pid_t wpid;
604     int status;
605     if ((wpid = waitpid(pid, &status, 0)) < 0)
606     {
607         error.SetErrorToErrno();
608         if (log)
609             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
610                     __FUNCTION__, error.AsCString ());
611 
612         // Mark the inferior as invalid.
613         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
614         SetState (StateType::eStateInvalid);
615 
616         return -1;
617     }
618     else if (WIFEXITED(status))
619     {
620         auto p = DecodeChildExitCode(WEXITSTATUS(status));
621         Error child_error(p.second, eErrorTypePOSIX);
622         const char *failure_reason;
623         switch (p.first)
624         {
625             case ePtraceFailed:
626                 failure_reason = "Child ptrace failed";
627                 break;
628             case eDupStdinFailed:
629                 failure_reason = "Child open stdin failed";
630                 break;
631             case eDupStdoutFailed:
632                 failure_reason = "Child open stdout failed";
633                 break;
634             case eDupStderrFailed:
635                 failure_reason = "Child open stderr failed";
636                 break;
637             case eChdirFailed:
638                 failure_reason = "Child failed to set working directory";
639                 break;
640             case eExecFailed:
641                 failure_reason = "Child exec failed";
642                 break;
643             case eSetGidFailed:
644                 failure_reason = "Child setgid failed";
645                 break;
646             case eSetSigMaskFailed:
647                 failure_reason = "Child failed to set signal mask";
648                 break;
649         }
650         error.SetErrorStringWithFormat("%s: %d - %s (error code truncated)", failure_reason, child_error.GetError(), child_error.AsCString());
651 
652         if (log)
653         {
654             log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP",
655                     __FUNCTION__,
656                     WEXITSTATUS(status));
657         }
658 
659         // Mark the inferior as invalid.
660         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
661         SetState (StateType::eStateInvalid);
662 
663         return -1;
664     }
665     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
666            "Could not sync with inferior process.");
667 
668     if (log)
669         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
670 
671     error = SetDefaultPtraceOpts(pid);
672     if (error.Fail())
673     {
674         if (log)
675             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
676                     __FUNCTION__, error.AsCString ());
677 
678         // Mark the inferior as invalid.
679         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
680         SetState (StateType::eStateInvalid);
681 
682         return -1;
683     }
684 
685     // Release the master terminal descriptor and pass it off to the
686     // NativeProcessLinux instance.  Similarly stash the inferior pid.
687     m_terminal_fd = terminal.ReleaseMasterFileDescriptor();
688     m_pid = pid;
689 
690     // Set the terminal fd to be in non blocking mode (it simplifies the
691     // implementation of ProcessLinux::GetSTDOUT to have a non-blocking
692     // descriptor to read from).
693     error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
694     if (error.Fail())
695     {
696         if (log)
697             log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
698                     __FUNCTION__, error.AsCString ());
699 
700         // Mark the inferior as invalid.
701         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
702         SetState (StateType::eStateInvalid);
703 
704         return -1;
705     }
706 
707     if (log)
708         log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid);
709 
710     ResolveProcessArchitecture(m_pid, m_arch);
711     NativeThreadLinuxSP thread_sp = AddThread(pid);
712     assert (thread_sp && "AddThread() returned a nullptr thread");
713     thread_sp->SetStoppedBySignal(SIGSTOP);
714     ThreadWasCreated(*thread_sp);
715 
716     // Let our process instance know the thread has stopped.
717     SetCurrentThreadID (thread_sp->GetID ());
718     SetState (StateType::eStateStopped);
719 
720     if (log)
721     {
722         if (error.Success ())
723         {
724             log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
725         }
726         else
727         {
728             log->Printf ("NativeProcessLinux::%s inferior launching failed: %s",
729                 __FUNCTION__, error.AsCString ());
730             return -1;
731         }
732     }
733     return pid;
734 }
735 
736 ::pid_t
737 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
738 {
739     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
740 
741     // Use a map to keep track of the threads which we have attached/need to attach.
742     Host::TidMap tids_to_attach;
743     if (pid <= 1)
744     {
745         error.SetErrorToGenericError();
746         error.SetErrorString("Attaching to process 1 is not allowed.");
747         return -1;
748     }
749 
750     while (Host::FindProcessThreads(pid, tids_to_attach))
751     {
752         for (Host::TidMap::iterator it = tids_to_attach.begin();
753              it != tids_to_attach.end();)
754         {
755             if (it->second == false)
756             {
757                 lldb::tid_t tid = it->first;
758 
759                 // Attach to the requested process.
760                 // An attach will cause the thread to stop with a SIGSTOP.
761                 error = PtraceWrapper(PTRACE_ATTACH, tid);
762                 if (error.Fail())
763                 {
764                     // No such thread. The thread may have exited.
765                     // More error handling may be needed.
766                     if (error.GetError() == ESRCH)
767                     {
768                         it = tids_to_attach.erase(it);
769                         continue;
770                     }
771                     else
772                         return -1;
773                 }
774 
775                 int status;
776                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
777                 // At this point we should have a thread stopped if waitpid succeeds.
778                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
779                 {
780                     // No such thread. The thread may have exited.
781                     // More error handling may be needed.
782                     if (errno == ESRCH)
783                     {
784                         it = tids_to_attach.erase(it);
785                         continue;
786                     }
787                     else
788                     {
789                         error.SetErrorToErrno();
790                         return -1;
791                     }
792                 }
793 
794                 error = SetDefaultPtraceOpts(tid);
795                 if (error.Fail())
796                     return -1;
797 
798                 if (log)
799                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
800 
801                 it->second = true;
802 
803                 // Create the thread, mark it as stopped.
804                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
805                 assert (thread_sp && "AddThread() returned a nullptr");
806 
807                 // This will notify this is a new thread and tell the system it is stopped.
808                 thread_sp->SetStoppedBySignal(SIGSTOP);
809                 ThreadWasCreated(*thread_sp);
810                 SetCurrentThreadID (thread_sp->GetID ());
811             }
812 
813             // move the loop forward
814             ++it;
815         }
816     }
817 
818     if (tids_to_attach.size() > 0)
819     {
820         m_pid = pid;
821         // Let our process instance know the thread has stopped.
822         SetState (StateType::eStateStopped);
823     }
824     else
825     {
826         error.SetErrorToGenericError();
827         error.SetErrorString("No such process.");
828         return -1;
829     }
830 
831     return pid;
832 }
833 
834 Error
835 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
836 {
837     long ptrace_opts = 0;
838 
839     // Have the child raise an event on exit.  This is used to keep the child in
840     // limbo until it is destroyed.
841     ptrace_opts |= PTRACE_O_TRACEEXIT;
842 
843     // Have the tracer trace threads which spawn in the inferior process.
844     // TODO: if we want to support tracing the inferiors' child, add the
845     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
846     ptrace_opts |= PTRACE_O_TRACECLONE;
847 
848     // Have the tracer notify us before execve returns
849     // (needed to disable legacy SIGTRAP generation)
850     ptrace_opts |= PTRACE_O_TRACEEXEC;
851 
852     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
853 }
854 
855 static ExitType convert_pid_status_to_exit_type (int status)
856 {
857     if (WIFEXITED (status))
858         return ExitType::eExitTypeExit;
859     else if (WIFSIGNALED (status))
860         return ExitType::eExitTypeSignal;
861     else if (WIFSTOPPED (status))
862         return ExitType::eExitTypeStop;
863     else
864     {
865         // We don't know what this is.
866         return ExitType::eExitTypeInvalid;
867     }
868 }
869 
870 static int convert_pid_status_to_return_code (int status)
871 {
872     if (WIFEXITED (status))
873         return WEXITSTATUS (status);
874     else if (WIFSIGNALED (status))
875         return WTERMSIG (status);
876     else if (WIFSTOPPED (status))
877         return WSTOPSIG (status);
878     else
879     {
880         // We don't know what this is.
881         return ExitType::eExitTypeInvalid;
882     }
883 }
884 
885 // Handles all waitpid events from the inferior process.
886 void
887 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
888                                     bool exited,
889                                     int signal,
890                                     int status)
891 {
892     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
893 
894     // Certain activities differ based on whether the pid is the tid of the main thread.
895     const bool is_main_thread = (pid == GetID ());
896 
897     // Handle when the thread exits.
898     if (exited)
899     {
900         if (log)
901             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
902 
903         // This is a thread that exited.  Ensure we're not tracking it anymore.
904         const bool thread_found = StopTrackingThread (pid);
905 
906         if (is_main_thread)
907         {
908             // We only set the exit status and notify the delegate if we haven't already set the process
909             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
910             // for the main thread.
911             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
912             if (!already_notified)
913             {
914                 if (log)
915                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
916                 // The main thread exited.  We're done monitoring.  Report to delegate.
917                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
918 
919                 // Notify delegate that our process has exited.
920                 SetState (StateType::eStateExited, true);
921             }
922             else
923             {
924                 if (log)
925                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
926             }
927         }
928         else
929         {
930             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
931             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
932             // and we would have done an all-stop then.
933             if (log)
934                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
935         }
936         return;
937     }
938 
939     siginfo_t info;
940     const auto info_err = GetSignalInfo(pid, &info);
941     auto thread_sp = GetThreadByID(pid);
942 
943     if (! thread_sp)
944     {
945         // Normally, the only situation when we cannot find the thread is if we have just
946         // received a new thread notification. This is indicated by GetSignalInfo() returning
947         // si_code == SI_USER and si_pid == 0
948         if (log)
949             log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
950 
951         if (info_err.Fail())
952         {
953             if (log)
954                 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
955             return;
956         }
957 
958         if (log && (info.si_code != SI_USER || info.si_pid != 0))
959             log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
960 
961         auto thread_sp = AddThread(pid);
962         // Resume the newly created thread.
963         ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
964         ThreadWasCreated(*thread_sp);
965         return;
966     }
967 
968     // Get details on the signal raised.
969     if (info_err.Success())
970     {
971         // We have retrieved the signal info.  Dispatch appropriately.
972         if (info.si_signo == SIGTRAP)
973             MonitorSIGTRAP(info, *thread_sp);
974         else
975             MonitorSignal(info, *thread_sp, exited);
976     }
977     else
978     {
979         if (info_err.GetError() == EINVAL)
980         {
981             // This is a group stop reception for this tid.
982             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
983             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
984             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
985             // generally not needed (one use case is debugging background task being managed by a
986             // shell). For general use, it is sufficient to stop the process in a signal-delivery
987             // stop which happens before the group stop. This done by MonitorSignal and works
988             // correctly for all signals.
989             if (log)
990                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
991             ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
992         }
993         else
994         {
995             // ptrace(GETSIGINFO) failed (but not due to group-stop).
996 
997             // A return value of ESRCH means the thread/process is no longer on the system,
998             // so it was killed somehow outside of our control.  Either way, we can't do anything
999             // with it anymore.
1000 
1001             // Stop tracking the metadata for the thread since it's entirely off the system now.
1002             const bool thread_found = StopTrackingThread (pid);
1003 
1004             if (log)
1005                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
1006                              __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
1007 
1008             if (is_main_thread)
1009             {
1010                 // Notify the delegate - our process is not available but appears to have been killed outside
1011                 // our control.  Is eStateExited the right exit state in this case?
1012                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
1013                 SetState (StateType::eStateExited, true);
1014             }
1015             else
1016             {
1017                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
1018                 if (log)
1019                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
1020             }
1021         }
1022     }
1023 }
1024 
1025 void
1026 NativeProcessLinux::WaitForNewThread(::pid_t tid)
1027 {
1028     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1029 
1030     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
1031 
1032     if (new_thread_sp)
1033     {
1034         // We are already tracking the thread - we got the event on the new thread (see
1035         // MonitorSignal) before this one. We are done.
1036         return;
1037     }
1038 
1039     // The thread is not tracked yet, let's wait for it to appear.
1040     int status = -1;
1041     ::pid_t wait_pid;
1042     do
1043     {
1044         if (log)
1045             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
1046         wait_pid = waitpid(tid, &status, __WALL);
1047     }
1048     while (wait_pid == -1 && errno == EINTR);
1049     // Since we are waiting on a specific tid, this must be the creation event. But let's do
1050     // some checks just in case.
1051     if (wait_pid != tid) {
1052         if (log)
1053             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
1054         // The only way I know of this could happen is if the whole process was
1055         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
1056         return;
1057     }
1058     if (WIFEXITED(status))
1059     {
1060         if (log)
1061             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
1062         // Also a very improbable event.
1063         return;
1064     }
1065 
1066     siginfo_t info;
1067     Error error = GetSignalInfo(tid, &info);
1068     if (error.Fail())
1069     {
1070         if (log)
1071             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
1072         return;
1073     }
1074 
1075     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
1076     {
1077         // We should be getting a thread creation signal here, but we received something
1078         // else. There isn't much we can do about it now, so we will just log that. Since the
1079         // thread is alive and we are receiving events from it, we shall pretend that it was
1080         // created properly.
1081         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
1082     }
1083 
1084     if (log)
1085         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
1086                  __FUNCTION__, GetID (), tid);
1087 
1088     new_thread_sp = AddThread(tid);
1089     ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1090     ThreadWasCreated(*new_thread_sp);
1091 }
1092 
1093 void
1094 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
1095 {
1096     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1097     const bool is_main_thread = (thread.GetID() == GetID ());
1098 
1099     assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
1100 
1101     switch (info.si_code)
1102     {
1103     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
1104     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
1105     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
1106 
1107     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
1108     {
1109         // This is the notification on the parent thread which informs us of new thread
1110         // creation.
1111         // We don't want to do anything with the parent thread so we just resume it. In case we
1112         // want to implement "break on thread creation" functionality, we would need to stop
1113         // here.
1114 
1115         unsigned long event_message = 0;
1116         if (GetEventMessage(thread.GetID(), &event_message).Fail())
1117         {
1118             if (log)
1119                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
1120         } else
1121             WaitForNewThread(event_message);
1122 
1123         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1124         break;
1125     }
1126 
1127     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
1128     {
1129         NativeThreadLinuxSP main_thread_sp;
1130         if (log)
1131             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
1132 
1133         // Exec clears any pending notifications.
1134         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1135 
1136         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.
1137         if (log)
1138             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
1139 
1140         for (auto thread_sp : m_threads)
1141         {
1142             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
1143             if (is_main_thread)
1144             {
1145                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
1146                 if (log)
1147                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
1148             }
1149             else
1150             {
1151                 if (log)
1152                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
1153             }
1154         }
1155 
1156         m_threads.clear ();
1157 
1158         if (main_thread_sp)
1159         {
1160             m_threads.push_back (main_thread_sp);
1161             SetCurrentThreadID (main_thread_sp->GetID ());
1162             main_thread_sp->SetStoppedByExec();
1163         }
1164         else
1165         {
1166             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
1167             if (log)
1168                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
1169         }
1170 
1171         // Tell coordinator about about the "new" (since exec) stopped main thread.
1172         ThreadWasCreated(*main_thread_sp);
1173 
1174         // Let our delegate know we have just exec'd.
1175         NotifyDidExec ();
1176 
1177         // If we have a main thread, indicate we are stopped.
1178         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
1179 
1180         // Let the process know we're stopped.
1181         StopRunningThreads(main_thread_sp->GetID());
1182 
1183         break;
1184     }
1185 
1186     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
1187     {
1188         // The inferior process or one of its threads is about to exit.
1189         // We don't want to do anything with the thread so we just resume it. In case we
1190         // want to implement "break on thread exit" functionality, we would need to stop
1191         // here.
1192 
1193         unsigned long data = 0;
1194         if (GetEventMessage(thread.GetID(), &data).Fail())
1195             data = -1;
1196 
1197         if (log)
1198         {
1199             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
1200                          __FUNCTION__,
1201                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
1202                          thread.GetID(),
1203                     is_main_thread ? "is main thread" : "not main thread");
1204         }
1205 
1206         if (is_main_thread)
1207         {
1208             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
1209         }
1210 
1211         StateType state = thread.GetState();
1212         if (! StateIsRunningState(state))
1213         {
1214             // Due to a kernel bug, we may sometimes get this stop after the inferior gets a
1215             // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally,
1216             // we should not be receiving any ptrace events while the inferior is stopped. This
1217             // makes sure that the inferior is resumed and exits normally.
1218             state = eStateRunning;
1219         }
1220         ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
1221 
1222         break;
1223     }
1224 
1225     case 0:
1226     case TRAP_TRACE:  // We receive this on single stepping.
1227     case TRAP_HWBKPT: // We receive this on watchpoint hit
1228     {
1229         // If a watchpoint was hit, report it
1230         uint32_t wp_index;
1231         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr);
1232         if (error.Fail() && log)
1233             log->Printf("NativeProcessLinux::%s() "
1234                         "received error while checking for watchpoint hits, "
1235                         "pid = %" PRIu64 " error = %s",
1236                         __FUNCTION__, thread.GetID(), error.AsCString());
1237         if (wp_index != LLDB_INVALID_INDEX32)
1238         {
1239             MonitorWatchpoint(thread, wp_index);
1240             break;
1241         }
1242 
1243         // Otherwise, report step over
1244         MonitorTrace(thread);
1245         break;
1246     }
1247 
1248     case SI_KERNEL:
1249 #if defined __mips__
1250         // For mips there is no special signal for watchpoint
1251         // So we check for watchpoint in kernel trap
1252     {
1253         // If a watchpoint was hit, report it
1254         uint32_t wp_index;
1255         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1256         if (error.Fail() && log)
1257             log->Printf("NativeProcessLinux::%s() "
1258                         "received error while checking for watchpoint hits, "
1259                         "pid = %" PRIu64 " error = %s",
1260                         __FUNCTION__, thread.GetID(), error.AsCString());
1261         if (wp_index != LLDB_INVALID_INDEX32)
1262         {
1263             MonitorWatchpoint(thread, wp_index);
1264             break;
1265         }
1266     }
1267         // NO BREAK
1268 #endif
1269     case TRAP_BRKPT:
1270         MonitorBreakpoint(thread);
1271         break;
1272 
1273     case SIGTRAP:
1274     case (SIGTRAP | 0x80):
1275         if (log)
1276             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
1277 
1278         // Ignore these signals until we know more about them.
1279         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1280         break;
1281 
1282     default:
1283         assert(false && "Unexpected SIGTRAP code!");
1284         if (log)
1285             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1286                     __FUNCTION__, GetID(), thread.GetID(), info.si_code);
1287         break;
1288 
1289     }
1290 }
1291 
1292 void
1293 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
1294 {
1295     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1296     if (log)
1297         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1298                 __FUNCTION__, thread.GetID());
1299 
1300     // This thread is currently stopped.
1301     thread.SetStoppedByTrace();
1302 
1303     StopRunningThreads(thread.GetID());
1304 }
1305 
1306 void
1307 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
1308 {
1309     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1310     if (log)
1311         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1312                 __FUNCTION__, thread.GetID());
1313 
1314     // Mark the thread as stopped at breakpoint.
1315     thread.SetStoppedByBreakpoint();
1316     Error error = FixupBreakpointPCAsNeeded(thread);
1317     if (error.Fail())
1318         if (log)
1319             log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1320                     __FUNCTION__, thread.GetID(), error.AsCString());
1321 
1322     if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
1323         thread.SetStoppedByTrace();
1324 
1325     StopRunningThreads(thread.GetID());
1326 }
1327 
1328 void
1329 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1330 {
1331     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1332     if (log)
1333         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1334                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1335                     __FUNCTION__, thread.GetID(), wp_index);
1336 
1337     // Mark the thread as stopped at watchpoint.
1338     // The address is at (lldb::addr_t)info->si_addr if we need it.
1339     thread.SetStoppedByWatchpoint(wp_index);
1340 
1341     // We need to tell all other running threads before we notify the delegate about this stop.
1342     StopRunningThreads(thread.GetID());
1343 }
1344 
1345 void
1346 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
1347 {
1348     const int signo = info.si_signo;
1349     const bool is_from_llgs = info.si_pid == getpid ();
1350 
1351     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1352 
1353     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1354     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1355     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1356     //
1357     // IOW, user generated signals never generate what we consider to be a
1358     // "crash".
1359     //
1360     // Similarly, ACK signals generated by this monitor.
1361 
1362     // Handle the signal.
1363     if (info.si_code == SI_TKILL || info.si_code == SI_USER)
1364     {
1365         if (log)
1366             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1367                             __FUNCTION__,
1368                             Host::GetSignalAsCString(signo),
1369                             signo,
1370                             (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1371                             info.si_pid,
1372                             is_from_llgs ? "from llgs" : "not from llgs",
1373                             thread.GetID());
1374     }
1375 
1376     // Check for thread stop notification.
1377     if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
1378     {
1379         // This is a tgkill()-based stop.
1380         if (log)
1381             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1382                          __FUNCTION__,
1383                          GetID (),
1384                          thread.GetID());
1385 
1386         // Check that we're not already marked with a stop reason.
1387         // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1388         // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1389         // and that, without an intervening resume, we received another stop.  It is more likely
1390         // that we are missing the marking of a run state somewhere if we find that the thread was
1391         // marked as stopped.
1392         const StateType thread_state = thread.GetState();
1393         if (!StateIsStoppedState (thread_state, false))
1394         {
1395             // An inferior thread has stopped because of a SIGSTOP we have sent it.
1396             // Generally, these are not important stops and we don't want to report them as
1397             // they are just used to stop other threads when one thread (the one with the
1398             // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1399             // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1400             // leave the signal intact if this is the thread that was chosen as the
1401             // triggering thread.
1402             if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1403             {
1404                 if (m_pending_notification_tid == thread.GetID())
1405                     thread.SetStoppedBySignal(SIGSTOP, &info);
1406                 else
1407                     thread.SetStoppedWithNoReason();
1408 
1409                 SetCurrentThreadID (thread.GetID ());
1410                 SignalIfAllThreadsStopped();
1411             }
1412             else
1413             {
1414                 // We can end up here if stop was initiated by LLGS but by this time a
1415                 // thread stop has occurred - maybe initiated by another event.
1416                 Error error = ResumeThread(thread, thread.GetState(), 0);
1417                 if (error.Fail() && log)
1418                 {
1419                     log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1420                             __FUNCTION__, thread.GetID(), error.AsCString());
1421                 }
1422             }
1423         }
1424         else
1425         {
1426             if (log)
1427             {
1428                 // Retrieve the signal name if the thread was stopped by a signal.
1429                 int stop_signo = 0;
1430                 const bool stopped_by_signal = thread.IsStopped(&stop_signo);
1431                 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1432                 if (!signal_name)
1433                     signal_name = "<no-signal-name>";
1434 
1435                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1436                              __FUNCTION__,
1437                              GetID (),
1438                              thread.GetID(),
1439                              StateAsCString (thread_state),
1440                              stop_signo,
1441                              signal_name);
1442             }
1443             SignalIfAllThreadsStopped();
1444         }
1445 
1446         // Done handling.
1447         return;
1448     }
1449 
1450     if (log)
1451         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1452 
1453     // This thread is stopped.
1454     thread.SetStoppedBySignal(signo, &info);
1455 
1456     // Send a stop to the debugger after we get all other threads to stop.
1457     StopRunningThreads(thread.GetID());
1458 }
1459 
1460 namespace {
1461 
1462 struct EmulatorBaton
1463 {
1464     NativeProcessLinux* m_process;
1465     NativeRegisterContext* m_reg_context;
1466 
1467     // eRegisterKindDWARF -> RegsiterValue
1468     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1469 
1470     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1471             m_process(process), m_reg_context(reg_context) {}
1472 };
1473 
1474 } // anonymous namespace
1475 
1476 static size_t
1477 ReadMemoryCallback (EmulateInstruction *instruction,
1478                     void *baton,
1479                     const EmulateInstruction::Context &context,
1480                     lldb::addr_t addr,
1481                     void *dst,
1482                     size_t length)
1483 {
1484     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1485 
1486     size_t bytes_read;
1487     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1488     return bytes_read;
1489 }
1490 
1491 static bool
1492 ReadRegisterCallback (EmulateInstruction *instruction,
1493                       void *baton,
1494                       const RegisterInfo *reg_info,
1495                       RegisterValue &reg_value)
1496 {
1497     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1498 
1499     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1500     if (it != emulator_baton->m_register_values.end())
1501     {
1502         reg_value = it->second;
1503         return true;
1504     }
1505 
1506     // The emulator only fill in the dwarf regsiter numbers (and in some case
1507     // the generic register numbers). Get the full register info from the
1508     // register context based on the dwarf register numbers.
1509     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1510             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1511 
1512     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1513     if (error.Success())
1514         return true;
1515 
1516     return false;
1517 }
1518 
1519 static bool
1520 WriteRegisterCallback (EmulateInstruction *instruction,
1521                        void *baton,
1522                        const EmulateInstruction::Context &context,
1523                        const RegisterInfo *reg_info,
1524                        const RegisterValue &reg_value)
1525 {
1526     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1527     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1528     return true;
1529 }
1530 
1531 static size_t
1532 WriteMemoryCallback (EmulateInstruction *instruction,
1533                      void *baton,
1534                      const EmulateInstruction::Context &context,
1535                      lldb::addr_t addr,
1536                      const void *dst,
1537                      size_t length)
1538 {
1539     return length;
1540 }
1541 
1542 static lldb::addr_t
1543 ReadFlags (NativeRegisterContext* regsiter_context)
1544 {
1545     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1546             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1547     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1548 }
1549 
1550 Error
1551 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
1552 {
1553     Error error;
1554     NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1555 
1556     std::unique_ptr<EmulateInstruction> emulator_ap(
1557         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1558 
1559     if (emulator_ap == nullptr)
1560         return Error("Instruction emulator not found!");
1561 
1562     EmulatorBaton baton(this, register_context_sp.get());
1563     emulator_ap->SetBaton(&baton);
1564     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1565     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1566     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1567     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1568 
1569     if (!emulator_ap->ReadInstruction())
1570         return Error("Read instruction failed!");
1571 
1572     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1573 
1574     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1575     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1576 
1577     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1578     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1579 
1580     lldb::addr_t next_pc;
1581     lldb::addr_t next_flags;
1582     if (emulation_result)
1583     {
1584         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1585         next_pc = pc_it->second.GetAsUInt64();
1586 
1587         if (flags_it != baton.m_register_values.end())
1588             next_flags = flags_it->second.GetAsUInt64();
1589         else
1590             next_flags = ReadFlags (register_context_sp.get());
1591     }
1592     else if (pc_it == baton.m_register_values.end())
1593     {
1594         // Emulate instruction failed and it haven't changed PC. Advance PC
1595         // with the size of the current opcode because the emulation of all
1596         // PC modifying instruction should be successful. The failure most
1597         // likely caused by a not supported instruction which don't modify PC.
1598         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1599         next_flags = ReadFlags (register_context_sp.get());
1600     }
1601     else
1602     {
1603         // The instruction emulation failed after it modified the PC. It is an
1604         // unknown error where we can't continue because the next instruction is
1605         // modifying the PC but we don't  know how.
1606         return Error ("Instruction emulation failed unexpectedly.");
1607     }
1608 
1609     if (m_arch.GetMachine() == llvm::Triple::arm)
1610     {
1611         if (next_flags & 0x20)
1612         {
1613             // Thumb mode
1614             error = SetSoftwareBreakpoint(next_pc, 2);
1615         }
1616         else
1617         {
1618             // Arm mode
1619             error = SetSoftwareBreakpoint(next_pc, 4);
1620         }
1621     }
1622     else if (m_arch.GetMachine() == llvm::Triple::mips64
1623             || m_arch.GetMachine() == llvm::Triple::mips64el
1624             || m_arch.GetMachine() == llvm::Triple::mips
1625             || m_arch.GetMachine() == llvm::Triple::mipsel)
1626         error = SetSoftwareBreakpoint(next_pc, 4);
1627     else
1628     {
1629         // No size hint is given for the next breakpoint
1630         error = SetSoftwareBreakpoint(next_pc, 0);
1631     }
1632 
1633     if (error.Fail())
1634         return error;
1635 
1636     m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1637 
1638     return Error();
1639 }
1640 
1641 bool
1642 NativeProcessLinux::SupportHardwareSingleStepping() const
1643 {
1644     if (m_arch.GetMachine() == llvm::Triple::arm
1645         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1646         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1647         return false;
1648     return true;
1649 }
1650 
1651 Error
1652 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1653 {
1654     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1655     if (log)
1656         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1657 
1658     bool software_single_step = !SupportHardwareSingleStepping();
1659 
1660     if (software_single_step)
1661     {
1662         for (auto thread_sp : m_threads)
1663         {
1664             assert (thread_sp && "thread list should not contain NULL threads");
1665 
1666             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1667             if (action == nullptr)
1668                 continue;
1669 
1670             if (action->state == eStateStepping)
1671             {
1672                 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
1673                 if (error.Fail())
1674                     return error;
1675             }
1676         }
1677     }
1678 
1679     for (auto thread_sp : m_threads)
1680     {
1681         assert (thread_sp && "thread list should not contain NULL threads");
1682 
1683         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1684 
1685         if (action == nullptr)
1686         {
1687             if (log)
1688                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1689                     __FUNCTION__, GetID (), thread_sp->GetID ());
1690             continue;
1691         }
1692 
1693         if (log)
1694         {
1695             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1696                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1697         }
1698 
1699         switch (action->state)
1700         {
1701         case eStateRunning:
1702         case eStateStepping:
1703         {
1704             // Run the thread, possibly feeding it the signal.
1705             const int signo = action->signal;
1706             ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
1707             break;
1708         }
1709 
1710         case eStateSuspended:
1711         case eStateStopped:
1712             lldbassert(0 && "Unexpected state");
1713 
1714         default:
1715             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1716                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1717         }
1718     }
1719 
1720     return Error();
1721 }
1722 
1723 Error
1724 NativeProcessLinux::Halt ()
1725 {
1726     Error error;
1727 
1728     if (kill (GetID (), SIGSTOP) != 0)
1729         error.SetErrorToErrno ();
1730 
1731     return error;
1732 }
1733 
1734 Error
1735 NativeProcessLinux::Detach ()
1736 {
1737     Error error;
1738 
1739     // Stop monitoring the inferior.
1740     m_sigchld_handle.reset();
1741 
1742     // Tell ptrace to detach from the process.
1743     if (GetID () == LLDB_INVALID_PROCESS_ID)
1744         return error;
1745 
1746     for (auto thread_sp : m_threads)
1747     {
1748         Error e = Detach(thread_sp->GetID());
1749         if (e.Fail())
1750             error = e; // Save the error, but still attempt to detach from other threads.
1751     }
1752 
1753     return error;
1754 }
1755 
1756 Error
1757 NativeProcessLinux::Signal (int signo)
1758 {
1759     Error error;
1760 
1761     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1762     if (log)
1763         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1764                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1765 
1766     if (kill(GetID(), signo))
1767         error.SetErrorToErrno();
1768 
1769     return error;
1770 }
1771 
1772 Error
1773 NativeProcessLinux::Interrupt ()
1774 {
1775     // Pick a running thread (or if none, a not-dead stopped thread) as
1776     // the chosen thread that will be the stop-reason thread.
1777     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1778 
1779     NativeThreadProtocolSP running_thread_sp;
1780     NativeThreadProtocolSP stopped_thread_sp;
1781 
1782     if (log)
1783         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1784 
1785     for (auto thread_sp : m_threads)
1786     {
1787         // The thread shouldn't be null but lets just cover that here.
1788         if (!thread_sp)
1789             continue;
1790 
1791         // If we have a running or stepping thread, we'll call that the
1792         // target of the interrupt.
1793         const auto thread_state = thread_sp->GetState ();
1794         if (thread_state == eStateRunning ||
1795             thread_state == eStateStepping)
1796         {
1797             running_thread_sp = thread_sp;
1798             break;
1799         }
1800         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1801         {
1802             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1803             stopped_thread_sp = thread_sp;
1804         }
1805     }
1806 
1807     if (!running_thread_sp && !stopped_thread_sp)
1808     {
1809         Error error("found no running/stepping or live stopped threads as target for interrupt");
1810         if (log)
1811             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1812 
1813         return error;
1814     }
1815 
1816     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1817 
1818     if (log)
1819         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1820                      __FUNCTION__,
1821                      GetID (),
1822                      running_thread_sp ? "running" : "stopped",
1823                      deferred_signal_thread_sp->GetID ());
1824 
1825     StopRunningThreads(deferred_signal_thread_sp->GetID());
1826 
1827     return Error();
1828 }
1829 
1830 Error
1831 NativeProcessLinux::Kill ()
1832 {
1833     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1834     if (log)
1835         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1836 
1837     Error error;
1838 
1839     switch (m_state)
1840     {
1841         case StateType::eStateInvalid:
1842         case StateType::eStateExited:
1843         case StateType::eStateCrashed:
1844         case StateType::eStateDetached:
1845         case StateType::eStateUnloaded:
1846             // Nothing to do - the process is already dead.
1847             if (log)
1848                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1849             return error;
1850 
1851         case StateType::eStateConnected:
1852         case StateType::eStateAttaching:
1853         case StateType::eStateLaunching:
1854         case StateType::eStateStopped:
1855         case StateType::eStateRunning:
1856         case StateType::eStateStepping:
1857         case StateType::eStateSuspended:
1858             // We can try to kill a process in these states.
1859             break;
1860     }
1861 
1862     if (kill (GetID (), SIGKILL) != 0)
1863     {
1864         error.SetErrorToErrno ();
1865         return error;
1866     }
1867 
1868     return error;
1869 }
1870 
1871 static Error
1872 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1873 {
1874     memory_region_info.Clear();
1875 
1876     StringExtractor line_extractor (maps_line.c_str ());
1877 
1878     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1879     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1880 
1881     // Parse out the starting address
1882     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1883 
1884     // Parse out hyphen separating start and end address from range.
1885     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1886         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1887 
1888     // Parse out the ending address
1889     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1890 
1891     // Parse out the space after the address.
1892     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1893         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1894 
1895     // Save the range.
1896     memory_region_info.GetRange ().SetRangeBase (start_address);
1897     memory_region_info.GetRange ().SetRangeEnd (end_address);
1898 
1899     // Any memory region in /proc/{pid}/maps is by definition mapped into the process.
1900     memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1901 
1902     // Parse out each permission entry.
1903     if (line_extractor.GetBytesLeft () < 4)
1904         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1905 
1906     // Handle read permission.
1907     const char read_perm_char = line_extractor.GetChar ();
1908     if (read_perm_char == 'r')
1909         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1910     else
1911     {
1912         assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" );
1913         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1914     }
1915 
1916     // Handle write permission.
1917     const char write_perm_char = line_extractor.GetChar ();
1918     if (write_perm_char == 'w')
1919         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
1920     else
1921     {
1922         assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" );
1923         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1924     }
1925 
1926     // Handle execute permission.
1927     const char exec_perm_char = line_extractor.GetChar ();
1928     if (exec_perm_char == 'x')
1929         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
1930     else
1931     {
1932         assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" );
1933         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1934     }
1935 
1936     return Error ();
1937 }
1938 
1939 Error
1940 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
1941 {
1942     // FIXME review that the final memory region returned extends to the end of the virtual address space,
1943     // with no perms if it is not mapped.
1944 
1945     // Use an approach that reads memory regions from /proc/{pid}/maps.
1946     // Assume proc maps entries are in ascending order.
1947     // FIXME assert if we find differently.
1948 
1949     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1950     Error error;
1951 
1952     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
1953     {
1954         // We're done.
1955         error.SetErrorString ("unsupported");
1956         return error;
1957     }
1958 
1959     // If our cache is empty, pull the latest.  There should always be at least one memory region
1960     // if memory region handling is supported.
1961     if (m_mem_region_cache.empty ())
1962     {
1963         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
1964              [&] (const std::string &line) -> bool
1965              {
1966                  MemoryRegionInfo info;
1967                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
1968                  if (parse_error.Success ())
1969                  {
1970                      m_mem_region_cache.push_back (info);
1971                      return true;
1972                  }
1973                  else
1974                  {
1975                      if (log)
1976                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
1977                      return false;
1978                  }
1979              });
1980 
1981         // If we had an error, we'll mark unsupported.
1982         if (error.Fail ())
1983         {
1984             m_supports_mem_region = LazyBool::eLazyBoolNo;
1985             return error;
1986         }
1987         else if (m_mem_region_cache.empty ())
1988         {
1989             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
1990             // is supported.  Assume we don't support map entries via procfs.
1991             if (log)
1992                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
1993             m_supports_mem_region = LazyBool::eLazyBoolNo;
1994             error.SetErrorString ("not supported");
1995             return error;
1996         }
1997 
1998         if (log)
1999             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
2000 
2001         // We support memory retrieval, remember that.
2002         m_supports_mem_region = LazyBool::eLazyBoolYes;
2003     }
2004     else
2005     {
2006         if (log)
2007             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2008     }
2009 
2010     lldb::addr_t prev_base_address = 0;
2011 
2012     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
2013     // There can be a ton of regions on pthreads apps with lots of threads.
2014     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
2015     {
2016         MemoryRegionInfo &proc_entry_info = *it;
2017 
2018         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
2019         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
2020         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
2021 
2022         // If the target address comes before this entry, indicate distance to next region.
2023         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
2024         {
2025             range_info.GetRange ().SetRangeBase (load_addr);
2026             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
2027             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2028             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2029             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2030             range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
2031 
2032             return error;
2033         }
2034         else if (proc_entry_info.GetRange ().Contains (load_addr))
2035         {
2036             // The target address is within the memory region we're processing here.
2037             range_info = proc_entry_info;
2038             return error;
2039         }
2040 
2041         // The target memory address comes somewhere after the region we just parsed.
2042     }
2043 
2044     // If we made it here, we didn't find an entry that contained the given address. Return the
2045     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
2046     // size.
2047     range_info.GetRange ().SetRangeBase (load_addr);
2048     range_info.GetRange ().SetRangeEnd(LLDB_INVALID_ADDRESS);
2049     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
2050     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
2051     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
2052     range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
2053     return error;
2054 }
2055 
2056 void
2057 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
2058 {
2059     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2060     if (log)
2061         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
2062 
2063         if (log)
2064             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
2065         m_mem_region_cache.clear ();
2066 }
2067 
2068 Error
2069 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
2070 {
2071     // FIXME implementing this requires the equivalent of
2072     // InferiorCallPOSIX::InferiorCallMmap, which depends on
2073     // functional ThreadPlans working with Native*Protocol.
2074 #if 1
2075     return Error ("not implemented yet");
2076 #else
2077     addr = LLDB_INVALID_ADDRESS;
2078 
2079     unsigned prot = 0;
2080     if (permissions & lldb::ePermissionsReadable)
2081         prot |= eMmapProtRead;
2082     if (permissions & lldb::ePermissionsWritable)
2083         prot |= eMmapProtWrite;
2084     if (permissions & lldb::ePermissionsExecutable)
2085         prot |= eMmapProtExec;
2086 
2087     // TODO implement this directly in NativeProcessLinux
2088     // (and lift to NativeProcessPOSIX if/when that class is
2089     // refactored out).
2090     if (InferiorCallMmap(this, addr, 0, size, prot,
2091                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
2092         m_addr_to_mmap_size[addr] = size;
2093         return Error ();
2094     } else {
2095         addr = LLDB_INVALID_ADDRESS;
2096         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
2097     }
2098 #endif
2099 }
2100 
2101 Error
2102 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
2103 {
2104     // FIXME see comments in AllocateMemory - required lower-level
2105     // bits not in place yet (ThreadPlans)
2106     return Error ("not implemented");
2107 }
2108 
2109 lldb::addr_t
2110 NativeProcessLinux::GetSharedLibraryInfoAddress ()
2111 {
2112     // punt on this for now
2113     return LLDB_INVALID_ADDRESS;
2114 }
2115 
2116 size_t
2117 NativeProcessLinux::UpdateThreads ()
2118 {
2119     // The NativeProcessLinux monitoring threads are always up to date
2120     // with respect to thread state and they keep the thread list
2121     // populated properly. All this method needs to do is return the
2122     // thread count.
2123     return m_threads.size ();
2124 }
2125 
2126 bool
2127 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
2128 {
2129     arch = m_arch;
2130     return true;
2131 }
2132 
2133 Error
2134 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
2135 {
2136     // FIXME put this behind a breakpoint protocol class that can be
2137     // set per architecture.  Need ARM, MIPS support here.
2138     static const uint8_t g_i386_opcode [] = { 0xCC };
2139     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
2140 
2141     switch (m_arch.GetMachine ())
2142     {
2143         case llvm::Triple::x86:
2144         case llvm::Triple::x86_64:
2145             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
2146             return Error ();
2147 
2148         case llvm::Triple::systemz:
2149             actual_opcode_size = static_cast<uint32_t> (sizeof(g_s390x_opcode));
2150             return Error ();
2151 
2152         case llvm::Triple::arm:
2153         case llvm::Triple::aarch64:
2154         case llvm::Triple::mips64:
2155         case llvm::Triple::mips64el:
2156         case llvm::Triple::mips:
2157         case llvm::Triple::mipsel:
2158             // On these architectures the PC don't get updated for breakpoint hits
2159             actual_opcode_size = 0;
2160             return Error ();
2161 
2162         default:
2163             assert(false && "CPU type not supported!");
2164             return Error ("CPU type not supported");
2165     }
2166 }
2167 
2168 Error
2169 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
2170 {
2171     if (hardware)
2172         return Error ("NativeProcessLinux does not support hardware breakpoints");
2173     else
2174         return SetSoftwareBreakpoint (addr, size);
2175 }
2176 
2177 Error
2178 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
2179                                                      size_t &actual_opcode_size,
2180                                                      const uint8_t *&trap_opcode_bytes)
2181 {
2182     // FIXME put this behind a breakpoint protocol class that can be set per
2183     // architecture.  Need MIPS support here.
2184     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
2185     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
2186     // linux kernel does otherwise.
2187     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
2188     static const uint8_t g_i386_opcode [] = { 0xCC };
2189     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
2190     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
2191     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
2192     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
2193 
2194     switch (m_arch.GetMachine ())
2195     {
2196     case llvm::Triple::aarch64:
2197         trap_opcode_bytes = g_aarch64_opcode;
2198         actual_opcode_size = sizeof(g_aarch64_opcode);
2199         return Error ();
2200 
2201     case llvm::Triple::arm:
2202         switch (trap_opcode_size_hint)
2203         {
2204         case 2:
2205             trap_opcode_bytes = g_thumb_breakpoint_opcode;
2206             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
2207             return Error ();
2208         case 4:
2209             trap_opcode_bytes = g_arm_breakpoint_opcode;
2210             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
2211             return Error ();
2212         default:
2213             assert(false && "Unrecognised trap opcode size hint!");
2214             return Error ("Unrecognised trap opcode size hint!");
2215         }
2216 
2217     case llvm::Triple::x86:
2218     case llvm::Triple::x86_64:
2219         trap_opcode_bytes = g_i386_opcode;
2220         actual_opcode_size = sizeof(g_i386_opcode);
2221         return Error ();
2222 
2223     case llvm::Triple::mips:
2224     case llvm::Triple::mips64:
2225         trap_opcode_bytes = g_mips64_opcode;
2226         actual_opcode_size = sizeof(g_mips64_opcode);
2227         return Error ();
2228 
2229     case llvm::Triple::mipsel:
2230     case llvm::Triple::mips64el:
2231         trap_opcode_bytes = g_mips64el_opcode;
2232         actual_opcode_size = sizeof(g_mips64el_opcode);
2233         return Error ();
2234 
2235     case llvm::Triple::systemz:
2236         trap_opcode_bytes = g_s390x_opcode;
2237         actual_opcode_size = sizeof(g_s390x_opcode);
2238         return Error ();
2239 
2240     default:
2241         assert(false && "CPU type not supported!");
2242         return Error ("CPU type not supported");
2243     }
2244 }
2245 
2246 #if 0
2247 ProcessMessage::CrashReason
2248 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
2249 {
2250     ProcessMessage::CrashReason reason;
2251     assert(info->si_signo == SIGSEGV);
2252 
2253     reason = ProcessMessage::eInvalidCrashReason;
2254 
2255     switch (info->si_code)
2256     {
2257     default:
2258         assert(false && "unexpected si_code for SIGSEGV");
2259         break;
2260     case SI_KERNEL:
2261         // Linux will occasionally send spurious SI_KERNEL codes.
2262         // (this is poorly documented in sigaction)
2263         // One way to get this is via unaligned SIMD loads.
2264         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2265         break;
2266     case SEGV_MAPERR:
2267         reason = ProcessMessage::eInvalidAddress;
2268         break;
2269     case SEGV_ACCERR:
2270         reason = ProcessMessage::ePrivilegedAddress;
2271         break;
2272     }
2273 
2274     return reason;
2275 }
2276 #endif
2277 
2278 
2279 #if 0
2280 ProcessMessage::CrashReason
2281 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2282 {
2283     ProcessMessage::CrashReason reason;
2284     assert(info->si_signo == SIGILL);
2285 
2286     reason = ProcessMessage::eInvalidCrashReason;
2287 
2288     switch (info->si_code)
2289     {
2290     default:
2291         assert(false && "unexpected si_code for SIGILL");
2292         break;
2293     case ILL_ILLOPC:
2294         reason = ProcessMessage::eIllegalOpcode;
2295         break;
2296     case ILL_ILLOPN:
2297         reason = ProcessMessage::eIllegalOperand;
2298         break;
2299     case ILL_ILLADR:
2300         reason = ProcessMessage::eIllegalAddressingMode;
2301         break;
2302     case ILL_ILLTRP:
2303         reason = ProcessMessage::eIllegalTrap;
2304         break;
2305     case ILL_PRVOPC:
2306         reason = ProcessMessage::ePrivilegedOpcode;
2307         break;
2308     case ILL_PRVREG:
2309         reason = ProcessMessage::ePrivilegedRegister;
2310         break;
2311     case ILL_COPROC:
2312         reason = ProcessMessage::eCoprocessorError;
2313         break;
2314     case ILL_BADSTK:
2315         reason = ProcessMessage::eInternalStackError;
2316         break;
2317     }
2318 
2319     return reason;
2320 }
2321 #endif
2322 
2323 #if 0
2324 ProcessMessage::CrashReason
2325 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2326 {
2327     ProcessMessage::CrashReason reason;
2328     assert(info->si_signo == SIGFPE);
2329 
2330     reason = ProcessMessage::eInvalidCrashReason;
2331 
2332     switch (info->si_code)
2333     {
2334     default:
2335         assert(false && "unexpected si_code for SIGFPE");
2336         break;
2337     case FPE_INTDIV:
2338         reason = ProcessMessage::eIntegerDivideByZero;
2339         break;
2340     case FPE_INTOVF:
2341         reason = ProcessMessage::eIntegerOverflow;
2342         break;
2343     case FPE_FLTDIV:
2344         reason = ProcessMessage::eFloatDivideByZero;
2345         break;
2346     case FPE_FLTOVF:
2347         reason = ProcessMessage::eFloatOverflow;
2348         break;
2349     case FPE_FLTUND:
2350         reason = ProcessMessage::eFloatUnderflow;
2351         break;
2352     case FPE_FLTRES:
2353         reason = ProcessMessage::eFloatInexactResult;
2354         break;
2355     case FPE_FLTINV:
2356         reason = ProcessMessage::eFloatInvalidOperation;
2357         break;
2358     case FPE_FLTSUB:
2359         reason = ProcessMessage::eFloatSubscriptRange;
2360         break;
2361     }
2362 
2363     return reason;
2364 }
2365 #endif
2366 
2367 #if 0
2368 ProcessMessage::CrashReason
2369 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2370 {
2371     ProcessMessage::CrashReason reason;
2372     assert(info->si_signo == SIGBUS);
2373 
2374     reason = ProcessMessage::eInvalidCrashReason;
2375 
2376     switch (info->si_code)
2377     {
2378     default:
2379         assert(false && "unexpected si_code for SIGBUS");
2380         break;
2381     case BUS_ADRALN:
2382         reason = ProcessMessage::eIllegalAlignment;
2383         break;
2384     case BUS_ADRERR:
2385         reason = ProcessMessage::eIllegalAddress;
2386         break;
2387     case BUS_OBJERR:
2388         reason = ProcessMessage::eHardwareError;
2389         break;
2390     }
2391 
2392     return reason;
2393 }
2394 #endif
2395 
2396 Error
2397 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2398 {
2399     if (ProcessVmReadvSupported()) {
2400         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2401         // this syscall if it is supported.
2402 
2403         const ::pid_t pid = GetID();
2404 
2405         struct iovec local_iov, remote_iov;
2406         local_iov.iov_base = buf;
2407         local_iov.iov_len = size;
2408         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2409         remote_iov.iov_len = size;
2410 
2411         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2412         const bool success = bytes_read == size;
2413 
2414         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2415         if (log)
2416             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2417                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2418 
2419         if (success)
2420             return Error();
2421         // else
2422         //     the call failed for some reason, let's retry the read using ptrace api.
2423     }
2424 
2425     unsigned char *dst = static_cast<unsigned char*>(buf);
2426     size_t remainder;
2427     long data;
2428 
2429     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2430     if (log)
2431         ProcessPOSIXLog::IncNestLevel();
2432     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2433         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2434 
2435     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2436     {
2437         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2438         if (error.Fail())
2439         {
2440             if (log)
2441                 ProcessPOSIXLog::DecNestLevel();
2442             return error;
2443         }
2444 
2445         remainder = size - bytes_read;
2446         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2447 
2448         // Copy the data into our buffer
2449         memcpy(dst, &data, remainder);
2450 
2451         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2452                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2453                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2454                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2455         {
2456             uintptr_t print_dst = 0;
2457             // Format bytes from data by moving into print_dst for log output
2458             for (unsigned i = 0; i < remainder; ++i)
2459                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2460             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2461                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2462         }
2463         addr += k_ptrace_word_size;
2464         dst += k_ptrace_word_size;
2465     }
2466 
2467     if (log)
2468         ProcessPOSIXLog::DecNestLevel();
2469     return Error();
2470 }
2471 
2472 Error
2473 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2474 {
2475     Error error = ReadMemory(addr, buf, size, bytes_read);
2476     if (error.Fail()) return error;
2477     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2478 }
2479 
2480 Error
2481 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2482 {
2483     const unsigned char *src = static_cast<const unsigned char*>(buf);
2484     size_t remainder;
2485     Error error;
2486 
2487     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2488     if (log)
2489         ProcessPOSIXLog::IncNestLevel();
2490     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2491         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2492 
2493     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2494     {
2495         remainder = size - bytes_written;
2496         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2497 
2498         if (remainder == k_ptrace_word_size)
2499         {
2500             unsigned long data = 0;
2501             memcpy(&data, src, k_ptrace_word_size);
2502 
2503             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2504                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2505                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2506                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2507                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2508                         (void*)addr, *(const unsigned long*)src, data);
2509 
2510             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2511             if (error.Fail())
2512             {
2513                 if (log)
2514                     ProcessPOSIXLog::DecNestLevel();
2515                 return error;
2516             }
2517         }
2518         else
2519         {
2520             unsigned char buff[8];
2521             size_t bytes_read;
2522             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2523             if (error.Fail())
2524             {
2525                 if (log)
2526                     ProcessPOSIXLog::DecNestLevel();
2527                 return error;
2528             }
2529 
2530             memcpy(buff, src, remainder);
2531 
2532             size_t bytes_written_rec;
2533             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2534             if (error.Fail())
2535             {
2536                 if (log)
2537                     ProcessPOSIXLog::DecNestLevel();
2538                 return error;
2539             }
2540 
2541             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2542                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2543                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2544                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2545                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2546                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2547         }
2548 
2549         addr += k_ptrace_word_size;
2550         src += k_ptrace_word_size;
2551     }
2552     if (log)
2553         ProcessPOSIXLog::DecNestLevel();
2554     return error;
2555 }
2556 
2557 Error
2558 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2559 {
2560     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2561 }
2562 
2563 Error
2564 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2565 {
2566     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2567 }
2568 
2569 Error
2570 NativeProcessLinux::Detach(lldb::tid_t tid)
2571 {
2572     if (tid == LLDB_INVALID_THREAD_ID)
2573         return Error();
2574 
2575     return PtraceWrapper(PTRACE_DETACH, tid);
2576 }
2577 
2578 bool
2579 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags)
2580 {
2581     int target_fd = open(file_spec.GetCString(), flags, 0666);
2582 
2583     if (target_fd == -1)
2584         return false;
2585 
2586     if (dup2(target_fd, fd) == -1)
2587         return false;
2588 
2589     return (close(target_fd) == -1) ? false : true;
2590 }
2591 
2592 bool
2593 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2594 {
2595     for (auto thread_sp : m_threads)
2596     {
2597         assert (thread_sp && "thread list should not contain NULL threads");
2598         if (thread_sp->GetID () == thread_id)
2599         {
2600             // We have this thread.
2601             return true;
2602         }
2603     }
2604 
2605     // We don't have this thread.
2606     return false;
2607 }
2608 
2609 bool
2610 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2611 {
2612     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2613 
2614     if (log)
2615         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2616 
2617     bool found = false;
2618 
2619     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2620     {
2621         if (*it && ((*it)->GetID () == thread_id))
2622         {
2623             m_threads.erase (it);
2624             found = true;
2625             break;
2626         }
2627     }
2628 
2629     SignalIfAllThreadsStopped();
2630 
2631     return found;
2632 }
2633 
2634 NativeThreadLinuxSP
2635 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2636 {
2637     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2638 
2639     if (log)
2640     {
2641         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2642                 __FUNCTION__,
2643                 GetID (),
2644                 thread_id);
2645     }
2646 
2647     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2648 
2649     // If this is the first thread, save it as the current thread
2650     if (m_threads.empty ())
2651         SetCurrentThreadID (thread_id);
2652 
2653     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2654     m_threads.push_back (thread_sp);
2655     return thread_sp;
2656 }
2657 
2658 Error
2659 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
2660 {
2661     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2662 
2663     Error error;
2664 
2665     // Find out the size of a breakpoint (might depend on where we are in the code).
2666     NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2667     if (!context_sp)
2668     {
2669         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2670         if (log)
2671             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2672         return error;
2673     }
2674 
2675     uint32_t breakpoint_size = 0;
2676     error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2677     if (error.Fail ())
2678     {
2679         if (log)
2680             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2681         return error;
2682     }
2683     else
2684     {
2685         if (log)
2686             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2687     }
2688 
2689     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2690     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2691     lldb::addr_t breakpoint_addr = initial_pc_addr;
2692     if (breakpoint_size > 0)
2693     {
2694         // Do not allow breakpoint probe to wrap around.
2695         if (breakpoint_addr >= breakpoint_size)
2696             breakpoint_addr -= breakpoint_size;
2697     }
2698 
2699     // Check if we stopped because of a breakpoint.
2700     NativeBreakpointSP breakpoint_sp;
2701     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2702     if (!error.Success () || !breakpoint_sp)
2703     {
2704         // We didn't find one at a software probe location.  Nothing to do.
2705         if (log)
2706             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2707         return Error ();
2708     }
2709 
2710     // If the breakpoint is not a software breakpoint, nothing to do.
2711     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2712     {
2713         if (log)
2714             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2715         return Error ();
2716     }
2717 
2718     //
2719     // We have a software breakpoint and need to adjust the PC.
2720     //
2721 
2722     // Sanity check.
2723     if (breakpoint_size == 0)
2724     {
2725         // Nothing to do!  How did we get here?
2726         if (log)
2727             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2728         return Error ();
2729     }
2730 
2731     // Change the program counter.
2732     if (log)
2733         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
2734 
2735     error = context_sp->SetPC (breakpoint_addr);
2736     if (error.Fail ())
2737     {
2738         if (log)
2739             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
2740         return error;
2741     }
2742 
2743     return error;
2744 }
2745 
2746 Error
2747 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2748 {
2749     FileSpec module_file_spec(module_path, true);
2750 
2751     bool found = false;
2752     file_spec.Clear();
2753     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2754         [&] (const std::string &line)
2755         {
2756             SmallVector<StringRef, 16> columns;
2757             StringRef(line).split(columns, " ", -1, false);
2758             if (columns.size() < 6)
2759                 return true; // continue searching
2760 
2761             FileSpec this_file_spec(columns[5].str().c_str(), false);
2762             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2763                 return true; // continue searching
2764 
2765             file_spec = this_file_spec;
2766             found = true;
2767             return false; // we are done
2768         });
2769 
2770     if (! found)
2771         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2772                 module_file_spec.GetFilename().AsCString(), GetID());
2773 
2774     return Error();
2775 }
2776 
2777 Error
2778 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2779 {
2780     load_addr = LLDB_INVALID_ADDRESS;
2781     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2782         [&] (const std::string &line) -> bool
2783         {
2784             StringRef maps_row(line);
2785 
2786             SmallVector<StringRef, 16> maps_columns;
2787             maps_row.split(maps_columns, StringRef(" "), -1, false);
2788 
2789             if (maps_columns.size() < 6)
2790             {
2791                 // Return true to continue reading the proc file
2792                 return true;
2793             }
2794 
2795             if (maps_columns[5] == file_name)
2796             {
2797                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2798                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2799 
2800                 // Return false to stop reading the proc file further
2801                 return false;
2802             }
2803 
2804             // Return true to continue reading the proc file
2805             return true;
2806         });
2807     return error;
2808 }
2809 
2810 NativeThreadLinuxSP
2811 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
2812 {
2813     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
2814 }
2815 
2816 Error
2817 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
2818 {
2819     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2820 
2821     if (log)
2822         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
2823                 __FUNCTION__, thread.GetID());
2824 
2825     // Before we do the resume below, first check if we have a pending
2826     // stop notification that is currently waiting for
2827     // all threads to stop.  This is potentially a buggy situation since
2828     // we're ostensibly waiting for threads to stop before we send out the
2829     // pending notification, and here we are resuming one before we send
2830     // out the pending stop notification.
2831     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
2832     {
2833         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
2834     }
2835 
2836     // Request a resume.  We expect this to be synchronous and the system
2837     // to reflect it is running after this completes.
2838     switch (state)
2839     {
2840     case eStateRunning:
2841     {
2842         const auto resume_result = thread.Resume(signo);
2843         if (resume_result.Success())
2844             SetState(eStateRunning, true);
2845         return resume_result;
2846     }
2847     case eStateStepping:
2848     {
2849         const auto step_result = thread.SingleStep(signo);
2850         if (step_result.Success())
2851             SetState(eStateRunning, true);
2852         return step_result;
2853     }
2854     default:
2855         if (log)
2856             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
2857                     __FUNCTION__, StateAsCString(state));
2858         llvm_unreachable("Unhandled state for resume");
2859     }
2860 }
2861 
2862 //===----------------------------------------------------------------------===//
2863 
2864 void
2865 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
2866 {
2867     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2868 
2869     if (log)
2870     {
2871         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
2872                 __FUNCTION__, triggering_tid);
2873     }
2874 
2875     m_pending_notification_tid = triggering_tid;
2876 
2877     // Request a stop for all the thread stops that need to be stopped
2878     // and are not already known to be stopped.
2879     for (const auto &thread_sp: m_threads)
2880     {
2881         if (StateIsRunningState(thread_sp->GetState()))
2882             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2883     }
2884 
2885     SignalIfAllThreadsStopped();
2886 
2887     if (log)
2888     {
2889         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
2890     }
2891 }
2892 
2893 void
2894 NativeProcessLinux::SignalIfAllThreadsStopped()
2895 {
2896     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2897         return; // No pending notification. Nothing to do.
2898 
2899     for (const auto &thread_sp: m_threads)
2900     {
2901         if (StateIsRunningState(thread_sp->GetState()))
2902             return; // Some threads are still running. Don't signal yet.
2903     }
2904 
2905     // We have a pending notification and all threads have stopped.
2906     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2907 
2908     // Clear any temporary breakpoints we used to implement software single stepping.
2909     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
2910     {
2911         Error error = RemoveBreakpoint (thread_info.second);
2912         if (error.Fail())
2913             if (log)
2914                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2915                         __FUNCTION__, thread_info.first, error.AsCString());
2916     }
2917     m_threads_stepping_with_breakpoint.clear();
2918 
2919     // Notify the delegate about the stop
2920     SetCurrentThreadID(m_pending_notification_tid);
2921     SetState(StateType::eStateStopped, true);
2922     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2923 }
2924 
2925 void
2926 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
2927 {
2928     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2929 
2930     if (log)
2931         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
2932 
2933     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
2934     {
2935         // We will need to wait for this new thread to stop as well before firing the
2936         // notification.
2937         thread.RequestStop();
2938     }
2939 }
2940 
2941 void
2942 NativeProcessLinux::SigchldHandler()
2943 {
2944     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2945     // Process all pending waitpid notifications.
2946     while (true)
2947     {
2948         int status = -1;
2949         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
2950 
2951         if (wait_pid == 0)
2952             break; // We are done.
2953 
2954         if (wait_pid == -1)
2955         {
2956             if (errno == EINTR)
2957                 continue;
2958 
2959             Error error(errno, eErrorTypePOSIX);
2960             if (log)
2961                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
2962                         __FUNCTION__, error.AsCString());
2963             break;
2964         }
2965 
2966         bool exited = false;
2967         int signal = 0;
2968         int exit_status = 0;
2969         const char *status_cstr = nullptr;
2970         if (WIFSTOPPED(status))
2971         {
2972             signal = WSTOPSIG(status);
2973             status_cstr = "STOPPED";
2974         }
2975         else if (WIFEXITED(status))
2976         {
2977             exit_status = WEXITSTATUS(status);
2978             status_cstr = "EXITED";
2979             exited = true;
2980         }
2981         else if (WIFSIGNALED(status))
2982         {
2983             signal = WTERMSIG(status);
2984             status_cstr = "SIGNALED";
2985             if (wait_pid == static_cast< ::pid_t>(GetID())) {
2986                 exited = true;
2987                 exit_status = -1;
2988             }
2989         }
2990         else
2991             status_cstr = "(\?\?\?)";
2992 
2993         if (log)
2994             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
2995                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
2996                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
2997 
2998         MonitorCallback (wait_pid, exited, signal, exit_status);
2999     }
3000 }
3001 
3002 // Wrapper for ptrace to catch errors and log calls.
3003 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
3004 Error
3005 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
3006 {
3007     Error error;
3008     long int ret;
3009 
3010     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
3011 
3012     PtraceDisplayBytes(req, data, data_size);
3013 
3014     errno = 0;
3015     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
3016         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
3017     else
3018         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
3019 
3020     if (ret == -1)
3021         error.SetErrorToErrno();
3022 
3023     if (result)
3024         *result = ret;
3025 
3026     if (log)
3027         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
3028 
3029     PtraceDisplayBytes(req, data, data_size);
3030 
3031     if (log && error.GetError() != 0)
3032     {
3033         const char* str;
3034         switch (error.GetError())
3035         {
3036         case ESRCH:  str = "ESRCH"; break;
3037         case EINVAL: str = "EINVAL"; break;
3038         case EBUSY:  str = "EBUSY"; break;
3039         case EPERM:  str = "EPERM"; break;
3040         default:     str = error.AsCString();
3041         }
3042         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
3043     }
3044 
3045     return error;
3046 }
3047