1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <string.h> 15 #include <stdint.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/Error.h" 28 #include "lldb/Core/ModuleSpec.h" 29 #include "lldb/Core/RegisterValue.h" 30 #include "lldb/Core/State.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/ThreadLauncher.h" 33 #include "lldb/Host/common/NativeBreakpoint.h" 34 #include "lldb/Host/common/NativeRegisterContext.h" 35 #include "lldb/Symbol/ObjectFile.h" 36 #include "lldb/Target/Process.h" 37 #include "lldb/Target/ProcessLaunchInfo.h" 38 #include "lldb/Target/Target.h" 39 #include "lldb/Utility/LLDBAssert.h" 40 #include "lldb/Utility/PseudoTerminal.h" 41 #include "lldb/Utility/StringExtractor.h" 42 43 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 44 #include "NativeThreadLinux.h" 45 #include "ProcFileReader.h" 46 #include "Procfs.h" 47 48 // System includes - They have to be included after framework includes because they define some 49 // macros which collide with variable names in other modules 50 #include <linux/unistd.h> 51 #include <sys/socket.h> 52 53 #include <sys/syscall.h> 54 #include <sys/types.h> 55 #include <sys/user.h> 56 #include <sys/wait.h> 57 58 #include "lldb/Host/linux/Personality.h" 59 #include "lldb/Host/linux/Ptrace.h" 60 #include "lldb/Host/linux/Uio.h" 61 #include "lldb/Host/android/Android.h" 62 63 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 64 65 // Support hardware breakpoints in case it has not been defined 66 #ifndef TRAP_HWBKPT 67 #define TRAP_HWBKPT 4 68 #endif 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace lldb_private::process_linux; 73 using namespace llvm; 74 75 // Private bits we only need internally. 76 77 static bool ProcessVmReadvSupported() 78 { 79 static bool is_supported; 80 static std::once_flag flag; 81 82 std::call_once(flag, [] { 83 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 84 85 uint32_t source = 0x47424742; 86 uint32_t dest = 0; 87 88 struct iovec local, remote; 89 remote.iov_base = &source; 90 local.iov_base = &dest; 91 remote.iov_len = local.iov_len = sizeof source; 92 93 // We shall try if cross-process-memory reads work by attempting to read a value from our own process. 94 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 95 is_supported = (res == sizeof(source) && source == dest); 96 if (log) 97 { 98 if (is_supported) 99 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.", 100 __FUNCTION__); 101 else 102 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.", 103 __FUNCTION__, strerror(errno)); 104 } 105 }); 106 107 return is_supported; 108 } 109 110 namespace 111 { 112 Error 113 ResolveProcessArchitecture(lldb::pid_t pid, ArchSpec &arch) 114 { 115 // Grab process info for the running process. 116 ProcessInstanceInfo process_info; 117 if (!Host::GetProcessInfo(pid, process_info)) 118 return Error("failed to get process info"); 119 120 // Resolve the executable module. 121 ModuleSpecList module_specs; 122 if (!ObjectFile::GetModuleSpecifications(process_info.GetExecutableFile(), 0, 0, module_specs)) 123 return Error("failed to get module specifications"); 124 assert(module_specs.GetSize() == 1); 125 126 arch = module_specs.GetModuleSpecRefAtIndex(0).GetArchitecture(); 127 if (arch.IsValid()) 128 return Error(); 129 else 130 return Error("failed to retrieve a valid architecture from the exe module"); 131 } 132 133 // Used to notify the parent about which part of the launch sequence failed. 134 enum LaunchCallSpecifier 135 { 136 ePtraceFailed, 137 eDupStdinFailed, 138 eDupStdoutFailed, 139 eDupStderrFailed, 140 eChdirFailed, 141 eExecFailed, 142 eSetGidFailed, 143 eSetSigMaskFailed, 144 eLaunchCallMax = eSetSigMaskFailed 145 }; 146 147 static uint8_t LLVM_ATTRIBUTE_NORETURN 148 ExitChildAbnormally(LaunchCallSpecifier spec) 149 { 150 static_assert(eLaunchCallMax < 0x8, "Have more launch calls than we are able to represent"); 151 // This may truncate the topmost bits of the errno because the exit code is only 8 bits wide. 152 // However, it should still give us a pretty good indication of what went wrong. (And the 153 // most common errors have small numbers anyway). 154 _exit(unsigned(spec) | (errno << 3)); 155 } 156 157 // The second member is the errno (or its 5 lowermost bits anyway). 158 inline std::pair<LaunchCallSpecifier, uint8_t> 159 DecodeChildExitCode(int exit_code) 160 { 161 return std::make_pair(LaunchCallSpecifier(exit_code & 0x7), exit_code >> 3); 162 } 163 164 void 165 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 166 { 167 uint8_t *ptr = (uint8_t *)bytes; 168 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 169 for(uint32_t i=0; i<loop_count; i++) 170 { 171 s.Printf ("[%x]", *ptr); 172 ptr++; 173 } 174 } 175 176 void 177 PtraceDisplayBytes(int &req, void *data, size_t data_size) 178 { 179 StreamString buf; 180 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 181 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 182 183 if (verbose_log) 184 { 185 switch(req) 186 { 187 case PTRACE_POKETEXT: 188 { 189 DisplayBytes(buf, &data, 8); 190 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 191 break; 192 } 193 case PTRACE_POKEDATA: 194 { 195 DisplayBytes(buf, &data, 8); 196 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 197 break; 198 } 199 case PTRACE_POKEUSER: 200 { 201 DisplayBytes(buf, &data, 8); 202 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 203 break; 204 } 205 case PTRACE_SETREGS: 206 { 207 DisplayBytes(buf, data, data_size); 208 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 209 break; 210 } 211 case PTRACE_SETFPREGS: 212 { 213 DisplayBytes(buf, data, data_size); 214 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 215 break; 216 } 217 case PTRACE_SETSIGINFO: 218 { 219 DisplayBytes(buf, data, sizeof(siginfo_t)); 220 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 221 break; 222 } 223 case PTRACE_SETREGSET: 224 { 225 // Extract iov_base from data, which is a pointer to the struct IOVEC 226 DisplayBytes(buf, *(void **)data, data_size); 227 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 228 break; 229 } 230 default: 231 { 232 } 233 } 234 } 235 } 236 237 static constexpr unsigned k_ptrace_word_size = sizeof(void*); 238 static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size"); 239 } // end of anonymous namespace 240 241 // Simple helper function to ensure flags are enabled on the given file 242 // descriptor. 243 static Error 244 EnsureFDFlags(int fd, int flags) 245 { 246 Error error; 247 248 int status = fcntl(fd, F_GETFL); 249 if (status == -1) 250 { 251 error.SetErrorToErrno(); 252 return error; 253 } 254 255 if (fcntl(fd, F_SETFL, status | flags) == -1) 256 { 257 error.SetErrorToErrno(); 258 return error; 259 } 260 261 return error; 262 } 263 264 NativeProcessLinux::LaunchArgs::LaunchArgs(char const **argv, char const **envp, const FileSpec &stdin_file_spec, 265 const FileSpec &stdout_file_spec, const FileSpec &stderr_file_spec, 266 const FileSpec &working_dir, const ProcessLaunchInfo &launch_info) 267 : m_argv(argv), 268 m_envp(envp), 269 m_stdin_file_spec(stdin_file_spec), 270 m_stdout_file_spec(stdout_file_spec), 271 m_stderr_file_spec(stderr_file_spec), 272 m_working_dir(working_dir), 273 m_launch_info(launch_info) 274 { 275 } 276 277 NativeProcessLinux::LaunchArgs::~LaunchArgs() 278 { } 279 280 // ----------------------------------------------------------------------------- 281 // Public Static Methods 282 // ----------------------------------------------------------------------------- 283 284 Error 285 NativeProcessProtocol::Launch ( 286 ProcessLaunchInfo &launch_info, 287 NativeProcessProtocol::NativeDelegate &native_delegate, 288 MainLoop &mainloop, 289 NativeProcessProtocolSP &native_process_sp) 290 { 291 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 292 293 Error error; 294 295 // Verify the working directory is valid if one was specified. 296 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 297 if (working_dir && 298 (!working_dir.ResolvePath() || 299 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) 300 { 301 error.SetErrorStringWithFormat ("No such file or directory: %s", 302 working_dir.GetCString()); 303 return error; 304 } 305 306 const FileAction *file_action; 307 308 // Default of empty will mean to use existing open file descriptors. 309 FileSpec stdin_file_spec{}; 310 FileSpec stdout_file_spec{}; 311 FileSpec stderr_file_spec{}; 312 313 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 314 if (file_action) 315 stdin_file_spec = file_action->GetFileSpec(); 316 317 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 318 if (file_action) 319 stdout_file_spec = file_action->GetFileSpec(); 320 321 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 322 if (file_action) 323 stderr_file_spec = file_action->GetFileSpec(); 324 325 if (log) 326 { 327 if (stdin_file_spec) 328 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", 329 __FUNCTION__, stdin_file_spec.GetCString()); 330 else 331 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 332 333 if (stdout_file_spec) 334 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", 335 __FUNCTION__, stdout_file_spec.GetCString()); 336 else 337 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 338 339 if (stderr_file_spec) 340 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", 341 __FUNCTION__, stderr_file_spec.GetCString()); 342 else 343 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 344 } 345 346 // Create the NativeProcessLinux in launch mode. 347 native_process_sp.reset (new NativeProcessLinux ()); 348 349 if (log) 350 { 351 int i = 0; 352 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 353 { 354 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 355 ++i; 356 } 357 } 358 359 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 360 { 361 native_process_sp.reset (); 362 error.SetErrorStringWithFormat ("failed to register the native delegate"); 363 return error; 364 } 365 366 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 367 mainloop, 368 launch_info.GetArguments ().GetConstArgumentVector (), 369 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 370 stdin_file_spec, 371 stdout_file_spec, 372 stderr_file_spec, 373 working_dir, 374 launch_info, 375 error); 376 377 if (error.Fail ()) 378 { 379 native_process_sp.reset (); 380 if (log) 381 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 382 return error; 383 } 384 385 launch_info.SetProcessID (native_process_sp->GetID ()); 386 387 return error; 388 } 389 390 Error 391 NativeProcessProtocol::Attach ( 392 lldb::pid_t pid, 393 NativeProcessProtocol::NativeDelegate &native_delegate, 394 MainLoop &mainloop, 395 NativeProcessProtocolSP &native_process_sp) 396 { 397 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 398 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 399 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 400 401 // Retrieve the architecture for the running process. 402 ArchSpec process_arch; 403 Error error = ResolveProcessArchitecture(pid, process_arch); 404 if (!error.Success ()) 405 return error; 406 407 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 408 409 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 410 { 411 error.SetErrorStringWithFormat ("failed to register the native delegate"); 412 return error; 413 } 414 415 native_process_linux_sp->AttachToInferior (mainloop, pid, error); 416 if (!error.Success ()) 417 return error; 418 419 native_process_sp = native_process_linux_sp; 420 return error; 421 } 422 423 // ----------------------------------------------------------------------------- 424 // Public Instance Methods 425 // ----------------------------------------------------------------------------- 426 427 NativeProcessLinux::NativeProcessLinux () : 428 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 429 m_arch (), 430 m_supports_mem_region (eLazyBoolCalculate), 431 m_mem_region_cache (), 432 m_pending_notification_tid(LLDB_INVALID_THREAD_ID) 433 { 434 } 435 436 void 437 NativeProcessLinux::LaunchInferior ( 438 MainLoop &mainloop, 439 const char *argv[], 440 const char *envp[], 441 const FileSpec &stdin_file_spec, 442 const FileSpec &stdout_file_spec, 443 const FileSpec &stderr_file_spec, 444 const FileSpec &working_dir, 445 const ProcessLaunchInfo &launch_info, 446 Error &error) 447 { 448 m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, 449 [this] (MainLoopBase &) { SigchldHandler(); }, error); 450 if (! m_sigchld_handle) 451 return; 452 453 SetState (eStateLaunching); 454 455 std::unique_ptr<LaunchArgs> args( 456 new LaunchArgs(argv, envp, stdin_file_spec, stdout_file_spec, stderr_file_spec, working_dir, launch_info)); 457 458 Launch(args.get(), error); 459 } 460 461 void 462 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error) 463 { 464 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 465 if (log) 466 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 467 468 m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, 469 [this] (MainLoopBase &) { SigchldHandler(); }, error); 470 if (! m_sigchld_handle) 471 return; 472 473 error = ResolveProcessArchitecture(pid, m_arch); 474 if (!error.Success()) 475 return; 476 477 // Set the architecture to the exe architecture. 478 if (log) 479 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 480 481 m_pid = pid; 482 SetState(eStateAttaching); 483 484 Attach(pid, error); 485 } 486 487 void 488 NativeProcessLinux::ChildFunc(const LaunchArgs &args) 489 { 490 // Start tracing this child that is about to exec. 491 if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) == -1) 492 ExitChildAbnormally(ePtraceFailed); 493 494 // Do not inherit setgid powers. 495 if (setgid(getgid()) != 0) 496 ExitChildAbnormally(eSetGidFailed); 497 498 // Attempt to have our own process group. 499 if (setpgid(0, 0) != 0) 500 { 501 // FIXME log that this failed. This is common. 502 // Don't allow this to prevent an inferior exec. 503 } 504 505 // Dup file descriptors if needed. 506 if (args.m_stdin_file_spec) 507 if (!DupDescriptor(args.m_stdin_file_spec, STDIN_FILENO, O_RDONLY)) 508 ExitChildAbnormally(eDupStdinFailed); 509 510 if (args.m_stdout_file_spec) 511 if (!DupDescriptor(args.m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 512 ExitChildAbnormally(eDupStdoutFailed); 513 514 if (args.m_stderr_file_spec) 515 if (!DupDescriptor(args.m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 516 ExitChildAbnormally(eDupStderrFailed); 517 518 // Close everything besides stdin, stdout, and stderr that has no file 519 // action to avoid leaking 520 for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) 521 if (!args.m_launch_info.GetFileActionForFD(fd)) 522 close(fd); 523 524 // Change working directory 525 if (args.m_working_dir && 0 != ::chdir(args.m_working_dir.GetCString())) 526 ExitChildAbnormally(eChdirFailed); 527 528 // Disable ASLR if requested. 529 if (args.m_launch_info.GetFlags().Test(lldb::eLaunchFlagDisableASLR)) 530 { 531 const int old_personality = personality(LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 532 if (old_personality == -1) 533 { 534 // Can't retrieve Linux personality. Cannot disable ASLR. 535 } 536 else 537 { 538 const int new_personality = personality(ADDR_NO_RANDOMIZE | old_personality); 539 if (new_personality == -1) 540 { 541 // Disabling ASLR failed. 542 } 543 else 544 { 545 // Disabling ASLR succeeded. 546 } 547 } 548 } 549 550 // Clear the signal mask to prevent the child from being affected by 551 // any masking done by the parent. 552 sigset_t set; 553 if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0) 554 ExitChildAbnormally(eSetSigMaskFailed); 555 556 // Propagate the environment if one is not supplied. 557 const char **envp = args.m_envp; 558 if (envp == NULL || envp[0] == NULL) 559 envp = const_cast<const char **>(environ); 560 561 // Execute. We should never return... 562 execve(args.m_argv[0], const_cast<char *const *>(args.m_argv), const_cast<char *const *>(envp)); 563 564 // ...unless exec fails. In which case we definitely need to end the child here. 565 ExitChildAbnormally(eExecFailed); 566 } 567 568 ::pid_t 569 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 570 { 571 assert (args && "null args"); 572 573 lldb_utility::PseudoTerminal terminal; 574 const size_t err_len = 1024; 575 char err_str[err_len]; 576 lldb::pid_t pid; 577 578 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 579 { 580 error.SetErrorToGenericError(); 581 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 582 return -1; 583 } 584 585 // Child process. 586 if (pid == 0) 587 { 588 // First, make sure we disable all logging. If we are logging to stdout, our logs can be 589 // mistaken for inferior output. 590 Log::DisableAllLogChannels(nullptr); 591 592 // terminal has already dupped the tty descriptors to stdin/out/err. 593 // This closes original fd from which they were copied (and avoids 594 // leaking descriptors to the debugged process. 595 terminal.CloseSlaveFileDescriptor(); 596 597 ChildFunc(*args); 598 } 599 600 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 601 602 // Wait for the child process to trap on its call to execve. 603 ::pid_t wpid; 604 int status; 605 if ((wpid = waitpid(pid, &status, 0)) < 0) 606 { 607 error.SetErrorToErrno(); 608 if (log) 609 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 610 __FUNCTION__, error.AsCString ()); 611 612 // Mark the inferior as invalid. 613 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 614 SetState (StateType::eStateInvalid); 615 616 return -1; 617 } 618 else if (WIFEXITED(status)) 619 { 620 auto p = DecodeChildExitCode(WEXITSTATUS(status)); 621 Error child_error(p.second, eErrorTypePOSIX); 622 const char *failure_reason; 623 switch (p.first) 624 { 625 case ePtraceFailed: 626 failure_reason = "Child ptrace failed"; 627 break; 628 case eDupStdinFailed: 629 failure_reason = "Child open stdin failed"; 630 break; 631 case eDupStdoutFailed: 632 failure_reason = "Child open stdout failed"; 633 break; 634 case eDupStderrFailed: 635 failure_reason = "Child open stderr failed"; 636 break; 637 case eChdirFailed: 638 failure_reason = "Child failed to set working directory"; 639 break; 640 case eExecFailed: 641 failure_reason = "Child exec failed"; 642 break; 643 case eSetGidFailed: 644 failure_reason = "Child setgid failed"; 645 break; 646 case eSetSigMaskFailed: 647 failure_reason = "Child failed to set signal mask"; 648 break; 649 } 650 error.SetErrorStringWithFormat("%s: %d - %s (error code truncated)", failure_reason, child_error.GetError(), child_error.AsCString()); 651 652 if (log) 653 { 654 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 655 __FUNCTION__, 656 WEXITSTATUS(status)); 657 } 658 659 // Mark the inferior as invalid. 660 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 661 SetState (StateType::eStateInvalid); 662 663 return -1; 664 } 665 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 666 "Could not sync with inferior process."); 667 668 if (log) 669 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 670 671 error = SetDefaultPtraceOpts(pid); 672 if (error.Fail()) 673 { 674 if (log) 675 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 676 __FUNCTION__, error.AsCString ()); 677 678 // Mark the inferior as invalid. 679 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 680 SetState (StateType::eStateInvalid); 681 682 return -1; 683 } 684 685 // Release the master terminal descriptor and pass it off to the 686 // NativeProcessLinux instance. Similarly stash the inferior pid. 687 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 688 m_pid = pid; 689 690 // Set the terminal fd to be in non blocking mode (it simplifies the 691 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 692 // descriptor to read from). 693 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 694 if (error.Fail()) 695 { 696 if (log) 697 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 698 __FUNCTION__, error.AsCString ()); 699 700 // Mark the inferior as invalid. 701 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 702 SetState (StateType::eStateInvalid); 703 704 return -1; 705 } 706 707 if (log) 708 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 709 710 ResolveProcessArchitecture(m_pid, m_arch); 711 NativeThreadLinuxSP thread_sp = AddThread(pid); 712 assert (thread_sp && "AddThread() returned a nullptr thread"); 713 thread_sp->SetStoppedBySignal(SIGSTOP); 714 ThreadWasCreated(*thread_sp); 715 716 // Let our process instance know the thread has stopped. 717 SetCurrentThreadID (thread_sp->GetID ()); 718 SetState (StateType::eStateStopped); 719 720 if (log) 721 { 722 if (error.Success ()) 723 { 724 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 725 } 726 else 727 { 728 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 729 __FUNCTION__, error.AsCString ()); 730 return -1; 731 } 732 } 733 return pid; 734 } 735 736 ::pid_t 737 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 738 { 739 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 740 741 // Use a map to keep track of the threads which we have attached/need to attach. 742 Host::TidMap tids_to_attach; 743 if (pid <= 1) 744 { 745 error.SetErrorToGenericError(); 746 error.SetErrorString("Attaching to process 1 is not allowed."); 747 return -1; 748 } 749 750 while (Host::FindProcessThreads(pid, tids_to_attach)) 751 { 752 for (Host::TidMap::iterator it = tids_to_attach.begin(); 753 it != tids_to_attach.end();) 754 { 755 if (it->second == false) 756 { 757 lldb::tid_t tid = it->first; 758 759 // Attach to the requested process. 760 // An attach will cause the thread to stop with a SIGSTOP. 761 error = PtraceWrapper(PTRACE_ATTACH, tid); 762 if (error.Fail()) 763 { 764 // No such thread. The thread may have exited. 765 // More error handling may be needed. 766 if (error.GetError() == ESRCH) 767 { 768 it = tids_to_attach.erase(it); 769 continue; 770 } 771 else 772 return -1; 773 } 774 775 int status; 776 // Need to use __WALL otherwise we receive an error with errno=ECHLD 777 // At this point we should have a thread stopped if waitpid succeeds. 778 if ((status = waitpid(tid, NULL, __WALL)) < 0) 779 { 780 // No such thread. The thread may have exited. 781 // More error handling may be needed. 782 if (errno == ESRCH) 783 { 784 it = tids_to_attach.erase(it); 785 continue; 786 } 787 else 788 { 789 error.SetErrorToErrno(); 790 return -1; 791 } 792 } 793 794 error = SetDefaultPtraceOpts(tid); 795 if (error.Fail()) 796 return -1; 797 798 if (log) 799 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 800 801 it->second = true; 802 803 // Create the thread, mark it as stopped. 804 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid))); 805 assert (thread_sp && "AddThread() returned a nullptr"); 806 807 // This will notify this is a new thread and tell the system it is stopped. 808 thread_sp->SetStoppedBySignal(SIGSTOP); 809 ThreadWasCreated(*thread_sp); 810 SetCurrentThreadID (thread_sp->GetID ()); 811 } 812 813 // move the loop forward 814 ++it; 815 } 816 } 817 818 if (tids_to_attach.size() > 0) 819 { 820 m_pid = pid; 821 // Let our process instance know the thread has stopped. 822 SetState (StateType::eStateStopped); 823 } 824 else 825 { 826 error.SetErrorToGenericError(); 827 error.SetErrorString("No such process."); 828 return -1; 829 } 830 831 return pid; 832 } 833 834 Error 835 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 836 { 837 long ptrace_opts = 0; 838 839 // Have the child raise an event on exit. This is used to keep the child in 840 // limbo until it is destroyed. 841 ptrace_opts |= PTRACE_O_TRACEEXIT; 842 843 // Have the tracer trace threads which spawn in the inferior process. 844 // TODO: if we want to support tracing the inferiors' child, add the 845 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 846 ptrace_opts |= PTRACE_O_TRACECLONE; 847 848 // Have the tracer notify us before execve returns 849 // (needed to disable legacy SIGTRAP generation) 850 ptrace_opts |= PTRACE_O_TRACEEXEC; 851 852 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts); 853 } 854 855 static ExitType convert_pid_status_to_exit_type (int status) 856 { 857 if (WIFEXITED (status)) 858 return ExitType::eExitTypeExit; 859 else if (WIFSIGNALED (status)) 860 return ExitType::eExitTypeSignal; 861 else if (WIFSTOPPED (status)) 862 return ExitType::eExitTypeStop; 863 else 864 { 865 // We don't know what this is. 866 return ExitType::eExitTypeInvalid; 867 } 868 } 869 870 static int convert_pid_status_to_return_code (int status) 871 { 872 if (WIFEXITED (status)) 873 return WEXITSTATUS (status); 874 else if (WIFSIGNALED (status)) 875 return WTERMSIG (status); 876 else if (WIFSTOPPED (status)) 877 return WSTOPSIG (status); 878 else 879 { 880 // We don't know what this is. 881 return ExitType::eExitTypeInvalid; 882 } 883 } 884 885 // Handles all waitpid events from the inferior process. 886 void 887 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 888 bool exited, 889 int signal, 890 int status) 891 { 892 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 893 894 // Certain activities differ based on whether the pid is the tid of the main thread. 895 const bool is_main_thread = (pid == GetID ()); 896 897 // Handle when the thread exits. 898 if (exited) 899 { 900 if (log) 901 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 902 903 // This is a thread that exited. Ensure we're not tracking it anymore. 904 const bool thread_found = StopTrackingThread (pid); 905 906 if (is_main_thread) 907 { 908 // We only set the exit status and notify the delegate if we haven't already set the process 909 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 910 // for the main thread. 911 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 912 if (!already_notified) 913 { 914 if (log) 915 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 916 // The main thread exited. We're done monitoring. Report to delegate. 917 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 918 919 // Notify delegate that our process has exited. 920 SetState (StateType::eStateExited, true); 921 } 922 else 923 { 924 if (log) 925 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 926 } 927 } 928 else 929 { 930 // Do we want to report to the delegate in this case? I think not. If this was an orderly 931 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 932 // and we would have done an all-stop then. 933 if (log) 934 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 935 } 936 return; 937 } 938 939 siginfo_t info; 940 const auto info_err = GetSignalInfo(pid, &info); 941 auto thread_sp = GetThreadByID(pid); 942 943 if (! thread_sp) 944 { 945 // Normally, the only situation when we cannot find the thread is if we have just 946 // received a new thread notification. This is indicated by GetSignalInfo() returning 947 // si_code == SI_USER and si_pid == 0 948 if (log) 949 log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid); 950 951 if (info_err.Fail()) 952 { 953 if (log) 954 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString()); 955 return; 956 } 957 958 if (log && (info.si_code != SI_USER || info.si_pid != 0)) 959 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid); 960 961 auto thread_sp = AddThread(pid); 962 // Resume the newly created thread. 963 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 964 ThreadWasCreated(*thread_sp); 965 return; 966 } 967 968 // Get details on the signal raised. 969 if (info_err.Success()) 970 { 971 // We have retrieved the signal info. Dispatch appropriately. 972 if (info.si_signo == SIGTRAP) 973 MonitorSIGTRAP(info, *thread_sp); 974 else 975 MonitorSignal(info, *thread_sp, exited); 976 } 977 else 978 { 979 if (info_err.GetError() == EINVAL) 980 { 981 // This is a group stop reception for this tid. 982 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the 983 // tracee, triggering the group-stop mechanism. Normally receiving these would stop 984 // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is 985 // generally not needed (one use case is debugging background task being managed by a 986 // shell). For general use, it is sufficient to stop the process in a signal-delivery 987 // stop which happens before the group stop. This done by MonitorSignal and works 988 // correctly for all signals. 989 if (log) 990 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid); 991 ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER); 992 } 993 else 994 { 995 // ptrace(GETSIGINFO) failed (but not due to group-stop). 996 997 // A return value of ESRCH means the thread/process is no longer on the system, 998 // so it was killed somehow outside of our control. Either way, we can't do anything 999 // with it anymore. 1000 1001 // Stop tracking the metadata for the thread since it's entirely off the system now. 1002 const bool thread_found = StopTrackingThread (pid); 1003 1004 if (log) 1005 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 1006 __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 1007 1008 if (is_main_thread) 1009 { 1010 // Notify the delegate - our process is not available but appears to have been killed outside 1011 // our control. Is eStateExited the right exit state in this case? 1012 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1013 SetState (StateType::eStateExited, true); 1014 } 1015 else 1016 { 1017 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 1018 if (log) 1019 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 1020 } 1021 } 1022 } 1023 } 1024 1025 void 1026 NativeProcessLinux::WaitForNewThread(::pid_t tid) 1027 { 1028 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1029 1030 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 1031 1032 if (new_thread_sp) 1033 { 1034 // We are already tracking the thread - we got the event on the new thread (see 1035 // MonitorSignal) before this one. We are done. 1036 return; 1037 } 1038 1039 // The thread is not tracked yet, let's wait for it to appear. 1040 int status = -1; 1041 ::pid_t wait_pid; 1042 do 1043 { 1044 if (log) 1045 log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); 1046 wait_pid = waitpid(tid, &status, __WALL); 1047 } 1048 while (wait_pid == -1 && errno == EINTR); 1049 // Since we are waiting on a specific tid, this must be the creation event. But let's do 1050 // some checks just in case. 1051 if (wait_pid != tid) { 1052 if (log) 1053 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); 1054 // The only way I know of this could happen is if the whole process was 1055 // SIGKILLed in the mean time. In any case, we can't do anything about that now. 1056 return; 1057 } 1058 if (WIFEXITED(status)) 1059 { 1060 if (log) 1061 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); 1062 // Also a very improbable event. 1063 return; 1064 } 1065 1066 siginfo_t info; 1067 Error error = GetSignalInfo(tid, &info); 1068 if (error.Fail()) 1069 { 1070 if (log) 1071 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); 1072 return; 1073 } 1074 1075 if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) 1076 { 1077 // We should be getting a thread creation signal here, but we received something 1078 // else. There isn't much we can do about it now, so we will just log that. Since the 1079 // thread is alive and we are receiving events from it, we shall pretend that it was 1080 // created properly. 1081 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); 1082 } 1083 1084 if (log) 1085 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, 1086 __FUNCTION__, GetID (), tid); 1087 1088 new_thread_sp = AddThread(tid); 1089 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1090 ThreadWasCreated(*new_thread_sp); 1091 } 1092 1093 void 1094 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread) 1095 { 1096 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1097 const bool is_main_thread = (thread.GetID() == GetID ()); 1098 1099 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 1100 1101 switch (info.si_code) 1102 { 1103 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 1104 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 1105 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 1106 1107 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 1108 { 1109 // This is the notification on the parent thread which informs us of new thread 1110 // creation. 1111 // We don't want to do anything with the parent thread so we just resume it. In case we 1112 // want to implement "break on thread creation" functionality, we would need to stop 1113 // here. 1114 1115 unsigned long event_message = 0; 1116 if (GetEventMessage(thread.GetID(), &event_message).Fail()) 1117 { 1118 if (log) 1119 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID()); 1120 } else 1121 WaitForNewThread(event_message); 1122 1123 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 1124 break; 1125 } 1126 1127 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 1128 { 1129 NativeThreadLinuxSP main_thread_sp; 1130 if (log) 1131 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP); 1132 1133 // Exec clears any pending notifications. 1134 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1135 1136 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. 1137 if (log) 1138 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 1139 1140 for (auto thread_sp : m_threads) 1141 { 1142 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 1143 if (is_main_thread) 1144 { 1145 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 1146 if (log) 1147 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 1148 } 1149 else 1150 { 1151 if (log) 1152 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 1153 } 1154 } 1155 1156 m_threads.clear (); 1157 1158 if (main_thread_sp) 1159 { 1160 m_threads.push_back (main_thread_sp); 1161 SetCurrentThreadID (main_thread_sp->GetID ()); 1162 main_thread_sp->SetStoppedByExec(); 1163 } 1164 else 1165 { 1166 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 1167 if (log) 1168 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 1169 } 1170 1171 // Tell coordinator about about the "new" (since exec) stopped main thread. 1172 ThreadWasCreated(*main_thread_sp); 1173 1174 // Let our delegate know we have just exec'd. 1175 NotifyDidExec (); 1176 1177 // If we have a main thread, indicate we are stopped. 1178 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 1179 1180 // Let the process know we're stopped. 1181 StopRunningThreads(main_thread_sp->GetID()); 1182 1183 break; 1184 } 1185 1186 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 1187 { 1188 // The inferior process or one of its threads is about to exit. 1189 // We don't want to do anything with the thread so we just resume it. In case we 1190 // want to implement "break on thread exit" functionality, we would need to stop 1191 // here. 1192 1193 unsigned long data = 0; 1194 if (GetEventMessage(thread.GetID(), &data).Fail()) 1195 data = -1; 1196 1197 if (log) 1198 { 1199 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 1200 __FUNCTION__, 1201 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 1202 thread.GetID(), 1203 is_main_thread ? "is main thread" : "not main thread"); 1204 } 1205 1206 if (is_main_thread) 1207 { 1208 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 1209 } 1210 1211 StateType state = thread.GetState(); 1212 if (! StateIsRunningState(state)) 1213 { 1214 // Due to a kernel bug, we may sometimes get this stop after the inferior gets a 1215 // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally, 1216 // we should not be receiving any ptrace events while the inferior is stopped. This 1217 // makes sure that the inferior is resumed and exits normally. 1218 state = eStateRunning; 1219 } 1220 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 1221 1222 break; 1223 } 1224 1225 case 0: 1226 case TRAP_TRACE: // We receive this on single stepping. 1227 case TRAP_HWBKPT: // We receive this on watchpoint hit 1228 { 1229 // If a watchpoint was hit, report it 1230 uint32_t wp_index; 1231 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr); 1232 if (error.Fail() && log) 1233 log->Printf("NativeProcessLinux::%s() " 1234 "received error while checking for watchpoint hits, " 1235 "pid = %" PRIu64 " error = %s", 1236 __FUNCTION__, thread.GetID(), error.AsCString()); 1237 if (wp_index != LLDB_INVALID_INDEX32) 1238 { 1239 MonitorWatchpoint(thread, wp_index); 1240 break; 1241 } 1242 1243 // Otherwise, report step over 1244 MonitorTrace(thread); 1245 break; 1246 } 1247 1248 case SI_KERNEL: 1249 #if defined __mips__ 1250 // For mips there is no special signal for watchpoint 1251 // So we check for watchpoint in kernel trap 1252 { 1253 // If a watchpoint was hit, report it 1254 uint32_t wp_index; 1255 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS); 1256 if (error.Fail() && log) 1257 log->Printf("NativeProcessLinux::%s() " 1258 "received error while checking for watchpoint hits, " 1259 "pid = %" PRIu64 " error = %s", 1260 __FUNCTION__, thread.GetID(), error.AsCString()); 1261 if (wp_index != LLDB_INVALID_INDEX32) 1262 { 1263 MonitorWatchpoint(thread, wp_index); 1264 break; 1265 } 1266 } 1267 // NO BREAK 1268 #endif 1269 case TRAP_BRKPT: 1270 MonitorBreakpoint(thread); 1271 break; 1272 1273 case SIGTRAP: 1274 case (SIGTRAP | 0x80): 1275 if (log) 1276 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID()); 1277 1278 // Ignore these signals until we know more about them. 1279 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 1280 break; 1281 1282 default: 1283 assert(false && "Unexpected SIGTRAP code!"); 1284 if (log) 1285 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d", 1286 __FUNCTION__, GetID(), thread.GetID(), info.si_code); 1287 break; 1288 1289 } 1290 } 1291 1292 void 1293 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) 1294 { 1295 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1296 if (log) 1297 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 1298 __FUNCTION__, thread.GetID()); 1299 1300 // This thread is currently stopped. 1301 thread.SetStoppedByTrace(); 1302 1303 StopRunningThreads(thread.GetID()); 1304 } 1305 1306 void 1307 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) 1308 { 1309 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1310 if (log) 1311 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 1312 __FUNCTION__, thread.GetID()); 1313 1314 // Mark the thread as stopped at breakpoint. 1315 thread.SetStoppedByBreakpoint(); 1316 Error error = FixupBreakpointPCAsNeeded(thread); 1317 if (error.Fail()) 1318 if (log) 1319 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 1320 __FUNCTION__, thread.GetID(), error.AsCString()); 1321 1322 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end()) 1323 thread.SetStoppedByTrace(); 1324 1325 StopRunningThreads(thread.GetID()); 1326 } 1327 1328 void 1329 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index) 1330 { 1331 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 1332 if (log) 1333 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 1334 "pid = %" PRIu64 ", wp_index = %" PRIu32, 1335 __FUNCTION__, thread.GetID(), wp_index); 1336 1337 // Mark the thread as stopped at watchpoint. 1338 // The address is at (lldb::addr_t)info->si_addr if we need it. 1339 thread.SetStoppedByWatchpoint(wp_index); 1340 1341 // We need to tell all other running threads before we notify the delegate about this stop. 1342 StopRunningThreads(thread.GetID()); 1343 } 1344 1345 void 1346 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited) 1347 { 1348 const int signo = info.si_signo; 1349 const bool is_from_llgs = info.si_pid == getpid (); 1350 1351 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1352 1353 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 1354 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 1355 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 1356 // 1357 // IOW, user generated signals never generate what we consider to be a 1358 // "crash". 1359 // 1360 // Similarly, ACK signals generated by this monitor. 1361 1362 // Handle the signal. 1363 if (info.si_code == SI_TKILL || info.si_code == SI_USER) 1364 { 1365 if (log) 1366 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 1367 __FUNCTION__, 1368 Host::GetSignalAsCString(signo), 1369 signo, 1370 (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 1371 info.si_pid, 1372 is_from_llgs ? "from llgs" : "not from llgs", 1373 thread.GetID()); 1374 } 1375 1376 // Check for thread stop notification. 1377 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) 1378 { 1379 // This is a tgkill()-based stop. 1380 if (log) 1381 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 1382 __FUNCTION__, 1383 GetID (), 1384 thread.GetID()); 1385 1386 // Check that we're not already marked with a stop reason. 1387 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 1388 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 1389 // and that, without an intervening resume, we received another stop. It is more likely 1390 // that we are missing the marking of a run state somewhere if we find that the thread was 1391 // marked as stopped. 1392 const StateType thread_state = thread.GetState(); 1393 if (!StateIsStoppedState (thread_state, false)) 1394 { 1395 // An inferior thread has stopped because of a SIGSTOP we have sent it. 1396 // Generally, these are not important stops and we don't want to report them as 1397 // they are just used to stop other threads when one thread (the one with the 1398 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the 1399 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we 1400 // leave the signal intact if this is the thread that was chosen as the 1401 // triggering thread. 1402 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) 1403 { 1404 if (m_pending_notification_tid == thread.GetID()) 1405 thread.SetStoppedBySignal(SIGSTOP, &info); 1406 else 1407 thread.SetStoppedWithNoReason(); 1408 1409 SetCurrentThreadID (thread.GetID ()); 1410 SignalIfAllThreadsStopped(); 1411 } 1412 else 1413 { 1414 // We can end up here if stop was initiated by LLGS but by this time a 1415 // thread stop has occurred - maybe initiated by another event. 1416 Error error = ResumeThread(thread, thread.GetState(), 0); 1417 if (error.Fail() && log) 1418 { 1419 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 1420 __FUNCTION__, thread.GetID(), error.AsCString()); 1421 } 1422 } 1423 } 1424 else 1425 { 1426 if (log) 1427 { 1428 // Retrieve the signal name if the thread was stopped by a signal. 1429 int stop_signo = 0; 1430 const bool stopped_by_signal = thread.IsStopped(&stop_signo); 1431 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>"; 1432 if (!signal_name) 1433 signal_name = "<no-signal-name>"; 1434 1435 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 1436 __FUNCTION__, 1437 GetID (), 1438 thread.GetID(), 1439 StateAsCString (thread_state), 1440 stop_signo, 1441 signal_name); 1442 } 1443 SignalIfAllThreadsStopped(); 1444 } 1445 1446 // Done handling. 1447 return; 1448 } 1449 1450 if (log) 1451 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo)); 1452 1453 // This thread is stopped. 1454 thread.SetStoppedBySignal(signo, &info); 1455 1456 // Send a stop to the debugger after we get all other threads to stop. 1457 StopRunningThreads(thread.GetID()); 1458 } 1459 1460 namespace { 1461 1462 struct EmulatorBaton 1463 { 1464 NativeProcessLinux* m_process; 1465 NativeRegisterContext* m_reg_context; 1466 1467 // eRegisterKindDWARF -> RegsiterValue 1468 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1469 1470 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 1471 m_process(process), m_reg_context(reg_context) {} 1472 }; 1473 1474 } // anonymous namespace 1475 1476 static size_t 1477 ReadMemoryCallback (EmulateInstruction *instruction, 1478 void *baton, 1479 const EmulateInstruction::Context &context, 1480 lldb::addr_t addr, 1481 void *dst, 1482 size_t length) 1483 { 1484 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1485 1486 size_t bytes_read; 1487 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1488 return bytes_read; 1489 } 1490 1491 static bool 1492 ReadRegisterCallback (EmulateInstruction *instruction, 1493 void *baton, 1494 const RegisterInfo *reg_info, 1495 RegisterValue ®_value) 1496 { 1497 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1498 1499 auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); 1500 if (it != emulator_baton->m_register_values.end()) 1501 { 1502 reg_value = it->second; 1503 return true; 1504 } 1505 1506 // The emulator only fill in the dwarf regsiter numbers (and in some case 1507 // the generic register numbers). Get the full register info from the 1508 // register context based on the dwarf register numbers. 1509 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 1510 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1511 1512 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1513 if (error.Success()) 1514 return true; 1515 1516 return false; 1517 } 1518 1519 static bool 1520 WriteRegisterCallback (EmulateInstruction *instruction, 1521 void *baton, 1522 const EmulateInstruction::Context &context, 1523 const RegisterInfo *reg_info, 1524 const RegisterValue ®_value) 1525 { 1526 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1527 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 1528 return true; 1529 } 1530 1531 static size_t 1532 WriteMemoryCallback (EmulateInstruction *instruction, 1533 void *baton, 1534 const EmulateInstruction::Context &context, 1535 lldb::addr_t addr, 1536 const void *dst, 1537 size_t length) 1538 { 1539 return length; 1540 } 1541 1542 static lldb::addr_t 1543 ReadFlags (NativeRegisterContext* regsiter_context) 1544 { 1545 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 1546 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1547 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 1548 } 1549 1550 Error 1551 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) 1552 { 1553 Error error; 1554 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1555 1556 std::unique_ptr<EmulateInstruction> emulator_ap( 1557 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 1558 1559 if (emulator_ap == nullptr) 1560 return Error("Instruction emulator not found!"); 1561 1562 EmulatorBaton baton(this, register_context_sp.get()); 1563 emulator_ap->SetBaton(&baton); 1564 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1565 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1566 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1567 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1568 1569 if (!emulator_ap->ReadInstruction()) 1570 return Error("Read instruction failed!"); 1571 1572 bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1573 1574 const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1575 const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1576 1577 auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1578 auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1579 1580 lldb::addr_t next_pc; 1581 lldb::addr_t next_flags; 1582 if (emulation_result) 1583 { 1584 assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); 1585 next_pc = pc_it->second.GetAsUInt64(); 1586 1587 if (flags_it != baton.m_register_values.end()) 1588 next_flags = flags_it->second.GetAsUInt64(); 1589 else 1590 next_flags = ReadFlags (register_context_sp.get()); 1591 } 1592 else if (pc_it == baton.m_register_values.end()) 1593 { 1594 // Emulate instruction failed and it haven't changed PC. Advance PC 1595 // with the size of the current opcode because the emulation of all 1596 // PC modifying instruction should be successful. The failure most 1597 // likely caused by a not supported instruction which don't modify PC. 1598 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1599 next_flags = ReadFlags (register_context_sp.get()); 1600 } 1601 else 1602 { 1603 // The instruction emulation failed after it modified the PC. It is an 1604 // unknown error where we can't continue because the next instruction is 1605 // modifying the PC but we don't know how. 1606 return Error ("Instruction emulation failed unexpectedly."); 1607 } 1608 1609 if (m_arch.GetMachine() == llvm::Triple::arm) 1610 { 1611 if (next_flags & 0x20) 1612 { 1613 // Thumb mode 1614 error = SetSoftwareBreakpoint(next_pc, 2); 1615 } 1616 else 1617 { 1618 // Arm mode 1619 error = SetSoftwareBreakpoint(next_pc, 4); 1620 } 1621 } 1622 else if (m_arch.GetMachine() == llvm::Triple::mips64 1623 || m_arch.GetMachine() == llvm::Triple::mips64el 1624 || m_arch.GetMachine() == llvm::Triple::mips 1625 || m_arch.GetMachine() == llvm::Triple::mipsel) 1626 error = SetSoftwareBreakpoint(next_pc, 4); 1627 else 1628 { 1629 // No size hint is given for the next breakpoint 1630 error = SetSoftwareBreakpoint(next_pc, 0); 1631 } 1632 1633 if (error.Fail()) 1634 return error; 1635 1636 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1637 1638 return Error(); 1639 } 1640 1641 bool 1642 NativeProcessLinux::SupportHardwareSingleStepping() const 1643 { 1644 if (m_arch.GetMachine() == llvm::Triple::arm 1645 || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el 1646 || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) 1647 return false; 1648 return true; 1649 } 1650 1651 Error 1652 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 1653 { 1654 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 1655 if (log) 1656 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 1657 1658 bool software_single_step = !SupportHardwareSingleStepping(); 1659 1660 if (software_single_step) 1661 { 1662 for (auto thread_sp : m_threads) 1663 { 1664 assert (thread_sp && "thread list should not contain NULL threads"); 1665 1666 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 1667 if (action == nullptr) 1668 continue; 1669 1670 if (action->state == eStateStepping) 1671 { 1672 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp)); 1673 if (error.Fail()) 1674 return error; 1675 } 1676 } 1677 } 1678 1679 for (auto thread_sp : m_threads) 1680 { 1681 assert (thread_sp && "thread list should not contain NULL threads"); 1682 1683 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 1684 1685 if (action == nullptr) 1686 { 1687 if (log) 1688 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 1689 __FUNCTION__, GetID (), thread_sp->GetID ()); 1690 continue; 1691 } 1692 1693 if (log) 1694 { 1695 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 1696 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 1697 } 1698 1699 switch (action->state) 1700 { 1701 case eStateRunning: 1702 case eStateStepping: 1703 { 1704 // Run the thread, possibly feeding it the signal. 1705 const int signo = action->signal; 1706 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo); 1707 break; 1708 } 1709 1710 case eStateSuspended: 1711 case eStateStopped: 1712 lldbassert(0 && "Unexpected state"); 1713 1714 default: 1715 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 1716 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 1717 } 1718 } 1719 1720 return Error(); 1721 } 1722 1723 Error 1724 NativeProcessLinux::Halt () 1725 { 1726 Error error; 1727 1728 if (kill (GetID (), SIGSTOP) != 0) 1729 error.SetErrorToErrno (); 1730 1731 return error; 1732 } 1733 1734 Error 1735 NativeProcessLinux::Detach () 1736 { 1737 Error error; 1738 1739 // Stop monitoring the inferior. 1740 m_sigchld_handle.reset(); 1741 1742 // Tell ptrace to detach from the process. 1743 if (GetID () == LLDB_INVALID_PROCESS_ID) 1744 return error; 1745 1746 for (auto thread_sp : m_threads) 1747 { 1748 Error e = Detach(thread_sp->GetID()); 1749 if (e.Fail()) 1750 error = e; // Save the error, but still attempt to detach from other threads. 1751 } 1752 1753 return error; 1754 } 1755 1756 Error 1757 NativeProcessLinux::Signal (int signo) 1758 { 1759 Error error; 1760 1761 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1762 if (log) 1763 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 1764 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID()); 1765 1766 if (kill(GetID(), signo)) 1767 error.SetErrorToErrno(); 1768 1769 return error; 1770 } 1771 1772 Error 1773 NativeProcessLinux::Interrupt () 1774 { 1775 // Pick a running thread (or if none, a not-dead stopped thread) as 1776 // the chosen thread that will be the stop-reason thread. 1777 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1778 1779 NativeThreadProtocolSP running_thread_sp; 1780 NativeThreadProtocolSP stopped_thread_sp; 1781 1782 if (log) 1783 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 1784 1785 for (auto thread_sp : m_threads) 1786 { 1787 // The thread shouldn't be null but lets just cover that here. 1788 if (!thread_sp) 1789 continue; 1790 1791 // If we have a running or stepping thread, we'll call that the 1792 // target of the interrupt. 1793 const auto thread_state = thread_sp->GetState (); 1794 if (thread_state == eStateRunning || 1795 thread_state == eStateStepping) 1796 { 1797 running_thread_sp = thread_sp; 1798 break; 1799 } 1800 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 1801 { 1802 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 1803 stopped_thread_sp = thread_sp; 1804 } 1805 } 1806 1807 if (!running_thread_sp && !stopped_thread_sp) 1808 { 1809 Error error("found no running/stepping or live stopped threads as target for interrupt"); 1810 if (log) 1811 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 1812 1813 return error; 1814 } 1815 1816 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 1817 1818 if (log) 1819 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 1820 __FUNCTION__, 1821 GetID (), 1822 running_thread_sp ? "running" : "stopped", 1823 deferred_signal_thread_sp->GetID ()); 1824 1825 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1826 1827 return Error(); 1828 } 1829 1830 Error 1831 NativeProcessLinux::Kill () 1832 { 1833 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1834 if (log) 1835 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 1836 1837 Error error; 1838 1839 switch (m_state) 1840 { 1841 case StateType::eStateInvalid: 1842 case StateType::eStateExited: 1843 case StateType::eStateCrashed: 1844 case StateType::eStateDetached: 1845 case StateType::eStateUnloaded: 1846 // Nothing to do - the process is already dead. 1847 if (log) 1848 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 1849 return error; 1850 1851 case StateType::eStateConnected: 1852 case StateType::eStateAttaching: 1853 case StateType::eStateLaunching: 1854 case StateType::eStateStopped: 1855 case StateType::eStateRunning: 1856 case StateType::eStateStepping: 1857 case StateType::eStateSuspended: 1858 // We can try to kill a process in these states. 1859 break; 1860 } 1861 1862 if (kill (GetID (), SIGKILL) != 0) 1863 { 1864 error.SetErrorToErrno (); 1865 return error; 1866 } 1867 1868 return error; 1869 } 1870 1871 static Error 1872 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 1873 { 1874 memory_region_info.Clear(); 1875 1876 StringExtractor line_extractor (maps_line.c_str ()); 1877 1878 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 1879 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 1880 1881 // Parse out the starting address 1882 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 1883 1884 // Parse out hyphen separating start and end address from range. 1885 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 1886 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 1887 1888 // Parse out the ending address 1889 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 1890 1891 // Parse out the space after the address. 1892 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 1893 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 1894 1895 // Save the range. 1896 memory_region_info.GetRange ().SetRangeBase (start_address); 1897 memory_region_info.GetRange ().SetRangeEnd (end_address); 1898 1899 // Any memory region in /proc/{pid}/maps is by definition mapped into the process. 1900 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1901 1902 // Parse out each permission entry. 1903 if (line_extractor.GetBytesLeft () < 4) 1904 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 1905 1906 // Handle read permission. 1907 const char read_perm_char = line_extractor.GetChar (); 1908 if (read_perm_char == 'r') 1909 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 1910 else 1911 { 1912 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 1913 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 1914 } 1915 1916 // Handle write permission. 1917 const char write_perm_char = line_extractor.GetChar (); 1918 if (write_perm_char == 'w') 1919 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 1920 else 1921 { 1922 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 1923 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 1924 } 1925 1926 // Handle execute permission. 1927 const char exec_perm_char = line_extractor.GetChar (); 1928 if (exec_perm_char == 'x') 1929 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 1930 else 1931 { 1932 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 1933 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 1934 } 1935 1936 return Error (); 1937 } 1938 1939 Error 1940 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 1941 { 1942 // FIXME review that the final memory region returned extends to the end of the virtual address space, 1943 // with no perms if it is not mapped. 1944 1945 // Use an approach that reads memory regions from /proc/{pid}/maps. 1946 // Assume proc maps entries are in ascending order. 1947 // FIXME assert if we find differently. 1948 1949 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1950 Error error; 1951 1952 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 1953 { 1954 // We're done. 1955 error.SetErrorString ("unsupported"); 1956 return error; 1957 } 1958 1959 // If our cache is empty, pull the latest. There should always be at least one memory region 1960 // if memory region handling is supported. 1961 if (m_mem_region_cache.empty ()) 1962 { 1963 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 1964 [&] (const std::string &line) -> bool 1965 { 1966 MemoryRegionInfo info; 1967 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 1968 if (parse_error.Success ()) 1969 { 1970 m_mem_region_cache.push_back (info); 1971 return true; 1972 } 1973 else 1974 { 1975 if (log) 1976 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 1977 return false; 1978 } 1979 }); 1980 1981 // If we had an error, we'll mark unsupported. 1982 if (error.Fail ()) 1983 { 1984 m_supports_mem_region = LazyBool::eLazyBoolNo; 1985 return error; 1986 } 1987 else if (m_mem_region_cache.empty ()) 1988 { 1989 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 1990 // is supported. Assume we don't support map entries via procfs. 1991 if (log) 1992 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 1993 m_supports_mem_region = LazyBool::eLazyBoolNo; 1994 error.SetErrorString ("not supported"); 1995 return error; 1996 } 1997 1998 if (log) 1999 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2000 2001 // We support memory retrieval, remember that. 2002 m_supports_mem_region = LazyBool::eLazyBoolYes; 2003 } 2004 else 2005 { 2006 if (log) 2007 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2008 } 2009 2010 lldb::addr_t prev_base_address = 0; 2011 2012 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2013 // There can be a ton of regions on pthreads apps with lots of threads. 2014 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2015 { 2016 MemoryRegionInfo &proc_entry_info = *it; 2017 2018 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2019 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2020 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2021 2022 // If the target address comes before this entry, indicate distance to next region. 2023 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2024 { 2025 range_info.GetRange ().SetRangeBase (load_addr); 2026 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2027 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2028 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2029 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2030 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 2031 2032 return error; 2033 } 2034 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2035 { 2036 // The target address is within the memory region we're processing here. 2037 range_info = proc_entry_info; 2038 return error; 2039 } 2040 2041 // The target memory address comes somewhere after the region we just parsed. 2042 } 2043 2044 // If we made it here, we didn't find an entry that contained the given address. Return the 2045 // load_addr as start and the amount of bytes betwwen load address and the end of the memory as 2046 // size. 2047 range_info.GetRange ().SetRangeBase (load_addr); 2048 range_info.GetRange ().SetRangeEnd(LLDB_INVALID_ADDRESS); 2049 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2050 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2051 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2052 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 2053 return error; 2054 } 2055 2056 void 2057 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 2058 { 2059 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2060 if (log) 2061 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 2062 2063 if (log) 2064 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2065 m_mem_region_cache.clear (); 2066 } 2067 2068 Error 2069 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) 2070 { 2071 // FIXME implementing this requires the equivalent of 2072 // InferiorCallPOSIX::InferiorCallMmap, which depends on 2073 // functional ThreadPlans working with Native*Protocol. 2074 #if 1 2075 return Error ("not implemented yet"); 2076 #else 2077 addr = LLDB_INVALID_ADDRESS; 2078 2079 unsigned prot = 0; 2080 if (permissions & lldb::ePermissionsReadable) 2081 prot |= eMmapProtRead; 2082 if (permissions & lldb::ePermissionsWritable) 2083 prot |= eMmapProtWrite; 2084 if (permissions & lldb::ePermissionsExecutable) 2085 prot |= eMmapProtExec; 2086 2087 // TODO implement this directly in NativeProcessLinux 2088 // (and lift to NativeProcessPOSIX if/when that class is 2089 // refactored out). 2090 if (InferiorCallMmap(this, addr, 0, size, prot, 2091 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 2092 m_addr_to_mmap_size[addr] = size; 2093 return Error (); 2094 } else { 2095 addr = LLDB_INVALID_ADDRESS; 2096 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 2097 } 2098 #endif 2099 } 2100 2101 Error 2102 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 2103 { 2104 // FIXME see comments in AllocateMemory - required lower-level 2105 // bits not in place yet (ThreadPlans) 2106 return Error ("not implemented"); 2107 } 2108 2109 lldb::addr_t 2110 NativeProcessLinux::GetSharedLibraryInfoAddress () 2111 { 2112 // punt on this for now 2113 return LLDB_INVALID_ADDRESS; 2114 } 2115 2116 size_t 2117 NativeProcessLinux::UpdateThreads () 2118 { 2119 // The NativeProcessLinux monitoring threads are always up to date 2120 // with respect to thread state and they keep the thread list 2121 // populated properly. All this method needs to do is return the 2122 // thread count. 2123 return m_threads.size (); 2124 } 2125 2126 bool 2127 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 2128 { 2129 arch = m_arch; 2130 return true; 2131 } 2132 2133 Error 2134 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size) 2135 { 2136 // FIXME put this behind a breakpoint protocol class that can be 2137 // set per architecture. Need ARM, MIPS support here. 2138 static const uint8_t g_i386_opcode [] = { 0xCC }; 2139 static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 }; 2140 2141 switch (m_arch.GetMachine ()) 2142 { 2143 case llvm::Triple::x86: 2144 case llvm::Triple::x86_64: 2145 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 2146 return Error (); 2147 2148 case llvm::Triple::systemz: 2149 actual_opcode_size = static_cast<uint32_t> (sizeof(g_s390x_opcode)); 2150 return Error (); 2151 2152 case llvm::Triple::arm: 2153 case llvm::Triple::aarch64: 2154 case llvm::Triple::mips64: 2155 case llvm::Triple::mips64el: 2156 case llvm::Triple::mips: 2157 case llvm::Triple::mipsel: 2158 // On these architectures the PC don't get updated for breakpoint hits 2159 actual_opcode_size = 0; 2160 return Error (); 2161 2162 default: 2163 assert(false && "CPU type not supported!"); 2164 return Error ("CPU type not supported"); 2165 } 2166 } 2167 2168 Error 2169 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 2170 { 2171 if (hardware) 2172 return Error ("NativeProcessLinux does not support hardware breakpoints"); 2173 else 2174 return SetSoftwareBreakpoint (addr, size); 2175 } 2176 2177 Error 2178 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 2179 size_t &actual_opcode_size, 2180 const uint8_t *&trap_opcode_bytes) 2181 { 2182 // FIXME put this behind a breakpoint protocol class that can be set per 2183 // architecture. Need MIPS support here. 2184 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 2185 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 2186 // linux kernel does otherwise. 2187 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 2188 static const uint8_t g_i386_opcode [] = { 0xCC }; 2189 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 2190 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 2191 static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 }; 2192 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 2193 2194 switch (m_arch.GetMachine ()) 2195 { 2196 case llvm::Triple::aarch64: 2197 trap_opcode_bytes = g_aarch64_opcode; 2198 actual_opcode_size = sizeof(g_aarch64_opcode); 2199 return Error (); 2200 2201 case llvm::Triple::arm: 2202 switch (trap_opcode_size_hint) 2203 { 2204 case 2: 2205 trap_opcode_bytes = g_thumb_breakpoint_opcode; 2206 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 2207 return Error (); 2208 case 4: 2209 trap_opcode_bytes = g_arm_breakpoint_opcode; 2210 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 2211 return Error (); 2212 default: 2213 assert(false && "Unrecognised trap opcode size hint!"); 2214 return Error ("Unrecognised trap opcode size hint!"); 2215 } 2216 2217 case llvm::Triple::x86: 2218 case llvm::Triple::x86_64: 2219 trap_opcode_bytes = g_i386_opcode; 2220 actual_opcode_size = sizeof(g_i386_opcode); 2221 return Error (); 2222 2223 case llvm::Triple::mips: 2224 case llvm::Triple::mips64: 2225 trap_opcode_bytes = g_mips64_opcode; 2226 actual_opcode_size = sizeof(g_mips64_opcode); 2227 return Error (); 2228 2229 case llvm::Triple::mipsel: 2230 case llvm::Triple::mips64el: 2231 trap_opcode_bytes = g_mips64el_opcode; 2232 actual_opcode_size = sizeof(g_mips64el_opcode); 2233 return Error (); 2234 2235 case llvm::Triple::systemz: 2236 trap_opcode_bytes = g_s390x_opcode; 2237 actual_opcode_size = sizeof(g_s390x_opcode); 2238 return Error (); 2239 2240 default: 2241 assert(false && "CPU type not supported!"); 2242 return Error ("CPU type not supported"); 2243 } 2244 } 2245 2246 #if 0 2247 ProcessMessage::CrashReason 2248 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 2249 { 2250 ProcessMessage::CrashReason reason; 2251 assert(info->si_signo == SIGSEGV); 2252 2253 reason = ProcessMessage::eInvalidCrashReason; 2254 2255 switch (info->si_code) 2256 { 2257 default: 2258 assert(false && "unexpected si_code for SIGSEGV"); 2259 break; 2260 case SI_KERNEL: 2261 // Linux will occasionally send spurious SI_KERNEL codes. 2262 // (this is poorly documented in sigaction) 2263 // One way to get this is via unaligned SIMD loads. 2264 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 2265 break; 2266 case SEGV_MAPERR: 2267 reason = ProcessMessage::eInvalidAddress; 2268 break; 2269 case SEGV_ACCERR: 2270 reason = ProcessMessage::ePrivilegedAddress; 2271 break; 2272 } 2273 2274 return reason; 2275 } 2276 #endif 2277 2278 2279 #if 0 2280 ProcessMessage::CrashReason 2281 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 2282 { 2283 ProcessMessage::CrashReason reason; 2284 assert(info->si_signo == SIGILL); 2285 2286 reason = ProcessMessage::eInvalidCrashReason; 2287 2288 switch (info->si_code) 2289 { 2290 default: 2291 assert(false && "unexpected si_code for SIGILL"); 2292 break; 2293 case ILL_ILLOPC: 2294 reason = ProcessMessage::eIllegalOpcode; 2295 break; 2296 case ILL_ILLOPN: 2297 reason = ProcessMessage::eIllegalOperand; 2298 break; 2299 case ILL_ILLADR: 2300 reason = ProcessMessage::eIllegalAddressingMode; 2301 break; 2302 case ILL_ILLTRP: 2303 reason = ProcessMessage::eIllegalTrap; 2304 break; 2305 case ILL_PRVOPC: 2306 reason = ProcessMessage::ePrivilegedOpcode; 2307 break; 2308 case ILL_PRVREG: 2309 reason = ProcessMessage::ePrivilegedRegister; 2310 break; 2311 case ILL_COPROC: 2312 reason = ProcessMessage::eCoprocessorError; 2313 break; 2314 case ILL_BADSTK: 2315 reason = ProcessMessage::eInternalStackError; 2316 break; 2317 } 2318 2319 return reason; 2320 } 2321 #endif 2322 2323 #if 0 2324 ProcessMessage::CrashReason 2325 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 2326 { 2327 ProcessMessage::CrashReason reason; 2328 assert(info->si_signo == SIGFPE); 2329 2330 reason = ProcessMessage::eInvalidCrashReason; 2331 2332 switch (info->si_code) 2333 { 2334 default: 2335 assert(false && "unexpected si_code for SIGFPE"); 2336 break; 2337 case FPE_INTDIV: 2338 reason = ProcessMessage::eIntegerDivideByZero; 2339 break; 2340 case FPE_INTOVF: 2341 reason = ProcessMessage::eIntegerOverflow; 2342 break; 2343 case FPE_FLTDIV: 2344 reason = ProcessMessage::eFloatDivideByZero; 2345 break; 2346 case FPE_FLTOVF: 2347 reason = ProcessMessage::eFloatOverflow; 2348 break; 2349 case FPE_FLTUND: 2350 reason = ProcessMessage::eFloatUnderflow; 2351 break; 2352 case FPE_FLTRES: 2353 reason = ProcessMessage::eFloatInexactResult; 2354 break; 2355 case FPE_FLTINV: 2356 reason = ProcessMessage::eFloatInvalidOperation; 2357 break; 2358 case FPE_FLTSUB: 2359 reason = ProcessMessage::eFloatSubscriptRange; 2360 break; 2361 } 2362 2363 return reason; 2364 } 2365 #endif 2366 2367 #if 0 2368 ProcessMessage::CrashReason 2369 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 2370 { 2371 ProcessMessage::CrashReason reason; 2372 assert(info->si_signo == SIGBUS); 2373 2374 reason = ProcessMessage::eInvalidCrashReason; 2375 2376 switch (info->si_code) 2377 { 2378 default: 2379 assert(false && "unexpected si_code for SIGBUS"); 2380 break; 2381 case BUS_ADRALN: 2382 reason = ProcessMessage::eIllegalAlignment; 2383 break; 2384 case BUS_ADRERR: 2385 reason = ProcessMessage::eIllegalAddress; 2386 break; 2387 case BUS_OBJERR: 2388 reason = ProcessMessage::eHardwareError; 2389 break; 2390 } 2391 2392 return reason; 2393 } 2394 #endif 2395 2396 Error 2397 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 2398 { 2399 if (ProcessVmReadvSupported()) { 2400 // The process_vm_readv path is about 50 times faster than ptrace api. We want to use 2401 // this syscall if it is supported. 2402 2403 const ::pid_t pid = GetID(); 2404 2405 struct iovec local_iov, remote_iov; 2406 local_iov.iov_base = buf; 2407 local_iov.iov_len = size; 2408 remote_iov.iov_base = reinterpret_cast<void *>(addr); 2409 remote_iov.iov_len = size; 2410 2411 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 2412 const bool success = bytes_read == size; 2413 2414 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2415 if (log) 2416 log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s", 2417 __FUNCTION__, size, addr, success ? "Success" : strerror(errno)); 2418 2419 if (success) 2420 return Error(); 2421 // else 2422 // the call failed for some reason, let's retry the read using ptrace api. 2423 } 2424 2425 unsigned char *dst = static_cast<unsigned char*>(buf); 2426 size_t remainder; 2427 long data; 2428 2429 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 2430 if (log) 2431 ProcessPOSIXLog::IncNestLevel(); 2432 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 2433 log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size); 2434 2435 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 2436 { 2437 Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data); 2438 if (error.Fail()) 2439 { 2440 if (log) 2441 ProcessPOSIXLog::DecNestLevel(); 2442 return error; 2443 } 2444 2445 remainder = size - bytes_read; 2446 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2447 2448 // Copy the data into our buffer 2449 memcpy(dst, &data, remainder); 2450 2451 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2452 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2453 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2454 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2455 { 2456 uintptr_t print_dst = 0; 2457 // Format bytes from data by moving into print_dst for log output 2458 for (unsigned i = 0; i < remainder; ++i) 2459 print_dst |= (((data >> i*8) & 0xFF) << i*8); 2460 log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")", 2461 __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data)); 2462 } 2463 addr += k_ptrace_word_size; 2464 dst += k_ptrace_word_size; 2465 } 2466 2467 if (log) 2468 ProcessPOSIXLog::DecNestLevel(); 2469 return Error(); 2470 } 2471 2472 Error 2473 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 2474 { 2475 Error error = ReadMemory(addr, buf, size, bytes_read); 2476 if (error.Fail()) return error; 2477 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2478 } 2479 2480 Error 2481 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) 2482 { 2483 const unsigned char *src = static_cast<const unsigned char*>(buf); 2484 size_t remainder; 2485 Error error; 2486 2487 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 2488 if (log) 2489 ProcessPOSIXLog::IncNestLevel(); 2490 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 2491 log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size); 2492 2493 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 2494 { 2495 remainder = size - bytes_written; 2496 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2497 2498 if (remainder == k_ptrace_word_size) 2499 { 2500 unsigned long data = 0; 2501 memcpy(&data, src, k_ptrace_word_size); 2502 2503 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2504 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2505 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2506 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2507 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 2508 (void*)addr, *(const unsigned long*)src, data); 2509 2510 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data); 2511 if (error.Fail()) 2512 { 2513 if (log) 2514 ProcessPOSIXLog::DecNestLevel(); 2515 return error; 2516 } 2517 } 2518 else 2519 { 2520 unsigned char buff[8]; 2521 size_t bytes_read; 2522 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2523 if (error.Fail()) 2524 { 2525 if (log) 2526 ProcessPOSIXLog::DecNestLevel(); 2527 return error; 2528 } 2529 2530 memcpy(buff, src, remainder); 2531 2532 size_t bytes_written_rec; 2533 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2534 if (error.Fail()) 2535 { 2536 if (log) 2537 ProcessPOSIXLog::DecNestLevel(); 2538 return error; 2539 } 2540 2541 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2542 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2543 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2544 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2545 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 2546 (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff); 2547 } 2548 2549 addr += k_ptrace_word_size; 2550 src += k_ptrace_word_size; 2551 } 2552 if (log) 2553 ProcessPOSIXLog::DecNestLevel(); 2554 return error; 2555 } 2556 2557 Error 2558 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 2559 { 2560 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2561 } 2562 2563 Error 2564 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 2565 { 2566 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2567 } 2568 2569 Error 2570 NativeProcessLinux::Detach(lldb::tid_t tid) 2571 { 2572 if (tid == LLDB_INVALID_THREAD_ID) 2573 return Error(); 2574 2575 return PtraceWrapper(PTRACE_DETACH, tid); 2576 } 2577 2578 bool 2579 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags) 2580 { 2581 int target_fd = open(file_spec.GetCString(), flags, 0666); 2582 2583 if (target_fd == -1) 2584 return false; 2585 2586 if (dup2(target_fd, fd) == -1) 2587 return false; 2588 2589 return (close(target_fd) == -1) ? false : true; 2590 } 2591 2592 bool 2593 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 2594 { 2595 for (auto thread_sp : m_threads) 2596 { 2597 assert (thread_sp && "thread list should not contain NULL threads"); 2598 if (thread_sp->GetID () == thread_id) 2599 { 2600 // We have this thread. 2601 return true; 2602 } 2603 } 2604 2605 // We don't have this thread. 2606 return false; 2607 } 2608 2609 bool 2610 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 2611 { 2612 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2613 2614 if (log) 2615 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id); 2616 2617 bool found = false; 2618 2619 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 2620 { 2621 if (*it && ((*it)->GetID () == thread_id)) 2622 { 2623 m_threads.erase (it); 2624 found = true; 2625 break; 2626 } 2627 } 2628 2629 SignalIfAllThreadsStopped(); 2630 2631 return found; 2632 } 2633 2634 NativeThreadLinuxSP 2635 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 2636 { 2637 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 2638 2639 if (log) 2640 { 2641 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 2642 __FUNCTION__, 2643 GetID (), 2644 thread_id); 2645 } 2646 2647 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 2648 2649 // If this is the first thread, save it as the current thread 2650 if (m_threads.empty ()) 2651 SetCurrentThreadID (thread_id); 2652 2653 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2654 m_threads.push_back (thread_sp); 2655 return thread_sp; 2656 } 2657 2658 Error 2659 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) 2660 { 2661 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2662 2663 Error error; 2664 2665 // Find out the size of a breakpoint (might depend on where we are in the code). 2666 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2667 if (!context_sp) 2668 { 2669 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 2670 if (log) 2671 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 2672 return error; 2673 } 2674 2675 uint32_t breakpoint_size = 0; 2676 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2677 if (error.Fail ()) 2678 { 2679 if (log) 2680 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 2681 return error; 2682 } 2683 else 2684 { 2685 if (log) 2686 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 2687 } 2688 2689 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 2690 const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation (); 2691 lldb::addr_t breakpoint_addr = initial_pc_addr; 2692 if (breakpoint_size > 0) 2693 { 2694 // Do not allow breakpoint probe to wrap around. 2695 if (breakpoint_addr >= breakpoint_size) 2696 breakpoint_addr -= breakpoint_size; 2697 } 2698 2699 // Check if we stopped because of a breakpoint. 2700 NativeBreakpointSP breakpoint_sp; 2701 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 2702 if (!error.Success () || !breakpoint_sp) 2703 { 2704 // We didn't find one at a software probe location. Nothing to do. 2705 if (log) 2706 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 2707 return Error (); 2708 } 2709 2710 // If the breakpoint is not a software breakpoint, nothing to do. 2711 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 2712 { 2713 if (log) 2714 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 2715 return Error (); 2716 } 2717 2718 // 2719 // We have a software breakpoint and need to adjust the PC. 2720 // 2721 2722 // Sanity check. 2723 if (breakpoint_size == 0) 2724 { 2725 // Nothing to do! How did we get here? 2726 if (log) 2727 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 2728 return Error (); 2729 } 2730 2731 // Change the program counter. 2732 if (log) 2733 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr); 2734 2735 error = context_sp->SetPC (breakpoint_addr); 2736 if (error.Fail ()) 2737 { 2738 if (log) 2739 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ()); 2740 return error; 2741 } 2742 2743 return error; 2744 } 2745 2746 Error 2747 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 2748 { 2749 FileSpec module_file_spec(module_path, true); 2750 2751 bool found = false; 2752 file_spec.Clear(); 2753 ProcFileReader::ProcessLineByLine(GetID(), "maps", 2754 [&] (const std::string &line) 2755 { 2756 SmallVector<StringRef, 16> columns; 2757 StringRef(line).split(columns, " ", -1, false); 2758 if (columns.size() < 6) 2759 return true; // continue searching 2760 2761 FileSpec this_file_spec(columns[5].str().c_str(), false); 2762 if (this_file_spec.GetFilename() != module_file_spec.GetFilename()) 2763 return true; // continue searching 2764 2765 file_spec = this_file_spec; 2766 found = true; 2767 return false; // we are done 2768 }); 2769 2770 if (! found) 2771 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2772 module_file_spec.GetFilename().AsCString(), GetID()); 2773 2774 return Error(); 2775 } 2776 2777 Error 2778 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr) 2779 { 2780 load_addr = LLDB_INVALID_ADDRESS; 2781 Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2782 [&] (const std::string &line) -> bool 2783 { 2784 StringRef maps_row(line); 2785 2786 SmallVector<StringRef, 16> maps_columns; 2787 maps_row.split(maps_columns, StringRef(" "), -1, false); 2788 2789 if (maps_columns.size() < 6) 2790 { 2791 // Return true to continue reading the proc file 2792 return true; 2793 } 2794 2795 if (maps_columns[5] == file_name) 2796 { 2797 StringExtractor addr_extractor(maps_columns[0].str().c_str()); 2798 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); 2799 2800 // Return false to stop reading the proc file further 2801 return false; 2802 } 2803 2804 // Return true to continue reading the proc file 2805 return true; 2806 }); 2807 return error; 2808 } 2809 2810 NativeThreadLinuxSP 2811 NativeProcessLinux::GetThreadByID(lldb::tid_t tid) 2812 { 2813 return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid)); 2814 } 2815 2816 Error 2817 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo) 2818 { 2819 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2820 2821 if (log) 2822 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", 2823 __FUNCTION__, thread.GetID()); 2824 2825 // Before we do the resume below, first check if we have a pending 2826 // stop notification that is currently waiting for 2827 // all threads to stop. This is potentially a buggy situation since 2828 // we're ostensibly waiting for threads to stop before we send out the 2829 // pending notification, and here we are resuming one before we send 2830 // out the pending stop notification. 2831 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log) 2832 { 2833 log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid); 2834 } 2835 2836 // Request a resume. We expect this to be synchronous and the system 2837 // to reflect it is running after this completes. 2838 switch (state) 2839 { 2840 case eStateRunning: 2841 { 2842 const auto resume_result = thread.Resume(signo); 2843 if (resume_result.Success()) 2844 SetState(eStateRunning, true); 2845 return resume_result; 2846 } 2847 case eStateStepping: 2848 { 2849 const auto step_result = thread.SingleStep(signo); 2850 if (step_result.Success()) 2851 SetState(eStateRunning, true); 2852 return step_result; 2853 } 2854 default: 2855 if (log) 2856 log->Printf("NativeProcessLinux::%s Unhandled state %s.", 2857 __FUNCTION__, StateAsCString(state)); 2858 llvm_unreachable("Unhandled state for resume"); 2859 } 2860 } 2861 2862 //===----------------------------------------------------------------------===// 2863 2864 void 2865 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) 2866 { 2867 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2868 2869 if (log) 2870 { 2871 log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", 2872 __FUNCTION__, triggering_tid); 2873 } 2874 2875 m_pending_notification_tid = triggering_tid; 2876 2877 // Request a stop for all the thread stops that need to be stopped 2878 // and are not already known to be stopped. 2879 for (const auto &thread_sp: m_threads) 2880 { 2881 if (StateIsRunningState(thread_sp->GetState())) 2882 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2883 } 2884 2885 SignalIfAllThreadsStopped(); 2886 2887 if (log) 2888 { 2889 log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__); 2890 } 2891 } 2892 2893 void 2894 NativeProcessLinux::SignalIfAllThreadsStopped() 2895 { 2896 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2897 return; // No pending notification. Nothing to do. 2898 2899 for (const auto &thread_sp: m_threads) 2900 { 2901 if (StateIsRunningState(thread_sp->GetState())) 2902 return; // Some threads are still running. Don't signal yet. 2903 } 2904 2905 // We have a pending notification and all threads have stopped. 2906 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2907 2908 // Clear any temporary breakpoints we used to implement software single stepping. 2909 for (const auto &thread_info: m_threads_stepping_with_breakpoint) 2910 { 2911 Error error = RemoveBreakpoint (thread_info.second); 2912 if (error.Fail()) 2913 if (log) 2914 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 2915 __FUNCTION__, thread_info.first, error.AsCString()); 2916 } 2917 m_threads_stepping_with_breakpoint.clear(); 2918 2919 // Notify the delegate about the stop 2920 SetCurrentThreadID(m_pending_notification_tid); 2921 SetState(StateType::eStateStopped, true); 2922 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2923 } 2924 2925 void 2926 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) 2927 { 2928 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2929 2930 if (log) 2931 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID()); 2932 2933 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState())) 2934 { 2935 // We will need to wait for this new thread to stop as well before firing the 2936 // notification. 2937 thread.RequestStop(); 2938 } 2939 } 2940 2941 void 2942 NativeProcessLinux::SigchldHandler() 2943 { 2944 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2945 // Process all pending waitpid notifications. 2946 while (true) 2947 { 2948 int status = -1; 2949 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 2950 2951 if (wait_pid == 0) 2952 break; // We are done. 2953 2954 if (wait_pid == -1) 2955 { 2956 if (errno == EINTR) 2957 continue; 2958 2959 Error error(errno, eErrorTypePOSIX); 2960 if (log) 2961 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s", 2962 __FUNCTION__, error.AsCString()); 2963 break; 2964 } 2965 2966 bool exited = false; 2967 int signal = 0; 2968 int exit_status = 0; 2969 const char *status_cstr = nullptr; 2970 if (WIFSTOPPED(status)) 2971 { 2972 signal = WSTOPSIG(status); 2973 status_cstr = "STOPPED"; 2974 } 2975 else if (WIFEXITED(status)) 2976 { 2977 exit_status = WEXITSTATUS(status); 2978 status_cstr = "EXITED"; 2979 exited = true; 2980 } 2981 else if (WIFSIGNALED(status)) 2982 { 2983 signal = WTERMSIG(status); 2984 status_cstr = "SIGNALED"; 2985 if (wait_pid == static_cast< ::pid_t>(GetID())) { 2986 exited = true; 2987 exit_status = -1; 2988 } 2989 } 2990 else 2991 status_cstr = "(\?\?\?)"; 2992 2993 if (log) 2994 log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)" 2995 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 2996 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status); 2997 2998 MonitorCallback (wait_pid, exited, signal, exit_status); 2999 } 3000 } 3001 3002 // Wrapper for ptrace to catch errors and log calls. 3003 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 3004 Error 3005 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result) 3006 { 3007 Error error; 3008 long int ret; 3009 3010 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 3011 3012 PtraceDisplayBytes(req, data, data_size); 3013 3014 errno = 0; 3015 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 3016 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 3017 else 3018 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 3019 3020 if (ret == -1) 3021 error.SetErrorToErrno(); 3022 3023 if (result) 3024 *result = ret; 3025 3026 if (log) 3027 log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret); 3028 3029 PtraceDisplayBytes(req, data, data_size); 3030 3031 if (log && error.GetError() != 0) 3032 { 3033 const char* str; 3034 switch (error.GetError()) 3035 { 3036 case ESRCH: str = "ESRCH"; break; 3037 case EINVAL: str = "EINVAL"; break; 3038 case EBUSY: str = "EBUSY"; break; 3039 case EPERM: str = "EPERM"; break; 3040 default: str = error.AsCString(); 3041 } 3042 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 3043 } 3044 3045 return error; 3046 } 3047