1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <stdint.h> 15 #include <string.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/Error.h" 28 #include "lldb/Core/ModuleSpec.h" 29 #include "lldb/Core/RegisterValue.h" 30 #include "lldb/Core/State.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/HostProcess.h" 33 #include "lldb/Host/ThreadLauncher.h" 34 #include "lldb/Host/common/NativeBreakpoint.h" 35 #include "lldb/Host/common/NativeRegisterContext.h" 36 #include "lldb/Host/linux/ProcessLauncherLinux.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/ProcessLaunchInfo.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Utility/LLDBAssert.h" 42 #include "lldb/Utility/PseudoTerminal.h" 43 #include "lldb/Utility/StringExtractor.h" 44 45 #include "NativeThreadLinux.h" 46 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 47 #include "ProcFileReader.h" 48 #include "Procfs.h" 49 50 // System includes - They have to be included after framework includes because 51 // they define some 52 // macros which collide with variable names in other modules 53 #include <linux/unistd.h> 54 #include <sys/socket.h> 55 56 #include <sys/syscall.h> 57 #include <sys/types.h> 58 #include <sys/user.h> 59 #include <sys/wait.h> 60 61 #include "lldb/Host/linux/Ptrace.h" 62 #include "lldb/Host/linux/Uio.h" 63 64 // Support hardware breakpoints in case it has not been defined 65 #ifndef TRAP_HWBKPT 66 #define TRAP_HWBKPT 4 67 #endif 68 69 using namespace lldb; 70 using namespace lldb_private; 71 using namespace lldb_private::process_linux; 72 using namespace llvm; 73 74 // Private bits we only need internally. 75 76 static bool ProcessVmReadvSupported() { 77 static bool is_supported; 78 static std::once_flag flag; 79 80 std::call_once(flag, [] { 81 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 82 83 uint32_t source = 0x47424742; 84 uint32_t dest = 0; 85 86 struct iovec local, remote; 87 remote.iov_base = &source; 88 local.iov_base = &dest; 89 remote.iov_len = local.iov_len = sizeof source; 90 91 // We shall try if cross-process-memory reads work by attempting to read a 92 // value from our own process. 93 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 94 is_supported = (res == sizeof(source) && source == dest); 95 if (is_supported) 96 LLDB_LOG(log, 97 "Detected kernel support for process_vm_readv syscall. " 98 "Fast memory reads enabled."); 99 else 100 LLDB_LOG(log, 101 "syscall process_vm_readv failed (error: {0}). Fast memory " 102 "reads disabled.", 103 strerror(errno)); 104 }); 105 106 return is_supported; 107 } 108 109 namespace { 110 void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 111 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 112 if (!log) 113 return; 114 115 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 116 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 117 else 118 LLDB_LOG(log, "leaving STDIN as is"); 119 120 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 121 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 122 else 123 LLDB_LOG(log, "leaving STDOUT as is"); 124 125 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 126 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 127 else 128 LLDB_LOG(log, "leaving STDERR as is"); 129 130 int i = 0; 131 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 132 ++args, ++i) 133 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 134 } 135 136 void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 137 uint8_t *ptr = (uint8_t *)bytes; 138 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 139 for (uint32_t i = 0; i < loop_count; i++) { 140 s.Printf("[%x]", *ptr); 141 ptr++; 142 } 143 } 144 145 void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 146 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE | 147 POSIX_LOG_VERBOSE)); 148 if (!log) 149 return; 150 StreamString buf; 151 152 switch (req) { 153 case PTRACE_POKETEXT: { 154 DisplayBytes(buf, &data, 8); 155 LLDB_LOG(log, "PTRACE_POKETEXT {0}", buf.GetData()); 156 break; 157 } 158 case PTRACE_POKEDATA: { 159 DisplayBytes(buf, &data, 8); 160 LLDB_LOG(log, "PTRACE_POKEDATA {0}", buf.GetData()); 161 break; 162 } 163 case PTRACE_POKEUSER: { 164 DisplayBytes(buf, &data, 8); 165 LLDB_LOG(log, "PTRACE_POKEUSER {0}", buf.GetData()); 166 break; 167 } 168 case PTRACE_SETREGS: { 169 DisplayBytes(buf, data, data_size); 170 LLDB_LOG(log, "PTRACE_SETREGS {0}", buf.GetData()); 171 break; 172 } 173 case PTRACE_SETFPREGS: { 174 DisplayBytes(buf, data, data_size); 175 LLDB_LOG(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 176 break; 177 } 178 case PTRACE_SETSIGINFO: { 179 DisplayBytes(buf, data, sizeof(siginfo_t)); 180 LLDB_LOG(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 181 break; 182 } 183 case PTRACE_SETREGSET: { 184 // Extract iov_base from data, which is a pointer to the struct IOVEC 185 DisplayBytes(buf, *(void **)data, data_size); 186 LLDB_LOG(log, "PTRACE_SETREGSET {0}", buf.GetData()); 187 break; 188 } 189 default: {} 190 } 191 } 192 193 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 194 static_assert(sizeof(long) >= k_ptrace_word_size, 195 "Size of long must be larger than ptrace word size"); 196 } // end of anonymous namespace 197 198 // Simple helper function to ensure flags are enabled on the given file 199 // descriptor. 200 static Error EnsureFDFlags(int fd, int flags) { 201 Error error; 202 203 int status = fcntl(fd, F_GETFL); 204 if (status == -1) { 205 error.SetErrorToErrno(); 206 return error; 207 } 208 209 if (fcntl(fd, F_SETFL, status | flags) == -1) { 210 error.SetErrorToErrno(); 211 return error; 212 } 213 214 return error; 215 } 216 217 // ----------------------------------------------------------------------------- 218 // Public Static Methods 219 // ----------------------------------------------------------------------------- 220 221 Error NativeProcessProtocol::Launch( 222 ProcessLaunchInfo &launch_info, 223 NativeProcessProtocol::NativeDelegate &native_delegate, MainLoop &mainloop, 224 NativeProcessProtocolSP &native_process_sp) { 225 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 226 227 Error error; 228 229 // Verify the working directory is valid if one was specified. 230 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 231 if (working_dir && 232 (!working_dir.ResolvePath() || 233 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) { 234 error.SetErrorStringWithFormat("No such file or directory: %s", 235 working_dir.GetCString()); 236 return error; 237 } 238 239 // Create the NativeProcessLinux in launch mode. 240 native_process_sp.reset(new NativeProcessLinux()); 241 242 if (!native_process_sp->RegisterNativeDelegate(native_delegate)) { 243 native_process_sp.reset(); 244 error.SetErrorStringWithFormat("failed to register the native delegate"); 245 return error; 246 } 247 248 error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp) 249 ->LaunchInferior(mainloop, launch_info); 250 251 if (error.Fail()) { 252 native_process_sp.reset(); 253 LLDB_LOG(log, "failed to launch process: {0}", error); 254 return error; 255 } 256 257 launch_info.SetProcessID(native_process_sp->GetID()); 258 259 return error; 260 } 261 262 Error NativeProcessProtocol::Attach( 263 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 264 MainLoop &mainloop, NativeProcessProtocolSP &native_process_sp) { 265 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 266 LLDB_LOG(log, "pid = {0:x}", pid); 267 268 // Retrieve the architecture for the running process. 269 ArchSpec process_arch; 270 Error error = ResolveProcessArchitecture(pid, process_arch); 271 if (!error.Success()) 272 return error; 273 274 std::shared_ptr<NativeProcessLinux> native_process_linux_sp( 275 new NativeProcessLinux()); 276 277 if (!native_process_linux_sp->RegisterNativeDelegate(native_delegate)) { 278 error.SetErrorStringWithFormat("failed to register the native delegate"); 279 return error; 280 } 281 282 native_process_linux_sp->AttachToInferior(mainloop, pid, error); 283 if (!error.Success()) 284 return error; 285 286 native_process_sp = native_process_linux_sp; 287 return error; 288 } 289 290 // ----------------------------------------------------------------------------- 291 // Public Instance Methods 292 // ----------------------------------------------------------------------------- 293 294 NativeProcessLinux::NativeProcessLinux() 295 : NativeProcessProtocol(LLDB_INVALID_PROCESS_ID), m_arch(), 296 m_supports_mem_region(eLazyBoolCalculate), m_mem_region_cache(), 297 m_pending_notification_tid(LLDB_INVALID_THREAD_ID) {} 298 299 void NativeProcessLinux::AttachToInferior(MainLoop &mainloop, lldb::pid_t pid, 300 Error &error) { 301 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 302 LLDB_LOG(log, "pid = {0:x}", pid); 303 304 m_sigchld_handle = mainloop.RegisterSignal( 305 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 306 if (!m_sigchld_handle) 307 return; 308 309 error = ResolveProcessArchitecture(pid, m_arch); 310 if (!error.Success()) 311 return; 312 313 // Set the architecture to the exe architecture. 314 LLDB_LOG(log, "pid = {0:x}, detected architecture {1}", pid, 315 m_arch.GetArchitectureName()); 316 m_pid = pid; 317 SetState(eStateAttaching); 318 319 Attach(pid, error); 320 } 321 322 Error NativeProcessLinux::LaunchInferior(MainLoop &mainloop, 323 ProcessLaunchInfo &launch_info) { 324 Error error; 325 m_sigchld_handle = mainloop.RegisterSignal( 326 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error); 327 if (!m_sigchld_handle) 328 return error; 329 330 SetState(eStateLaunching); 331 332 MaybeLogLaunchInfo(launch_info); 333 334 ::pid_t pid = 335 ProcessLauncherLinux().LaunchProcess(launch_info, error).GetProcessId(); 336 if (error.Fail()) 337 return error; 338 339 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 340 341 // Wait for the child process to trap on its call to execve. 342 ::pid_t wpid; 343 int status; 344 if ((wpid = waitpid(pid, &status, 0)) < 0) { 345 error.SetErrorToErrno(); 346 LLDB_LOG(log, "waitpid for inferior failed with %s", error); 347 348 // Mark the inferior as invalid. 349 // FIXME this could really use a new state - eStateLaunchFailure. For now, 350 // using eStateInvalid. 351 SetState(StateType::eStateInvalid); 352 353 return error; 354 } 355 assert(WIFSTOPPED(status) && (wpid == static_cast<::pid_t>(pid)) && 356 "Could not sync with inferior process."); 357 358 LLDB_LOG(log, "inferior started, now in stopped state"); 359 error = SetDefaultPtraceOpts(pid); 360 if (error.Fail()) { 361 LLDB_LOG(log, "failed to set default ptrace options: {0}", error); 362 363 // Mark the inferior as invalid. 364 // FIXME this could really use a new state - eStateLaunchFailure. For now, 365 // using eStateInvalid. 366 SetState(StateType::eStateInvalid); 367 368 return error; 369 } 370 371 // Release the master terminal descriptor and pass it off to the 372 // NativeProcessLinux instance. Similarly stash the inferior pid. 373 m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor(); 374 m_pid = pid; 375 launch_info.SetProcessID(pid); 376 377 if (m_terminal_fd != -1) { 378 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 379 if (error.Fail()) { 380 LLDB_LOG(log, 381 "inferior EnsureFDFlags failed for ensuring terminal " 382 "O_NONBLOCK setting: {0}", 383 error); 384 385 // Mark the inferior as invalid. 386 // FIXME this could really use a new state - eStateLaunchFailure. For 387 // now, using eStateInvalid. 388 SetState(StateType::eStateInvalid); 389 390 return error; 391 } 392 } 393 394 LLDB_LOG(log, "adding pid = {0}", pid); 395 ResolveProcessArchitecture(m_pid, m_arch); 396 NativeThreadLinuxSP thread_sp = AddThread(pid); 397 assert(thread_sp && "AddThread() returned a nullptr thread"); 398 thread_sp->SetStoppedBySignal(SIGSTOP); 399 ThreadWasCreated(*thread_sp); 400 401 // Let our process instance know the thread has stopped. 402 SetCurrentThreadID(thread_sp->GetID()); 403 SetState(StateType::eStateStopped); 404 405 if (error.Fail()) 406 LLDB_LOG(log, "inferior launching failed {0}", error); 407 return error; 408 } 409 410 ::pid_t NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) { 411 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 412 413 // Use a map to keep track of the threads which we have attached/need to 414 // attach. 415 Host::TidMap tids_to_attach; 416 if (pid <= 1) { 417 error.SetErrorToGenericError(); 418 error.SetErrorString("Attaching to process 1 is not allowed."); 419 return -1; 420 } 421 422 while (Host::FindProcessThreads(pid, tids_to_attach)) { 423 for (Host::TidMap::iterator it = tids_to_attach.begin(); 424 it != tids_to_attach.end();) { 425 if (it->second == false) { 426 lldb::tid_t tid = it->first; 427 428 // Attach to the requested process. 429 // An attach will cause the thread to stop with a SIGSTOP. 430 error = PtraceWrapper(PTRACE_ATTACH, tid); 431 if (error.Fail()) { 432 // No such thread. The thread may have exited. 433 // More error handling may be needed. 434 if (error.GetError() == ESRCH) { 435 it = tids_to_attach.erase(it); 436 continue; 437 } else 438 return -1; 439 } 440 441 int status; 442 // Need to use __WALL otherwise we receive an error with errno=ECHLD 443 // At this point we should have a thread stopped if waitpid succeeds. 444 if ((status = waitpid(tid, NULL, __WALL)) < 0) { 445 // No such thread. The thread may have exited. 446 // More error handling may be needed. 447 if (errno == ESRCH) { 448 it = tids_to_attach.erase(it); 449 continue; 450 } else { 451 error.SetErrorToErrno(); 452 return -1; 453 } 454 } 455 456 error = SetDefaultPtraceOpts(tid); 457 if (error.Fail()) 458 return -1; 459 460 LLDB_LOG(log, "adding tid = {0}", tid); 461 it->second = true; 462 463 // Create the thread, mark it as stopped. 464 NativeThreadLinuxSP thread_sp(AddThread(static_cast<lldb::tid_t>(tid))); 465 assert(thread_sp && "AddThread() returned a nullptr"); 466 467 // This will notify this is a new thread and tell the system it is 468 // stopped. 469 thread_sp->SetStoppedBySignal(SIGSTOP); 470 ThreadWasCreated(*thread_sp); 471 SetCurrentThreadID(thread_sp->GetID()); 472 } 473 474 // move the loop forward 475 ++it; 476 } 477 } 478 479 if (tids_to_attach.size() > 0) { 480 m_pid = pid; 481 // Let our process instance know the thread has stopped. 482 SetState(StateType::eStateStopped); 483 } else { 484 error.SetErrorToGenericError(); 485 error.SetErrorString("No such process."); 486 return -1; 487 } 488 489 return pid; 490 } 491 492 Error NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 493 long ptrace_opts = 0; 494 495 // Have the child raise an event on exit. This is used to keep the child in 496 // limbo until it is destroyed. 497 ptrace_opts |= PTRACE_O_TRACEEXIT; 498 499 // Have the tracer trace threads which spawn in the inferior process. 500 // TODO: if we want to support tracing the inferiors' child, add the 501 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 502 ptrace_opts |= PTRACE_O_TRACECLONE; 503 504 // Have the tracer notify us before execve returns 505 // (needed to disable legacy SIGTRAP generation) 506 ptrace_opts |= PTRACE_O_TRACEEXEC; 507 508 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 509 } 510 511 static ExitType convert_pid_status_to_exit_type(int status) { 512 if (WIFEXITED(status)) 513 return ExitType::eExitTypeExit; 514 else if (WIFSIGNALED(status)) 515 return ExitType::eExitTypeSignal; 516 else if (WIFSTOPPED(status)) 517 return ExitType::eExitTypeStop; 518 else { 519 // We don't know what this is. 520 return ExitType::eExitTypeInvalid; 521 } 522 } 523 524 static int convert_pid_status_to_return_code(int status) { 525 if (WIFEXITED(status)) 526 return WEXITSTATUS(status); 527 else if (WIFSIGNALED(status)) 528 return WTERMSIG(status); 529 else if (WIFSTOPPED(status)) 530 return WSTOPSIG(status); 531 else { 532 // We don't know what this is. 533 return ExitType::eExitTypeInvalid; 534 } 535 } 536 537 // Handles all waitpid events from the inferior process. 538 void NativeProcessLinux::MonitorCallback(lldb::pid_t pid, bool exited, 539 int signal, int status) { 540 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS)); 541 542 // Certain activities differ based on whether the pid is the tid of the main 543 // thread. 544 const bool is_main_thread = (pid == GetID()); 545 546 // Handle when the thread exits. 547 if (exited) { 548 LLDB_LOG(log, "got exit signal({0}) , tid = {1} ({2} main thread)", signal, 549 pid, is_main_thread ? "is" : "is not"); 550 551 // This is a thread that exited. Ensure we're not tracking it anymore. 552 const bool thread_found = StopTrackingThread(pid); 553 554 if (is_main_thread) { 555 // We only set the exit status and notify the delegate if we haven't 556 // already set the process 557 // state to an exited state. We normally should have received a SIGTRAP | 558 // (PTRACE_EVENT_EXIT << 8) 559 // for the main thread. 560 const bool already_notified = (GetState() == StateType::eStateExited) || 561 (GetState() == StateType::eStateCrashed); 562 if (!already_notified) { 563 LLDB_LOG( 564 log, 565 "tid = {0} handling main thread exit ({1}), expected exit state " 566 "already set but state was {2} instead, setting exit state now", 567 pid, 568 thread_found ? "stopped tracking thread metadata" 569 : "thread metadata not found", 570 GetState()); 571 // The main thread exited. We're done monitoring. Report to delegate. 572 SetExitStatus(convert_pid_status_to_exit_type(status), 573 convert_pid_status_to_return_code(status), nullptr, true); 574 575 // Notify delegate that our process has exited. 576 SetState(StateType::eStateExited, true); 577 } else 578 LLDB_LOG(log, "tid = {0} main thread now exited (%s)", pid, 579 thread_found ? "stopped tracking thread metadata" 580 : "thread metadata not found"); 581 } else { 582 // Do we want to report to the delegate in this case? I think not. If 583 // this was an orderly thread exit, we would already have received the 584 // SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, and we would have done an 585 // all-stop then. 586 LLDB_LOG(log, "tid = {0} handling non-main thread exit (%s)", pid, 587 thread_found ? "stopped tracking thread metadata" 588 : "thread metadata not found"); 589 } 590 return; 591 } 592 593 siginfo_t info; 594 const auto info_err = GetSignalInfo(pid, &info); 595 auto thread_sp = GetThreadByID(pid); 596 597 if (!thread_sp) { 598 // Normally, the only situation when we cannot find the thread is if we have 599 // just received a new thread notification. This is indicated by 600 // GetSignalInfo() returning si_code == SI_USER and si_pid == 0 601 LLDB_LOG(log, "received notification about an unknown tid {0}.", pid); 602 603 if (info_err.Fail()) { 604 LLDB_LOG(log, 605 "(tid {0}) GetSignalInfo failed ({1}). " 606 "Ingoring this notification.", 607 pid, info_err); 608 return; 609 } 610 611 LLDB_LOG(log, "tid {0}, si_code: {1}, si_pid: {2}", pid, info.si_code, 612 info.si_pid); 613 614 auto thread_sp = AddThread(pid); 615 // Resume the newly created thread. 616 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 617 ThreadWasCreated(*thread_sp); 618 return; 619 } 620 621 // Get details on the signal raised. 622 if (info_err.Success()) { 623 // We have retrieved the signal info. Dispatch appropriately. 624 if (info.si_signo == SIGTRAP) 625 MonitorSIGTRAP(info, *thread_sp); 626 else 627 MonitorSignal(info, *thread_sp, exited); 628 } else { 629 if (info_err.GetError() == EINVAL) { 630 // This is a group stop reception for this tid. 631 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU 632 // into the tracee, triggering the group-stop mechanism. Normally 633 // receiving these would stop the process, pending a SIGCONT. Simulating 634 // this state in a debugger is hard and is generally not needed (one use 635 // case is debugging background task being managed by a shell). For 636 // general use, it is sufficient to stop the process in a signal-delivery 637 // stop which happens before the group stop. This done by MonitorSignal 638 // and works correctly for all signals. 639 LLDB_LOG(log, 640 "received a group stop for pid {0} tid {1}. Transparent " 641 "handling of group stops not supported, resuming the " 642 "thread.", 643 GetID(), pid); 644 ResumeThread(*thread_sp, thread_sp->GetState(), 645 LLDB_INVALID_SIGNAL_NUMBER); 646 } else { 647 // ptrace(GETSIGINFO) failed (but not due to group-stop). 648 649 // A return value of ESRCH means the thread/process is no longer on the 650 // system, so it was killed somehow outside of our control. Either way, 651 // we can't do anything with it anymore. 652 653 // Stop tracking the metadata for the thread since it's entirely off the 654 // system now. 655 const bool thread_found = StopTrackingThread(pid); 656 657 LLDB_LOG(log, 658 "GetSignalInfo failed: {0}, tid = {1}, signal = {2}, " 659 "status = {3}, main_thread = {4}, thread_found: {5}", 660 info_err, pid, signal, status, is_main_thread, thread_found); 661 662 if (is_main_thread) { 663 // Notify the delegate - our process is not available but appears to 664 // have been killed outside 665 // our control. Is eStateExited the right exit state in this case? 666 SetExitStatus(convert_pid_status_to_exit_type(status), 667 convert_pid_status_to_return_code(status), nullptr, true); 668 SetState(StateType::eStateExited, true); 669 } else { 670 // This thread was pulled out from underneath us. Anything to do here? 671 // Do we want to do an all stop? 672 LLDB_LOG(log, 673 "pid {0} tid {1} non-main thread exit occurred, didn't " 674 "tell delegate anything since thread disappeared out " 675 "from underneath us", 676 GetID(), pid); 677 } 678 } 679 } 680 } 681 682 void NativeProcessLinux::WaitForNewThread(::pid_t tid) { 683 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 684 685 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 686 687 if (new_thread_sp) { 688 // We are already tracking the thread - we got the event on the new thread 689 // (see 690 // MonitorSignal) before this one. We are done. 691 return; 692 } 693 694 // The thread is not tracked yet, let's wait for it to appear. 695 int status = -1; 696 ::pid_t wait_pid; 697 do { 698 LLDB_LOG(log, 699 "received thread creation event for tid {0}. tid not tracked " 700 "yet, waiting for thread to appear...", 701 tid); 702 wait_pid = waitpid(tid, &status, __WALL); 703 } while (wait_pid == -1 && errno == EINTR); 704 // Since we are waiting on a specific tid, this must be the creation event. 705 // But let's do some checks just in case. 706 if (wait_pid != tid) { 707 LLDB_LOG(log, 708 "waiting for tid {0} failed. Assuming the thread has " 709 "disappeared in the meantime", 710 tid); 711 // The only way I know of this could happen is if the whole process was 712 // SIGKILLed in the mean time. In any case, we can't do anything about that 713 // now. 714 return; 715 } 716 if (WIFEXITED(status)) { 717 LLDB_LOG(log, 718 "waiting for tid {0} returned an 'exited' event. Not " 719 "tracking the thread.", 720 tid); 721 // Also a very improbable event. 722 return; 723 } 724 725 LLDB_LOG(log, "pid = {0}: tracking new thread tid {1}", GetID(), tid); 726 new_thread_sp = AddThread(tid); 727 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 728 ThreadWasCreated(*new_thread_sp); 729 } 730 731 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 732 NativeThreadLinux &thread) { 733 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 734 const bool is_main_thread = (thread.GetID() == GetID()); 735 736 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 737 738 switch (info.si_code) { 739 // TODO: these two cases are required if we want to support tracing of the 740 // inferiors' children. We'd need this to debug a monitor. 741 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 742 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 743 744 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 745 // This is the notification on the parent thread which informs us of new 746 // thread 747 // creation. 748 // We don't want to do anything with the parent thread so we just resume it. 749 // In case we 750 // want to implement "break on thread creation" functionality, we would need 751 // to stop 752 // here. 753 754 unsigned long event_message = 0; 755 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 756 LLDB_LOG(log, 757 "pid {0} received thread creation event but " 758 "GetEventMessage failed so we don't know the new tid", 759 thread.GetID()); 760 } else 761 WaitForNewThread(event_message); 762 763 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 764 break; 765 } 766 767 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 768 NativeThreadLinuxSP main_thread_sp; 769 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 770 771 // Exec clears any pending notifications. 772 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 773 774 // Remove all but the main thread here. Linux fork creates a new process 775 // which only copies the main thread. 776 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 777 778 for (auto thread_sp : m_threads) { 779 const bool is_main_thread = thread_sp && thread_sp->GetID() == GetID(); 780 if (is_main_thread) { 781 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 782 LLDB_LOG(log, "found main thread with tid {0}, keeping", 783 main_thread_sp->GetID()); 784 } else { 785 LLDB_LOG(log, "discarding non-main-thread tid {0} due to exec", 786 thread_sp->GetID()); 787 } 788 } 789 790 m_threads.clear(); 791 792 if (main_thread_sp) { 793 m_threads.push_back(main_thread_sp); 794 SetCurrentThreadID(main_thread_sp->GetID()); 795 main_thread_sp->SetStoppedByExec(); 796 } else { 797 SetCurrentThreadID(LLDB_INVALID_THREAD_ID); 798 LLDB_LOG(log, 799 "pid {0} no main thread found, discarded all threads, " 800 "we're in a no-thread state!", 801 GetID()); 802 } 803 804 // Tell coordinator about about the "new" (since exec) stopped main thread. 805 ThreadWasCreated(*main_thread_sp); 806 807 // Let our delegate know we have just exec'd. 808 NotifyDidExec(); 809 810 // If we have a main thread, indicate we are stopped. 811 assert(main_thread_sp && "exec called during ptraced process but no main " 812 "thread metadata tracked"); 813 814 // Let the process know we're stopped. 815 StopRunningThreads(main_thread_sp->GetID()); 816 817 break; 818 } 819 820 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 821 // The inferior process or one of its threads is about to exit. 822 // We don't want to do anything with the thread so we just resume it. In 823 // case we 824 // want to implement "break on thread exit" functionality, we would need to 825 // stop 826 // here. 827 828 unsigned long data = 0; 829 if (GetEventMessage(thread.GetID(), &data).Fail()) 830 data = -1; 831 832 LLDB_LOG(log, 833 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 834 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 835 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 836 is_main_thread); 837 838 if (is_main_thread) { 839 SetExitStatus(convert_pid_status_to_exit_type(data), 840 convert_pid_status_to_return_code(data), nullptr, true); 841 } 842 843 StateType state = thread.GetState(); 844 if (!StateIsRunningState(state)) { 845 // Due to a kernel bug, we may sometimes get this stop after the inferior 846 // gets a 847 // SIGKILL. This confuses our state tracking logic in ResumeThread(), 848 // since normally, 849 // we should not be receiving any ptrace events while the inferior is 850 // stopped. This 851 // makes sure that the inferior is resumed and exits normally. 852 state = eStateRunning; 853 } 854 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 855 856 break; 857 } 858 859 case 0: 860 case TRAP_TRACE: // We receive this on single stepping. 861 case TRAP_HWBKPT: // We receive this on watchpoint hit 862 { 863 // If a watchpoint was hit, report it 864 uint32_t wp_index; 865 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex( 866 wp_index, (uintptr_t)info.si_addr); 867 if (error.Fail()) 868 LLDB_LOG(log, 869 "received error while checking for watchpoint hits, pid = " 870 "{0}, error = {1}", 871 thread.GetID(), error); 872 if (wp_index != LLDB_INVALID_INDEX32) { 873 MonitorWatchpoint(thread, wp_index); 874 break; 875 } 876 877 // Otherwise, report step over 878 MonitorTrace(thread); 879 break; 880 } 881 882 case SI_KERNEL: 883 #if defined __mips__ 884 // For mips there is no special signal for watchpoint 885 // So we check for watchpoint in kernel trap 886 { 887 // If a watchpoint was hit, report it 888 uint32_t wp_index; 889 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex( 890 wp_index, LLDB_INVALID_ADDRESS); 891 if (error.Fail()) 892 LLDB_LOG(log, 893 "received error while checking for watchpoint hits, pid = " 894 "{0}, error = {1}", 895 thread.GetID(), error); 896 if (wp_index != LLDB_INVALID_INDEX32) { 897 MonitorWatchpoint(thread, wp_index); 898 break; 899 } 900 } 901 // NO BREAK 902 #endif 903 case TRAP_BRKPT: 904 MonitorBreakpoint(thread); 905 break; 906 907 case SIGTRAP: 908 case (SIGTRAP | 0x80): 909 LLDB_LOG( 910 log, 911 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 912 info.si_code, GetID(), thread.GetID()); 913 914 // Ignore these signals until we know more about them. 915 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 916 break; 917 918 default: 919 LLDB_LOG( 920 log, 921 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 922 info.si_code, GetID(), thread.GetID()); 923 llvm_unreachable("Unexpected SIGTRAP code!"); 924 break; 925 } 926 } 927 928 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 929 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 930 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 931 932 // This thread is currently stopped. 933 thread.SetStoppedByTrace(); 934 935 StopRunningThreads(thread.GetID()); 936 } 937 938 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 939 Log *log( 940 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 941 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 942 943 // Mark the thread as stopped at breakpoint. 944 thread.SetStoppedByBreakpoint(); 945 Error error = FixupBreakpointPCAsNeeded(thread); 946 if (error.Fail()) 947 LLDB_LOG(log, "pid = {0} fixup: {1}", thread.GetID(), error); 948 949 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 950 m_threads_stepping_with_breakpoint.end()) 951 thread.SetStoppedByTrace(); 952 953 StopRunningThreads(thread.GetID()); 954 } 955 956 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 957 uint32_t wp_index) { 958 Log *log( 959 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 960 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 961 thread.GetID(), wp_index); 962 963 // Mark the thread as stopped at watchpoint. 964 // The address is at (lldb::addr_t)info->si_addr if we need it. 965 thread.SetStoppedByWatchpoint(wp_index); 966 967 // We need to tell all other running threads before we notify the delegate 968 // about this stop. 969 StopRunningThreads(thread.GetID()); 970 } 971 972 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 973 NativeThreadLinux &thread, bool exited) { 974 const int signo = info.si_signo; 975 const bool is_from_llgs = info.si_pid == getpid(); 976 977 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 978 979 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 980 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 981 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 982 // 983 // IOW, user generated signals never generate what we consider to be a 984 // "crash". 985 // 986 // Similarly, ACK signals generated by this monitor. 987 988 // Handle the signal. 989 LLDB_LOG(log, 990 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 991 "waitpid pid = {4})", 992 Host::GetSignalAsCString(signo), signo, info.si_code, 993 thread.GetID()); 994 995 // Check for thread stop notification. 996 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 997 // This is a tgkill()-based stop. 998 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 999 1000 // Check that we're not already marked with a stop reason. 1001 // Note this thread really shouldn't already be marked as stopped - if we 1002 // were, that would imply that the kernel signaled us with the thread 1003 // stopping which we handled and marked as stopped, and that, without an 1004 // intervening resume, we received another stop. It is more likely that we 1005 // are missing the marking of a run state somewhere if we find that the 1006 // thread was marked as stopped. 1007 const StateType thread_state = thread.GetState(); 1008 if (!StateIsStoppedState(thread_state, false)) { 1009 // An inferior thread has stopped because of a SIGSTOP we have sent it. 1010 // Generally, these are not important stops and we don't want to report 1011 // them as they are just used to stop other threads when one thread (the 1012 // one with the *real* stop reason) hits a breakpoint (watchpoint, 1013 // etc...). However, in the case of an asynchronous Interrupt(), this *is* 1014 // the real stop reason, so we leave the signal intact if this is the 1015 // thread that was chosen as the triggering thread. 1016 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1017 if (m_pending_notification_tid == thread.GetID()) 1018 thread.SetStoppedBySignal(SIGSTOP, &info); 1019 else 1020 thread.SetStoppedWithNoReason(); 1021 1022 SetCurrentThreadID(thread.GetID()); 1023 SignalIfAllThreadsStopped(); 1024 } else { 1025 // We can end up here if stop was initiated by LLGS but by this time a 1026 // thread stop has occurred - maybe initiated by another event. 1027 Error error = ResumeThread(thread, thread.GetState(), 0); 1028 if (error.Fail()) 1029 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 1030 error); 1031 } 1032 } else { 1033 LLDB_LOG(log, 1034 "pid {0} tid {1}, thread was already marked as a stopped " 1035 "state (state={2}), leaving stop signal as is", 1036 GetID(), thread.GetID(), thread_state); 1037 SignalIfAllThreadsStopped(); 1038 } 1039 1040 // Done handling. 1041 return; 1042 } 1043 1044 // This thread is stopped. 1045 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 1046 thread.SetStoppedBySignal(signo, &info); 1047 1048 // Send a stop to the debugger after we get all other threads to stop. 1049 StopRunningThreads(thread.GetID()); 1050 } 1051 1052 namespace { 1053 1054 struct EmulatorBaton { 1055 NativeProcessLinux *m_process; 1056 NativeRegisterContext *m_reg_context; 1057 1058 // eRegisterKindDWARF -> RegsiterValue 1059 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1060 1061 EmulatorBaton(NativeProcessLinux *process, NativeRegisterContext *reg_context) 1062 : m_process(process), m_reg_context(reg_context) {} 1063 }; 1064 1065 } // anonymous namespace 1066 1067 static size_t ReadMemoryCallback(EmulateInstruction *instruction, void *baton, 1068 const EmulateInstruction::Context &context, 1069 lldb::addr_t addr, void *dst, size_t length) { 1070 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1071 1072 size_t bytes_read; 1073 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1074 return bytes_read; 1075 } 1076 1077 static bool ReadRegisterCallback(EmulateInstruction *instruction, void *baton, 1078 const RegisterInfo *reg_info, 1079 RegisterValue ®_value) { 1080 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1081 1082 auto it = emulator_baton->m_register_values.find( 1083 reg_info->kinds[eRegisterKindDWARF]); 1084 if (it != emulator_baton->m_register_values.end()) { 1085 reg_value = it->second; 1086 return true; 1087 } 1088 1089 // The emulator only fill in the dwarf regsiter numbers (and in some case 1090 // the generic register numbers). Get the full register info from the 1091 // register context based on the dwarf register numbers. 1092 const RegisterInfo *full_reg_info = 1093 emulator_baton->m_reg_context->GetRegisterInfo( 1094 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1095 1096 Error error = 1097 emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1098 if (error.Success()) 1099 return true; 1100 1101 return false; 1102 } 1103 1104 static bool WriteRegisterCallback(EmulateInstruction *instruction, void *baton, 1105 const EmulateInstruction::Context &context, 1106 const RegisterInfo *reg_info, 1107 const RegisterValue ®_value) { 1108 EmulatorBaton *emulator_baton = static_cast<EmulatorBaton *>(baton); 1109 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = 1110 reg_value; 1111 return true; 1112 } 1113 1114 static size_t WriteMemoryCallback(EmulateInstruction *instruction, void *baton, 1115 const EmulateInstruction::Context &context, 1116 lldb::addr_t addr, const void *dst, 1117 size_t length) { 1118 return length; 1119 } 1120 1121 static lldb::addr_t ReadFlags(NativeRegisterContext *regsiter_context) { 1122 const RegisterInfo *flags_info = regsiter_context->GetRegisterInfo( 1123 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1124 return regsiter_context->ReadRegisterAsUnsigned(flags_info, 1125 LLDB_INVALID_ADDRESS); 1126 } 1127 1128 Error NativeProcessLinux::SetupSoftwareSingleStepping( 1129 NativeThreadLinux &thread) { 1130 Error error; 1131 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1132 1133 std::unique_ptr<EmulateInstruction> emulator_ap( 1134 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, 1135 nullptr)); 1136 1137 if (emulator_ap == nullptr) 1138 return Error("Instruction emulator not found!"); 1139 1140 EmulatorBaton baton(this, register_context_sp.get()); 1141 emulator_ap->SetBaton(&baton); 1142 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1143 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1144 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1145 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1146 1147 if (!emulator_ap->ReadInstruction()) 1148 return Error("Read instruction failed!"); 1149 1150 bool emulation_result = 1151 emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1152 1153 const RegisterInfo *reg_info_pc = register_context_sp->GetRegisterInfo( 1154 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1155 const RegisterInfo *reg_info_flags = register_context_sp->GetRegisterInfo( 1156 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1157 1158 auto pc_it = 1159 baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1160 auto flags_it = 1161 baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1162 1163 lldb::addr_t next_pc; 1164 lldb::addr_t next_flags; 1165 if (emulation_result) { 1166 assert(pc_it != baton.m_register_values.end() && 1167 "Emulation was successfull but PC wasn't updated"); 1168 next_pc = pc_it->second.GetAsUInt64(); 1169 1170 if (flags_it != baton.m_register_values.end()) 1171 next_flags = flags_it->second.GetAsUInt64(); 1172 else 1173 next_flags = ReadFlags(register_context_sp.get()); 1174 } else if (pc_it == baton.m_register_values.end()) { 1175 // Emulate instruction failed and it haven't changed PC. Advance PC 1176 // with the size of the current opcode because the emulation of all 1177 // PC modifying instruction should be successful. The failure most 1178 // likely caused by a not supported instruction which don't modify PC. 1179 next_pc = 1180 register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1181 next_flags = ReadFlags(register_context_sp.get()); 1182 } else { 1183 // The instruction emulation failed after it modified the PC. It is an 1184 // unknown error where we can't continue because the next instruction is 1185 // modifying the PC but we don't know how. 1186 return Error("Instruction emulation failed unexpectedly."); 1187 } 1188 1189 if (m_arch.GetMachine() == llvm::Triple::arm) { 1190 if (next_flags & 0x20) { 1191 // Thumb mode 1192 error = SetSoftwareBreakpoint(next_pc, 2); 1193 } else { 1194 // Arm mode 1195 error = SetSoftwareBreakpoint(next_pc, 4); 1196 } 1197 } else if (m_arch.GetMachine() == llvm::Triple::mips64 || 1198 m_arch.GetMachine() == llvm::Triple::mips64el || 1199 m_arch.GetMachine() == llvm::Triple::mips || 1200 m_arch.GetMachine() == llvm::Triple::mipsel) 1201 error = SetSoftwareBreakpoint(next_pc, 4); 1202 else { 1203 // No size hint is given for the next breakpoint 1204 error = SetSoftwareBreakpoint(next_pc, 0); 1205 } 1206 1207 // If setting the breakpoint fails because next_pc is out of 1208 // the address space, ignore it and let the debugee segfault. 1209 if (error.GetError() == EIO || error.GetError() == EFAULT) { 1210 return Error(); 1211 } else if (error.Fail()) 1212 return error; 1213 1214 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1215 1216 return Error(); 1217 } 1218 1219 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 1220 if (m_arch.GetMachine() == llvm::Triple::arm || 1221 m_arch.GetMachine() == llvm::Triple::mips64 || 1222 m_arch.GetMachine() == llvm::Triple::mips64el || 1223 m_arch.GetMachine() == llvm::Triple::mips || 1224 m_arch.GetMachine() == llvm::Triple::mipsel) 1225 return false; 1226 return true; 1227 } 1228 1229 Error NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 1230 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1231 LLDB_LOG(log, "pid {0}", GetID()); 1232 1233 bool software_single_step = !SupportHardwareSingleStepping(); 1234 1235 if (software_single_step) { 1236 for (auto thread_sp : m_threads) { 1237 assert(thread_sp && "thread list should not contain NULL threads"); 1238 1239 const ResumeAction *const action = 1240 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1241 if (action == nullptr) 1242 continue; 1243 1244 if (action->state == eStateStepping) { 1245 Error error = SetupSoftwareSingleStepping( 1246 static_cast<NativeThreadLinux &>(*thread_sp)); 1247 if (error.Fail()) 1248 return error; 1249 } 1250 } 1251 } 1252 1253 for (auto thread_sp : m_threads) { 1254 assert(thread_sp && "thread list should not contain NULL threads"); 1255 1256 const ResumeAction *const action = 1257 resume_actions.GetActionForThread(thread_sp->GetID(), true); 1258 1259 if (action == nullptr) { 1260 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 1261 thread_sp->GetID()); 1262 continue; 1263 } 1264 1265 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 1266 action->state, GetID(), thread_sp->GetID()); 1267 1268 switch (action->state) { 1269 case eStateRunning: 1270 case eStateStepping: { 1271 // Run the thread, possibly feeding it the signal. 1272 const int signo = action->signal; 1273 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, 1274 signo); 1275 break; 1276 } 1277 1278 case eStateSuspended: 1279 case eStateStopped: 1280 llvm_unreachable("Unexpected state"); 1281 1282 default: 1283 return Error("NativeProcessLinux::%s (): unexpected state %s specified " 1284 "for pid %" PRIu64 ", tid %" PRIu64, 1285 __FUNCTION__, StateAsCString(action->state), GetID(), 1286 thread_sp->GetID()); 1287 } 1288 } 1289 1290 return Error(); 1291 } 1292 1293 Error NativeProcessLinux::Halt() { 1294 Error error; 1295 1296 if (kill(GetID(), SIGSTOP) != 0) 1297 error.SetErrorToErrno(); 1298 1299 return error; 1300 } 1301 1302 Error NativeProcessLinux::Detach() { 1303 Error error; 1304 1305 // Stop monitoring the inferior. 1306 m_sigchld_handle.reset(); 1307 1308 // Tell ptrace to detach from the process. 1309 if (GetID() == LLDB_INVALID_PROCESS_ID) 1310 return error; 1311 1312 for (auto thread_sp : m_threads) { 1313 Error e = Detach(thread_sp->GetID()); 1314 if (e.Fail()) 1315 error = 1316 e; // Save the error, but still attempt to detach from other threads. 1317 } 1318 1319 return error; 1320 } 1321 1322 Error NativeProcessLinux::Signal(int signo) { 1323 Error error; 1324 1325 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1326 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1327 Host::GetSignalAsCString(signo), GetID()); 1328 1329 if (kill(GetID(), signo)) 1330 error.SetErrorToErrno(); 1331 1332 return error; 1333 } 1334 1335 Error NativeProcessLinux::Interrupt() { 1336 // Pick a running thread (or if none, a not-dead stopped thread) as 1337 // the chosen thread that will be the stop-reason thread. 1338 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1339 1340 NativeThreadProtocolSP running_thread_sp; 1341 NativeThreadProtocolSP stopped_thread_sp; 1342 1343 LLDB_LOG(log, "selecting running thread for interrupt target"); 1344 for (auto thread_sp : m_threads) { 1345 // The thread shouldn't be null but lets just cover that here. 1346 if (!thread_sp) 1347 continue; 1348 1349 // If we have a running or stepping thread, we'll call that the 1350 // target of the interrupt. 1351 const auto thread_state = thread_sp->GetState(); 1352 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1353 running_thread_sp = thread_sp; 1354 break; 1355 } else if (!stopped_thread_sp && StateIsStoppedState(thread_state, true)) { 1356 // Remember the first non-dead stopped thread. We'll use that as a backup 1357 // if there are no running threads. 1358 stopped_thread_sp = thread_sp; 1359 } 1360 } 1361 1362 if (!running_thread_sp && !stopped_thread_sp) { 1363 Error error("found no running/stepping or live stopped threads as target " 1364 "for interrupt"); 1365 LLDB_LOG(log, "skipping due to error: {0}", error); 1366 1367 return error; 1368 } 1369 1370 NativeThreadProtocolSP deferred_signal_thread_sp = 1371 running_thread_sp ? running_thread_sp : stopped_thread_sp; 1372 1373 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1374 running_thread_sp ? "running" : "stopped", 1375 deferred_signal_thread_sp->GetID()); 1376 1377 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1378 1379 return Error(); 1380 } 1381 1382 Error NativeProcessLinux::Kill() { 1383 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1384 LLDB_LOG(log, "pid {0}", GetID()); 1385 1386 Error error; 1387 1388 switch (m_state) { 1389 case StateType::eStateInvalid: 1390 case StateType::eStateExited: 1391 case StateType::eStateCrashed: 1392 case StateType::eStateDetached: 1393 case StateType::eStateUnloaded: 1394 // Nothing to do - the process is already dead. 1395 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1396 m_state); 1397 return error; 1398 1399 case StateType::eStateConnected: 1400 case StateType::eStateAttaching: 1401 case StateType::eStateLaunching: 1402 case StateType::eStateStopped: 1403 case StateType::eStateRunning: 1404 case StateType::eStateStepping: 1405 case StateType::eStateSuspended: 1406 // We can try to kill a process in these states. 1407 break; 1408 } 1409 1410 if (kill(GetID(), SIGKILL) != 0) { 1411 error.SetErrorToErrno(); 1412 return error; 1413 } 1414 1415 return error; 1416 } 1417 1418 static Error 1419 ParseMemoryRegionInfoFromProcMapsLine(const std::string &maps_line, 1420 MemoryRegionInfo &memory_region_info) { 1421 memory_region_info.Clear(); 1422 1423 StringExtractor line_extractor(maps_line.c_str()); 1424 1425 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode 1426 // pathname 1427 // perms: rwxp (letter is present if set, '-' if not, final character is 1428 // p=private, s=shared). 1429 1430 // Parse out the starting address 1431 lldb::addr_t start_address = line_extractor.GetHexMaxU64(false, 0); 1432 1433 // Parse out hyphen separating start and end address from range. 1434 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != '-')) 1435 return Error( 1436 "malformed /proc/{pid}/maps entry, missing dash between address range"); 1437 1438 // Parse out the ending address 1439 lldb::addr_t end_address = line_extractor.GetHexMaxU64(false, start_address); 1440 1441 // Parse out the space after the address. 1442 if (!line_extractor.GetBytesLeft() || (line_extractor.GetChar() != ' ')) 1443 return Error("malformed /proc/{pid}/maps entry, missing space after range"); 1444 1445 // Save the range. 1446 memory_region_info.GetRange().SetRangeBase(start_address); 1447 memory_region_info.GetRange().SetRangeEnd(end_address); 1448 1449 // Any memory region in /proc/{pid}/maps is by definition mapped into the 1450 // process. 1451 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1452 1453 // Parse out each permission entry. 1454 if (line_extractor.GetBytesLeft() < 4) 1455 return Error("malformed /proc/{pid}/maps entry, missing some portion of " 1456 "permissions"); 1457 1458 // Handle read permission. 1459 const char read_perm_char = line_extractor.GetChar(); 1460 if (read_perm_char == 'r') 1461 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eYes); 1462 else if (read_perm_char == '-') 1463 memory_region_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1464 else 1465 return Error("unexpected /proc/{pid}/maps read permission char"); 1466 1467 // Handle write permission. 1468 const char write_perm_char = line_extractor.GetChar(); 1469 if (write_perm_char == 'w') 1470 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eYes); 1471 else if (write_perm_char == '-') 1472 memory_region_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1473 else 1474 return Error("unexpected /proc/{pid}/maps write permission char"); 1475 1476 // Handle execute permission. 1477 const char exec_perm_char = line_extractor.GetChar(); 1478 if (exec_perm_char == 'x') 1479 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eYes); 1480 else if (exec_perm_char == '-') 1481 memory_region_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1482 else 1483 return Error("unexpected /proc/{pid}/maps exec permission char"); 1484 1485 line_extractor.GetChar(); // Read the private bit 1486 line_extractor.SkipSpaces(); // Skip the separator 1487 line_extractor.GetHexMaxU64(false, 0); // Read the offset 1488 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1489 line_extractor.GetChar(); // Read the device id separator 1490 line_extractor.GetHexMaxU64(false, 0); // Read the major device number 1491 line_extractor.SkipSpaces(); // Skip the separator 1492 line_extractor.GetU64(0, 10); // Read the inode number 1493 1494 line_extractor.SkipSpaces(); 1495 const char *name = line_extractor.Peek(); 1496 if (name) 1497 memory_region_info.SetName(name); 1498 1499 return Error(); 1500 } 1501 1502 Error NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1503 MemoryRegionInfo &range_info) { 1504 // FIXME review that the final memory region returned extends to the end of 1505 // the virtual address space, 1506 // with no perms if it is not mapped. 1507 1508 // Use an approach that reads memory regions from /proc/{pid}/maps. 1509 // Assume proc maps entries are in ascending order. 1510 // FIXME assert if we find differently. 1511 1512 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1513 // We're done. 1514 return Error("unsupported"); 1515 } 1516 1517 Error error = PopulateMemoryRegionCache(); 1518 if (error.Fail()) { 1519 return error; 1520 } 1521 1522 lldb::addr_t prev_base_address = 0; 1523 1524 // FIXME start by finding the last region that is <= target address using 1525 // binary search. Data is sorted. 1526 // There can be a ton of regions on pthreads apps with lots of threads. 1527 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1528 ++it) { 1529 MemoryRegionInfo &proc_entry_info = it->first; 1530 1531 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1532 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1533 "descending /proc/pid/maps entries detected, unexpected"); 1534 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1535 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1536 1537 // If the target address comes before this entry, indicate distance to next 1538 // region. 1539 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1540 range_info.GetRange().SetRangeBase(load_addr); 1541 range_info.GetRange().SetByteSize( 1542 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1543 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1544 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1545 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1546 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1547 1548 return error; 1549 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1550 // The target address is within the memory region we're processing here. 1551 range_info = proc_entry_info; 1552 return error; 1553 } 1554 1555 // The target memory address comes somewhere after the region we just 1556 // parsed. 1557 } 1558 1559 // If we made it here, we didn't find an entry that contained the given 1560 // address. Return the 1561 // load_addr as start and the amount of bytes betwwen load address and the end 1562 // of the memory as 1563 // size. 1564 range_info.GetRange().SetRangeBase(load_addr); 1565 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1566 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1567 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1568 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1569 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1570 return error; 1571 } 1572 1573 Error NativeProcessLinux::PopulateMemoryRegionCache() { 1574 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1575 1576 // If our cache is empty, pull the latest. There should always be at least 1577 // one memory region if memory region handling is supported. 1578 if (!m_mem_region_cache.empty()) { 1579 LLDB_LOG(log, "reusing {0} cached memory region entries", 1580 m_mem_region_cache.size()); 1581 return Error(); 1582 } 1583 1584 Error error = ProcFileReader::ProcessLineByLine( 1585 GetID(), "maps", [&](const std::string &line) -> bool { 1586 MemoryRegionInfo info; 1587 const Error parse_error = 1588 ParseMemoryRegionInfoFromProcMapsLine(line, info); 1589 if (parse_error.Success()) { 1590 m_mem_region_cache.emplace_back( 1591 info, FileSpec(info.GetName().GetCString(), true)); 1592 return true; 1593 } else { 1594 LLDB_LOG(log, "failed to parse proc maps line '{0}': {1}", line, 1595 parse_error); 1596 return false; 1597 } 1598 }); 1599 1600 // If we had an error, we'll mark unsupported. 1601 if (error.Fail()) { 1602 m_supports_mem_region = LazyBool::eLazyBoolNo; 1603 return error; 1604 } else if (m_mem_region_cache.empty()) { 1605 // No entries after attempting to read them. This shouldn't happen if 1606 // /proc/{pid}/maps is supported. Assume we don't support map entries 1607 // via procfs. 1608 LLDB_LOG(log, 1609 "failed to find any procfs maps entries, assuming no support " 1610 "for memory region metadata retrieval"); 1611 m_supports_mem_region = LazyBool::eLazyBoolNo; 1612 error.SetErrorString("not supported"); 1613 return error; 1614 } 1615 1616 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1617 m_mem_region_cache.size(), GetID()); 1618 1619 // We support memory retrieval, remember that. 1620 m_supports_mem_region = LazyBool::eLazyBoolYes; 1621 return Error(); 1622 } 1623 1624 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1625 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1626 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1627 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1628 m_mem_region_cache.size()); 1629 m_mem_region_cache.clear(); 1630 } 1631 1632 Error NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, 1633 lldb::addr_t &addr) { 1634 // FIXME implementing this requires the equivalent of 1635 // InferiorCallPOSIX::InferiorCallMmap, which depends on 1636 // functional ThreadPlans working with Native*Protocol. 1637 #if 1 1638 return Error("not implemented yet"); 1639 #else 1640 addr = LLDB_INVALID_ADDRESS; 1641 1642 unsigned prot = 0; 1643 if (permissions & lldb::ePermissionsReadable) 1644 prot |= eMmapProtRead; 1645 if (permissions & lldb::ePermissionsWritable) 1646 prot |= eMmapProtWrite; 1647 if (permissions & lldb::ePermissionsExecutable) 1648 prot |= eMmapProtExec; 1649 1650 // TODO implement this directly in NativeProcessLinux 1651 // (and lift to NativeProcessPOSIX if/when that class is 1652 // refactored out). 1653 if (InferiorCallMmap(this, addr, 0, size, prot, 1654 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 1655 m_addr_to_mmap_size[addr] = size; 1656 return Error(); 1657 } else { 1658 addr = LLDB_INVALID_ADDRESS; 1659 return Error("unable to allocate %" PRIu64 1660 " bytes of memory with permissions %s", 1661 size, GetPermissionsAsCString(permissions)); 1662 } 1663 #endif 1664 } 1665 1666 Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1667 // FIXME see comments in AllocateMemory - required lower-level 1668 // bits not in place yet (ThreadPlans) 1669 return Error("not implemented"); 1670 } 1671 1672 lldb::addr_t NativeProcessLinux::GetSharedLibraryInfoAddress() { 1673 // punt on this for now 1674 return LLDB_INVALID_ADDRESS; 1675 } 1676 1677 size_t NativeProcessLinux::UpdateThreads() { 1678 // The NativeProcessLinux monitoring threads are always up to date 1679 // with respect to thread state and they keep the thread list 1680 // populated properly. All this method needs to do is return the 1681 // thread count. 1682 return m_threads.size(); 1683 } 1684 1685 bool NativeProcessLinux::GetArchitecture(ArchSpec &arch) const { 1686 arch = m_arch; 1687 return true; 1688 } 1689 1690 Error NativeProcessLinux::GetSoftwareBreakpointPCOffset( 1691 uint32_t &actual_opcode_size) { 1692 // FIXME put this behind a breakpoint protocol class that can be 1693 // set per architecture. Need ARM, MIPS support here. 1694 static const uint8_t g_i386_opcode[] = {0xCC}; 1695 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1696 1697 switch (m_arch.GetMachine()) { 1698 case llvm::Triple::x86: 1699 case llvm::Triple::x86_64: 1700 actual_opcode_size = static_cast<uint32_t>(sizeof(g_i386_opcode)); 1701 return Error(); 1702 1703 case llvm::Triple::systemz: 1704 actual_opcode_size = static_cast<uint32_t>(sizeof(g_s390x_opcode)); 1705 return Error(); 1706 1707 case llvm::Triple::arm: 1708 case llvm::Triple::aarch64: 1709 case llvm::Triple::mips64: 1710 case llvm::Triple::mips64el: 1711 case llvm::Triple::mips: 1712 case llvm::Triple::mipsel: 1713 // On these architectures the PC don't get updated for breakpoint hits 1714 actual_opcode_size = 0; 1715 return Error(); 1716 1717 default: 1718 assert(false && "CPU type not supported!"); 1719 return Error("CPU type not supported"); 1720 } 1721 } 1722 1723 Error NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1724 bool hardware) { 1725 if (hardware) 1726 return Error("NativeProcessLinux does not support hardware breakpoints"); 1727 else 1728 return SetSoftwareBreakpoint(addr, size); 1729 } 1730 1731 Error NativeProcessLinux::GetSoftwareBreakpointTrapOpcode( 1732 size_t trap_opcode_size_hint, size_t &actual_opcode_size, 1733 const uint8_t *&trap_opcode_bytes) { 1734 // FIXME put this behind a breakpoint protocol class that can be set per 1735 // architecture. Need MIPS support here. 1736 static const uint8_t g_aarch64_opcode[] = {0x00, 0x00, 0x20, 0xd4}; 1737 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1738 // linux kernel does otherwise. 1739 static const uint8_t g_arm_breakpoint_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1740 static const uint8_t g_i386_opcode[] = {0xCC}; 1741 static const uint8_t g_mips64_opcode[] = {0x00, 0x00, 0x00, 0x0d}; 1742 static const uint8_t g_mips64el_opcode[] = {0x0d, 0x00, 0x00, 0x00}; 1743 static const uint8_t g_s390x_opcode[] = {0x00, 0x01}; 1744 static const uint8_t g_thumb_breakpoint_opcode[] = {0x01, 0xde}; 1745 1746 switch (m_arch.GetMachine()) { 1747 case llvm::Triple::aarch64: 1748 trap_opcode_bytes = g_aarch64_opcode; 1749 actual_opcode_size = sizeof(g_aarch64_opcode); 1750 return Error(); 1751 1752 case llvm::Triple::arm: 1753 switch (trap_opcode_size_hint) { 1754 case 2: 1755 trap_opcode_bytes = g_thumb_breakpoint_opcode; 1756 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 1757 return Error(); 1758 case 4: 1759 trap_opcode_bytes = g_arm_breakpoint_opcode; 1760 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 1761 return Error(); 1762 default: 1763 assert(false && "Unrecognised trap opcode size hint!"); 1764 return Error("Unrecognised trap opcode size hint!"); 1765 } 1766 1767 case llvm::Triple::x86: 1768 case llvm::Triple::x86_64: 1769 trap_opcode_bytes = g_i386_opcode; 1770 actual_opcode_size = sizeof(g_i386_opcode); 1771 return Error(); 1772 1773 case llvm::Triple::mips: 1774 case llvm::Triple::mips64: 1775 trap_opcode_bytes = g_mips64_opcode; 1776 actual_opcode_size = sizeof(g_mips64_opcode); 1777 return Error(); 1778 1779 case llvm::Triple::mipsel: 1780 case llvm::Triple::mips64el: 1781 trap_opcode_bytes = g_mips64el_opcode; 1782 actual_opcode_size = sizeof(g_mips64el_opcode); 1783 return Error(); 1784 1785 case llvm::Triple::systemz: 1786 trap_opcode_bytes = g_s390x_opcode; 1787 actual_opcode_size = sizeof(g_s390x_opcode); 1788 return Error(); 1789 1790 default: 1791 assert(false && "CPU type not supported!"); 1792 return Error("CPU type not supported"); 1793 } 1794 } 1795 1796 #if 0 1797 ProcessMessage::CrashReason 1798 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 1799 { 1800 ProcessMessage::CrashReason reason; 1801 assert(info->si_signo == SIGSEGV); 1802 1803 reason = ProcessMessage::eInvalidCrashReason; 1804 1805 switch (info->si_code) 1806 { 1807 default: 1808 assert(false && "unexpected si_code for SIGSEGV"); 1809 break; 1810 case SI_KERNEL: 1811 // Linux will occasionally send spurious SI_KERNEL codes. 1812 // (this is poorly documented in sigaction) 1813 // One way to get this is via unaligned SIMD loads. 1814 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 1815 break; 1816 case SEGV_MAPERR: 1817 reason = ProcessMessage::eInvalidAddress; 1818 break; 1819 case SEGV_ACCERR: 1820 reason = ProcessMessage::ePrivilegedAddress; 1821 break; 1822 } 1823 1824 return reason; 1825 } 1826 #endif 1827 1828 #if 0 1829 ProcessMessage::CrashReason 1830 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 1831 { 1832 ProcessMessage::CrashReason reason; 1833 assert(info->si_signo == SIGILL); 1834 1835 reason = ProcessMessage::eInvalidCrashReason; 1836 1837 switch (info->si_code) 1838 { 1839 default: 1840 assert(false && "unexpected si_code for SIGILL"); 1841 break; 1842 case ILL_ILLOPC: 1843 reason = ProcessMessage::eIllegalOpcode; 1844 break; 1845 case ILL_ILLOPN: 1846 reason = ProcessMessage::eIllegalOperand; 1847 break; 1848 case ILL_ILLADR: 1849 reason = ProcessMessage::eIllegalAddressingMode; 1850 break; 1851 case ILL_ILLTRP: 1852 reason = ProcessMessage::eIllegalTrap; 1853 break; 1854 case ILL_PRVOPC: 1855 reason = ProcessMessage::ePrivilegedOpcode; 1856 break; 1857 case ILL_PRVREG: 1858 reason = ProcessMessage::ePrivilegedRegister; 1859 break; 1860 case ILL_COPROC: 1861 reason = ProcessMessage::eCoprocessorError; 1862 break; 1863 case ILL_BADSTK: 1864 reason = ProcessMessage::eInternalStackError; 1865 break; 1866 } 1867 1868 return reason; 1869 } 1870 #endif 1871 1872 #if 0 1873 ProcessMessage::CrashReason 1874 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 1875 { 1876 ProcessMessage::CrashReason reason; 1877 assert(info->si_signo == SIGFPE); 1878 1879 reason = ProcessMessage::eInvalidCrashReason; 1880 1881 switch (info->si_code) 1882 { 1883 default: 1884 assert(false && "unexpected si_code for SIGFPE"); 1885 break; 1886 case FPE_INTDIV: 1887 reason = ProcessMessage::eIntegerDivideByZero; 1888 break; 1889 case FPE_INTOVF: 1890 reason = ProcessMessage::eIntegerOverflow; 1891 break; 1892 case FPE_FLTDIV: 1893 reason = ProcessMessage::eFloatDivideByZero; 1894 break; 1895 case FPE_FLTOVF: 1896 reason = ProcessMessage::eFloatOverflow; 1897 break; 1898 case FPE_FLTUND: 1899 reason = ProcessMessage::eFloatUnderflow; 1900 break; 1901 case FPE_FLTRES: 1902 reason = ProcessMessage::eFloatInexactResult; 1903 break; 1904 case FPE_FLTINV: 1905 reason = ProcessMessage::eFloatInvalidOperation; 1906 break; 1907 case FPE_FLTSUB: 1908 reason = ProcessMessage::eFloatSubscriptRange; 1909 break; 1910 } 1911 1912 return reason; 1913 } 1914 #endif 1915 1916 #if 0 1917 ProcessMessage::CrashReason 1918 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 1919 { 1920 ProcessMessage::CrashReason reason; 1921 assert(info->si_signo == SIGBUS); 1922 1923 reason = ProcessMessage::eInvalidCrashReason; 1924 1925 switch (info->si_code) 1926 { 1927 default: 1928 assert(false && "unexpected si_code for SIGBUS"); 1929 break; 1930 case BUS_ADRALN: 1931 reason = ProcessMessage::eIllegalAlignment; 1932 break; 1933 case BUS_ADRERR: 1934 reason = ProcessMessage::eIllegalAddress; 1935 break; 1936 case BUS_OBJERR: 1937 reason = ProcessMessage::eHardwareError; 1938 break; 1939 } 1940 1941 return reason; 1942 } 1943 #endif 1944 1945 Error NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1946 size_t &bytes_read) { 1947 if (ProcessVmReadvSupported()) { 1948 // The process_vm_readv path is about 50 times faster than ptrace api. We 1949 // want to use 1950 // this syscall if it is supported. 1951 1952 const ::pid_t pid = GetID(); 1953 1954 struct iovec local_iov, remote_iov; 1955 local_iov.iov_base = buf; 1956 local_iov.iov_len = size; 1957 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1958 remote_iov.iov_len = size; 1959 1960 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 1961 const bool success = bytes_read == size; 1962 1963 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 1964 LLDB_LOG(log, 1965 "using process_vm_readv to read {0} bytes from inferior " 1966 "address {1:x}: {2}", 1967 size, addr, success ? "Success" : strerror(errno)); 1968 1969 if (success) 1970 return Error(); 1971 // else the call failed for some reason, let's retry the read using ptrace 1972 // api. 1973 } 1974 1975 unsigned char *dst = static_cast<unsigned char *>(buf); 1976 size_t remainder; 1977 long data; 1978 1979 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 1980 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1981 1982 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1983 Error error = NativeProcessLinux::PtraceWrapper( 1984 PTRACE_PEEKDATA, GetID(), (void *)addr, nullptr, 0, &data); 1985 if (error.Fail()) 1986 return error; 1987 1988 remainder = size - bytes_read; 1989 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1990 1991 // Copy the data into our buffer 1992 memcpy(dst, &data, remainder); 1993 1994 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1995 addr += k_ptrace_word_size; 1996 dst += k_ptrace_word_size; 1997 } 1998 return Error(); 1999 } 2000 2001 Error NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, 2002 size_t size, 2003 size_t &bytes_read) { 2004 Error error = ReadMemory(addr, buf, size, bytes_read); 2005 if (error.Fail()) 2006 return error; 2007 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2008 } 2009 2010 Error NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 2011 size_t size, size_t &bytes_written) { 2012 const unsigned char *src = static_cast<const unsigned char *>(buf); 2013 size_t remainder; 2014 Error error; 2015 2016 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_MEMORY)); 2017 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 2018 2019 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 2020 remainder = size - bytes_written; 2021 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2022 2023 if (remainder == k_ptrace_word_size) { 2024 unsigned long data = 0; 2025 memcpy(&data, src, k_ptrace_word_size); 2026 2027 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 2028 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), 2029 (void *)addr, (void *)data); 2030 if (error.Fail()) 2031 return error; 2032 } else { 2033 unsigned char buff[8]; 2034 size_t bytes_read; 2035 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2036 if (error.Fail()) 2037 return error; 2038 2039 memcpy(buff, src, remainder); 2040 2041 size_t bytes_written_rec; 2042 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2043 if (error.Fail()) 2044 return error; 2045 2046 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 2047 *(unsigned long *)buff); 2048 } 2049 2050 addr += k_ptrace_word_size; 2051 src += k_ptrace_word_size; 2052 } 2053 return error; 2054 } 2055 2056 Error NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) { 2057 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2058 } 2059 2060 Error NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 2061 unsigned long *message) { 2062 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2063 } 2064 2065 Error NativeProcessLinux::Detach(lldb::tid_t tid) { 2066 if (tid == LLDB_INVALID_THREAD_ID) 2067 return Error(); 2068 2069 return PtraceWrapper(PTRACE_DETACH, tid); 2070 } 2071 2072 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 2073 for (auto thread_sp : m_threads) { 2074 assert(thread_sp && "thread list should not contain NULL threads"); 2075 if (thread_sp->GetID() == thread_id) { 2076 // We have this thread. 2077 return true; 2078 } 2079 } 2080 2081 // We don't have this thread. 2082 return false; 2083 } 2084 2085 bool NativeProcessLinux::StopTrackingThread(lldb::tid_t thread_id) { 2086 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2087 LLDB_LOG(log, "tid: {0})", thread_id); 2088 2089 bool found = false; 2090 for (auto it = m_threads.begin(); it != m_threads.end(); ++it) { 2091 if (*it && ((*it)->GetID() == thread_id)) { 2092 m_threads.erase(it); 2093 found = true; 2094 break; 2095 } 2096 } 2097 2098 SignalIfAllThreadsStopped(); 2099 return found; 2100 } 2101 2102 NativeThreadLinuxSP NativeProcessLinux::AddThread(lldb::tid_t thread_id) { 2103 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD)); 2104 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 2105 2106 assert(!HasThreadNoLock(thread_id) && 2107 "attempted to add a thread by id that already exists"); 2108 2109 // If this is the first thread, save it as the current thread 2110 if (m_threads.empty()) 2111 SetCurrentThreadID(thread_id); 2112 2113 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2114 m_threads.push_back(thread_sp); 2115 return thread_sp; 2116 } 2117 2118 Error NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) { 2119 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_BREAKPOINTS)); 2120 2121 Error error; 2122 2123 // Find out the size of a breakpoint (might depend on where we are in the 2124 // code). 2125 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2126 if (!context_sp) { 2127 error.SetErrorString("cannot get a NativeRegisterContext for the thread"); 2128 LLDB_LOG(log, "failed: {0}", error); 2129 return error; 2130 } 2131 2132 uint32_t breakpoint_size = 0; 2133 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2134 if (error.Fail()) { 2135 LLDB_LOG(log, "GetBreakpointSize() failed: {0}", error); 2136 return error; 2137 } else 2138 LLDB_LOG(log, "breakpoint size: {0}", breakpoint_size); 2139 2140 // First try probing for a breakpoint at a software breakpoint location: PC - 2141 // breakpoint size. 2142 const lldb::addr_t initial_pc_addr = 2143 context_sp->GetPCfromBreakpointLocation(); 2144 lldb::addr_t breakpoint_addr = initial_pc_addr; 2145 if (breakpoint_size > 0) { 2146 // Do not allow breakpoint probe to wrap around. 2147 if (breakpoint_addr >= breakpoint_size) 2148 breakpoint_addr -= breakpoint_size; 2149 } 2150 2151 // Check if we stopped because of a breakpoint. 2152 NativeBreakpointSP breakpoint_sp; 2153 error = m_breakpoint_list.GetBreakpoint(breakpoint_addr, breakpoint_sp); 2154 if (!error.Success() || !breakpoint_sp) { 2155 // We didn't find one at a software probe location. Nothing to do. 2156 LLDB_LOG(log, 2157 "pid {0} no lldb breakpoint found at current pc with " 2158 "adjustment: {1}", 2159 GetID(), breakpoint_addr); 2160 return Error(); 2161 } 2162 2163 // If the breakpoint is not a software breakpoint, nothing to do. 2164 if (!breakpoint_sp->IsSoftwareBreakpoint()) { 2165 LLDB_LOG( 2166 log, 2167 "pid {0} breakpoint found at {1:x}, not software, nothing to adjust", 2168 GetID(), breakpoint_addr); 2169 return Error(); 2170 } 2171 2172 // 2173 // We have a software breakpoint and need to adjust the PC. 2174 // 2175 2176 // Sanity check. 2177 if (breakpoint_size == 0) { 2178 // Nothing to do! How did we get here? 2179 LLDB_LOG(log, 2180 "pid {0} breakpoint found at {1:x}, it is software, but the " 2181 "size is zero, nothing to do (unexpected)", 2182 GetID(), breakpoint_addr); 2183 return Error(); 2184 } 2185 2186 // Change the program counter. 2187 LLDB_LOG(log, "pid {0} tid {1}: changing PC from {2:x} to {3:x}", GetID(), 2188 thread.GetID(), initial_pc_addr, breakpoint_addr); 2189 2190 error = context_sp->SetPC(breakpoint_addr); 2191 if (error.Fail()) { 2192 LLDB_LOG(log, "pid {0} tid {1}: failed to set PC: {2}", GetID(), 2193 thread.GetID(), error); 2194 return error; 2195 } 2196 2197 return error; 2198 } 2199 2200 Error NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 2201 FileSpec &file_spec) { 2202 Error error = PopulateMemoryRegionCache(); 2203 if (error.Fail()) 2204 return error; 2205 2206 FileSpec module_file_spec(module_path, true); 2207 2208 file_spec.Clear(); 2209 for (const auto &it : m_mem_region_cache) { 2210 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 2211 file_spec = it.second; 2212 return Error(); 2213 } 2214 } 2215 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2216 module_file_spec.GetFilename().AsCString(), GetID()); 2217 } 2218 2219 Error NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 2220 lldb::addr_t &load_addr) { 2221 load_addr = LLDB_INVALID_ADDRESS; 2222 Error error = PopulateMemoryRegionCache(); 2223 if (error.Fail()) 2224 return error; 2225 2226 FileSpec file(file_name, false); 2227 for (const auto &it : m_mem_region_cache) { 2228 if (it.second == file) { 2229 load_addr = it.first.GetRange().GetRangeBase(); 2230 return Error(); 2231 } 2232 } 2233 return Error("No load address found for specified file."); 2234 } 2235 2236 NativeThreadLinuxSP NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 2237 return std::static_pointer_cast<NativeThreadLinux>( 2238 NativeProcessProtocol::GetThreadByID(tid)); 2239 } 2240 2241 Error NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 2242 lldb::StateType state, int signo) { 2243 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2244 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2245 2246 // Before we do the resume below, first check if we have a pending 2247 // stop notification that is currently waiting for 2248 // all threads to stop. This is potentially a buggy situation since 2249 // we're ostensibly waiting for threads to stop before we send out the 2250 // pending notification, and here we are resuming one before we send 2251 // out the pending stop notification. 2252 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 2253 LLDB_LOG(log, 2254 "about to resume tid {0} per explicit request but we have a " 2255 "pending stop notification (tid {1}) that is actively " 2256 "waiting for this thread to stop. Valid sequence of events?", 2257 thread.GetID(), m_pending_notification_tid); 2258 } 2259 2260 // Request a resume. We expect this to be synchronous and the system 2261 // to reflect it is running after this completes. 2262 switch (state) { 2263 case eStateRunning: { 2264 const auto resume_result = thread.Resume(signo); 2265 if (resume_result.Success()) 2266 SetState(eStateRunning, true); 2267 return resume_result; 2268 } 2269 case eStateStepping: { 2270 const auto step_result = thread.SingleStep(signo); 2271 if (step_result.Success()) 2272 SetState(eStateRunning, true); 2273 return step_result; 2274 } 2275 default: 2276 LLDB_LOG(log, "Unhandled state {0}.", state); 2277 llvm_unreachable("Unhandled state for resume"); 2278 } 2279 } 2280 2281 //===----------------------------------------------------------------------===// 2282 2283 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 2284 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2285 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 2286 triggering_tid); 2287 2288 m_pending_notification_tid = triggering_tid; 2289 2290 // Request a stop for all the thread stops that need to be stopped 2291 // and are not already known to be stopped. 2292 for (const auto &thread_sp : m_threads) { 2293 if (StateIsRunningState(thread_sp->GetState())) 2294 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2295 } 2296 2297 SignalIfAllThreadsStopped(); 2298 LLDB_LOG(log, "event processing done"); 2299 } 2300 2301 void NativeProcessLinux::SignalIfAllThreadsStopped() { 2302 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2303 return; // No pending notification. Nothing to do. 2304 2305 for (const auto &thread_sp : m_threads) { 2306 if (StateIsRunningState(thread_sp->GetState())) 2307 return; // Some threads are still running. Don't signal yet. 2308 } 2309 2310 // We have a pending notification and all threads have stopped. 2311 Log *log( 2312 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2313 2314 // Clear any temporary breakpoints we used to implement software single 2315 // stepping. 2316 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 2317 Error error = RemoveBreakpoint(thread_info.second); 2318 if (error.Fail()) 2319 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 2320 thread_info.first, error); 2321 } 2322 m_threads_stepping_with_breakpoint.clear(); 2323 2324 // Notify the delegate about the stop 2325 SetCurrentThreadID(m_pending_notification_tid); 2326 SetState(StateType::eStateStopped, true); 2327 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2328 } 2329 2330 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 2331 Log *const log = ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_THREAD); 2332 LLDB_LOG(log, "tid: {0}", thread.GetID()); 2333 2334 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 2335 StateIsRunningState(thread.GetState())) { 2336 // We will need to wait for this new thread to stop as well before firing 2337 // the 2338 // notification. 2339 thread.RequestStop(); 2340 } 2341 } 2342 2343 void NativeProcessLinux::SigchldHandler() { 2344 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PROCESS)); 2345 // Process all pending waitpid notifications. 2346 while (true) { 2347 int status = -1; 2348 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 2349 2350 if (wait_pid == 0) 2351 break; // We are done. 2352 2353 if (wait_pid == -1) { 2354 if (errno == EINTR) 2355 continue; 2356 2357 Error error(errno, eErrorTypePOSIX); 2358 LLDB_LOG(log, "waitpid (-1, &status, _) failed: {0}", error); 2359 break; 2360 } 2361 2362 bool exited = false; 2363 int signal = 0; 2364 int exit_status = 0; 2365 const char *status_cstr = nullptr; 2366 if (WIFSTOPPED(status)) { 2367 signal = WSTOPSIG(status); 2368 status_cstr = "STOPPED"; 2369 } else if (WIFEXITED(status)) { 2370 exit_status = WEXITSTATUS(status); 2371 status_cstr = "EXITED"; 2372 exited = true; 2373 } else if (WIFSIGNALED(status)) { 2374 signal = WTERMSIG(status); 2375 status_cstr = "SIGNALED"; 2376 if (wait_pid == static_cast<::pid_t>(GetID())) { 2377 exited = true; 2378 exit_status = -1; 2379 } 2380 } else 2381 status_cstr = "(\?\?\?)"; 2382 2383 LLDB_LOG(log, 2384 "waitpid (-1, &status, _) => pid = {0}, status = {1:x} " 2385 "({2}), signal = {3}, exit_state = {4}", 2386 wait_pid, status, status_cstr, signal, exit_status); 2387 2388 MonitorCallback(wait_pid, exited, signal, exit_status); 2389 } 2390 } 2391 2392 // Wrapper for ptrace to catch errors and log calls. 2393 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. 2394 // for PTRACE_PEEK*) 2395 Error NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 2396 void *data, size_t data_size, 2397 long *result) { 2398 Error error; 2399 long int ret; 2400 2401 Log *log(ProcessPOSIXLog::GetLogIfAllCategoriesSet(POSIX_LOG_PTRACE)); 2402 2403 PtraceDisplayBytes(req, data, data_size); 2404 2405 errno = 0; 2406 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 2407 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2408 *(unsigned int *)addr, data); 2409 else 2410 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 2411 addr, data); 2412 2413 if (ret == -1) 2414 error.SetErrorToErrno(); 2415 2416 if (result) 2417 *result = ret; 2418 2419 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4}, {5})={6:x}", req, pid, addr, 2420 data, data_size, ret); 2421 2422 PtraceDisplayBytes(req, data, data_size); 2423 2424 if (error.Fail()) 2425 LLDB_LOG(log, "ptrace() failed: {0}", error); 2426 2427 return error; 2428 } 2429