1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <optional> 19 #include <sstream> 20 #include <string> 21 #include <unordered_map> 22 23 #include "NativeThreadLinux.h" 24 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 25 #include "Plugins/Process/Utility/LinuxProcMaps.h" 26 #include "Procfs.h" 27 #include "lldb/Core/ModuleSpec.h" 28 #include "lldb/Host/Host.h" 29 #include "lldb/Host/HostProcess.h" 30 #include "lldb/Host/ProcessLaunchInfo.h" 31 #include "lldb/Host/PseudoTerminal.h" 32 #include "lldb/Host/ThreadLauncher.h" 33 #include "lldb/Host/common/NativeRegisterContext.h" 34 #include "lldb/Host/linux/Host.h" 35 #include "lldb/Host/linux/Ptrace.h" 36 #include "lldb/Host/linux/Uio.h" 37 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 38 #include "lldb/Symbol/ObjectFile.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/Target.h" 41 #include "lldb/Utility/LLDBAssert.h" 42 #include "lldb/Utility/LLDBLog.h" 43 #include "lldb/Utility/State.h" 44 #include "lldb/Utility/Status.h" 45 #include "lldb/Utility/StringExtractor.h" 46 #include "llvm/ADT/ScopeExit.h" 47 #include "llvm/Support/Errno.h" 48 #include "llvm/Support/Error.h" 49 #include "llvm/Support/FileSystem.h" 50 #include "llvm/Support/Threading.h" 51 52 #include <linux/unistd.h> 53 #include <sys/socket.h> 54 #include <sys/syscall.h> 55 #include <sys/types.h> 56 #include <sys/user.h> 57 #include <sys/wait.h> 58 59 #ifdef __aarch64__ 60 #include <asm/hwcap.h> 61 #include <sys/auxv.h> 62 #endif 63 64 // Support hardware breakpoints in case it has not been defined 65 #ifndef TRAP_HWBKPT 66 #define TRAP_HWBKPT 4 67 #endif 68 69 #ifndef HWCAP2_MTE 70 #define HWCAP2_MTE (1 << 18) 71 #endif 72 73 using namespace lldb; 74 using namespace lldb_private; 75 using namespace lldb_private::process_linux; 76 using namespace llvm; 77 78 // Private bits we only need internally. 79 80 static bool ProcessVmReadvSupported() { 81 static bool is_supported; 82 static llvm::once_flag flag; 83 84 llvm::call_once(flag, [] { 85 Log *log = GetLog(POSIXLog::Process); 86 87 uint32_t source = 0x47424742; 88 uint32_t dest = 0; 89 90 struct iovec local, remote; 91 remote.iov_base = &source; 92 local.iov_base = &dest; 93 remote.iov_len = local.iov_len = sizeof source; 94 95 // We shall try if cross-process-memory reads work by attempting to read a 96 // value from our own process. 97 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 98 is_supported = (res == sizeof(source) && source == dest); 99 if (is_supported) 100 LLDB_LOG(log, 101 "Detected kernel support for process_vm_readv syscall. " 102 "Fast memory reads enabled."); 103 else 104 LLDB_LOG(log, 105 "syscall process_vm_readv failed (error: {0}). Fast memory " 106 "reads disabled.", 107 llvm::sys::StrError()); 108 }); 109 110 return is_supported; 111 } 112 113 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 114 Log *log = GetLog(POSIXLog::Process); 115 if (!log) 116 return; 117 118 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 119 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 120 else 121 LLDB_LOG(log, "leaving STDIN as is"); 122 123 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 124 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 125 else 126 LLDB_LOG(log, "leaving STDOUT as is"); 127 128 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 129 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 130 else 131 LLDB_LOG(log, "leaving STDERR as is"); 132 133 int i = 0; 134 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 135 ++args, ++i) 136 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 137 } 138 139 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 140 uint8_t *ptr = (uint8_t *)bytes; 141 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 142 for (uint32_t i = 0; i < loop_count; i++) { 143 s.Printf("[%x]", *ptr); 144 ptr++; 145 } 146 } 147 148 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 149 Log *log = GetLog(POSIXLog::Ptrace); 150 if (!log) 151 return; 152 StreamString buf; 153 154 switch (req) { 155 case PTRACE_POKETEXT: { 156 DisplayBytes(buf, &data, 8); 157 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 158 break; 159 } 160 case PTRACE_POKEDATA: { 161 DisplayBytes(buf, &data, 8); 162 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 163 break; 164 } 165 case PTRACE_POKEUSER: { 166 DisplayBytes(buf, &data, 8); 167 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 168 break; 169 } 170 case PTRACE_SETREGS: { 171 DisplayBytes(buf, data, data_size); 172 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 173 break; 174 } 175 case PTRACE_SETFPREGS: { 176 DisplayBytes(buf, data, data_size); 177 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 178 break; 179 } 180 case PTRACE_SETSIGINFO: { 181 DisplayBytes(buf, data, sizeof(siginfo_t)); 182 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 183 break; 184 } 185 case PTRACE_SETREGSET: { 186 // Extract iov_base from data, which is a pointer to the struct iovec 187 DisplayBytes(buf, *(void **)data, data_size); 188 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 189 break; 190 } 191 default: {} 192 } 193 } 194 195 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 196 static_assert(sizeof(long) >= k_ptrace_word_size, 197 "Size of long must be larger than ptrace word size"); 198 199 // Simple helper function to ensure flags are enabled on the given file 200 // descriptor. 201 static Status EnsureFDFlags(int fd, int flags) { 202 Status error; 203 204 int status = fcntl(fd, F_GETFL); 205 if (status == -1) { 206 error.SetErrorToErrno(); 207 return error; 208 } 209 210 if (fcntl(fd, F_SETFL, status | flags) == -1) { 211 error.SetErrorToErrno(); 212 return error; 213 } 214 215 return error; 216 } 217 218 static llvm::Error AddPtraceScopeNote(llvm::Error original_error) { 219 Expected<int> ptrace_scope = GetPtraceScope(); 220 if (auto E = ptrace_scope.takeError()) { 221 Log *log = GetLog(POSIXLog::Process); 222 LLDB_LOG(log, "error reading value of ptrace_scope: {0}", E); 223 224 // The original error is probably more interesting than not being able to 225 // read or interpret ptrace_scope. 226 return original_error; 227 } 228 229 // We only have suggestions to provide for 1-3. 230 switch (*ptrace_scope) { 231 case 1: 232 case 2: 233 return llvm::createStringError( 234 std::error_code(errno, std::generic_category()), 235 "The current value of ptrace_scope is %d, which can cause ptrace to " 236 "fail to attach to a running process. To fix this, run:\n" 237 "\tsudo sysctl -w kernel.yama.ptrace_scope=0\n" 238 "For more information, see: " 239 "https://www.kernel.org/doc/Documentation/security/Yama.txt.", 240 *ptrace_scope); 241 case 3: 242 return llvm::createStringError( 243 std::error_code(errno, std::generic_category()), 244 "The current value of ptrace_scope is 3, which will cause ptrace to " 245 "fail to attach to a running process. This value cannot be changed " 246 "without rebooting.\n" 247 "For more information, see: " 248 "https://www.kernel.org/doc/Documentation/security/Yama.txt."); 249 case 0: 250 default: 251 return original_error; 252 } 253 } 254 255 // Public Static Methods 256 257 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 258 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 259 NativeDelegate &native_delegate, 260 MainLoop &mainloop) const { 261 Log *log = GetLog(POSIXLog::Process); 262 263 MaybeLogLaunchInfo(launch_info); 264 265 Status status; 266 ::pid_t pid = ProcessLauncherPosixFork() 267 .LaunchProcess(launch_info, status) 268 .GetProcessId(); 269 LLDB_LOG(log, "pid = {0:x}", pid); 270 if (status.Fail()) { 271 LLDB_LOG(log, "failed to launch process: {0}", status); 272 return status.ToError(); 273 } 274 275 // Wait for the child process to trap on its call to execve. 276 int wstatus = 0; 277 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 278 assert(wpid == pid); 279 (void)wpid; 280 if (!WIFSTOPPED(wstatus)) { 281 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 282 WaitStatus::Decode(wstatus)); 283 return llvm::make_error<StringError>("Could not sync with inferior process", 284 llvm::inconvertibleErrorCode()); 285 } 286 LLDB_LOG(log, "inferior started, now in stopped state"); 287 288 status = SetDefaultPtraceOpts(pid); 289 if (status.Fail()) { 290 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 291 return status.ToError(); 292 } 293 294 llvm::Expected<ArchSpec> arch_or = 295 NativeRegisterContextLinux::DetermineArchitecture(pid); 296 if (!arch_or) 297 return arch_or.takeError(); 298 299 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 300 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 301 *arch_or, mainloop, {pid})); 302 } 303 304 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 305 NativeProcessLinux::Factory::Attach( 306 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 307 MainLoop &mainloop) const { 308 Log *log = GetLog(POSIXLog::Process); 309 LLDB_LOG(log, "pid = {0:x}", pid); 310 311 auto tids_or = NativeProcessLinux::Attach(pid); 312 if (!tids_or) 313 return tids_or.takeError(); 314 ArrayRef<::pid_t> tids = *tids_or; 315 llvm::Expected<ArchSpec> arch_or = 316 NativeRegisterContextLinux::DetermineArchitecture(tids[0]); 317 if (!arch_or) 318 return arch_or.takeError(); 319 320 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 321 pid, -1, native_delegate, *arch_or, mainloop, tids)); 322 } 323 324 NativeProcessLinux::Extension 325 NativeProcessLinux::Factory::GetSupportedExtensions() const { 326 NativeProcessLinux::Extension supported = 327 Extension::multiprocess | Extension::fork | Extension::vfork | 328 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | 329 Extension::siginfo_read; 330 331 #ifdef __aarch64__ 332 // At this point we do not have a process so read auxv directly. 333 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 334 supported |= Extension::memory_tagging; 335 #endif 336 337 return supported; 338 } 339 340 // Public Instance Methods 341 342 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 343 NativeDelegate &delegate, 344 const ArchSpec &arch, MainLoop &mainloop, 345 llvm::ArrayRef<::pid_t> tids) 346 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 347 m_main_loop(mainloop), m_intel_pt_collector(*this) { 348 if (m_terminal_fd != -1) { 349 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 350 assert(status.Success()); 351 } 352 353 Status status; 354 m_sigchld_handle = mainloop.RegisterSignal( 355 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 356 assert(m_sigchld_handle && status.Success()); 357 358 for (const auto &tid : tids) { 359 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 360 ThreadWasCreated(thread); 361 } 362 363 // Let our process instance know the thread has stopped. 364 SetCurrentThreadID(tids[0]); 365 SetState(StateType::eStateStopped, false); 366 367 // Proccess any signals we received before installing our handler 368 SigchldHandler(); 369 } 370 371 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 372 Log *log = GetLog(POSIXLog::Process); 373 374 Status status; 375 // Use a map to keep track of the threads which we have attached/need to 376 // attach. 377 Host::TidMap tids_to_attach; 378 while (Host::FindProcessThreads(pid, tids_to_attach)) { 379 for (Host::TidMap::iterator it = tids_to_attach.begin(); 380 it != tids_to_attach.end();) { 381 if (it->second == false) { 382 lldb::tid_t tid = it->first; 383 384 // Attach to the requested process. 385 // An attach will cause the thread to stop with a SIGSTOP. 386 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 387 // No such thread. The thread may have exited. More error handling 388 // may be needed. 389 if (status.GetError() == ESRCH) { 390 it = tids_to_attach.erase(it); 391 continue; 392 } 393 if (status.GetError() == EPERM) { 394 // Depending on the value of ptrace_scope, we can return a different 395 // error that suggests how to fix it. 396 return AddPtraceScopeNote(status.ToError()); 397 } 398 return status.ToError(); 399 } 400 401 int wpid = 402 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 403 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 404 // this point we should have a thread stopped if waitpid succeeds. 405 if (wpid < 0) { 406 // No such thread. The thread may have exited. More error handling 407 // may be needed. 408 if (errno == ESRCH) { 409 it = tids_to_attach.erase(it); 410 continue; 411 } 412 return llvm::errorCodeToError( 413 std::error_code(errno, std::generic_category())); 414 } 415 416 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 417 return status.ToError(); 418 419 LLDB_LOG(log, "adding tid = {0}", tid); 420 it->second = true; 421 } 422 423 // move the loop forward 424 ++it; 425 } 426 } 427 428 size_t tid_count = tids_to_attach.size(); 429 if (tid_count == 0) 430 return llvm::make_error<StringError>("No such process", 431 llvm::inconvertibleErrorCode()); 432 433 std::vector<::pid_t> tids; 434 tids.reserve(tid_count); 435 for (const auto &p : tids_to_attach) 436 tids.push_back(p.first); 437 return std::move(tids); 438 } 439 440 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 441 long ptrace_opts = 0; 442 443 // Have the child raise an event on exit. This is used to keep the child in 444 // limbo until it is destroyed. 445 ptrace_opts |= PTRACE_O_TRACEEXIT; 446 447 // Have the tracer trace threads which spawn in the inferior process. 448 ptrace_opts |= PTRACE_O_TRACECLONE; 449 450 // Have the tracer notify us before execve returns (needed to disable legacy 451 // SIGTRAP generation) 452 ptrace_opts |= PTRACE_O_TRACEEXEC; 453 454 // Have the tracer trace forked children. 455 ptrace_opts |= PTRACE_O_TRACEFORK; 456 457 // Have the tracer trace vforks. 458 ptrace_opts |= PTRACE_O_TRACEVFORK; 459 460 // Have the tracer trace vfork-done in order to restore breakpoints after 461 // the child finishes sharing memory. 462 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 463 464 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 465 } 466 467 // Handles all waitpid events from the inferior process. 468 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 469 WaitStatus status) { 470 Log *log = GetLog(LLDBLog::Process); 471 472 // Certain activities differ based on whether the pid is the tid of the main 473 // thread. 474 const bool is_main_thread = (thread.GetID() == GetID()); 475 476 // Handle when the thread exits. 477 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 478 LLDB_LOG(log, 479 "got exit status({0}) , tid = {1} ({2} main thread), process " 480 "state = {3}", 481 status, thread.GetID(), is_main_thread ? "is" : "is not", 482 GetState()); 483 484 // This is a thread that exited. Ensure we're not tracking it anymore. 485 StopTrackingThread(thread); 486 487 assert(!is_main_thread && "Main thread exits handled elsewhere"); 488 return; 489 } 490 491 siginfo_t info; 492 const auto info_err = GetSignalInfo(thread.GetID(), &info); 493 494 // Get details on the signal raised. 495 if (info_err.Success()) { 496 // We have retrieved the signal info. Dispatch appropriately. 497 if (info.si_signo == SIGTRAP) 498 MonitorSIGTRAP(info, thread); 499 else 500 MonitorSignal(info, thread); 501 } else { 502 if (info_err.GetError() == EINVAL) { 503 // This is a group stop reception for this tid. We can reach here if we 504 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 505 // triggering the group-stop mechanism. Normally receiving these would 506 // stop the process, pending a SIGCONT. Simulating this state in a 507 // debugger is hard and is generally not needed (one use case is 508 // debugging background task being managed by a shell). For general use, 509 // it is sufficient to stop the process in a signal-delivery stop which 510 // happens before the group stop. This done by MonitorSignal and works 511 // correctly for all signals. 512 LLDB_LOG(log, 513 "received a group stop for pid {0} tid {1}. Transparent " 514 "handling of group stops not supported, resuming the " 515 "thread.", 516 GetID(), thread.GetID()); 517 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 518 } else { 519 // ptrace(GETSIGINFO) failed (but not due to group-stop). 520 521 // A return value of ESRCH means the thread/process has died in the mean 522 // time. This can (e.g.) happen when another thread does an exit_group(2) 523 // or the entire process get SIGKILLed. 524 // We can't do anything with this thread anymore, but we keep it around 525 // until we get the WIFEXITED event. 526 527 LLDB_LOG(log, 528 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " 529 "{3}. Expecting WIFEXITED soon.", 530 thread.GetID(), info_err, status, is_main_thread); 531 } 532 } 533 } 534 535 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 536 Log *log = GetLog(POSIXLog::Process); 537 538 // The PID is not tracked yet, let's wait for it to appear. 539 int status = -1; 540 LLDB_LOG(log, 541 "received clone event for pid {0}. pid not tracked yet, " 542 "waiting for it to appear...", 543 pid); 544 ::pid_t wait_pid = 545 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 546 547 // It's theoretically possible to get other events if the entire process was 548 // SIGKILLed before we got a chance to check this. In that case, we'll just 549 // clean everything up when we get the process exit event. 550 551 LLDB_LOG(log, 552 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 553 pid, wait_pid, errno, WaitStatus::Decode(status)); 554 } 555 556 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 557 NativeThreadLinux &thread) { 558 Log *log = GetLog(POSIXLog::Process); 559 const bool is_main_thread = (thread.GetID() == GetID()); 560 561 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 562 563 switch (info.si_code) { 564 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 565 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 566 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 567 // This can either mean a new thread or a new process spawned via 568 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 569 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 570 // of these flags are passed. 571 572 unsigned long event_message = 0; 573 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 574 LLDB_LOG(log, 575 "pid {0} received clone() event but GetEventMessage failed " 576 "so we don't know the new pid/tid", 577 thread.GetID()); 578 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 579 } else { 580 MonitorClone(thread, event_message, info.si_code >> 8); 581 } 582 583 break; 584 } 585 586 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 587 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 588 589 // Exec clears any pending notifications. 590 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 591 592 // Remove all but the main thread here. Linux fork creates a new process 593 // which only copies the main thread. 594 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 595 596 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 597 return t->GetID() != GetID(); 598 }); 599 assert(m_threads.size() == 1); 600 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 601 602 SetCurrentThreadID(main_thread->GetID()); 603 main_thread->SetStoppedByExec(); 604 605 // Tell coordinator about about the "new" (since exec) stopped main thread. 606 ThreadWasCreated(*main_thread); 607 608 // Let our delegate know we have just exec'd. 609 NotifyDidExec(); 610 611 // Let the process know we're stopped. 612 StopRunningThreads(main_thread->GetID()); 613 614 break; 615 } 616 617 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 618 // The inferior process or one of its threads is about to exit. We don't 619 // want to do anything with the thread so we just resume it. In case we 620 // want to implement "break on thread exit" functionality, we would need to 621 // stop here. 622 623 unsigned long data = 0; 624 if (GetEventMessage(thread.GetID(), &data).Fail()) 625 data = -1; 626 627 LLDB_LOG(log, 628 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 629 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 630 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 631 is_main_thread); 632 633 634 StateType state = thread.GetState(); 635 if (!StateIsRunningState(state)) { 636 // Due to a kernel bug, we may sometimes get this stop after the inferior 637 // gets a SIGKILL. This confuses our state tracking logic in 638 // ResumeThread(), since normally, we should not be receiving any ptrace 639 // events while the inferior is stopped. This makes sure that the 640 // inferior is resumed and exits normally. 641 state = eStateRunning; 642 } 643 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 644 645 if (is_main_thread) { 646 // Main thread report the read (WIFEXITED) event only after all threads in 647 // the process exit, so we need to stop tracking it here instead of in 648 // MonitorCallback 649 StopTrackingThread(thread); 650 } 651 652 break; 653 } 654 655 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 656 if (bool(m_enabled_extensions & Extension::vfork)) { 657 thread.SetStoppedByVForkDone(); 658 StopRunningThreads(thread.GetID()); 659 } 660 else 661 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 662 break; 663 } 664 665 case 0: 666 case TRAP_TRACE: // We receive this on single stepping. 667 case TRAP_HWBKPT: // We receive this on watchpoint hit 668 { 669 // If a watchpoint was hit, report it 670 uint32_t wp_index; 671 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 672 wp_index, (uintptr_t)info.si_addr); 673 if (error.Fail()) 674 LLDB_LOG(log, 675 "received error while checking for watchpoint hits, pid = " 676 "{0}, error = {1}", 677 thread.GetID(), error); 678 if (wp_index != LLDB_INVALID_INDEX32) { 679 MonitorWatchpoint(thread, wp_index); 680 break; 681 } 682 683 // If a breakpoint was hit, report it 684 uint32_t bp_index; 685 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 686 bp_index, (uintptr_t)info.si_addr); 687 if (error.Fail()) 688 LLDB_LOG(log, "received error while checking for hardware " 689 "breakpoint hits, pid = {0}, error = {1}", 690 thread.GetID(), error); 691 if (bp_index != LLDB_INVALID_INDEX32) { 692 MonitorBreakpoint(thread); 693 break; 694 } 695 696 // Otherwise, report step over 697 MonitorTrace(thread); 698 break; 699 } 700 701 case SI_KERNEL: 702 #if defined __mips__ 703 // For mips there is no special signal for watchpoint So we check for 704 // watchpoint in kernel trap 705 { 706 // If a watchpoint was hit, report it 707 uint32_t wp_index; 708 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 709 wp_index, LLDB_INVALID_ADDRESS); 710 if (error.Fail()) 711 LLDB_LOG(log, 712 "received error while checking for watchpoint hits, pid = " 713 "{0}, error = {1}", 714 thread.GetID(), error); 715 if (wp_index != LLDB_INVALID_INDEX32) { 716 MonitorWatchpoint(thread, wp_index); 717 break; 718 } 719 } 720 // NO BREAK 721 #endif 722 case TRAP_BRKPT: 723 MonitorBreakpoint(thread); 724 break; 725 726 case SIGTRAP: 727 case (SIGTRAP | 0x80): 728 LLDB_LOG( 729 log, 730 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 731 info.si_code, GetID(), thread.GetID()); 732 733 // Ignore these signals until we know more about them. 734 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 735 break; 736 737 default: 738 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 739 info.si_code, GetID(), thread.GetID()); 740 MonitorSignal(info, thread); 741 break; 742 } 743 } 744 745 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 746 Log *log = GetLog(POSIXLog::Process); 747 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 748 749 // This thread is currently stopped. 750 thread.SetStoppedByTrace(); 751 752 StopRunningThreads(thread.GetID()); 753 } 754 755 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 756 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 757 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 758 759 // Mark the thread as stopped at breakpoint. 760 thread.SetStoppedByBreakpoint(); 761 FixupBreakpointPCAsNeeded(thread); 762 763 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 764 m_threads_stepping_with_breakpoint.end()) 765 thread.SetStoppedByTrace(); 766 767 StopRunningThreads(thread.GetID()); 768 } 769 770 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 771 uint32_t wp_index) { 772 Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints); 773 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 774 thread.GetID(), wp_index); 775 776 // Mark the thread as stopped at watchpoint. The address is at 777 // (lldb::addr_t)info->si_addr if we need it. 778 thread.SetStoppedByWatchpoint(wp_index); 779 780 // We need to tell all other running threads before we notify the delegate 781 // about this stop. 782 StopRunningThreads(thread.GetID()); 783 } 784 785 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 786 NativeThreadLinux &thread) { 787 const int signo = info.si_signo; 788 const bool is_from_llgs = info.si_pid == getpid(); 789 790 Log *log = GetLog(POSIXLog::Process); 791 792 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 793 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 794 // or raise(3). Similarly for tgkill(2) on Linux. 795 // 796 // IOW, user generated signals never generate what we consider to be a 797 // "crash". 798 // 799 // Similarly, ACK signals generated by this monitor. 800 801 // Handle the signal. 802 LLDB_LOG(log, 803 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 804 "waitpid pid = {4})", 805 Host::GetSignalAsCString(signo), signo, info.si_code, 806 thread.GetID()); 807 808 // Check for thread stop notification. 809 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 810 // This is a tgkill()-based stop. 811 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 812 813 // Check that we're not already marked with a stop reason. Note this thread 814 // really shouldn't already be marked as stopped - if we were, that would 815 // imply that the kernel signaled us with the thread stopping which we 816 // handled and marked as stopped, and that, without an intervening resume, 817 // we received another stop. It is more likely that we are missing the 818 // marking of a run state somewhere if we find that the thread was marked 819 // as stopped. 820 const StateType thread_state = thread.GetState(); 821 if (!StateIsStoppedState(thread_state, false)) { 822 // An inferior thread has stopped because of a SIGSTOP we have sent it. 823 // Generally, these are not important stops and we don't want to report 824 // them as they are just used to stop other threads when one thread (the 825 // one with the *real* stop reason) hits a breakpoint (watchpoint, 826 // etc...). However, in the case of an asynchronous Interrupt(), this 827 // *is* the real stop reason, so we leave the signal intact if this is 828 // the thread that was chosen as the triggering thread. 829 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 830 if (m_pending_notification_tid == thread.GetID()) 831 thread.SetStoppedBySignal(SIGSTOP, &info); 832 else 833 thread.SetStoppedWithNoReason(); 834 835 SetCurrentThreadID(thread.GetID()); 836 SignalIfAllThreadsStopped(); 837 } else { 838 // We can end up here if stop was initiated by LLGS but by this time a 839 // thread stop has occurred - maybe initiated by another event. 840 Status error = ResumeThread(thread, thread.GetState(), 0); 841 if (error.Fail()) 842 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 843 error); 844 } 845 } else { 846 LLDB_LOG(log, 847 "pid {0} tid {1}, thread was already marked as a stopped " 848 "state (state={2}), leaving stop signal as is", 849 GetID(), thread.GetID(), thread_state); 850 SignalIfAllThreadsStopped(); 851 } 852 853 // Done handling. 854 return; 855 } 856 857 // Check if debugger should stop at this signal or just ignore it and resume 858 // the inferior. 859 if (m_signals_to_ignore.contains(signo)) { 860 ResumeThread(thread, thread.GetState(), signo); 861 return; 862 } 863 864 // This thread is stopped. 865 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 866 thread.SetStoppedBySignal(signo, &info); 867 868 // Send a stop to the debugger after we get all other threads to stop. 869 StopRunningThreads(thread.GetID()); 870 } 871 872 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 873 lldb::pid_t child_pid, int event) { 874 Log *log = GetLog(POSIXLog::Process); 875 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 876 child_pid, event); 877 878 WaitForCloneNotification(child_pid); 879 880 switch (event) { 881 case PTRACE_EVENT_CLONE: { 882 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 883 // Try to grab the new process' PGID to figure out which one it is. 884 // If PGID is the same as the PID, then it's a new process. Otherwise, 885 // it's a thread. 886 auto tgid_ret = getPIDForTID(child_pid); 887 if (tgid_ret != child_pid) { 888 // A new thread should have PGID matching our process' PID. 889 assert(!tgid_ret || *tgid_ret == GetID()); 890 891 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 892 ThreadWasCreated(child_thread); 893 894 // Resume the parent. 895 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 896 break; 897 } 898 } 899 [[fallthrough]]; 900 case PTRACE_EVENT_FORK: 901 case PTRACE_EVENT_VFORK: { 902 bool is_vfork = event == PTRACE_EVENT_VFORK; 903 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 904 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 905 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 906 if (!is_vfork) 907 child_process->m_software_breakpoints = m_software_breakpoints; 908 909 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 910 if (bool(m_enabled_extensions & expected_ext)) { 911 m_delegate.NewSubprocess(this, std::move(child_process)); 912 // NB: non-vfork clone() is reported as fork 913 parent.SetStoppedByFork(is_vfork, child_pid); 914 StopRunningThreads(parent.GetID()); 915 } else { 916 child_process->Detach(); 917 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 918 } 919 break; 920 } 921 default: 922 llvm_unreachable("unknown clone_info.event"); 923 } 924 925 return true; 926 } 927 928 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 929 if (m_arch.IsMIPS() || m_arch.GetMachine() == llvm::Triple::arm || 930 m_arch.GetTriple().isRISCV() || m_arch.GetTriple().isLoongArch()) 931 return false; 932 return true; 933 } 934 935 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 936 Log *log = GetLog(POSIXLog::Process); 937 LLDB_LOG(log, "pid {0}", GetID()); 938 939 NotifyTracersProcessWillResume(); 940 941 bool software_single_step = !SupportHardwareSingleStepping(); 942 943 if (software_single_step) { 944 for (const auto &thread : m_threads) { 945 assert(thread && "thread list should not contain NULL threads"); 946 947 const ResumeAction *const action = 948 resume_actions.GetActionForThread(thread->GetID(), true); 949 if (action == nullptr) 950 continue; 951 952 if (action->state == eStateStepping) { 953 Status error = SetupSoftwareSingleStepping( 954 static_cast<NativeThreadLinux &>(*thread)); 955 if (error.Fail()) 956 return error; 957 } 958 } 959 } 960 961 for (const auto &thread : m_threads) { 962 assert(thread && "thread list should not contain NULL threads"); 963 964 const ResumeAction *const action = 965 resume_actions.GetActionForThread(thread->GetID(), true); 966 967 if (action == nullptr) { 968 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 969 thread->GetID()); 970 continue; 971 } 972 973 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 974 action->state, GetID(), thread->GetID()); 975 976 switch (action->state) { 977 case eStateRunning: 978 case eStateStepping: { 979 // Run the thread, possibly feeding it the signal. 980 const int signo = action->signal; 981 Status error = ResumeThread(static_cast<NativeThreadLinux &>(*thread), 982 action->state, signo); 983 if (error.Fail()) 984 return Status("NativeProcessLinux::%s: failed to resume thread " 985 "for pid %" PRIu64 ", tid %" PRIu64 ", error = %s", 986 __FUNCTION__, GetID(), thread->GetID(), 987 error.AsCString()); 988 989 break; 990 } 991 992 case eStateSuspended: 993 case eStateStopped: 994 break; 995 996 default: 997 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 998 "for pid %" PRIu64 ", tid %" PRIu64, 999 __FUNCTION__, StateAsCString(action->state), GetID(), 1000 thread->GetID()); 1001 } 1002 } 1003 1004 return Status(); 1005 } 1006 1007 Status NativeProcessLinux::Halt() { 1008 Status error; 1009 1010 if (kill(GetID(), SIGSTOP) != 0) 1011 error.SetErrorToErrno(); 1012 1013 return error; 1014 } 1015 1016 Status NativeProcessLinux::Detach() { 1017 Status error; 1018 1019 // Stop monitoring the inferior. 1020 m_sigchld_handle.reset(); 1021 1022 // Tell ptrace to detach from the process. 1023 if (GetID() == LLDB_INVALID_PROCESS_ID) 1024 return error; 1025 1026 for (const auto &thread : m_threads) { 1027 Status e = Detach(thread->GetID()); 1028 if (e.Fail()) 1029 error = 1030 e; // Save the error, but still attempt to detach from other threads. 1031 } 1032 1033 m_intel_pt_collector.Clear(); 1034 1035 return error; 1036 } 1037 1038 Status NativeProcessLinux::Signal(int signo) { 1039 Status error; 1040 1041 Log *log = GetLog(POSIXLog::Process); 1042 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 1043 Host::GetSignalAsCString(signo), GetID()); 1044 1045 if (kill(GetID(), signo)) 1046 error.SetErrorToErrno(); 1047 1048 return error; 1049 } 1050 1051 Status NativeProcessLinux::Interrupt() { 1052 // Pick a running thread (or if none, a not-dead stopped thread) as the 1053 // chosen thread that will be the stop-reason thread. 1054 Log *log = GetLog(POSIXLog::Process); 1055 1056 NativeThreadProtocol *running_thread = nullptr; 1057 NativeThreadProtocol *stopped_thread = nullptr; 1058 1059 LLDB_LOG(log, "selecting running thread for interrupt target"); 1060 for (const auto &thread : m_threads) { 1061 // If we have a running or stepping thread, we'll call that the target of 1062 // the interrupt. 1063 const auto thread_state = thread->GetState(); 1064 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1065 running_thread = thread.get(); 1066 break; 1067 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1068 // Remember the first non-dead stopped thread. We'll use that as a 1069 // backup if there are no running threads. 1070 stopped_thread = thread.get(); 1071 } 1072 } 1073 1074 if (!running_thread && !stopped_thread) { 1075 Status error("found no running/stepping or live stopped threads as target " 1076 "for interrupt"); 1077 LLDB_LOG(log, "skipping due to error: {0}", error); 1078 1079 return error; 1080 } 1081 1082 NativeThreadProtocol *deferred_signal_thread = 1083 running_thread ? running_thread : stopped_thread; 1084 1085 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1086 running_thread ? "running" : "stopped", 1087 deferred_signal_thread->GetID()); 1088 1089 StopRunningThreads(deferred_signal_thread->GetID()); 1090 1091 return Status(); 1092 } 1093 1094 Status NativeProcessLinux::Kill() { 1095 Log *log = GetLog(POSIXLog::Process); 1096 LLDB_LOG(log, "pid {0}", GetID()); 1097 1098 Status error; 1099 1100 switch (m_state) { 1101 case StateType::eStateInvalid: 1102 case StateType::eStateExited: 1103 case StateType::eStateCrashed: 1104 case StateType::eStateDetached: 1105 case StateType::eStateUnloaded: 1106 // Nothing to do - the process is already dead. 1107 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1108 m_state); 1109 return error; 1110 1111 case StateType::eStateConnected: 1112 case StateType::eStateAttaching: 1113 case StateType::eStateLaunching: 1114 case StateType::eStateStopped: 1115 case StateType::eStateRunning: 1116 case StateType::eStateStepping: 1117 case StateType::eStateSuspended: 1118 // We can try to kill a process in these states. 1119 break; 1120 } 1121 1122 if (kill(GetID(), SIGKILL) != 0) { 1123 error.SetErrorToErrno(); 1124 return error; 1125 } 1126 1127 return error; 1128 } 1129 1130 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1131 MemoryRegionInfo &range_info) { 1132 // FIXME review that the final memory region returned extends to the end of 1133 // the virtual address space, 1134 // with no perms if it is not mapped. 1135 1136 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1137 // proc maps entries are in ascending order. 1138 // FIXME assert if we find differently. 1139 1140 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1141 // We're done. 1142 return Status("unsupported"); 1143 } 1144 1145 Status error = PopulateMemoryRegionCache(); 1146 if (error.Fail()) { 1147 return error; 1148 } 1149 1150 lldb::addr_t prev_base_address = 0; 1151 1152 // FIXME start by finding the last region that is <= target address using 1153 // binary search. Data is sorted. 1154 // There can be a ton of regions on pthreads apps with lots of threads. 1155 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1156 ++it) { 1157 MemoryRegionInfo &proc_entry_info = it->first; 1158 1159 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1160 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1161 "descending /proc/pid/maps entries detected, unexpected"); 1162 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1163 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1164 1165 // If the target address comes before this entry, indicate distance to next 1166 // region. 1167 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1168 range_info.GetRange().SetRangeBase(load_addr); 1169 range_info.GetRange().SetByteSize( 1170 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1171 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1172 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1173 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1174 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1175 1176 return error; 1177 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1178 // The target address is within the memory region we're processing here. 1179 range_info = proc_entry_info; 1180 return error; 1181 } 1182 1183 // The target memory address comes somewhere after the region we just 1184 // parsed. 1185 } 1186 1187 // If we made it here, we didn't find an entry that contained the given 1188 // address. Return the load_addr as start and the amount of bytes betwwen 1189 // load address and the end of the memory as size. 1190 range_info.GetRange().SetRangeBase(load_addr); 1191 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1192 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1193 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1194 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1195 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1196 return error; 1197 } 1198 1199 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1200 Log *log = GetLog(POSIXLog::Process); 1201 1202 // If our cache is empty, pull the latest. There should always be at least 1203 // one memory region if memory region handling is supported. 1204 if (!m_mem_region_cache.empty()) { 1205 LLDB_LOG(log, "reusing {0} cached memory region entries", 1206 m_mem_region_cache.size()); 1207 return Status(); 1208 } 1209 1210 Status Result; 1211 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1212 if (Info) { 1213 FileSpec file_spec(Info->GetName().GetCString()); 1214 FileSystem::Instance().Resolve(file_spec); 1215 m_mem_region_cache.emplace_back(*Info, file_spec); 1216 return true; 1217 } 1218 1219 Result = Info.takeError(); 1220 m_supports_mem_region = LazyBool::eLazyBoolNo; 1221 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1222 return false; 1223 }; 1224 1225 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1226 // if CONFIG_PROC_PAGE_MONITOR is enabled 1227 auto BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "smaps"); 1228 if (BufferOrError) 1229 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1230 else { 1231 BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "maps"); 1232 if (!BufferOrError) { 1233 m_supports_mem_region = LazyBool::eLazyBoolNo; 1234 return BufferOrError.getError(); 1235 } 1236 1237 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1238 } 1239 1240 if (Result.Fail()) 1241 return Result; 1242 1243 if (m_mem_region_cache.empty()) { 1244 // No entries after attempting to read them. This shouldn't happen if 1245 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1246 // procfs. 1247 m_supports_mem_region = LazyBool::eLazyBoolNo; 1248 LLDB_LOG(log, 1249 "failed to find any procfs maps entries, assuming no support " 1250 "for memory region metadata retrieval"); 1251 return Status("not supported"); 1252 } 1253 1254 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1255 m_mem_region_cache.size(), GetID()); 1256 1257 // We support memory retrieval, remember that. 1258 m_supports_mem_region = LazyBool::eLazyBoolYes; 1259 return Status(); 1260 } 1261 1262 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1263 Log *log = GetLog(POSIXLog::Process); 1264 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1265 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1266 m_mem_region_cache.size()); 1267 m_mem_region_cache.clear(); 1268 } 1269 1270 llvm::Expected<uint64_t> 1271 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1272 PopulateMemoryRegionCache(); 1273 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1274 return pair.first.GetExecutable() == MemoryRegionInfo::eYes && 1275 pair.first.GetShared() != MemoryRegionInfo::eYes; 1276 }); 1277 if (region_it == m_mem_region_cache.end()) 1278 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1279 "No executable memory region found!"); 1280 1281 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1282 1283 NativeThreadLinux &thread = *GetCurrentThread(); 1284 assert(thread.GetState() == eStateStopped); 1285 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1286 1287 NativeRegisterContextLinux::SyscallData syscall_data = 1288 *reg_ctx.GetSyscallData(); 1289 1290 WritableDataBufferSP registers_sp; 1291 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1292 return std::move(Err); 1293 auto restore_regs = llvm::make_scope_exit( 1294 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1295 1296 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1297 size_t bytes_read; 1298 if (llvm::Error Err = 1299 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1300 .ToError()) { 1301 return std::move(Err); 1302 } 1303 1304 auto restore_mem = llvm::make_scope_exit( 1305 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1306 1307 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1308 return std::move(Err); 1309 1310 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1311 if (llvm::Error Err = 1312 reg_ctx 1313 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1314 .ToError()) { 1315 return std::move(Err); 1316 } 1317 } 1318 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1319 syscall_data.Insn.size(), bytes_read) 1320 .ToError()) 1321 return std::move(Err); 1322 1323 m_mem_region_cache.clear(); 1324 1325 // With software single stepping the syscall insn buffer must also include a 1326 // trap instruction to stop the process. 1327 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1328 if (llvm::Error Err = 1329 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1330 return std::move(Err); 1331 1332 int status; 1333 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1334 &status, __WALL); 1335 if (wait_pid == -1) { 1336 return llvm::errorCodeToError( 1337 std::error_code(errno, std::generic_category())); 1338 } 1339 assert((unsigned)wait_pid == thread.GetID()); 1340 1341 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1342 1343 // Values larger than this are actually negative errno numbers. 1344 uint64_t errno_threshold = 1345 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1346 if (result > errno_threshold) { 1347 return llvm::errorCodeToError( 1348 std::error_code(-result & 0xfff, std::generic_category())); 1349 } 1350 1351 return result; 1352 } 1353 1354 llvm::Expected<addr_t> 1355 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1356 1357 std::optional<NativeRegisterContextLinux::MmapData> mmap_data = 1358 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1359 if (!mmap_data) 1360 return llvm::make_error<UnimplementedError>(); 1361 1362 unsigned prot = PROT_NONE; 1363 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1364 ePermissionsExecutable)) == permissions && 1365 "Unknown permission!"); 1366 if (permissions & ePermissionsReadable) 1367 prot |= PROT_READ; 1368 if (permissions & ePermissionsWritable) 1369 prot |= PROT_WRITE; 1370 if (permissions & ePermissionsExecutable) 1371 prot |= PROT_EXEC; 1372 1373 llvm::Expected<uint64_t> Result = 1374 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1375 uint64_t(-1), 0}); 1376 if (Result) 1377 m_allocated_memory.try_emplace(*Result, size); 1378 return Result; 1379 } 1380 1381 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1382 std::optional<NativeRegisterContextLinux::MmapData> mmap_data = 1383 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1384 if (!mmap_data) 1385 return llvm::make_error<UnimplementedError>(); 1386 1387 auto it = m_allocated_memory.find(addr); 1388 if (it == m_allocated_memory.end()) 1389 return llvm::createStringError(llvm::errc::invalid_argument, 1390 "Memory not allocated by the debugger."); 1391 1392 llvm::Expected<uint64_t> Result = 1393 Syscall({mmap_data->SysMunmap, addr, it->second}); 1394 if (!Result) 1395 return Result.takeError(); 1396 1397 m_allocated_memory.erase(it); 1398 return llvm::Error::success(); 1399 } 1400 1401 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1402 size_t len, 1403 std::vector<uint8_t> &tags) { 1404 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1405 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1406 if (!details) 1407 return Status(details.takeError()); 1408 1409 // Ignore 0 length read 1410 if (!len) 1411 return Status(); 1412 1413 // lldb will align the range it requests but it is not required to by 1414 // the protocol so we'll do it again just in case. 1415 // Remove tag bits too. Ptrace calls may work regardless but that 1416 // is not a guarantee. 1417 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1418 range = details->manager->ExpandToGranule(range); 1419 1420 // Allocate enough space for all tags to be read 1421 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1422 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1423 1424 struct iovec tags_iovec; 1425 uint8_t *dest = tags.data(); 1426 lldb::addr_t read_addr = range.GetRangeBase(); 1427 1428 // This call can return partial data so loop until we error or 1429 // get all tags back. 1430 while (num_tags) { 1431 tags_iovec.iov_base = dest; 1432 tags_iovec.iov_len = num_tags; 1433 1434 Status error = NativeProcessLinux::PtraceWrapper( 1435 details->ptrace_read_req, GetCurrentThreadID(), 1436 reinterpret_cast<void *>(read_addr), static_cast<void *>(&tags_iovec), 1437 0, nullptr); 1438 1439 if (error.Fail()) { 1440 // Discard partial reads 1441 tags.resize(0); 1442 return error; 1443 } 1444 1445 size_t tags_read = tags_iovec.iov_len; 1446 assert(tags_read && (tags_read <= num_tags)); 1447 1448 dest += tags_read * details->manager->GetTagSizeInBytes(); 1449 read_addr += details->manager->GetGranuleSize() * tags_read; 1450 num_tags -= tags_read; 1451 } 1452 1453 return Status(); 1454 } 1455 1456 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1457 size_t len, 1458 const std::vector<uint8_t> &tags) { 1459 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1460 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1461 if (!details) 1462 return Status(details.takeError()); 1463 1464 // Ignore 0 length write 1465 if (!len) 1466 return Status(); 1467 1468 // lldb will align the range it requests but it is not required to by 1469 // the protocol so we'll do it again just in case. 1470 // Remove tag bits too. Ptrace calls may work regardless but that 1471 // is not a guarantee. 1472 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1473 range = details->manager->ExpandToGranule(range); 1474 1475 // Not checking number of tags here, we may repeat them below 1476 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1477 details->manager->UnpackTagsData(tags); 1478 if (!unpacked_tags_or_err) 1479 return Status(unpacked_tags_or_err.takeError()); 1480 1481 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1482 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1483 if (!repeated_tags_or_err) 1484 return Status(repeated_tags_or_err.takeError()); 1485 1486 // Repack them for ptrace to use 1487 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1488 details->manager->PackTags(*repeated_tags_or_err); 1489 if (!final_tag_data) 1490 return Status(final_tag_data.takeError()); 1491 1492 struct iovec tags_vec; 1493 uint8_t *src = final_tag_data->data(); 1494 lldb::addr_t write_addr = range.GetRangeBase(); 1495 // unpacked tags size because the number of bytes per tag might not be 1 1496 size_t num_tags = repeated_tags_or_err->size(); 1497 1498 // This call can partially write tags, so we loop until we 1499 // error or all tags have been written. 1500 while (num_tags > 0) { 1501 tags_vec.iov_base = src; 1502 tags_vec.iov_len = num_tags; 1503 1504 Status error = NativeProcessLinux::PtraceWrapper( 1505 details->ptrace_write_req, GetCurrentThreadID(), 1506 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1507 nullptr); 1508 1509 if (error.Fail()) { 1510 // Don't attempt to restore the original values in the case of a partial 1511 // write 1512 return error; 1513 } 1514 1515 size_t tags_written = tags_vec.iov_len; 1516 assert(tags_written && (tags_written <= num_tags)); 1517 1518 src += tags_written * details->manager->GetTagSizeInBytes(); 1519 write_addr += details->manager->GetGranuleSize() * tags_written; 1520 num_tags -= tags_written; 1521 } 1522 1523 return Status(); 1524 } 1525 1526 size_t NativeProcessLinux::UpdateThreads() { 1527 // The NativeProcessLinux monitoring threads are always up to date with 1528 // respect to thread state and they keep the thread list populated properly. 1529 // All this method needs to do is return the thread count. 1530 return m_threads.size(); 1531 } 1532 1533 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1534 bool hardware) { 1535 if (hardware) 1536 return SetHardwareBreakpoint(addr, size); 1537 else 1538 return SetSoftwareBreakpoint(addr, size); 1539 } 1540 1541 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1542 if (hardware) 1543 return RemoveHardwareBreakpoint(addr); 1544 else 1545 return NativeProcessProtocol::RemoveBreakpoint(addr); 1546 } 1547 1548 llvm::Expected<llvm::ArrayRef<uint8_t>> 1549 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1550 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1551 // linux kernel does otherwise. 1552 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1553 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1554 1555 switch (GetArchitecture().GetMachine()) { 1556 case llvm::Triple::arm: 1557 switch (size_hint) { 1558 case 2: 1559 return llvm::ArrayRef(g_thumb_opcode); 1560 case 4: 1561 return llvm::ArrayRef(g_arm_opcode); 1562 default: 1563 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1564 "Unrecognised trap opcode size hint!"); 1565 } 1566 default: 1567 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1568 } 1569 } 1570 1571 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1572 size_t &bytes_read) { 1573 if (ProcessVmReadvSupported()) { 1574 // The process_vm_readv path is about 50 times faster than ptrace api. We 1575 // want to use this syscall if it is supported. 1576 1577 struct iovec local_iov, remote_iov; 1578 local_iov.iov_base = buf; 1579 local_iov.iov_len = size; 1580 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1581 remote_iov.iov_len = size; 1582 1583 bytes_read = process_vm_readv(GetCurrentThreadID(), &local_iov, 1, 1584 &remote_iov, 1, 0); 1585 const bool success = bytes_read == size; 1586 1587 Log *log = GetLog(POSIXLog::Process); 1588 LLDB_LOG(log, 1589 "using process_vm_readv to read {0} bytes from inferior " 1590 "address {1:x}: {2}", 1591 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1592 1593 if (success) 1594 return Status(); 1595 // else the call failed for some reason, let's retry the read using ptrace 1596 // api. 1597 } 1598 1599 unsigned char *dst = static_cast<unsigned char *>(buf); 1600 size_t remainder; 1601 long data; 1602 1603 Log *log = GetLog(POSIXLog::Memory); 1604 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1605 1606 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1607 Status error = NativeProcessLinux::PtraceWrapper( 1608 PTRACE_PEEKDATA, GetCurrentThreadID(), (void *)addr, nullptr, 0, &data); 1609 if (error.Fail()) 1610 return error; 1611 1612 remainder = size - bytes_read; 1613 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1614 1615 // Copy the data into our buffer 1616 memcpy(dst, &data, remainder); 1617 1618 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1619 addr += k_ptrace_word_size; 1620 dst += k_ptrace_word_size; 1621 } 1622 return Status(); 1623 } 1624 1625 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1626 size_t size, size_t &bytes_written) { 1627 const unsigned char *src = static_cast<const unsigned char *>(buf); 1628 size_t remainder; 1629 Status error; 1630 1631 Log *log = GetLog(POSIXLog::Memory); 1632 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1633 1634 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1635 remainder = size - bytes_written; 1636 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1637 1638 if (remainder == k_ptrace_word_size) { 1639 unsigned long data = 0; 1640 memcpy(&data, src, k_ptrace_word_size); 1641 1642 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1643 error = NativeProcessLinux::PtraceWrapper( 1644 PTRACE_POKEDATA, GetCurrentThreadID(), (void *)addr, (void *)data); 1645 if (error.Fail()) 1646 return error; 1647 } else { 1648 unsigned char buff[8]; 1649 size_t bytes_read; 1650 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1651 if (error.Fail()) 1652 return error; 1653 1654 memcpy(buff, src, remainder); 1655 1656 size_t bytes_written_rec; 1657 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1658 if (error.Fail()) 1659 return error; 1660 1661 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1662 *(unsigned long *)buff); 1663 } 1664 1665 addr += k_ptrace_word_size; 1666 src += k_ptrace_word_size; 1667 } 1668 return error; 1669 } 1670 1671 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { 1672 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1673 } 1674 1675 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1676 unsigned long *message) { 1677 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1678 } 1679 1680 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1681 if (tid == LLDB_INVALID_THREAD_ID) 1682 return Status(); 1683 1684 return PtraceWrapper(PTRACE_DETACH, tid); 1685 } 1686 1687 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1688 for (const auto &thread : m_threads) { 1689 assert(thread && "thread list should not contain NULL threads"); 1690 if (thread->GetID() == thread_id) { 1691 // We have this thread. 1692 return true; 1693 } 1694 } 1695 1696 // We don't have this thread. 1697 return false; 1698 } 1699 1700 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1701 Log *const log = GetLog(POSIXLog::Thread); 1702 lldb::tid_t thread_id = thread.GetID(); 1703 LLDB_LOG(log, "tid: {0}", thread_id); 1704 1705 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1706 return thread_up.get() == &thread; 1707 }); 1708 assert(it != m_threads.end()); 1709 m_threads.erase(it); 1710 1711 NotifyTracersOfThreadDestroyed(thread_id); 1712 SignalIfAllThreadsStopped(); 1713 } 1714 1715 void NativeProcessLinux::NotifyTracersProcessDidStop() { 1716 m_intel_pt_collector.ProcessDidStop(); 1717 } 1718 1719 void NativeProcessLinux::NotifyTracersProcessWillResume() { 1720 m_intel_pt_collector.ProcessWillResume(); 1721 } 1722 1723 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1724 Log *log = GetLog(POSIXLog::Thread); 1725 Status error(m_intel_pt_collector.OnThreadCreated(tid)); 1726 if (error.Fail()) 1727 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1728 tid, error.AsCString()); 1729 return error; 1730 } 1731 1732 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1733 Log *log = GetLog(POSIXLog::Thread); 1734 Status error(m_intel_pt_collector.OnThreadDestroyed(tid)); 1735 if (error.Fail()) 1736 LLDB_LOG(log, 1737 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1738 tid, error.AsCString()); 1739 return error; 1740 } 1741 1742 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1743 bool resume) { 1744 Log *log = GetLog(POSIXLog::Thread); 1745 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1746 1747 assert(!HasThreadNoLock(thread_id) && 1748 "attempted to add a thread by id that already exists"); 1749 1750 // If this is the first thread, save it as the current thread 1751 if (m_threads.empty()) 1752 SetCurrentThreadID(thread_id); 1753 1754 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1755 NativeThreadLinux &thread = 1756 static_cast<NativeThreadLinux &>(*m_threads.back()); 1757 1758 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1759 if (tracing_error.Fail()) { 1760 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1761 StopRunningThreads(thread.GetID()); 1762 } else if (resume) 1763 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1764 else 1765 thread.SetStoppedBySignal(SIGSTOP); 1766 1767 return thread; 1768 } 1769 1770 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1771 FileSpec &file_spec) { 1772 Status error = PopulateMemoryRegionCache(); 1773 if (error.Fail()) 1774 return error; 1775 1776 FileSpec module_file_spec(module_path); 1777 FileSystem::Instance().Resolve(module_file_spec); 1778 1779 file_spec.Clear(); 1780 for (const auto &it : m_mem_region_cache) { 1781 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1782 file_spec = it.second; 1783 return Status(); 1784 } 1785 } 1786 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1787 module_file_spec.GetFilename().AsCString(), GetID()); 1788 } 1789 1790 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1791 lldb::addr_t &load_addr) { 1792 load_addr = LLDB_INVALID_ADDRESS; 1793 Status error = PopulateMemoryRegionCache(); 1794 if (error.Fail()) 1795 return error; 1796 1797 FileSpec file(file_name); 1798 for (const auto &it : m_mem_region_cache) { 1799 if (it.second == file) { 1800 load_addr = it.first.GetRange().GetRangeBase(); 1801 return Status(); 1802 } 1803 } 1804 return Status("No load address found for specified file."); 1805 } 1806 1807 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1808 return static_cast<NativeThreadLinux *>( 1809 NativeProcessProtocol::GetThreadByID(tid)); 1810 } 1811 1812 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1813 return static_cast<NativeThreadLinux *>( 1814 NativeProcessProtocol::GetCurrentThread()); 1815 } 1816 1817 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1818 lldb::StateType state, int signo) { 1819 Log *const log = GetLog(POSIXLog::Thread); 1820 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1821 1822 // Before we do the resume below, first check if we have a pending stop 1823 // notification that is currently waiting for all threads to stop. This is 1824 // potentially a buggy situation since we're ostensibly waiting for threads 1825 // to stop before we send out the pending notification, and here we are 1826 // resuming one before we send out the pending stop notification. 1827 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1828 LLDB_LOG(log, 1829 "about to resume tid {0} per explicit request but we have a " 1830 "pending stop notification (tid {1}) that is actively " 1831 "waiting for this thread to stop. Valid sequence of events?", 1832 thread.GetID(), m_pending_notification_tid); 1833 } 1834 1835 // Request a resume. We expect this to be synchronous and the system to 1836 // reflect it is running after this completes. 1837 switch (state) { 1838 case eStateRunning: { 1839 const auto resume_result = thread.Resume(signo); 1840 if (resume_result.Success()) 1841 SetState(eStateRunning, true); 1842 return resume_result; 1843 } 1844 case eStateStepping: { 1845 const auto step_result = thread.SingleStep(signo); 1846 if (step_result.Success()) 1847 SetState(eStateRunning, true); 1848 return step_result; 1849 } 1850 default: 1851 LLDB_LOG(log, "Unhandled state {0}.", state); 1852 llvm_unreachable("Unhandled state for resume"); 1853 } 1854 } 1855 1856 //===----------------------------------------------------------------------===// 1857 1858 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1859 Log *const log = GetLog(POSIXLog::Thread); 1860 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1861 triggering_tid); 1862 1863 m_pending_notification_tid = triggering_tid; 1864 1865 // Request a stop for all the thread stops that need to be stopped and are 1866 // not already known to be stopped. 1867 for (const auto &thread : m_threads) { 1868 if (StateIsRunningState(thread->GetState())) 1869 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1870 } 1871 1872 SignalIfAllThreadsStopped(); 1873 LLDB_LOG(log, "event processing done"); 1874 } 1875 1876 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1877 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1878 return; // No pending notification. Nothing to do. 1879 1880 for (const auto &thread_sp : m_threads) { 1881 if (StateIsRunningState(thread_sp->GetState())) 1882 return; // Some threads are still running. Don't signal yet. 1883 } 1884 1885 // We have a pending notification and all threads have stopped. 1886 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 1887 1888 // Clear any temporary breakpoints we used to implement software single 1889 // stepping. 1890 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1891 Status error = RemoveBreakpoint(thread_info.second); 1892 if (error.Fail()) 1893 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1894 thread_info.first, error); 1895 } 1896 m_threads_stepping_with_breakpoint.clear(); 1897 1898 // Notify the delegate about the stop 1899 SetCurrentThreadID(m_pending_notification_tid); 1900 SetState(StateType::eStateStopped, true); 1901 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1902 } 1903 1904 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1905 Log *const log = GetLog(POSIXLog::Thread); 1906 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1907 1908 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1909 StateIsRunningState(thread.GetState())) { 1910 // We will need to wait for this new thread to stop as well before firing 1911 // the notification. 1912 thread.RequestStop(); 1913 } 1914 } 1915 1916 static std::optional<WaitStatus> HandlePid(::pid_t pid) { 1917 Log *log = GetLog(POSIXLog::Process); 1918 1919 int status; 1920 ::pid_t wait_pid = llvm::sys::RetryAfterSignal( 1921 -1, ::waitpid, pid, &status, __WALL | __WNOTHREAD | WNOHANG); 1922 1923 if (wait_pid == 0) 1924 return std::nullopt; 1925 1926 if (wait_pid == -1) { 1927 Status error(errno, eErrorTypePOSIX); 1928 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", pid, 1929 error); 1930 return std::nullopt; 1931 } 1932 1933 assert(wait_pid == pid); 1934 1935 WaitStatus wait_status = WaitStatus::Decode(status); 1936 1937 LLDB_LOG(log, "waitpid({0}) got status = {1}", pid, wait_status); 1938 return wait_status; 1939 } 1940 1941 void NativeProcessLinux::SigchldHandler() { 1942 Log *log = GetLog(POSIXLog::Process); 1943 1944 // Threads can appear or disappear as a result of event processing, so gather 1945 // the events upfront. 1946 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1947 bool checked_main_thread = false; 1948 for (const auto &thread_up : m_threads) { 1949 if (thread_up->GetID() == GetID()) 1950 checked_main_thread = true; 1951 1952 if (std::optional<WaitStatus> status = HandlePid(thread_up->GetID())) 1953 tid_events.try_emplace(thread_up->GetID(), *status); 1954 } 1955 // Check the main thread even when we're not tracking it as process exit 1956 // events are reported that way. 1957 if (!checked_main_thread) { 1958 if (std::optional<WaitStatus> status = HandlePid(GetID())) 1959 tid_events.try_emplace(GetID(), *status); 1960 } 1961 1962 for (auto &KV : tid_events) { 1963 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1964 if (KV.first == GetID() && (KV.second.type == WaitStatus::Exit || 1965 KV.second.type == WaitStatus::Signal)) { 1966 1967 // The process exited. We're done monitoring. Report to delegate. 1968 SetExitStatus(KV.second, true); 1969 return; 1970 } 1971 NativeThreadLinux *thread = GetThreadByID(KV.first); 1972 assert(thread && "Why did this thread disappear?"); 1973 MonitorCallback(*thread, KV.second); 1974 } 1975 } 1976 1977 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1978 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1979 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1980 void *data, size_t data_size, 1981 long *result) { 1982 Status error; 1983 long int ret; 1984 1985 Log *log = GetLog(POSIXLog::Ptrace); 1986 1987 PtraceDisplayBytes(req, data, data_size); 1988 1989 errno = 0; 1990 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1991 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1992 *(unsigned int *)addr, data); 1993 else 1994 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1995 addr, data); 1996 1997 if (ret == -1) 1998 error.SetErrorToErrno(); 1999 2000 if (result) 2001 *result = ret; 2002 2003 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 2004 data_size, ret); 2005 2006 PtraceDisplayBytes(req, data, data_size); 2007 2008 if (error.Fail()) 2009 LLDB_LOG(log, "ptrace() failed: {0}", error); 2010 2011 return error; 2012 } 2013 2014 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 2015 if (IntelPTCollector::IsSupported()) 2016 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 2017 return NativeProcessProtocol::TraceSupported(); 2018 } 2019 2020 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 2021 if (type == "intel-pt") { 2022 if (Expected<TraceIntelPTStartRequest> request = 2023 json::parse<TraceIntelPTStartRequest>(json_request, 2024 "TraceIntelPTStartRequest")) { 2025 return m_intel_pt_collector.TraceStart(*request); 2026 } else 2027 return request.takeError(); 2028 } 2029 2030 return NativeProcessProtocol::TraceStart(json_request, type); 2031 } 2032 2033 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 2034 if (request.type == "intel-pt") 2035 return m_intel_pt_collector.TraceStop(request); 2036 return NativeProcessProtocol::TraceStop(request); 2037 } 2038 2039 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 2040 if (type == "intel-pt") 2041 return m_intel_pt_collector.GetState(); 2042 return NativeProcessProtocol::TraceGetState(type); 2043 } 2044 2045 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 2046 const TraceGetBinaryDataRequest &request) { 2047 if (request.type == "intel-pt") 2048 return m_intel_pt_collector.GetBinaryData(request); 2049 return NativeProcessProtocol::TraceGetBinaryData(request); 2050 } 2051