xref: /llvm-project/lldb/source/Plugins/Process/Linux/NativeProcessLinux.cpp (revision 5ad891f7193b2d7cc6578c2cbffe7d3a04e4617b)
1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "NativeProcessLinux.h"
11 
12 // C Includes
13 #include <errno.h>
14 #include <string.h>
15 #include <stdint.h>
16 #include <unistd.h>
17 
18 // C++ Includes
19 #include <fstream>
20 #include <mutex>
21 #include <sstream>
22 #include <string>
23 #include <unordered_map>
24 
25 // Other libraries and framework includes
26 #include "lldb/Core/EmulateInstruction.h"
27 #include "lldb/Core/Error.h"
28 #include "lldb/Core/ModuleSpec.h"
29 #include "lldb/Core/RegisterValue.h"
30 #include "lldb/Core/State.h"
31 #include "lldb/Host/Host.h"
32 #include "lldb/Host/HostProcess.h"
33 #include "lldb/Host/ThreadLauncher.h"
34 #include "lldb/Host/common/NativeBreakpoint.h"
35 #include "lldb/Host/common/NativeRegisterContext.h"
36 #include "lldb/Host/linux/ProcessLauncherLinux.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/ProcessLaunchInfo.h"
40 #include "lldb/Target/Target.h"
41 #include "lldb/Utility/LLDBAssert.h"
42 #include "lldb/Utility/PseudoTerminal.h"
43 #include "lldb/Utility/StringExtractor.h"
44 
45 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
46 #include "NativeThreadLinux.h"
47 #include "ProcFileReader.h"
48 #include "Procfs.h"
49 
50 // System includes - They have to be included after framework includes because they define some
51 // macros which collide with variable names in other modules
52 #include <linux/unistd.h>
53 #include <sys/socket.h>
54 
55 #include <sys/syscall.h>
56 #include <sys/types.h>
57 #include <sys/user.h>
58 #include <sys/wait.h>
59 
60 #include "lldb/Host/linux/Personality.h"
61 #include "lldb/Host/linux/Ptrace.h"
62 #include "lldb/Host/linux/Uio.h"
63 #include "lldb/Host/android/Android.h"
64 
65 // Support hardware breakpoints in case it has not been defined
66 #ifndef TRAP_HWBKPT
67   #define TRAP_HWBKPT 4
68 #endif
69 
70 using namespace lldb;
71 using namespace lldb_private;
72 using namespace lldb_private::process_linux;
73 using namespace llvm;
74 
75 // Private bits we only need internally.
76 
77 static bool ProcessVmReadvSupported()
78 {
79     static bool is_supported;
80     static std::once_flag flag;
81 
82     std::call_once(flag, [] {
83         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
84 
85         uint32_t source = 0x47424742;
86         uint32_t dest = 0;
87 
88         struct iovec local, remote;
89         remote.iov_base = &source;
90         local.iov_base = &dest;
91         remote.iov_len = local.iov_len = sizeof source;
92 
93         // We shall try if cross-process-memory reads work by attempting to read a value from our own process.
94         ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
95         is_supported = (res == sizeof(source) && source == dest);
96         if (log)
97         {
98             if (is_supported)
99                 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.",
100                         __FUNCTION__);
101             else
102                 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.",
103                         __FUNCTION__, strerror(errno));
104         }
105     });
106 
107     return is_supported;
108 }
109 
110 namespace
111 {
112 Error
113 ResolveProcessArchitecture(lldb::pid_t pid, ArchSpec &arch)
114 {
115     // Grab process info for the running process.
116     ProcessInstanceInfo process_info;
117     if (!Host::GetProcessInfo(pid, process_info))
118         return Error("failed to get process info");
119 
120     // Resolve the executable module.
121     ModuleSpecList module_specs;
122     if (!ObjectFile::GetModuleSpecifications(process_info.GetExecutableFile(), 0, 0, module_specs))
123         return Error("failed to get module specifications");
124     assert(module_specs.GetSize() == 1);
125 
126     arch = module_specs.GetModuleSpecRefAtIndex(0).GetArchitecture();
127     if (arch.IsValid())
128         return Error();
129     else
130         return Error("failed to retrieve a valid architecture from the exe module");
131 }
132 
133 void
134 MaybeLogLaunchInfo(const ProcessLaunchInfo &info)
135 {
136     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
137     if (!log)
138         return;
139 
140     if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
141         log->Printf("%s: setting STDIN to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
142     else
143         log->Printf("%s leaving STDIN as is", __FUNCTION__);
144 
145     if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
146         log->Printf("%s setting STDOUT to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
147     else
148         log->Printf("%s leaving STDOUT as is", __FUNCTION__);
149 
150     if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
151         log->Printf("%s setting STDERR to '%s'", __FUNCTION__, action->GetFileSpec().GetCString());
152     else
153         log->Printf("%s leaving STDERR as is", __FUNCTION__);
154 
155     int i = 0;
156     for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; ++args, ++i)
157         log->Printf("%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr");
158 }
159 
160 void
161 DisplayBytes(StreamString &s, void *bytes, uint32_t count)
162 {
163     uint8_t *ptr = (uint8_t *)bytes;
164     const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
165     for (uint32_t i = 0; i < loop_count; i++)
166     {
167         s.Printf("[%x]", *ptr);
168         ptr++;
169     }
170 }
171 
172     void
173     PtraceDisplayBytes(int &req, void *data, size_t data_size)
174     {
175         StreamString buf;
176         Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (
177                     POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE));
178 
179         if (verbose_log)
180         {
181             switch(req)
182             {
183             case PTRACE_POKETEXT:
184             {
185                 DisplayBytes(buf, &data, 8);
186                 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData());
187                 break;
188             }
189             case PTRACE_POKEDATA:
190             {
191                 DisplayBytes(buf, &data, 8);
192                 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData());
193                 break;
194             }
195             case PTRACE_POKEUSER:
196             {
197                 DisplayBytes(buf, &data, 8);
198                 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData());
199                 break;
200             }
201             case PTRACE_SETREGS:
202             {
203                 DisplayBytes(buf, data, data_size);
204                 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData());
205                 break;
206             }
207             case PTRACE_SETFPREGS:
208             {
209                 DisplayBytes(buf, data, data_size);
210                 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData());
211                 break;
212             }
213             case PTRACE_SETSIGINFO:
214             {
215                 DisplayBytes(buf, data, sizeof(siginfo_t));
216                 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData());
217                 break;
218             }
219             case PTRACE_SETREGSET:
220             {
221                 // Extract iov_base from data, which is a pointer to the struct IOVEC
222                 DisplayBytes(buf, *(void **)data, data_size);
223                 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData());
224                 break;
225             }
226             default:
227             {
228             }
229             }
230         }
231     }
232 
233     static constexpr unsigned k_ptrace_word_size = sizeof(void*);
234     static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size");
235 } // end of anonymous namespace
236 
237 // Simple helper function to ensure flags are enabled on the given file
238 // descriptor.
239 static Error
240 EnsureFDFlags(int fd, int flags)
241 {
242     Error error;
243 
244     int status = fcntl(fd, F_GETFL);
245     if (status == -1)
246     {
247         error.SetErrorToErrno();
248         return error;
249     }
250 
251     if (fcntl(fd, F_SETFL, status | flags) == -1)
252     {
253         error.SetErrorToErrno();
254         return error;
255     }
256 
257     return error;
258 }
259 
260 // -----------------------------------------------------------------------------
261 // Public Static Methods
262 // -----------------------------------------------------------------------------
263 
264 Error
265 NativeProcessProtocol::Launch (
266     ProcessLaunchInfo &launch_info,
267     NativeProcessProtocol::NativeDelegate &native_delegate,
268     MainLoop &mainloop,
269     NativeProcessProtocolSP &native_process_sp)
270 {
271     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
272 
273     Error error;
274 
275     // Verify the working directory is valid if one was specified.
276     FileSpec working_dir{launch_info.GetWorkingDirectory()};
277     if (working_dir &&
278             (!working_dir.ResolvePath() ||
279              working_dir.GetFileType() != FileSpec::eFileTypeDirectory))
280     {
281         error.SetErrorStringWithFormat ("No such file or directory: %s",
282                 working_dir.GetCString());
283         return error;
284     }
285 
286     // Create the NativeProcessLinux in launch mode.
287     native_process_sp.reset (new NativeProcessLinux ());
288 
289     if (!native_process_sp->RegisterNativeDelegate (native_delegate))
290     {
291         native_process_sp.reset ();
292         error.SetErrorStringWithFormat ("failed to register the native delegate");
293         return error;
294     }
295 
296     error = std::static_pointer_cast<NativeProcessLinux>(native_process_sp)->LaunchInferior(mainloop, launch_info);
297 
298     if (error.Fail ())
299     {
300         native_process_sp.reset ();
301         if (log)
302             log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ());
303         return error;
304     }
305 
306     launch_info.SetProcessID (native_process_sp->GetID ());
307 
308     return error;
309 }
310 
311 Error
312 NativeProcessProtocol::Attach (
313     lldb::pid_t pid,
314     NativeProcessProtocol::NativeDelegate &native_delegate,
315     MainLoop &mainloop,
316     NativeProcessProtocolSP &native_process_sp)
317 {
318     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
319     if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE))
320         log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid);
321 
322     // Retrieve the architecture for the running process.
323     ArchSpec process_arch;
324     Error error = ResolveProcessArchitecture(pid, process_arch);
325     if (!error.Success ())
326         return error;
327 
328     std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ());
329 
330     if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate))
331     {
332         error.SetErrorStringWithFormat ("failed to register the native delegate");
333         return error;
334     }
335 
336     native_process_linux_sp->AttachToInferior (mainloop, pid, error);
337     if (!error.Success ())
338         return error;
339 
340     native_process_sp = native_process_linux_sp;
341     return error;
342 }
343 
344 // -----------------------------------------------------------------------------
345 // Public Instance Methods
346 // -----------------------------------------------------------------------------
347 
348 NativeProcessLinux::NativeProcessLinux () :
349     NativeProcessProtocol (LLDB_INVALID_PROCESS_ID),
350     m_arch (),
351     m_supports_mem_region (eLazyBoolCalculate),
352     m_mem_region_cache (),
353     m_pending_notification_tid(LLDB_INVALID_THREAD_ID)
354 {
355 }
356 
357 void
358 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error)
359 {
360     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
361     if (log)
362         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid);
363 
364     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD,
365             [this] (MainLoopBase &) { SigchldHandler(); }, error);
366     if (! m_sigchld_handle)
367         return;
368 
369     error = ResolveProcessArchitecture(pid, m_arch);
370     if (!error.Success())
371         return;
372 
373     // Set the architecture to the exe architecture.
374     if (log)
375         log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ());
376 
377     m_pid = pid;
378     SetState(eStateAttaching);
379 
380     Attach(pid, error);
381 }
382 
383 Error
384 NativeProcessLinux::LaunchInferior(MainLoop &mainloop, ProcessLaunchInfo &launch_info)
385 {
386     Error error;
387     m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, error);
388     if (!m_sigchld_handle)
389         return error;
390 
391     SetState(eStateLaunching);
392 
393     MaybeLogLaunchInfo(launch_info);
394 
395     ::pid_t pid = ProcessLauncherLinux().LaunchProcess(launch_info, error).GetProcessId();
396     if (error.Fail())
397         return error;
398 
399     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
400 
401     // Wait for the child process to trap on its call to execve.
402     ::pid_t wpid;
403     int status;
404     if ((wpid = waitpid(pid, &status, 0)) < 0)
405     {
406         error.SetErrorToErrno();
407         if (log)
408             log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s",
409                     __FUNCTION__, error.AsCString ());
410 
411         // Mark the inferior as invalid.
412         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
413         SetState (StateType::eStateInvalid);
414 
415         return error;
416     }
417     assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) &&
418            "Could not sync with inferior process.");
419 
420     if (log)
421         log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__);
422 
423     error = SetDefaultPtraceOpts(pid);
424     if (error.Fail())
425     {
426         if (log)
427             log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s",
428                     __FUNCTION__, error.AsCString ());
429 
430         // Mark the inferior as invalid.
431         // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
432         SetState (StateType::eStateInvalid);
433 
434         return error;
435     }
436 
437     // Release the master terminal descriptor and pass it off to the
438     // NativeProcessLinux instance.  Similarly stash the inferior pid.
439     m_terminal_fd = launch_info.GetPTY().ReleaseMasterFileDescriptor();
440     m_pid = pid;
441     launch_info.SetProcessID(pid);
442 
443     if (m_terminal_fd != -1)
444     {
445         error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
446         if (error.Fail())
447         {
448             if (log)
449                 log->Printf(
450                     "NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s",
451                     __FUNCTION__, error.AsCString());
452 
453             // Mark the inferior as invalid.
454             // FIXME this could really use a new state - eStateLaunchFailure.  For now, using eStateInvalid.
455             SetState(StateType::eStateInvalid);
456 
457             return error;
458         }
459     }
460 
461     if (log)
462         log->Printf("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, uint64_t(pid));
463 
464     ResolveProcessArchitecture(m_pid, m_arch);
465     NativeThreadLinuxSP thread_sp = AddThread(pid);
466     assert (thread_sp && "AddThread() returned a nullptr thread");
467     thread_sp->SetStoppedBySignal(SIGSTOP);
468     ThreadWasCreated(*thread_sp);
469 
470     // Let our process instance know the thread has stopped.
471     SetCurrentThreadID (thread_sp->GetID ());
472     SetState (StateType::eStateStopped);
473 
474     if (log)
475     {
476         if (error.Success ())
477             log->Printf("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__);
478         else
479             log->Printf("NativeProcessLinux::%s inferior launching failed: %s", __FUNCTION__, error.AsCString());
480     }
481     return error;
482 }
483 
484 ::pid_t
485 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error)
486 {
487     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
488 
489     // Use a map to keep track of the threads which we have attached/need to attach.
490     Host::TidMap tids_to_attach;
491     if (pid <= 1)
492     {
493         error.SetErrorToGenericError();
494         error.SetErrorString("Attaching to process 1 is not allowed.");
495         return -1;
496     }
497 
498     while (Host::FindProcessThreads(pid, tids_to_attach))
499     {
500         for (Host::TidMap::iterator it = tids_to_attach.begin();
501              it != tids_to_attach.end();)
502         {
503             if (it->second == false)
504             {
505                 lldb::tid_t tid = it->first;
506 
507                 // Attach to the requested process.
508                 // An attach will cause the thread to stop with a SIGSTOP.
509                 error = PtraceWrapper(PTRACE_ATTACH, tid);
510                 if (error.Fail())
511                 {
512                     // No such thread. The thread may have exited.
513                     // More error handling may be needed.
514                     if (error.GetError() == ESRCH)
515                     {
516                         it = tids_to_attach.erase(it);
517                         continue;
518                     }
519                     else
520                         return -1;
521                 }
522 
523                 int status;
524                 // Need to use __WALL otherwise we receive an error with errno=ECHLD
525                 // At this point we should have a thread stopped if waitpid succeeds.
526                 if ((status = waitpid(tid, NULL, __WALL)) < 0)
527                 {
528                     // No such thread. The thread may have exited.
529                     // More error handling may be needed.
530                     if (errno == ESRCH)
531                     {
532                         it = tids_to_attach.erase(it);
533                         continue;
534                     }
535                     else
536                     {
537                         error.SetErrorToErrno();
538                         return -1;
539                     }
540                 }
541 
542                 error = SetDefaultPtraceOpts(tid);
543                 if (error.Fail())
544                     return -1;
545 
546                 if (log)
547                     log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid);
548 
549                 it->second = true;
550 
551                 // Create the thread, mark it as stopped.
552                 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid)));
553                 assert (thread_sp && "AddThread() returned a nullptr");
554 
555                 // This will notify this is a new thread and tell the system it is stopped.
556                 thread_sp->SetStoppedBySignal(SIGSTOP);
557                 ThreadWasCreated(*thread_sp);
558                 SetCurrentThreadID (thread_sp->GetID ());
559             }
560 
561             // move the loop forward
562             ++it;
563         }
564     }
565 
566     if (tids_to_attach.size() > 0)
567     {
568         m_pid = pid;
569         // Let our process instance know the thread has stopped.
570         SetState (StateType::eStateStopped);
571     }
572     else
573     {
574         error.SetErrorToGenericError();
575         error.SetErrorString("No such process.");
576         return -1;
577     }
578 
579     return pid;
580 }
581 
582 Error
583 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid)
584 {
585     long ptrace_opts = 0;
586 
587     // Have the child raise an event on exit.  This is used to keep the child in
588     // limbo until it is destroyed.
589     ptrace_opts |= PTRACE_O_TRACEEXIT;
590 
591     // Have the tracer trace threads which spawn in the inferior process.
592     // TODO: if we want to support tracing the inferiors' child, add the
593     // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK)
594     ptrace_opts |= PTRACE_O_TRACECLONE;
595 
596     // Have the tracer notify us before execve returns
597     // (needed to disable legacy SIGTRAP generation)
598     ptrace_opts |= PTRACE_O_TRACEEXEC;
599 
600     return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts);
601 }
602 
603 static ExitType convert_pid_status_to_exit_type (int status)
604 {
605     if (WIFEXITED (status))
606         return ExitType::eExitTypeExit;
607     else if (WIFSIGNALED (status))
608         return ExitType::eExitTypeSignal;
609     else if (WIFSTOPPED (status))
610         return ExitType::eExitTypeStop;
611     else
612     {
613         // We don't know what this is.
614         return ExitType::eExitTypeInvalid;
615     }
616 }
617 
618 static int convert_pid_status_to_return_code (int status)
619 {
620     if (WIFEXITED (status))
621         return WEXITSTATUS (status);
622     else if (WIFSIGNALED (status))
623         return WTERMSIG (status);
624     else if (WIFSTOPPED (status))
625         return WSTOPSIG (status);
626     else
627     {
628         // We don't know what this is.
629         return ExitType::eExitTypeInvalid;
630     }
631 }
632 
633 // Handles all waitpid events from the inferior process.
634 void
635 NativeProcessLinux::MonitorCallback(lldb::pid_t pid,
636                                     bool exited,
637                                     int signal,
638                                     int status)
639 {
640     Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS));
641 
642     // Certain activities differ based on whether the pid is the tid of the main thread.
643     const bool is_main_thread = (pid == GetID ());
644 
645     // Handle when the thread exits.
646     if (exited)
647     {
648         if (log)
649             log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %"  PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not");
650 
651         // This is a thread that exited.  Ensure we're not tracking it anymore.
652         const bool thread_found = StopTrackingThread (pid);
653 
654         if (is_main_thread)
655         {
656             // We only set the exit status and notify the delegate if we haven't already set the process
657             // state to an exited state.  We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8)
658             // for the main thread.
659             const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed);
660             if (!already_notified)
661             {
662                 if (log)
663                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ()));
664                 // The main thread exited.  We're done monitoring.  Report to delegate.
665                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
666 
667                 // Notify delegate that our process has exited.
668                 SetState (StateType::eStateExited, true);
669             }
670             else
671             {
672                 if (log)
673                     log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
674             }
675         }
676         else
677         {
678             // Do we want to report to the delegate in this case?  I think not.  If this was an orderly
679             // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal,
680             // and we would have done an all-stop then.
681             if (log)
682                 log->Printf ("NativeProcessLinux::%s() tid = %"  PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found");
683         }
684         return;
685     }
686 
687     siginfo_t info;
688     const auto info_err = GetSignalInfo(pid, &info);
689     auto thread_sp = GetThreadByID(pid);
690 
691     if (! thread_sp)
692     {
693         // Normally, the only situation when we cannot find the thread is if we have just
694         // received a new thread notification. This is indicated by GetSignalInfo() returning
695         // si_code == SI_USER and si_pid == 0
696         if (log)
697             log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid);
698 
699         if (info_err.Fail())
700         {
701             if (log)
702                 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString());
703             return;
704         }
705 
706         if (log && (info.si_code != SI_USER || info.si_pid != 0))
707             log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid);
708 
709         auto thread_sp = AddThread(pid);
710         // Resume the newly created thread.
711         ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
712         ThreadWasCreated(*thread_sp);
713         return;
714     }
715 
716     // Get details on the signal raised.
717     if (info_err.Success())
718     {
719         // We have retrieved the signal info.  Dispatch appropriately.
720         if (info.si_signo == SIGTRAP)
721             MonitorSIGTRAP(info, *thread_sp);
722         else
723             MonitorSignal(info, *thread_sp, exited);
724     }
725     else
726     {
727         if (info_err.GetError() == EINVAL)
728         {
729             // This is a group stop reception for this tid.
730             // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the
731             // tracee, triggering the group-stop mechanism. Normally receiving these would stop
732             // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is
733             // generally not needed (one use case is debugging background task being managed by a
734             // shell). For general use, it is sufficient to stop the process in a signal-delivery
735             // stop which happens before the group stop. This done by MonitorSignal and works
736             // correctly for all signals.
737             if (log)
738                 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid);
739             ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER);
740         }
741         else
742         {
743             // ptrace(GETSIGINFO) failed (but not due to group-stop).
744 
745             // A return value of ESRCH means the thread/process is no longer on the system,
746             // so it was killed somehow outside of our control.  Either way, we can't do anything
747             // with it anymore.
748 
749             // Stop tracking the metadata for the thread since it's entirely off the system now.
750             const bool thread_found = StopTrackingThread (pid);
751 
752             if (log)
753                 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)",
754                              __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found");
755 
756             if (is_main_thread)
757             {
758                 // Notify the delegate - our process is not available but appears to have been killed outside
759                 // our control.  Is eStateExited the right exit state in this case?
760                 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true);
761                 SetState (StateType::eStateExited, true);
762             }
763             else
764             {
765                 // This thread was pulled out from underneath us.  Anything to do here? Do we want to do an all stop?
766                 if (log)
767                     log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid);
768             }
769         }
770     }
771 }
772 
773 void
774 NativeProcessLinux::WaitForNewThread(::pid_t tid)
775 {
776     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
777 
778     NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid);
779 
780     if (new_thread_sp)
781     {
782         // We are already tracking the thread - we got the event on the new thread (see
783         // MonitorSignal) before this one. We are done.
784         return;
785     }
786 
787     // The thread is not tracked yet, let's wait for it to appear.
788     int status = -1;
789     ::pid_t wait_pid;
790     do
791     {
792         if (log)
793             log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid);
794         wait_pid = waitpid(tid, &status, __WALL);
795     }
796     while (wait_pid == -1 && errno == EINTR);
797     // Since we are waiting on a specific tid, this must be the creation event. But let's do
798     // some checks just in case.
799     if (wait_pid != tid) {
800         if (log)
801             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid);
802         // The only way I know of this could happen is if the whole process was
803         // SIGKILLed in the mean time. In any case, we can't do anything about that now.
804         return;
805     }
806     if (WIFEXITED(status))
807     {
808         if (log)
809             log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid);
810         // Also a very improbable event.
811         return;
812     }
813 
814     siginfo_t info;
815     Error error = GetSignalInfo(tid, &info);
816     if (error.Fail())
817     {
818         if (log)
819             log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid);
820         return;
821     }
822 
823     if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log)
824     {
825         // We should be getting a thread creation signal here, but we received something
826         // else. There isn't much we can do about it now, so we will just log that. Since the
827         // thread is alive and we are receiving events from it, we shall pretend that it was
828         // created properly.
829         log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid);
830     }
831 
832     if (log)
833         log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32,
834                  __FUNCTION__, GetID (), tid);
835 
836     new_thread_sp = AddThread(tid);
837     ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
838     ThreadWasCreated(*new_thread_sp);
839 }
840 
841 void
842 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread)
843 {
844     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
845     const bool is_main_thread = (thread.GetID() == GetID ());
846 
847     assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
848 
849     switch (info.si_code)
850     {
851     // TODO: these two cases are required if we want to support tracing of the inferiors' children.  We'd need this to debug a monitor.
852     // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
853     // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
854 
855     case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)):
856     {
857         // This is the notification on the parent thread which informs us of new thread
858         // creation.
859         // We don't want to do anything with the parent thread so we just resume it. In case we
860         // want to implement "break on thread creation" functionality, we would need to stop
861         // here.
862 
863         unsigned long event_message = 0;
864         if (GetEventMessage(thread.GetID(), &event_message).Fail())
865         {
866             if (log)
867                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID());
868         } else
869             WaitForNewThread(event_message);
870 
871         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
872         break;
873     }
874 
875     case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)):
876     {
877         NativeThreadLinuxSP main_thread_sp;
878         if (log)
879             log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP);
880 
881         // Exec clears any pending notifications.
882         m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
883 
884         // Remove all but the main thread here.  Linux fork creates a new process which only copies the main thread.
885         if (log)
886             log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__);
887 
888         for (auto thread_sp : m_threads)
889         {
890             const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID ();
891             if (is_main_thread)
892             {
893                 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp);
894                 if (log)
895                     log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ());
896             }
897             else
898             {
899                 if (log)
900                     log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ());
901             }
902         }
903 
904         m_threads.clear ();
905 
906         if (main_thread_sp)
907         {
908             m_threads.push_back (main_thread_sp);
909             SetCurrentThreadID (main_thread_sp->GetID ());
910             main_thread_sp->SetStoppedByExec();
911         }
912         else
913         {
914             SetCurrentThreadID (LLDB_INVALID_THREAD_ID);
915             if (log)
916                 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ());
917         }
918 
919         // Tell coordinator about about the "new" (since exec) stopped main thread.
920         ThreadWasCreated(*main_thread_sp);
921 
922         // Let our delegate know we have just exec'd.
923         NotifyDidExec ();
924 
925         // If we have a main thread, indicate we are stopped.
926         assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked");
927 
928         // Let the process know we're stopped.
929         StopRunningThreads(main_thread_sp->GetID());
930 
931         break;
932     }
933 
934     case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)):
935     {
936         // The inferior process or one of its threads is about to exit.
937         // We don't want to do anything with the thread so we just resume it. In case we
938         // want to implement "break on thread exit" functionality, we would need to stop
939         // here.
940 
941         unsigned long data = 0;
942         if (GetEventMessage(thread.GetID(), &data).Fail())
943             data = -1;
944 
945         if (log)
946         {
947             log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)",
948                          __FUNCTION__,
949                          data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false",
950                          thread.GetID(),
951                     is_main_thread ? "is main thread" : "not main thread");
952         }
953 
954         if (is_main_thread)
955         {
956             SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true);
957         }
958 
959         StateType state = thread.GetState();
960         if (! StateIsRunningState(state))
961         {
962             // Due to a kernel bug, we may sometimes get this stop after the inferior gets a
963             // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally,
964             // we should not be receiving any ptrace events while the inferior is stopped. This
965             // makes sure that the inferior is resumed and exits normally.
966             state = eStateRunning;
967         }
968         ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
969 
970         break;
971     }
972 
973     case 0:
974     case TRAP_TRACE:  // We receive this on single stepping.
975     case TRAP_HWBKPT: // We receive this on watchpoint hit
976     {
977         // If a watchpoint was hit, report it
978         uint32_t wp_index;
979         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr);
980         if (error.Fail() && log)
981             log->Printf("NativeProcessLinux::%s() "
982                         "received error while checking for watchpoint hits, "
983                         "pid = %" PRIu64 " error = %s",
984                         __FUNCTION__, thread.GetID(), error.AsCString());
985         if (wp_index != LLDB_INVALID_INDEX32)
986         {
987             MonitorWatchpoint(thread, wp_index);
988             break;
989         }
990 
991         // Otherwise, report step over
992         MonitorTrace(thread);
993         break;
994     }
995 
996     case SI_KERNEL:
997 #if defined __mips__
998         // For mips there is no special signal for watchpoint
999         // So we check for watchpoint in kernel trap
1000     {
1001         // If a watchpoint was hit, report it
1002         uint32_t wp_index;
1003         Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS);
1004         if (error.Fail() && log)
1005             log->Printf("NativeProcessLinux::%s() "
1006                         "received error while checking for watchpoint hits, "
1007                         "pid = %" PRIu64 " error = %s",
1008                         __FUNCTION__, thread.GetID(), error.AsCString());
1009         if (wp_index != LLDB_INVALID_INDEX32)
1010         {
1011             MonitorWatchpoint(thread, wp_index);
1012             break;
1013         }
1014     }
1015         // NO BREAK
1016 #endif
1017     case TRAP_BRKPT:
1018         MonitorBreakpoint(thread);
1019         break;
1020 
1021     case SIGTRAP:
1022     case (SIGTRAP | 0x80):
1023         if (log)
1024             log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID());
1025 
1026         // Ignore these signals until we know more about them.
1027         ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
1028         break;
1029 
1030     default:
1031         assert(false && "Unexpected SIGTRAP code!");
1032         if (log)
1033             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d",
1034                     __FUNCTION__, GetID(), thread.GetID(), info.si_code);
1035         break;
1036 
1037     }
1038 }
1039 
1040 void
1041 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread)
1042 {
1043     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
1044     if (log)
1045         log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)",
1046                 __FUNCTION__, thread.GetID());
1047 
1048     // This thread is currently stopped.
1049     thread.SetStoppedByTrace();
1050 
1051     StopRunningThreads(thread.GetID());
1052 }
1053 
1054 void
1055 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread)
1056 {
1057     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
1058     if (log)
1059         log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64,
1060                 __FUNCTION__, thread.GetID());
1061 
1062     // Mark the thread as stopped at breakpoint.
1063     thread.SetStoppedByBreakpoint();
1064     Error error = FixupBreakpointPCAsNeeded(thread);
1065     if (error.Fail())
1066         if (log)
1067             log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s",
1068                     __FUNCTION__, thread.GetID(), error.AsCString());
1069 
1070     if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end())
1071         thread.SetStoppedByTrace();
1072 
1073     StopRunningThreads(thread.GetID());
1074 }
1075 
1076 void
1077 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index)
1078 {
1079     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS));
1080     if (log)
1081         log->Printf("NativeProcessLinux::%s() received watchpoint event, "
1082                     "pid = %" PRIu64 ", wp_index = %" PRIu32,
1083                     __FUNCTION__, thread.GetID(), wp_index);
1084 
1085     // Mark the thread as stopped at watchpoint.
1086     // The address is at (lldb::addr_t)info->si_addr if we need it.
1087     thread.SetStoppedByWatchpoint(wp_index);
1088 
1089     // We need to tell all other running threads before we notify the delegate about this stop.
1090     StopRunningThreads(thread.GetID());
1091 }
1092 
1093 void
1094 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited)
1095 {
1096     const int signo = info.si_signo;
1097     const bool is_from_llgs = info.si_pid == getpid ();
1098 
1099     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1100 
1101     // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
1102     // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a
1103     // kill(2) or raise(3).  Similarly for tgkill(2) on Linux.
1104     //
1105     // IOW, user generated signals never generate what we consider to be a
1106     // "crash".
1107     //
1108     // Similarly, ACK signals generated by this monitor.
1109 
1110     // Handle the signal.
1111     if (info.si_code == SI_TKILL || info.si_code == SI_USER)
1112     {
1113         if (log)
1114             log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")",
1115                             __FUNCTION__,
1116                             Host::GetSignalAsCString(signo),
1117                             signo,
1118                             (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"),
1119                             info.si_pid,
1120                             is_from_llgs ? "from llgs" : "not from llgs",
1121                             thread.GetID());
1122     }
1123 
1124     // Check for thread stop notification.
1125     if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP))
1126     {
1127         // This is a tgkill()-based stop.
1128         if (log)
1129             log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped",
1130                          __FUNCTION__,
1131                          GetID (),
1132                          thread.GetID());
1133 
1134         // Check that we're not already marked with a stop reason.
1135         // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that
1136         // the kernel signaled us with the thread stopping which we handled and marked as stopped,
1137         // and that, without an intervening resume, we received another stop.  It is more likely
1138         // that we are missing the marking of a run state somewhere if we find that the thread was
1139         // marked as stopped.
1140         const StateType thread_state = thread.GetState();
1141         if (!StateIsStoppedState (thread_state, false))
1142         {
1143             // An inferior thread has stopped because of a SIGSTOP we have sent it.
1144             // Generally, these are not important stops and we don't want to report them as
1145             // they are just used to stop other threads when one thread (the one with the
1146             // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the
1147             // case of an asynchronous Interrupt(), this *is* the real stop reason, so we
1148             // leave the signal intact if this is the thread that was chosen as the
1149             // triggering thread.
1150             if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID)
1151             {
1152                 if (m_pending_notification_tid == thread.GetID())
1153                     thread.SetStoppedBySignal(SIGSTOP, &info);
1154                 else
1155                     thread.SetStoppedWithNoReason();
1156 
1157                 SetCurrentThreadID (thread.GetID ());
1158                 SignalIfAllThreadsStopped();
1159             }
1160             else
1161             {
1162                 // We can end up here if stop was initiated by LLGS but by this time a
1163                 // thread stop has occurred - maybe initiated by another event.
1164                 Error error = ResumeThread(thread, thread.GetState(), 0);
1165                 if (error.Fail() && log)
1166                 {
1167                     log->Printf("NativeProcessLinux::%s failed to resume thread tid  %" PRIu64 ": %s",
1168                             __FUNCTION__, thread.GetID(), error.AsCString());
1169                 }
1170             }
1171         }
1172         else
1173         {
1174             if (log)
1175             {
1176                 // Retrieve the signal name if the thread was stopped by a signal.
1177                 int stop_signo = 0;
1178                 const bool stopped_by_signal = thread.IsStopped(&stop_signo);
1179                 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>";
1180                 if (!signal_name)
1181                     signal_name = "<no-signal-name>";
1182 
1183                 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is",
1184                              __FUNCTION__,
1185                              GetID (),
1186                              thread.GetID(),
1187                              StateAsCString (thread_state),
1188                              stop_signo,
1189                              signal_name);
1190             }
1191             SignalIfAllThreadsStopped();
1192         }
1193 
1194         // Done handling.
1195         return;
1196     }
1197 
1198     if (log)
1199         log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo));
1200 
1201     // This thread is stopped.
1202     thread.SetStoppedBySignal(signo, &info);
1203 
1204     // Send a stop to the debugger after we get all other threads to stop.
1205     StopRunningThreads(thread.GetID());
1206 }
1207 
1208 namespace {
1209 
1210 struct EmulatorBaton
1211 {
1212     NativeProcessLinux* m_process;
1213     NativeRegisterContext* m_reg_context;
1214 
1215     // eRegisterKindDWARF -> RegsiterValue
1216     std::unordered_map<uint32_t, RegisterValue> m_register_values;
1217 
1218     EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) :
1219             m_process(process), m_reg_context(reg_context) {}
1220 };
1221 
1222 } // anonymous namespace
1223 
1224 static size_t
1225 ReadMemoryCallback (EmulateInstruction *instruction,
1226                     void *baton,
1227                     const EmulateInstruction::Context &context,
1228                     lldb::addr_t addr,
1229                     void *dst,
1230                     size_t length)
1231 {
1232     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1233 
1234     size_t bytes_read;
1235     emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read);
1236     return bytes_read;
1237 }
1238 
1239 static bool
1240 ReadRegisterCallback (EmulateInstruction *instruction,
1241                       void *baton,
1242                       const RegisterInfo *reg_info,
1243                       RegisterValue &reg_value)
1244 {
1245     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1246 
1247     auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]);
1248     if (it != emulator_baton->m_register_values.end())
1249     {
1250         reg_value = it->second;
1251         return true;
1252     }
1253 
1254     // The emulator only fill in the dwarf regsiter numbers (and in some case
1255     // the generic register numbers). Get the full register info from the
1256     // register context based on the dwarf register numbers.
1257     const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo(
1258             eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]);
1259 
1260     Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value);
1261     if (error.Success())
1262         return true;
1263 
1264     return false;
1265 }
1266 
1267 static bool
1268 WriteRegisterCallback (EmulateInstruction *instruction,
1269                        void *baton,
1270                        const EmulateInstruction::Context &context,
1271                        const RegisterInfo *reg_info,
1272                        const RegisterValue &reg_value)
1273 {
1274     EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton);
1275     emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value;
1276     return true;
1277 }
1278 
1279 static size_t
1280 WriteMemoryCallback (EmulateInstruction *instruction,
1281                      void *baton,
1282                      const EmulateInstruction::Context &context,
1283                      lldb::addr_t addr,
1284                      const void *dst,
1285                      size_t length)
1286 {
1287     return length;
1288 }
1289 
1290 static lldb::addr_t
1291 ReadFlags (NativeRegisterContext* regsiter_context)
1292 {
1293     const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo(
1294             eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1295     return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS);
1296 }
1297 
1298 Error
1299 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread)
1300 {
1301     Error error;
1302     NativeRegisterContextSP register_context_sp = thread.GetRegisterContext();
1303 
1304     std::unique_ptr<EmulateInstruction> emulator_ap(
1305         EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr));
1306 
1307     if (emulator_ap == nullptr)
1308         return Error("Instruction emulator not found!");
1309 
1310     EmulatorBaton baton(this, register_context_sp.get());
1311     emulator_ap->SetBaton(&baton);
1312     emulator_ap->SetReadMemCallback(&ReadMemoryCallback);
1313     emulator_ap->SetReadRegCallback(&ReadRegisterCallback);
1314     emulator_ap->SetWriteMemCallback(&WriteMemoryCallback);
1315     emulator_ap->SetWriteRegCallback(&WriteRegisterCallback);
1316 
1317     if (!emulator_ap->ReadInstruction())
1318         return Error("Read instruction failed!");
1319 
1320     bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC);
1321 
1322     const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC);
1323     const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS);
1324 
1325     auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]);
1326     auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]);
1327 
1328     lldb::addr_t next_pc;
1329     lldb::addr_t next_flags;
1330     if (emulation_result)
1331     {
1332         assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated");
1333         next_pc = pc_it->second.GetAsUInt64();
1334 
1335         if (flags_it != baton.m_register_values.end())
1336             next_flags = flags_it->second.GetAsUInt64();
1337         else
1338             next_flags = ReadFlags (register_context_sp.get());
1339     }
1340     else if (pc_it == baton.m_register_values.end())
1341     {
1342         // Emulate instruction failed and it haven't changed PC. Advance PC
1343         // with the size of the current opcode because the emulation of all
1344         // PC modifying instruction should be successful. The failure most
1345         // likely caused by a not supported instruction which don't modify PC.
1346         next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize();
1347         next_flags = ReadFlags (register_context_sp.get());
1348     }
1349     else
1350     {
1351         // The instruction emulation failed after it modified the PC. It is an
1352         // unknown error where we can't continue because the next instruction is
1353         // modifying the PC but we don't  know how.
1354         return Error ("Instruction emulation failed unexpectedly.");
1355     }
1356 
1357     if (m_arch.GetMachine() == llvm::Triple::arm)
1358     {
1359         if (next_flags & 0x20)
1360         {
1361             // Thumb mode
1362             error = SetSoftwareBreakpoint(next_pc, 2);
1363         }
1364         else
1365         {
1366             // Arm mode
1367             error = SetSoftwareBreakpoint(next_pc, 4);
1368         }
1369     }
1370     else if (m_arch.GetMachine() == llvm::Triple::mips64
1371             || m_arch.GetMachine() == llvm::Triple::mips64el
1372             || m_arch.GetMachine() == llvm::Triple::mips
1373             || m_arch.GetMachine() == llvm::Triple::mipsel)
1374         error = SetSoftwareBreakpoint(next_pc, 4);
1375     else
1376     {
1377         // No size hint is given for the next breakpoint
1378         error = SetSoftwareBreakpoint(next_pc, 0);
1379     }
1380 
1381     if (error.Fail())
1382         return error;
1383 
1384     m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc});
1385 
1386     return Error();
1387 }
1388 
1389 bool
1390 NativeProcessLinux::SupportHardwareSingleStepping() const
1391 {
1392     if (m_arch.GetMachine() == llvm::Triple::arm
1393         || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el
1394         || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel)
1395         return false;
1396     return true;
1397 }
1398 
1399 Error
1400 NativeProcessLinux::Resume (const ResumeActionList &resume_actions)
1401 {
1402     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD));
1403     if (log)
1404         log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ());
1405 
1406     bool software_single_step = !SupportHardwareSingleStepping();
1407 
1408     if (software_single_step)
1409     {
1410         for (auto thread_sp : m_threads)
1411         {
1412             assert (thread_sp && "thread list should not contain NULL threads");
1413 
1414             const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1415             if (action == nullptr)
1416                 continue;
1417 
1418             if (action->state == eStateStepping)
1419             {
1420                 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp));
1421                 if (error.Fail())
1422                     return error;
1423             }
1424         }
1425     }
1426 
1427     for (auto thread_sp : m_threads)
1428     {
1429         assert (thread_sp && "thread list should not contain NULL threads");
1430 
1431         const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true);
1432 
1433         if (action == nullptr)
1434         {
1435             if (log)
1436                 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64,
1437                     __FUNCTION__, GetID (), thread_sp->GetID ());
1438             continue;
1439         }
1440 
1441         if (log)
1442         {
1443             log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64,
1444                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1445         }
1446 
1447         switch (action->state)
1448         {
1449         case eStateRunning:
1450         case eStateStepping:
1451         {
1452             // Run the thread, possibly feeding it the signal.
1453             const int signo = action->signal;
1454             ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo);
1455             break;
1456         }
1457 
1458         case eStateSuspended:
1459         case eStateStopped:
1460             lldbassert(0 && "Unexpected state");
1461 
1462         default:
1463             return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64,
1464                     __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ());
1465         }
1466     }
1467 
1468     return Error();
1469 }
1470 
1471 Error
1472 NativeProcessLinux::Halt ()
1473 {
1474     Error error;
1475 
1476     if (kill (GetID (), SIGSTOP) != 0)
1477         error.SetErrorToErrno ();
1478 
1479     return error;
1480 }
1481 
1482 Error
1483 NativeProcessLinux::Detach ()
1484 {
1485     Error error;
1486 
1487     // Stop monitoring the inferior.
1488     m_sigchld_handle.reset();
1489 
1490     // Tell ptrace to detach from the process.
1491     if (GetID () == LLDB_INVALID_PROCESS_ID)
1492         return error;
1493 
1494     for (auto thread_sp : m_threads)
1495     {
1496         Error e = Detach(thread_sp->GetID());
1497         if (e.Fail())
1498             error = e; // Save the error, but still attempt to detach from other threads.
1499     }
1500 
1501     return error;
1502 }
1503 
1504 Error
1505 NativeProcessLinux::Signal (int signo)
1506 {
1507     Error error;
1508 
1509     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1510     if (log)
1511         log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64,
1512                 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID());
1513 
1514     if (kill(GetID(), signo))
1515         error.SetErrorToErrno();
1516 
1517     return error;
1518 }
1519 
1520 Error
1521 NativeProcessLinux::Interrupt ()
1522 {
1523     // Pick a running thread (or if none, a not-dead stopped thread) as
1524     // the chosen thread that will be the stop-reason thread.
1525     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1526 
1527     NativeThreadProtocolSP running_thread_sp;
1528     NativeThreadProtocolSP stopped_thread_sp;
1529 
1530     if (log)
1531         log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__);
1532 
1533     for (auto thread_sp : m_threads)
1534     {
1535         // The thread shouldn't be null but lets just cover that here.
1536         if (!thread_sp)
1537             continue;
1538 
1539         // If we have a running or stepping thread, we'll call that the
1540         // target of the interrupt.
1541         const auto thread_state = thread_sp->GetState ();
1542         if (thread_state == eStateRunning ||
1543             thread_state == eStateStepping)
1544         {
1545             running_thread_sp = thread_sp;
1546             break;
1547         }
1548         else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true))
1549         {
1550             // Remember the first non-dead stopped thread.  We'll use that as a backup if there are no running threads.
1551             stopped_thread_sp = thread_sp;
1552         }
1553     }
1554 
1555     if (!running_thread_sp && !stopped_thread_sp)
1556     {
1557         Error error("found no running/stepping or live stopped threads as target for interrupt");
1558         if (log)
1559             log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ());
1560 
1561         return error;
1562     }
1563 
1564     NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp;
1565 
1566     if (log)
1567         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target",
1568                      __FUNCTION__,
1569                      GetID (),
1570                      running_thread_sp ? "running" : "stopped",
1571                      deferred_signal_thread_sp->GetID ());
1572 
1573     StopRunningThreads(deferred_signal_thread_sp->GetID());
1574 
1575     return Error();
1576 }
1577 
1578 Error
1579 NativeProcessLinux::Kill ()
1580 {
1581     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1582     if (log)
1583         log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ());
1584 
1585     Error error;
1586 
1587     switch (m_state)
1588     {
1589         case StateType::eStateInvalid:
1590         case StateType::eStateExited:
1591         case StateType::eStateCrashed:
1592         case StateType::eStateDetached:
1593         case StateType::eStateUnloaded:
1594             // Nothing to do - the process is already dead.
1595             if (log)
1596                 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state));
1597             return error;
1598 
1599         case StateType::eStateConnected:
1600         case StateType::eStateAttaching:
1601         case StateType::eStateLaunching:
1602         case StateType::eStateStopped:
1603         case StateType::eStateRunning:
1604         case StateType::eStateStepping:
1605         case StateType::eStateSuspended:
1606             // We can try to kill a process in these states.
1607             break;
1608     }
1609 
1610     if (kill (GetID (), SIGKILL) != 0)
1611     {
1612         error.SetErrorToErrno ();
1613         return error;
1614     }
1615 
1616     return error;
1617 }
1618 
1619 static Error
1620 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info)
1621 {
1622     memory_region_info.Clear();
1623 
1624     StringExtractor line_extractor (maps_line.c_str ());
1625 
1626     // Format: {address_start_hex}-{address_end_hex} perms offset  dev   inode   pathname
1627     // perms: rwxp   (letter is present if set, '-' if not, final character is p=private, s=shared).
1628 
1629     // Parse out the starting address
1630     lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0);
1631 
1632     // Parse out hyphen separating start and end address from range.
1633     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-'))
1634         return Error ("malformed /proc/{pid}/maps entry, missing dash between address range");
1635 
1636     // Parse out the ending address
1637     lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address);
1638 
1639     // Parse out the space after the address.
1640     if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' '))
1641         return Error ("malformed /proc/{pid}/maps entry, missing space after range");
1642 
1643     // Save the range.
1644     memory_region_info.GetRange ().SetRangeBase (start_address);
1645     memory_region_info.GetRange ().SetRangeEnd (end_address);
1646 
1647     // Any memory region in /proc/{pid}/maps is by definition mapped into the process.
1648     memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes);
1649 
1650     // Parse out each permission entry.
1651     if (line_extractor.GetBytesLeft () < 4)
1652         return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions");
1653 
1654     // Handle read permission.
1655     const char read_perm_char = line_extractor.GetChar ();
1656     if (read_perm_char == 'r')
1657         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes);
1658     else if (read_perm_char == '-')
1659         memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1660     else
1661         return Error ("unexpected /proc/{pid}/maps read permission char");
1662 
1663     // Handle write permission.
1664     const char write_perm_char = line_extractor.GetChar ();
1665     if (write_perm_char == 'w')
1666         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes);
1667     else if (write_perm_char == '-')
1668         memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1669     else
1670         return Error ("unexpected /proc/{pid}/maps write permission char");
1671 
1672     // Handle execute permission.
1673     const char exec_perm_char = line_extractor.GetChar ();
1674     if (exec_perm_char == 'x')
1675         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes);
1676     else if (exec_perm_char == '-')
1677         memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1678     else
1679         return Error ("unexpected /proc/{pid}/maps exec permission char");
1680 
1681     return Error ();
1682 }
1683 
1684 Error
1685 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info)
1686 {
1687     // FIXME review that the final memory region returned extends to the end of the virtual address space,
1688     // with no perms if it is not mapped.
1689 
1690     // Use an approach that reads memory regions from /proc/{pid}/maps.
1691     // Assume proc maps entries are in ascending order.
1692     // FIXME assert if we find differently.
1693 
1694     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1695     Error error;
1696 
1697     if (m_supports_mem_region == LazyBool::eLazyBoolNo)
1698     {
1699         // We're done.
1700         error.SetErrorString ("unsupported");
1701         return error;
1702     }
1703 
1704     // If our cache is empty, pull the latest.  There should always be at least one memory region
1705     // if memory region handling is supported.
1706     if (m_mem_region_cache.empty ())
1707     {
1708         error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
1709              [&] (const std::string &line) -> bool
1710              {
1711                  MemoryRegionInfo info;
1712                  const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info);
1713                  if (parse_error.Success ())
1714                  {
1715                      m_mem_region_cache.push_back (info);
1716                      return true;
1717                  }
1718                  else
1719                  {
1720                      if (log)
1721                          log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ());
1722                      return false;
1723                  }
1724              });
1725 
1726         // If we had an error, we'll mark unsupported.
1727         if (error.Fail ())
1728         {
1729             m_supports_mem_region = LazyBool::eLazyBoolNo;
1730             return error;
1731         }
1732         else if (m_mem_region_cache.empty ())
1733         {
1734             // No entries after attempting to read them.  This shouldn't happen if /proc/{pid}/maps
1735             // is supported.  Assume we don't support map entries via procfs.
1736             if (log)
1737                 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__);
1738             m_supports_mem_region = LazyBool::eLazyBoolNo;
1739             error.SetErrorString ("not supported");
1740             return error;
1741         }
1742 
1743         if (log)
1744             log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ());
1745 
1746         // We support memory retrieval, remember that.
1747         m_supports_mem_region = LazyBool::eLazyBoolYes;
1748     }
1749     else
1750     {
1751         if (log)
1752             log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
1753     }
1754 
1755     lldb::addr_t prev_base_address = 0;
1756 
1757     // FIXME start by finding the last region that is <= target address using binary search.  Data is sorted.
1758     // There can be a ton of regions on pthreads apps with lots of threads.
1759     for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it)
1760     {
1761         MemoryRegionInfo &proc_entry_info = *it;
1762 
1763         // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1764         assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected");
1765         prev_base_address = proc_entry_info.GetRange ().GetRangeBase ();
1766 
1767         // If the target address comes before this entry, indicate distance to next region.
1768         if (load_addr < proc_entry_info.GetRange ().GetRangeBase ())
1769         {
1770             range_info.GetRange ().SetRangeBase (load_addr);
1771             range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr);
1772             range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1773             range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1774             range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1775             range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1776 
1777             return error;
1778         }
1779         else if (proc_entry_info.GetRange ().Contains (load_addr))
1780         {
1781             // The target address is within the memory region we're processing here.
1782             range_info = proc_entry_info;
1783             return error;
1784         }
1785 
1786         // The target memory address comes somewhere after the region we just parsed.
1787     }
1788 
1789     // If we made it here, we didn't find an entry that contained the given address. Return the
1790     // load_addr as start and the amount of bytes betwwen load address and the end of the memory as
1791     // size.
1792     range_info.GetRange ().SetRangeBase (load_addr);
1793     range_info.GetRange ().SetRangeEnd(LLDB_INVALID_ADDRESS);
1794     range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo);
1795     range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo);
1796     range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo);
1797     range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1798     return error;
1799 }
1800 
1801 void
1802 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId)
1803 {
1804     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
1805     if (log)
1806         log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId);
1807 
1808         if (log)
1809             log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()));
1810         m_mem_region_cache.clear ();
1811 }
1812 
1813 Error
1814 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr)
1815 {
1816     // FIXME implementing this requires the equivalent of
1817     // InferiorCallPOSIX::InferiorCallMmap, which depends on
1818     // functional ThreadPlans working with Native*Protocol.
1819 #if 1
1820     return Error ("not implemented yet");
1821 #else
1822     addr = LLDB_INVALID_ADDRESS;
1823 
1824     unsigned prot = 0;
1825     if (permissions & lldb::ePermissionsReadable)
1826         prot |= eMmapProtRead;
1827     if (permissions & lldb::ePermissionsWritable)
1828         prot |= eMmapProtWrite;
1829     if (permissions & lldb::ePermissionsExecutable)
1830         prot |= eMmapProtExec;
1831 
1832     // TODO implement this directly in NativeProcessLinux
1833     // (and lift to NativeProcessPOSIX if/when that class is
1834     // refactored out).
1835     if (InferiorCallMmap(this, addr, 0, size, prot,
1836                          eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) {
1837         m_addr_to_mmap_size[addr] = size;
1838         return Error ();
1839     } else {
1840         addr = LLDB_INVALID_ADDRESS;
1841         return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions));
1842     }
1843 #endif
1844 }
1845 
1846 Error
1847 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr)
1848 {
1849     // FIXME see comments in AllocateMemory - required lower-level
1850     // bits not in place yet (ThreadPlans)
1851     return Error ("not implemented");
1852 }
1853 
1854 lldb::addr_t
1855 NativeProcessLinux::GetSharedLibraryInfoAddress ()
1856 {
1857     // punt on this for now
1858     return LLDB_INVALID_ADDRESS;
1859 }
1860 
1861 size_t
1862 NativeProcessLinux::UpdateThreads ()
1863 {
1864     // The NativeProcessLinux monitoring threads are always up to date
1865     // with respect to thread state and they keep the thread list
1866     // populated properly. All this method needs to do is return the
1867     // thread count.
1868     return m_threads.size ();
1869 }
1870 
1871 bool
1872 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const
1873 {
1874     arch = m_arch;
1875     return true;
1876 }
1877 
1878 Error
1879 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size)
1880 {
1881     // FIXME put this behind a breakpoint protocol class that can be
1882     // set per architecture.  Need ARM, MIPS support here.
1883     static const uint8_t g_i386_opcode [] = { 0xCC };
1884     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
1885 
1886     switch (m_arch.GetMachine ())
1887     {
1888         case llvm::Triple::x86:
1889         case llvm::Triple::x86_64:
1890             actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode));
1891             return Error ();
1892 
1893         case llvm::Triple::systemz:
1894             actual_opcode_size = static_cast<uint32_t> (sizeof(g_s390x_opcode));
1895             return Error ();
1896 
1897         case llvm::Triple::arm:
1898         case llvm::Triple::aarch64:
1899         case llvm::Triple::mips64:
1900         case llvm::Triple::mips64el:
1901         case llvm::Triple::mips:
1902         case llvm::Triple::mipsel:
1903             // On these architectures the PC don't get updated for breakpoint hits
1904             actual_opcode_size = 0;
1905             return Error ();
1906 
1907         default:
1908             assert(false && "CPU type not supported!");
1909             return Error ("CPU type not supported");
1910     }
1911 }
1912 
1913 Error
1914 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware)
1915 {
1916     if (hardware)
1917         return Error ("NativeProcessLinux does not support hardware breakpoints");
1918     else
1919         return SetSoftwareBreakpoint (addr, size);
1920 }
1921 
1922 Error
1923 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint,
1924                                                      size_t &actual_opcode_size,
1925                                                      const uint8_t *&trap_opcode_bytes)
1926 {
1927     // FIXME put this behind a breakpoint protocol class that can be set per
1928     // architecture.  Need MIPS support here.
1929     static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 };
1930     // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1931     // linux kernel does otherwise.
1932     static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 };
1933     static const uint8_t g_i386_opcode [] = { 0xCC };
1934     static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d };
1935     static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 };
1936     static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 };
1937     static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde };
1938 
1939     switch (m_arch.GetMachine ())
1940     {
1941     case llvm::Triple::aarch64:
1942         trap_opcode_bytes = g_aarch64_opcode;
1943         actual_opcode_size = sizeof(g_aarch64_opcode);
1944         return Error ();
1945 
1946     case llvm::Triple::arm:
1947         switch (trap_opcode_size_hint)
1948         {
1949         case 2:
1950             trap_opcode_bytes = g_thumb_breakpoint_opcode;
1951             actual_opcode_size = sizeof(g_thumb_breakpoint_opcode);
1952             return Error ();
1953         case 4:
1954             trap_opcode_bytes = g_arm_breakpoint_opcode;
1955             actual_opcode_size = sizeof(g_arm_breakpoint_opcode);
1956             return Error ();
1957         default:
1958             assert(false && "Unrecognised trap opcode size hint!");
1959             return Error ("Unrecognised trap opcode size hint!");
1960         }
1961 
1962     case llvm::Triple::x86:
1963     case llvm::Triple::x86_64:
1964         trap_opcode_bytes = g_i386_opcode;
1965         actual_opcode_size = sizeof(g_i386_opcode);
1966         return Error ();
1967 
1968     case llvm::Triple::mips:
1969     case llvm::Triple::mips64:
1970         trap_opcode_bytes = g_mips64_opcode;
1971         actual_opcode_size = sizeof(g_mips64_opcode);
1972         return Error ();
1973 
1974     case llvm::Triple::mipsel:
1975     case llvm::Triple::mips64el:
1976         trap_opcode_bytes = g_mips64el_opcode;
1977         actual_opcode_size = sizeof(g_mips64el_opcode);
1978         return Error ();
1979 
1980     case llvm::Triple::systemz:
1981         trap_opcode_bytes = g_s390x_opcode;
1982         actual_opcode_size = sizeof(g_s390x_opcode);
1983         return Error ();
1984 
1985     default:
1986         assert(false && "CPU type not supported!");
1987         return Error ("CPU type not supported");
1988     }
1989 }
1990 
1991 #if 0
1992 ProcessMessage::CrashReason
1993 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info)
1994 {
1995     ProcessMessage::CrashReason reason;
1996     assert(info->si_signo == SIGSEGV);
1997 
1998     reason = ProcessMessage::eInvalidCrashReason;
1999 
2000     switch (info->si_code)
2001     {
2002     default:
2003         assert(false && "unexpected si_code for SIGSEGV");
2004         break;
2005     case SI_KERNEL:
2006         // Linux will occasionally send spurious SI_KERNEL codes.
2007         // (this is poorly documented in sigaction)
2008         // One way to get this is via unaligned SIMD loads.
2009         reason = ProcessMessage::eInvalidAddress; // for lack of anything better
2010         break;
2011     case SEGV_MAPERR:
2012         reason = ProcessMessage::eInvalidAddress;
2013         break;
2014     case SEGV_ACCERR:
2015         reason = ProcessMessage::ePrivilegedAddress;
2016         break;
2017     }
2018 
2019     return reason;
2020 }
2021 #endif
2022 
2023 
2024 #if 0
2025 ProcessMessage::CrashReason
2026 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info)
2027 {
2028     ProcessMessage::CrashReason reason;
2029     assert(info->si_signo == SIGILL);
2030 
2031     reason = ProcessMessage::eInvalidCrashReason;
2032 
2033     switch (info->si_code)
2034     {
2035     default:
2036         assert(false && "unexpected si_code for SIGILL");
2037         break;
2038     case ILL_ILLOPC:
2039         reason = ProcessMessage::eIllegalOpcode;
2040         break;
2041     case ILL_ILLOPN:
2042         reason = ProcessMessage::eIllegalOperand;
2043         break;
2044     case ILL_ILLADR:
2045         reason = ProcessMessage::eIllegalAddressingMode;
2046         break;
2047     case ILL_ILLTRP:
2048         reason = ProcessMessage::eIllegalTrap;
2049         break;
2050     case ILL_PRVOPC:
2051         reason = ProcessMessage::ePrivilegedOpcode;
2052         break;
2053     case ILL_PRVREG:
2054         reason = ProcessMessage::ePrivilegedRegister;
2055         break;
2056     case ILL_COPROC:
2057         reason = ProcessMessage::eCoprocessorError;
2058         break;
2059     case ILL_BADSTK:
2060         reason = ProcessMessage::eInternalStackError;
2061         break;
2062     }
2063 
2064     return reason;
2065 }
2066 #endif
2067 
2068 #if 0
2069 ProcessMessage::CrashReason
2070 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info)
2071 {
2072     ProcessMessage::CrashReason reason;
2073     assert(info->si_signo == SIGFPE);
2074 
2075     reason = ProcessMessage::eInvalidCrashReason;
2076 
2077     switch (info->si_code)
2078     {
2079     default:
2080         assert(false && "unexpected si_code for SIGFPE");
2081         break;
2082     case FPE_INTDIV:
2083         reason = ProcessMessage::eIntegerDivideByZero;
2084         break;
2085     case FPE_INTOVF:
2086         reason = ProcessMessage::eIntegerOverflow;
2087         break;
2088     case FPE_FLTDIV:
2089         reason = ProcessMessage::eFloatDivideByZero;
2090         break;
2091     case FPE_FLTOVF:
2092         reason = ProcessMessage::eFloatOverflow;
2093         break;
2094     case FPE_FLTUND:
2095         reason = ProcessMessage::eFloatUnderflow;
2096         break;
2097     case FPE_FLTRES:
2098         reason = ProcessMessage::eFloatInexactResult;
2099         break;
2100     case FPE_FLTINV:
2101         reason = ProcessMessage::eFloatInvalidOperation;
2102         break;
2103     case FPE_FLTSUB:
2104         reason = ProcessMessage::eFloatSubscriptRange;
2105         break;
2106     }
2107 
2108     return reason;
2109 }
2110 #endif
2111 
2112 #if 0
2113 ProcessMessage::CrashReason
2114 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info)
2115 {
2116     ProcessMessage::CrashReason reason;
2117     assert(info->si_signo == SIGBUS);
2118 
2119     reason = ProcessMessage::eInvalidCrashReason;
2120 
2121     switch (info->si_code)
2122     {
2123     default:
2124         assert(false && "unexpected si_code for SIGBUS");
2125         break;
2126     case BUS_ADRALN:
2127         reason = ProcessMessage::eIllegalAlignment;
2128         break;
2129     case BUS_ADRERR:
2130         reason = ProcessMessage::eIllegalAddress;
2131         break;
2132     case BUS_OBJERR:
2133         reason = ProcessMessage::eHardwareError;
2134         break;
2135     }
2136 
2137     return reason;
2138 }
2139 #endif
2140 
2141 Error
2142 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2143 {
2144     if (ProcessVmReadvSupported()) {
2145         // The process_vm_readv path is about 50 times faster than ptrace api. We want to use
2146         // this syscall if it is supported.
2147 
2148         const ::pid_t pid = GetID();
2149 
2150         struct iovec local_iov, remote_iov;
2151         local_iov.iov_base = buf;
2152         local_iov.iov_len = size;
2153         remote_iov.iov_base = reinterpret_cast<void *>(addr);
2154         remote_iov.iov_len = size;
2155 
2156         bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0);
2157         const bool success = bytes_read == size;
2158 
2159         Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
2160         if (log)
2161             log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s",
2162                     __FUNCTION__, size, addr, success ? "Success" : strerror(errno));
2163 
2164         if (success)
2165             return Error();
2166         // else
2167         //     the call failed for some reason, let's retry the read using ptrace api.
2168     }
2169 
2170     unsigned char *dst = static_cast<unsigned char*>(buf);
2171     size_t remainder;
2172     long data;
2173 
2174     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2175     if (log)
2176         ProcessPOSIXLog::IncNestLevel();
2177     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2178         log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size);
2179 
2180     for (bytes_read = 0; bytes_read < size; bytes_read += remainder)
2181     {
2182         Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data);
2183         if (error.Fail())
2184         {
2185             if (log)
2186                 ProcessPOSIXLog::DecNestLevel();
2187             return error;
2188         }
2189 
2190         remainder = size - bytes_read;
2191         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2192 
2193         // Copy the data into our buffer
2194         memcpy(dst, &data, remainder);
2195 
2196         if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2197                 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2198                         (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2199                                 size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2200         {
2201             uintptr_t print_dst = 0;
2202             // Format bytes from data by moving into print_dst for log output
2203             for (unsigned i = 0; i < remainder; ++i)
2204                 print_dst |= (((data >> i*8) & 0xFF) << i*8);
2205             log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")",
2206                     __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data));
2207         }
2208         addr += k_ptrace_word_size;
2209         dst += k_ptrace_word_size;
2210     }
2211 
2212     if (log)
2213         ProcessPOSIXLog::DecNestLevel();
2214     return Error();
2215 }
2216 
2217 Error
2218 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read)
2219 {
2220     Error error = ReadMemory(addr, buf, size, bytes_read);
2221     if (error.Fail()) return error;
2222     return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size);
2223 }
2224 
2225 Error
2226 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written)
2227 {
2228     const unsigned char *src = static_cast<const unsigned char*>(buf);
2229     size_t remainder;
2230     Error error;
2231 
2232     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL));
2233     if (log)
2234         ProcessPOSIXLog::IncNestLevel();
2235     if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY))
2236         log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size);
2237 
2238     for (bytes_written = 0; bytes_written < size; bytes_written += remainder)
2239     {
2240         remainder = size - bytes_written;
2241         remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
2242 
2243         if (remainder == k_ptrace_word_size)
2244         {
2245             unsigned long data = 0;
2246             memcpy(&data, src, k_ptrace_word_size);
2247 
2248             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2249                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2250                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2251                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2252                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2253                         (void*)addr, *(const unsigned long*)src, data);
2254 
2255             error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data);
2256             if (error.Fail())
2257             {
2258                 if (log)
2259                     ProcessPOSIXLog::DecNestLevel();
2260                 return error;
2261             }
2262         }
2263         else
2264         {
2265             unsigned char buff[8];
2266             size_t bytes_read;
2267             error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
2268             if (error.Fail())
2269             {
2270                 if (log)
2271                     ProcessPOSIXLog::DecNestLevel();
2272                 return error;
2273             }
2274 
2275             memcpy(buff, src, remainder);
2276 
2277             size_t bytes_written_rec;
2278             error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
2279             if (error.Fail())
2280             {
2281                 if (log)
2282                     ProcessPOSIXLog::DecNestLevel();
2283                 return error;
2284             }
2285 
2286             if (log && ProcessPOSIXLog::AtTopNestLevel() &&
2287                     (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) ||
2288                             (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) &&
2289                                     size <= POSIX_LOG_MEMORY_SHORT_BYTES)))
2290                 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__,
2291                         (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff);
2292         }
2293 
2294         addr += k_ptrace_word_size;
2295         src += k_ptrace_word_size;
2296     }
2297     if (log)
2298         ProcessPOSIXLog::DecNestLevel();
2299     return error;
2300 }
2301 
2302 Error
2303 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo)
2304 {
2305     return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
2306 }
2307 
2308 Error
2309 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message)
2310 {
2311     return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
2312 }
2313 
2314 Error
2315 NativeProcessLinux::Detach(lldb::tid_t tid)
2316 {
2317     if (tid == LLDB_INVALID_THREAD_ID)
2318         return Error();
2319 
2320     return PtraceWrapper(PTRACE_DETACH, tid);
2321 }
2322 
2323 bool
2324 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id)
2325 {
2326     for (auto thread_sp : m_threads)
2327     {
2328         assert (thread_sp && "thread list should not contain NULL threads");
2329         if (thread_sp->GetID () == thread_id)
2330         {
2331             // We have this thread.
2332             return true;
2333         }
2334     }
2335 
2336     // We don't have this thread.
2337     return false;
2338 }
2339 
2340 bool
2341 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id)
2342 {
2343     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2344 
2345     if (log)
2346         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id);
2347 
2348     bool found = false;
2349 
2350     for (auto it = m_threads.begin (); it != m_threads.end (); ++it)
2351     {
2352         if (*it && ((*it)->GetID () == thread_id))
2353         {
2354             m_threads.erase (it);
2355             found = true;
2356             break;
2357         }
2358     }
2359 
2360     SignalIfAllThreadsStopped();
2361 
2362     return found;
2363 }
2364 
2365 NativeThreadLinuxSP
2366 NativeProcessLinux::AddThread (lldb::tid_t thread_id)
2367 {
2368     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD));
2369 
2370     if (log)
2371     {
2372         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64,
2373                 __FUNCTION__,
2374                 GetID (),
2375                 thread_id);
2376     }
2377 
2378     assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists");
2379 
2380     // If this is the first thread, save it as the current thread
2381     if (m_threads.empty ())
2382         SetCurrentThreadID (thread_id);
2383 
2384     auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id);
2385     m_threads.push_back (thread_sp);
2386     return thread_sp;
2387 }
2388 
2389 Error
2390 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread)
2391 {
2392     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS));
2393 
2394     Error error;
2395 
2396     // Find out the size of a breakpoint (might depend on where we are in the code).
2397     NativeRegisterContextSP context_sp = thread.GetRegisterContext();
2398     if (!context_sp)
2399     {
2400         error.SetErrorString ("cannot get a NativeRegisterContext for the thread");
2401         if (log)
2402             log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ());
2403         return error;
2404     }
2405 
2406     uint32_t breakpoint_size = 0;
2407     error = GetSoftwareBreakpointPCOffset(breakpoint_size);
2408     if (error.Fail ())
2409     {
2410         if (log)
2411             log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ());
2412         return error;
2413     }
2414     else
2415     {
2416         if (log)
2417             log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size);
2418     }
2419 
2420     // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size.
2421     const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation ();
2422     lldb::addr_t breakpoint_addr = initial_pc_addr;
2423     if (breakpoint_size > 0)
2424     {
2425         // Do not allow breakpoint probe to wrap around.
2426         if (breakpoint_addr >= breakpoint_size)
2427             breakpoint_addr -= breakpoint_size;
2428     }
2429 
2430     // Check if we stopped because of a breakpoint.
2431     NativeBreakpointSP breakpoint_sp;
2432     error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp);
2433     if (!error.Success () || !breakpoint_sp)
2434     {
2435         // We didn't find one at a software probe location.  Nothing to do.
2436         if (log)
2437             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr);
2438         return Error ();
2439     }
2440 
2441     // If the breakpoint is not a software breakpoint, nothing to do.
2442     if (!breakpoint_sp->IsSoftwareBreakpoint ())
2443     {
2444         if (log)
2445             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr);
2446         return Error ();
2447     }
2448 
2449     //
2450     // We have a software breakpoint and need to adjust the PC.
2451     //
2452 
2453     // Sanity check.
2454     if (breakpoint_size == 0)
2455     {
2456         // Nothing to do!  How did we get here?
2457         if (log)
2458             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr);
2459         return Error ();
2460     }
2461 
2462     // Change the program counter.
2463     if (log)
2464         log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr);
2465 
2466     error = context_sp->SetPC (breakpoint_addr);
2467     if (error.Fail ())
2468     {
2469         if (log)
2470             log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ());
2471         return error;
2472     }
2473 
2474     return error;
2475 }
2476 
2477 Error
2478 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec)
2479 {
2480     FileSpec module_file_spec(module_path, true);
2481 
2482     bool found = false;
2483     file_spec.Clear();
2484     ProcFileReader::ProcessLineByLine(GetID(), "maps",
2485         [&] (const std::string &line)
2486         {
2487             SmallVector<StringRef, 16> columns;
2488             StringRef(line).split(columns, " ", -1, false);
2489             if (columns.size() < 6)
2490                 return true; // continue searching
2491 
2492             FileSpec this_file_spec(columns[5].str().c_str(), false);
2493             if (this_file_spec.GetFilename() != module_file_spec.GetFilename())
2494                 return true; // continue searching
2495 
2496             file_spec = this_file_spec;
2497             found = true;
2498             return false; // we are done
2499         });
2500 
2501     if (! found)
2502         return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
2503                 module_file_spec.GetFilename().AsCString(), GetID());
2504 
2505     return Error();
2506 }
2507 
2508 Error
2509 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr)
2510 {
2511     load_addr = LLDB_INVALID_ADDRESS;
2512     Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps",
2513         [&] (const std::string &line) -> bool
2514         {
2515             StringRef maps_row(line);
2516 
2517             SmallVector<StringRef, 16> maps_columns;
2518             maps_row.split(maps_columns, StringRef(" "), -1, false);
2519 
2520             if (maps_columns.size() < 6)
2521             {
2522                 // Return true to continue reading the proc file
2523                 return true;
2524             }
2525 
2526             if (maps_columns[5] == file_name)
2527             {
2528                 StringExtractor addr_extractor(maps_columns[0].str().c_str());
2529                 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS);
2530 
2531                 // Return false to stop reading the proc file further
2532                 return false;
2533             }
2534 
2535             // Return true to continue reading the proc file
2536             return true;
2537         });
2538     return error;
2539 }
2540 
2541 NativeThreadLinuxSP
2542 NativeProcessLinux::GetThreadByID(lldb::tid_t tid)
2543 {
2544     return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid));
2545 }
2546 
2547 Error
2548 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo)
2549 {
2550     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2551 
2552     if (log)
2553         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")",
2554                 __FUNCTION__, thread.GetID());
2555 
2556     // Before we do the resume below, first check if we have a pending
2557     // stop notification that is currently waiting for
2558     // all threads to stop.  This is potentially a buggy situation since
2559     // we're ostensibly waiting for threads to stop before we send out the
2560     // pending notification, and here we are resuming one before we send
2561     // out the pending stop notification.
2562     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log)
2563     {
2564         log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid);
2565     }
2566 
2567     // Request a resume.  We expect this to be synchronous and the system
2568     // to reflect it is running after this completes.
2569     switch (state)
2570     {
2571     case eStateRunning:
2572     {
2573         const auto resume_result = thread.Resume(signo);
2574         if (resume_result.Success())
2575             SetState(eStateRunning, true);
2576         return resume_result;
2577     }
2578     case eStateStepping:
2579     {
2580         const auto step_result = thread.SingleStep(signo);
2581         if (step_result.Success())
2582             SetState(eStateRunning, true);
2583         return step_result;
2584     }
2585     default:
2586         if (log)
2587             log->Printf("NativeProcessLinux::%s Unhandled state %s.",
2588                     __FUNCTION__, StateAsCString(state));
2589         llvm_unreachable("Unhandled state for resume");
2590     }
2591 }
2592 
2593 //===----------------------------------------------------------------------===//
2594 
2595 void
2596 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid)
2597 {
2598     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2599 
2600     if (log)
2601     {
2602         log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")",
2603                 __FUNCTION__, triggering_tid);
2604     }
2605 
2606     m_pending_notification_tid = triggering_tid;
2607 
2608     // Request a stop for all the thread stops that need to be stopped
2609     // and are not already known to be stopped.
2610     for (const auto &thread_sp: m_threads)
2611     {
2612         if (StateIsRunningState(thread_sp->GetState()))
2613             static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop();
2614     }
2615 
2616     SignalIfAllThreadsStopped();
2617 
2618     if (log)
2619     {
2620         log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__);
2621     }
2622 }
2623 
2624 void
2625 NativeProcessLinux::SignalIfAllThreadsStopped()
2626 {
2627     if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
2628         return; // No pending notification. Nothing to do.
2629 
2630     for (const auto &thread_sp: m_threads)
2631     {
2632         if (StateIsRunningState(thread_sp->GetState()))
2633             return; // Some threads are still running. Don't signal yet.
2634     }
2635 
2636     // We have a pending notification and all threads have stopped.
2637     Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS));
2638 
2639     // Clear any temporary breakpoints we used to implement software single stepping.
2640     for (const auto &thread_info: m_threads_stepping_with_breakpoint)
2641     {
2642         Error error = RemoveBreakpoint (thread_info.second);
2643         if (error.Fail())
2644             if (log)
2645                 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s",
2646                         __FUNCTION__, thread_info.first, error.AsCString());
2647     }
2648     m_threads_stepping_with_breakpoint.clear();
2649 
2650     // Notify the delegate about the stop
2651     SetCurrentThreadID(m_pending_notification_tid);
2652     SetState(StateType::eStateStopped, true);
2653     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
2654 }
2655 
2656 void
2657 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread)
2658 {
2659     Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD);
2660 
2661     if (log)
2662         log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID());
2663 
2664     if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState()))
2665     {
2666         // We will need to wait for this new thread to stop as well before firing the
2667         // notification.
2668         thread.RequestStop();
2669     }
2670 }
2671 
2672 void
2673 NativeProcessLinux::SigchldHandler()
2674 {
2675     Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS));
2676     // Process all pending waitpid notifications.
2677     while (true)
2678     {
2679         int status = -1;
2680         ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG);
2681 
2682         if (wait_pid == 0)
2683             break; // We are done.
2684 
2685         if (wait_pid == -1)
2686         {
2687             if (errno == EINTR)
2688                 continue;
2689 
2690             Error error(errno, eErrorTypePOSIX);
2691             if (log)
2692                 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s",
2693                         __FUNCTION__, error.AsCString());
2694             break;
2695         }
2696 
2697         bool exited = false;
2698         int signal = 0;
2699         int exit_status = 0;
2700         const char *status_cstr = nullptr;
2701         if (WIFSTOPPED(status))
2702         {
2703             signal = WSTOPSIG(status);
2704             status_cstr = "STOPPED";
2705         }
2706         else if (WIFEXITED(status))
2707         {
2708             exit_status = WEXITSTATUS(status);
2709             status_cstr = "EXITED";
2710             exited = true;
2711         }
2712         else if (WIFSIGNALED(status))
2713         {
2714             signal = WTERMSIG(status);
2715             status_cstr = "SIGNALED";
2716             if (wait_pid == static_cast< ::pid_t>(GetID())) {
2717                 exited = true;
2718                 exit_status = -1;
2719             }
2720         }
2721         else
2722             status_cstr = "(\?\?\?)";
2723 
2724         if (log)
2725             log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)"
2726                 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i",
2727                 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status);
2728 
2729         MonitorCallback (wait_pid, exited, signal, exit_status);
2730     }
2731 }
2732 
2733 // Wrapper for ptrace to catch errors and log calls.
2734 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
2735 Error
2736 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result)
2737 {
2738     Error error;
2739     long int ret;
2740 
2741     Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE));
2742 
2743     PtraceDisplayBytes(req, data, data_size);
2744 
2745     errno = 0;
2746     if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
2747         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data);
2748     else
2749         ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data);
2750 
2751     if (ret == -1)
2752         error.SetErrorToErrno();
2753 
2754     if (result)
2755         *result = ret;
2756 
2757     if (log)
2758         log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret);
2759 
2760     PtraceDisplayBytes(req, data, data_size);
2761 
2762     if (log && error.GetError() != 0)
2763     {
2764         const char* str;
2765         switch (error.GetError())
2766         {
2767         case ESRCH:  str = "ESRCH"; break;
2768         case EINVAL: str = "EINVAL"; break;
2769         case EBUSY:  str = "EBUSY"; break;
2770         case EPERM:  str = "EPERM"; break;
2771         default:     str = error.AsCString();
2772         }
2773         log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str);
2774     }
2775 
2776     return error;
2777 }
2778