xref: /llvm-project/lldb/source/Plugins/Process/Linux/NativeProcessLinux.cpp (revision 59d2495fe2c1254f84ad4d2bd61a41e79ff0d44d)
1 //===-- NativeProcessLinux.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "NativeProcessLinux.h"
10 
11 #include <cerrno>
12 #include <cstdint>
13 #include <cstring>
14 #include <unistd.h>
15 
16 #include <fstream>
17 #include <mutex>
18 #include <sstream>
19 #include <string>
20 #include <unordered_map>
21 
22 #include "NativeThreadLinux.h"
23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h"
24 #include "Plugins/Process/Utility/LinuxProcMaps.h"
25 #include "Procfs.h"
26 #include "lldb/Core/ModuleSpec.h"
27 #include "lldb/Host/Host.h"
28 #include "lldb/Host/HostProcess.h"
29 #include "lldb/Host/ProcessLaunchInfo.h"
30 #include "lldb/Host/PseudoTerminal.h"
31 #include "lldb/Host/ThreadLauncher.h"
32 #include "lldb/Host/common/NativeRegisterContext.h"
33 #include "lldb/Host/linux/Host.h"
34 #include "lldb/Host/linux/Ptrace.h"
35 #include "lldb/Host/linux/Uio.h"
36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h"
37 #include "lldb/Symbol/ObjectFile.h"
38 #include "lldb/Target/Process.h"
39 #include "lldb/Target/Target.h"
40 #include "lldb/Utility/LLDBAssert.h"
41 #include "lldb/Utility/LLDBLog.h"
42 #include "lldb/Utility/State.h"
43 #include "lldb/Utility/Status.h"
44 #include "lldb/Utility/StringExtractor.h"
45 #include "llvm/ADT/ScopeExit.h"
46 #include "llvm/Support/Errno.h"
47 #include "llvm/Support/FileSystem.h"
48 #include "llvm/Support/Threading.h"
49 
50 #include <linux/unistd.h>
51 #include <sys/socket.h>
52 #include <sys/syscall.h>
53 #include <sys/types.h>
54 #include <sys/user.h>
55 #include <sys/wait.h>
56 
57 #ifdef __aarch64__
58 #include <asm/hwcap.h>
59 #include <sys/auxv.h>
60 #endif
61 
62 // Support hardware breakpoints in case it has not been defined
63 #ifndef TRAP_HWBKPT
64 #define TRAP_HWBKPT 4
65 #endif
66 
67 #ifndef HWCAP2_MTE
68 #define HWCAP2_MTE (1 << 18)
69 #endif
70 
71 using namespace lldb;
72 using namespace lldb_private;
73 using namespace lldb_private::process_linux;
74 using namespace llvm;
75 
76 // Private bits we only need internally.
77 
78 static bool ProcessVmReadvSupported() {
79   static bool is_supported;
80   static llvm::once_flag flag;
81 
82   llvm::call_once(flag, [] {
83     Log *log = GetLog(POSIXLog::Process);
84 
85     uint32_t source = 0x47424742;
86     uint32_t dest = 0;
87 
88     struct iovec local, remote;
89     remote.iov_base = &source;
90     local.iov_base = &dest;
91     remote.iov_len = local.iov_len = sizeof source;
92 
93     // We shall try if cross-process-memory reads work by attempting to read a
94     // value from our own process.
95     ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0);
96     is_supported = (res == sizeof(source) && source == dest);
97     if (is_supported)
98       LLDB_LOG(log,
99                "Detected kernel support for process_vm_readv syscall. "
100                "Fast memory reads enabled.");
101     else
102       LLDB_LOG(log,
103                "syscall process_vm_readv failed (error: {0}). Fast memory "
104                "reads disabled.",
105                llvm::sys::StrError());
106   });
107 
108   return is_supported;
109 }
110 
111 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) {
112   Log *log = GetLog(POSIXLog::Process);
113   if (!log)
114     return;
115 
116   if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO))
117     LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec());
118   else
119     LLDB_LOG(log, "leaving STDIN as is");
120 
121   if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO))
122     LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec());
123   else
124     LLDB_LOG(log, "leaving STDOUT as is");
125 
126   if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO))
127     LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec());
128   else
129     LLDB_LOG(log, "leaving STDERR as is");
130 
131   int i = 0;
132   for (const char **args = info.GetArguments().GetConstArgumentVector(); *args;
133        ++args, ++i)
134     LLDB_LOG(log, "arg {0}: '{1}'", i, *args);
135 }
136 
137 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) {
138   uint8_t *ptr = (uint8_t *)bytes;
139   const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count);
140   for (uint32_t i = 0; i < loop_count; i++) {
141     s.Printf("[%x]", *ptr);
142     ptr++;
143   }
144 }
145 
146 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) {
147   Log *log = GetLog(POSIXLog::Ptrace);
148   if (!log)
149     return;
150   StreamString buf;
151 
152   switch (req) {
153   case PTRACE_POKETEXT: {
154     DisplayBytes(buf, &data, 8);
155     LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData());
156     break;
157   }
158   case PTRACE_POKEDATA: {
159     DisplayBytes(buf, &data, 8);
160     LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData());
161     break;
162   }
163   case PTRACE_POKEUSER: {
164     DisplayBytes(buf, &data, 8);
165     LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData());
166     break;
167   }
168   case PTRACE_SETREGS: {
169     DisplayBytes(buf, data, data_size);
170     LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData());
171     break;
172   }
173   case PTRACE_SETFPREGS: {
174     DisplayBytes(buf, data, data_size);
175     LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData());
176     break;
177   }
178   case PTRACE_SETSIGINFO: {
179     DisplayBytes(buf, data, sizeof(siginfo_t));
180     LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData());
181     break;
182   }
183   case PTRACE_SETREGSET: {
184     // Extract iov_base from data, which is a pointer to the struct iovec
185     DisplayBytes(buf, *(void **)data, data_size);
186     LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData());
187     break;
188   }
189   default: {}
190   }
191 }
192 
193 static constexpr unsigned k_ptrace_word_size = sizeof(void *);
194 static_assert(sizeof(long) >= k_ptrace_word_size,
195               "Size of long must be larger than ptrace word size");
196 
197 // Simple helper function to ensure flags are enabled on the given file
198 // descriptor.
199 static Status EnsureFDFlags(int fd, int flags) {
200   Status error;
201 
202   int status = fcntl(fd, F_GETFL);
203   if (status == -1) {
204     error.SetErrorToErrno();
205     return error;
206   }
207 
208   if (fcntl(fd, F_SETFL, status | flags) == -1) {
209     error.SetErrorToErrno();
210     return error;
211   }
212 
213   return error;
214 }
215 
216 // Public Static Methods
217 
218 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
219 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info,
220                                     NativeDelegate &native_delegate,
221                                     MainLoop &mainloop) const {
222   Log *log = GetLog(POSIXLog::Process);
223 
224   MaybeLogLaunchInfo(launch_info);
225 
226   Status status;
227   ::pid_t pid = ProcessLauncherPosixFork()
228                     .LaunchProcess(launch_info, status)
229                     .GetProcessId();
230   LLDB_LOG(log, "pid = {0:x}", pid);
231   if (status.Fail()) {
232     LLDB_LOG(log, "failed to launch process: {0}", status);
233     return status.ToError();
234   }
235 
236   // Wait for the child process to trap on its call to execve.
237   int wstatus = 0;
238   ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0);
239   assert(wpid == pid);
240   (void)wpid;
241   if (!WIFSTOPPED(wstatus)) {
242     LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}",
243              WaitStatus::Decode(wstatus));
244     return llvm::make_error<StringError>("Could not sync with inferior process",
245                                          llvm::inconvertibleErrorCode());
246   }
247   LLDB_LOG(log, "inferior started, now in stopped state");
248 
249   status = SetDefaultPtraceOpts(pid);
250   if (status.Fail()) {
251     LLDB_LOG(log, "failed to set default ptrace options: {0}", status);
252     return status.ToError();
253   }
254 
255   llvm::Expected<ArchSpec> arch_or =
256       NativeRegisterContextLinux::DetermineArchitecture(pid);
257   if (!arch_or)
258     return arch_or.takeError();
259 
260   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
261       pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate,
262       *arch_or, mainloop, {pid}));
263 }
264 
265 llvm::Expected<std::unique_ptr<NativeProcessProtocol>>
266 NativeProcessLinux::Factory::Attach(
267     lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate,
268     MainLoop &mainloop) const {
269   Log *log = GetLog(POSIXLog::Process);
270   LLDB_LOG(log, "pid = {0:x}", pid);
271 
272   auto tids_or = NativeProcessLinux::Attach(pid);
273   if (!tids_or)
274     return tids_or.takeError();
275   ArrayRef<::pid_t> tids = *tids_or;
276   llvm::Expected<ArchSpec> arch_or =
277       NativeRegisterContextLinux::DetermineArchitecture(tids[0]);
278   if (!arch_or)
279     return arch_or.takeError();
280 
281   return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux(
282       pid, -1, native_delegate, *arch_or, mainloop, tids));
283 }
284 
285 NativeProcessLinux::Extension
286 NativeProcessLinux::Factory::GetSupportedExtensions() const {
287   NativeProcessLinux::Extension supported =
288       Extension::multiprocess | Extension::fork | Extension::vfork |
289       Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 |
290       Extension::siginfo_read;
291 
292 #ifdef __aarch64__
293   // At this point we do not have a process so read auxv directly.
294   if ((getauxval(AT_HWCAP2) & HWCAP2_MTE))
295     supported |= Extension::memory_tagging;
296 #endif
297 
298   return supported;
299 }
300 
301 // Public Instance Methods
302 
303 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd,
304                                        NativeDelegate &delegate,
305                                        const ArchSpec &arch, MainLoop &mainloop,
306                                        llvm::ArrayRef<::pid_t> tids)
307     : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch),
308       m_main_loop(mainloop), m_intel_pt_collector(*this) {
309   if (m_terminal_fd != -1) {
310     Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK);
311     assert(status.Success());
312   }
313 
314   Status status;
315   m_sigchld_handle = mainloop.RegisterSignal(
316       SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status);
317   assert(m_sigchld_handle && status.Success());
318 
319   for (const auto &tid : tids) {
320     NativeThreadLinux &thread = AddThread(tid, /*resume*/ false);
321     ThreadWasCreated(thread);
322   }
323 
324   // Let our process instance know the thread has stopped.
325   SetCurrentThreadID(tids[0]);
326   SetState(StateType::eStateStopped, false);
327 
328   // Proccess any signals we received before installing our handler
329   SigchldHandler();
330 }
331 
332 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) {
333   Log *log = GetLog(POSIXLog::Process);
334 
335   Status status;
336   // Use a map to keep track of the threads which we have attached/need to
337   // attach.
338   Host::TidMap tids_to_attach;
339   while (Host::FindProcessThreads(pid, tids_to_attach)) {
340     for (Host::TidMap::iterator it = tids_to_attach.begin();
341          it != tids_to_attach.end();) {
342       if (it->second == false) {
343         lldb::tid_t tid = it->first;
344 
345         // Attach to the requested process.
346         // An attach will cause the thread to stop with a SIGSTOP.
347         if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) {
348           // No such thread. The thread may have exited. More error handling
349           // may be needed.
350           if (status.GetError() == ESRCH) {
351             it = tids_to_attach.erase(it);
352             continue;
353           }
354           return status.ToError();
355         }
356 
357         int wpid =
358             llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL);
359         // Need to use __WALL otherwise we receive an error with errno=ECHLD At
360         // this point we should have a thread stopped if waitpid succeeds.
361         if (wpid < 0) {
362           // No such thread. The thread may have exited. More error handling
363           // may be needed.
364           if (errno == ESRCH) {
365             it = tids_to_attach.erase(it);
366             continue;
367           }
368           return llvm::errorCodeToError(
369               std::error_code(errno, std::generic_category()));
370         }
371 
372         if ((status = SetDefaultPtraceOpts(tid)).Fail())
373           return status.ToError();
374 
375         LLDB_LOG(log, "adding tid = {0}", tid);
376         it->second = true;
377       }
378 
379       // move the loop forward
380       ++it;
381     }
382   }
383 
384   size_t tid_count = tids_to_attach.size();
385   if (tid_count == 0)
386     return llvm::make_error<StringError>("No such process",
387                                          llvm::inconvertibleErrorCode());
388 
389   std::vector<::pid_t> tids;
390   tids.reserve(tid_count);
391   for (const auto &p : tids_to_attach)
392     tids.push_back(p.first);
393   return std::move(tids);
394 }
395 
396 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) {
397   long ptrace_opts = 0;
398 
399   // Have the child raise an event on exit.  This is used to keep the child in
400   // limbo until it is destroyed.
401   ptrace_opts |= PTRACE_O_TRACEEXIT;
402 
403   // Have the tracer trace threads which spawn in the inferior process.
404   ptrace_opts |= PTRACE_O_TRACECLONE;
405 
406   // Have the tracer notify us before execve returns (needed to disable legacy
407   // SIGTRAP generation)
408   ptrace_opts |= PTRACE_O_TRACEEXEC;
409 
410   // Have the tracer trace forked children.
411   ptrace_opts |= PTRACE_O_TRACEFORK;
412 
413   // Have the tracer trace vforks.
414   ptrace_opts |= PTRACE_O_TRACEVFORK;
415 
416   // Have the tracer trace vfork-done in order to restore breakpoints after
417   // the child finishes sharing memory.
418   ptrace_opts |= PTRACE_O_TRACEVFORKDONE;
419 
420   return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts);
421 }
422 
423 // Handles all waitpid events from the inferior process.
424 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread,
425                                          WaitStatus status) {
426   Log *log = GetLog(LLDBLog::Process);
427 
428   // Certain activities differ based on whether the pid is the tid of the main
429   // thread.
430   const bool is_main_thread = (thread.GetID() == GetID());
431 
432   // Handle when the thread exits.
433   if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) {
434     LLDB_LOG(log,
435              "got exit status({0}) , tid = {1} ({2} main thread), process "
436              "state = {3}",
437              status, thread.GetID(), is_main_thread ? "is" : "is not",
438              GetState());
439 
440     // This is a thread that exited.  Ensure we're not tracking it anymore.
441     StopTrackingThread(thread);
442 
443     assert(!is_main_thread && "Main thread exits handled elsewhere");
444     return;
445   }
446 
447   siginfo_t info;
448   const auto info_err = GetSignalInfo(thread.GetID(), &info);
449 
450   // Get details on the signal raised.
451   if (info_err.Success()) {
452     // We have retrieved the signal info.  Dispatch appropriately.
453     if (info.si_signo == SIGTRAP)
454       MonitorSIGTRAP(info, thread);
455     else
456       MonitorSignal(info, thread);
457   } else {
458     if (info_err.GetError() == EINVAL) {
459       // This is a group stop reception for this tid. We can reach here if we
460       // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee,
461       // triggering the group-stop mechanism. Normally receiving these would
462       // stop the process, pending a SIGCONT. Simulating this state in a
463       // debugger is hard and is generally not needed (one use case is
464       // debugging background task being managed by a shell). For general use,
465       // it is sufficient to stop the process in a signal-delivery stop which
466       // happens before the group stop. This done by MonitorSignal and works
467       // correctly for all signals.
468       LLDB_LOG(log,
469                "received a group stop for pid {0} tid {1}. Transparent "
470                "handling of group stops not supported, resuming the "
471                "thread.",
472                GetID(), thread.GetID());
473       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
474     } else {
475       // ptrace(GETSIGINFO) failed (but not due to group-stop).
476 
477       // A return value of ESRCH means the thread/process has died in the mean
478       // time. This can (e.g.) happen when another thread does an exit_group(2)
479       // or the entire process get SIGKILLed.
480       // We can't do anything with this thread anymore, but we keep it around
481       // until we get the WIFEXITED event.
482 
483       LLDB_LOG(log,
484                "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = "
485                "{3}. Expecting WIFEXITED soon.",
486                thread.GetID(), info_err, status, is_main_thread);
487     }
488   }
489 }
490 
491 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) {
492   Log *log = GetLog(POSIXLog::Process);
493 
494   // The PID is not tracked yet, let's wait for it to appear.
495   int status = -1;
496   LLDB_LOG(log,
497            "received clone event for pid {0}. pid not tracked yet, "
498            "waiting for it to appear...",
499            pid);
500   ::pid_t wait_pid =
501       llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL);
502 
503   // It's theoretically possible to get other events if the entire process was
504   // SIGKILLed before we got a chance to check this. In that case, we'll just
505   // clean everything up when we get the process exit event.
506 
507   LLDB_LOG(log,
508            "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})",
509            pid, wait_pid, errno, WaitStatus::Decode(status));
510 }
511 
512 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info,
513                                         NativeThreadLinux &thread) {
514   Log *log = GetLog(POSIXLog::Process);
515   const bool is_main_thread = (thread.GetID() == GetID());
516 
517   assert(info.si_signo == SIGTRAP && "Unexpected child signal!");
518 
519   switch (info.si_code) {
520   case (SIGTRAP | (PTRACE_EVENT_FORK << 8)):
521   case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)):
522   case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): {
523     // This can either mean a new thread or a new process spawned via
524     // clone(2) without SIGCHLD or CLONE_VFORK flag.  Note that clone(2)
525     // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one
526     // of these flags are passed.
527 
528     unsigned long event_message = 0;
529     if (GetEventMessage(thread.GetID(), &event_message).Fail()) {
530       LLDB_LOG(log,
531                "pid {0} received clone() event but GetEventMessage failed "
532                "so we don't know the new pid/tid",
533                thread.GetID());
534       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
535     } else {
536       MonitorClone(thread, event_message, info.si_code >> 8);
537     }
538 
539     break;
540   }
541 
542   case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): {
543     LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP);
544 
545     // Exec clears any pending notifications.
546     m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
547 
548     // Remove all but the main thread here.  Linux fork creates a new process
549     // which only copies the main thread.
550     LLDB_LOG(log, "exec received, stop tracking all but main thread");
551 
552     llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) {
553       return t->GetID() != GetID();
554     });
555     assert(m_threads.size() == 1);
556     auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get());
557 
558     SetCurrentThreadID(main_thread->GetID());
559     main_thread->SetStoppedByExec();
560 
561     // Tell coordinator about about the "new" (since exec) stopped main thread.
562     ThreadWasCreated(*main_thread);
563 
564     // Let our delegate know we have just exec'd.
565     NotifyDidExec();
566 
567     // Let the process know we're stopped.
568     StopRunningThreads(main_thread->GetID());
569 
570     break;
571   }
572 
573   case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): {
574     // The inferior process or one of its threads is about to exit. We don't
575     // want to do anything with the thread so we just resume it. In case we
576     // want to implement "break on thread exit" functionality, we would need to
577     // stop here.
578 
579     unsigned long data = 0;
580     if (GetEventMessage(thread.GetID(), &data).Fail())
581       data = -1;
582 
583     LLDB_LOG(log,
584              "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, "
585              "WIFSIGNALED={2}, pid = {3}, main_thread = {4}",
586              data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(),
587              is_main_thread);
588 
589 
590     StateType state = thread.GetState();
591     if (!StateIsRunningState(state)) {
592       // Due to a kernel bug, we may sometimes get this stop after the inferior
593       // gets a SIGKILL. This confuses our state tracking logic in
594       // ResumeThread(), since normally, we should not be receiving any ptrace
595       // events while the inferior is stopped. This makes sure that the
596       // inferior is resumed and exits normally.
597       state = eStateRunning;
598     }
599     ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER);
600 
601     if (is_main_thread) {
602       // Main thread report the read (WIFEXITED) event only after all threads in
603       // the process exit, so we need to stop tracking it here instead of in
604       // MonitorCallback
605       StopTrackingThread(thread);
606     }
607 
608     break;
609   }
610 
611   case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): {
612     if (bool(m_enabled_extensions & Extension::vfork)) {
613       thread.SetStoppedByVForkDone();
614       StopRunningThreads(thread.GetID());
615     }
616     else
617       ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
618     break;
619   }
620 
621   case 0:
622   case TRAP_TRACE:  // We receive this on single stepping.
623   case TRAP_HWBKPT: // We receive this on watchpoint hit
624   {
625     // If a watchpoint was hit, report it
626     uint32_t wp_index;
627     Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
628         wp_index, (uintptr_t)info.si_addr);
629     if (error.Fail())
630       LLDB_LOG(log,
631                "received error while checking for watchpoint hits, pid = "
632                "{0}, error = {1}",
633                thread.GetID(), error);
634     if (wp_index != LLDB_INVALID_INDEX32) {
635       MonitorWatchpoint(thread, wp_index);
636       break;
637     }
638 
639     // If a breakpoint was hit, report it
640     uint32_t bp_index;
641     error = thread.GetRegisterContext().GetHardwareBreakHitIndex(
642         bp_index, (uintptr_t)info.si_addr);
643     if (error.Fail())
644       LLDB_LOG(log, "received error while checking for hardware "
645                     "breakpoint hits, pid = {0}, error = {1}",
646                thread.GetID(), error);
647     if (bp_index != LLDB_INVALID_INDEX32) {
648       MonitorBreakpoint(thread);
649       break;
650     }
651 
652     // Otherwise, report step over
653     MonitorTrace(thread);
654     break;
655   }
656 
657   case SI_KERNEL:
658 #if defined __mips__
659     // For mips there is no special signal for watchpoint So we check for
660     // watchpoint in kernel trap
661     {
662       // If a watchpoint was hit, report it
663       uint32_t wp_index;
664       Status error = thread.GetRegisterContext().GetWatchpointHitIndex(
665           wp_index, LLDB_INVALID_ADDRESS);
666       if (error.Fail())
667         LLDB_LOG(log,
668                  "received error while checking for watchpoint hits, pid = "
669                  "{0}, error = {1}",
670                  thread.GetID(), error);
671       if (wp_index != LLDB_INVALID_INDEX32) {
672         MonitorWatchpoint(thread, wp_index);
673         break;
674       }
675     }
676 // NO BREAK
677 #endif
678   case TRAP_BRKPT:
679     MonitorBreakpoint(thread);
680     break;
681 
682   case SIGTRAP:
683   case (SIGTRAP | 0x80):
684     LLDB_LOG(
685         log,
686         "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming",
687         info.si_code, GetID(), thread.GetID());
688 
689     // Ignore these signals until we know more about them.
690     ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
691     break;
692 
693   default:
694     LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}",
695              info.si_code, GetID(), thread.GetID());
696     MonitorSignal(info, thread);
697     break;
698   }
699 }
700 
701 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) {
702   Log *log = GetLog(POSIXLog::Process);
703   LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID());
704 
705   // This thread is currently stopped.
706   thread.SetStoppedByTrace();
707 
708   StopRunningThreads(thread.GetID());
709 }
710 
711 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) {
712   Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
713   LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID());
714 
715   // Mark the thread as stopped at breakpoint.
716   thread.SetStoppedByBreakpoint();
717   FixupBreakpointPCAsNeeded(thread);
718 
719   if (m_threads_stepping_with_breakpoint.find(thread.GetID()) !=
720       m_threads_stepping_with_breakpoint.end())
721     thread.SetStoppedByTrace();
722 
723   StopRunningThreads(thread.GetID());
724 }
725 
726 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread,
727                                            uint32_t wp_index) {
728   Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints);
729   LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}",
730            thread.GetID(), wp_index);
731 
732   // Mark the thread as stopped at watchpoint. The address is at
733   // (lldb::addr_t)info->si_addr if we need it.
734   thread.SetStoppedByWatchpoint(wp_index);
735 
736   // We need to tell all other running threads before we notify the delegate
737   // about this stop.
738   StopRunningThreads(thread.GetID());
739 }
740 
741 void NativeProcessLinux::MonitorSignal(const siginfo_t &info,
742                                        NativeThreadLinux &thread) {
743   const int signo = info.si_signo;
744   const bool is_from_llgs = info.si_pid == getpid();
745 
746   Log *log = GetLog(POSIXLog::Process);
747 
748   // POSIX says that process behaviour is undefined after it ignores a SIGFPE,
749   // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2)
750   // or raise(3).  Similarly for tgkill(2) on Linux.
751   //
752   // IOW, user generated signals never generate what we consider to be a
753   // "crash".
754   //
755   // Similarly, ACK signals generated by this monitor.
756 
757   // Handle the signal.
758   LLDB_LOG(log,
759            "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, "
760            "waitpid pid = {4})",
761            Host::GetSignalAsCString(signo), signo, info.si_code,
762            thread.GetID());
763 
764   // Check for thread stop notification.
765   if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) {
766     // This is a tgkill()-based stop.
767     LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID());
768 
769     // Check that we're not already marked with a stop reason. Note this thread
770     // really shouldn't already be marked as stopped - if we were, that would
771     // imply that the kernel signaled us with the thread stopping which we
772     // handled and marked as stopped, and that, without an intervening resume,
773     // we received another stop.  It is more likely that we are missing the
774     // marking of a run state somewhere if we find that the thread was marked
775     // as stopped.
776     const StateType thread_state = thread.GetState();
777     if (!StateIsStoppedState(thread_state, false)) {
778       // An inferior thread has stopped because of a SIGSTOP we have sent it.
779       // Generally, these are not important stops and we don't want to report
780       // them as they are just used to stop other threads when one thread (the
781       // one with the *real* stop reason) hits a breakpoint (watchpoint,
782       // etc...). However, in the case of an asynchronous Interrupt(), this
783       // *is* the real stop reason, so we leave the signal intact if this is
784       // the thread that was chosen as the triggering thread.
785       if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
786         if (m_pending_notification_tid == thread.GetID())
787           thread.SetStoppedBySignal(SIGSTOP, &info);
788         else
789           thread.SetStoppedWithNoReason();
790 
791         SetCurrentThreadID(thread.GetID());
792         SignalIfAllThreadsStopped();
793       } else {
794         // We can end up here if stop was initiated by LLGS but by this time a
795         // thread stop has occurred - maybe initiated by another event.
796         Status error = ResumeThread(thread, thread.GetState(), 0);
797         if (error.Fail())
798           LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(),
799                    error);
800       }
801     } else {
802       LLDB_LOG(log,
803                "pid {0} tid {1}, thread was already marked as a stopped "
804                "state (state={2}), leaving stop signal as is",
805                GetID(), thread.GetID(), thread_state);
806       SignalIfAllThreadsStopped();
807     }
808 
809     // Done handling.
810     return;
811   }
812 
813   // Check if debugger should stop at this signal or just ignore it and resume
814   // the inferior.
815   if (m_signals_to_ignore.contains(signo)) {
816      ResumeThread(thread, thread.GetState(), signo);
817      return;
818   }
819 
820   // This thread is stopped.
821   LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo));
822   thread.SetStoppedBySignal(signo, &info);
823 
824   // Send a stop to the debugger after we get all other threads to stop.
825   StopRunningThreads(thread.GetID());
826 }
827 
828 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent,
829                                       lldb::pid_t child_pid, int event) {
830   Log *log = GetLog(POSIXLog::Process);
831   LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(),
832            child_pid, event);
833 
834   WaitForCloneNotification(child_pid);
835 
836   switch (event) {
837   case PTRACE_EVENT_CLONE: {
838     // PTRACE_EVENT_CLONE can either mean a new thread or a new process.
839     // Try to grab the new process' PGID to figure out which one it is.
840     // If PGID is the same as the PID, then it's a new process.  Otherwise,
841     // it's a thread.
842     auto tgid_ret = getPIDForTID(child_pid);
843     if (tgid_ret != child_pid) {
844       // A new thread should have PGID matching our process' PID.
845       assert(!tgid_ret || *tgid_ret == GetID());
846 
847       NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true);
848       ThreadWasCreated(child_thread);
849 
850       // Resume the parent.
851       ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
852       break;
853     }
854   }
855     [[fallthrough]];
856   case PTRACE_EVENT_FORK:
857   case PTRACE_EVENT_VFORK: {
858     bool is_vfork = event == PTRACE_EVENT_VFORK;
859     std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux(
860         static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch,
861         m_main_loop, {static_cast<::pid_t>(child_pid)})};
862     if (!is_vfork)
863       child_process->m_software_breakpoints = m_software_breakpoints;
864 
865     Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork;
866     if (bool(m_enabled_extensions & expected_ext)) {
867       m_delegate.NewSubprocess(this, std::move(child_process));
868       // NB: non-vfork clone() is reported as fork
869       parent.SetStoppedByFork(is_vfork, child_pid);
870       StopRunningThreads(parent.GetID());
871     } else {
872       child_process->Detach();
873       ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER);
874     }
875     break;
876   }
877   default:
878     llvm_unreachable("unknown clone_info.event");
879   }
880 
881   return true;
882 }
883 
884 bool NativeProcessLinux::SupportHardwareSingleStepping() const {
885   if (m_arch.GetMachine() == llvm::Triple::arm || m_arch.IsMIPS())
886     return false;
887   return true;
888 }
889 
890 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) {
891   Log *log = GetLog(POSIXLog::Process);
892   LLDB_LOG(log, "pid {0}", GetID());
893 
894   NotifyTracersProcessWillResume();
895 
896   bool software_single_step = !SupportHardwareSingleStepping();
897 
898   if (software_single_step) {
899     for (const auto &thread : m_threads) {
900       assert(thread && "thread list should not contain NULL threads");
901 
902       const ResumeAction *const action =
903           resume_actions.GetActionForThread(thread->GetID(), true);
904       if (action == nullptr)
905         continue;
906 
907       if (action->state == eStateStepping) {
908         Status error = SetupSoftwareSingleStepping(
909             static_cast<NativeThreadLinux &>(*thread));
910         if (error.Fail())
911           return error;
912       }
913     }
914   }
915 
916   for (const auto &thread : m_threads) {
917     assert(thread && "thread list should not contain NULL threads");
918 
919     const ResumeAction *const action =
920         resume_actions.GetActionForThread(thread->GetID(), true);
921 
922     if (action == nullptr) {
923       LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(),
924                thread->GetID());
925       continue;
926     }
927 
928     LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}",
929              action->state, GetID(), thread->GetID());
930 
931     switch (action->state) {
932     case eStateRunning:
933     case eStateStepping: {
934       // Run the thread, possibly feeding it the signal.
935       const int signo = action->signal;
936       ResumeThread(static_cast<NativeThreadLinux &>(*thread), action->state,
937                    signo);
938       break;
939     }
940 
941     case eStateSuspended:
942     case eStateStopped:
943       break;
944 
945     default:
946       return Status("NativeProcessLinux::%s (): unexpected state %s specified "
947                     "for pid %" PRIu64 ", tid %" PRIu64,
948                     __FUNCTION__, StateAsCString(action->state), GetID(),
949                     thread->GetID());
950     }
951   }
952 
953   return Status();
954 }
955 
956 Status NativeProcessLinux::Halt() {
957   Status error;
958 
959   if (kill(GetID(), SIGSTOP) != 0)
960     error.SetErrorToErrno();
961 
962   return error;
963 }
964 
965 Status NativeProcessLinux::Detach() {
966   Status error;
967 
968   // Stop monitoring the inferior.
969   m_sigchld_handle.reset();
970 
971   // Tell ptrace to detach from the process.
972   if (GetID() == LLDB_INVALID_PROCESS_ID)
973     return error;
974 
975   for (const auto &thread : m_threads) {
976     Status e = Detach(thread->GetID());
977     if (e.Fail())
978       error =
979           e; // Save the error, but still attempt to detach from other threads.
980   }
981 
982   m_intel_pt_collector.Clear();
983 
984   return error;
985 }
986 
987 Status NativeProcessLinux::Signal(int signo) {
988   Status error;
989 
990   Log *log = GetLog(POSIXLog::Process);
991   LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo,
992            Host::GetSignalAsCString(signo), GetID());
993 
994   if (kill(GetID(), signo))
995     error.SetErrorToErrno();
996 
997   return error;
998 }
999 
1000 Status NativeProcessLinux::Interrupt() {
1001   // Pick a running thread (or if none, a not-dead stopped thread) as the
1002   // chosen thread that will be the stop-reason thread.
1003   Log *log = GetLog(POSIXLog::Process);
1004 
1005   NativeThreadProtocol *running_thread = nullptr;
1006   NativeThreadProtocol *stopped_thread = nullptr;
1007 
1008   LLDB_LOG(log, "selecting running thread for interrupt target");
1009   for (const auto &thread : m_threads) {
1010     // If we have a running or stepping thread, we'll call that the target of
1011     // the interrupt.
1012     const auto thread_state = thread->GetState();
1013     if (thread_state == eStateRunning || thread_state == eStateStepping) {
1014       running_thread = thread.get();
1015       break;
1016     } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) {
1017       // Remember the first non-dead stopped thread.  We'll use that as a
1018       // backup if there are no running threads.
1019       stopped_thread = thread.get();
1020     }
1021   }
1022 
1023   if (!running_thread && !stopped_thread) {
1024     Status error("found no running/stepping or live stopped threads as target "
1025                  "for interrupt");
1026     LLDB_LOG(log, "skipping due to error: {0}", error);
1027 
1028     return error;
1029   }
1030 
1031   NativeThreadProtocol *deferred_signal_thread =
1032       running_thread ? running_thread : stopped_thread;
1033 
1034   LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(),
1035            running_thread ? "running" : "stopped",
1036            deferred_signal_thread->GetID());
1037 
1038   StopRunningThreads(deferred_signal_thread->GetID());
1039 
1040   return Status();
1041 }
1042 
1043 Status NativeProcessLinux::Kill() {
1044   Log *log = GetLog(POSIXLog::Process);
1045   LLDB_LOG(log, "pid {0}", GetID());
1046 
1047   Status error;
1048 
1049   switch (m_state) {
1050   case StateType::eStateInvalid:
1051   case StateType::eStateExited:
1052   case StateType::eStateCrashed:
1053   case StateType::eStateDetached:
1054   case StateType::eStateUnloaded:
1055     // Nothing to do - the process is already dead.
1056     LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(),
1057              m_state);
1058     return error;
1059 
1060   case StateType::eStateConnected:
1061   case StateType::eStateAttaching:
1062   case StateType::eStateLaunching:
1063   case StateType::eStateStopped:
1064   case StateType::eStateRunning:
1065   case StateType::eStateStepping:
1066   case StateType::eStateSuspended:
1067     // We can try to kill a process in these states.
1068     break;
1069   }
1070 
1071   if (kill(GetID(), SIGKILL) != 0) {
1072     error.SetErrorToErrno();
1073     return error;
1074   }
1075 
1076   return error;
1077 }
1078 
1079 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr,
1080                                                MemoryRegionInfo &range_info) {
1081   // FIXME review that the final memory region returned extends to the end of
1082   // the virtual address space,
1083   // with no perms if it is not mapped.
1084 
1085   // Use an approach that reads memory regions from /proc/{pid}/maps. Assume
1086   // proc maps entries are in ascending order.
1087   // FIXME assert if we find differently.
1088 
1089   if (m_supports_mem_region == LazyBool::eLazyBoolNo) {
1090     // We're done.
1091     return Status("unsupported");
1092   }
1093 
1094   Status error = PopulateMemoryRegionCache();
1095   if (error.Fail()) {
1096     return error;
1097   }
1098 
1099   lldb::addr_t prev_base_address = 0;
1100 
1101   // FIXME start by finding the last region that is <= target address using
1102   // binary search.  Data is sorted.
1103   // There can be a ton of regions on pthreads apps with lots of threads.
1104   for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end();
1105        ++it) {
1106     MemoryRegionInfo &proc_entry_info = it->first;
1107 
1108     // Sanity check assumption that /proc/{pid}/maps entries are ascending.
1109     assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) &&
1110            "descending /proc/pid/maps entries detected, unexpected");
1111     prev_base_address = proc_entry_info.GetRange().GetRangeBase();
1112     UNUSED_IF_ASSERT_DISABLED(prev_base_address);
1113 
1114     // If the target address comes before this entry, indicate distance to next
1115     // region.
1116     if (load_addr < proc_entry_info.GetRange().GetRangeBase()) {
1117       range_info.GetRange().SetRangeBase(load_addr);
1118       range_info.GetRange().SetByteSize(
1119           proc_entry_info.GetRange().GetRangeBase() - load_addr);
1120       range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1121       range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1122       range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1123       range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1124 
1125       return error;
1126     } else if (proc_entry_info.GetRange().Contains(load_addr)) {
1127       // The target address is within the memory region we're processing here.
1128       range_info = proc_entry_info;
1129       return error;
1130     }
1131 
1132     // The target memory address comes somewhere after the region we just
1133     // parsed.
1134   }
1135 
1136   // If we made it here, we didn't find an entry that contained the given
1137   // address. Return the load_addr as start and the amount of bytes betwwen
1138   // load address and the end of the memory as size.
1139   range_info.GetRange().SetRangeBase(load_addr);
1140   range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS);
1141   range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo);
1142   range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo);
1143   range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo);
1144   range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo);
1145   return error;
1146 }
1147 
1148 Status NativeProcessLinux::PopulateMemoryRegionCache() {
1149   Log *log = GetLog(POSIXLog::Process);
1150 
1151   // If our cache is empty, pull the latest.  There should always be at least
1152   // one memory region if memory region handling is supported.
1153   if (!m_mem_region_cache.empty()) {
1154     LLDB_LOG(log, "reusing {0} cached memory region entries",
1155              m_mem_region_cache.size());
1156     return Status();
1157   }
1158 
1159   Status Result;
1160   LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) {
1161     if (Info) {
1162       FileSpec file_spec(Info->GetName().GetCString());
1163       FileSystem::Instance().Resolve(file_spec);
1164       m_mem_region_cache.emplace_back(*Info, file_spec);
1165       return true;
1166     }
1167 
1168     Result = Info.takeError();
1169     m_supports_mem_region = LazyBool::eLazyBoolNo;
1170     LLDB_LOG(log, "failed to parse proc maps: {0}", Result);
1171     return false;
1172   };
1173 
1174   // Linux kernel since 2.6.14 has /proc/{pid}/smaps
1175   // if CONFIG_PROC_PAGE_MONITOR is enabled
1176   auto BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "smaps");
1177   if (BufferOrError)
1178     ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback);
1179   else {
1180     BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "maps");
1181     if (!BufferOrError) {
1182       m_supports_mem_region = LazyBool::eLazyBoolNo;
1183       return BufferOrError.getError();
1184     }
1185 
1186     ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback);
1187   }
1188 
1189   if (Result.Fail())
1190     return Result;
1191 
1192   if (m_mem_region_cache.empty()) {
1193     // No entries after attempting to read them.  This shouldn't happen if
1194     // /proc/{pid}/maps is supported. Assume we don't support map entries via
1195     // procfs.
1196     m_supports_mem_region = LazyBool::eLazyBoolNo;
1197     LLDB_LOG(log,
1198              "failed to find any procfs maps entries, assuming no support "
1199              "for memory region metadata retrieval");
1200     return Status("not supported");
1201   }
1202 
1203   LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps",
1204            m_mem_region_cache.size(), GetID());
1205 
1206   // We support memory retrieval, remember that.
1207   m_supports_mem_region = LazyBool::eLazyBoolYes;
1208   return Status();
1209 }
1210 
1211 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) {
1212   Log *log = GetLog(POSIXLog::Process);
1213   LLDB_LOG(log, "newBumpId={0}", newBumpId);
1214   LLDB_LOG(log, "clearing {0} entries from memory region cache",
1215            m_mem_region_cache.size());
1216   m_mem_region_cache.clear();
1217 }
1218 
1219 llvm::Expected<uint64_t>
1220 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) {
1221   PopulateMemoryRegionCache();
1222   auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) {
1223     return pair.first.GetExecutable() == MemoryRegionInfo::eYes &&
1224         pair.first.GetShared() != MemoryRegionInfo::eYes;
1225   });
1226   if (region_it == m_mem_region_cache.end())
1227     return llvm::createStringError(llvm::inconvertibleErrorCode(),
1228                                    "No executable memory region found!");
1229 
1230   addr_t exe_addr = region_it->first.GetRange().GetRangeBase();
1231 
1232   NativeThreadLinux &thread = *GetCurrentThread();
1233   assert(thread.GetState() == eStateStopped);
1234   NativeRegisterContextLinux &reg_ctx = thread.GetRegisterContext();
1235 
1236   NativeRegisterContextLinux::SyscallData syscall_data =
1237       *reg_ctx.GetSyscallData();
1238 
1239   WritableDataBufferSP registers_sp;
1240   if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError())
1241     return std::move(Err);
1242   auto restore_regs = llvm::make_scope_exit(
1243       [&] { reg_ctx.WriteAllRegisterValues(registers_sp); });
1244 
1245   llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size());
1246   size_t bytes_read;
1247   if (llvm::Error Err =
1248           ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read)
1249               .ToError()) {
1250     return std::move(Err);
1251   }
1252 
1253   auto restore_mem = llvm::make_scope_exit(
1254       [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); });
1255 
1256   if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError())
1257     return std::move(Err);
1258 
1259   for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) {
1260     if (llvm::Error Err =
1261             reg_ctx
1262                 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip))
1263                 .ToError()) {
1264       return std::move(Err);
1265     }
1266   }
1267   if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(),
1268                                     syscall_data.Insn.size(), bytes_read)
1269                             .ToError())
1270     return std::move(Err);
1271 
1272   m_mem_region_cache.clear();
1273 
1274   // With software single stepping the syscall insn buffer must also include a
1275   // trap instruction to stop the process.
1276   int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT;
1277   if (llvm::Error Err =
1278           PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError())
1279     return std::move(Err);
1280 
1281   int status;
1282   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(),
1283                                                  &status, __WALL);
1284   if (wait_pid == -1) {
1285     return llvm::errorCodeToError(
1286         std::error_code(errno, std::generic_category()));
1287   }
1288   assert((unsigned)wait_pid == thread.GetID());
1289 
1290   uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH);
1291 
1292   // Values larger than this are actually negative errno numbers.
1293   uint64_t errno_threshold =
1294       (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000;
1295   if (result > errno_threshold) {
1296     return llvm::errorCodeToError(
1297         std::error_code(-result & 0xfff, std::generic_category()));
1298   }
1299 
1300   return result;
1301 }
1302 
1303 llvm::Expected<addr_t>
1304 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) {
1305 
1306   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1307       GetCurrentThread()->GetRegisterContext().GetMmapData();
1308   if (!mmap_data)
1309     return llvm::make_error<UnimplementedError>();
1310 
1311   unsigned prot = PROT_NONE;
1312   assert((permissions & (ePermissionsReadable | ePermissionsWritable |
1313                          ePermissionsExecutable)) == permissions &&
1314          "Unknown permission!");
1315   if (permissions & ePermissionsReadable)
1316     prot |= PROT_READ;
1317   if (permissions & ePermissionsWritable)
1318     prot |= PROT_WRITE;
1319   if (permissions & ePermissionsExecutable)
1320     prot |= PROT_EXEC;
1321 
1322   llvm::Expected<uint64_t> Result =
1323       Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE,
1324                uint64_t(-1), 0});
1325   if (Result)
1326     m_allocated_memory.try_emplace(*Result, size);
1327   return Result;
1328 }
1329 
1330 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) {
1331   llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data =
1332       GetCurrentThread()->GetRegisterContext().GetMmapData();
1333   if (!mmap_data)
1334     return llvm::make_error<UnimplementedError>();
1335 
1336   auto it = m_allocated_memory.find(addr);
1337   if (it == m_allocated_memory.end())
1338     return llvm::createStringError(llvm::errc::invalid_argument,
1339                                    "Memory not allocated by the debugger.");
1340 
1341   llvm::Expected<uint64_t> Result =
1342       Syscall({mmap_data->SysMunmap, addr, it->second});
1343   if (!Result)
1344     return Result.takeError();
1345 
1346   m_allocated_memory.erase(it);
1347   return llvm::Error::success();
1348 }
1349 
1350 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr,
1351                                           size_t len,
1352                                           std::vector<uint8_t> &tags) {
1353   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1354       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1355   if (!details)
1356     return Status(details.takeError());
1357 
1358   // Ignore 0 length read
1359   if (!len)
1360     return Status();
1361 
1362   // lldb will align the range it requests but it is not required to by
1363   // the protocol so we'll do it again just in case.
1364   // Remove tag bits too. Ptrace calls may work regardless but that
1365   // is not a guarantee.
1366   MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1367   range = details->manager->ExpandToGranule(range);
1368 
1369   // Allocate enough space for all tags to be read
1370   size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize();
1371   tags.resize(num_tags * details->manager->GetTagSizeInBytes());
1372 
1373   struct iovec tags_iovec;
1374   uint8_t *dest = tags.data();
1375   lldb::addr_t read_addr = range.GetRangeBase();
1376 
1377   // This call can return partial data so loop until we error or
1378   // get all tags back.
1379   while (num_tags) {
1380     tags_iovec.iov_base = dest;
1381     tags_iovec.iov_len = num_tags;
1382 
1383     Status error = NativeProcessLinux::PtraceWrapper(
1384         details->ptrace_read_req, GetCurrentThreadID(),
1385         reinterpret_cast<void *>(read_addr), static_cast<void *>(&tags_iovec),
1386         0, nullptr);
1387 
1388     if (error.Fail()) {
1389       // Discard partial reads
1390       tags.resize(0);
1391       return error;
1392     }
1393 
1394     size_t tags_read = tags_iovec.iov_len;
1395     assert(tags_read && (tags_read <= num_tags));
1396 
1397     dest += tags_read * details->manager->GetTagSizeInBytes();
1398     read_addr += details->manager->GetGranuleSize() * tags_read;
1399     num_tags -= tags_read;
1400   }
1401 
1402   return Status();
1403 }
1404 
1405 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr,
1406                                            size_t len,
1407                                            const std::vector<uint8_t> &tags) {
1408   llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details =
1409       GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type);
1410   if (!details)
1411     return Status(details.takeError());
1412 
1413   // Ignore 0 length write
1414   if (!len)
1415     return Status();
1416 
1417   // lldb will align the range it requests but it is not required to by
1418   // the protocol so we'll do it again just in case.
1419   // Remove tag bits too. Ptrace calls may work regardless but that
1420   // is not a guarantee.
1421   MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len);
1422   range = details->manager->ExpandToGranule(range);
1423 
1424   // Not checking number of tags here, we may repeat them below
1425   llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err =
1426       details->manager->UnpackTagsData(tags);
1427   if (!unpacked_tags_or_err)
1428     return Status(unpacked_tags_or_err.takeError());
1429 
1430   llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err =
1431       details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range);
1432   if (!repeated_tags_or_err)
1433     return Status(repeated_tags_or_err.takeError());
1434 
1435   // Repack them for ptrace to use
1436   llvm::Expected<std::vector<uint8_t>> final_tag_data =
1437       details->manager->PackTags(*repeated_tags_or_err);
1438   if (!final_tag_data)
1439     return Status(final_tag_data.takeError());
1440 
1441   struct iovec tags_vec;
1442   uint8_t *src = final_tag_data->data();
1443   lldb::addr_t write_addr = range.GetRangeBase();
1444   // unpacked tags size because the number of bytes per tag might not be 1
1445   size_t num_tags = repeated_tags_or_err->size();
1446 
1447   // This call can partially write tags, so we loop until we
1448   // error or all tags have been written.
1449   while (num_tags > 0) {
1450     tags_vec.iov_base = src;
1451     tags_vec.iov_len = num_tags;
1452 
1453     Status error = NativeProcessLinux::PtraceWrapper(
1454         details->ptrace_write_req, GetCurrentThreadID(),
1455         reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0,
1456         nullptr);
1457 
1458     if (error.Fail()) {
1459       // Don't attempt to restore the original values in the case of a partial
1460       // write
1461       return error;
1462     }
1463 
1464     size_t tags_written = tags_vec.iov_len;
1465     assert(tags_written && (tags_written <= num_tags));
1466 
1467     src += tags_written * details->manager->GetTagSizeInBytes();
1468     write_addr += details->manager->GetGranuleSize() * tags_written;
1469     num_tags -= tags_written;
1470   }
1471 
1472   return Status();
1473 }
1474 
1475 size_t NativeProcessLinux::UpdateThreads() {
1476   // The NativeProcessLinux monitoring threads are always up to date with
1477   // respect to thread state and they keep the thread list populated properly.
1478   // All this method needs to do is return the thread count.
1479   return m_threads.size();
1480 }
1481 
1482 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size,
1483                                          bool hardware) {
1484   if (hardware)
1485     return SetHardwareBreakpoint(addr, size);
1486   else
1487     return SetSoftwareBreakpoint(addr, size);
1488 }
1489 
1490 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) {
1491   if (hardware)
1492     return RemoveHardwareBreakpoint(addr);
1493   else
1494     return NativeProcessProtocol::RemoveBreakpoint(addr);
1495 }
1496 
1497 llvm::Expected<llvm::ArrayRef<uint8_t>>
1498 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) {
1499   // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the
1500   // linux kernel does otherwise.
1501   static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7};
1502   static const uint8_t g_thumb_opcode[] = {0x01, 0xde};
1503 
1504   switch (GetArchitecture().GetMachine()) {
1505   case llvm::Triple::arm:
1506     switch (size_hint) {
1507     case 2:
1508       return llvm::makeArrayRef(g_thumb_opcode);
1509     case 4:
1510       return llvm::makeArrayRef(g_arm_opcode);
1511     default:
1512       return llvm::createStringError(llvm::inconvertibleErrorCode(),
1513                                      "Unrecognised trap opcode size hint!");
1514     }
1515   default:
1516     return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint);
1517   }
1518 }
1519 
1520 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size,
1521                                       size_t &bytes_read) {
1522   if (ProcessVmReadvSupported()) {
1523     // The process_vm_readv path is about 50 times faster than ptrace api. We
1524     // want to use this syscall if it is supported.
1525 
1526     struct iovec local_iov, remote_iov;
1527     local_iov.iov_base = buf;
1528     local_iov.iov_len = size;
1529     remote_iov.iov_base = reinterpret_cast<void *>(addr);
1530     remote_iov.iov_len = size;
1531 
1532     bytes_read = process_vm_readv(GetCurrentThreadID(), &local_iov, 1,
1533                                   &remote_iov, 1, 0);
1534     const bool success = bytes_read == size;
1535 
1536     Log *log = GetLog(POSIXLog::Process);
1537     LLDB_LOG(log,
1538              "using process_vm_readv to read {0} bytes from inferior "
1539              "address {1:x}: {2}",
1540              size, addr, success ? "Success" : llvm::sys::StrError(errno));
1541 
1542     if (success)
1543       return Status();
1544     // else the call failed for some reason, let's retry the read using ptrace
1545     // api.
1546   }
1547 
1548   unsigned char *dst = static_cast<unsigned char *>(buf);
1549   size_t remainder;
1550   long data;
1551 
1552   Log *log = GetLog(POSIXLog::Memory);
1553   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1554 
1555   for (bytes_read = 0; bytes_read < size; bytes_read += remainder) {
1556     Status error = NativeProcessLinux::PtraceWrapper(
1557         PTRACE_PEEKDATA, GetCurrentThreadID(), (void *)addr, nullptr, 0, &data);
1558     if (error.Fail())
1559       return error;
1560 
1561     remainder = size - bytes_read;
1562     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1563 
1564     // Copy the data into our buffer
1565     memcpy(dst, &data, remainder);
1566 
1567     LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1568     addr += k_ptrace_word_size;
1569     dst += k_ptrace_word_size;
1570   }
1571   return Status();
1572 }
1573 
1574 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf,
1575                                        size_t size, size_t &bytes_written) {
1576   const unsigned char *src = static_cast<const unsigned char *>(buf);
1577   size_t remainder;
1578   Status error;
1579 
1580   Log *log = GetLog(POSIXLog::Memory);
1581   LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size);
1582 
1583   for (bytes_written = 0; bytes_written < size; bytes_written += remainder) {
1584     remainder = size - bytes_written;
1585     remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder;
1586 
1587     if (remainder == k_ptrace_word_size) {
1588       unsigned long data = 0;
1589       memcpy(&data, src, k_ptrace_word_size);
1590 
1591       LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data);
1592       error = NativeProcessLinux::PtraceWrapper(
1593           PTRACE_POKEDATA, GetCurrentThreadID(), (void *)addr, (void *)data);
1594       if (error.Fail())
1595         return error;
1596     } else {
1597       unsigned char buff[8];
1598       size_t bytes_read;
1599       error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read);
1600       if (error.Fail())
1601         return error;
1602 
1603       memcpy(buff, src, remainder);
1604 
1605       size_t bytes_written_rec;
1606       error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec);
1607       if (error.Fail())
1608         return error;
1609 
1610       LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src,
1611                *(unsigned long *)buff);
1612     }
1613 
1614     addr += k_ptrace_word_size;
1615     src += k_ptrace_word_size;
1616   }
1617   return error;
1618 }
1619 
1620 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const {
1621   return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo);
1622 }
1623 
1624 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid,
1625                                            unsigned long *message) {
1626   return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message);
1627 }
1628 
1629 Status NativeProcessLinux::Detach(lldb::tid_t tid) {
1630   if (tid == LLDB_INVALID_THREAD_ID)
1631     return Status();
1632 
1633   return PtraceWrapper(PTRACE_DETACH, tid);
1634 }
1635 
1636 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) {
1637   for (const auto &thread : m_threads) {
1638     assert(thread && "thread list should not contain NULL threads");
1639     if (thread->GetID() == thread_id) {
1640       // We have this thread.
1641       return true;
1642     }
1643   }
1644 
1645   // We don't have this thread.
1646   return false;
1647 }
1648 
1649 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) {
1650   Log *const log = GetLog(POSIXLog::Thread);
1651   lldb::tid_t thread_id = thread.GetID();
1652   LLDB_LOG(log, "tid: {0}", thread_id);
1653 
1654   auto it = llvm::find_if(m_threads, [&](const auto &thread_up) {
1655     return thread_up.get() == &thread;
1656   });
1657   assert(it != m_threads.end());
1658   m_threads.erase(it);
1659 
1660   NotifyTracersOfThreadDestroyed(thread_id);
1661   SignalIfAllThreadsStopped();
1662 }
1663 
1664 void NativeProcessLinux::NotifyTracersProcessDidStop() {
1665   m_intel_pt_collector.ProcessDidStop();
1666 }
1667 
1668 void NativeProcessLinux::NotifyTracersProcessWillResume() {
1669   m_intel_pt_collector.ProcessWillResume();
1670 }
1671 
1672 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) {
1673   Log *log = GetLog(POSIXLog::Thread);
1674   Status error(m_intel_pt_collector.OnThreadCreated(tid));
1675   if (error.Fail())
1676     LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}",
1677              tid, error.AsCString());
1678   return error;
1679 }
1680 
1681 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) {
1682   Log *log = GetLog(POSIXLog::Thread);
1683   Status error(m_intel_pt_collector.OnThreadDestroyed(tid));
1684   if (error.Fail())
1685     LLDB_LOG(log,
1686              "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}",
1687              tid, error.AsCString());
1688   return error;
1689 }
1690 
1691 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id,
1692                                                  bool resume) {
1693   Log *log = GetLog(POSIXLog::Thread);
1694   LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id);
1695 
1696   assert(!HasThreadNoLock(thread_id) &&
1697          "attempted to add a thread by id that already exists");
1698 
1699   // If this is the first thread, save it as the current thread
1700   if (m_threads.empty())
1701     SetCurrentThreadID(thread_id);
1702 
1703   m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id));
1704   NativeThreadLinux &thread =
1705       static_cast<NativeThreadLinux &>(*m_threads.back());
1706 
1707   Status tracing_error = NotifyTracersOfNewThread(thread.GetID());
1708   if (tracing_error.Fail()) {
1709     thread.SetStoppedByProcessorTrace(tracing_error.AsCString());
1710     StopRunningThreads(thread.GetID());
1711   } else if (resume)
1712     ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER);
1713   else
1714     thread.SetStoppedBySignal(SIGSTOP);
1715 
1716   return thread;
1717 }
1718 
1719 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path,
1720                                                    FileSpec &file_spec) {
1721   Status error = PopulateMemoryRegionCache();
1722   if (error.Fail())
1723     return error;
1724 
1725   FileSpec module_file_spec(module_path);
1726   FileSystem::Instance().Resolve(module_file_spec);
1727 
1728   file_spec.Clear();
1729   for (const auto &it : m_mem_region_cache) {
1730     if (it.second.GetFilename() == module_file_spec.GetFilename()) {
1731       file_spec = it.second;
1732       return Status();
1733     }
1734   }
1735   return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!",
1736                 module_file_spec.GetFilename().AsCString(), GetID());
1737 }
1738 
1739 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name,
1740                                               lldb::addr_t &load_addr) {
1741   load_addr = LLDB_INVALID_ADDRESS;
1742   Status error = PopulateMemoryRegionCache();
1743   if (error.Fail())
1744     return error;
1745 
1746   FileSpec file(file_name);
1747   for (const auto &it : m_mem_region_cache) {
1748     if (it.second == file) {
1749       load_addr = it.first.GetRange().GetRangeBase();
1750       return Status();
1751     }
1752   }
1753   return Status("No load address found for specified file.");
1754 }
1755 
1756 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) {
1757   return static_cast<NativeThreadLinux *>(
1758       NativeProcessProtocol::GetThreadByID(tid));
1759 }
1760 
1761 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() {
1762   return static_cast<NativeThreadLinux *>(
1763       NativeProcessProtocol::GetCurrentThread());
1764 }
1765 
1766 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread,
1767                                         lldb::StateType state, int signo) {
1768   Log *const log = GetLog(POSIXLog::Thread);
1769   LLDB_LOG(log, "tid: {0}", thread.GetID());
1770 
1771   // Before we do the resume below, first check if we have a pending stop
1772   // notification that is currently waiting for all threads to stop.  This is
1773   // potentially a buggy situation since we're ostensibly waiting for threads
1774   // to stop before we send out the pending notification, and here we are
1775   // resuming one before we send out the pending stop notification.
1776   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) {
1777     LLDB_LOG(log,
1778              "about to resume tid {0} per explicit request but we have a "
1779              "pending stop notification (tid {1}) that is actively "
1780              "waiting for this thread to stop. Valid sequence of events?",
1781              thread.GetID(), m_pending_notification_tid);
1782   }
1783 
1784   // Request a resume.  We expect this to be synchronous and the system to
1785   // reflect it is running after this completes.
1786   switch (state) {
1787   case eStateRunning: {
1788     const auto resume_result = thread.Resume(signo);
1789     if (resume_result.Success())
1790       SetState(eStateRunning, true);
1791     return resume_result;
1792   }
1793   case eStateStepping: {
1794     const auto step_result = thread.SingleStep(signo);
1795     if (step_result.Success())
1796       SetState(eStateRunning, true);
1797     return step_result;
1798   }
1799   default:
1800     LLDB_LOG(log, "Unhandled state {0}.", state);
1801     llvm_unreachable("Unhandled state for resume");
1802   }
1803 }
1804 
1805 //===----------------------------------------------------------------------===//
1806 
1807 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) {
1808   Log *const log = GetLog(POSIXLog::Thread);
1809   LLDB_LOG(log, "about to process event: (triggering_tid: {0})",
1810            triggering_tid);
1811 
1812   m_pending_notification_tid = triggering_tid;
1813 
1814   // Request a stop for all the thread stops that need to be stopped and are
1815   // not already known to be stopped.
1816   for (const auto &thread : m_threads) {
1817     if (StateIsRunningState(thread->GetState()))
1818       static_cast<NativeThreadLinux *>(thread.get())->RequestStop();
1819   }
1820 
1821   SignalIfAllThreadsStopped();
1822   LLDB_LOG(log, "event processing done");
1823 }
1824 
1825 void NativeProcessLinux::SignalIfAllThreadsStopped() {
1826   if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID)
1827     return; // No pending notification. Nothing to do.
1828 
1829   for (const auto &thread_sp : m_threads) {
1830     if (StateIsRunningState(thread_sp->GetState()))
1831       return; // Some threads are still running. Don't signal yet.
1832   }
1833 
1834   // We have a pending notification and all threads have stopped.
1835   Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints);
1836 
1837   // Clear any temporary breakpoints we used to implement software single
1838   // stepping.
1839   for (const auto &thread_info : m_threads_stepping_with_breakpoint) {
1840     Status error = RemoveBreakpoint(thread_info.second);
1841     if (error.Fail())
1842       LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}",
1843                thread_info.first, error);
1844   }
1845   m_threads_stepping_with_breakpoint.clear();
1846 
1847   // Notify the delegate about the stop
1848   SetCurrentThreadID(m_pending_notification_tid);
1849   SetState(StateType::eStateStopped, true);
1850   m_pending_notification_tid = LLDB_INVALID_THREAD_ID;
1851 }
1852 
1853 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) {
1854   Log *const log = GetLog(POSIXLog::Thread);
1855   LLDB_LOG(log, "tid: {0}", thread.GetID());
1856 
1857   if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID &&
1858       StateIsRunningState(thread.GetState())) {
1859     // We will need to wait for this new thread to stop as well before firing
1860     // the notification.
1861     thread.RequestStop();
1862   }
1863 }
1864 
1865 static llvm::Optional<WaitStatus> HandlePid(::pid_t pid) {
1866   Log *log = GetLog(POSIXLog::Process);
1867 
1868   int status;
1869   ::pid_t wait_pid = llvm::sys::RetryAfterSignal(
1870       -1, ::waitpid, pid, &status, __WALL | __WNOTHREAD | WNOHANG);
1871 
1872   if (wait_pid == 0)
1873     return llvm::None;
1874 
1875   if (wait_pid == -1) {
1876     Status error(errno, eErrorTypePOSIX);
1877     LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", pid,
1878              error);
1879     return llvm::None;
1880   }
1881 
1882   assert(wait_pid == pid);
1883 
1884   WaitStatus wait_status = WaitStatus::Decode(status);
1885 
1886   LLDB_LOG(log, "waitpid({0})  got status = {1}", pid, wait_status);
1887   return wait_status;
1888 }
1889 
1890 void NativeProcessLinux::SigchldHandler() {
1891   Log *log = GetLog(POSIXLog::Process);
1892 
1893   // Threads can appear or disappear as a result of event processing, so gather
1894   // the events upfront.
1895   llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events;
1896   bool checked_main_thread = false;
1897   for (const auto &thread_up : m_threads) {
1898     if (thread_up->GetID() == GetID())
1899       checked_main_thread = true;
1900 
1901     if (llvm::Optional<WaitStatus> status = HandlePid(thread_up->GetID()))
1902       tid_events.try_emplace(thread_up->GetID(), *status);
1903   }
1904   // Check the main thread even when we're not tracking it as process exit
1905   // events are reported that way.
1906   if (!checked_main_thread) {
1907     if (llvm::Optional<WaitStatus> status = HandlePid(GetID()))
1908       tid_events.try_emplace(GetID(), *status);
1909   }
1910 
1911   for (auto &KV : tid_events) {
1912     LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second);
1913     if (KV.first == GetID() && (KV.second.type == WaitStatus::Exit ||
1914                                 KV.second.type == WaitStatus::Signal)) {
1915 
1916       // The process exited.  We're done monitoring.  Report to delegate.
1917       SetExitStatus(KV.second, true);
1918       return;
1919     }
1920     NativeThreadLinux *thread = GetThreadByID(KV.first);
1921     assert(thread && "Why did this thread disappear?");
1922     MonitorCallback(*thread, KV.second);
1923   }
1924 }
1925 
1926 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets
1927 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*)
1928 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr,
1929                                          void *data, size_t data_size,
1930                                          long *result) {
1931   Status error;
1932   long int ret;
1933 
1934   Log *log = GetLog(POSIXLog::Ptrace);
1935 
1936   PtraceDisplayBytes(req, data, data_size);
1937 
1938   errno = 0;
1939   if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET)
1940     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1941                  *(unsigned int *)addr, data);
1942   else
1943     ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid),
1944                  addr, data);
1945 
1946   if (ret == -1)
1947     error.SetErrorToErrno();
1948 
1949   if (result)
1950     *result = ret;
1951 
1952   LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data,
1953            data_size, ret);
1954 
1955   PtraceDisplayBytes(req, data, data_size);
1956 
1957   if (error.Fail())
1958     LLDB_LOG(log, "ptrace() failed: {0}", error);
1959 
1960   return error;
1961 }
1962 
1963 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() {
1964   if (IntelPTCollector::IsSupported())
1965     return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"};
1966   return NativeProcessProtocol::TraceSupported();
1967 }
1968 
1969 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) {
1970   if (type == "intel-pt") {
1971     if (Expected<TraceIntelPTStartRequest> request =
1972             json::parse<TraceIntelPTStartRequest>(json_request,
1973                                                   "TraceIntelPTStartRequest")) {
1974       return m_intel_pt_collector.TraceStart(*request);
1975     } else
1976       return request.takeError();
1977   }
1978 
1979   return NativeProcessProtocol::TraceStart(json_request, type);
1980 }
1981 
1982 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) {
1983   if (request.type == "intel-pt")
1984     return m_intel_pt_collector.TraceStop(request);
1985   return NativeProcessProtocol::TraceStop(request);
1986 }
1987 
1988 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) {
1989   if (type == "intel-pt")
1990     return m_intel_pt_collector.GetState();
1991   return NativeProcessProtocol::TraceGetState(type);
1992 }
1993 
1994 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData(
1995     const TraceGetBinaryDataRequest &request) {
1996   if (request.type == "intel-pt")
1997     return m_intel_pt_collector.GetBinaryData(request);
1998   return NativeProcessProtocol::TraceGetBinaryData(request);
1999 }
2000