1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "NativeProcessLinux.h" 11 12 // C Includes 13 #include <errno.h> 14 #include <string.h> 15 #include <stdint.h> 16 #include <unistd.h> 17 18 // C++ Includes 19 #include <fstream> 20 #include <mutex> 21 #include <sstream> 22 #include <string> 23 #include <unordered_map> 24 25 // Other libraries and framework includes 26 #include "lldb/Core/EmulateInstruction.h" 27 #include "lldb/Core/Error.h" 28 #include "lldb/Core/ModuleSpec.h" 29 #include "lldb/Core/RegisterValue.h" 30 #include "lldb/Core/State.h" 31 #include "lldb/Host/Host.h" 32 #include "lldb/Host/ThreadLauncher.h" 33 #include "lldb/Host/common/NativeBreakpoint.h" 34 #include "lldb/Host/common/NativeRegisterContext.h" 35 #include "lldb/Symbol/ObjectFile.h" 36 #include "lldb/Target/Process.h" 37 #include "lldb/Target/ProcessLaunchInfo.h" 38 #include "lldb/Target/Target.h" 39 #include "lldb/Utility/LLDBAssert.h" 40 #include "lldb/Utility/PseudoTerminal.h" 41 #include "lldb/Utility/StringExtractor.h" 42 43 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 44 #include "NativeThreadLinux.h" 45 #include "ProcFileReader.h" 46 #include "Procfs.h" 47 48 // System includes - They have to be included after framework includes because they define some 49 // macros which collide with variable names in other modules 50 #include <linux/unistd.h> 51 #include <sys/socket.h> 52 53 #include <sys/syscall.h> 54 #include <sys/types.h> 55 #include <sys/user.h> 56 #include <sys/wait.h> 57 58 #include "lldb/Host/linux/Personality.h" 59 #include "lldb/Host/linux/Ptrace.h" 60 #include "lldb/Host/linux/Uio.h" 61 #include "lldb/Host/android/Android.h" 62 63 #define LLDB_PERSONALITY_GET_CURRENT_SETTINGS 0xffffffff 64 65 // Support hardware breakpoints in case it has not been defined 66 #ifndef TRAP_HWBKPT 67 #define TRAP_HWBKPT 4 68 #endif 69 70 using namespace lldb; 71 using namespace lldb_private; 72 using namespace lldb_private::process_linux; 73 using namespace llvm; 74 75 // Private bits we only need internally. 76 77 static bool ProcessVmReadvSupported() 78 { 79 static bool is_supported; 80 static std::once_flag flag; 81 82 std::call_once(flag, [] { 83 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 84 85 uint32_t source = 0x47424742; 86 uint32_t dest = 0; 87 88 struct iovec local, remote; 89 remote.iov_base = &source; 90 local.iov_base = &dest; 91 remote.iov_len = local.iov_len = sizeof source; 92 93 // We shall try if cross-process-memory reads work by attempting to read a value from our own process. 94 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 95 is_supported = (res == sizeof(source) && source == dest); 96 if (log) 97 { 98 if (is_supported) 99 log->Printf("%s: Detected kernel support for process_vm_readv syscall. Fast memory reads enabled.", 100 __FUNCTION__); 101 else 102 log->Printf("%s: syscall process_vm_readv failed (error: %s). Fast memory reads disabled.", 103 __FUNCTION__, strerror(errno)); 104 } 105 }); 106 107 return is_supported; 108 } 109 110 namespace 111 { 112 Error 113 ResolveProcessArchitecture(lldb::pid_t pid, ArchSpec &arch) 114 { 115 // Grab process info for the running process. 116 ProcessInstanceInfo process_info; 117 if (!Host::GetProcessInfo(pid, process_info)) 118 return Error("failed to get process info"); 119 120 // Resolve the executable module. 121 ModuleSpecList module_specs; 122 if (!ObjectFile::GetModuleSpecifications(process_info.GetExecutableFile(), 0, 0, module_specs)) 123 return Error("failed to get module specifications"); 124 assert(module_specs.GetSize() == 1); 125 126 arch = module_specs.GetModuleSpecRefAtIndex(0).GetArchitecture(); 127 if (arch.IsValid()) 128 return Error(); 129 else 130 return Error("failed to retrieve a valid architecture from the exe module"); 131 } 132 133 // Used to notify the parent about which part of the launch sequence failed. 134 enum LaunchCallSpecifier 135 { 136 ePtraceFailed, 137 eDupStdinFailed, 138 eDupStdoutFailed, 139 eDupStderrFailed, 140 eChdirFailed, 141 eExecFailed, 142 eSetGidFailed, 143 eSetSigMaskFailed, 144 eLaunchCallMax = eSetSigMaskFailed 145 }; 146 147 static uint8_t LLVM_ATTRIBUTE_NORETURN 148 ExitChildAbnormally(LaunchCallSpecifier spec) 149 { 150 static_assert(eLaunchCallMax < 0x8, "Have more launch calls than we are able to represent"); 151 // This may truncate the topmost bits of the errno because the exit code is only 8 bits wide. 152 // However, it should still give us a pretty good indication of what went wrong. (And the 153 // most common errors have small numbers anyway). 154 _exit(unsigned(spec) | (errno << 3)); 155 } 156 157 // The second member is the errno (or its 5 lowermost bits anyway). 158 inline std::pair<LaunchCallSpecifier, uint8_t> 159 DecodeChildExitCode(int exit_code) 160 { 161 return std::make_pair(LaunchCallSpecifier(exit_code & 0x7), exit_code >> 3); 162 } 163 164 void 165 DisplayBytes (StreamString &s, void *bytes, uint32_t count) 166 { 167 uint8_t *ptr = (uint8_t *)bytes; 168 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 169 for(uint32_t i=0; i<loop_count; i++) 170 { 171 s.Printf ("[%x]", *ptr); 172 ptr++; 173 } 174 } 175 176 void 177 PtraceDisplayBytes(int &req, void *data, size_t data_size) 178 { 179 StreamString buf; 180 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 181 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 182 183 if (verbose_log) 184 { 185 switch(req) 186 { 187 case PTRACE_POKETEXT: 188 { 189 DisplayBytes(buf, &data, 8); 190 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 191 break; 192 } 193 case PTRACE_POKEDATA: 194 { 195 DisplayBytes(buf, &data, 8); 196 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 197 break; 198 } 199 case PTRACE_POKEUSER: 200 { 201 DisplayBytes(buf, &data, 8); 202 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 203 break; 204 } 205 case PTRACE_SETREGS: 206 { 207 DisplayBytes(buf, data, data_size); 208 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 209 break; 210 } 211 case PTRACE_SETFPREGS: 212 { 213 DisplayBytes(buf, data, data_size); 214 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 215 break; 216 } 217 case PTRACE_SETSIGINFO: 218 { 219 DisplayBytes(buf, data, sizeof(siginfo_t)); 220 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 221 break; 222 } 223 case PTRACE_SETREGSET: 224 { 225 // Extract iov_base from data, which is a pointer to the struct IOVEC 226 DisplayBytes(buf, *(void **)data, data_size); 227 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 228 break; 229 } 230 default: 231 { 232 } 233 } 234 } 235 } 236 237 static constexpr unsigned k_ptrace_word_size = sizeof(void*); 238 static_assert(sizeof(long) >= k_ptrace_word_size, "Size of long must be larger than ptrace word size"); 239 } // end of anonymous namespace 240 241 // Simple helper function to ensure flags are enabled on the given file 242 // descriptor. 243 static Error 244 EnsureFDFlags(int fd, int flags) 245 { 246 Error error; 247 248 int status = fcntl(fd, F_GETFL); 249 if (status == -1) 250 { 251 error.SetErrorToErrno(); 252 return error; 253 } 254 255 if (fcntl(fd, F_SETFL, status | flags) == -1) 256 { 257 error.SetErrorToErrno(); 258 return error; 259 } 260 261 return error; 262 } 263 264 NativeProcessLinux::LaunchArgs::LaunchArgs(char const **argv, char const **envp, const FileSpec &stdin_file_spec, 265 const FileSpec &stdout_file_spec, const FileSpec &stderr_file_spec, 266 const FileSpec &working_dir, const ProcessLaunchInfo &launch_info) 267 : m_argv(argv), 268 m_envp(envp), 269 m_stdin_file_spec(stdin_file_spec), 270 m_stdout_file_spec(stdout_file_spec), 271 m_stderr_file_spec(stderr_file_spec), 272 m_working_dir(working_dir), 273 m_launch_info(launch_info) 274 { 275 } 276 277 NativeProcessLinux::LaunchArgs::~LaunchArgs() 278 { } 279 280 // ----------------------------------------------------------------------------- 281 // Public Static Methods 282 // ----------------------------------------------------------------------------- 283 284 Error 285 NativeProcessProtocol::Launch ( 286 ProcessLaunchInfo &launch_info, 287 NativeProcessProtocol::NativeDelegate &native_delegate, 288 MainLoop &mainloop, 289 NativeProcessProtocolSP &native_process_sp) 290 { 291 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 292 293 Error error; 294 295 // Verify the working directory is valid if one was specified. 296 FileSpec working_dir{launch_info.GetWorkingDirectory()}; 297 if (working_dir && 298 (!working_dir.ResolvePath() || 299 working_dir.GetFileType() != FileSpec::eFileTypeDirectory)) 300 { 301 error.SetErrorStringWithFormat ("No such file or directory: %s", 302 working_dir.GetCString()); 303 return error; 304 } 305 306 const FileAction *file_action; 307 308 // Default of empty will mean to use existing open file descriptors. 309 FileSpec stdin_file_spec{}; 310 FileSpec stdout_file_spec{}; 311 FileSpec stderr_file_spec{}; 312 313 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 314 if (file_action) 315 stdin_file_spec = file_action->GetFileSpec(); 316 317 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 318 if (file_action) 319 stdout_file_spec = file_action->GetFileSpec(); 320 321 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 322 if (file_action) 323 stderr_file_spec = file_action->GetFileSpec(); 324 325 if (log) 326 { 327 if (stdin_file_spec) 328 log->Printf ("NativeProcessLinux::%s setting STDIN to '%s'", 329 __FUNCTION__, stdin_file_spec.GetCString()); 330 else 331 log->Printf ("NativeProcessLinux::%s leaving STDIN as is", __FUNCTION__); 332 333 if (stdout_file_spec) 334 log->Printf ("NativeProcessLinux::%s setting STDOUT to '%s'", 335 __FUNCTION__, stdout_file_spec.GetCString()); 336 else 337 log->Printf ("NativeProcessLinux::%s leaving STDOUT as is", __FUNCTION__); 338 339 if (stderr_file_spec) 340 log->Printf ("NativeProcessLinux::%s setting STDERR to '%s'", 341 __FUNCTION__, stderr_file_spec.GetCString()); 342 else 343 log->Printf ("NativeProcessLinux::%s leaving STDERR as is", __FUNCTION__); 344 } 345 346 // Create the NativeProcessLinux in launch mode. 347 native_process_sp.reset (new NativeProcessLinux ()); 348 349 if (log) 350 { 351 int i = 0; 352 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 353 { 354 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 355 ++i; 356 } 357 } 358 359 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 360 { 361 native_process_sp.reset (); 362 error.SetErrorStringWithFormat ("failed to register the native delegate"); 363 return error; 364 } 365 366 std::static_pointer_cast<NativeProcessLinux> (native_process_sp)->LaunchInferior ( 367 mainloop, 368 launch_info.GetArguments ().GetConstArgumentVector (), 369 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 370 stdin_file_spec, 371 stdout_file_spec, 372 stderr_file_spec, 373 working_dir, 374 launch_info, 375 error); 376 377 if (error.Fail ()) 378 { 379 native_process_sp.reset (); 380 if (log) 381 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 382 return error; 383 } 384 385 launch_info.SetProcessID (native_process_sp->GetID ()); 386 387 return error; 388 } 389 390 Error 391 NativeProcessProtocol::Attach ( 392 lldb::pid_t pid, 393 NativeProcessProtocol::NativeDelegate &native_delegate, 394 MainLoop &mainloop, 395 NativeProcessProtocolSP &native_process_sp) 396 { 397 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 398 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 399 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 400 401 // Retrieve the architecture for the running process. 402 ArchSpec process_arch; 403 Error error = ResolveProcessArchitecture(pid, process_arch); 404 if (!error.Success ()) 405 return error; 406 407 std::shared_ptr<NativeProcessLinux> native_process_linux_sp (new NativeProcessLinux ()); 408 409 if (!native_process_linux_sp->RegisterNativeDelegate (native_delegate)) 410 { 411 error.SetErrorStringWithFormat ("failed to register the native delegate"); 412 return error; 413 } 414 415 native_process_linux_sp->AttachToInferior (mainloop, pid, error); 416 if (!error.Success ()) 417 return error; 418 419 native_process_sp = native_process_linux_sp; 420 return error; 421 } 422 423 // ----------------------------------------------------------------------------- 424 // Public Instance Methods 425 // ----------------------------------------------------------------------------- 426 427 NativeProcessLinux::NativeProcessLinux () : 428 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 429 m_arch (), 430 m_supports_mem_region (eLazyBoolCalculate), 431 m_mem_region_cache (), 432 m_pending_notification_tid(LLDB_INVALID_THREAD_ID) 433 { 434 } 435 436 void 437 NativeProcessLinux::LaunchInferior ( 438 MainLoop &mainloop, 439 const char *argv[], 440 const char *envp[], 441 const FileSpec &stdin_file_spec, 442 const FileSpec &stdout_file_spec, 443 const FileSpec &stderr_file_spec, 444 const FileSpec &working_dir, 445 const ProcessLaunchInfo &launch_info, 446 Error &error) 447 { 448 m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, 449 [this] (MainLoopBase &) { SigchldHandler(); }, error); 450 if (! m_sigchld_handle) 451 return; 452 453 SetState (eStateLaunching); 454 455 std::unique_ptr<LaunchArgs> args( 456 new LaunchArgs(argv, envp, stdin_file_spec, stdout_file_spec, stderr_file_spec, working_dir, launch_info)); 457 458 Launch(args.get(), error); 459 } 460 461 void 462 NativeProcessLinux::AttachToInferior (MainLoop &mainloop, lldb::pid_t pid, Error &error) 463 { 464 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 465 if (log) 466 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 467 468 m_sigchld_handle = mainloop.RegisterSignal(SIGCHLD, 469 [this] (MainLoopBase &) { SigchldHandler(); }, error); 470 if (! m_sigchld_handle) 471 return; 472 473 error = ResolveProcessArchitecture(pid, m_arch); 474 if (!error.Success()) 475 return; 476 477 // Set the architecture to the exe architecture. 478 if (log) 479 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 480 481 m_pid = pid; 482 SetState(eStateAttaching); 483 484 Attach(pid, error); 485 } 486 487 void 488 NativeProcessLinux::ChildFunc(const LaunchArgs &args) 489 { 490 // Start tracing this child that is about to exec. 491 if (ptrace(PTRACE_TRACEME, 0, nullptr, nullptr) == -1) 492 ExitChildAbnormally(ePtraceFailed); 493 494 // Do not inherit setgid powers. 495 if (setgid(getgid()) != 0) 496 ExitChildAbnormally(eSetGidFailed); 497 498 // Attempt to have our own process group. 499 if (setpgid(0, 0) != 0) 500 { 501 // FIXME log that this failed. This is common. 502 // Don't allow this to prevent an inferior exec. 503 } 504 505 // Dup file descriptors if needed. 506 if (args.m_stdin_file_spec) 507 if (!DupDescriptor(args.m_stdin_file_spec, STDIN_FILENO, O_RDONLY)) 508 ExitChildAbnormally(eDupStdinFailed); 509 510 if (args.m_stdout_file_spec) 511 if (!DupDescriptor(args.m_stdout_file_spec, STDOUT_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 512 ExitChildAbnormally(eDupStdoutFailed); 513 514 if (args.m_stderr_file_spec) 515 if (!DupDescriptor(args.m_stderr_file_spec, STDERR_FILENO, O_WRONLY | O_CREAT | O_TRUNC)) 516 ExitChildAbnormally(eDupStderrFailed); 517 518 // Close everything besides stdin, stdout, and stderr that has no file 519 // action to avoid leaking 520 for (int fd = 3; fd < sysconf(_SC_OPEN_MAX); ++fd) 521 if (!args.m_launch_info.GetFileActionForFD(fd)) 522 close(fd); 523 524 // Change working directory 525 if (args.m_working_dir && 0 != ::chdir(args.m_working_dir.GetCString())) 526 ExitChildAbnormally(eChdirFailed); 527 528 // Disable ASLR if requested. 529 if (args.m_launch_info.GetFlags().Test(lldb::eLaunchFlagDisableASLR)) 530 { 531 const int old_personality = personality(LLDB_PERSONALITY_GET_CURRENT_SETTINGS); 532 if (old_personality == -1) 533 { 534 // Can't retrieve Linux personality. Cannot disable ASLR. 535 } 536 else 537 { 538 const int new_personality = personality(ADDR_NO_RANDOMIZE | old_personality); 539 if (new_personality == -1) 540 { 541 // Disabling ASLR failed. 542 } 543 else 544 { 545 // Disabling ASLR succeeded. 546 } 547 } 548 } 549 550 // Clear the signal mask to prevent the child from being affected by 551 // any masking done by the parent. 552 sigset_t set; 553 if (sigemptyset(&set) != 0 || pthread_sigmask(SIG_SETMASK, &set, nullptr) != 0) 554 ExitChildAbnormally(eSetSigMaskFailed); 555 556 // Propagate the environment if one is not supplied. 557 const char **envp = args.m_envp; 558 if (envp == NULL || envp[0] == NULL) 559 envp = const_cast<const char **>(environ); 560 561 // Execute. We should never return... 562 execve(args.m_argv[0], const_cast<char *const *>(args.m_argv), const_cast<char *const *>(envp)); 563 564 if (errno == ETXTBSY) 565 { 566 // On android M and earlier we can get this error because the adb deamon can hold a write 567 // handle on the executable even after it has finished uploading it. This state lasts 568 // only a short time and happens only when there are many concurrent adb commands being 569 // issued, such as when running the test suite. (The file remains open when someone does 570 // an "adb shell" command in the fork() child before it has had a chance to exec.) Since 571 // this state should clear up quickly, wait a while and then give it one more go. 572 usleep(50000); 573 execve(args.m_argv[0], const_cast<char *const *>(args.m_argv), const_cast<char *const *>(envp)); 574 } 575 576 // ...unless exec fails. In which case we definitely need to end the child here. 577 ExitChildAbnormally(eExecFailed); 578 } 579 580 ::pid_t 581 NativeProcessLinux::Launch(LaunchArgs *args, Error &error) 582 { 583 assert (args && "null args"); 584 585 lldb_utility::PseudoTerminal terminal; 586 const size_t err_len = 1024; 587 char err_str[err_len]; 588 lldb::pid_t pid; 589 590 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 591 { 592 error.SetErrorToGenericError(); 593 error.SetErrorStringWithFormat("Process fork failed: %s", err_str); 594 return -1; 595 } 596 597 // Child process. 598 if (pid == 0) 599 { 600 // First, make sure we disable all logging. If we are logging to stdout, our logs can be 601 // mistaken for inferior output. 602 Log::DisableAllLogChannels(nullptr); 603 604 // terminal has already dupped the tty descriptors to stdin/out/err. 605 // This closes original fd from which they were copied (and avoids 606 // leaking descriptors to the debugged process. 607 terminal.CloseSlaveFileDescriptor(); 608 609 ChildFunc(*args); 610 } 611 612 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 613 614 // Wait for the child process to trap on its call to execve. 615 ::pid_t wpid; 616 int status; 617 if ((wpid = waitpid(pid, &status, 0)) < 0) 618 { 619 error.SetErrorToErrno(); 620 if (log) 621 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", 622 __FUNCTION__, error.AsCString ()); 623 624 // Mark the inferior as invalid. 625 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 626 SetState (StateType::eStateInvalid); 627 628 return -1; 629 } 630 else if (WIFEXITED(status)) 631 { 632 auto p = DecodeChildExitCode(WEXITSTATUS(status)); 633 Error child_error(p.second, eErrorTypePOSIX); 634 const char *failure_reason; 635 switch (p.first) 636 { 637 case ePtraceFailed: 638 failure_reason = "Child ptrace failed"; 639 break; 640 case eDupStdinFailed: 641 failure_reason = "Child open stdin failed"; 642 break; 643 case eDupStdoutFailed: 644 failure_reason = "Child open stdout failed"; 645 break; 646 case eDupStderrFailed: 647 failure_reason = "Child open stderr failed"; 648 break; 649 case eChdirFailed: 650 failure_reason = "Child failed to set working directory"; 651 break; 652 case eExecFailed: 653 failure_reason = "Child exec failed"; 654 break; 655 case eSetGidFailed: 656 failure_reason = "Child setgid failed"; 657 break; 658 case eSetSigMaskFailed: 659 failure_reason = "Child failed to set signal mask"; 660 break; 661 } 662 error.SetErrorStringWithFormat("%s: %d - %s (error code truncated)", failure_reason, child_error.GetError(), child_error.AsCString()); 663 664 if (log) 665 { 666 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 667 __FUNCTION__, 668 WEXITSTATUS(status)); 669 } 670 671 // Mark the inferior as invalid. 672 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 673 SetState (StateType::eStateInvalid); 674 675 return -1; 676 } 677 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 678 "Could not sync with inferior process."); 679 680 if (log) 681 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 682 683 error = SetDefaultPtraceOpts(pid); 684 if (error.Fail()) 685 { 686 if (log) 687 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 688 __FUNCTION__, error.AsCString ()); 689 690 // Mark the inferior as invalid. 691 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 692 SetState (StateType::eStateInvalid); 693 694 return -1; 695 } 696 697 // Release the master terminal descriptor and pass it off to the 698 // NativeProcessLinux instance. Similarly stash the inferior pid. 699 m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 700 m_pid = pid; 701 702 // Set the terminal fd to be in non blocking mode (it simplifies the 703 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 704 // descriptor to read from). 705 error = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 706 if (error.Fail()) 707 { 708 if (log) 709 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 710 __FUNCTION__, error.AsCString ()); 711 712 // Mark the inferior as invalid. 713 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 714 SetState (StateType::eStateInvalid); 715 716 return -1; 717 } 718 719 if (log) 720 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 721 722 ResolveProcessArchitecture(m_pid, m_arch); 723 NativeThreadLinuxSP thread_sp = AddThread(pid); 724 assert (thread_sp && "AddThread() returned a nullptr thread"); 725 thread_sp->SetStoppedBySignal(SIGSTOP); 726 ThreadWasCreated(*thread_sp); 727 728 // Let our process instance know the thread has stopped. 729 SetCurrentThreadID (thread_sp->GetID ()); 730 SetState (StateType::eStateStopped); 731 732 if (log) 733 { 734 if (error.Success ()) 735 { 736 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 737 } 738 else 739 { 740 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 741 __FUNCTION__, error.AsCString ()); 742 return -1; 743 } 744 } 745 return pid; 746 } 747 748 ::pid_t 749 NativeProcessLinux::Attach(lldb::pid_t pid, Error &error) 750 { 751 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 752 753 // Use a map to keep track of the threads which we have attached/need to attach. 754 Host::TidMap tids_to_attach; 755 if (pid <= 1) 756 { 757 error.SetErrorToGenericError(); 758 error.SetErrorString("Attaching to process 1 is not allowed."); 759 return -1; 760 } 761 762 while (Host::FindProcessThreads(pid, tids_to_attach)) 763 { 764 for (Host::TidMap::iterator it = tids_to_attach.begin(); 765 it != tids_to_attach.end();) 766 { 767 if (it->second == false) 768 { 769 lldb::tid_t tid = it->first; 770 771 // Attach to the requested process. 772 // An attach will cause the thread to stop with a SIGSTOP. 773 error = PtraceWrapper(PTRACE_ATTACH, tid); 774 if (error.Fail()) 775 { 776 // No such thread. The thread may have exited. 777 // More error handling may be needed. 778 if (error.GetError() == ESRCH) 779 { 780 it = tids_to_attach.erase(it); 781 continue; 782 } 783 else 784 return -1; 785 } 786 787 int status; 788 // Need to use __WALL otherwise we receive an error with errno=ECHLD 789 // At this point we should have a thread stopped if waitpid succeeds. 790 if ((status = waitpid(tid, NULL, __WALL)) < 0) 791 { 792 // No such thread. The thread may have exited. 793 // More error handling may be needed. 794 if (errno == ESRCH) 795 { 796 it = tids_to_attach.erase(it); 797 continue; 798 } 799 else 800 { 801 error.SetErrorToErrno(); 802 return -1; 803 } 804 } 805 806 error = SetDefaultPtraceOpts(tid); 807 if (error.Fail()) 808 return -1; 809 810 if (log) 811 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 812 813 it->second = true; 814 815 // Create the thread, mark it as stopped. 816 NativeThreadLinuxSP thread_sp (AddThread(static_cast<lldb::tid_t>(tid))); 817 assert (thread_sp && "AddThread() returned a nullptr"); 818 819 // This will notify this is a new thread and tell the system it is stopped. 820 thread_sp->SetStoppedBySignal(SIGSTOP); 821 ThreadWasCreated(*thread_sp); 822 SetCurrentThreadID (thread_sp->GetID ()); 823 } 824 825 // move the loop forward 826 ++it; 827 } 828 } 829 830 if (tids_to_attach.size() > 0) 831 { 832 m_pid = pid; 833 // Let our process instance know the thread has stopped. 834 SetState (StateType::eStateStopped); 835 } 836 else 837 { 838 error.SetErrorToGenericError(); 839 error.SetErrorString("No such process."); 840 return -1; 841 } 842 843 return pid; 844 } 845 846 Error 847 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 848 { 849 long ptrace_opts = 0; 850 851 // Have the child raise an event on exit. This is used to keep the child in 852 // limbo until it is destroyed. 853 ptrace_opts |= PTRACE_O_TRACEEXIT; 854 855 // Have the tracer trace threads which spawn in the inferior process. 856 // TODO: if we want to support tracing the inferiors' child, add the 857 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 858 ptrace_opts |= PTRACE_O_TRACECLONE; 859 860 // Have the tracer notify us before execve returns 861 // (needed to disable legacy SIGTRAP generation) 862 ptrace_opts |= PTRACE_O_TRACEEXEC; 863 864 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void*)ptrace_opts); 865 } 866 867 static ExitType convert_pid_status_to_exit_type (int status) 868 { 869 if (WIFEXITED (status)) 870 return ExitType::eExitTypeExit; 871 else if (WIFSIGNALED (status)) 872 return ExitType::eExitTypeSignal; 873 else if (WIFSTOPPED (status)) 874 return ExitType::eExitTypeStop; 875 else 876 { 877 // We don't know what this is. 878 return ExitType::eExitTypeInvalid; 879 } 880 } 881 882 static int convert_pid_status_to_return_code (int status) 883 { 884 if (WIFEXITED (status)) 885 return WEXITSTATUS (status); 886 else if (WIFSIGNALED (status)) 887 return WTERMSIG (status); 888 else if (WIFSTOPPED (status)) 889 return WSTOPSIG (status); 890 else 891 { 892 // We don't know what this is. 893 return ExitType::eExitTypeInvalid; 894 } 895 } 896 897 // Handles all waitpid events from the inferior process. 898 void 899 NativeProcessLinux::MonitorCallback(lldb::pid_t pid, 900 bool exited, 901 int signal, 902 int status) 903 { 904 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 905 906 // Certain activities differ based on whether the pid is the tid of the main thread. 907 const bool is_main_thread = (pid == GetID ()); 908 909 // Handle when the thread exits. 910 if (exited) 911 { 912 if (log) 913 log->Printf ("NativeProcessLinux::%s() got exit signal(%d) , tid = %" PRIu64 " (%s main thread)", __FUNCTION__, signal, pid, is_main_thread ? "is" : "is not"); 914 915 // This is a thread that exited. Ensure we're not tracking it anymore. 916 const bool thread_found = StopTrackingThread (pid); 917 918 if (is_main_thread) 919 { 920 // We only set the exit status and notify the delegate if we haven't already set the process 921 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 922 // for the main thread. 923 const bool already_notified = (GetState() == StateType::eStateExited) || (GetState () == StateType::eStateCrashed); 924 if (!already_notified) 925 { 926 if (log) 927 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (GetState ())); 928 // The main thread exited. We're done monitoring. Report to delegate. 929 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 930 931 // Notify delegate that our process has exited. 932 SetState (StateType::eStateExited, true); 933 } 934 else 935 { 936 if (log) 937 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 938 } 939 } 940 else 941 { 942 // Do we want to report to the delegate in this case? I think not. If this was an orderly 943 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 944 // and we would have done an all-stop then. 945 if (log) 946 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 947 } 948 return; 949 } 950 951 siginfo_t info; 952 const auto info_err = GetSignalInfo(pid, &info); 953 auto thread_sp = GetThreadByID(pid); 954 955 if (! thread_sp) 956 { 957 // Normally, the only situation when we cannot find the thread is if we have just 958 // received a new thread notification. This is indicated by GetSignalInfo() returning 959 // si_code == SI_USER and si_pid == 0 960 if (log) 961 log->Printf("NativeProcessLinux::%s received notification about an unknown tid %" PRIu64 ".", __FUNCTION__, pid); 962 963 if (info_err.Fail()) 964 { 965 if (log) 966 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") GetSignalInfo failed (%s). Ingoring this notification.", __FUNCTION__, pid, info_err.AsCString()); 967 return; 968 } 969 970 if (log && (info.si_code != SI_USER || info.si_pid != 0)) 971 log->Printf("NativeProcessLinux::%s (tid %" PRIu64 ") unexpected signal info (si_code: %d, si_pid: %d). Treating as a new thread notification anyway.", __FUNCTION__, pid, info.si_code, info.si_pid); 972 973 auto thread_sp = AddThread(pid); 974 // Resume the newly created thread. 975 ResumeThread(*thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 976 ThreadWasCreated(*thread_sp); 977 return; 978 } 979 980 // Get details on the signal raised. 981 if (info_err.Success()) 982 { 983 // We have retrieved the signal info. Dispatch appropriately. 984 if (info.si_signo == SIGTRAP) 985 MonitorSIGTRAP(info, *thread_sp); 986 else 987 MonitorSignal(info, *thread_sp, exited); 988 } 989 else 990 { 991 if (info_err.GetError() == EINVAL) 992 { 993 // This is a group stop reception for this tid. 994 // We can reach here if we reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the 995 // tracee, triggering the group-stop mechanism. Normally receiving these would stop 996 // the process, pending a SIGCONT. Simulating this state in a debugger is hard and is 997 // generally not needed (one use case is debugging background task being managed by a 998 // shell). For general use, it is sufficient to stop the process in a signal-delivery 999 // stop which happens before the group stop. This done by MonitorSignal and works 1000 // correctly for all signals. 1001 if (log) 1002 log->Printf("NativeProcessLinux::%s received a group stop for pid %" PRIu64 " tid %" PRIu64 ". Transparent handling of group stops not supported, resuming the thread.", __FUNCTION__, GetID (), pid); 1003 ResumeThread(*thread_sp, thread_sp->GetState(), LLDB_INVALID_SIGNAL_NUMBER); 1004 } 1005 else 1006 { 1007 // ptrace(GETSIGINFO) failed (but not due to group-stop). 1008 1009 // A return value of ESRCH means the thread/process is no longer on the system, 1010 // so it was killed somehow outside of our control. Either way, we can't do anything 1011 // with it anymore. 1012 1013 // Stop tracking the metadata for the thread since it's entirely off the system now. 1014 const bool thread_found = StopTrackingThread (pid); 1015 1016 if (log) 1017 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 1018 __FUNCTION__, info_err.AsCString(), pid, signal, status, info_err.GetError() == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 1019 1020 if (is_main_thread) 1021 { 1022 // Notify the delegate - our process is not available but appears to have been killed outside 1023 // our control. Is eStateExited the right exit state in this case? 1024 SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1025 SetState (StateType::eStateExited, true); 1026 } 1027 else 1028 { 1029 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 1030 if (log) 1031 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, GetID (), pid); 1032 } 1033 } 1034 } 1035 } 1036 1037 void 1038 NativeProcessLinux::WaitForNewThread(::pid_t tid) 1039 { 1040 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1041 1042 NativeThreadLinuxSP new_thread_sp = GetThreadByID(tid); 1043 1044 if (new_thread_sp) 1045 { 1046 // We are already tracking the thread - we got the event on the new thread (see 1047 // MonitorSignal) before this one. We are done. 1048 return; 1049 } 1050 1051 // The thread is not tracked yet, let's wait for it to appear. 1052 int status = -1; 1053 ::pid_t wait_pid; 1054 do 1055 { 1056 if (log) 1057 log->Printf ("NativeProcessLinux::%s() received thread creation event for tid %" PRIu32 ". tid not tracked yet, waiting for thread to appear...", __FUNCTION__, tid); 1058 wait_pid = waitpid(tid, &status, __WALL); 1059 } 1060 while (wait_pid == -1 && errno == EINTR); 1061 // Since we are waiting on a specific tid, this must be the creation event. But let's do 1062 // some checks just in case. 1063 if (wait_pid != tid) { 1064 if (log) 1065 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime", __FUNCTION__, tid); 1066 // The only way I know of this could happen is if the whole process was 1067 // SIGKILLed in the mean time. In any case, we can't do anything about that now. 1068 return; 1069 } 1070 if (WIFEXITED(status)) 1071 { 1072 if (log) 1073 log->Printf ("NativeProcessLinux::%s() waiting for tid %" PRIu32 " returned an 'exited' event. Not tracking the thread.", __FUNCTION__, tid); 1074 // Also a very improbable event. 1075 return; 1076 } 1077 1078 siginfo_t info; 1079 Error error = GetSignalInfo(tid, &info); 1080 if (error.Fail()) 1081 { 1082 if (log) 1083 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " failed. Assuming the thread has disappeared in the meantime.", __FUNCTION__, tid); 1084 return; 1085 } 1086 1087 if (((info.si_pid != 0) || (info.si_code != SI_USER)) && log) 1088 { 1089 // We should be getting a thread creation signal here, but we received something 1090 // else. There isn't much we can do about it now, so we will just log that. Since the 1091 // thread is alive and we are receiving events from it, we shall pretend that it was 1092 // created properly. 1093 log->Printf ("NativeProcessLinux::%s() GetSignalInfo for tid %" PRIu32 " received unexpected signal with code %d from pid %d.", __FUNCTION__, tid, info.si_code, info.si_pid); 1094 } 1095 1096 if (log) 1097 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": tracking new thread tid %" PRIu32, 1098 __FUNCTION__, GetID (), tid); 1099 1100 new_thread_sp = AddThread(tid); 1101 ResumeThread(*new_thread_sp, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1102 ThreadWasCreated(*new_thread_sp); 1103 } 1104 1105 void 1106 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, NativeThreadLinux &thread) 1107 { 1108 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1109 const bool is_main_thread = (thread.GetID() == GetID ()); 1110 1111 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 1112 1113 switch (info.si_code) 1114 { 1115 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 1116 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 1117 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 1118 1119 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 1120 { 1121 // This is the notification on the parent thread which informs us of new thread 1122 // creation. 1123 // We don't want to do anything with the parent thread so we just resume it. In case we 1124 // want to implement "break on thread creation" functionality, we would need to stop 1125 // here. 1126 1127 unsigned long event_message = 0; 1128 if (GetEventMessage(thread.GetID(), &event_message).Fail()) 1129 { 1130 if (log) 1131 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event but GetEventMessage failed so we don't know the new tid", __FUNCTION__, thread.GetID()); 1132 } else 1133 WaitForNewThread(event_message); 1134 1135 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 1136 break; 1137 } 1138 1139 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 1140 { 1141 NativeThreadLinuxSP main_thread_sp; 1142 if (log) 1143 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info.si_code ^ SIGTRAP); 1144 1145 // Exec clears any pending notifications. 1146 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1147 1148 // Remove all but the main thread here. Linux fork creates a new process which only copies the main thread. 1149 if (log) 1150 log->Printf ("NativeProcessLinux::%s exec received, stop tracking all but main thread", __FUNCTION__); 1151 1152 for (auto thread_sp : m_threads) 1153 { 1154 const bool is_main_thread = thread_sp && thread_sp->GetID () == GetID (); 1155 if (is_main_thread) 1156 { 1157 main_thread_sp = std::static_pointer_cast<NativeThreadLinux>(thread_sp); 1158 if (log) 1159 log->Printf ("NativeProcessLinux::%s found main thread with tid %" PRIu64 ", keeping", __FUNCTION__, main_thread_sp->GetID ()); 1160 } 1161 else 1162 { 1163 if (log) 1164 log->Printf ("NativeProcessLinux::%s discarding non-main-thread tid %" PRIu64 " due to exec", __FUNCTION__, thread_sp->GetID ()); 1165 } 1166 } 1167 1168 m_threads.clear (); 1169 1170 if (main_thread_sp) 1171 { 1172 m_threads.push_back (main_thread_sp); 1173 SetCurrentThreadID (main_thread_sp->GetID ()); 1174 main_thread_sp->SetStoppedByExec(); 1175 } 1176 else 1177 { 1178 SetCurrentThreadID (LLDB_INVALID_THREAD_ID); 1179 if (log) 1180 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 "no main thread found, discarded all threads, we're in a no-thread state!", __FUNCTION__, GetID ()); 1181 } 1182 1183 // Tell coordinator about about the "new" (since exec) stopped main thread. 1184 ThreadWasCreated(*main_thread_sp); 1185 1186 // Let our delegate know we have just exec'd. 1187 NotifyDidExec (); 1188 1189 // If we have a main thread, indicate we are stopped. 1190 assert (main_thread_sp && "exec called during ptraced process but no main thread metadata tracked"); 1191 1192 // Let the process know we're stopped. 1193 StopRunningThreads(main_thread_sp->GetID()); 1194 1195 break; 1196 } 1197 1198 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 1199 { 1200 // The inferior process or one of its threads is about to exit. 1201 // We don't want to do anything with the thread so we just resume it. In case we 1202 // want to implement "break on thread exit" functionality, we would need to stop 1203 // here. 1204 1205 unsigned long data = 0; 1206 if (GetEventMessage(thread.GetID(), &data).Fail()) 1207 data = -1; 1208 1209 if (log) 1210 { 1211 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 1212 __FUNCTION__, 1213 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 1214 thread.GetID(), 1215 is_main_thread ? "is main thread" : "not main thread"); 1216 } 1217 1218 if (is_main_thread) 1219 { 1220 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 1221 } 1222 1223 StateType state = thread.GetState(); 1224 if (! StateIsRunningState(state)) 1225 { 1226 // Due to a kernel bug, we may sometimes get this stop after the inferior gets a 1227 // SIGKILL. This confuses our state tracking logic in ResumeThread(), since normally, 1228 // we should not be receiving any ptrace events while the inferior is stopped. This 1229 // makes sure that the inferior is resumed and exits normally. 1230 state = eStateRunning; 1231 } 1232 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 1233 1234 break; 1235 } 1236 1237 case 0: 1238 case TRAP_TRACE: // We receive this on single stepping. 1239 case TRAP_HWBKPT: // We receive this on watchpoint hit 1240 { 1241 // If a watchpoint was hit, report it 1242 uint32_t wp_index; 1243 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, (uintptr_t)info.si_addr); 1244 if (error.Fail() && log) 1245 log->Printf("NativeProcessLinux::%s() " 1246 "received error while checking for watchpoint hits, " 1247 "pid = %" PRIu64 " error = %s", 1248 __FUNCTION__, thread.GetID(), error.AsCString()); 1249 if (wp_index != LLDB_INVALID_INDEX32) 1250 { 1251 MonitorWatchpoint(thread, wp_index); 1252 break; 1253 } 1254 1255 // Otherwise, report step over 1256 MonitorTrace(thread); 1257 break; 1258 } 1259 1260 case SI_KERNEL: 1261 #if defined __mips__ 1262 // For mips there is no special signal for watchpoint 1263 // So we check for watchpoint in kernel trap 1264 { 1265 // If a watchpoint was hit, report it 1266 uint32_t wp_index; 1267 Error error = thread.GetRegisterContext()->GetWatchpointHitIndex(wp_index, LLDB_INVALID_ADDRESS); 1268 if (error.Fail() && log) 1269 log->Printf("NativeProcessLinux::%s() " 1270 "received error while checking for watchpoint hits, " 1271 "pid = %" PRIu64 " error = %s", 1272 __FUNCTION__, thread.GetID(), error.AsCString()); 1273 if (wp_index != LLDB_INVALID_INDEX32) 1274 { 1275 MonitorWatchpoint(thread, wp_index); 1276 break; 1277 } 1278 } 1279 // NO BREAK 1280 #endif 1281 case TRAP_BRKPT: 1282 MonitorBreakpoint(thread); 1283 break; 1284 1285 case SIGTRAP: 1286 case (SIGTRAP | 0x80): 1287 if (log) 1288 log->Printf ("NativeProcessLinux::%s() received unknown SIGTRAP system call stop event, pid %" PRIu64 "tid %" PRIu64 ", resuming", __FUNCTION__, GetID (), thread.GetID()); 1289 1290 // Ignore these signals until we know more about them. 1291 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 1292 break; 1293 1294 default: 1295 assert(false && "Unexpected SIGTRAP code!"); 1296 if (log) 1297 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%d", 1298 __FUNCTION__, GetID(), thread.GetID(), info.si_code); 1299 break; 1300 1301 } 1302 } 1303 1304 void 1305 NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) 1306 { 1307 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 1308 if (log) 1309 log->Printf("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", 1310 __FUNCTION__, thread.GetID()); 1311 1312 // This thread is currently stopped. 1313 thread.SetStoppedByTrace(); 1314 1315 StopRunningThreads(thread.GetID()); 1316 } 1317 1318 void 1319 NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) 1320 { 1321 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 1322 if (log) 1323 log->Printf("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, 1324 __FUNCTION__, thread.GetID()); 1325 1326 // Mark the thread as stopped at breakpoint. 1327 thread.SetStoppedByBreakpoint(); 1328 Error error = FixupBreakpointPCAsNeeded(thread); 1329 if (error.Fail()) 1330 if (log) 1331 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", 1332 __FUNCTION__, thread.GetID(), error.AsCString()); 1333 1334 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != m_threads_stepping_with_breakpoint.end()) 1335 thread.SetStoppedByTrace(); 1336 1337 StopRunningThreads(thread.GetID()); 1338 } 1339 1340 void 1341 NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, uint32_t wp_index) 1342 { 1343 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_WATCHPOINTS)); 1344 if (log) 1345 log->Printf("NativeProcessLinux::%s() received watchpoint event, " 1346 "pid = %" PRIu64 ", wp_index = %" PRIu32, 1347 __FUNCTION__, thread.GetID(), wp_index); 1348 1349 // Mark the thread as stopped at watchpoint. 1350 // The address is at (lldb::addr_t)info->si_addr if we need it. 1351 thread.SetStoppedByWatchpoint(wp_index); 1352 1353 // We need to tell all other running threads before we notify the delegate about this stop. 1354 StopRunningThreads(thread.GetID()); 1355 } 1356 1357 void 1358 NativeProcessLinux::MonitorSignal(const siginfo_t &info, NativeThreadLinux &thread, bool exited) 1359 { 1360 const int signo = info.si_signo; 1361 const bool is_from_llgs = info.si_pid == getpid (); 1362 1363 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1364 1365 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 1366 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 1367 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 1368 // 1369 // IOW, user generated signals never generate what we consider to be a 1370 // "crash". 1371 // 1372 // Similarly, ACK signals generated by this monitor. 1373 1374 // Handle the signal. 1375 if (info.si_code == SI_TKILL || info.si_code == SI_USER) 1376 { 1377 if (log) 1378 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 1379 __FUNCTION__, 1380 Host::GetSignalAsCString(signo), 1381 signo, 1382 (info.si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 1383 info.si_pid, 1384 is_from_llgs ? "from llgs" : "not from llgs", 1385 thread.GetID()); 1386 } 1387 1388 // Check for thread stop notification. 1389 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) 1390 { 1391 // This is a tgkill()-based stop. 1392 if (log) 1393 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread stopped", 1394 __FUNCTION__, 1395 GetID (), 1396 thread.GetID()); 1397 1398 // Check that we're not already marked with a stop reason. 1399 // Note this thread really shouldn't already be marked as stopped - if we were, that would imply that 1400 // the kernel signaled us with the thread stopping which we handled and marked as stopped, 1401 // and that, without an intervening resume, we received another stop. It is more likely 1402 // that we are missing the marking of a run state somewhere if we find that the thread was 1403 // marked as stopped. 1404 const StateType thread_state = thread.GetState(); 1405 if (!StateIsStoppedState (thread_state, false)) 1406 { 1407 // An inferior thread has stopped because of a SIGSTOP we have sent it. 1408 // Generally, these are not important stops and we don't want to report them as 1409 // they are just used to stop other threads when one thread (the one with the 1410 // *real* stop reason) hits a breakpoint (watchpoint, etc...). However, in the 1411 // case of an asynchronous Interrupt(), this *is* the real stop reason, so we 1412 // leave the signal intact if this is the thread that was chosen as the 1413 // triggering thread. 1414 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) 1415 { 1416 if (m_pending_notification_tid == thread.GetID()) 1417 thread.SetStoppedBySignal(SIGSTOP, &info); 1418 else 1419 thread.SetStoppedWithNoReason(); 1420 1421 SetCurrentThreadID (thread.GetID ()); 1422 SignalIfAllThreadsStopped(); 1423 } 1424 else 1425 { 1426 // We can end up here if stop was initiated by LLGS but by this time a 1427 // thread stop has occurred - maybe initiated by another event. 1428 Error error = ResumeThread(thread, thread.GetState(), 0); 1429 if (error.Fail() && log) 1430 { 1431 log->Printf("NativeProcessLinux::%s failed to resume thread tid %" PRIu64 ": %s", 1432 __FUNCTION__, thread.GetID(), error.AsCString()); 1433 } 1434 } 1435 } 1436 else 1437 { 1438 if (log) 1439 { 1440 // Retrieve the signal name if the thread was stopped by a signal. 1441 int stop_signo = 0; 1442 const bool stopped_by_signal = thread.IsStopped(&stop_signo); 1443 const char *signal_name = stopped_by_signal ? Host::GetSignalAsCString(stop_signo) : "<not stopped by signal>"; 1444 if (!signal_name) 1445 signal_name = "<no-signal-name>"; 1446 1447 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", thread was already marked as a stopped state (state=%s, signal=%d (%s)), leaving stop signal as is", 1448 __FUNCTION__, 1449 GetID (), 1450 thread.GetID(), 1451 StateAsCString (thread_state), 1452 stop_signo, 1453 signal_name); 1454 } 1455 SignalIfAllThreadsStopped(); 1456 } 1457 1458 // Done handling. 1459 return; 1460 } 1461 1462 if (log) 1463 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, Host::GetSignalAsCString(signo)); 1464 1465 // This thread is stopped. 1466 thread.SetStoppedBySignal(signo, &info); 1467 1468 // Send a stop to the debugger after we get all other threads to stop. 1469 StopRunningThreads(thread.GetID()); 1470 } 1471 1472 namespace { 1473 1474 struct EmulatorBaton 1475 { 1476 NativeProcessLinux* m_process; 1477 NativeRegisterContext* m_reg_context; 1478 1479 // eRegisterKindDWARF -> RegsiterValue 1480 std::unordered_map<uint32_t, RegisterValue> m_register_values; 1481 1482 EmulatorBaton(NativeProcessLinux* process, NativeRegisterContext* reg_context) : 1483 m_process(process), m_reg_context(reg_context) {} 1484 }; 1485 1486 } // anonymous namespace 1487 1488 static size_t 1489 ReadMemoryCallback (EmulateInstruction *instruction, 1490 void *baton, 1491 const EmulateInstruction::Context &context, 1492 lldb::addr_t addr, 1493 void *dst, 1494 size_t length) 1495 { 1496 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1497 1498 size_t bytes_read; 1499 emulator_baton->m_process->ReadMemory(addr, dst, length, bytes_read); 1500 return bytes_read; 1501 } 1502 1503 static bool 1504 ReadRegisterCallback (EmulateInstruction *instruction, 1505 void *baton, 1506 const RegisterInfo *reg_info, 1507 RegisterValue ®_value) 1508 { 1509 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1510 1511 auto it = emulator_baton->m_register_values.find(reg_info->kinds[eRegisterKindDWARF]); 1512 if (it != emulator_baton->m_register_values.end()) 1513 { 1514 reg_value = it->second; 1515 return true; 1516 } 1517 1518 // The emulator only fill in the dwarf regsiter numbers (and in some case 1519 // the generic register numbers). Get the full register info from the 1520 // register context based on the dwarf register numbers. 1521 const RegisterInfo* full_reg_info = emulator_baton->m_reg_context->GetRegisterInfo( 1522 eRegisterKindDWARF, reg_info->kinds[eRegisterKindDWARF]); 1523 1524 Error error = emulator_baton->m_reg_context->ReadRegister(full_reg_info, reg_value); 1525 if (error.Success()) 1526 return true; 1527 1528 return false; 1529 } 1530 1531 static bool 1532 WriteRegisterCallback (EmulateInstruction *instruction, 1533 void *baton, 1534 const EmulateInstruction::Context &context, 1535 const RegisterInfo *reg_info, 1536 const RegisterValue ®_value) 1537 { 1538 EmulatorBaton* emulator_baton = static_cast<EmulatorBaton*>(baton); 1539 emulator_baton->m_register_values[reg_info->kinds[eRegisterKindDWARF]] = reg_value; 1540 return true; 1541 } 1542 1543 static size_t 1544 WriteMemoryCallback (EmulateInstruction *instruction, 1545 void *baton, 1546 const EmulateInstruction::Context &context, 1547 lldb::addr_t addr, 1548 const void *dst, 1549 size_t length) 1550 { 1551 return length; 1552 } 1553 1554 static lldb::addr_t 1555 ReadFlags (NativeRegisterContext* regsiter_context) 1556 { 1557 const RegisterInfo* flags_info = regsiter_context->GetRegisterInfo( 1558 eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1559 return regsiter_context->ReadRegisterAsUnsigned(flags_info, LLDB_INVALID_ADDRESS); 1560 } 1561 1562 Error 1563 NativeProcessLinux::SetupSoftwareSingleStepping(NativeThreadLinux &thread) 1564 { 1565 Error error; 1566 NativeRegisterContextSP register_context_sp = thread.GetRegisterContext(); 1567 1568 std::unique_ptr<EmulateInstruction> emulator_ap( 1569 EmulateInstruction::FindPlugin(m_arch, eInstructionTypePCModifying, nullptr)); 1570 1571 if (emulator_ap == nullptr) 1572 return Error("Instruction emulator not found!"); 1573 1574 EmulatorBaton baton(this, register_context_sp.get()); 1575 emulator_ap->SetBaton(&baton); 1576 emulator_ap->SetReadMemCallback(&ReadMemoryCallback); 1577 emulator_ap->SetReadRegCallback(&ReadRegisterCallback); 1578 emulator_ap->SetWriteMemCallback(&WriteMemoryCallback); 1579 emulator_ap->SetWriteRegCallback(&WriteRegisterCallback); 1580 1581 if (!emulator_ap->ReadInstruction()) 1582 return Error("Read instruction failed!"); 1583 1584 bool emulation_result = emulator_ap->EvaluateInstruction(eEmulateInstructionOptionAutoAdvancePC); 1585 1586 const RegisterInfo* reg_info_pc = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_PC); 1587 const RegisterInfo* reg_info_flags = register_context_sp->GetRegisterInfo(eRegisterKindGeneric, LLDB_REGNUM_GENERIC_FLAGS); 1588 1589 auto pc_it = baton.m_register_values.find(reg_info_pc->kinds[eRegisterKindDWARF]); 1590 auto flags_it = baton.m_register_values.find(reg_info_flags->kinds[eRegisterKindDWARF]); 1591 1592 lldb::addr_t next_pc; 1593 lldb::addr_t next_flags; 1594 if (emulation_result) 1595 { 1596 assert(pc_it != baton.m_register_values.end() && "Emulation was successfull but PC wasn't updated"); 1597 next_pc = pc_it->second.GetAsUInt64(); 1598 1599 if (flags_it != baton.m_register_values.end()) 1600 next_flags = flags_it->second.GetAsUInt64(); 1601 else 1602 next_flags = ReadFlags (register_context_sp.get()); 1603 } 1604 else if (pc_it == baton.m_register_values.end()) 1605 { 1606 // Emulate instruction failed and it haven't changed PC. Advance PC 1607 // with the size of the current opcode because the emulation of all 1608 // PC modifying instruction should be successful. The failure most 1609 // likely caused by a not supported instruction which don't modify PC. 1610 next_pc = register_context_sp->GetPC() + emulator_ap->GetOpcode().GetByteSize(); 1611 next_flags = ReadFlags (register_context_sp.get()); 1612 } 1613 else 1614 { 1615 // The instruction emulation failed after it modified the PC. It is an 1616 // unknown error where we can't continue because the next instruction is 1617 // modifying the PC but we don't know how. 1618 return Error ("Instruction emulation failed unexpectedly."); 1619 } 1620 1621 if (m_arch.GetMachine() == llvm::Triple::arm) 1622 { 1623 if (next_flags & 0x20) 1624 { 1625 // Thumb mode 1626 error = SetSoftwareBreakpoint(next_pc, 2); 1627 } 1628 else 1629 { 1630 // Arm mode 1631 error = SetSoftwareBreakpoint(next_pc, 4); 1632 } 1633 } 1634 else if (m_arch.GetMachine() == llvm::Triple::mips64 1635 || m_arch.GetMachine() == llvm::Triple::mips64el 1636 || m_arch.GetMachine() == llvm::Triple::mips 1637 || m_arch.GetMachine() == llvm::Triple::mipsel) 1638 error = SetSoftwareBreakpoint(next_pc, 4); 1639 else 1640 { 1641 // No size hint is given for the next breakpoint 1642 error = SetSoftwareBreakpoint(next_pc, 0); 1643 } 1644 1645 if (error.Fail()) 1646 return error; 1647 1648 m_threads_stepping_with_breakpoint.insert({thread.GetID(), next_pc}); 1649 1650 return Error(); 1651 } 1652 1653 bool 1654 NativeProcessLinux::SupportHardwareSingleStepping() const 1655 { 1656 if (m_arch.GetMachine() == llvm::Triple::arm 1657 || m_arch.GetMachine() == llvm::Triple::mips64 || m_arch.GetMachine() == llvm::Triple::mips64el 1658 || m_arch.GetMachine() == llvm::Triple::mips || m_arch.GetMachine() == llvm::Triple::mipsel) 1659 return false; 1660 return true; 1661 } 1662 1663 Error 1664 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 1665 { 1666 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 1667 if (log) 1668 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 1669 1670 bool software_single_step = !SupportHardwareSingleStepping(); 1671 1672 if (software_single_step) 1673 { 1674 for (auto thread_sp : m_threads) 1675 { 1676 assert (thread_sp && "thread list should not contain NULL threads"); 1677 1678 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 1679 if (action == nullptr) 1680 continue; 1681 1682 if (action->state == eStateStepping) 1683 { 1684 Error error = SetupSoftwareSingleStepping(static_cast<NativeThreadLinux &>(*thread_sp)); 1685 if (error.Fail()) 1686 return error; 1687 } 1688 } 1689 } 1690 1691 for (auto thread_sp : m_threads) 1692 { 1693 assert (thread_sp && "thread list should not contain NULL threads"); 1694 1695 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 1696 1697 if (action == nullptr) 1698 { 1699 if (log) 1700 log->Printf ("NativeProcessLinux::%s no action specified for pid %" PRIu64 " tid %" PRIu64, 1701 __FUNCTION__, GetID (), thread_sp->GetID ()); 1702 continue; 1703 } 1704 1705 if (log) 1706 { 1707 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 1708 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 1709 } 1710 1711 switch (action->state) 1712 { 1713 case eStateRunning: 1714 case eStateStepping: 1715 { 1716 // Run the thread, possibly feeding it the signal. 1717 const int signo = action->signal; 1718 ResumeThread(static_cast<NativeThreadLinux &>(*thread_sp), action->state, signo); 1719 break; 1720 } 1721 1722 case eStateSuspended: 1723 case eStateStopped: 1724 lldbassert(0 && "Unexpected state"); 1725 1726 default: 1727 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 1728 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 1729 } 1730 } 1731 1732 return Error(); 1733 } 1734 1735 Error 1736 NativeProcessLinux::Halt () 1737 { 1738 Error error; 1739 1740 if (kill (GetID (), SIGSTOP) != 0) 1741 error.SetErrorToErrno (); 1742 1743 return error; 1744 } 1745 1746 Error 1747 NativeProcessLinux::Detach () 1748 { 1749 Error error; 1750 1751 // Stop monitoring the inferior. 1752 m_sigchld_handle.reset(); 1753 1754 // Tell ptrace to detach from the process. 1755 if (GetID () == LLDB_INVALID_PROCESS_ID) 1756 return error; 1757 1758 for (auto thread_sp : m_threads) 1759 { 1760 Error e = Detach(thread_sp->GetID()); 1761 if (e.Fail()) 1762 error = e; // Save the error, but still attempt to detach from other threads. 1763 } 1764 1765 return error; 1766 } 1767 1768 Error 1769 NativeProcessLinux::Signal (int signo) 1770 { 1771 Error error; 1772 1773 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1774 if (log) 1775 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 1776 __FUNCTION__, signo, Host::GetSignalAsCString(signo), GetID()); 1777 1778 if (kill(GetID(), signo)) 1779 error.SetErrorToErrno(); 1780 1781 return error; 1782 } 1783 1784 Error 1785 NativeProcessLinux::Interrupt () 1786 { 1787 // Pick a running thread (or if none, a not-dead stopped thread) as 1788 // the chosen thread that will be the stop-reason thread. 1789 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1790 1791 NativeThreadProtocolSP running_thread_sp; 1792 NativeThreadProtocolSP stopped_thread_sp; 1793 1794 if (log) 1795 log->Printf ("NativeProcessLinux::%s selecting running thread for interrupt target", __FUNCTION__); 1796 1797 for (auto thread_sp : m_threads) 1798 { 1799 // The thread shouldn't be null but lets just cover that here. 1800 if (!thread_sp) 1801 continue; 1802 1803 // If we have a running or stepping thread, we'll call that the 1804 // target of the interrupt. 1805 const auto thread_state = thread_sp->GetState (); 1806 if (thread_state == eStateRunning || 1807 thread_state == eStateStepping) 1808 { 1809 running_thread_sp = thread_sp; 1810 break; 1811 } 1812 else if (!stopped_thread_sp && StateIsStoppedState (thread_state, true)) 1813 { 1814 // Remember the first non-dead stopped thread. We'll use that as a backup if there are no running threads. 1815 stopped_thread_sp = thread_sp; 1816 } 1817 } 1818 1819 if (!running_thread_sp && !stopped_thread_sp) 1820 { 1821 Error error("found no running/stepping or live stopped threads as target for interrupt"); 1822 if (log) 1823 log->Printf ("NativeProcessLinux::%s skipping due to error: %s", __FUNCTION__, error.AsCString ()); 1824 1825 return error; 1826 } 1827 1828 NativeThreadProtocolSP deferred_signal_thread_sp = running_thread_sp ? running_thread_sp : stopped_thread_sp; 1829 1830 if (log) 1831 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " %s tid %" PRIu64 " chosen for interrupt target", 1832 __FUNCTION__, 1833 GetID (), 1834 running_thread_sp ? "running" : "stopped", 1835 deferred_signal_thread_sp->GetID ()); 1836 1837 StopRunningThreads(deferred_signal_thread_sp->GetID()); 1838 1839 return Error(); 1840 } 1841 1842 Error 1843 NativeProcessLinux::Kill () 1844 { 1845 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1846 if (log) 1847 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 1848 1849 Error error; 1850 1851 switch (m_state) 1852 { 1853 case StateType::eStateInvalid: 1854 case StateType::eStateExited: 1855 case StateType::eStateCrashed: 1856 case StateType::eStateDetached: 1857 case StateType::eStateUnloaded: 1858 // Nothing to do - the process is already dead. 1859 if (log) 1860 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 1861 return error; 1862 1863 case StateType::eStateConnected: 1864 case StateType::eStateAttaching: 1865 case StateType::eStateLaunching: 1866 case StateType::eStateStopped: 1867 case StateType::eStateRunning: 1868 case StateType::eStateStepping: 1869 case StateType::eStateSuspended: 1870 // We can try to kill a process in these states. 1871 break; 1872 } 1873 1874 if (kill (GetID (), SIGKILL) != 0) 1875 { 1876 error.SetErrorToErrno (); 1877 return error; 1878 } 1879 1880 return error; 1881 } 1882 1883 static Error 1884 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 1885 { 1886 memory_region_info.Clear(); 1887 1888 StringExtractor line_extractor (maps_line.c_str ()); 1889 1890 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 1891 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 1892 1893 // Parse out the starting address 1894 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 1895 1896 // Parse out hyphen separating start and end address from range. 1897 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 1898 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 1899 1900 // Parse out the ending address 1901 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 1902 1903 // Parse out the space after the address. 1904 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 1905 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 1906 1907 // Save the range. 1908 memory_region_info.GetRange ().SetRangeBase (start_address); 1909 memory_region_info.GetRange ().SetRangeEnd (end_address); 1910 1911 // Any memory region in /proc/{pid}/maps is by definition mapped into the process. 1912 memory_region_info.SetMapped(MemoryRegionInfo::OptionalBool::eYes); 1913 1914 // Parse out each permission entry. 1915 if (line_extractor.GetBytesLeft () < 4) 1916 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 1917 1918 // Handle read permission. 1919 const char read_perm_char = line_extractor.GetChar (); 1920 if (read_perm_char == 'r') 1921 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 1922 else if (read_perm_char == '-') 1923 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 1924 else 1925 return Error ("unexpected /proc/{pid}/maps read permission char"); 1926 1927 // Handle write permission. 1928 const char write_perm_char = line_extractor.GetChar (); 1929 if (write_perm_char == 'w') 1930 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 1931 else if (write_perm_char == '-') 1932 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 1933 else 1934 return Error ("unexpected /proc/{pid}/maps write permission char"); 1935 1936 // Handle execute permission. 1937 const char exec_perm_char = line_extractor.GetChar (); 1938 if (exec_perm_char == 'x') 1939 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 1940 else if (exec_perm_char == '-') 1941 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 1942 else 1943 return Error ("unexpected /proc/{pid}/maps exec permission char"); 1944 1945 return Error (); 1946 } 1947 1948 Error 1949 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 1950 { 1951 // FIXME review that the final memory region returned extends to the end of the virtual address space, 1952 // with no perms if it is not mapped. 1953 1954 // Use an approach that reads memory regions from /proc/{pid}/maps. 1955 // Assume proc maps entries are in ascending order. 1956 // FIXME assert if we find differently. 1957 1958 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1959 Error error; 1960 1961 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 1962 { 1963 // We're done. 1964 error.SetErrorString ("unsupported"); 1965 return error; 1966 } 1967 1968 // If our cache is empty, pull the latest. There should always be at least one memory region 1969 // if memory region handling is supported. 1970 if (m_mem_region_cache.empty ()) 1971 { 1972 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 1973 [&] (const std::string &line) -> bool 1974 { 1975 MemoryRegionInfo info; 1976 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 1977 if (parse_error.Success ()) 1978 { 1979 m_mem_region_cache.push_back (info); 1980 return true; 1981 } 1982 else 1983 { 1984 if (log) 1985 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 1986 return false; 1987 } 1988 }); 1989 1990 // If we had an error, we'll mark unsupported. 1991 if (error.Fail ()) 1992 { 1993 m_supports_mem_region = LazyBool::eLazyBoolNo; 1994 return error; 1995 } 1996 else if (m_mem_region_cache.empty ()) 1997 { 1998 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 1999 // is supported. Assume we don't support map entries via procfs. 2000 if (log) 2001 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2002 m_supports_mem_region = LazyBool::eLazyBoolNo; 2003 error.SetErrorString ("not supported"); 2004 return error; 2005 } 2006 2007 if (log) 2008 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2009 2010 // We support memory retrieval, remember that. 2011 m_supports_mem_region = LazyBool::eLazyBoolYes; 2012 } 2013 else 2014 { 2015 if (log) 2016 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2017 } 2018 2019 lldb::addr_t prev_base_address = 0; 2020 2021 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2022 // There can be a ton of regions on pthreads apps with lots of threads. 2023 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2024 { 2025 MemoryRegionInfo &proc_entry_info = *it; 2026 2027 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2028 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2029 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2030 2031 // If the target address comes before this entry, indicate distance to next region. 2032 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2033 { 2034 range_info.GetRange ().SetRangeBase (load_addr); 2035 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2036 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2037 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2038 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2039 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 2040 2041 return error; 2042 } 2043 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2044 { 2045 // The target address is within the memory region we're processing here. 2046 range_info = proc_entry_info; 2047 return error; 2048 } 2049 2050 // The target memory address comes somewhere after the region we just parsed. 2051 } 2052 2053 // If we made it here, we didn't find an entry that contained the given address. Return the 2054 // load_addr as start and the amount of bytes betwwen load address and the end of the memory as 2055 // size. 2056 range_info.GetRange ().SetRangeBase (load_addr); 2057 range_info.GetRange ().SetRangeEnd(LLDB_INVALID_ADDRESS); 2058 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2059 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2060 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2061 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 2062 return error; 2063 } 2064 2065 void 2066 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 2067 { 2068 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2069 if (log) 2070 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 2071 2072 if (log) 2073 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2074 m_mem_region_cache.clear (); 2075 } 2076 2077 Error 2078 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions, lldb::addr_t &addr) 2079 { 2080 // FIXME implementing this requires the equivalent of 2081 // InferiorCallPOSIX::InferiorCallMmap, which depends on 2082 // functional ThreadPlans working with Native*Protocol. 2083 #if 1 2084 return Error ("not implemented yet"); 2085 #else 2086 addr = LLDB_INVALID_ADDRESS; 2087 2088 unsigned prot = 0; 2089 if (permissions & lldb::ePermissionsReadable) 2090 prot |= eMmapProtRead; 2091 if (permissions & lldb::ePermissionsWritable) 2092 prot |= eMmapProtWrite; 2093 if (permissions & lldb::ePermissionsExecutable) 2094 prot |= eMmapProtExec; 2095 2096 // TODO implement this directly in NativeProcessLinux 2097 // (and lift to NativeProcessPOSIX if/when that class is 2098 // refactored out). 2099 if (InferiorCallMmap(this, addr, 0, size, prot, 2100 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 2101 m_addr_to_mmap_size[addr] = size; 2102 return Error (); 2103 } else { 2104 addr = LLDB_INVALID_ADDRESS; 2105 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 2106 } 2107 #endif 2108 } 2109 2110 Error 2111 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 2112 { 2113 // FIXME see comments in AllocateMemory - required lower-level 2114 // bits not in place yet (ThreadPlans) 2115 return Error ("not implemented"); 2116 } 2117 2118 lldb::addr_t 2119 NativeProcessLinux::GetSharedLibraryInfoAddress () 2120 { 2121 // punt on this for now 2122 return LLDB_INVALID_ADDRESS; 2123 } 2124 2125 size_t 2126 NativeProcessLinux::UpdateThreads () 2127 { 2128 // The NativeProcessLinux monitoring threads are always up to date 2129 // with respect to thread state and they keep the thread list 2130 // populated properly. All this method needs to do is return the 2131 // thread count. 2132 return m_threads.size (); 2133 } 2134 2135 bool 2136 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 2137 { 2138 arch = m_arch; 2139 return true; 2140 } 2141 2142 Error 2143 NativeProcessLinux::GetSoftwareBreakpointPCOffset(uint32_t &actual_opcode_size) 2144 { 2145 // FIXME put this behind a breakpoint protocol class that can be 2146 // set per architecture. Need ARM, MIPS support here. 2147 static const uint8_t g_i386_opcode [] = { 0xCC }; 2148 static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 }; 2149 2150 switch (m_arch.GetMachine ()) 2151 { 2152 case llvm::Triple::x86: 2153 case llvm::Triple::x86_64: 2154 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 2155 return Error (); 2156 2157 case llvm::Triple::systemz: 2158 actual_opcode_size = static_cast<uint32_t> (sizeof(g_s390x_opcode)); 2159 return Error (); 2160 2161 case llvm::Triple::arm: 2162 case llvm::Triple::aarch64: 2163 case llvm::Triple::mips64: 2164 case llvm::Triple::mips64el: 2165 case llvm::Triple::mips: 2166 case llvm::Triple::mipsel: 2167 // On these architectures the PC don't get updated for breakpoint hits 2168 actual_opcode_size = 0; 2169 return Error (); 2170 2171 default: 2172 assert(false && "CPU type not supported!"); 2173 return Error ("CPU type not supported"); 2174 } 2175 } 2176 2177 Error 2178 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 2179 { 2180 if (hardware) 2181 return Error ("NativeProcessLinux does not support hardware breakpoints"); 2182 else 2183 return SetSoftwareBreakpoint (addr, size); 2184 } 2185 2186 Error 2187 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, 2188 size_t &actual_opcode_size, 2189 const uint8_t *&trap_opcode_bytes) 2190 { 2191 // FIXME put this behind a breakpoint protocol class that can be set per 2192 // architecture. Need MIPS support here. 2193 static const uint8_t g_aarch64_opcode[] = { 0x00, 0x00, 0x20, 0xd4 }; 2194 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 2195 // linux kernel does otherwise. 2196 static const uint8_t g_arm_breakpoint_opcode[] = { 0xf0, 0x01, 0xf0, 0xe7 }; 2197 static const uint8_t g_i386_opcode [] = { 0xCC }; 2198 static const uint8_t g_mips64_opcode[] = { 0x00, 0x00, 0x00, 0x0d }; 2199 static const uint8_t g_mips64el_opcode[] = { 0x0d, 0x00, 0x00, 0x00 }; 2200 static const uint8_t g_s390x_opcode[] = { 0x00, 0x01 }; 2201 static const uint8_t g_thumb_breakpoint_opcode[] = { 0x01, 0xde }; 2202 2203 switch (m_arch.GetMachine ()) 2204 { 2205 case llvm::Triple::aarch64: 2206 trap_opcode_bytes = g_aarch64_opcode; 2207 actual_opcode_size = sizeof(g_aarch64_opcode); 2208 return Error (); 2209 2210 case llvm::Triple::arm: 2211 switch (trap_opcode_size_hint) 2212 { 2213 case 2: 2214 trap_opcode_bytes = g_thumb_breakpoint_opcode; 2215 actual_opcode_size = sizeof(g_thumb_breakpoint_opcode); 2216 return Error (); 2217 case 4: 2218 trap_opcode_bytes = g_arm_breakpoint_opcode; 2219 actual_opcode_size = sizeof(g_arm_breakpoint_opcode); 2220 return Error (); 2221 default: 2222 assert(false && "Unrecognised trap opcode size hint!"); 2223 return Error ("Unrecognised trap opcode size hint!"); 2224 } 2225 2226 case llvm::Triple::x86: 2227 case llvm::Triple::x86_64: 2228 trap_opcode_bytes = g_i386_opcode; 2229 actual_opcode_size = sizeof(g_i386_opcode); 2230 return Error (); 2231 2232 case llvm::Triple::mips: 2233 case llvm::Triple::mips64: 2234 trap_opcode_bytes = g_mips64_opcode; 2235 actual_opcode_size = sizeof(g_mips64_opcode); 2236 return Error (); 2237 2238 case llvm::Triple::mipsel: 2239 case llvm::Triple::mips64el: 2240 trap_opcode_bytes = g_mips64el_opcode; 2241 actual_opcode_size = sizeof(g_mips64el_opcode); 2242 return Error (); 2243 2244 case llvm::Triple::systemz: 2245 trap_opcode_bytes = g_s390x_opcode; 2246 actual_opcode_size = sizeof(g_s390x_opcode); 2247 return Error (); 2248 2249 default: 2250 assert(false && "CPU type not supported!"); 2251 return Error ("CPU type not supported"); 2252 } 2253 } 2254 2255 #if 0 2256 ProcessMessage::CrashReason 2257 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 2258 { 2259 ProcessMessage::CrashReason reason; 2260 assert(info->si_signo == SIGSEGV); 2261 2262 reason = ProcessMessage::eInvalidCrashReason; 2263 2264 switch (info->si_code) 2265 { 2266 default: 2267 assert(false && "unexpected si_code for SIGSEGV"); 2268 break; 2269 case SI_KERNEL: 2270 // Linux will occasionally send spurious SI_KERNEL codes. 2271 // (this is poorly documented in sigaction) 2272 // One way to get this is via unaligned SIMD loads. 2273 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 2274 break; 2275 case SEGV_MAPERR: 2276 reason = ProcessMessage::eInvalidAddress; 2277 break; 2278 case SEGV_ACCERR: 2279 reason = ProcessMessage::ePrivilegedAddress; 2280 break; 2281 } 2282 2283 return reason; 2284 } 2285 #endif 2286 2287 2288 #if 0 2289 ProcessMessage::CrashReason 2290 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 2291 { 2292 ProcessMessage::CrashReason reason; 2293 assert(info->si_signo == SIGILL); 2294 2295 reason = ProcessMessage::eInvalidCrashReason; 2296 2297 switch (info->si_code) 2298 { 2299 default: 2300 assert(false && "unexpected si_code for SIGILL"); 2301 break; 2302 case ILL_ILLOPC: 2303 reason = ProcessMessage::eIllegalOpcode; 2304 break; 2305 case ILL_ILLOPN: 2306 reason = ProcessMessage::eIllegalOperand; 2307 break; 2308 case ILL_ILLADR: 2309 reason = ProcessMessage::eIllegalAddressingMode; 2310 break; 2311 case ILL_ILLTRP: 2312 reason = ProcessMessage::eIllegalTrap; 2313 break; 2314 case ILL_PRVOPC: 2315 reason = ProcessMessage::ePrivilegedOpcode; 2316 break; 2317 case ILL_PRVREG: 2318 reason = ProcessMessage::ePrivilegedRegister; 2319 break; 2320 case ILL_COPROC: 2321 reason = ProcessMessage::eCoprocessorError; 2322 break; 2323 case ILL_BADSTK: 2324 reason = ProcessMessage::eInternalStackError; 2325 break; 2326 } 2327 2328 return reason; 2329 } 2330 #endif 2331 2332 #if 0 2333 ProcessMessage::CrashReason 2334 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 2335 { 2336 ProcessMessage::CrashReason reason; 2337 assert(info->si_signo == SIGFPE); 2338 2339 reason = ProcessMessage::eInvalidCrashReason; 2340 2341 switch (info->si_code) 2342 { 2343 default: 2344 assert(false && "unexpected si_code for SIGFPE"); 2345 break; 2346 case FPE_INTDIV: 2347 reason = ProcessMessage::eIntegerDivideByZero; 2348 break; 2349 case FPE_INTOVF: 2350 reason = ProcessMessage::eIntegerOverflow; 2351 break; 2352 case FPE_FLTDIV: 2353 reason = ProcessMessage::eFloatDivideByZero; 2354 break; 2355 case FPE_FLTOVF: 2356 reason = ProcessMessage::eFloatOverflow; 2357 break; 2358 case FPE_FLTUND: 2359 reason = ProcessMessage::eFloatUnderflow; 2360 break; 2361 case FPE_FLTRES: 2362 reason = ProcessMessage::eFloatInexactResult; 2363 break; 2364 case FPE_FLTINV: 2365 reason = ProcessMessage::eFloatInvalidOperation; 2366 break; 2367 case FPE_FLTSUB: 2368 reason = ProcessMessage::eFloatSubscriptRange; 2369 break; 2370 } 2371 2372 return reason; 2373 } 2374 #endif 2375 2376 #if 0 2377 ProcessMessage::CrashReason 2378 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 2379 { 2380 ProcessMessage::CrashReason reason; 2381 assert(info->si_signo == SIGBUS); 2382 2383 reason = ProcessMessage::eInvalidCrashReason; 2384 2385 switch (info->si_code) 2386 { 2387 default: 2388 assert(false && "unexpected si_code for SIGBUS"); 2389 break; 2390 case BUS_ADRALN: 2391 reason = ProcessMessage::eIllegalAlignment; 2392 break; 2393 case BUS_ADRERR: 2394 reason = ProcessMessage::eIllegalAddress; 2395 break; 2396 case BUS_OBJERR: 2397 reason = ProcessMessage::eHardwareError; 2398 break; 2399 } 2400 2401 return reason; 2402 } 2403 #endif 2404 2405 Error 2406 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 2407 { 2408 if (ProcessVmReadvSupported()) { 2409 // The process_vm_readv path is about 50 times faster than ptrace api. We want to use 2410 // this syscall if it is supported. 2411 2412 const ::pid_t pid = GetID(); 2413 2414 struct iovec local_iov, remote_iov; 2415 local_iov.iov_base = buf; 2416 local_iov.iov_len = size; 2417 remote_iov.iov_base = reinterpret_cast<void *>(addr); 2418 remote_iov.iov_len = size; 2419 2420 bytes_read = process_vm_readv(pid, &local_iov, 1, &remote_iov, 1, 0); 2421 const bool success = bytes_read == size; 2422 2423 Log *log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2424 if (log) 2425 log->Printf ("NativeProcessLinux::%s using process_vm_readv to read %zd bytes from inferior address 0x%" PRIx64": %s", 2426 __FUNCTION__, size, addr, success ? "Success" : strerror(errno)); 2427 2428 if (success) 2429 return Error(); 2430 // else 2431 // the call failed for some reason, let's retry the read using ptrace api. 2432 } 2433 2434 unsigned char *dst = static_cast<unsigned char*>(buf); 2435 size_t remainder; 2436 long data; 2437 2438 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 2439 if (log) 2440 ProcessPOSIXLog::IncNestLevel(); 2441 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 2442 log->Printf ("NativeProcessLinux::%s(%p, %p, %zd, _)", __FUNCTION__, (void*)addr, buf, size); 2443 2444 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 2445 { 2446 Error error = NativeProcessLinux::PtraceWrapper(PTRACE_PEEKDATA, GetID(), (void*)addr, nullptr, 0, &data); 2447 if (error.Fail()) 2448 { 2449 if (log) 2450 ProcessPOSIXLog::DecNestLevel(); 2451 return error; 2452 } 2453 2454 remainder = size - bytes_read; 2455 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2456 2457 // Copy the data into our buffer 2458 memcpy(dst, &data, remainder); 2459 2460 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2461 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2462 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2463 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2464 { 2465 uintptr_t print_dst = 0; 2466 // Format bytes from data by moving into print_dst for log output 2467 for (unsigned i = 0; i < remainder; ++i) 2468 print_dst |= (((data >> i*8) & 0xFF) << i*8); 2469 log->Printf ("NativeProcessLinux::%s() [0x%" PRIx64 "]:0x%" PRIx64 " (0x%" PRIx64 ")", 2470 __FUNCTION__, addr, uint64_t(print_dst), uint64_t(data)); 2471 } 2472 addr += k_ptrace_word_size; 2473 dst += k_ptrace_word_size; 2474 } 2475 2476 if (log) 2477 ProcessPOSIXLog::DecNestLevel(); 2478 return Error(); 2479 } 2480 2481 Error 2482 NativeProcessLinux::ReadMemoryWithoutTrap(lldb::addr_t addr, void *buf, size_t size, size_t &bytes_read) 2483 { 2484 Error error = ReadMemory(addr, buf, size, bytes_read); 2485 if (error.Fail()) return error; 2486 return m_breakpoint_list.RemoveTrapsFromBuffer(addr, buf, size); 2487 } 2488 2489 Error 2490 NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, size_t size, size_t &bytes_written) 2491 { 2492 const unsigned char *src = static_cast<const unsigned char*>(buf); 2493 size_t remainder; 2494 Error error; 2495 2496 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 2497 if (log) 2498 ProcessPOSIXLog::IncNestLevel(); 2499 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 2500 log->Printf ("NativeProcessLinux::%s(0x%" PRIx64 ", %p, %zu)", __FUNCTION__, addr, buf, size); 2501 2502 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 2503 { 2504 remainder = size - bytes_written; 2505 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 2506 2507 if (remainder == k_ptrace_word_size) 2508 { 2509 unsigned long data = 0; 2510 memcpy(&data, src, k_ptrace_word_size); 2511 2512 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2513 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2514 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2515 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2516 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 2517 (void*)addr, *(const unsigned long*)src, data); 2518 2519 error = NativeProcessLinux::PtraceWrapper(PTRACE_POKEDATA, GetID(), (void*)addr, (void*)data); 2520 if (error.Fail()) 2521 { 2522 if (log) 2523 ProcessPOSIXLog::DecNestLevel(); 2524 return error; 2525 } 2526 } 2527 else 2528 { 2529 unsigned char buff[8]; 2530 size_t bytes_read; 2531 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 2532 if (error.Fail()) 2533 { 2534 if (log) 2535 ProcessPOSIXLog::DecNestLevel(); 2536 return error; 2537 } 2538 2539 memcpy(buff, src, remainder); 2540 2541 size_t bytes_written_rec; 2542 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 2543 if (error.Fail()) 2544 { 2545 if (log) 2546 ProcessPOSIXLog::DecNestLevel(); 2547 return error; 2548 } 2549 2550 if (log && ProcessPOSIXLog::AtTopNestLevel() && 2551 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 2552 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 2553 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 2554 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 2555 (void*)addr, *(const unsigned long*)src, *(unsigned long*)buff); 2556 } 2557 2558 addr += k_ptrace_word_size; 2559 src += k_ptrace_word_size; 2560 } 2561 if (log) 2562 ProcessPOSIXLog::DecNestLevel(); 2563 return error; 2564 } 2565 2566 Error 2567 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) 2568 { 2569 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 2570 } 2571 2572 Error 2573 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 2574 { 2575 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 2576 } 2577 2578 Error 2579 NativeProcessLinux::Detach(lldb::tid_t tid) 2580 { 2581 if (tid == LLDB_INVALID_THREAD_ID) 2582 return Error(); 2583 2584 return PtraceWrapper(PTRACE_DETACH, tid); 2585 } 2586 2587 bool 2588 NativeProcessLinux::DupDescriptor(const FileSpec &file_spec, int fd, int flags) 2589 { 2590 int target_fd = open(file_spec.GetCString(), flags, 0666); 2591 2592 if (target_fd == -1) 2593 return false; 2594 2595 if (dup2(target_fd, fd) == -1) 2596 return false; 2597 2598 return (close(target_fd) == -1) ? false : true; 2599 } 2600 2601 bool 2602 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 2603 { 2604 for (auto thread_sp : m_threads) 2605 { 2606 assert (thread_sp && "thread list should not contain NULL threads"); 2607 if (thread_sp->GetID () == thread_id) 2608 { 2609 // We have this thread. 2610 return true; 2611 } 2612 } 2613 2614 // We don't have this thread. 2615 return false; 2616 } 2617 2618 bool 2619 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 2620 { 2621 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2622 2623 if (log) 2624 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread_id); 2625 2626 bool found = false; 2627 2628 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 2629 { 2630 if (*it && ((*it)->GetID () == thread_id)) 2631 { 2632 m_threads.erase (it); 2633 found = true; 2634 break; 2635 } 2636 } 2637 2638 SignalIfAllThreadsStopped(); 2639 2640 return found; 2641 } 2642 2643 NativeThreadLinuxSP 2644 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 2645 { 2646 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 2647 2648 if (log) 2649 { 2650 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 2651 __FUNCTION__, 2652 GetID (), 2653 thread_id); 2654 } 2655 2656 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 2657 2658 // If this is the first thread, save it as the current thread 2659 if (m_threads.empty ()) 2660 SetCurrentThreadID (thread_id); 2661 2662 auto thread_sp = std::make_shared<NativeThreadLinux>(this, thread_id); 2663 m_threads.push_back (thread_sp); 2664 return thread_sp; 2665 } 2666 2667 Error 2668 NativeProcessLinux::FixupBreakpointPCAsNeeded(NativeThreadLinux &thread) 2669 { 2670 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2671 2672 Error error; 2673 2674 // Find out the size of a breakpoint (might depend on where we are in the code). 2675 NativeRegisterContextSP context_sp = thread.GetRegisterContext(); 2676 if (!context_sp) 2677 { 2678 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 2679 if (log) 2680 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 2681 return error; 2682 } 2683 2684 uint32_t breakpoint_size = 0; 2685 error = GetSoftwareBreakpointPCOffset(breakpoint_size); 2686 if (error.Fail ()) 2687 { 2688 if (log) 2689 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 2690 return error; 2691 } 2692 else 2693 { 2694 if (log) 2695 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 2696 } 2697 2698 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 2699 const lldb::addr_t initial_pc_addr = context_sp->GetPCfromBreakpointLocation (); 2700 lldb::addr_t breakpoint_addr = initial_pc_addr; 2701 if (breakpoint_size > 0) 2702 { 2703 // Do not allow breakpoint probe to wrap around. 2704 if (breakpoint_addr >= breakpoint_size) 2705 breakpoint_addr -= breakpoint_size; 2706 } 2707 2708 // Check if we stopped because of a breakpoint. 2709 NativeBreakpointSP breakpoint_sp; 2710 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 2711 if (!error.Success () || !breakpoint_sp) 2712 { 2713 // We didn't find one at a software probe location. Nothing to do. 2714 if (log) 2715 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 2716 return Error (); 2717 } 2718 2719 // If the breakpoint is not a software breakpoint, nothing to do. 2720 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 2721 { 2722 if (log) 2723 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 2724 return Error (); 2725 } 2726 2727 // 2728 // We have a software breakpoint and need to adjust the PC. 2729 // 2730 2731 // Sanity check. 2732 if (breakpoint_size == 0) 2733 { 2734 // Nothing to do! How did we get here? 2735 if (log) 2736 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 2737 return Error (); 2738 } 2739 2740 // Change the program counter. 2741 if (log) 2742 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID(), thread.GetID(), initial_pc_addr, breakpoint_addr); 2743 2744 error = context_sp->SetPC (breakpoint_addr); 2745 if (error.Fail ()) 2746 { 2747 if (log) 2748 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID(), thread.GetID(), error.AsCString ()); 2749 return error; 2750 } 2751 2752 return error; 2753 } 2754 2755 Error 2756 NativeProcessLinux::GetLoadedModuleFileSpec(const char* module_path, FileSpec& file_spec) 2757 { 2758 FileSpec module_file_spec(module_path, true); 2759 2760 bool found = false; 2761 file_spec.Clear(); 2762 ProcFileReader::ProcessLineByLine(GetID(), "maps", 2763 [&] (const std::string &line) 2764 { 2765 SmallVector<StringRef, 16> columns; 2766 StringRef(line).split(columns, " ", -1, false); 2767 if (columns.size() < 6) 2768 return true; // continue searching 2769 2770 FileSpec this_file_spec(columns[5].str().c_str(), false); 2771 if (this_file_spec.GetFilename() != module_file_spec.GetFilename()) 2772 return true; // continue searching 2773 2774 file_spec = this_file_spec; 2775 found = true; 2776 return false; // we are done 2777 }); 2778 2779 if (! found) 2780 return Error("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 2781 module_file_spec.GetFilename().AsCString(), GetID()); 2782 2783 return Error(); 2784 } 2785 2786 Error 2787 NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef& file_name, lldb::addr_t& load_addr) 2788 { 2789 load_addr = LLDB_INVALID_ADDRESS; 2790 Error error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2791 [&] (const std::string &line) -> bool 2792 { 2793 StringRef maps_row(line); 2794 2795 SmallVector<StringRef, 16> maps_columns; 2796 maps_row.split(maps_columns, StringRef(" "), -1, false); 2797 2798 if (maps_columns.size() < 6) 2799 { 2800 // Return true to continue reading the proc file 2801 return true; 2802 } 2803 2804 if (maps_columns[5] == file_name) 2805 { 2806 StringExtractor addr_extractor(maps_columns[0].str().c_str()); 2807 load_addr = addr_extractor.GetHexMaxU64(false, LLDB_INVALID_ADDRESS); 2808 2809 // Return false to stop reading the proc file further 2810 return false; 2811 } 2812 2813 // Return true to continue reading the proc file 2814 return true; 2815 }); 2816 return error; 2817 } 2818 2819 NativeThreadLinuxSP 2820 NativeProcessLinux::GetThreadByID(lldb::tid_t tid) 2821 { 2822 return std::static_pointer_cast<NativeThreadLinux>(NativeProcessProtocol::GetThreadByID(tid)); 2823 } 2824 2825 Error 2826 NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, lldb::StateType state, int signo) 2827 { 2828 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2829 2830 if (log) 2831 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", 2832 __FUNCTION__, thread.GetID()); 2833 2834 // Before we do the resume below, first check if we have a pending 2835 // stop notification that is currently waiting for 2836 // all threads to stop. This is potentially a buggy situation since 2837 // we're ostensibly waiting for threads to stop before we send out the 2838 // pending notification, and here we are resuming one before we send 2839 // out the pending stop notification. 2840 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && log) 2841 { 2842 log->Printf("NativeProcessLinux::%s about to resume tid %" PRIu64 " per explicit request but we have a pending stop notification (tid %" PRIu64 ") that is actively waiting for this thread to stop. Valid sequence of events?", __FUNCTION__, thread.GetID(), m_pending_notification_tid); 2843 } 2844 2845 // Request a resume. We expect this to be synchronous and the system 2846 // to reflect it is running after this completes. 2847 switch (state) 2848 { 2849 case eStateRunning: 2850 { 2851 const auto resume_result = thread.Resume(signo); 2852 if (resume_result.Success()) 2853 SetState(eStateRunning, true); 2854 return resume_result; 2855 } 2856 case eStateStepping: 2857 { 2858 const auto step_result = thread.SingleStep(signo); 2859 if (step_result.Success()) 2860 SetState(eStateRunning, true); 2861 return step_result; 2862 } 2863 default: 2864 if (log) 2865 log->Printf("NativeProcessLinux::%s Unhandled state %s.", 2866 __FUNCTION__, StateAsCString(state)); 2867 llvm_unreachable("Unhandled state for resume"); 2868 } 2869 } 2870 2871 //===----------------------------------------------------------------------===// 2872 2873 void 2874 NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) 2875 { 2876 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2877 2878 if (log) 2879 { 2880 log->Printf("NativeProcessLinux::%s about to process event: (triggering_tid: %" PRIu64 ")", 2881 __FUNCTION__, triggering_tid); 2882 } 2883 2884 m_pending_notification_tid = triggering_tid; 2885 2886 // Request a stop for all the thread stops that need to be stopped 2887 // and are not already known to be stopped. 2888 for (const auto &thread_sp: m_threads) 2889 { 2890 if (StateIsRunningState(thread_sp->GetState())) 2891 static_pointer_cast<NativeThreadLinux>(thread_sp)->RequestStop(); 2892 } 2893 2894 SignalIfAllThreadsStopped(); 2895 2896 if (log) 2897 { 2898 log->Printf("NativeProcessLinux::%s event processing done", __FUNCTION__); 2899 } 2900 } 2901 2902 void 2903 NativeProcessLinux::SignalIfAllThreadsStopped() 2904 { 2905 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 2906 return; // No pending notification. Nothing to do. 2907 2908 for (const auto &thread_sp: m_threads) 2909 { 2910 if (StateIsRunningState(thread_sp->GetState())) 2911 return; // Some threads are still running. Don't signal yet. 2912 } 2913 2914 // We have a pending notification and all threads have stopped. 2915 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_BREAKPOINTS)); 2916 2917 // Clear any temporary breakpoints we used to implement software single stepping. 2918 for (const auto &thread_info: m_threads_stepping_with_breakpoint) 2919 { 2920 Error error = RemoveBreakpoint (thread_info.second); 2921 if (error.Fail()) 2922 if (log) 2923 log->Printf("NativeProcessLinux::%s() pid = %" PRIu64 " remove stepping breakpoint: %s", 2924 __FUNCTION__, thread_info.first, error.AsCString()); 2925 } 2926 m_threads_stepping_with_breakpoint.clear(); 2927 2928 // Notify the delegate about the stop 2929 SetCurrentThreadID(m_pending_notification_tid); 2930 SetState(StateType::eStateStopped, true); 2931 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 2932 } 2933 2934 void 2935 NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) 2936 { 2937 Log *const log = GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD); 2938 2939 if (log) 2940 log->Printf("NativeProcessLinux::%s (tid: %" PRIu64 ")", __FUNCTION__, thread.GetID()); 2941 2942 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && StateIsRunningState(thread.GetState())) 2943 { 2944 // We will need to wait for this new thread to stop as well before firing the 2945 // notification. 2946 thread.RequestStop(); 2947 } 2948 } 2949 2950 void 2951 NativeProcessLinux::SigchldHandler() 2952 { 2953 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 2954 // Process all pending waitpid notifications. 2955 while (true) 2956 { 2957 int status = -1; 2958 ::pid_t wait_pid = waitpid(-1, &status, __WALL | __WNOTHREAD | WNOHANG); 2959 2960 if (wait_pid == 0) 2961 break; // We are done. 2962 2963 if (wait_pid == -1) 2964 { 2965 if (errno == EINTR) 2966 continue; 2967 2968 Error error(errno, eErrorTypePOSIX); 2969 if (log) 2970 log->Printf("NativeProcessLinux::%s waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG) failed: %s", 2971 __FUNCTION__, error.AsCString()); 2972 break; 2973 } 2974 2975 bool exited = false; 2976 int signal = 0; 2977 int exit_status = 0; 2978 const char *status_cstr = nullptr; 2979 if (WIFSTOPPED(status)) 2980 { 2981 signal = WSTOPSIG(status); 2982 status_cstr = "STOPPED"; 2983 } 2984 else if (WIFEXITED(status)) 2985 { 2986 exit_status = WEXITSTATUS(status); 2987 status_cstr = "EXITED"; 2988 exited = true; 2989 } 2990 else if (WIFSIGNALED(status)) 2991 { 2992 signal = WTERMSIG(status); 2993 status_cstr = "SIGNALED"; 2994 if (wait_pid == static_cast< ::pid_t>(GetID())) { 2995 exited = true; 2996 exit_status = -1; 2997 } 2998 } 2999 else 3000 status_cstr = "(\?\?\?)"; 3001 3002 if (log) 3003 log->Printf("NativeProcessLinux::%s: waitpid (-1, &status, __WALL | __WNOTHREAD | WNOHANG)" 3004 "=> pid = %" PRIi32 ", status = 0x%8.8x (%s), signal = %i, exit_state = %i", 3005 __FUNCTION__, wait_pid, status, status_cstr, signal, exit_status); 3006 3007 MonitorCallback (wait_pid, exited, signal, exit_status); 3008 } 3009 } 3010 3011 // Wrapper for ptrace to catch errors and log calls. 3012 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 3013 Error 3014 NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, long *result) 3015 { 3016 Error error; 3017 long int ret; 3018 3019 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 3020 3021 PtraceDisplayBytes(req, data, data_size); 3022 3023 errno = 0; 3024 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 3025 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 3026 else 3027 ret = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 3028 3029 if (ret == -1) 3030 error.SetErrorToErrno(); 3031 3032 if (result) 3033 *result = ret; 3034 3035 if (log) 3036 log->Printf("ptrace(%d, %" PRIu64 ", %p, %p, %zu)=%lX", req, pid, addr, data, data_size, ret); 3037 3038 PtraceDisplayBytes(req, data, data_size); 3039 3040 if (log && error.GetError() != 0) 3041 { 3042 const char* str; 3043 switch (error.GetError()) 3044 { 3045 case ESRCH: str = "ESRCH"; break; 3046 case EINVAL: str = "EINVAL"; break; 3047 case EBUSY: str = "EBUSY"; break; 3048 case EPERM: str = "EPERM"; break; 3049 default: str = error.AsCString(); 3050 } 3051 log->Printf("ptrace() failed; errno=%d (%s)", error.GetError(), str); 3052 } 3053 3054 return error; 3055 } 3056