1 //===-- NativeProcessLinux.cpp --------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "NativeProcessLinux.h" 10 11 #include <cerrno> 12 #include <cstdint> 13 #include <cstring> 14 #include <unistd.h> 15 16 #include <fstream> 17 #include <mutex> 18 #include <sstream> 19 #include <string> 20 #include <unordered_map> 21 22 #include "NativeThreadLinux.h" 23 #include "Plugins/Process/POSIX/ProcessPOSIXLog.h" 24 #include "Plugins/Process/Utility/LinuxProcMaps.h" 25 #include "Procfs.h" 26 #include "lldb/Core/ModuleSpec.h" 27 #include "lldb/Host/Host.h" 28 #include "lldb/Host/HostProcess.h" 29 #include "lldb/Host/ProcessLaunchInfo.h" 30 #include "lldb/Host/PseudoTerminal.h" 31 #include "lldb/Host/ThreadLauncher.h" 32 #include "lldb/Host/common/NativeRegisterContext.h" 33 #include "lldb/Host/linux/Host.h" 34 #include "lldb/Host/linux/Ptrace.h" 35 #include "lldb/Host/linux/Uio.h" 36 #include "lldb/Host/posix/ProcessLauncherPosixFork.h" 37 #include "lldb/Symbol/ObjectFile.h" 38 #include "lldb/Target/Process.h" 39 #include "lldb/Target/Target.h" 40 #include "lldb/Utility/LLDBAssert.h" 41 #include "lldb/Utility/LLDBLog.h" 42 #include "lldb/Utility/State.h" 43 #include "lldb/Utility/Status.h" 44 #include "lldb/Utility/StringExtractor.h" 45 #include "llvm/ADT/ScopeExit.h" 46 #include "llvm/Support/Errno.h" 47 #include "llvm/Support/FileSystem.h" 48 #include "llvm/Support/Threading.h" 49 50 #include <linux/unistd.h> 51 #include <sys/socket.h> 52 #include <sys/syscall.h> 53 #include <sys/types.h> 54 #include <sys/user.h> 55 #include <sys/wait.h> 56 57 #ifdef __aarch64__ 58 #include <asm/hwcap.h> 59 #include <sys/auxv.h> 60 #endif 61 62 // Support hardware breakpoints in case it has not been defined 63 #ifndef TRAP_HWBKPT 64 #define TRAP_HWBKPT 4 65 #endif 66 67 #ifndef HWCAP2_MTE 68 #define HWCAP2_MTE (1 << 18) 69 #endif 70 71 using namespace lldb; 72 using namespace lldb_private; 73 using namespace lldb_private::process_linux; 74 using namespace llvm; 75 76 // Private bits we only need internally. 77 78 static bool ProcessVmReadvSupported() { 79 static bool is_supported; 80 static llvm::once_flag flag; 81 82 llvm::call_once(flag, [] { 83 Log *log = GetLog(POSIXLog::Process); 84 85 uint32_t source = 0x47424742; 86 uint32_t dest = 0; 87 88 struct iovec local, remote; 89 remote.iov_base = &source; 90 local.iov_base = &dest; 91 remote.iov_len = local.iov_len = sizeof source; 92 93 // We shall try if cross-process-memory reads work by attempting to read a 94 // value from our own process. 95 ssize_t res = process_vm_readv(getpid(), &local, 1, &remote, 1, 0); 96 is_supported = (res == sizeof(source) && source == dest); 97 if (is_supported) 98 LLDB_LOG(log, 99 "Detected kernel support for process_vm_readv syscall. " 100 "Fast memory reads enabled."); 101 else 102 LLDB_LOG(log, 103 "syscall process_vm_readv failed (error: {0}). Fast memory " 104 "reads disabled.", 105 llvm::sys::StrError()); 106 }); 107 108 return is_supported; 109 } 110 111 static void MaybeLogLaunchInfo(const ProcessLaunchInfo &info) { 112 Log *log = GetLog(POSIXLog::Process); 113 if (!log) 114 return; 115 116 if (const FileAction *action = info.GetFileActionForFD(STDIN_FILENO)) 117 LLDB_LOG(log, "setting STDIN to '{0}'", action->GetFileSpec()); 118 else 119 LLDB_LOG(log, "leaving STDIN as is"); 120 121 if (const FileAction *action = info.GetFileActionForFD(STDOUT_FILENO)) 122 LLDB_LOG(log, "setting STDOUT to '{0}'", action->GetFileSpec()); 123 else 124 LLDB_LOG(log, "leaving STDOUT as is"); 125 126 if (const FileAction *action = info.GetFileActionForFD(STDERR_FILENO)) 127 LLDB_LOG(log, "setting STDERR to '{0}'", action->GetFileSpec()); 128 else 129 LLDB_LOG(log, "leaving STDERR as is"); 130 131 int i = 0; 132 for (const char **args = info.GetArguments().GetConstArgumentVector(); *args; 133 ++args, ++i) 134 LLDB_LOG(log, "arg {0}: '{1}'", i, *args); 135 } 136 137 static void DisplayBytes(StreamString &s, void *bytes, uint32_t count) { 138 uint8_t *ptr = (uint8_t *)bytes; 139 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 140 for (uint32_t i = 0; i < loop_count; i++) { 141 s.Printf("[%x]", *ptr); 142 ptr++; 143 } 144 } 145 146 static void PtraceDisplayBytes(int &req, void *data, size_t data_size) { 147 Log *log = GetLog(POSIXLog::Ptrace); 148 if (!log) 149 return; 150 StreamString buf; 151 152 switch (req) { 153 case PTRACE_POKETEXT: { 154 DisplayBytes(buf, &data, 8); 155 LLDB_LOGV(log, "PTRACE_POKETEXT {0}", buf.GetData()); 156 break; 157 } 158 case PTRACE_POKEDATA: { 159 DisplayBytes(buf, &data, 8); 160 LLDB_LOGV(log, "PTRACE_POKEDATA {0}", buf.GetData()); 161 break; 162 } 163 case PTRACE_POKEUSER: { 164 DisplayBytes(buf, &data, 8); 165 LLDB_LOGV(log, "PTRACE_POKEUSER {0}", buf.GetData()); 166 break; 167 } 168 case PTRACE_SETREGS: { 169 DisplayBytes(buf, data, data_size); 170 LLDB_LOGV(log, "PTRACE_SETREGS {0}", buf.GetData()); 171 break; 172 } 173 case PTRACE_SETFPREGS: { 174 DisplayBytes(buf, data, data_size); 175 LLDB_LOGV(log, "PTRACE_SETFPREGS {0}", buf.GetData()); 176 break; 177 } 178 case PTRACE_SETSIGINFO: { 179 DisplayBytes(buf, data, sizeof(siginfo_t)); 180 LLDB_LOGV(log, "PTRACE_SETSIGINFO {0}", buf.GetData()); 181 break; 182 } 183 case PTRACE_SETREGSET: { 184 // Extract iov_base from data, which is a pointer to the struct iovec 185 DisplayBytes(buf, *(void **)data, data_size); 186 LLDB_LOGV(log, "PTRACE_SETREGSET {0}", buf.GetData()); 187 break; 188 } 189 default: {} 190 } 191 } 192 193 static constexpr unsigned k_ptrace_word_size = sizeof(void *); 194 static_assert(sizeof(long) >= k_ptrace_word_size, 195 "Size of long must be larger than ptrace word size"); 196 197 // Simple helper function to ensure flags are enabled on the given file 198 // descriptor. 199 static Status EnsureFDFlags(int fd, int flags) { 200 Status error; 201 202 int status = fcntl(fd, F_GETFL); 203 if (status == -1) { 204 error.SetErrorToErrno(); 205 return error; 206 } 207 208 if (fcntl(fd, F_SETFL, status | flags) == -1) { 209 error.SetErrorToErrno(); 210 return error; 211 } 212 213 return error; 214 } 215 216 // Public Static Methods 217 218 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 219 NativeProcessLinux::Factory::Launch(ProcessLaunchInfo &launch_info, 220 NativeDelegate &native_delegate, 221 MainLoop &mainloop) const { 222 Log *log = GetLog(POSIXLog::Process); 223 224 MaybeLogLaunchInfo(launch_info); 225 226 Status status; 227 ::pid_t pid = ProcessLauncherPosixFork() 228 .LaunchProcess(launch_info, status) 229 .GetProcessId(); 230 LLDB_LOG(log, "pid = {0:x}", pid); 231 if (status.Fail()) { 232 LLDB_LOG(log, "failed to launch process: {0}", status); 233 return status.ToError(); 234 } 235 236 // Wait for the child process to trap on its call to execve. 237 int wstatus = 0; 238 ::pid_t wpid = llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &wstatus, 0); 239 assert(wpid == pid); 240 (void)wpid; 241 if (!WIFSTOPPED(wstatus)) { 242 LLDB_LOG(log, "Could not sync with inferior process: wstatus={1}", 243 WaitStatus::Decode(wstatus)); 244 return llvm::make_error<StringError>("Could not sync with inferior process", 245 llvm::inconvertibleErrorCode()); 246 } 247 LLDB_LOG(log, "inferior started, now in stopped state"); 248 249 status = SetDefaultPtraceOpts(pid); 250 if (status.Fail()) { 251 LLDB_LOG(log, "failed to set default ptrace options: {0}", status); 252 return status.ToError(); 253 } 254 255 llvm::Expected<ArchSpec> arch_or = 256 NativeRegisterContextLinux::DetermineArchitecture(pid); 257 if (!arch_or) 258 return arch_or.takeError(); 259 260 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 261 pid, launch_info.GetPTY().ReleasePrimaryFileDescriptor(), native_delegate, 262 *arch_or, mainloop, {pid})); 263 } 264 265 llvm::Expected<std::unique_ptr<NativeProcessProtocol>> 266 NativeProcessLinux::Factory::Attach( 267 lldb::pid_t pid, NativeProcessProtocol::NativeDelegate &native_delegate, 268 MainLoop &mainloop) const { 269 Log *log = GetLog(POSIXLog::Process); 270 LLDB_LOG(log, "pid = {0:x}", pid); 271 272 auto tids_or = NativeProcessLinux::Attach(pid); 273 if (!tids_or) 274 return tids_or.takeError(); 275 ArrayRef<::pid_t> tids = *tids_or; 276 llvm::Expected<ArchSpec> arch_or = 277 NativeRegisterContextLinux::DetermineArchitecture(tids[0]); 278 if (!arch_or) 279 return arch_or.takeError(); 280 281 return std::unique_ptr<NativeProcessLinux>(new NativeProcessLinux( 282 pid, -1, native_delegate, *arch_or, mainloop, tids)); 283 } 284 285 NativeProcessLinux::Extension 286 NativeProcessLinux::Factory::GetSupportedExtensions() const { 287 NativeProcessLinux::Extension supported = 288 Extension::multiprocess | Extension::fork | Extension::vfork | 289 Extension::pass_signals | Extension::auxv | Extension::libraries_svr4 | 290 Extension::siginfo_read; 291 292 #ifdef __aarch64__ 293 // At this point we do not have a process so read auxv directly. 294 if ((getauxval(AT_HWCAP2) & HWCAP2_MTE)) 295 supported |= Extension::memory_tagging; 296 #endif 297 298 return supported; 299 } 300 301 // Public Instance Methods 302 303 NativeProcessLinux::NativeProcessLinux(::pid_t pid, int terminal_fd, 304 NativeDelegate &delegate, 305 const ArchSpec &arch, MainLoop &mainloop, 306 llvm::ArrayRef<::pid_t> tids) 307 : NativeProcessELF(pid, terminal_fd, delegate), m_arch(arch), 308 m_main_loop(mainloop), m_intel_pt_collector(*this) { 309 if (m_terminal_fd != -1) { 310 Status status = EnsureFDFlags(m_terminal_fd, O_NONBLOCK); 311 assert(status.Success()); 312 } 313 314 Status status; 315 m_sigchld_handle = mainloop.RegisterSignal( 316 SIGCHLD, [this](MainLoopBase &) { SigchldHandler(); }, status); 317 assert(m_sigchld_handle && status.Success()); 318 319 for (const auto &tid : tids) { 320 NativeThreadLinux &thread = AddThread(tid, /*resume*/ false); 321 ThreadWasCreated(thread); 322 } 323 324 // Let our process instance know the thread has stopped. 325 SetCurrentThreadID(tids[0]); 326 SetState(StateType::eStateStopped, false); 327 328 // Proccess any signals we received before installing our handler 329 SigchldHandler(); 330 } 331 332 llvm::Expected<std::vector<::pid_t>> NativeProcessLinux::Attach(::pid_t pid) { 333 Log *log = GetLog(POSIXLog::Process); 334 335 Status status; 336 // Use a map to keep track of the threads which we have attached/need to 337 // attach. 338 Host::TidMap tids_to_attach; 339 while (Host::FindProcessThreads(pid, tids_to_attach)) { 340 for (Host::TidMap::iterator it = tids_to_attach.begin(); 341 it != tids_to_attach.end();) { 342 if (it->second == false) { 343 lldb::tid_t tid = it->first; 344 345 // Attach to the requested process. 346 // An attach will cause the thread to stop with a SIGSTOP. 347 if ((status = PtraceWrapper(PTRACE_ATTACH, tid)).Fail()) { 348 // No such thread. The thread may have exited. More error handling 349 // may be needed. 350 if (status.GetError() == ESRCH) { 351 it = tids_to_attach.erase(it); 352 continue; 353 } 354 return status.ToError(); 355 } 356 357 int wpid = 358 llvm::sys::RetryAfterSignal(-1, ::waitpid, tid, nullptr, __WALL); 359 // Need to use __WALL otherwise we receive an error with errno=ECHLD At 360 // this point we should have a thread stopped if waitpid succeeds. 361 if (wpid < 0) { 362 // No such thread. The thread may have exited. More error handling 363 // may be needed. 364 if (errno == ESRCH) { 365 it = tids_to_attach.erase(it); 366 continue; 367 } 368 return llvm::errorCodeToError( 369 std::error_code(errno, std::generic_category())); 370 } 371 372 if ((status = SetDefaultPtraceOpts(tid)).Fail()) 373 return status.ToError(); 374 375 LLDB_LOG(log, "adding tid = {0}", tid); 376 it->second = true; 377 } 378 379 // move the loop forward 380 ++it; 381 } 382 } 383 384 size_t tid_count = tids_to_attach.size(); 385 if (tid_count == 0) 386 return llvm::make_error<StringError>("No such process", 387 llvm::inconvertibleErrorCode()); 388 389 std::vector<::pid_t> tids; 390 tids.reserve(tid_count); 391 for (const auto &p : tids_to_attach) 392 tids.push_back(p.first); 393 return std::move(tids); 394 } 395 396 Status NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) { 397 long ptrace_opts = 0; 398 399 // Have the child raise an event on exit. This is used to keep the child in 400 // limbo until it is destroyed. 401 ptrace_opts |= PTRACE_O_TRACEEXIT; 402 403 // Have the tracer trace threads which spawn in the inferior process. 404 ptrace_opts |= PTRACE_O_TRACECLONE; 405 406 // Have the tracer notify us before execve returns (needed to disable legacy 407 // SIGTRAP generation) 408 ptrace_opts |= PTRACE_O_TRACEEXEC; 409 410 // Have the tracer trace forked children. 411 ptrace_opts |= PTRACE_O_TRACEFORK; 412 413 // Have the tracer trace vforks. 414 ptrace_opts |= PTRACE_O_TRACEVFORK; 415 416 // Have the tracer trace vfork-done in order to restore breakpoints after 417 // the child finishes sharing memory. 418 ptrace_opts |= PTRACE_O_TRACEVFORKDONE; 419 420 return PtraceWrapper(PTRACE_SETOPTIONS, pid, nullptr, (void *)ptrace_opts); 421 } 422 423 // Handles all waitpid events from the inferior process. 424 void NativeProcessLinux::MonitorCallback(NativeThreadLinux &thread, 425 WaitStatus status) { 426 Log *log = GetLog(LLDBLog::Process); 427 428 // Certain activities differ based on whether the pid is the tid of the main 429 // thread. 430 const bool is_main_thread = (thread.GetID() == GetID()); 431 432 // Handle when the thread exits. 433 if (status.type == WaitStatus::Exit || status.type == WaitStatus::Signal) { 434 LLDB_LOG(log, 435 "got exit status({0}) , tid = {1} ({2} main thread), process " 436 "state = {3}", 437 status, thread.GetID(), is_main_thread ? "is" : "is not", 438 GetState()); 439 440 // This is a thread that exited. Ensure we're not tracking it anymore. 441 StopTrackingThread(thread); 442 443 assert(!is_main_thread && "Main thread exits handled elsewhere"); 444 return; 445 } 446 447 siginfo_t info; 448 const auto info_err = GetSignalInfo(thread.GetID(), &info); 449 450 // Get details on the signal raised. 451 if (info_err.Success()) { 452 // We have retrieved the signal info. Dispatch appropriately. 453 if (info.si_signo == SIGTRAP) 454 MonitorSIGTRAP(info, thread); 455 else 456 MonitorSignal(info, thread); 457 } else { 458 if (info_err.GetError() == EINVAL) { 459 // This is a group stop reception for this tid. We can reach here if we 460 // reinject SIGSTOP, SIGSTP, SIGTTIN or SIGTTOU into the tracee, 461 // triggering the group-stop mechanism. Normally receiving these would 462 // stop the process, pending a SIGCONT. Simulating this state in a 463 // debugger is hard and is generally not needed (one use case is 464 // debugging background task being managed by a shell). For general use, 465 // it is sufficient to stop the process in a signal-delivery stop which 466 // happens before the group stop. This done by MonitorSignal and works 467 // correctly for all signals. 468 LLDB_LOG(log, 469 "received a group stop for pid {0} tid {1}. Transparent " 470 "handling of group stops not supported, resuming the " 471 "thread.", 472 GetID(), thread.GetID()); 473 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 474 } else { 475 // ptrace(GETSIGINFO) failed (but not due to group-stop). 476 477 // A return value of ESRCH means the thread/process has died in the mean 478 // time. This can (e.g.) happen when another thread does an exit_group(2) 479 // or the entire process get SIGKILLed. 480 // We can't do anything with this thread anymore, but we keep it around 481 // until we get the WIFEXITED event. 482 483 LLDB_LOG(log, 484 "GetSignalInfo({0}) failed: {1}, status = {2}, main_thread = " 485 "{3}. Expecting WIFEXITED soon.", 486 thread.GetID(), info_err, status, is_main_thread); 487 } 488 } 489 } 490 491 void NativeProcessLinux::WaitForCloneNotification(::pid_t pid) { 492 Log *log = GetLog(POSIXLog::Process); 493 494 // The PID is not tracked yet, let's wait for it to appear. 495 int status = -1; 496 LLDB_LOG(log, 497 "received clone event for pid {0}. pid not tracked yet, " 498 "waiting for it to appear...", 499 pid); 500 ::pid_t wait_pid = 501 llvm::sys::RetryAfterSignal(-1, ::waitpid, pid, &status, __WALL); 502 503 // It's theoretically possible to get other events if the entire process was 504 // SIGKILLed before we got a chance to check this. In that case, we'll just 505 // clean everything up when we get the process exit event. 506 507 LLDB_LOG(log, 508 "waitpid({0}, &status, __WALL) => {1} (errno: {2}, status = {3})", 509 pid, wait_pid, errno, WaitStatus::Decode(status)); 510 } 511 512 void NativeProcessLinux::MonitorSIGTRAP(const siginfo_t &info, 513 NativeThreadLinux &thread) { 514 Log *log = GetLog(POSIXLog::Process); 515 const bool is_main_thread = (thread.GetID() == GetID()); 516 517 assert(info.si_signo == SIGTRAP && "Unexpected child signal!"); 518 519 switch (info.si_code) { 520 case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 521 case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 522 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): { 523 // This can either mean a new thread or a new process spawned via 524 // clone(2) without SIGCHLD or CLONE_VFORK flag. Note that clone(2) 525 // can also cause PTRACE_EVENT_FORK and PTRACE_EVENT_VFORK if one 526 // of these flags are passed. 527 528 unsigned long event_message = 0; 529 if (GetEventMessage(thread.GetID(), &event_message).Fail()) { 530 LLDB_LOG(log, 531 "pid {0} received clone() event but GetEventMessage failed " 532 "so we don't know the new pid/tid", 533 thread.GetID()); 534 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 535 } else { 536 MonitorClone(thread, event_message, info.si_code >> 8); 537 } 538 539 break; 540 } 541 542 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): { 543 LLDB_LOG(log, "received exec event, code = {0}", info.si_code ^ SIGTRAP); 544 545 // Exec clears any pending notifications. 546 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 547 548 // Remove all but the main thread here. Linux fork creates a new process 549 // which only copies the main thread. 550 LLDB_LOG(log, "exec received, stop tracking all but main thread"); 551 552 llvm::erase_if(m_threads, [&](std::unique_ptr<NativeThreadProtocol> &t) { 553 return t->GetID() != GetID(); 554 }); 555 assert(m_threads.size() == 1); 556 auto *main_thread = static_cast<NativeThreadLinux *>(m_threads[0].get()); 557 558 SetCurrentThreadID(main_thread->GetID()); 559 main_thread->SetStoppedByExec(); 560 561 // Tell coordinator about about the "new" (since exec) stopped main thread. 562 ThreadWasCreated(*main_thread); 563 564 // Let our delegate know we have just exec'd. 565 NotifyDidExec(); 566 567 // Let the process know we're stopped. 568 StopRunningThreads(main_thread->GetID()); 569 570 break; 571 } 572 573 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): { 574 // The inferior process or one of its threads is about to exit. We don't 575 // want to do anything with the thread so we just resume it. In case we 576 // want to implement "break on thread exit" functionality, we would need to 577 // stop here. 578 579 unsigned long data = 0; 580 if (GetEventMessage(thread.GetID(), &data).Fail()) 581 data = -1; 582 583 LLDB_LOG(log, 584 "received PTRACE_EVENT_EXIT, data = {0:x}, WIFEXITED={1}, " 585 "WIFSIGNALED={2}, pid = {3}, main_thread = {4}", 586 data, WIFEXITED(data), WIFSIGNALED(data), thread.GetID(), 587 is_main_thread); 588 589 590 StateType state = thread.GetState(); 591 if (!StateIsRunningState(state)) { 592 // Due to a kernel bug, we may sometimes get this stop after the inferior 593 // gets a SIGKILL. This confuses our state tracking logic in 594 // ResumeThread(), since normally, we should not be receiving any ptrace 595 // events while the inferior is stopped. This makes sure that the 596 // inferior is resumed and exits normally. 597 state = eStateRunning; 598 } 599 ResumeThread(thread, state, LLDB_INVALID_SIGNAL_NUMBER); 600 601 if (is_main_thread) { 602 // Main thread report the read (WIFEXITED) event only after all threads in 603 // the process exit, so we need to stop tracking it here instead of in 604 // MonitorCallback 605 StopTrackingThread(thread); 606 } 607 608 break; 609 } 610 611 case (SIGTRAP | (PTRACE_EVENT_VFORK_DONE << 8)): { 612 if (bool(m_enabled_extensions & Extension::vfork)) { 613 thread.SetStoppedByVForkDone(); 614 StopRunningThreads(thread.GetID()); 615 } 616 else 617 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 618 break; 619 } 620 621 case 0: 622 case TRAP_TRACE: // We receive this on single stepping. 623 case TRAP_HWBKPT: // We receive this on watchpoint hit 624 { 625 // If a watchpoint was hit, report it 626 uint32_t wp_index; 627 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 628 wp_index, (uintptr_t)info.si_addr); 629 if (error.Fail()) 630 LLDB_LOG(log, 631 "received error while checking for watchpoint hits, pid = " 632 "{0}, error = {1}", 633 thread.GetID(), error); 634 if (wp_index != LLDB_INVALID_INDEX32) { 635 MonitorWatchpoint(thread, wp_index); 636 break; 637 } 638 639 // If a breakpoint was hit, report it 640 uint32_t bp_index; 641 error = thread.GetRegisterContext().GetHardwareBreakHitIndex( 642 bp_index, (uintptr_t)info.si_addr); 643 if (error.Fail()) 644 LLDB_LOG(log, "received error while checking for hardware " 645 "breakpoint hits, pid = {0}, error = {1}", 646 thread.GetID(), error); 647 if (bp_index != LLDB_INVALID_INDEX32) { 648 MonitorBreakpoint(thread); 649 break; 650 } 651 652 // Otherwise, report step over 653 MonitorTrace(thread); 654 break; 655 } 656 657 case SI_KERNEL: 658 #if defined __mips__ 659 // For mips there is no special signal for watchpoint So we check for 660 // watchpoint in kernel trap 661 { 662 // If a watchpoint was hit, report it 663 uint32_t wp_index; 664 Status error = thread.GetRegisterContext().GetWatchpointHitIndex( 665 wp_index, LLDB_INVALID_ADDRESS); 666 if (error.Fail()) 667 LLDB_LOG(log, 668 "received error while checking for watchpoint hits, pid = " 669 "{0}, error = {1}", 670 thread.GetID(), error); 671 if (wp_index != LLDB_INVALID_INDEX32) { 672 MonitorWatchpoint(thread, wp_index); 673 break; 674 } 675 } 676 // NO BREAK 677 #endif 678 case TRAP_BRKPT: 679 MonitorBreakpoint(thread); 680 break; 681 682 case SIGTRAP: 683 case (SIGTRAP | 0x80): 684 LLDB_LOG( 685 log, 686 "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}, resuming", 687 info.si_code, GetID(), thread.GetID()); 688 689 // Ignore these signals until we know more about them. 690 ResumeThread(thread, thread.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 691 break; 692 693 default: 694 LLDB_LOG(log, "received unknown SIGTRAP stop event ({0}, pid {1} tid {2}", 695 info.si_code, GetID(), thread.GetID()); 696 MonitorSignal(info, thread); 697 break; 698 } 699 } 700 701 void NativeProcessLinux::MonitorTrace(NativeThreadLinux &thread) { 702 Log *log = GetLog(POSIXLog::Process); 703 LLDB_LOG(log, "received trace event, pid = {0}", thread.GetID()); 704 705 // This thread is currently stopped. 706 thread.SetStoppedByTrace(); 707 708 StopRunningThreads(thread.GetID()); 709 } 710 711 void NativeProcessLinux::MonitorBreakpoint(NativeThreadLinux &thread) { 712 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 713 LLDB_LOG(log, "received breakpoint event, pid = {0}", thread.GetID()); 714 715 // Mark the thread as stopped at breakpoint. 716 thread.SetStoppedByBreakpoint(); 717 FixupBreakpointPCAsNeeded(thread); 718 719 if (m_threads_stepping_with_breakpoint.find(thread.GetID()) != 720 m_threads_stepping_with_breakpoint.end()) 721 thread.SetStoppedByTrace(); 722 723 StopRunningThreads(thread.GetID()); 724 } 725 726 void NativeProcessLinux::MonitorWatchpoint(NativeThreadLinux &thread, 727 uint32_t wp_index) { 728 Log *log = GetLog(LLDBLog::Process | LLDBLog::Watchpoints); 729 LLDB_LOG(log, "received watchpoint event, pid = {0}, wp_index = {1}", 730 thread.GetID(), wp_index); 731 732 // Mark the thread as stopped at watchpoint. The address is at 733 // (lldb::addr_t)info->si_addr if we need it. 734 thread.SetStoppedByWatchpoint(wp_index); 735 736 // We need to tell all other running threads before we notify the delegate 737 // about this stop. 738 StopRunningThreads(thread.GetID()); 739 } 740 741 void NativeProcessLinux::MonitorSignal(const siginfo_t &info, 742 NativeThreadLinux &thread) { 743 const int signo = info.si_signo; 744 const bool is_from_llgs = info.si_pid == getpid(); 745 746 Log *log = GetLog(POSIXLog::Process); 747 748 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 749 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a kill(2) 750 // or raise(3). Similarly for tgkill(2) on Linux. 751 // 752 // IOW, user generated signals never generate what we consider to be a 753 // "crash". 754 // 755 // Similarly, ACK signals generated by this monitor. 756 757 // Handle the signal. 758 LLDB_LOG(log, 759 "received signal {0} ({1}) with code {2}, (siginfo pid = {3}, " 760 "waitpid pid = {4})", 761 Host::GetSignalAsCString(signo), signo, info.si_code, 762 thread.GetID()); 763 764 // Check for thread stop notification. 765 if (is_from_llgs && (info.si_code == SI_TKILL) && (signo == SIGSTOP)) { 766 // This is a tgkill()-based stop. 767 LLDB_LOG(log, "pid {0} tid {1}, thread stopped", GetID(), thread.GetID()); 768 769 // Check that we're not already marked with a stop reason. Note this thread 770 // really shouldn't already be marked as stopped - if we were, that would 771 // imply that the kernel signaled us with the thread stopping which we 772 // handled and marked as stopped, and that, without an intervening resume, 773 // we received another stop. It is more likely that we are missing the 774 // marking of a run state somewhere if we find that the thread was marked 775 // as stopped. 776 const StateType thread_state = thread.GetState(); 777 if (!StateIsStoppedState(thread_state, false)) { 778 // An inferior thread has stopped because of a SIGSTOP we have sent it. 779 // Generally, these are not important stops and we don't want to report 780 // them as they are just used to stop other threads when one thread (the 781 // one with the *real* stop reason) hits a breakpoint (watchpoint, 782 // etc...). However, in the case of an asynchronous Interrupt(), this 783 // *is* the real stop reason, so we leave the signal intact if this is 784 // the thread that was chosen as the triggering thread. 785 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 786 if (m_pending_notification_tid == thread.GetID()) 787 thread.SetStoppedBySignal(SIGSTOP, &info); 788 else 789 thread.SetStoppedWithNoReason(); 790 791 SetCurrentThreadID(thread.GetID()); 792 SignalIfAllThreadsStopped(); 793 } else { 794 // We can end up here if stop was initiated by LLGS but by this time a 795 // thread stop has occurred - maybe initiated by another event. 796 Status error = ResumeThread(thread, thread.GetState(), 0); 797 if (error.Fail()) 798 LLDB_LOG(log, "failed to resume thread {0}: {1}", thread.GetID(), 799 error); 800 } 801 } else { 802 LLDB_LOG(log, 803 "pid {0} tid {1}, thread was already marked as a stopped " 804 "state (state={2}), leaving stop signal as is", 805 GetID(), thread.GetID(), thread_state); 806 SignalIfAllThreadsStopped(); 807 } 808 809 // Done handling. 810 return; 811 } 812 813 // Check if debugger should stop at this signal or just ignore it and resume 814 // the inferior. 815 if (m_signals_to_ignore.contains(signo)) { 816 ResumeThread(thread, thread.GetState(), signo); 817 return; 818 } 819 820 // This thread is stopped. 821 LLDB_LOG(log, "received signal {0}", Host::GetSignalAsCString(signo)); 822 thread.SetStoppedBySignal(signo, &info); 823 824 // Send a stop to the debugger after we get all other threads to stop. 825 StopRunningThreads(thread.GetID()); 826 } 827 828 bool NativeProcessLinux::MonitorClone(NativeThreadLinux &parent, 829 lldb::pid_t child_pid, int event) { 830 Log *log = GetLog(POSIXLog::Process); 831 LLDB_LOG(log, "parent_tid={0}, child_pid={1}, event={2}", parent.GetID(), 832 child_pid, event); 833 834 WaitForCloneNotification(child_pid); 835 836 switch (event) { 837 case PTRACE_EVENT_CLONE: { 838 // PTRACE_EVENT_CLONE can either mean a new thread or a new process. 839 // Try to grab the new process' PGID to figure out which one it is. 840 // If PGID is the same as the PID, then it's a new process. Otherwise, 841 // it's a thread. 842 auto tgid_ret = getPIDForTID(child_pid); 843 if (tgid_ret != child_pid) { 844 // A new thread should have PGID matching our process' PID. 845 assert(!tgid_ret || *tgid_ret == GetID()); 846 847 NativeThreadLinux &child_thread = AddThread(child_pid, /*resume*/ true); 848 ThreadWasCreated(child_thread); 849 850 // Resume the parent. 851 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 852 break; 853 } 854 } 855 [[fallthrough]]; 856 case PTRACE_EVENT_FORK: 857 case PTRACE_EVENT_VFORK: { 858 bool is_vfork = event == PTRACE_EVENT_VFORK; 859 std::unique_ptr<NativeProcessLinux> child_process{new NativeProcessLinux( 860 static_cast<::pid_t>(child_pid), m_terminal_fd, m_delegate, m_arch, 861 m_main_loop, {static_cast<::pid_t>(child_pid)})}; 862 if (!is_vfork) 863 child_process->m_software_breakpoints = m_software_breakpoints; 864 865 Extension expected_ext = is_vfork ? Extension::vfork : Extension::fork; 866 if (bool(m_enabled_extensions & expected_ext)) { 867 m_delegate.NewSubprocess(this, std::move(child_process)); 868 // NB: non-vfork clone() is reported as fork 869 parent.SetStoppedByFork(is_vfork, child_pid); 870 StopRunningThreads(parent.GetID()); 871 } else { 872 child_process->Detach(); 873 ResumeThread(parent, parent.GetState(), LLDB_INVALID_SIGNAL_NUMBER); 874 } 875 break; 876 } 877 default: 878 llvm_unreachable("unknown clone_info.event"); 879 } 880 881 return true; 882 } 883 884 bool NativeProcessLinux::SupportHardwareSingleStepping() const { 885 if (m_arch.IsMIPS() || m_arch.GetMachine() == llvm::Triple::arm || 886 m_arch.GetTriple().isRISCV() || m_arch.GetTriple().isLoongArch()) 887 return false; 888 return true; 889 } 890 891 Status NativeProcessLinux::Resume(const ResumeActionList &resume_actions) { 892 Log *log = GetLog(POSIXLog::Process); 893 LLDB_LOG(log, "pid {0}", GetID()); 894 895 NotifyTracersProcessWillResume(); 896 897 bool software_single_step = !SupportHardwareSingleStepping(); 898 899 if (software_single_step) { 900 for (const auto &thread : m_threads) { 901 assert(thread && "thread list should not contain NULL threads"); 902 903 const ResumeAction *const action = 904 resume_actions.GetActionForThread(thread->GetID(), true); 905 if (action == nullptr) 906 continue; 907 908 if (action->state == eStateStepping) { 909 Status error = SetupSoftwareSingleStepping( 910 static_cast<NativeThreadLinux &>(*thread)); 911 if (error.Fail()) 912 return error; 913 } 914 } 915 } 916 917 for (const auto &thread : m_threads) { 918 assert(thread && "thread list should not contain NULL threads"); 919 920 const ResumeAction *const action = 921 resume_actions.GetActionForThread(thread->GetID(), true); 922 923 if (action == nullptr) { 924 LLDB_LOG(log, "no action specified for pid {0} tid {1}", GetID(), 925 thread->GetID()); 926 continue; 927 } 928 929 LLDB_LOG(log, "processing resume action state {0} for pid {1} tid {2}", 930 action->state, GetID(), thread->GetID()); 931 932 switch (action->state) { 933 case eStateRunning: 934 case eStateStepping: { 935 // Run the thread, possibly feeding it the signal. 936 const int signo = action->signal; 937 Status error = ResumeThread(static_cast<NativeThreadLinux &>(*thread), 938 action->state, signo); 939 if (error.Fail()) 940 return Status("NativeProcessLinux::%s: failed to resume thread " 941 "for pid %" PRIu64 ", tid %" PRIu64 ", error = %s", 942 __FUNCTION__, GetID(), thread->GetID(), 943 error.AsCString()); 944 945 break; 946 } 947 948 case eStateSuspended: 949 case eStateStopped: 950 break; 951 952 default: 953 return Status("NativeProcessLinux::%s (): unexpected state %s specified " 954 "for pid %" PRIu64 ", tid %" PRIu64, 955 __FUNCTION__, StateAsCString(action->state), GetID(), 956 thread->GetID()); 957 } 958 } 959 960 return Status(); 961 } 962 963 Status NativeProcessLinux::Halt() { 964 Status error; 965 966 if (kill(GetID(), SIGSTOP) != 0) 967 error.SetErrorToErrno(); 968 969 return error; 970 } 971 972 Status NativeProcessLinux::Detach() { 973 Status error; 974 975 // Stop monitoring the inferior. 976 m_sigchld_handle.reset(); 977 978 // Tell ptrace to detach from the process. 979 if (GetID() == LLDB_INVALID_PROCESS_ID) 980 return error; 981 982 for (const auto &thread : m_threads) { 983 Status e = Detach(thread->GetID()); 984 if (e.Fail()) 985 error = 986 e; // Save the error, but still attempt to detach from other threads. 987 } 988 989 m_intel_pt_collector.Clear(); 990 991 return error; 992 } 993 994 Status NativeProcessLinux::Signal(int signo) { 995 Status error; 996 997 Log *log = GetLog(POSIXLog::Process); 998 LLDB_LOG(log, "sending signal {0} ({1}) to pid {1}", signo, 999 Host::GetSignalAsCString(signo), GetID()); 1000 1001 if (kill(GetID(), signo)) 1002 error.SetErrorToErrno(); 1003 1004 return error; 1005 } 1006 1007 Status NativeProcessLinux::Interrupt() { 1008 // Pick a running thread (or if none, a not-dead stopped thread) as the 1009 // chosen thread that will be the stop-reason thread. 1010 Log *log = GetLog(POSIXLog::Process); 1011 1012 NativeThreadProtocol *running_thread = nullptr; 1013 NativeThreadProtocol *stopped_thread = nullptr; 1014 1015 LLDB_LOG(log, "selecting running thread for interrupt target"); 1016 for (const auto &thread : m_threads) { 1017 // If we have a running or stepping thread, we'll call that the target of 1018 // the interrupt. 1019 const auto thread_state = thread->GetState(); 1020 if (thread_state == eStateRunning || thread_state == eStateStepping) { 1021 running_thread = thread.get(); 1022 break; 1023 } else if (!stopped_thread && StateIsStoppedState(thread_state, true)) { 1024 // Remember the first non-dead stopped thread. We'll use that as a 1025 // backup if there are no running threads. 1026 stopped_thread = thread.get(); 1027 } 1028 } 1029 1030 if (!running_thread && !stopped_thread) { 1031 Status error("found no running/stepping or live stopped threads as target " 1032 "for interrupt"); 1033 LLDB_LOG(log, "skipping due to error: {0}", error); 1034 1035 return error; 1036 } 1037 1038 NativeThreadProtocol *deferred_signal_thread = 1039 running_thread ? running_thread : stopped_thread; 1040 1041 LLDB_LOG(log, "pid {0} {1} tid {2} chosen for interrupt target", GetID(), 1042 running_thread ? "running" : "stopped", 1043 deferred_signal_thread->GetID()); 1044 1045 StopRunningThreads(deferred_signal_thread->GetID()); 1046 1047 return Status(); 1048 } 1049 1050 Status NativeProcessLinux::Kill() { 1051 Log *log = GetLog(POSIXLog::Process); 1052 LLDB_LOG(log, "pid {0}", GetID()); 1053 1054 Status error; 1055 1056 switch (m_state) { 1057 case StateType::eStateInvalid: 1058 case StateType::eStateExited: 1059 case StateType::eStateCrashed: 1060 case StateType::eStateDetached: 1061 case StateType::eStateUnloaded: 1062 // Nothing to do - the process is already dead. 1063 LLDB_LOG(log, "ignored for PID {0} due to current state: {1}", GetID(), 1064 m_state); 1065 return error; 1066 1067 case StateType::eStateConnected: 1068 case StateType::eStateAttaching: 1069 case StateType::eStateLaunching: 1070 case StateType::eStateStopped: 1071 case StateType::eStateRunning: 1072 case StateType::eStateStepping: 1073 case StateType::eStateSuspended: 1074 // We can try to kill a process in these states. 1075 break; 1076 } 1077 1078 if (kill(GetID(), SIGKILL) != 0) { 1079 error.SetErrorToErrno(); 1080 return error; 1081 } 1082 1083 return error; 1084 } 1085 1086 Status NativeProcessLinux::GetMemoryRegionInfo(lldb::addr_t load_addr, 1087 MemoryRegionInfo &range_info) { 1088 // FIXME review that the final memory region returned extends to the end of 1089 // the virtual address space, 1090 // with no perms if it is not mapped. 1091 1092 // Use an approach that reads memory regions from /proc/{pid}/maps. Assume 1093 // proc maps entries are in ascending order. 1094 // FIXME assert if we find differently. 1095 1096 if (m_supports_mem_region == LazyBool::eLazyBoolNo) { 1097 // We're done. 1098 return Status("unsupported"); 1099 } 1100 1101 Status error = PopulateMemoryRegionCache(); 1102 if (error.Fail()) { 1103 return error; 1104 } 1105 1106 lldb::addr_t prev_base_address = 0; 1107 1108 // FIXME start by finding the last region that is <= target address using 1109 // binary search. Data is sorted. 1110 // There can be a ton of regions on pthreads apps with lots of threads. 1111 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end(); 1112 ++it) { 1113 MemoryRegionInfo &proc_entry_info = it->first; 1114 1115 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 1116 assert((proc_entry_info.GetRange().GetRangeBase() >= prev_base_address) && 1117 "descending /proc/pid/maps entries detected, unexpected"); 1118 prev_base_address = proc_entry_info.GetRange().GetRangeBase(); 1119 UNUSED_IF_ASSERT_DISABLED(prev_base_address); 1120 1121 // If the target address comes before this entry, indicate distance to next 1122 // region. 1123 if (load_addr < proc_entry_info.GetRange().GetRangeBase()) { 1124 range_info.GetRange().SetRangeBase(load_addr); 1125 range_info.GetRange().SetByteSize( 1126 proc_entry_info.GetRange().GetRangeBase() - load_addr); 1127 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1128 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1129 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1130 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1131 1132 return error; 1133 } else if (proc_entry_info.GetRange().Contains(load_addr)) { 1134 // The target address is within the memory region we're processing here. 1135 range_info = proc_entry_info; 1136 return error; 1137 } 1138 1139 // The target memory address comes somewhere after the region we just 1140 // parsed. 1141 } 1142 1143 // If we made it here, we didn't find an entry that contained the given 1144 // address. Return the load_addr as start and the amount of bytes betwwen 1145 // load address and the end of the memory as size. 1146 range_info.GetRange().SetRangeBase(load_addr); 1147 range_info.GetRange().SetRangeEnd(LLDB_INVALID_ADDRESS); 1148 range_info.SetReadable(MemoryRegionInfo::OptionalBool::eNo); 1149 range_info.SetWritable(MemoryRegionInfo::OptionalBool::eNo); 1150 range_info.SetExecutable(MemoryRegionInfo::OptionalBool::eNo); 1151 range_info.SetMapped(MemoryRegionInfo::OptionalBool::eNo); 1152 return error; 1153 } 1154 1155 Status NativeProcessLinux::PopulateMemoryRegionCache() { 1156 Log *log = GetLog(POSIXLog::Process); 1157 1158 // If our cache is empty, pull the latest. There should always be at least 1159 // one memory region if memory region handling is supported. 1160 if (!m_mem_region_cache.empty()) { 1161 LLDB_LOG(log, "reusing {0} cached memory region entries", 1162 m_mem_region_cache.size()); 1163 return Status(); 1164 } 1165 1166 Status Result; 1167 LinuxMapCallback callback = [&](llvm::Expected<MemoryRegionInfo> Info) { 1168 if (Info) { 1169 FileSpec file_spec(Info->GetName().GetCString()); 1170 FileSystem::Instance().Resolve(file_spec); 1171 m_mem_region_cache.emplace_back(*Info, file_spec); 1172 return true; 1173 } 1174 1175 Result = Info.takeError(); 1176 m_supports_mem_region = LazyBool::eLazyBoolNo; 1177 LLDB_LOG(log, "failed to parse proc maps: {0}", Result); 1178 return false; 1179 }; 1180 1181 // Linux kernel since 2.6.14 has /proc/{pid}/smaps 1182 // if CONFIG_PROC_PAGE_MONITOR is enabled 1183 auto BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "smaps"); 1184 if (BufferOrError) 1185 ParseLinuxSMapRegions(BufferOrError.get()->getBuffer(), callback); 1186 else { 1187 BufferOrError = getProcFile(GetID(), GetCurrentThreadID(), "maps"); 1188 if (!BufferOrError) { 1189 m_supports_mem_region = LazyBool::eLazyBoolNo; 1190 return BufferOrError.getError(); 1191 } 1192 1193 ParseLinuxMapRegions(BufferOrError.get()->getBuffer(), callback); 1194 } 1195 1196 if (Result.Fail()) 1197 return Result; 1198 1199 if (m_mem_region_cache.empty()) { 1200 // No entries after attempting to read them. This shouldn't happen if 1201 // /proc/{pid}/maps is supported. Assume we don't support map entries via 1202 // procfs. 1203 m_supports_mem_region = LazyBool::eLazyBoolNo; 1204 LLDB_LOG(log, 1205 "failed to find any procfs maps entries, assuming no support " 1206 "for memory region metadata retrieval"); 1207 return Status("not supported"); 1208 } 1209 1210 LLDB_LOG(log, "read {0} memory region entries from /proc/{1}/maps", 1211 m_mem_region_cache.size(), GetID()); 1212 1213 // We support memory retrieval, remember that. 1214 m_supports_mem_region = LazyBool::eLazyBoolYes; 1215 return Status(); 1216 } 1217 1218 void NativeProcessLinux::DoStopIDBumped(uint32_t newBumpId) { 1219 Log *log = GetLog(POSIXLog::Process); 1220 LLDB_LOG(log, "newBumpId={0}", newBumpId); 1221 LLDB_LOG(log, "clearing {0} entries from memory region cache", 1222 m_mem_region_cache.size()); 1223 m_mem_region_cache.clear(); 1224 } 1225 1226 llvm::Expected<uint64_t> 1227 NativeProcessLinux::Syscall(llvm::ArrayRef<uint64_t> args) { 1228 PopulateMemoryRegionCache(); 1229 auto region_it = llvm::find_if(m_mem_region_cache, [](const auto &pair) { 1230 return pair.first.GetExecutable() == MemoryRegionInfo::eYes && 1231 pair.first.GetShared() != MemoryRegionInfo::eYes; 1232 }); 1233 if (region_it == m_mem_region_cache.end()) 1234 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1235 "No executable memory region found!"); 1236 1237 addr_t exe_addr = region_it->first.GetRange().GetRangeBase(); 1238 1239 NativeThreadLinux &thread = *GetCurrentThread(); 1240 assert(thread.GetState() == eStateStopped); 1241 NativeRegisterContextLinux ®_ctx = thread.GetRegisterContext(); 1242 1243 NativeRegisterContextLinux::SyscallData syscall_data = 1244 *reg_ctx.GetSyscallData(); 1245 1246 WritableDataBufferSP registers_sp; 1247 if (llvm::Error Err = reg_ctx.ReadAllRegisterValues(registers_sp).ToError()) 1248 return std::move(Err); 1249 auto restore_regs = llvm::make_scope_exit( 1250 [&] { reg_ctx.WriteAllRegisterValues(registers_sp); }); 1251 1252 llvm::SmallVector<uint8_t, 8> memory(syscall_data.Insn.size()); 1253 size_t bytes_read; 1254 if (llvm::Error Err = 1255 ReadMemory(exe_addr, memory.data(), memory.size(), bytes_read) 1256 .ToError()) { 1257 return std::move(Err); 1258 } 1259 1260 auto restore_mem = llvm::make_scope_exit( 1261 [&] { WriteMemory(exe_addr, memory.data(), memory.size(), bytes_read); }); 1262 1263 if (llvm::Error Err = reg_ctx.SetPC(exe_addr).ToError()) 1264 return std::move(Err); 1265 1266 for (const auto &zip : llvm::zip_first(args, syscall_data.Args)) { 1267 if (llvm::Error Err = 1268 reg_ctx 1269 .WriteRegisterFromUnsigned(std::get<1>(zip), std::get<0>(zip)) 1270 .ToError()) { 1271 return std::move(Err); 1272 } 1273 } 1274 if (llvm::Error Err = WriteMemory(exe_addr, syscall_data.Insn.data(), 1275 syscall_data.Insn.size(), bytes_read) 1276 .ToError()) 1277 return std::move(Err); 1278 1279 m_mem_region_cache.clear(); 1280 1281 // With software single stepping the syscall insn buffer must also include a 1282 // trap instruction to stop the process. 1283 int req = SupportHardwareSingleStepping() ? PTRACE_SINGLESTEP : PTRACE_CONT; 1284 if (llvm::Error Err = 1285 PtraceWrapper(req, thread.GetID(), nullptr, nullptr).ToError()) 1286 return std::move(Err); 1287 1288 int status; 1289 ::pid_t wait_pid = llvm::sys::RetryAfterSignal(-1, ::waitpid, thread.GetID(), 1290 &status, __WALL); 1291 if (wait_pid == -1) { 1292 return llvm::errorCodeToError( 1293 std::error_code(errno, std::generic_category())); 1294 } 1295 assert((unsigned)wait_pid == thread.GetID()); 1296 1297 uint64_t result = reg_ctx.ReadRegisterAsUnsigned(syscall_data.Result, -ESRCH); 1298 1299 // Values larger than this are actually negative errno numbers. 1300 uint64_t errno_threshold = 1301 (uint64_t(-1) >> (64 - 8 * m_arch.GetAddressByteSize())) - 0x1000; 1302 if (result > errno_threshold) { 1303 return llvm::errorCodeToError( 1304 std::error_code(-result & 0xfff, std::generic_category())); 1305 } 1306 1307 return result; 1308 } 1309 1310 llvm::Expected<addr_t> 1311 NativeProcessLinux::AllocateMemory(size_t size, uint32_t permissions) { 1312 1313 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1314 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1315 if (!mmap_data) 1316 return llvm::make_error<UnimplementedError>(); 1317 1318 unsigned prot = PROT_NONE; 1319 assert((permissions & (ePermissionsReadable | ePermissionsWritable | 1320 ePermissionsExecutable)) == permissions && 1321 "Unknown permission!"); 1322 if (permissions & ePermissionsReadable) 1323 prot |= PROT_READ; 1324 if (permissions & ePermissionsWritable) 1325 prot |= PROT_WRITE; 1326 if (permissions & ePermissionsExecutable) 1327 prot |= PROT_EXEC; 1328 1329 llvm::Expected<uint64_t> Result = 1330 Syscall({mmap_data->SysMmap, 0, size, prot, MAP_ANONYMOUS | MAP_PRIVATE, 1331 uint64_t(-1), 0}); 1332 if (Result) 1333 m_allocated_memory.try_emplace(*Result, size); 1334 return Result; 1335 } 1336 1337 llvm::Error NativeProcessLinux::DeallocateMemory(lldb::addr_t addr) { 1338 llvm::Optional<NativeRegisterContextLinux::MmapData> mmap_data = 1339 GetCurrentThread()->GetRegisterContext().GetMmapData(); 1340 if (!mmap_data) 1341 return llvm::make_error<UnimplementedError>(); 1342 1343 auto it = m_allocated_memory.find(addr); 1344 if (it == m_allocated_memory.end()) 1345 return llvm::createStringError(llvm::errc::invalid_argument, 1346 "Memory not allocated by the debugger."); 1347 1348 llvm::Expected<uint64_t> Result = 1349 Syscall({mmap_data->SysMunmap, addr, it->second}); 1350 if (!Result) 1351 return Result.takeError(); 1352 1353 m_allocated_memory.erase(it); 1354 return llvm::Error::success(); 1355 } 1356 1357 Status NativeProcessLinux::ReadMemoryTags(int32_t type, lldb::addr_t addr, 1358 size_t len, 1359 std::vector<uint8_t> &tags) { 1360 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1361 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1362 if (!details) 1363 return Status(details.takeError()); 1364 1365 // Ignore 0 length read 1366 if (!len) 1367 return Status(); 1368 1369 // lldb will align the range it requests but it is not required to by 1370 // the protocol so we'll do it again just in case. 1371 // Remove tag bits too. Ptrace calls may work regardless but that 1372 // is not a guarantee. 1373 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1374 range = details->manager->ExpandToGranule(range); 1375 1376 // Allocate enough space for all tags to be read 1377 size_t num_tags = range.GetByteSize() / details->manager->GetGranuleSize(); 1378 tags.resize(num_tags * details->manager->GetTagSizeInBytes()); 1379 1380 struct iovec tags_iovec; 1381 uint8_t *dest = tags.data(); 1382 lldb::addr_t read_addr = range.GetRangeBase(); 1383 1384 // This call can return partial data so loop until we error or 1385 // get all tags back. 1386 while (num_tags) { 1387 tags_iovec.iov_base = dest; 1388 tags_iovec.iov_len = num_tags; 1389 1390 Status error = NativeProcessLinux::PtraceWrapper( 1391 details->ptrace_read_req, GetCurrentThreadID(), 1392 reinterpret_cast<void *>(read_addr), static_cast<void *>(&tags_iovec), 1393 0, nullptr); 1394 1395 if (error.Fail()) { 1396 // Discard partial reads 1397 tags.resize(0); 1398 return error; 1399 } 1400 1401 size_t tags_read = tags_iovec.iov_len; 1402 assert(tags_read && (tags_read <= num_tags)); 1403 1404 dest += tags_read * details->manager->GetTagSizeInBytes(); 1405 read_addr += details->manager->GetGranuleSize() * tags_read; 1406 num_tags -= tags_read; 1407 } 1408 1409 return Status(); 1410 } 1411 1412 Status NativeProcessLinux::WriteMemoryTags(int32_t type, lldb::addr_t addr, 1413 size_t len, 1414 const std::vector<uint8_t> &tags) { 1415 llvm::Expected<NativeRegisterContextLinux::MemoryTaggingDetails> details = 1416 GetCurrentThread()->GetRegisterContext().GetMemoryTaggingDetails(type); 1417 if (!details) 1418 return Status(details.takeError()); 1419 1420 // Ignore 0 length write 1421 if (!len) 1422 return Status(); 1423 1424 // lldb will align the range it requests but it is not required to by 1425 // the protocol so we'll do it again just in case. 1426 // Remove tag bits too. Ptrace calls may work regardless but that 1427 // is not a guarantee. 1428 MemoryTagManager::TagRange range(details->manager->RemoveTagBits(addr), len); 1429 range = details->manager->ExpandToGranule(range); 1430 1431 // Not checking number of tags here, we may repeat them below 1432 llvm::Expected<std::vector<lldb::addr_t>> unpacked_tags_or_err = 1433 details->manager->UnpackTagsData(tags); 1434 if (!unpacked_tags_or_err) 1435 return Status(unpacked_tags_or_err.takeError()); 1436 1437 llvm::Expected<std::vector<lldb::addr_t>> repeated_tags_or_err = 1438 details->manager->RepeatTagsForRange(*unpacked_tags_or_err, range); 1439 if (!repeated_tags_or_err) 1440 return Status(repeated_tags_or_err.takeError()); 1441 1442 // Repack them for ptrace to use 1443 llvm::Expected<std::vector<uint8_t>> final_tag_data = 1444 details->manager->PackTags(*repeated_tags_or_err); 1445 if (!final_tag_data) 1446 return Status(final_tag_data.takeError()); 1447 1448 struct iovec tags_vec; 1449 uint8_t *src = final_tag_data->data(); 1450 lldb::addr_t write_addr = range.GetRangeBase(); 1451 // unpacked tags size because the number of bytes per tag might not be 1 1452 size_t num_tags = repeated_tags_or_err->size(); 1453 1454 // This call can partially write tags, so we loop until we 1455 // error or all tags have been written. 1456 while (num_tags > 0) { 1457 tags_vec.iov_base = src; 1458 tags_vec.iov_len = num_tags; 1459 1460 Status error = NativeProcessLinux::PtraceWrapper( 1461 details->ptrace_write_req, GetCurrentThreadID(), 1462 reinterpret_cast<void *>(write_addr), static_cast<void *>(&tags_vec), 0, 1463 nullptr); 1464 1465 if (error.Fail()) { 1466 // Don't attempt to restore the original values in the case of a partial 1467 // write 1468 return error; 1469 } 1470 1471 size_t tags_written = tags_vec.iov_len; 1472 assert(tags_written && (tags_written <= num_tags)); 1473 1474 src += tags_written * details->manager->GetTagSizeInBytes(); 1475 write_addr += details->manager->GetGranuleSize() * tags_written; 1476 num_tags -= tags_written; 1477 } 1478 1479 return Status(); 1480 } 1481 1482 size_t NativeProcessLinux::UpdateThreads() { 1483 // The NativeProcessLinux monitoring threads are always up to date with 1484 // respect to thread state and they keep the thread list populated properly. 1485 // All this method needs to do is return the thread count. 1486 return m_threads.size(); 1487 } 1488 1489 Status NativeProcessLinux::SetBreakpoint(lldb::addr_t addr, uint32_t size, 1490 bool hardware) { 1491 if (hardware) 1492 return SetHardwareBreakpoint(addr, size); 1493 else 1494 return SetSoftwareBreakpoint(addr, size); 1495 } 1496 1497 Status NativeProcessLinux::RemoveBreakpoint(lldb::addr_t addr, bool hardware) { 1498 if (hardware) 1499 return RemoveHardwareBreakpoint(addr); 1500 else 1501 return NativeProcessProtocol::RemoveBreakpoint(addr); 1502 } 1503 1504 llvm::Expected<llvm::ArrayRef<uint8_t>> 1505 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode(size_t size_hint) { 1506 // The ARM reference recommends the use of 0xe7fddefe and 0xdefe but the 1507 // linux kernel does otherwise. 1508 static const uint8_t g_arm_opcode[] = {0xf0, 0x01, 0xf0, 0xe7}; 1509 static const uint8_t g_thumb_opcode[] = {0x01, 0xde}; 1510 1511 switch (GetArchitecture().GetMachine()) { 1512 case llvm::Triple::arm: 1513 switch (size_hint) { 1514 case 2: 1515 return llvm::makeArrayRef(g_thumb_opcode); 1516 case 4: 1517 return llvm::makeArrayRef(g_arm_opcode); 1518 default: 1519 return llvm::createStringError(llvm::inconvertibleErrorCode(), 1520 "Unrecognised trap opcode size hint!"); 1521 } 1522 default: 1523 return NativeProcessProtocol::GetSoftwareBreakpointTrapOpcode(size_hint); 1524 } 1525 } 1526 1527 Status NativeProcessLinux::ReadMemory(lldb::addr_t addr, void *buf, size_t size, 1528 size_t &bytes_read) { 1529 if (ProcessVmReadvSupported()) { 1530 // The process_vm_readv path is about 50 times faster than ptrace api. We 1531 // want to use this syscall if it is supported. 1532 1533 struct iovec local_iov, remote_iov; 1534 local_iov.iov_base = buf; 1535 local_iov.iov_len = size; 1536 remote_iov.iov_base = reinterpret_cast<void *>(addr); 1537 remote_iov.iov_len = size; 1538 1539 bytes_read = process_vm_readv(GetCurrentThreadID(), &local_iov, 1, 1540 &remote_iov, 1, 0); 1541 const bool success = bytes_read == size; 1542 1543 Log *log = GetLog(POSIXLog::Process); 1544 LLDB_LOG(log, 1545 "using process_vm_readv to read {0} bytes from inferior " 1546 "address {1:x}: {2}", 1547 size, addr, success ? "Success" : llvm::sys::StrError(errno)); 1548 1549 if (success) 1550 return Status(); 1551 // else the call failed for some reason, let's retry the read using ptrace 1552 // api. 1553 } 1554 1555 unsigned char *dst = static_cast<unsigned char *>(buf); 1556 size_t remainder; 1557 long data; 1558 1559 Log *log = GetLog(POSIXLog::Memory); 1560 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1561 1562 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) { 1563 Status error = NativeProcessLinux::PtraceWrapper( 1564 PTRACE_PEEKDATA, GetCurrentThreadID(), (void *)addr, nullptr, 0, &data); 1565 if (error.Fail()) 1566 return error; 1567 1568 remainder = size - bytes_read; 1569 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1570 1571 // Copy the data into our buffer 1572 memcpy(dst, &data, remainder); 1573 1574 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1575 addr += k_ptrace_word_size; 1576 dst += k_ptrace_word_size; 1577 } 1578 return Status(); 1579 } 1580 1581 Status NativeProcessLinux::WriteMemory(lldb::addr_t addr, const void *buf, 1582 size_t size, size_t &bytes_written) { 1583 const unsigned char *src = static_cast<const unsigned char *>(buf); 1584 size_t remainder; 1585 Status error; 1586 1587 Log *log = GetLog(POSIXLog::Memory); 1588 LLDB_LOG(log, "addr = {0}, buf = {1}, size = {2}", addr, buf, size); 1589 1590 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) { 1591 remainder = size - bytes_written; 1592 remainder = remainder > k_ptrace_word_size ? k_ptrace_word_size : remainder; 1593 1594 if (remainder == k_ptrace_word_size) { 1595 unsigned long data = 0; 1596 memcpy(&data, src, k_ptrace_word_size); 1597 1598 LLDB_LOG(log, "[{0:x}]:{1:x}", addr, data); 1599 error = NativeProcessLinux::PtraceWrapper( 1600 PTRACE_POKEDATA, GetCurrentThreadID(), (void *)addr, (void *)data); 1601 if (error.Fail()) 1602 return error; 1603 } else { 1604 unsigned char buff[8]; 1605 size_t bytes_read; 1606 error = ReadMemory(addr, buff, k_ptrace_word_size, bytes_read); 1607 if (error.Fail()) 1608 return error; 1609 1610 memcpy(buff, src, remainder); 1611 1612 size_t bytes_written_rec; 1613 error = WriteMemory(addr, buff, k_ptrace_word_size, bytes_written_rec); 1614 if (error.Fail()) 1615 return error; 1616 1617 LLDB_LOG(log, "[{0:x}]:{1:x} ({2:x})", addr, *(const unsigned long *)src, 1618 *(unsigned long *)buff); 1619 } 1620 1621 addr += k_ptrace_word_size; 1622 src += k_ptrace_word_size; 1623 } 1624 return error; 1625 } 1626 1627 Status NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo) const { 1628 return PtraceWrapper(PTRACE_GETSIGINFO, tid, nullptr, siginfo); 1629 } 1630 1631 Status NativeProcessLinux::GetEventMessage(lldb::tid_t tid, 1632 unsigned long *message) { 1633 return PtraceWrapper(PTRACE_GETEVENTMSG, tid, nullptr, message); 1634 } 1635 1636 Status NativeProcessLinux::Detach(lldb::tid_t tid) { 1637 if (tid == LLDB_INVALID_THREAD_ID) 1638 return Status(); 1639 1640 return PtraceWrapper(PTRACE_DETACH, tid); 1641 } 1642 1643 bool NativeProcessLinux::HasThreadNoLock(lldb::tid_t thread_id) { 1644 for (const auto &thread : m_threads) { 1645 assert(thread && "thread list should not contain NULL threads"); 1646 if (thread->GetID() == thread_id) { 1647 // We have this thread. 1648 return true; 1649 } 1650 } 1651 1652 // We don't have this thread. 1653 return false; 1654 } 1655 1656 void NativeProcessLinux::StopTrackingThread(NativeThreadLinux &thread) { 1657 Log *const log = GetLog(POSIXLog::Thread); 1658 lldb::tid_t thread_id = thread.GetID(); 1659 LLDB_LOG(log, "tid: {0}", thread_id); 1660 1661 auto it = llvm::find_if(m_threads, [&](const auto &thread_up) { 1662 return thread_up.get() == &thread; 1663 }); 1664 assert(it != m_threads.end()); 1665 m_threads.erase(it); 1666 1667 NotifyTracersOfThreadDestroyed(thread_id); 1668 SignalIfAllThreadsStopped(); 1669 } 1670 1671 void NativeProcessLinux::NotifyTracersProcessDidStop() { 1672 m_intel_pt_collector.ProcessDidStop(); 1673 } 1674 1675 void NativeProcessLinux::NotifyTracersProcessWillResume() { 1676 m_intel_pt_collector.ProcessWillResume(); 1677 } 1678 1679 Status NativeProcessLinux::NotifyTracersOfNewThread(lldb::tid_t tid) { 1680 Log *log = GetLog(POSIXLog::Thread); 1681 Status error(m_intel_pt_collector.OnThreadCreated(tid)); 1682 if (error.Fail()) 1683 LLDB_LOG(log, "Failed to trace a new thread with intel-pt, tid = {0}. {1}", 1684 tid, error.AsCString()); 1685 return error; 1686 } 1687 1688 Status NativeProcessLinux::NotifyTracersOfThreadDestroyed(lldb::tid_t tid) { 1689 Log *log = GetLog(POSIXLog::Thread); 1690 Status error(m_intel_pt_collector.OnThreadDestroyed(tid)); 1691 if (error.Fail()) 1692 LLDB_LOG(log, 1693 "Failed to stop a destroyed thread with intel-pt, tid = {0}. {1}", 1694 tid, error.AsCString()); 1695 return error; 1696 } 1697 1698 NativeThreadLinux &NativeProcessLinux::AddThread(lldb::tid_t thread_id, 1699 bool resume) { 1700 Log *log = GetLog(POSIXLog::Thread); 1701 LLDB_LOG(log, "pid {0} adding thread with tid {1}", GetID(), thread_id); 1702 1703 assert(!HasThreadNoLock(thread_id) && 1704 "attempted to add a thread by id that already exists"); 1705 1706 // If this is the first thread, save it as the current thread 1707 if (m_threads.empty()) 1708 SetCurrentThreadID(thread_id); 1709 1710 m_threads.push_back(std::make_unique<NativeThreadLinux>(*this, thread_id)); 1711 NativeThreadLinux &thread = 1712 static_cast<NativeThreadLinux &>(*m_threads.back()); 1713 1714 Status tracing_error = NotifyTracersOfNewThread(thread.GetID()); 1715 if (tracing_error.Fail()) { 1716 thread.SetStoppedByProcessorTrace(tracing_error.AsCString()); 1717 StopRunningThreads(thread.GetID()); 1718 } else if (resume) 1719 ResumeThread(thread, eStateRunning, LLDB_INVALID_SIGNAL_NUMBER); 1720 else 1721 thread.SetStoppedBySignal(SIGSTOP); 1722 1723 return thread; 1724 } 1725 1726 Status NativeProcessLinux::GetLoadedModuleFileSpec(const char *module_path, 1727 FileSpec &file_spec) { 1728 Status error = PopulateMemoryRegionCache(); 1729 if (error.Fail()) 1730 return error; 1731 1732 FileSpec module_file_spec(module_path); 1733 FileSystem::Instance().Resolve(module_file_spec); 1734 1735 file_spec.Clear(); 1736 for (const auto &it : m_mem_region_cache) { 1737 if (it.second.GetFilename() == module_file_spec.GetFilename()) { 1738 file_spec = it.second; 1739 return Status(); 1740 } 1741 } 1742 return Status("Module file (%s) not found in /proc/%" PRIu64 "/maps file!", 1743 module_file_spec.GetFilename().AsCString(), GetID()); 1744 } 1745 1746 Status NativeProcessLinux::GetFileLoadAddress(const llvm::StringRef &file_name, 1747 lldb::addr_t &load_addr) { 1748 load_addr = LLDB_INVALID_ADDRESS; 1749 Status error = PopulateMemoryRegionCache(); 1750 if (error.Fail()) 1751 return error; 1752 1753 FileSpec file(file_name); 1754 for (const auto &it : m_mem_region_cache) { 1755 if (it.second == file) { 1756 load_addr = it.first.GetRange().GetRangeBase(); 1757 return Status(); 1758 } 1759 } 1760 return Status("No load address found for specified file."); 1761 } 1762 1763 NativeThreadLinux *NativeProcessLinux::GetThreadByID(lldb::tid_t tid) { 1764 return static_cast<NativeThreadLinux *>( 1765 NativeProcessProtocol::GetThreadByID(tid)); 1766 } 1767 1768 NativeThreadLinux *NativeProcessLinux::GetCurrentThread() { 1769 return static_cast<NativeThreadLinux *>( 1770 NativeProcessProtocol::GetCurrentThread()); 1771 } 1772 1773 Status NativeProcessLinux::ResumeThread(NativeThreadLinux &thread, 1774 lldb::StateType state, int signo) { 1775 Log *const log = GetLog(POSIXLog::Thread); 1776 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1777 1778 // Before we do the resume below, first check if we have a pending stop 1779 // notification that is currently waiting for all threads to stop. This is 1780 // potentially a buggy situation since we're ostensibly waiting for threads 1781 // to stop before we send out the pending notification, and here we are 1782 // resuming one before we send out the pending stop notification. 1783 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID) { 1784 LLDB_LOG(log, 1785 "about to resume tid {0} per explicit request but we have a " 1786 "pending stop notification (tid {1}) that is actively " 1787 "waiting for this thread to stop. Valid sequence of events?", 1788 thread.GetID(), m_pending_notification_tid); 1789 } 1790 1791 // Request a resume. We expect this to be synchronous and the system to 1792 // reflect it is running after this completes. 1793 switch (state) { 1794 case eStateRunning: { 1795 const auto resume_result = thread.Resume(signo); 1796 if (resume_result.Success()) 1797 SetState(eStateRunning, true); 1798 return resume_result; 1799 } 1800 case eStateStepping: { 1801 const auto step_result = thread.SingleStep(signo); 1802 if (step_result.Success()) 1803 SetState(eStateRunning, true); 1804 return step_result; 1805 } 1806 default: 1807 LLDB_LOG(log, "Unhandled state {0}.", state); 1808 llvm_unreachable("Unhandled state for resume"); 1809 } 1810 } 1811 1812 //===----------------------------------------------------------------------===// 1813 1814 void NativeProcessLinux::StopRunningThreads(const lldb::tid_t triggering_tid) { 1815 Log *const log = GetLog(POSIXLog::Thread); 1816 LLDB_LOG(log, "about to process event: (triggering_tid: {0})", 1817 triggering_tid); 1818 1819 m_pending_notification_tid = triggering_tid; 1820 1821 // Request a stop for all the thread stops that need to be stopped and are 1822 // not already known to be stopped. 1823 for (const auto &thread : m_threads) { 1824 if (StateIsRunningState(thread->GetState())) 1825 static_cast<NativeThreadLinux *>(thread.get())->RequestStop(); 1826 } 1827 1828 SignalIfAllThreadsStopped(); 1829 LLDB_LOG(log, "event processing done"); 1830 } 1831 1832 void NativeProcessLinux::SignalIfAllThreadsStopped() { 1833 if (m_pending_notification_tid == LLDB_INVALID_THREAD_ID) 1834 return; // No pending notification. Nothing to do. 1835 1836 for (const auto &thread_sp : m_threads) { 1837 if (StateIsRunningState(thread_sp->GetState())) 1838 return; // Some threads are still running. Don't signal yet. 1839 } 1840 1841 // We have a pending notification and all threads have stopped. 1842 Log *log = GetLog(LLDBLog::Process | LLDBLog::Breakpoints); 1843 1844 // Clear any temporary breakpoints we used to implement software single 1845 // stepping. 1846 for (const auto &thread_info : m_threads_stepping_with_breakpoint) { 1847 Status error = RemoveBreakpoint(thread_info.second); 1848 if (error.Fail()) 1849 LLDB_LOG(log, "pid = {0} remove stepping breakpoint: {1}", 1850 thread_info.first, error); 1851 } 1852 m_threads_stepping_with_breakpoint.clear(); 1853 1854 // Notify the delegate about the stop 1855 SetCurrentThreadID(m_pending_notification_tid); 1856 SetState(StateType::eStateStopped, true); 1857 m_pending_notification_tid = LLDB_INVALID_THREAD_ID; 1858 } 1859 1860 void NativeProcessLinux::ThreadWasCreated(NativeThreadLinux &thread) { 1861 Log *const log = GetLog(POSIXLog::Thread); 1862 LLDB_LOG(log, "tid: {0}", thread.GetID()); 1863 1864 if (m_pending_notification_tid != LLDB_INVALID_THREAD_ID && 1865 StateIsRunningState(thread.GetState())) { 1866 // We will need to wait for this new thread to stop as well before firing 1867 // the notification. 1868 thread.RequestStop(); 1869 } 1870 } 1871 1872 static llvm::Optional<WaitStatus> HandlePid(::pid_t pid) { 1873 Log *log = GetLog(POSIXLog::Process); 1874 1875 int status; 1876 ::pid_t wait_pid = llvm::sys::RetryAfterSignal( 1877 -1, ::waitpid, pid, &status, __WALL | __WNOTHREAD | WNOHANG); 1878 1879 if (wait_pid == 0) 1880 return std::nullopt; 1881 1882 if (wait_pid == -1) { 1883 Status error(errno, eErrorTypePOSIX); 1884 LLDB_LOG(log, "waitpid({0}, &status, _) failed: {1}", pid, 1885 error); 1886 return std::nullopt; 1887 } 1888 1889 assert(wait_pid == pid); 1890 1891 WaitStatus wait_status = WaitStatus::Decode(status); 1892 1893 LLDB_LOG(log, "waitpid({0}) got status = {1}", pid, wait_status); 1894 return wait_status; 1895 } 1896 1897 void NativeProcessLinux::SigchldHandler() { 1898 Log *log = GetLog(POSIXLog::Process); 1899 1900 // Threads can appear or disappear as a result of event processing, so gather 1901 // the events upfront. 1902 llvm::DenseMap<lldb::tid_t, WaitStatus> tid_events; 1903 bool checked_main_thread = false; 1904 for (const auto &thread_up : m_threads) { 1905 if (thread_up->GetID() == GetID()) 1906 checked_main_thread = true; 1907 1908 if (llvm::Optional<WaitStatus> status = HandlePid(thread_up->GetID())) 1909 tid_events.try_emplace(thread_up->GetID(), *status); 1910 } 1911 // Check the main thread even when we're not tracking it as process exit 1912 // events are reported that way. 1913 if (!checked_main_thread) { 1914 if (llvm::Optional<WaitStatus> status = HandlePid(GetID())) 1915 tid_events.try_emplace(GetID(), *status); 1916 } 1917 1918 for (auto &KV : tid_events) { 1919 LLDB_LOG(log, "processing {0}({1}) ...", KV.first, KV.second); 1920 if (KV.first == GetID() && (KV.second.type == WaitStatus::Exit || 1921 KV.second.type == WaitStatus::Signal)) { 1922 1923 // The process exited. We're done monitoring. Report to delegate. 1924 SetExitStatus(KV.second, true); 1925 return; 1926 } 1927 NativeThreadLinux *thread = GetThreadByID(KV.first); 1928 assert(thread && "Why did this thread disappear?"); 1929 MonitorCallback(*thread, KV.second); 1930 } 1931 } 1932 1933 // Wrapper for ptrace to catch errors and log calls. Note that ptrace sets 1934 // errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 1935 Status NativeProcessLinux::PtraceWrapper(int req, lldb::pid_t pid, void *addr, 1936 void *data, size_t data_size, 1937 long *result) { 1938 Status error; 1939 long int ret; 1940 1941 Log *log = GetLog(POSIXLog::Ptrace); 1942 1943 PtraceDisplayBytes(req, data, data_size); 1944 1945 errno = 0; 1946 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 1947 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1948 *(unsigned int *)addr, data); 1949 else 1950 ret = ptrace(static_cast<__ptrace_request>(req), static_cast<::pid_t>(pid), 1951 addr, data); 1952 1953 if (ret == -1) 1954 error.SetErrorToErrno(); 1955 1956 if (result) 1957 *result = ret; 1958 1959 LLDB_LOG(log, "ptrace({0}, {1}, {2}, {3}, {4})={5:x}", req, pid, addr, data, 1960 data_size, ret); 1961 1962 PtraceDisplayBytes(req, data, data_size); 1963 1964 if (error.Fail()) 1965 LLDB_LOG(log, "ptrace() failed: {0}", error); 1966 1967 return error; 1968 } 1969 1970 llvm::Expected<TraceSupportedResponse> NativeProcessLinux::TraceSupported() { 1971 if (IntelPTCollector::IsSupported()) 1972 return TraceSupportedResponse{"intel-pt", "Intel Processor Trace"}; 1973 return NativeProcessProtocol::TraceSupported(); 1974 } 1975 1976 Error NativeProcessLinux::TraceStart(StringRef json_request, StringRef type) { 1977 if (type == "intel-pt") { 1978 if (Expected<TraceIntelPTStartRequest> request = 1979 json::parse<TraceIntelPTStartRequest>(json_request, 1980 "TraceIntelPTStartRequest")) { 1981 return m_intel_pt_collector.TraceStart(*request); 1982 } else 1983 return request.takeError(); 1984 } 1985 1986 return NativeProcessProtocol::TraceStart(json_request, type); 1987 } 1988 1989 Error NativeProcessLinux::TraceStop(const TraceStopRequest &request) { 1990 if (request.type == "intel-pt") 1991 return m_intel_pt_collector.TraceStop(request); 1992 return NativeProcessProtocol::TraceStop(request); 1993 } 1994 1995 Expected<json::Value> NativeProcessLinux::TraceGetState(StringRef type) { 1996 if (type == "intel-pt") 1997 return m_intel_pt_collector.GetState(); 1998 return NativeProcessProtocol::TraceGetState(type); 1999 } 2000 2001 Expected<std::vector<uint8_t>> NativeProcessLinux::TraceGetBinaryData( 2002 const TraceGetBinaryDataRequest &request) { 2003 if (request.type == "intel-pt") 2004 return m_intel_pt_collector.GetBinaryData(request); 2005 return NativeProcessProtocol::TraceGetBinaryData(request); 2006 } 2007