1 //===-- NativeProcessLinux.cpp -------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/lldb-python.h" 11 12 #include "NativeProcessLinux.h" 13 14 // C Includes 15 #include <errno.h> 16 #include <poll.h> 17 #include <string.h> 18 #include <stdint.h> 19 #include <unistd.h> 20 #include <linux/unistd.h> 21 #include <sys/ptrace.h> 22 #include <sys/socket.h> 23 #include <sys/syscall.h> 24 #include <sys/types.h> 25 #include <sys/user.h> 26 #include <sys/wait.h> 27 28 // C++ Includes 29 #include <fstream> 30 #include <string> 31 32 // Other libraries and framework includes 33 #include "lldb/Core/Debugger.h" 34 #include "lldb/Core/Error.h" 35 #include "lldb/Core/Module.h" 36 #include "lldb/Core/RegisterValue.h" 37 #include "lldb/Core/Scalar.h" 38 #include "lldb/Core/State.h" 39 #include "lldb/Host/Host.h" 40 #include "lldb/Symbol/ObjectFile.h" 41 #include "lldb/Target/NativeRegisterContext.h" 42 #include "lldb/Target/ProcessLaunchInfo.h" 43 #include "lldb/Utility/PseudoTerminal.h" 44 45 #include "Host/common/NativeBreakpoint.h" 46 #include "Utility/StringExtractor.h" 47 48 #include "Plugins/Process/Utility/LinuxSignals.h" 49 #include "NativeThreadLinux.h" 50 #include "ProcFileReader.h" 51 #include "ProcessPOSIXLog.h" 52 53 #define DEBUG_PTRACE_MAXBYTES 20 54 55 // Support ptrace extensions even when compiled without required kernel support 56 #ifndef PT_GETREGS 57 #ifndef PTRACE_GETREGS 58 #define PTRACE_GETREGS 12 59 #endif 60 #endif 61 #ifndef PT_SETREGS 62 #ifndef PTRACE_SETREGS 63 #define PTRACE_SETREGS 13 64 #endif 65 #endif 66 #ifndef PT_GETFPREGS 67 #ifndef PTRACE_GETFPREGS 68 #define PTRACE_GETFPREGS 14 69 #endif 70 #endif 71 #ifndef PT_SETFPREGS 72 #ifndef PTRACE_SETFPREGS 73 #define PTRACE_SETFPREGS 15 74 #endif 75 #endif 76 #ifndef PTRACE_GETREGSET 77 #define PTRACE_GETREGSET 0x4204 78 #endif 79 #ifndef PTRACE_SETREGSET 80 #define PTRACE_SETREGSET 0x4205 81 #endif 82 #ifndef PTRACE_GET_THREAD_AREA 83 #define PTRACE_GET_THREAD_AREA 25 84 #endif 85 #ifndef PTRACE_ARCH_PRCTL 86 #define PTRACE_ARCH_PRCTL 30 87 #endif 88 #ifndef ARCH_GET_FS 89 #define ARCH_SET_GS 0x1001 90 #define ARCH_SET_FS 0x1002 91 #define ARCH_GET_FS 0x1003 92 #define ARCH_GET_GS 0x1004 93 #endif 94 95 96 // Support hardware breakpoints in case it has not been defined 97 #ifndef TRAP_HWBKPT 98 #define TRAP_HWBKPT 4 99 #endif 100 101 // Try to define a macro to encapsulate the tgkill syscall 102 // fall back on kill() if tgkill isn't available 103 #define tgkill(pid, tid, sig) syscall(SYS_tgkill, pid, tid, sig) 104 105 // We disable the tracing of ptrace calls for integration builds to 106 // avoid the additional indirection and checks. 107 #ifndef LLDB_CONFIGURATION_BUILDANDINTEGRATION 108 #define PTRACE(req, pid, addr, data, data_size) \ 109 PtraceWrapper((req), (pid), (addr), (data), (data_size), #req, __FILE__, __LINE__) 110 #else 111 #define PTRACE(req, pid, addr, data, data_size) \ 112 PtraceWrapper((req), (pid), (addr), (data), (data_size)) 113 #endif 114 115 // Private bits we only need internally. 116 namespace 117 { 118 using namespace lldb; 119 using namespace lldb_private; 120 121 const UnixSignals& 122 GetUnixSignals () 123 { 124 static process_linux::LinuxSignals signals; 125 return signals; 126 } 127 128 const char * 129 GetFilePath (const lldb_private::ProcessLaunchInfo::FileAction *file_action, const char *default_path) 130 { 131 const char *pts_name = "/dev/pts/"; 132 const char *path = NULL; 133 134 if (file_action) 135 { 136 if (file_action->GetAction () == ProcessLaunchInfo::FileAction::eFileActionOpen) 137 { 138 path = file_action->GetPath (); 139 // By default the stdio paths passed in will be pseudo-terminal 140 // (/dev/pts). If so, convert to using a different default path 141 // instead to redirect I/O to the debugger console. This should 142 // also handle user overrides to /dev/null or a different file. 143 if (!path || ::strncmp (path, pts_name, ::strlen (pts_name)) == 0) 144 path = default_path; 145 } 146 } 147 148 return path; 149 } 150 151 Error 152 ResolveProcessArchitecture (lldb::pid_t pid, Platform &platform, ArchSpec &arch) 153 { 154 // Grab process info for the running process. 155 ProcessInstanceInfo process_info; 156 if (!platform.GetProcessInfo (pid, process_info)) 157 return lldb_private::Error("failed to get process info"); 158 159 // Resolve the executable module. 160 ModuleSP exe_module_sp; 161 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths ()); 162 Error error = platform.ResolveExecutable( 163 process_info.GetExecutableFile (), 164 platform.GetSystemArchitecture (), 165 exe_module_sp, 166 executable_search_paths.GetSize () ? &executable_search_paths : NULL); 167 168 if (!error.Success ()) 169 return error; 170 171 // Check if we've got our architecture from the exe_module. 172 arch = exe_module_sp->GetArchitecture (); 173 if (arch.IsValid ()) 174 return Error(); 175 else 176 return Error("failed to retrieve a valid architecture from the exe module"); 177 } 178 179 void 180 DisplayBytes (lldb_private::StreamString &s, void *bytes, uint32_t count) 181 { 182 uint8_t *ptr = (uint8_t *)bytes; 183 const uint32_t loop_count = std::min<uint32_t>(DEBUG_PTRACE_MAXBYTES, count); 184 for(uint32_t i=0; i<loop_count; i++) 185 { 186 s.Printf ("[%x]", *ptr); 187 ptr++; 188 } 189 } 190 191 void 192 PtraceDisplayBytes(int &req, void *data, size_t data_size) 193 { 194 StreamString buf; 195 Log *verbose_log (ProcessPOSIXLog::GetLogIfAllCategoriesSet ( 196 POSIX_LOG_PTRACE | POSIX_LOG_VERBOSE)); 197 198 if (verbose_log) 199 { 200 switch(req) 201 { 202 case PTRACE_POKETEXT: 203 { 204 DisplayBytes(buf, &data, 8); 205 verbose_log->Printf("PTRACE_POKETEXT %s", buf.GetData()); 206 break; 207 } 208 case PTRACE_POKEDATA: 209 { 210 DisplayBytes(buf, &data, 8); 211 verbose_log->Printf("PTRACE_POKEDATA %s", buf.GetData()); 212 break; 213 } 214 case PTRACE_POKEUSER: 215 { 216 DisplayBytes(buf, &data, 8); 217 verbose_log->Printf("PTRACE_POKEUSER %s", buf.GetData()); 218 break; 219 } 220 case PTRACE_SETREGS: 221 { 222 DisplayBytes(buf, data, data_size); 223 verbose_log->Printf("PTRACE_SETREGS %s", buf.GetData()); 224 break; 225 } 226 case PTRACE_SETFPREGS: 227 { 228 DisplayBytes(buf, data, data_size); 229 verbose_log->Printf("PTRACE_SETFPREGS %s", buf.GetData()); 230 break; 231 } 232 case PTRACE_SETSIGINFO: 233 { 234 DisplayBytes(buf, data, sizeof(siginfo_t)); 235 verbose_log->Printf("PTRACE_SETSIGINFO %s", buf.GetData()); 236 break; 237 } 238 case PTRACE_SETREGSET: 239 { 240 // Extract iov_base from data, which is a pointer to the struct IOVEC 241 DisplayBytes(buf, *(void **)data, data_size); 242 verbose_log->Printf("PTRACE_SETREGSET %s", buf.GetData()); 243 break; 244 } 245 default: 246 { 247 } 248 } 249 } 250 } 251 252 // Wrapper for ptrace to catch errors and log calls. 253 // Note that ptrace sets errno on error because -1 can be a valid result (i.e. for PTRACE_PEEK*) 254 long 255 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size, 256 const char* reqName, const char* file, int line) 257 { 258 long int result; 259 260 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_PTRACE)); 261 262 PtraceDisplayBytes(req, data, data_size); 263 264 errno = 0; 265 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 266 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 267 else 268 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 269 270 if (log) 271 log->Printf("ptrace(%s, %" PRIu64 ", %p, %p, %zu)=%lX called from file %s line %d", 272 reqName, pid, addr, data, data_size, result, file, line); 273 274 PtraceDisplayBytes(req, data, data_size); 275 276 if (log && errno != 0) 277 { 278 const char* str; 279 switch (errno) 280 { 281 case ESRCH: str = "ESRCH"; break; 282 case EINVAL: str = "EINVAL"; break; 283 case EBUSY: str = "EBUSY"; break; 284 case EPERM: str = "EPERM"; break; 285 default: str = "<unknown>"; 286 } 287 log->Printf("ptrace() failed; errno=%d (%s)", errno, str); 288 } 289 290 return result; 291 } 292 293 #ifdef LLDB_CONFIGURATION_BUILDANDINTEGRATION 294 // Wrapper for ptrace when logging is not required. 295 // Sets errno to 0 prior to calling ptrace. 296 long 297 PtraceWrapper(int req, lldb::pid_t pid, void *addr, void *data, size_t data_size) 298 { 299 long result = 0; 300 errno = 0; 301 if (req == PTRACE_GETREGSET || req == PTRACE_SETREGSET) 302 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), *(unsigned int *)addr, data); 303 else 304 result = ptrace(static_cast<__ptrace_request>(req), static_cast< ::pid_t>(pid), addr, data); 305 return result; 306 } 307 #endif 308 309 //------------------------------------------------------------------------------ 310 // Static implementations of NativeProcessLinux::ReadMemory and 311 // NativeProcessLinux::WriteMemory. This enables mutual recursion between these 312 // functions without needed to go thru the thread funnel. 313 314 static lldb::addr_t 315 DoReadMemory ( 316 lldb::pid_t pid, 317 lldb::addr_t vm_addr, 318 void *buf, 319 lldb::addr_t size, 320 Error &error) 321 { 322 // ptrace word size is determined by the host, not the child 323 static const unsigned word_size = sizeof(void*); 324 unsigned char *dst = static_cast<unsigned char*>(buf); 325 lldb::addr_t bytes_read; 326 lldb::addr_t remainder; 327 long data; 328 329 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 330 if (log) 331 ProcessPOSIXLog::IncNestLevel(); 332 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 333 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %d, %p, %p, %zd, _)", __FUNCTION__, 334 pid, word_size, (void*)vm_addr, buf, size); 335 336 assert(sizeof(data) >= word_size); 337 for (bytes_read = 0; bytes_read < size; bytes_read += remainder) 338 { 339 errno = 0; 340 data = PTRACE(PTRACE_PEEKDATA, pid, (void*)vm_addr, NULL, 0); 341 if (errno) 342 { 343 error.SetErrorToErrno(); 344 if (log) 345 ProcessPOSIXLog::DecNestLevel(); 346 return bytes_read; 347 } 348 349 remainder = size - bytes_read; 350 remainder = remainder > word_size ? word_size : remainder; 351 352 // Copy the data into our buffer 353 for (unsigned i = 0; i < remainder; ++i) 354 dst[i] = ((data >> i*8) & 0xFF); 355 356 if (log && ProcessPOSIXLog::AtTopNestLevel() && 357 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 358 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 359 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 360 { 361 uintptr_t print_dst = 0; 362 // Format bytes from data by moving into print_dst for log output 363 for (unsigned i = 0; i < remainder; ++i) 364 print_dst |= (((data >> i*8) & 0xFF) << i*8); 365 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 366 (void*)vm_addr, print_dst, (unsigned long)data); 367 } 368 369 vm_addr += word_size; 370 dst += word_size; 371 } 372 373 if (log) 374 ProcessPOSIXLog::DecNestLevel(); 375 return bytes_read; 376 } 377 378 static lldb::addr_t 379 DoWriteMemory( 380 lldb::pid_t pid, 381 lldb::addr_t vm_addr, 382 const void *buf, 383 lldb::addr_t size, 384 Error &error) 385 { 386 // ptrace word size is determined by the host, not the child 387 static const unsigned word_size = sizeof(void*); 388 const unsigned char *src = static_cast<const unsigned char*>(buf); 389 lldb::addr_t bytes_written = 0; 390 lldb::addr_t remainder; 391 392 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_ALL)); 393 if (log) 394 ProcessPOSIXLog::IncNestLevel(); 395 if (log && ProcessPOSIXLog::AtTopNestLevel() && log->GetMask().Test(POSIX_LOG_MEMORY)) 396 log->Printf ("NativeProcessLinux::%s(%" PRIu64 ", %u, %p, %p, %" PRIu64 ")", __FUNCTION__, 397 pid, word_size, (void*)vm_addr, buf, size); 398 399 for (bytes_written = 0; bytes_written < size; bytes_written += remainder) 400 { 401 remainder = size - bytes_written; 402 remainder = remainder > word_size ? word_size : remainder; 403 404 if (remainder == word_size) 405 { 406 unsigned long data = 0; 407 assert(sizeof(data) >= word_size); 408 for (unsigned i = 0; i < word_size; ++i) 409 data |= (unsigned long)src[i] << i*8; 410 411 if (log && ProcessPOSIXLog::AtTopNestLevel() && 412 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 413 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 414 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 415 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 416 (void*)vm_addr, *(unsigned long*)src, data); 417 418 if (PTRACE(PTRACE_POKEDATA, pid, (void*)vm_addr, (void*)data, 0)) 419 { 420 error.SetErrorToErrno(); 421 if (log) 422 ProcessPOSIXLog::DecNestLevel(); 423 return bytes_written; 424 } 425 } 426 else 427 { 428 unsigned char buff[8]; 429 if (DoReadMemory(pid, vm_addr, 430 buff, word_size, error) != word_size) 431 { 432 if (log) 433 ProcessPOSIXLog::DecNestLevel(); 434 return bytes_written; 435 } 436 437 memcpy(buff, src, remainder); 438 439 if (DoWriteMemory(pid, vm_addr, 440 buff, word_size, error) != word_size) 441 { 442 if (log) 443 ProcessPOSIXLog::DecNestLevel(); 444 return bytes_written; 445 } 446 447 if (log && ProcessPOSIXLog::AtTopNestLevel() && 448 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_LONG) || 449 (log->GetMask().Test(POSIX_LOG_MEMORY_DATA_SHORT) && 450 size <= POSIX_LOG_MEMORY_SHORT_BYTES))) 451 log->Printf ("NativeProcessLinux::%s() [%p]:0x%lx (0x%lx)", __FUNCTION__, 452 (void*)vm_addr, *(unsigned long*)src, *(unsigned long*)buff); 453 } 454 455 vm_addr += word_size; 456 src += word_size; 457 } 458 if (log) 459 ProcessPOSIXLog::DecNestLevel(); 460 return bytes_written; 461 } 462 463 //------------------------------------------------------------------------------ 464 /// @class Operation 465 /// @brief Represents a NativeProcessLinux operation. 466 /// 467 /// Under Linux, it is not possible to ptrace() from any other thread but the 468 /// one that spawned or attached to the process from the start. Therefore, when 469 /// a NativeProcessLinux is asked to deliver or change the state of an inferior 470 /// process the operation must be "funneled" to a specific thread to perform the 471 /// task. The Operation class provides an abstract base for all services the 472 /// NativeProcessLinux must perform via the single virtual function Execute, thus 473 /// encapsulating the code that needs to run in the privileged context. 474 class Operation 475 { 476 public: 477 Operation () : m_error() { } 478 479 virtual 480 ~Operation() {} 481 482 virtual void 483 Execute (NativeProcessLinux *process) = 0; 484 485 const Error & 486 GetError () const { return m_error; } 487 488 protected: 489 Error m_error; 490 }; 491 492 //------------------------------------------------------------------------------ 493 /// @class ReadOperation 494 /// @brief Implements NativeProcessLinux::ReadMemory. 495 class ReadOperation : public Operation 496 { 497 public: 498 ReadOperation ( 499 lldb::addr_t addr, 500 void *buff, 501 lldb::addr_t size, 502 size_t &result) : 503 Operation (), 504 m_addr (addr), 505 m_buff (buff), 506 m_size (size), 507 m_result (result) 508 { 509 } 510 511 void Execute (NativeProcessLinux *process) override; 512 513 private: 514 lldb::addr_t m_addr; 515 void *m_buff; 516 lldb::addr_t m_size; 517 lldb::addr_t &m_result; 518 }; 519 520 void 521 ReadOperation::Execute (NativeProcessLinux *process) 522 { 523 m_result = DoReadMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 524 } 525 526 //------------------------------------------------------------------------------ 527 /// @class WriteOperation 528 /// @brief Implements NativeProcessLinux::WriteMemory. 529 class WriteOperation : public Operation 530 { 531 public: 532 WriteOperation ( 533 lldb::addr_t addr, 534 const void *buff, 535 lldb::addr_t size, 536 lldb::addr_t &result) : 537 Operation (), 538 m_addr (addr), 539 m_buff (buff), 540 m_size (size), 541 m_result (result) 542 { 543 } 544 545 void Execute (NativeProcessLinux *process) override; 546 547 private: 548 lldb::addr_t m_addr; 549 const void *m_buff; 550 lldb::addr_t m_size; 551 lldb::addr_t &m_result; 552 }; 553 554 void 555 WriteOperation::Execute(NativeProcessLinux *process) 556 { 557 m_result = DoWriteMemory (process->GetID (), m_addr, m_buff, m_size, m_error); 558 } 559 560 //------------------------------------------------------------------------------ 561 /// @class ReadRegOperation 562 /// @brief Implements NativeProcessLinux::ReadRegisterValue. 563 class ReadRegOperation : public Operation 564 { 565 public: 566 ReadRegOperation(lldb::tid_t tid, uint32_t offset, const char *reg_name, 567 RegisterValue &value, bool &result) 568 : m_tid(tid), m_offset(static_cast<uintptr_t> (offset)), m_reg_name(reg_name), 569 m_value(value), m_result(result) 570 { } 571 572 void Execute(NativeProcessLinux *monitor); 573 574 private: 575 lldb::tid_t m_tid; 576 uintptr_t m_offset; 577 const char *m_reg_name; 578 RegisterValue &m_value; 579 bool &m_result; 580 }; 581 582 void 583 ReadRegOperation::Execute(NativeProcessLinux *monitor) 584 { 585 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 586 587 // Set errno to zero so that we can detect a failed peek. 588 errno = 0; 589 lldb::addr_t data = PTRACE(PTRACE_PEEKUSER, m_tid, (void*)m_offset, NULL, 0); 590 if (errno) 591 m_result = false; 592 else 593 { 594 m_value = data; 595 m_result = true; 596 } 597 if (log) 598 log->Printf ("NativeProcessLinux::%s() reg %s: 0x%" PRIx64, __FUNCTION__, 599 m_reg_name, data); 600 } 601 602 //------------------------------------------------------------------------------ 603 /// @class WriteRegOperation 604 /// @brief Implements NativeProcessLinux::WriteRegisterValue. 605 class WriteRegOperation : public Operation 606 { 607 public: 608 WriteRegOperation(lldb::tid_t tid, unsigned offset, const char *reg_name, 609 const RegisterValue &value, bool &result) 610 : m_tid(tid), m_offset(offset), m_reg_name(reg_name), 611 m_value(value), m_result(result) 612 { } 613 614 void Execute(NativeProcessLinux *monitor); 615 616 private: 617 lldb::tid_t m_tid; 618 uintptr_t m_offset; 619 const char *m_reg_name; 620 const RegisterValue &m_value; 621 bool &m_result; 622 }; 623 624 void 625 WriteRegOperation::Execute(NativeProcessLinux *monitor) 626 { 627 void* buf; 628 Log *log (ProcessPOSIXLog::GetLogIfAllCategoriesSet (POSIX_LOG_REGISTERS)); 629 630 buf = (void*) m_value.GetAsUInt64(); 631 632 if (log) 633 log->Printf ("NativeProcessLinux::%s() reg %s: %p", __FUNCTION__, m_reg_name, buf); 634 if (PTRACE(PTRACE_POKEUSER, m_tid, (void*)m_offset, buf, 0)) 635 m_result = false; 636 else 637 m_result = true; 638 } 639 640 //------------------------------------------------------------------------------ 641 /// @class ReadGPROperation 642 /// @brief Implements NativeProcessLinux::ReadGPR. 643 class ReadGPROperation : public Operation 644 { 645 public: 646 ReadGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) 647 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) 648 { } 649 650 void Execute(NativeProcessLinux *monitor); 651 652 private: 653 lldb::tid_t m_tid; 654 void *m_buf; 655 size_t m_buf_size; 656 bool &m_result; 657 }; 658 659 void 660 ReadGPROperation::Execute(NativeProcessLinux *monitor) 661 { 662 if (PTRACE(PTRACE_GETREGS, m_tid, NULL, m_buf, m_buf_size) < 0) 663 m_result = false; 664 else 665 m_result = true; 666 } 667 668 //------------------------------------------------------------------------------ 669 /// @class ReadFPROperation 670 /// @brief Implements NativeProcessLinux::ReadFPR. 671 class ReadFPROperation : public Operation 672 { 673 public: 674 ReadFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) 675 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) 676 { } 677 678 void Execute(NativeProcessLinux *monitor); 679 680 private: 681 lldb::tid_t m_tid; 682 void *m_buf; 683 size_t m_buf_size; 684 bool &m_result; 685 }; 686 687 void 688 ReadFPROperation::Execute(NativeProcessLinux *monitor) 689 { 690 if (PTRACE(PTRACE_GETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0) 691 m_result = false; 692 else 693 m_result = true; 694 } 695 696 //------------------------------------------------------------------------------ 697 /// @class ReadRegisterSetOperation 698 /// @brief Implements NativeProcessLinux::ReadRegisterSet. 699 class ReadRegisterSetOperation : public Operation 700 { 701 public: 702 ReadRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result) 703 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result) 704 { } 705 706 void Execute(NativeProcessLinux *monitor); 707 708 private: 709 lldb::tid_t m_tid; 710 void *m_buf; 711 size_t m_buf_size; 712 const unsigned int m_regset; 713 bool &m_result; 714 }; 715 716 void 717 ReadRegisterSetOperation::Execute(NativeProcessLinux *monitor) 718 { 719 if (PTRACE(PTRACE_GETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0) 720 m_result = false; 721 else 722 m_result = true; 723 } 724 725 //------------------------------------------------------------------------------ 726 /// @class WriteGPROperation 727 /// @brief Implements NativeProcessLinux::WriteGPR. 728 class WriteGPROperation : public Operation 729 { 730 public: 731 WriteGPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) 732 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) 733 { } 734 735 void Execute(NativeProcessLinux *monitor); 736 737 private: 738 lldb::tid_t m_tid; 739 void *m_buf; 740 size_t m_buf_size; 741 bool &m_result; 742 }; 743 744 void 745 WriteGPROperation::Execute(NativeProcessLinux *monitor) 746 { 747 if (PTRACE(PTRACE_SETREGS, m_tid, NULL, m_buf, m_buf_size) < 0) 748 m_result = false; 749 else 750 m_result = true; 751 } 752 753 //------------------------------------------------------------------------------ 754 /// @class WriteFPROperation 755 /// @brief Implements NativeProcessLinux::WriteFPR. 756 class WriteFPROperation : public Operation 757 { 758 public: 759 WriteFPROperation(lldb::tid_t tid, void *buf, size_t buf_size, bool &result) 760 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_result(result) 761 { } 762 763 void Execute(NativeProcessLinux *monitor); 764 765 private: 766 lldb::tid_t m_tid; 767 void *m_buf; 768 size_t m_buf_size; 769 bool &m_result; 770 }; 771 772 void 773 WriteFPROperation::Execute(NativeProcessLinux *monitor) 774 { 775 if (PTRACE(PTRACE_SETFPREGS, m_tid, NULL, m_buf, m_buf_size) < 0) 776 m_result = false; 777 else 778 m_result = true; 779 } 780 781 //------------------------------------------------------------------------------ 782 /// @class WriteRegisterSetOperation 783 /// @brief Implements NativeProcessLinux::WriteRegisterSet. 784 class WriteRegisterSetOperation : public Operation 785 { 786 public: 787 WriteRegisterSetOperation(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset, bool &result) 788 : m_tid(tid), m_buf(buf), m_buf_size(buf_size), m_regset(regset), m_result(result) 789 { } 790 791 void Execute(NativeProcessLinux *monitor); 792 793 private: 794 lldb::tid_t m_tid; 795 void *m_buf; 796 size_t m_buf_size; 797 const unsigned int m_regset; 798 bool &m_result; 799 }; 800 801 void 802 WriteRegisterSetOperation::Execute(NativeProcessLinux *monitor) 803 { 804 if (PTRACE(PTRACE_SETREGSET, m_tid, (void *)&m_regset, m_buf, m_buf_size) < 0) 805 m_result = false; 806 else 807 m_result = true; 808 } 809 810 //------------------------------------------------------------------------------ 811 /// @class ResumeOperation 812 /// @brief Implements NativeProcessLinux::Resume. 813 class ResumeOperation : public Operation 814 { 815 public: 816 ResumeOperation(lldb::tid_t tid, uint32_t signo, bool &result) : 817 m_tid(tid), m_signo(signo), m_result(result) { } 818 819 void Execute(NativeProcessLinux *monitor); 820 821 private: 822 lldb::tid_t m_tid; 823 uint32_t m_signo; 824 bool &m_result; 825 }; 826 827 void 828 ResumeOperation::Execute(NativeProcessLinux *monitor) 829 { 830 intptr_t data = 0; 831 832 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 833 data = m_signo; 834 835 if (PTRACE(PTRACE_CONT, m_tid, NULL, (void*)data, 0)) 836 { 837 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 838 839 if (log) 840 log->Printf ("ResumeOperation (%" PRIu64 ") failed: %s", m_tid, strerror(errno)); 841 m_result = false; 842 } 843 else 844 m_result = true; 845 } 846 847 //------------------------------------------------------------------------------ 848 /// @class SingleStepOperation 849 /// @brief Implements NativeProcessLinux::SingleStep. 850 class SingleStepOperation : public Operation 851 { 852 public: 853 SingleStepOperation(lldb::tid_t tid, uint32_t signo, bool &result) 854 : m_tid(tid), m_signo(signo), m_result(result) { } 855 856 void Execute(NativeProcessLinux *monitor); 857 858 private: 859 lldb::tid_t m_tid; 860 uint32_t m_signo; 861 bool &m_result; 862 }; 863 864 void 865 SingleStepOperation::Execute(NativeProcessLinux *monitor) 866 { 867 intptr_t data = 0; 868 869 if (m_signo != LLDB_INVALID_SIGNAL_NUMBER) 870 data = m_signo; 871 872 if (PTRACE(PTRACE_SINGLESTEP, m_tid, NULL, (void*)data, 0)) 873 m_result = false; 874 else 875 m_result = true; 876 } 877 878 //------------------------------------------------------------------------------ 879 /// @class SiginfoOperation 880 /// @brief Implements NativeProcessLinux::GetSignalInfo. 881 class SiginfoOperation : public Operation 882 { 883 public: 884 SiginfoOperation(lldb::tid_t tid, void *info, bool &result, int &ptrace_err) 885 : m_tid(tid), m_info(info), m_result(result), m_err(ptrace_err) { } 886 887 void Execute(NativeProcessLinux *monitor); 888 889 private: 890 lldb::tid_t m_tid; 891 void *m_info; 892 bool &m_result; 893 int &m_err; 894 }; 895 896 void 897 SiginfoOperation::Execute(NativeProcessLinux *monitor) 898 { 899 if (PTRACE(PTRACE_GETSIGINFO, m_tid, NULL, m_info, 0)) { 900 m_result = false; 901 m_err = errno; 902 } 903 else 904 m_result = true; 905 } 906 907 //------------------------------------------------------------------------------ 908 /// @class EventMessageOperation 909 /// @brief Implements NativeProcessLinux::GetEventMessage. 910 class EventMessageOperation : public Operation 911 { 912 public: 913 EventMessageOperation(lldb::tid_t tid, unsigned long *message, bool &result) 914 : m_tid(tid), m_message(message), m_result(result) { } 915 916 void Execute(NativeProcessLinux *monitor); 917 918 private: 919 lldb::tid_t m_tid; 920 unsigned long *m_message; 921 bool &m_result; 922 }; 923 924 void 925 EventMessageOperation::Execute(NativeProcessLinux *monitor) 926 { 927 if (PTRACE(PTRACE_GETEVENTMSG, m_tid, NULL, m_message, 0)) 928 m_result = false; 929 else 930 m_result = true; 931 } 932 933 class DetachOperation : public Operation 934 { 935 public: 936 DetachOperation(lldb::tid_t tid, Error &result) : m_tid(tid), m_error(result) { } 937 938 void Execute(NativeProcessLinux *monitor); 939 940 private: 941 lldb::tid_t m_tid; 942 Error &m_error; 943 }; 944 945 void 946 DetachOperation::Execute(NativeProcessLinux *monitor) 947 { 948 if (ptrace(PT_DETACH, m_tid, NULL, 0) < 0) 949 m_error.SetErrorToErrno(); 950 } 951 952 } 953 954 using namespace lldb_private; 955 956 // Simple helper function to ensure flags are enabled on the given file 957 // descriptor. 958 static bool 959 EnsureFDFlags(int fd, int flags, Error &error) 960 { 961 int status; 962 963 if ((status = fcntl(fd, F_GETFL)) == -1) 964 { 965 error.SetErrorToErrno(); 966 return false; 967 } 968 969 if (fcntl(fd, F_SETFL, status | flags) == -1) 970 { 971 error.SetErrorToErrno(); 972 return false; 973 } 974 975 return true; 976 } 977 978 NativeProcessLinux::OperationArgs::OperationArgs(NativeProcessLinux *monitor) 979 : m_monitor(monitor) 980 { 981 sem_init(&m_semaphore, 0, 0); 982 } 983 984 NativeProcessLinux::OperationArgs::~OperationArgs() 985 { 986 sem_destroy(&m_semaphore); 987 } 988 989 NativeProcessLinux::LaunchArgs::LaunchArgs(NativeProcessLinux *monitor, 990 lldb_private::Module *module, 991 char const **argv, 992 char const **envp, 993 const char *stdin_path, 994 const char *stdout_path, 995 const char *stderr_path, 996 const char *working_dir) 997 : OperationArgs(monitor), 998 m_module(module), 999 m_argv(argv), 1000 m_envp(envp), 1001 m_stdin_path(stdin_path), 1002 m_stdout_path(stdout_path), 1003 m_stderr_path(stderr_path), 1004 m_working_dir(working_dir) { } 1005 1006 NativeProcessLinux::LaunchArgs::~LaunchArgs() 1007 { } 1008 1009 NativeProcessLinux::AttachArgs::AttachArgs(NativeProcessLinux *monitor, 1010 lldb::pid_t pid) 1011 : OperationArgs(monitor), m_pid(pid) { } 1012 1013 NativeProcessLinux::AttachArgs::~AttachArgs() 1014 { } 1015 1016 // ----------------------------------------------------------------------------- 1017 // Public Static Methods 1018 // ----------------------------------------------------------------------------- 1019 1020 lldb_private::Error 1021 NativeProcessLinux::LaunchProcess ( 1022 lldb_private::Module *exe_module, 1023 lldb_private::ProcessLaunchInfo &launch_info, 1024 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1025 NativeProcessProtocolSP &native_process_sp) 1026 { 1027 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1028 1029 Error error; 1030 1031 // Verify the working directory is valid if one was specified. 1032 const char* working_dir = launch_info.GetWorkingDirectory (); 1033 if (working_dir) 1034 { 1035 FileSpec working_dir_fs (working_dir, true); 1036 if (!working_dir_fs || working_dir_fs.GetFileType () != FileSpec::eFileTypeDirectory) 1037 { 1038 error.SetErrorStringWithFormat ("No such file or directory: %s", working_dir); 1039 return error; 1040 } 1041 } 1042 1043 const lldb_private::ProcessLaunchInfo::FileAction *file_action; 1044 1045 // Default of NULL will mean to use existing open file descriptors. 1046 const char *stdin_path = NULL; 1047 const char *stdout_path = NULL; 1048 const char *stderr_path = NULL; 1049 1050 file_action = launch_info.GetFileActionForFD (STDIN_FILENO); 1051 stdin_path = GetFilePath (file_action, stdin_path); 1052 1053 file_action = launch_info.GetFileActionForFD (STDOUT_FILENO); 1054 stdout_path = GetFilePath (file_action, stdout_path); 1055 1056 file_action = launch_info.GetFileActionForFD (STDERR_FILENO); 1057 stderr_path = GetFilePath (file_action, stderr_path); 1058 1059 // Create the NativeProcessLinux in launch mode. 1060 native_process_sp.reset (new NativeProcessLinux ()); 1061 1062 if (log) 1063 { 1064 int i = 0; 1065 for (const char **args = launch_info.GetArguments ().GetConstArgumentVector (); *args; ++args, ++i) 1066 { 1067 log->Printf ("NativeProcessLinux::%s arg %d: \"%s\"", __FUNCTION__, i, *args ? *args : "nullptr"); 1068 ++i; 1069 } 1070 } 1071 1072 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1073 { 1074 native_process_sp.reset (); 1075 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1076 return error; 1077 } 1078 1079 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->LaunchInferior ( 1080 exe_module, 1081 launch_info.GetArguments ().GetConstArgumentVector (), 1082 launch_info.GetEnvironmentEntries ().GetConstArgumentVector (), 1083 stdin_path, 1084 stdout_path, 1085 stderr_path, 1086 working_dir, 1087 error); 1088 1089 if (error.Fail ()) 1090 { 1091 native_process_sp.reset (); 1092 if (log) 1093 log->Printf ("NativeProcessLinux::%s failed to launch process: %s", __FUNCTION__, error.AsCString ()); 1094 return error; 1095 } 1096 1097 launch_info.SetProcessID (native_process_sp->GetID ()); 1098 1099 return error; 1100 } 1101 1102 lldb_private::Error 1103 NativeProcessLinux::AttachToProcess ( 1104 lldb::pid_t pid, 1105 lldb_private::NativeProcessProtocol::NativeDelegate &native_delegate, 1106 NativeProcessProtocolSP &native_process_sp) 1107 { 1108 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1109 if (log && log->GetMask ().Test (POSIX_LOG_VERBOSE)) 1110 log->Printf ("NativeProcessLinux::%s(pid = %" PRIi64 ")", __FUNCTION__, pid); 1111 1112 // Grab the current platform architecture. This should be Linux, 1113 // since this code is only intended to run on a Linux host. 1114 PlatformSP platform_sp (Platform::GetDefaultPlatform ()); 1115 if (!platform_sp) 1116 return Error("failed to get a valid default platform"); 1117 1118 // Retrieve the architecture for the running process. 1119 ArchSpec process_arch; 1120 Error error = ResolveProcessArchitecture (pid, *platform_sp.get (), process_arch); 1121 if (!error.Success ()) 1122 return error; 1123 1124 native_process_sp.reset (new NativeProcessLinux ()); 1125 1126 if (!native_process_sp->RegisterNativeDelegate (native_delegate)) 1127 { 1128 native_process_sp.reset (new NativeProcessLinux ()); 1129 error.SetErrorStringWithFormat ("failed to register the native delegate"); 1130 return error; 1131 } 1132 1133 reinterpret_cast<NativeProcessLinux*> (native_process_sp.get ())->AttachToInferior (pid, error); 1134 if (!error.Success ()) 1135 { 1136 native_process_sp.reset (); 1137 return error; 1138 } 1139 1140 return error; 1141 } 1142 1143 // ----------------------------------------------------------------------------- 1144 // Public Instance Methods 1145 // ----------------------------------------------------------------------------- 1146 1147 NativeProcessLinux::NativeProcessLinux () : 1148 NativeProcessProtocol (LLDB_INVALID_PROCESS_ID), 1149 m_arch (), 1150 m_operation_thread (LLDB_INVALID_HOST_THREAD), 1151 m_monitor_thread (LLDB_INVALID_HOST_THREAD), 1152 m_operation (nullptr), 1153 m_operation_mutex (), 1154 m_operation_pending (), 1155 m_operation_done (), 1156 m_wait_for_stop_tids (), 1157 m_wait_for_stop_tids_mutex (), 1158 m_supports_mem_region (eLazyBoolCalculate), 1159 m_mem_region_cache (), 1160 m_mem_region_cache_mutex () 1161 { 1162 } 1163 1164 //------------------------------------------------------------------------------ 1165 /// The basic design of the NativeProcessLinux is built around two threads. 1166 /// 1167 /// One thread (@see SignalThread) simply blocks on a call to waitpid() looking 1168 /// for changes in the debugee state. When a change is detected a 1169 /// ProcessMessage is sent to the associated ProcessLinux instance. This thread 1170 /// "drives" state changes in the debugger. 1171 /// 1172 /// The second thread (@see OperationThread) is responsible for two things 1) 1173 /// launching or attaching to the inferior process, and then 2) servicing 1174 /// operations such as register reads/writes, stepping, etc. See the comments 1175 /// on the Operation class for more info as to why this is needed. 1176 void 1177 NativeProcessLinux::LaunchInferior ( 1178 Module *module, 1179 const char *argv[], 1180 const char *envp[], 1181 const char *stdin_path, 1182 const char *stdout_path, 1183 const char *stderr_path, 1184 const char *working_dir, 1185 lldb_private::Error &error) 1186 { 1187 if (module) 1188 m_arch = module->GetArchitecture (); 1189 1190 SetState(eStateLaunching); 1191 1192 std::unique_ptr<LaunchArgs> args( 1193 new LaunchArgs( 1194 this, module, argv, envp, 1195 stdin_path, stdout_path, stderr_path, 1196 working_dir)); 1197 1198 sem_init(&m_operation_pending, 0, 0); 1199 sem_init(&m_operation_done, 0, 0); 1200 1201 StartLaunchOpThread(args.get(), error); 1202 if (!error.Success()) 1203 return; 1204 1205 WAIT_AGAIN: 1206 // Wait for the operation thread to initialize. 1207 if (sem_wait(&args->m_semaphore)) 1208 { 1209 if (errno == EINTR) 1210 goto WAIT_AGAIN; 1211 else 1212 { 1213 error.SetErrorToErrno(); 1214 return; 1215 } 1216 } 1217 1218 // Check that the launch was a success. 1219 if (!args->m_error.Success()) 1220 { 1221 StopOpThread(); 1222 error = args->m_error; 1223 return; 1224 } 1225 1226 // Finally, start monitoring the child process for change in state. 1227 m_monitor_thread = Host::StartMonitoringChildProcess( 1228 NativeProcessLinux::MonitorCallback, this, GetID(), true); 1229 if (!IS_VALID_LLDB_HOST_THREAD(m_monitor_thread)) 1230 { 1231 error.SetErrorToGenericError(); 1232 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1233 return; 1234 } 1235 } 1236 1237 void 1238 NativeProcessLinux::AttachToInferior (lldb::pid_t pid, lldb_private::Error &error) 1239 { 1240 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1241 if (log) 1242 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ")", __FUNCTION__, pid); 1243 1244 // We can use the Host for everything except the ResolveExecutable portion. 1245 PlatformSP platform_sp = Platform::GetDefaultPlatform (); 1246 if (!platform_sp) 1247 { 1248 if (log) 1249 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 "): no default platform set", __FUNCTION__, pid); 1250 error.SetErrorString ("no default platform available"); 1251 } 1252 1253 // Gather info about the process. 1254 ProcessInstanceInfo process_info; 1255 platform_sp->GetProcessInfo (pid, process_info); 1256 1257 // Resolve the executable module 1258 ModuleSP exe_module_sp; 1259 FileSpecList executable_search_paths (Target::GetDefaultExecutableSearchPaths()); 1260 1261 error = platform_sp->ResolveExecutable(process_info.GetExecutableFile(), 1262 Host::GetArchitecture(), 1263 exe_module_sp, 1264 executable_search_paths.GetSize() ? &executable_search_paths : NULL); 1265 if (!error.Success()) 1266 return; 1267 1268 // Set the architecture to the exe architecture. 1269 m_arch = exe_module_sp->GetArchitecture(); 1270 if (log) 1271 log->Printf ("NativeProcessLinux::%s (pid = %" PRIi64 ") detected architecture %s", __FUNCTION__, pid, m_arch.GetArchitectureName ()); 1272 1273 m_pid = pid; 1274 SetState(eStateAttaching); 1275 1276 sem_init (&m_operation_pending, 0, 0); 1277 sem_init (&m_operation_done, 0, 0); 1278 1279 std::unique_ptr<AttachArgs> args (new AttachArgs (this, pid)); 1280 1281 StartAttachOpThread(args.get (), error); 1282 if (!error.Success ()) 1283 return; 1284 1285 WAIT_AGAIN: 1286 // Wait for the operation thread to initialize. 1287 if (sem_wait (&args->m_semaphore)) 1288 { 1289 if (errno == EINTR) 1290 goto WAIT_AGAIN; 1291 else 1292 { 1293 error.SetErrorToErrno (); 1294 return; 1295 } 1296 } 1297 1298 // Check that the attach was a success. 1299 if (!args->m_error.Success ()) 1300 { 1301 StopOpThread (); 1302 error = args->m_error; 1303 return; 1304 } 1305 1306 // Finally, start monitoring the child process for change in state. 1307 m_monitor_thread = Host::StartMonitoringChildProcess ( 1308 NativeProcessLinux::MonitorCallback, this, GetID (), true); 1309 if (!IS_VALID_LLDB_HOST_THREAD (m_monitor_thread)) 1310 { 1311 error.SetErrorToGenericError (); 1312 error.SetErrorString ("Process attach failed to create monitor thread for NativeProcessLinux::MonitorCallback."); 1313 return; 1314 } 1315 } 1316 1317 NativeProcessLinux::~NativeProcessLinux() 1318 { 1319 StopMonitor(); 1320 } 1321 1322 //------------------------------------------------------------------------------ 1323 // Thread setup and tear down. 1324 1325 void 1326 NativeProcessLinux::StartLaunchOpThread(LaunchArgs *args, Error &error) 1327 { 1328 static const char *g_thread_name = "lldb.process.nativelinux.operation"; 1329 1330 if (IS_VALID_LLDB_HOST_THREAD (m_operation_thread)) 1331 return; 1332 1333 m_operation_thread = 1334 Host::ThreadCreate (g_thread_name, LaunchOpThread, args, &error); 1335 } 1336 1337 void * 1338 NativeProcessLinux::LaunchOpThread(void *arg) 1339 { 1340 LaunchArgs *args = static_cast<LaunchArgs*>(arg); 1341 1342 if (!Launch(args)) { 1343 sem_post(&args->m_semaphore); 1344 return NULL; 1345 } 1346 1347 ServeOperation(args); 1348 return NULL; 1349 } 1350 1351 bool 1352 NativeProcessLinux::Launch(LaunchArgs *args) 1353 { 1354 NativeProcessLinux *monitor = args->m_monitor; 1355 assert (monitor && "monitor is NULL"); 1356 if (!monitor) 1357 return false; 1358 1359 const char **argv = args->m_argv; 1360 const char **envp = args->m_envp; 1361 const char *stdin_path = args->m_stdin_path; 1362 const char *stdout_path = args->m_stdout_path; 1363 const char *stderr_path = args->m_stderr_path; 1364 const char *working_dir = args->m_working_dir; 1365 1366 lldb_utility::PseudoTerminal terminal; 1367 const size_t err_len = 1024; 1368 char err_str[err_len]; 1369 lldb::pid_t pid; 1370 NativeThreadProtocolSP thread_sp; 1371 1372 lldb::ThreadSP inferior; 1373 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1374 1375 // Propagate the environment if one is not supplied. 1376 if (envp == NULL || envp[0] == NULL) 1377 envp = const_cast<const char **>(environ); 1378 1379 if ((pid = terminal.Fork(err_str, err_len)) == static_cast<lldb::pid_t> (-1)) 1380 { 1381 args->m_error.SetErrorToGenericError(); 1382 args->m_error.SetErrorString("Process fork failed."); 1383 goto FINISH; 1384 } 1385 1386 // Recognized child exit status codes. 1387 enum { 1388 ePtraceFailed = 1, 1389 eDupStdinFailed, 1390 eDupStdoutFailed, 1391 eDupStderrFailed, 1392 eChdirFailed, 1393 eExecFailed, 1394 eSetGidFailed 1395 }; 1396 1397 // Child process. 1398 if (pid == 0) 1399 { 1400 if (log) 1401 log->Printf ("NativeProcessLinux::%s inferior process preparing to fork", __FUNCTION__); 1402 1403 // Trace this process. 1404 if (log) 1405 log->Printf ("NativeProcessLinux::%s inferior process issuing PTRACE_TRACEME", __FUNCTION__); 1406 1407 if (PTRACE(PTRACE_TRACEME, 0, NULL, NULL, 0) < 0) 1408 { 1409 if (log) 1410 log->Printf ("NativeProcessLinux::%s inferior process PTRACE_TRACEME failed", __FUNCTION__); 1411 exit(ePtraceFailed); 1412 } 1413 1414 // Do not inherit setgid powers. 1415 if (log) 1416 log->Printf ("NativeProcessLinux::%s inferior process resetting gid", __FUNCTION__); 1417 1418 if (setgid(getgid()) != 0) 1419 { 1420 if (log) 1421 log->Printf ("NativeProcessLinux::%s inferior process setgid() failed", __FUNCTION__); 1422 exit(eSetGidFailed); 1423 } 1424 1425 // Attempt to have our own process group. 1426 // TODO verify if we really want this. 1427 if (log) 1428 log->Printf ("NativeProcessLinux::%s inferior process resetting process group", __FUNCTION__); 1429 1430 if (setpgid(0, 0) != 0) 1431 { 1432 if (log) 1433 { 1434 const int error_code = errno; 1435 log->Printf ("NativeProcessLinux::%s inferior setpgid() failed, errno=%d (%s), continuing with existing proccess group %" PRIu64, 1436 __FUNCTION__, 1437 error_code, 1438 strerror (error_code), 1439 static_cast<lldb::pid_t> (getpgid (0))); 1440 } 1441 // Don't allow this to prevent an inferior exec. 1442 } 1443 1444 // Dup file descriptors if needed. 1445 // 1446 // FIXME: If two or more of the paths are the same we needlessly open 1447 // the same file multiple times. 1448 if (stdin_path != NULL && stdin_path[0]) 1449 if (!DupDescriptor(stdin_path, STDIN_FILENO, O_RDONLY)) 1450 exit(eDupStdinFailed); 1451 1452 if (stdout_path != NULL && stdout_path[0]) 1453 if (!DupDescriptor(stdout_path, STDOUT_FILENO, O_WRONLY | O_CREAT)) 1454 exit(eDupStdoutFailed); 1455 1456 if (stderr_path != NULL && stderr_path[0]) 1457 if (!DupDescriptor(stderr_path, STDERR_FILENO, O_WRONLY | O_CREAT)) 1458 exit(eDupStderrFailed); 1459 1460 // Change working directory 1461 if (working_dir != NULL && working_dir[0]) 1462 if (0 != ::chdir(working_dir)) 1463 exit(eChdirFailed); 1464 1465 // Execute. We should never return. 1466 execve(argv[0], 1467 const_cast<char *const *>(argv), 1468 const_cast<char *const *>(envp)); 1469 exit(eExecFailed); 1470 } 1471 1472 // Wait for the child process to trap on its call to execve. 1473 ::pid_t wpid; 1474 int status; 1475 if ((wpid = waitpid(pid, &status, 0)) < 0) 1476 { 1477 args->m_error.SetErrorToErrno(); 1478 1479 if (log) 1480 log->Printf ("NativeProcessLinux::%s waitpid for inferior failed with %s", __FUNCTION__, args->m_error.AsCString ()); 1481 1482 // Mark the inferior as invalid. 1483 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1484 monitor->SetState (StateType::eStateInvalid); 1485 1486 goto FINISH; 1487 } 1488 else if (WIFEXITED(status)) 1489 { 1490 // open, dup or execve likely failed for some reason. 1491 args->m_error.SetErrorToGenericError(); 1492 switch (WEXITSTATUS(status)) 1493 { 1494 case ePtraceFailed: 1495 args->m_error.SetErrorString("Child ptrace failed."); 1496 break; 1497 case eDupStdinFailed: 1498 args->m_error.SetErrorString("Child open stdin failed."); 1499 break; 1500 case eDupStdoutFailed: 1501 args->m_error.SetErrorString("Child open stdout failed."); 1502 break; 1503 case eDupStderrFailed: 1504 args->m_error.SetErrorString("Child open stderr failed."); 1505 break; 1506 case eChdirFailed: 1507 args->m_error.SetErrorString("Child failed to set working directory."); 1508 break; 1509 case eExecFailed: 1510 args->m_error.SetErrorString("Child exec failed."); 1511 break; 1512 case eSetGidFailed: 1513 args->m_error.SetErrorString("Child setgid failed."); 1514 break; 1515 default: 1516 args->m_error.SetErrorString("Child returned unknown exit status."); 1517 break; 1518 } 1519 1520 if (log) 1521 { 1522 log->Printf ("NativeProcessLinux::%s inferior exited with status %d before issuing a STOP", 1523 __FUNCTION__, 1524 WEXITSTATUS(status)); 1525 } 1526 1527 // Mark the inferior as invalid. 1528 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1529 monitor->SetState (StateType::eStateInvalid); 1530 1531 goto FINISH; 1532 } 1533 assert(WIFSTOPPED(status) && (wpid == static_cast< ::pid_t> (pid)) && 1534 "Could not sync with inferior process."); 1535 1536 if (log) 1537 log->Printf ("NativeProcessLinux::%s inferior started, now in stopped state", __FUNCTION__); 1538 1539 if (!SetDefaultPtraceOpts(pid)) 1540 { 1541 args->m_error.SetErrorToErrno(); 1542 if (log) 1543 log->Printf ("NativeProcessLinux::%s inferior failed to set default ptrace options: %s", 1544 __FUNCTION__, 1545 args->m_error.AsCString ()); 1546 1547 // Mark the inferior as invalid. 1548 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1549 monitor->SetState (StateType::eStateInvalid); 1550 1551 goto FINISH; 1552 } 1553 1554 // Release the master terminal descriptor and pass it off to the 1555 // NativeProcessLinux instance. Similarly stash the inferior pid. 1556 monitor->m_terminal_fd = terminal.ReleaseMasterFileDescriptor(); 1557 monitor->m_pid = pid; 1558 1559 // Set the terminal fd to be in non blocking mode (it simplifies the 1560 // implementation of ProcessLinux::GetSTDOUT to have a non-blocking 1561 // descriptor to read from). 1562 if (!EnsureFDFlags(monitor->m_terminal_fd, O_NONBLOCK, args->m_error)) 1563 { 1564 if (log) 1565 log->Printf ("NativeProcessLinux::%s inferior EnsureFDFlags failed for ensuring terminal O_NONBLOCK setting: %s", 1566 __FUNCTION__, 1567 args->m_error.AsCString ()); 1568 1569 // Mark the inferior as invalid. 1570 // FIXME this could really use a new state - eStateLaunchFailure. For now, using eStateInvalid. 1571 monitor->SetState (StateType::eStateInvalid); 1572 1573 goto FINISH; 1574 } 1575 1576 if (log) 1577 log->Printf ("NativeProcessLinux::%s() adding pid = %" PRIu64, __FUNCTION__, pid); 1578 1579 thread_sp = monitor->AddThread (static_cast<lldb::tid_t> (pid)); 1580 assert (thread_sp && "AddThread() returned a nullptr thread"); 1581 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1582 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1583 1584 // Let our process instance know the thread has stopped. 1585 monitor->SetState (StateType::eStateStopped); 1586 1587 FINISH: 1588 if (log) 1589 { 1590 if (args->m_error.Success ()) 1591 { 1592 log->Printf ("NativeProcessLinux::%s inferior launching succeeded", __FUNCTION__); 1593 } 1594 else 1595 { 1596 log->Printf ("NativeProcessLinux::%s inferior launching failed: %s", 1597 __FUNCTION__, 1598 args->m_error.AsCString ()); 1599 } 1600 } 1601 return args->m_error.Success(); 1602 } 1603 1604 void 1605 NativeProcessLinux::StartAttachOpThread(AttachArgs *args, lldb_private::Error &error) 1606 { 1607 static const char *g_thread_name = "lldb.process.linux.operation"; 1608 1609 if (IS_VALID_LLDB_HOST_THREAD(m_operation_thread)) 1610 return; 1611 1612 m_operation_thread = 1613 Host::ThreadCreate(g_thread_name, AttachOpThread, args, &error); 1614 } 1615 1616 void * 1617 NativeProcessLinux::AttachOpThread(void *arg) 1618 { 1619 AttachArgs *args = static_cast<AttachArgs*>(arg); 1620 1621 if (!Attach(args)) { 1622 sem_post(&args->m_semaphore); 1623 return NULL; 1624 } 1625 1626 ServeOperation(args); 1627 return NULL; 1628 } 1629 1630 bool 1631 NativeProcessLinux::Attach(AttachArgs *args) 1632 { 1633 lldb::pid_t pid = args->m_pid; 1634 1635 NativeProcessLinux *monitor = args->m_monitor; 1636 lldb::ThreadSP inferior; 1637 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1638 1639 // Use a map to keep track of the threads which we have attached/need to attach. 1640 Host::TidMap tids_to_attach; 1641 if (pid <= 1) 1642 { 1643 args->m_error.SetErrorToGenericError(); 1644 args->m_error.SetErrorString("Attaching to process 1 is not allowed."); 1645 goto FINISH; 1646 } 1647 1648 while (Host::FindProcessThreads(pid, tids_to_attach)) 1649 { 1650 for (Host::TidMap::iterator it = tids_to_attach.begin(); 1651 it != tids_to_attach.end();) 1652 { 1653 if (it->second == false) 1654 { 1655 lldb::tid_t tid = it->first; 1656 1657 // Attach to the requested process. 1658 // An attach will cause the thread to stop with a SIGSTOP. 1659 if (PTRACE(PTRACE_ATTACH, tid, NULL, NULL, 0) < 0) 1660 { 1661 // No such thread. The thread may have exited. 1662 // More error handling may be needed. 1663 if (errno == ESRCH) 1664 { 1665 it = tids_to_attach.erase(it); 1666 continue; 1667 } 1668 else 1669 { 1670 args->m_error.SetErrorToErrno(); 1671 goto FINISH; 1672 } 1673 } 1674 1675 int status; 1676 // Need to use __WALL otherwise we receive an error with errno=ECHLD 1677 // At this point we should have a thread stopped if waitpid succeeds. 1678 if ((status = waitpid(tid, NULL, __WALL)) < 0) 1679 { 1680 // No such thread. The thread may have exited. 1681 // More error handling may be needed. 1682 if (errno == ESRCH) 1683 { 1684 it = tids_to_attach.erase(it); 1685 continue; 1686 } 1687 else 1688 { 1689 args->m_error.SetErrorToErrno(); 1690 goto FINISH; 1691 } 1692 } 1693 1694 if (!SetDefaultPtraceOpts(tid)) 1695 { 1696 args->m_error.SetErrorToErrno(); 1697 goto FINISH; 1698 } 1699 1700 1701 if (log) 1702 log->Printf ("NativeProcessLinux::%s() adding tid = %" PRIu64, __FUNCTION__, tid); 1703 1704 it->second = true; 1705 1706 // Create the thread, mark it as stopped. 1707 NativeThreadProtocolSP thread_sp (monitor->AddThread (static_cast<lldb::tid_t> (tid))); 1708 assert (thread_sp && "AddThread() returned a nullptr"); 1709 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGSTOP); 1710 monitor->SetCurrentThreadID (thread_sp->GetID ()); 1711 } 1712 1713 // move the loop forward 1714 ++it; 1715 } 1716 } 1717 1718 if (tids_to_attach.size() > 0) 1719 { 1720 monitor->m_pid = pid; 1721 // Let our process instance know the thread has stopped. 1722 monitor->SetState (StateType::eStateStopped); 1723 } 1724 else 1725 { 1726 args->m_error.SetErrorToGenericError(); 1727 args->m_error.SetErrorString("No such process."); 1728 } 1729 1730 FINISH: 1731 return args->m_error.Success(); 1732 } 1733 1734 bool 1735 NativeProcessLinux::SetDefaultPtraceOpts(lldb::pid_t pid) 1736 { 1737 long ptrace_opts = 0; 1738 1739 // Have the child raise an event on exit. This is used to keep the child in 1740 // limbo until it is destroyed. 1741 ptrace_opts |= PTRACE_O_TRACEEXIT; 1742 1743 // Have the tracer trace threads which spawn in the inferior process. 1744 // TODO: if we want to support tracing the inferiors' child, add the 1745 // appropriate ptrace flags here (PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK) 1746 ptrace_opts |= PTRACE_O_TRACECLONE; 1747 1748 // Have the tracer notify us before execve returns 1749 // (needed to disable legacy SIGTRAP generation) 1750 ptrace_opts |= PTRACE_O_TRACEEXEC; 1751 1752 return PTRACE(PTRACE_SETOPTIONS, pid, NULL, (void*)ptrace_opts, 0) >= 0; 1753 } 1754 1755 static ExitType convert_pid_status_to_exit_type (int status) 1756 { 1757 if (WIFEXITED (status)) 1758 return ExitType::eExitTypeExit; 1759 else if (WIFSIGNALED (status)) 1760 return ExitType::eExitTypeSignal; 1761 else if (WIFSTOPPED (status)) 1762 return ExitType::eExitTypeStop; 1763 else 1764 { 1765 // We don't know what this is. 1766 return ExitType::eExitTypeInvalid; 1767 } 1768 } 1769 1770 static int convert_pid_status_to_return_code (int status) 1771 { 1772 if (WIFEXITED (status)) 1773 return WEXITSTATUS (status); 1774 else if (WIFSIGNALED (status)) 1775 return WTERMSIG (status); 1776 else if (WIFSTOPPED (status)) 1777 return WSTOPSIG (status); 1778 else 1779 { 1780 // We don't know what this is. 1781 return ExitType::eExitTypeInvalid; 1782 } 1783 } 1784 1785 // Main process monitoring waitpid-loop handler. 1786 bool 1787 NativeProcessLinux::MonitorCallback(void *callback_baton, 1788 lldb::pid_t pid, 1789 bool exited, 1790 int signal, 1791 int status) 1792 { 1793 Log *log (GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1794 1795 NativeProcessLinux *const process = static_cast<NativeProcessLinux*>(callback_baton); 1796 assert (process && "process is null"); 1797 if (!process) 1798 { 1799 if (log) 1800 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " callback_baton was null, can't determine process to use", __FUNCTION__, pid); 1801 return true; 1802 } 1803 1804 // Certain activities differ based on whether the pid is the tid of the main thread. 1805 const bool is_main_thread = (pid == process->GetID ()); 1806 1807 // Assume we keep monitoring by default. 1808 bool stop_monitoring = false; 1809 1810 // Handle when the thread exits. 1811 if (exited) 1812 { 1813 if (log) 1814 log->Printf ("NativeProcessLinux::%s() got exit signal, tid = %" PRIu64 " (%s main thread)", __FUNCTION__, pid, is_main_thread ? "is" : "is not"); 1815 1816 // This is a thread that exited. Ensure we're not tracking it anymore. 1817 const bool thread_found = process->StopTrackingThread (pid); 1818 1819 if (is_main_thread) 1820 { 1821 // We only set the exit status and notify the delegate if we haven't already set the process 1822 // state to an exited state. We normally should have received a SIGTRAP | (PTRACE_EVENT_EXIT << 8) 1823 // for the main thread. 1824 const bool already_notified = (process->GetState() == StateType::eStateExited) | (process->GetState () == StateType::eStateCrashed); 1825 if (!already_notified) 1826 { 1827 if (log) 1828 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling main thread exit (%s), expected exit state already set but state was %s instead, setting exit state now", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found", StateAsCString (process->GetState ())); 1829 // The main thread exited. We're done monitoring. Report to delegate. 1830 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1831 1832 // Notify delegate that our process has exited. 1833 process->SetState (StateType::eStateExited, true); 1834 } 1835 else 1836 { 1837 if (log) 1838 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " main thread now exited (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1839 } 1840 return true; 1841 } 1842 else 1843 { 1844 // Do we want to report to the delegate in this case? I think not. If this was an orderly 1845 // thread exit, we would already have received the SIGTRAP | (PTRACE_EVENT_EXIT << 8) signal, 1846 // and we would have done an all-stop then. 1847 if (log) 1848 log->Printf ("NativeProcessLinux::%s() tid = %" PRIu64 " handling non-main thread exit (%s)", __FUNCTION__, pid, thread_found ? "stopped tracking thread metadata" : "thread metadata not found"); 1849 1850 // Not the main thread, we keep going. 1851 return false; 1852 } 1853 } 1854 1855 // Get details on the signal raised. 1856 siginfo_t info; 1857 int ptrace_err = 0; 1858 1859 if (!process->GetSignalInfo (pid, &info, ptrace_err)) 1860 { 1861 if (ptrace_err == EINVAL) 1862 { 1863 // This is the first part of the Linux ptrace group-stop mechanism. 1864 // The tracer (i.e. NativeProcessLinux) is expected to inject the signal 1865 // into the tracee (i.e. inferior) at this point. 1866 if (log) 1867 log->Printf ("NativeProcessLinux::%s() resuming from group-stop", __FUNCTION__); 1868 1869 // The inferior process is in 'group-stop', so deliver the stopping signal. 1870 const bool signal_delivered = process->Resume (pid, info.si_signo); 1871 if (log) 1872 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " group-stop signal delivery of signal 0x%x (%s) - %s", __FUNCTION__, pid, info.si_signo, GetUnixSignals ().GetSignalAsCString (info.si_signo), signal_delivered ? "success" : "failed"); 1873 1874 assert(signal_delivered && "SIGSTOP delivery failed while in 'group-stop' state"); 1875 1876 stop_monitoring = false; 1877 } 1878 else 1879 { 1880 // ptrace(GETSIGINFO) failed (but not due to group-stop). 1881 1882 // A return value of ESRCH means the thread/process is no longer on the system, 1883 // so it was killed somehow outside of our control. Either way, we can't do anything 1884 // with it anymore. 1885 1886 // We stop monitoring if it was the main thread. 1887 stop_monitoring = is_main_thread; 1888 1889 // Stop tracking the metadata for the thread since it's entirely off the system now. 1890 const bool thread_found = process->StopTrackingThread (pid); 1891 1892 if (log) 1893 log->Printf ("NativeProcessLinux::%s GetSignalInfo failed: %s, tid = %" PRIu64 ", signal = %d, status = %d (%s, %s, %s)", 1894 __FUNCTION__, strerror(ptrace_err), pid, signal, status, ptrace_err == ESRCH ? "thread/process killed" : "unknown reason", is_main_thread ? "is main thread" : "is not main thread", thread_found ? "thread metadata removed" : "thread metadata not found"); 1895 1896 if (is_main_thread) 1897 { 1898 // Notify the delegate - our process is not available but appears to have been killed outside 1899 // our control. Is eStateExited the right exit state in this case? 1900 process->SetExitStatus (convert_pid_status_to_exit_type (status), convert_pid_status_to_return_code (status), nullptr, true); 1901 process->SetState (StateType::eStateExited, true); 1902 } 1903 else 1904 { 1905 // This thread was pulled out from underneath us. Anything to do here? Do we want to do an all stop? 1906 if (log) 1907 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " non-main thread exit occurred, didn't tell delegate anything since thread disappeared out from underneath us", __FUNCTION__, process->GetID (), pid); 1908 } 1909 } 1910 } 1911 else 1912 { 1913 // We have retrieved the signal info. Dispatch appropriately. 1914 if (info.si_signo == SIGTRAP) 1915 process->MonitorSIGTRAP(&info, pid); 1916 else 1917 process->MonitorSignal(&info, pid, exited); 1918 1919 stop_monitoring = false; 1920 } 1921 1922 return stop_monitoring; 1923 } 1924 1925 void 1926 NativeProcessLinux::MonitorSIGTRAP(const siginfo_t *info, lldb::pid_t pid) 1927 { 1928 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1929 const bool is_main_thread = (pid == GetID ()); 1930 1931 assert(info && info->si_signo == SIGTRAP && "Unexpected child signal!"); 1932 if (!info) 1933 return; 1934 1935 // See if we can find a thread for this signal. 1936 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 1937 if (!thread_sp) 1938 { 1939 if (log) 1940 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 1941 } 1942 1943 switch (info->si_code) 1944 { 1945 // TODO: these two cases are required if we want to support tracing of the inferiors' children. We'd need this to debug a monitor. 1946 // case (SIGTRAP | (PTRACE_EVENT_FORK << 8)): 1947 // case (SIGTRAP | (PTRACE_EVENT_VFORK << 8)): 1948 1949 case (SIGTRAP | (PTRACE_EVENT_CLONE << 8)): 1950 { 1951 lldb::tid_t tid = LLDB_INVALID_THREAD_ID; 1952 1953 unsigned long event_message = 0; 1954 if (GetEventMessage(pid, &event_message)) 1955 tid = static_cast<lldb::tid_t> (event_message); 1956 1957 if (log) 1958 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " received thread creation event for tid %" PRIu64, __FUNCTION__, pid, tid); 1959 1960 // If we don't track the thread yet: create it, mark as stopped. 1961 // If we do track it, this is the wait we needed. Now resume the new thread. 1962 // In all cases, resume the current (i.e. main process) thread. 1963 bool already_tracked = false; 1964 thread_sp = GetOrCreateThread (tid, already_tracked); 1965 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 1966 1967 // If the thread was already tracked, it means the created thread already received its SI_USER notification of creation. 1968 if (already_tracked) 1969 { 1970 // FIXME loops like we want to stop all theads here. 1971 // StopAllThreads 1972 1973 // We can now resume the newly created thread since it is fully created. 1974 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 1975 Resume (tid, LLDB_INVALID_SIGNAL_NUMBER); 1976 } 1977 else 1978 { 1979 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 1980 // this thread is ready to go. 1981 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching (); 1982 } 1983 1984 // In all cases, we can resume the main thread here. 1985 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 1986 break; 1987 } 1988 1989 case (SIGTRAP | (PTRACE_EVENT_EXEC << 8)): 1990 if (log) 1991 log->Printf ("NativeProcessLinux::%s() received exec event, code = %d", __FUNCTION__, info->si_code ^ SIGTRAP); 1992 // FIXME stop all threads, mark thread stop reason as ThreadStopInfo.reason = eStopReasonExec; 1993 break; 1994 1995 case (SIGTRAP | (PTRACE_EVENT_EXIT << 8)): 1996 { 1997 // The inferior process or one of its threads is about to exit. 1998 // Maintain the process or thread in a state of "limbo" until we are 1999 // explicitly commanded to detach, destroy, resume, etc. 2000 unsigned long data = 0; 2001 if (!GetEventMessage(pid, &data)) 2002 data = -1; 2003 2004 if (log) 2005 { 2006 log->Printf ("NativeProcessLinux::%s() received PTRACE_EVENT_EXIT, data = %lx (WIFEXITED=%s,WIFSIGNALED=%s), pid = %" PRIu64 " (%s)", 2007 __FUNCTION__, 2008 data, WIFEXITED (data) ? "true" : "false", WIFSIGNALED (data) ? "true" : "false", 2009 pid, 2010 is_main_thread ? "is main thread" : "not main thread"); 2011 } 2012 2013 // Set the thread to exited. 2014 if (thread_sp) 2015 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetExited (); 2016 else 2017 { 2018 if (log) 2019 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " failed to retrieve thread for tid %" PRIu64", cannot set thread state", __FUNCTION__, GetID (), pid); 2020 } 2021 2022 if (is_main_thread) 2023 { 2024 SetExitStatus (convert_pid_status_to_exit_type (data), convert_pid_status_to_return_code (data), nullptr, true); 2025 // Resume the thread so it completely exits. 2026 Resume (pid, LLDB_INVALID_SIGNAL_NUMBER); 2027 } 2028 else 2029 { 2030 // FIXME figure out the path where we plan to reap the metadata for the thread. 2031 } 2032 2033 break; 2034 } 2035 2036 case 0: 2037 case TRAP_TRACE: 2038 // We receive this on single stepping. 2039 if (log) 2040 log->Printf ("NativeProcessLinux::%s() received trace event, pid = %" PRIu64 " (single stepping)", __FUNCTION__, pid); 2041 2042 if (thread_sp) 2043 { 2044 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2045 SetCurrentThreadID (thread_sp->GetID ()); 2046 } 2047 else 2048 { 2049 if (log) 2050 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 " single stepping received trace but thread not found", __FUNCTION__, GetID (), pid); 2051 } 2052 2053 // Tell the process we have a stop (from single stepping). 2054 SetState (StateType::eStateStopped, true); 2055 break; 2056 2057 case SI_KERNEL: 2058 case TRAP_BRKPT: 2059 if (log) 2060 log->Printf ("NativeProcessLinux::%s() received breakpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2061 2062 // Mark the thread as stopped at breakpoint. 2063 if (thread_sp) 2064 { 2065 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2066 Error error = FixupBreakpointPCAsNeeded (thread_sp); 2067 if (error.Fail ()) 2068 { 2069 if (log) 2070 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " fixup: %s", __FUNCTION__, pid, error.AsCString ()); 2071 } 2072 } 2073 else 2074 { 2075 if (log) 2076 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 ": warning, cannot process software breakpoint since no thread metadata", __FUNCTION__, pid); 2077 } 2078 2079 2080 // Tell the process we have a stop from this thread. 2081 SetCurrentThreadID (pid); 2082 SetState (StateType::eStateStopped, true); 2083 break; 2084 2085 case TRAP_HWBKPT: 2086 if (log) 2087 log->Printf ("NativeProcessLinux::%s() received watchpoint event, pid = %" PRIu64, __FUNCTION__, pid); 2088 2089 // Mark the thread as stopped at watchpoint. 2090 // The address is at (lldb::addr_t)info->si_addr if we need it. 2091 if (thread_sp) 2092 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (SIGTRAP); 2093 else 2094 { 2095 if (log) 2096 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ": warning, cannot process hardware breakpoint since no thread metadata", __FUNCTION__, GetID (), pid); 2097 } 2098 2099 // Tell the process we have a stop from this thread. 2100 SetCurrentThreadID (pid); 2101 SetState (StateType::eStateStopped, true); 2102 break; 2103 2104 case SIGTRAP: 2105 case (SIGTRAP | 0x80): 2106 if (log) 2107 log->Printf ("NativeProcessLinux::%s() received system call stop event, pid %" PRIu64 "tid %" PRIu64, __FUNCTION__, GetID (), pid); 2108 // Ignore these signals until we know more about them. 2109 Resume(pid, 0); 2110 break; 2111 2112 default: 2113 assert(false && "Unexpected SIGTRAP code!"); 2114 if (log) 2115 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 "tid %" PRIu64 " received unhandled SIGTRAP code: 0x%" PRIx64, __FUNCTION__, GetID (), pid, static_cast<uint64_t> (SIGTRAP | (PTRACE_EVENT_CLONE << 8))); 2116 break; 2117 2118 } 2119 } 2120 2121 void 2122 NativeProcessLinux::MonitorSignal(const siginfo_t *info, lldb::pid_t pid, bool exited) 2123 { 2124 int signo = info->si_signo; 2125 2126 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2127 2128 // POSIX says that process behaviour is undefined after it ignores a SIGFPE, 2129 // SIGILL, SIGSEGV, or SIGBUS *unless* that signal was generated by a 2130 // kill(2) or raise(3). Similarly for tgkill(2) on Linux. 2131 // 2132 // IOW, user generated signals never generate what we consider to be a 2133 // "crash". 2134 // 2135 // Similarly, ACK signals generated by this monitor. 2136 2137 // See if we can find a thread for this signal. 2138 NativeThreadProtocolSP thread_sp = GetThreadByID (pid); 2139 if (!thread_sp) 2140 { 2141 if (log) 2142 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " no thread found for tid %" PRIu64, __FUNCTION__, GetID (), pid); 2143 } 2144 2145 // Handle the signal. 2146 if (info->si_code == SI_TKILL || info->si_code == SI_USER) 2147 { 2148 if (log) 2149 log->Printf ("NativeProcessLinux::%s() received signal %s (%d) with code %s, (siginfo pid = %d (%s), waitpid pid = %" PRIu64 ")", 2150 __FUNCTION__, 2151 GetUnixSignals ().GetSignalAsCString (signo), 2152 signo, 2153 (info->si_code == SI_TKILL ? "SI_TKILL" : "SI_USER"), 2154 info->si_pid, 2155 (info->si_pid == getpid ()) ? "is monitor" : "is not monitor", 2156 pid); 2157 2158 if ((info->si_pid == 0) && info->si_code == SI_USER) 2159 { 2160 // A new thread creation is being signaled. This is one of two parts that come in 2161 // a non-deterministic order. pid is the thread id. 2162 if (log) 2163 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": new thread notification", 2164 __FUNCTION__, GetID (), pid); 2165 2166 // Did we already create the thread? 2167 bool already_tracked = false; 2168 thread_sp = GetOrCreateThread (pid, already_tracked); 2169 assert (thread_sp.get() && "failed to get or create the tracking data for newly created inferior thread"); 2170 2171 // If the thread was already tracked, it means the main thread already received its SIGTRAP for the create. 2172 if (already_tracked) 2173 { 2174 // We can now resume this thread up since it is fully created. 2175 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetRunning (); 2176 Resume (thread_sp->GetID (), LLDB_INVALID_SIGNAL_NUMBER); 2177 } 2178 else 2179 { 2180 // Mark the thread as currently launching. Need to wait for SIGTRAP clone on the main thread before 2181 // this thread is ready to go. 2182 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetLaunching (); 2183 } 2184 } 2185 else if (info->si_pid == getpid () && (signo == SIGSTOP)) 2186 { 2187 // This is a tgkill()-based stop. 2188 if (thread_sp) 2189 { 2190 // An inferior thread just stopped. Mark it as such. 2191 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo); 2192 SetCurrentThreadID (thread_sp->GetID ()); 2193 2194 // Remove this tid from the wait-for-stop set. 2195 Mutex::Locker locker (m_wait_for_stop_tids_mutex); 2196 2197 auto removed_count = m_wait_for_stop_tids.erase (thread_sp->GetID ()); 2198 if (removed_count < 1) 2199 { 2200 log->Printf ("NativeProcessLinux::%s() pid = %" PRIu64 " tid %" PRIu64 ": tgkill()-stopped thread not in m_wait_for_stop_tids", 2201 __FUNCTION__, GetID (), thread_sp->GetID ()); 2202 2203 } 2204 2205 // If this is the last thread in the m_wait_for_stop_tids, we need to notify 2206 // the delegate that a stop has occurred now that every thread that was supposed 2207 // to stop has stopped. 2208 if (m_wait_for_stop_tids.empty ()) 2209 { 2210 if (log) 2211 { 2212 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " tid %" PRIu64 ", setting process state to stopped now that all tids marked for stop have completed", 2213 __FUNCTION__, 2214 GetID (), 2215 pid); 2216 } 2217 SetState (StateType::eStateStopped, true); 2218 } 2219 } 2220 } 2221 else 2222 { 2223 // Hmm, not sure what to do with this. 2224 if (log) 2225 log->Printf ("NativeProcessLinux::%s() pid %" PRIu64 " unsure how to handle SI_KILL or SI_USER signal", __FUNCTION__, GetID ()); 2226 } 2227 2228 return; 2229 } 2230 2231 if (log) 2232 log->Printf ("NativeProcessLinux::%s() received signal %s", __FUNCTION__, GetUnixSignals ().GetSignalAsCString (signo)); 2233 2234 switch (signo) 2235 { 2236 case SIGSEGV: 2237 { 2238 lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr); 2239 2240 // FIXME figure out how to propagate this properly. Seems like it 2241 // should go in ThreadStopInfo. 2242 // We can get more details on the exact nature of the crash here. 2243 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGSEGV(info); 2244 if (!exited) 2245 { 2246 // This is just a pre-signal-delivery notification of the incoming signal. 2247 // Send a stop to the debugger. 2248 if (thread_sp) 2249 { 2250 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetStoppedBySignal (signo); 2251 SetCurrentThreadID (thread_sp->GetID ()); 2252 } 2253 SetState (StateType::eStateStopped, true); 2254 } 2255 else 2256 { 2257 if (thread_sp) 2258 { 2259 // FIXME figure out what type this is. 2260 const uint64_t exception_type = static_cast<uint64_t> (SIGSEGV); 2261 reinterpret_cast<NativeThreadLinux*> (thread_sp.get ())->SetCrashedWithException (exception_type, fault_addr); 2262 } 2263 SetState (StateType::eStateCrashed, true); 2264 } 2265 } 2266 break; 2267 2268 case SIGILL: 2269 { 2270 // lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr); 2271 // Can get the reason from here. 2272 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGILL(info); 2273 // FIXME save the crash reason 2274 SetState (StateType::eStateCrashed, true); 2275 } 2276 break; 2277 2278 case SIGFPE: 2279 { 2280 // lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr); 2281 // Can get the crash reason from below. 2282 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGFPE(info); 2283 // FIXME save the crash reason 2284 SetState (StateType::eStateCrashed, true); 2285 } 2286 break; 2287 2288 case SIGBUS: 2289 { 2290 // lldb::addr_t fault_addr = reinterpret_cast<lldb::addr_t>(info->si_addr); 2291 // Can get the crash reason from below. 2292 // ProcessMessage::CrashReason reason = GetCrashReasonForSIGBUS(info); 2293 // FIXME save the crash reason 2294 SetState (StateType::eStateCrashed); 2295 } 2296 break; 2297 2298 default: 2299 // FIXME Stop all threads here. 2300 break; 2301 } 2302 } 2303 2304 Error 2305 NativeProcessLinux::Resume (const ResumeActionList &resume_actions) 2306 { 2307 Error error; 2308 2309 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_THREAD)); 2310 if (log) 2311 log->Printf ("NativeProcessLinux::%s called: pid %" PRIu64, __FUNCTION__, GetID ()); 2312 2313 int run_thread_count = 0; 2314 int stop_thread_count = 0; 2315 int step_thread_count = 0; 2316 2317 std::vector<NativeThreadProtocolSP> new_stop_threads; 2318 2319 Mutex::Locker locker (m_threads_mutex); 2320 for (auto thread_sp : m_threads) 2321 { 2322 assert (thread_sp && "thread list should not contain NULL threads"); 2323 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get ()); 2324 2325 const ResumeAction *const action = resume_actions.GetActionForThread (thread_sp->GetID (), true); 2326 assert (action && "NULL ResumeAction returned for thread during Resume ()"); 2327 2328 if (log) 2329 { 2330 log->Printf ("NativeProcessLinux::%s processing resume action state %s for pid %" PRIu64 " tid %" PRIu64, 2331 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2332 } 2333 2334 switch (action->state) 2335 { 2336 case eStateRunning: 2337 // Run the thread, possibly feeding it the signal. 2338 linux_thread_p->SetRunning (); 2339 if (action->signal > 0) 2340 { 2341 // Resume the thread and deliver the given signal, 2342 // then mark as delivered. 2343 Resume (thread_sp->GetID (), action->signal); 2344 resume_actions.SetSignalHandledForThread (thread_sp->GetID ()); 2345 } 2346 else 2347 { 2348 // Just resume the thread with no signal. 2349 Resume (thread_sp->GetID (), LLDB_INVALID_SIGNAL_NUMBER); 2350 } 2351 ++run_thread_count; 2352 break; 2353 2354 case eStateStepping: 2355 // Note: if we have multiple threads, we may need to stop 2356 // the other threads first, then step this one. 2357 linux_thread_p->SetStepping (); 2358 if (SingleStep (thread_sp->GetID (), 0)) 2359 { 2360 if (log) 2361 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " single step succeeded", 2362 __FUNCTION__, GetID (), thread_sp->GetID ()); 2363 } 2364 else 2365 { 2366 if (log) 2367 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 " single step failed", 2368 __FUNCTION__, GetID (), thread_sp->GetID ()); 2369 } 2370 ++step_thread_count; 2371 break; 2372 2373 case eStateSuspended: 2374 case eStateStopped: 2375 if (!StateIsStoppedState (linux_thread_p->GetState (), false)) 2376 new_stop_threads.push_back (thread_sp); 2377 else 2378 { 2379 if (log) 2380 log->Printf ("NativeProcessLinux::%s no need to stop pid %" PRIu64 " tid %" PRIu64 ", thread state already %s", 2381 __FUNCTION__, GetID (), thread_sp->GetID (), StateAsCString (linux_thread_p->GetState ())); 2382 } 2383 2384 ++stop_thread_count; 2385 break; 2386 2387 default: 2388 return Error ("NativeProcessLinux::%s (): unexpected state %s specified for pid %" PRIu64 ", tid %" PRIu64, 2389 __FUNCTION__, StateAsCString (action->state), GetID (), thread_sp->GetID ()); 2390 } 2391 } 2392 2393 // If any thread was set to run, notify the process state as running. 2394 if (run_thread_count > 0) 2395 SetState (StateType::eStateRunning, true); 2396 2397 // Now do a tgkill SIGSTOP on each thread we want to stop. 2398 if (!new_stop_threads.empty ()) 2399 { 2400 // Lock the m_wait_for_stop_tids set so we can fill it with every thread we expect to have stopped. 2401 Mutex::Locker stop_thread_id_locker (m_wait_for_stop_tids_mutex); 2402 for (auto thread_sp : new_stop_threads) 2403 { 2404 // Send a stop signal to the thread. 2405 const int result = tgkill (GetID (), thread_sp->GetID (), SIGSTOP); 2406 if (result != 0) 2407 { 2408 // tgkill failed. 2409 if (log) 2410 log->Printf ("NativeProcessLinux::%s error: tgkill SIGSTOP for pid %" PRIu64 " tid %" PRIu64 "failed, retval %d", 2411 __FUNCTION__, GetID (), thread_sp->GetID (), result); 2412 } 2413 else 2414 { 2415 // tgkill succeeded. Don't mark the thread state, though. Let the signal 2416 // handling mark it. 2417 if (log) 2418 log->Printf ("NativeProcessLinux::%s tgkill SIGSTOP for pid %" PRIu64 " tid %" PRIu64 " succeeded", 2419 __FUNCTION__, GetID (), thread_sp->GetID ()); 2420 2421 // Add it to the set of threads we expect to signal a stop. 2422 // We won't tell the delegate about it until this list drains to empty. 2423 m_wait_for_stop_tids.insert (thread_sp->GetID ()); 2424 } 2425 } 2426 } 2427 2428 return error; 2429 } 2430 2431 Error 2432 NativeProcessLinux::Halt () 2433 { 2434 Error error; 2435 2436 // FIXME check if we're already stopped 2437 const bool is_stopped = false; 2438 if (is_stopped) 2439 return error; 2440 2441 if (kill (GetID (), SIGSTOP) != 0) 2442 error.SetErrorToErrno (); 2443 2444 return error; 2445 } 2446 2447 Error 2448 NativeProcessLinux::Detach () 2449 { 2450 Error error; 2451 2452 // Tell ptrace to detach from the process. 2453 if (GetID () != LLDB_INVALID_PROCESS_ID) 2454 error = Detach (GetID ()); 2455 2456 // Stop monitoring the inferior. 2457 StopMonitor (); 2458 2459 // No error. 2460 return error; 2461 } 2462 2463 Error 2464 NativeProcessLinux::Signal (int signo) 2465 { 2466 Error error; 2467 2468 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2469 if (log) 2470 log->Printf ("NativeProcessLinux::%s: sending signal %d (%s) to pid %" PRIu64, 2471 __FUNCTION__, signo, GetUnixSignals ().GetSignalAsCString (signo), GetID ()); 2472 2473 if (kill(GetID(), signo)) 2474 error.SetErrorToErrno(); 2475 2476 return error; 2477 } 2478 2479 Error 2480 NativeProcessLinux::Kill () 2481 { 2482 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2483 if (log) 2484 log->Printf ("NativeProcessLinux::%s called for PID %" PRIu64, __FUNCTION__, GetID ()); 2485 2486 Error error; 2487 2488 switch (m_state) 2489 { 2490 case StateType::eStateInvalid: 2491 case StateType::eStateExited: 2492 case StateType::eStateCrashed: 2493 case StateType::eStateDetached: 2494 case StateType::eStateUnloaded: 2495 // Nothing to do - the process is already dead. 2496 if (log) 2497 log->Printf ("NativeProcessLinux::%s ignored for PID %" PRIu64 " due to current state: %s", __FUNCTION__, GetID (), StateAsCString (m_state)); 2498 return error; 2499 2500 case StateType::eStateConnected: 2501 case StateType::eStateAttaching: 2502 case StateType::eStateLaunching: 2503 case StateType::eStateStopped: 2504 case StateType::eStateRunning: 2505 case StateType::eStateStepping: 2506 case StateType::eStateSuspended: 2507 // We can try to kill a process in these states. 2508 break; 2509 } 2510 2511 if (kill (GetID (), SIGKILL) != 0) 2512 { 2513 error.SetErrorToErrno (); 2514 return error; 2515 } 2516 2517 return error; 2518 } 2519 2520 static Error 2521 ParseMemoryRegionInfoFromProcMapsLine (const std::string &maps_line, MemoryRegionInfo &memory_region_info) 2522 { 2523 memory_region_info.Clear(); 2524 2525 StringExtractor line_extractor (maps_line.c_str ()); 2526 2527 // Format: {address_start_hex}-{address_end_hex} perms offset dev inode pathname 2528 // perms: rwxp (letter is present if set, '-' if not, final character is p=private, s=shared). 2529 2530 // Parse out the starting address 2531 lldb::addr_t start_address = line_extractor.GetHexMaxU64 (false, 0); 2532 2533 // Parse out hyphen separating start and end address from range. 2534 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != '-')) 2535 return Error ("malformed /proc/{pid}/maps entry, missing dash between address range"); 2536 2537 // Parse out the ending address 2538 lldb::addr_t end_address = line_extractor.GetHexMaxU64 (false, start_address); 2539 2540 // Parse out the space after the address. 2541 if (!line_extractor.GetBytesLeft () || (line_extractor.GetChar () != ' ')) 2542 return Error ("malformed /proc/{pid}/maps entry, missing space after range"); 2543 2544 // Save the range. 2545 memory_region_info.GetRange ().SetRangeBase (start_address); 2546 memory_region_info.GetRange ().SetRangeEnd (end_address); 2547 2548 // Parse out each permission entry. 2549 if (line_extractor.GetBytesLeft () < 4) 2550 return Error ("malformed /proc/{pid}/maps entry, missing some portion of permissions"); 2551 2552 // Handle read permission. 2553 const char read_perm_char = line_extractor.GetChar (); 2554 if (read_perm_char == 'r') 2555 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eYes); 2556 else 2557 { 2558 assert ( (read_perm_char == '-') && "unexpected /proc/{pid}/maps read permission char" ); 2559 memory_region_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2560 } 2561 2562 // Handle write permission. 2563 const char write_perm_char = line_extractor.GetChar (); 2564 if (write_perm_char == 'w') 2565 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eYes); 2566 else 2567 { 2568 assert ( (write_perm_char == '-') && "unexpected /proc/{pid}/maps write permission char" ); 2569 memory_region_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2570 } 2571 2572 // Handle execute permission. 2573 const char exec_perm_char = line_extractor.GetChar (); 2574 if (exec_perm_char == 'x') 2575 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eYes); 2576 else 2577 { 2578 assert ( (exec_perm_char == '-') && "unexpected /proc/{pid}/maps exec permission char" ); 2579 memory_region_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2580 } 2581 2582 return Error (); 2583 } 2584 2585 Error 2586 NativeProcessLinux::GetMemoryRegionInfo (lldb::addr_t load_addr, MemoryRegionInfo &range_info) 2587 { 2588 // FIXME review that the final memory region returned extends to the end of the virtual address space, 2589 // with no perms if it is not mapped. 2590 2591 // Use an approach that reads memory regions from /proc/{pid}/maps. 2592 // Assume proc maps entries are in ascending order. 2593 // FIXME assert if we find differently. 2594 Mutex::Locker locker (m_mem_region_cache_mutex); 2595 2596 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2597 Error error; 2598 2599 if (m_supports_mem_region == LazyBool::eLazyBoolNo) 2600 { 2601 // We're done. 2602 error.SetErrorString ("unsupported"); 2603 return error; 2604 } 2605 2606 // If our cache is empty, pull the latest. There should always be at least one memory region 2607 // if memory region handling is supported. 2608 if (m_mem_region_cache.empty ()) 2609 { 2610 error = ProcFileReader::ProcessLineByLine (GetID (), "maps", 2611 [&] (const std::string &line) -> bool 2612 { 2613 MemoryRegionInfo info; 2614 const Error parse_error = ParseMemoryRegionInfoFromProcMapsLine (line, info); 2615 if (parse_error.Success ()) 2616 { 2617 m_mem_region_cache.push_back (info); 2618 return true; 2619 } 2620 else 2621 { 2622 if (log) 2623 log->Printf ("NativeProcessLinux::%s failed to parse proc maps line '%s': %s", __FUNCTION__, line.c_str (), error.AsCString ()); 2624 return false; 2625 } 2626 }); 2627 2628 // If we had an error, we'll mark unsupported. 2629 if (error.Fail ()) 2630 { 2631 m_supports_mem_region = LazyBool::eLazyBoolNo; 2632 return error; 2633 } 2634 else if (m_mem_region_cache.empty ()) 2635 { 2636 // No entries after attempting to read them. This shouldn't happen if /proc/{pid}/maps 2637 // is supported. Assume we don't support map entries via procfs. 2638 if (log) 2639 log->Printf ("NativeProcessLinux::%s failed to find any procfs maps entries, assuming no support for memory region metadata retrieval", __FUNCTION__); 2640 m_supports_mem_region = LazyBool::eLazyBoolNo; 2641 error.SetErrorString ("not supported"); 2642 return error; 2643 } 2644 2645 if (log) 2646 log->Printf ("NativeProcessLinux::%s read %" PRIu64 " memory region entries from /proc/%" PRIu64 "/maps", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ()), GetID ()); 2647 2648 // We support memory retrieval, remember that. 2649 m_supports_mem_region = LazyBool::eLazyBoolYes; 2650 } 2651 else 2652 { 2653 if (log) 2654 log->Printf ("NativeProcessLinux::%s reusing %" PRIu64 " cached memory region entries", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2655 } 2656 2657 lldb::addr_t prev_base_address = 0; 2658 2659 // FIXME start by finding the last region that is <= target address using binary search. Data is sorted. 2660 // There can be a ton of regions on pthreads apps with lots of threads. 2661 for (auto it = m_mem_region_cache.begin(); it != m_mem_region_cache.end (); ++it) 2662 { 2663 MemoryRegionInfo &proc_entry_info = *it; 2664 2665 // Sanity check assumption that /proc/{pid}/maps entries are ascending. 2666 assert ((proc_entry_info.GetRange ().GetRangeBase () >= prev_base_address) && "descending /proc/pid/maps entries detected, unexpected"); 2667 prev_base_address = proc_entry_info.GetRange ().GetRangeBase (); 2668 2669 // If the target address comes before this entry, indicate distance to next region. 2670 if (load_addr < proc_entry_info.GetRange ().GetRangeBase ()) 2671 { 2672 range_info.GetRange ().SetRangeBase (load_addr); 2673 range_info.GetRange ().SetByteSize (proc_entry_info.GetRange ().GetRangeBase () - load_addr); 2674 range_info.SetReadable (MemoryRegionInfo::OptionalBool::eNo); 2675 range_info.SetWritable (MemoryRegionInfo::OptionalBool::eNo); 2676 range_info.SetExecutable (MemoryRegionInfo::OptionalBool::eNo); 2677 2678 return error; 2679 } 2680 else if (proc_entry_info.GetRange ().Contains (load_addr)) 2681 { 2682 // The target address is within the memory region we're processing here. 2683 range_info = proc_entry_info; 2684 return error; 2685 } 2686 2687 // The target memory address comes somewhere after the region we just parsed. 2688 } 2689 2690 // If we made it here, we didn't find an entry that contained the given address. 2691 error.SetErrorString ("address comes after final region"); 2692 2693 if (log) 2694 log->Printf ("NativeProcessLinux::%s failed to find map entry for address 0x%" PRIx64 ": %s", __FUNCTION__, load_addr, error.AsCString ()); 2695 2696 return error; 2697 } 2698 2699 void 2700 NativeProcessLinux::DoStopIDBumped (uint32_t newBumpId) 2701 { 2702 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2703 if (log) 2704 log->Printf ("NativeProcessLinux::%s(newBumpId=%" PRIu32 ") called", __FUNCTION__, newBumpId); 2705 2706 { 2707 Mutex::Locker locker (m_mem_region_cache_mutex); 2708 if (log) 2709 log->Printf ("NativeProcessLinux::%s clearing %" PRIu64 " entries from the cache", __FUNCTION__, static_cast<uint64_t> (m_mem_region_cache.size ())); 2710 m_mem_region_cache.clear (); 2711 } 2712 } 2713 2714 Error 2715 NativeProcessLinux::AllocateMemory ( 2716 lldb::addr_t size, 2717 uint32_t permissions, 2718 lldb::addr_t &addr) 2719 { 2720 // FIXME implementing this requires the equivalent of 2721 // InferiorCallPOSIX::InferiorCallMmap, which depends on 2722 // functional ThreadPlans working with Native*Protocol. 2723 #if 1 2724 return Error ("not implemented yet"); 2725 #else 2726 addr = LLDB_INVALID_ADDRESS; 2727 2728 unsigned prot = 0; 2729 if (permissions & lldb::ePermissionsReadable) 2730 prot |= eMmapProtRead; 2731 if (permissions & lldb::ePermissionsWritable) 2732 prot |= eMmapProtWrite; 2733 if (permissions & lldb::ePermissionsExecutable) 2734 prot |= eMmapProtExec; 2735 2736 // TODO implement this directly in NativeProcessLinux 2737 // (and lift to NativeProcessPOSIX if/when that class is 2738 // refactored out). 2739 if (InferiorCallMmap(this, addr, 0, size, prot, 2740 eMmapFlagsAnon | eMmapFlagsPrivate, -1, 0)) { 2741 m_addr_to_mmap_size[addr] = size; 2742 return Error (); 2743 } else { 2744 addr = LLDB_INVALID_ADDRESS; 2745 return Error("unable to allocate %" PRIu64 " bytes of memory with permissions %s", size, GetPermissionsAsCString (permissions)); 2746 } 2747 #endif 2748 } 2749 2750 Error 2751 NativeProcessLinux::DeallocateMemory (lldb::addr_t addr) 2752 { 2753 // FIXME see comments in AllocateMemory - required lower-level 2754 // bits not in place yet (ThreadPlans) 2755 return Error ("not implemented"); 2756 } 2757 2758 lldb::addr_t 2759 NativeProcessLinux::GetSharedLibraryInfoAddress () 2760 { 2761 #if 1 2762 // punt on this for now 2763 return LLDB_INVALID_ADDRESS; 2764 #else 2765 // Return the image info address for the exe module 2766 #if 1 2767 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2768 2769 ModuleSP module_sp; 2770 Error error = GetExeModuleSP (module_sp); 2771 if (error.Fail ()) 2772 { 2773 if (log) 2774 log->Warning ("NativeProcessLinux::%s failed to retrieve exe module: %s", __FUNCTION__, error.AsCString ()); 2775 return LLDB_INVALID_ADDRESS; 2776 } 2777 2778 if (module_sp == nullptr) 2779 { 2780 if (log) 2781 log->Warning ("NativeProcessLinux::%s exe module returned was NULL", __FUNCTION__); 2782 return LLDB_INVALID_ADDRESS; 2783 } 2784 2785 ObjectFileSP object_file_sp = module_sp->GetObjectFile (); 2786 if (object_file_sp == nullptr) 2787 { 2788 if (log) 2789 log->Warning ("NativeProcessLinux::%s exe module returned a NULL object file", __FUNCTION__); 2790 return LLDB_INVALID_ADDRESS; 2791 } 2792 2793 return obj_file_sp->GetImageInfoAddress(); 2794 #else 2795 Target *target = &GetTarget(); 2796 ObjectFile *obj_file = target->GetExecutableModule()->GetObjectFile(); 2797 Address addr = obj_file->GetImageInfoAddress(target); 2798 2799 if (addr.IsValid()) 2800 return addr.GetLoadAddress(target); 2801 return LLDB_INVALID_ADDRESS; 2802 #endif 2803 #endif // punt on this for now 2804 } 2805 2806 size_t 2807 NativeProcessLinux::UpdateThreads () 2808 { 2809 // The NativeProcessLinux monitoring threads are always up to date 2810 // with respect to thread state and they keep the thread list 2811 // populated properly. All this method needs to do is return the 2812 // thread count. 2813 Mutex::Locker locker (m_threads_mutex); 2814 return m_threads.size (); 2815 } 2816 2817 bool 2818 NativeProcessLinux::GetArchitecture (ArchSpec &arch) const 2819 { 2820 arch = m_arch; 2821 return true; 2822 } 2823 2824 Error 2825 NativeProcessLinux::GetSoftwareBreakpointSize (NativeRegisterContextSP context_sp, uint32_t &actual_opcode_size) 2826 { 2827 // FIXME put this behind a breakpoint protocol class that can be 2828 // set per architecture. Need ARM, MIPS support here. 2829 static const uint8_t g_i386_opcode [] = { 0xCC }; 2830 2831 switch (m_arch.GetMachine ()) 2832 { 2833 case llvm::Triple::x86: 2834 case llvm::Triple::x86_64: 2835 actual_opcode_size = static_cast<uint32_t> (sizeof(g_i386_opcode)); 2836 return Error (); 2837 2838 default: 2839 assert(false && "CPU type not supported!"); 2840 return Error ("CPU type not supported"); 2841 } 2842 } 2843 2844 Error 2845 NativeProcessLinux::SetBreakpoint (lldb::addr_t addr, uint32_t size, bool hardware) 2846 { 2847 if (hardware) 2848 return Error ("NativeProcessLinux does not support hardware breakpoints"); 2849 else 2850 return SetSoftwareBreakpoint (addr, size); 2851 } 2852 2853 Error 2854 NativeProcessLinux::GetSoftwareBreakpointTrapOpcode (size_t trap_opcode_size_hint, size_t &actual_opcode_size, const uint8_t *&trap_opcode_bytes) 2855 { 2856 // FIXME put this behind a breakpoint protocol class that can be 2857 // set per architecture. Need ARM, MIPS support here. 2858 static const uint8_t g_i386_opcode [] = { 0xCC }; 2859 2860 switch (m_arch.GetMachine ()) 2861 { 2862 case llvm::Triple::x86: 2863 case llvm::Triple::x86_64: 2864 trap_opcode_bytes = g_i386_opcode; 2865 actual_opcode_size = sizeof(g_i386_opcode); 2866 return Error (); 2867 2868 default: 2869 assert(false && "CPU type not supported!"); 2870 return Error ("CPU type not supported"); 2871 } 2872 } 2873 2874 #if 0 2875 ProcessMessage::CrashReason 2876 NativeProcessLinux::GetCrashReasonForSIGSEGV(const siginfo_t *info) 2877 { 2878 ProcessMessage::CrashReason reason; 2879 assert(info->si_signo == SIGSEGV); 2880 2881 reason = ProcessMessage::eInvalidCrashReason; 2882 2883 switch (info->si_code) 2884 { 2885 default: 2886 assert(false && "unexpected si_code for SIGSEGV"); 2887 break; 2888 case SI_KERNEL: 2889 // Linux will occasionally send spurious SI_KERNEL codes. 2890 // (this is poorly documented in sigaction) 2891 // One way to get this is via unaligned SIMD loads. 2892 reason = ProcessMessage::eInvalidAddress; // for lack of anything better 2893 break; 2894 case SEGV_MAPERR: 2895 reason = ProcessMessage::eInvalidAddress; 2896 break; 2897 case SEGV_ACCERR: 2898 reason = ProcessMessage::ePrivilegedAddress; 2899 break; 2900 } 2901 2902 return reason; 2903 } 2904 #endif 2905 2906 2907 #if 0 2908 ProcessMessage::CrashReason 2909 NativeProcessLinux::GetCrashReasonForSIGILL(const siginfo_t *info) 2910 { 2911 ProcessMessage::CrashReason reason; 2912 assert(info->si_signo == SIGILL); 2913 2914 reason = ProcessMessage::eInvalidCrashReason; 2915 2916 switch (info->si_code) 2917 { 2918 default: 2919 assert(false && "unexpected si_code for SIGILL"); 2920 break; 2921 case ILL_ILLOPC: 2922 reason = ProcessMessage::eIllegalOpcode; 2923 break; 2924 case ILL_ILLOPN: 2925 reason = ProcessMessage::eIllegalOperand; 2926 break; 2927 case ILL_ILLADR: 2928 reason = ProcessMessage::eIllegalAddressingMode; 2929 break; 2930 case ILL_ILLTRP: 2931 reason = ProcessMessage::eIllegalTrap; 2932 break; 2933 case ILL_PRVOPC: 2934 reason = ProcessMessage::ePrivilegedOpcode; 2935 break; 2936 case ILL_PRVREG: 2937 reason = ProcessMessage::ePrivilegedRegister; 2938 break; 2939 case ILL_COPROC: 2940 reason = ProcessMessage::eCoprocessorError; 2941 break; 2942 case ILL_BADSTK: 2943 reason = ProcessMessage::eInternalStackError; 2944 break; 2945 } 2946 2947 return reason; 2948 } 2949 #endif 2950 2951 #if 0 2952 ProcessMessage::CrashReason 2953 NativeProcessLinux::GetCrashReasonForSIGFPE(const siginfo_t *info) 2954 { 2955 ProcessMessage::CrashReason reason; 2956 assert(info->si_signo == SIGFPE); 2957 2958 reason = ProcessMessage::eInvalidCrashReason; 2959 2960 switch (info->si_code) 2961 { 2962 default: 2963 assert(false && "unexpected si_code for SIGFPE"); 2964 break; 2965 case FPE_INTDIV: 2966 reason = ProcessMessage::eIntegerDivideByZero; 2967 break; 2968 case FPE_INTOVF: 2969 reason = ProcessMessage::eIntegerOverflow; 2970 break; 2971 case FPE_FLTDIV: 2972 reason = ProcessMessage::eFloatDivideByZero; 2973 break; 2974 case FPE_FLTOVF: 2975 reason = ProcessMessage::eFloatOverflow; 2976 break; 2977 case FPE_FLTUND: 2978 reason = ProcessMessage::eFloatUnderflow; 2979 break; 2980 case FPE_FLTRES: 2981 reason = ProcessMessage::eFloatInexactResult; 2982 break; 2983 case FPE_FLTINV: 2984 reason = ProcessMessage::eFloatInvalidOperation; 2985 break; 2986 case FPE_FLTSUB: 2987 reason = ProcessMessage::eFloatSubscriptRange; 2988 break; 2989 } 2990 2991 return reason; 2992 } 2993 #endif 2994 2995 #if 0 2996 ProcessMessage::CrashReason 2997 NativeProcessLinux::GetCrashReasonForSIGBUS(const siginfo_t *info) 2998 { 2999 ProcessMessage::CrashReason reason; 3000 assert(info->si_signo == SIGBUS); 3001 3002 reason = ProcessMessage::eInvalidCrashReason; 3003 3004 switch (info->si_code) 3005 { 3006 default: 3007 assert(false && "unexpected si_code for SIGBUS"); 3008 break; 3009 case BUS_ADRALN: 3010 reason = ProcessMessage::eIllegalAlignment; 3011 break; 3012 case BUS_ADRERR: 3013 reason = ProcessMessage::eIllegalAddress; 3014 break; 3015 case BUS_OBJERR: 3016 reason = ProcessMessage::eHardwareError; 3017 break; 3018 } 3019 3020 return reason; 3021 } 3022 #endif 3023 3024 void 3025 NativeProcessLinux::ServeOperation(OperationArgs *args) 3026 { 3027 NativeProcessLinux *monitor = args->m_monitor; 3028 3029 // We are finised with the arguments and are ready to go. Sync with the 3030 // parent thread and start serving operations on the inferior. 3031 sem_post(&args->m_semaphore); 3032 3033 for(;;) 3034 { 3035 // wait for next pending operation 3036 if (sem_wait(&monitor->m_operation_pending)) 3037 { 3038 if (errno == EINTR) 3039 continue; 3040 assert(false && "Unexpected errno from sem_wait"); 3041 } 3042 3043 reinterpret_cast<Operation*>(monitor->m_operation)->Execute(monitor); 3044 3045 // notify calling thread that operation is complete 3046 sem_post(&monitor->m_operation_done); 3047 } 3048 } 3049 3050 void 3051 NativeProcessLinux::DoOperation(void *op) 3052 { 3053 Mutex::Locker lock(m_operation_mutex); 3054 3055 m_operation = op; 3056 3057 // notify operation thread that an operation is ready to be processed 3058 sem_post(&m_operation_pending); 3059 3060 // wait for operation to complete 3061 while (sem_wait(&m_operation_done)) 3062 { 3063 if (errno == EINTR) 3064 continue; 3065 assert(false && "Unexpected errno from sem_wait"); 3066 } 3067 } 3068 3069 Error 3070 NativeProcessLinux::ReadMemory (lldb::addr_t addr, void *buf, lldb::addr_t size, lldb::addr_t &bytes_read) 3071 { 3072 ReadOperation op(addr, buf, size, bytes_read); 3073 DoOperation(&op); 3074 return op.GetError (); 3075 } 3076 3077 Error 3078 NativeProcessLinux::WriteMemory (lldb::addr_t addr, const void *buf, lldb::addr_t size, lldb::addr_t &bytes_written) 3079 { 3080 WriteOperation op(addr, buf, size, bytes_written); 3081 DoOperation(&op); 3082 return op.GetError (); 3083 } 3084 3085 bool 3086 NativeProcessLinux::ReadRegisterValue(lldb::tid_t tid, uint32_t offset, const char* reg_name, 3087 uint32_t size, RegisterValue &value) 3088 { 3089 bool result; 3090 ReadRegOperation op(tid, offset, reg_name, value, result); 3091 DoOperation(&op); 3092 return result; 3093 } 3094 3095 bool 3096 NativeProcessLinux::WriteRegisterValue(lldb::tid_t tid, unsigned offset, 3097 const char* reg_name, const RegisterValue &value) 3098 { 3099 bool result; 3100 WriteRegOperation op(tid, offset, reg_name, value, result); 3101 DoOperation(&op); 3102 return result; 3103 } 3104 3105 bool 3106 NativeProcessLinux::ReadGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3107 { 3108 bool result; 3109 ReadGPROperation op(tid, buf, buf_size, result); 3110 DoOperation(&op); 3111 return result; 3112 } 3113 3114 bool 3115 NativeProcessLinux::ReadFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3116 { 3117 bool result; 3118 ReadFPROperation op(tid, buf, buf_size, result); 3119 DoOperation(&op); 3120 return result; 3121 } 3122 3123 bool 3124 NativeProcessLinux::ReadRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3125 { 3126 bool result; 3127 ReadRegisterSetOperation op(tid, buf, buf_size, regset, result); 3128 DoOperation(&op); 3129 return result; 3130 } 3131 3132 bool 3133 NativeProcessLinux::WriteGPR(lldb::tid_t tid, void *buf, size_t buf_size) 3134 { 3135 bool result; 3136 WriteGPROperation op(tid, buf, buf_size, result); 3137 DoOperation(&op); 3138 return result; 3139 } 3140 3141 bool 3142 NativeProcessLinux::WriteFPR(lldb::tid_t tid, void *buf, size_t buf_size) 3143 { 3144 bool result; 3145 WriteFPROperation op(tid, buf, buf_size, result); 3146 DoOperation(&op); 3147 return result; 3148 } 3149 3150 bool 3151 NativeProcessLinux::WriteRegisterSet(lldb::tid_t tid, void *buf, size_t buf_size, unsigned int regset) 3152 { 3153 bool result; 3154 WriteRegisterSetOperation op(tid, buf, buf_size, regset, result); 3155 DoOperation(&op); 3156 return result; 3157 } 3158 3159 bool 3160 NativeProcessLinux::Resume (lldb::tid_t tid, uint32_t signo) 3161 { 3162 bool result; 3163 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3164 3165 if (log) 3166 log->Printf ("NativeProcessLinux::%s() resuming thread = %" PRIu64 " with signal %s", __FUNCTION__, tid, 3167 GetUnixSignals().GetSignalAsCString (signo)); 3168 ResumeOperation op (tid, signo, result); 3169 DoOperation (&op); 3170 if (log) 3171 log->Printf ("NativeProcessLinux::%s() resuming result = %s", __FUNCTION__, result ? "true" : "false"); 3172 return result; 3173 } 3174 3175 bool 3176 NativeProcessLinux::SingleStep(lldb::tid_t tid, uint32_t signo) 3177 { 3178 bool result; 3179 SingleStepOperation op(tid, signo, result); 3180 DoOperation(&op); 3181 return result; 3182 } 3183 3184 bool 3185 NativeProcessLinux::GetSignalInfo(lldb::tid_t tid, void *siginfo, int &ptrace_err) 3186 { 3187 bool result; 3188 SiginfoOperation op(tid, siginfo, result, ptrace_err); 3189 DoOperation(&op); 3190 return result; 3191 } 3192 3193 bool 3194 NativeProcessLinux::GetEventMessage(lldb::tid_t tid, unsigned long *message) 3195 { 3196 bool result; 3197 EventMessageOperation op(tid, message, result); 3198 DoOperation(&op); 3199 return result; 3200 } 3201 3202 lldb_private::Error 3203 NativeProcessLinux::Detach(lldb::tid_t tid) 3204 { 3205 lldb_private::Error error; 3206 if (tid != LLDB_INVALID_THREAD_ID) 3207 { 3208 DetachOperation op(tid, error); 3209 DoOperation(&op); 3210 } 3211 return error; 3212 } 3213 3214 bool 3215 NativeProcessLinux::DupDescriptor(const char *path, int fd, int flags) 3216 { 3217 int target_fd = open(path, flags, 0666); 3218 3219 if (target_fd == -1) 3220 return false; 3221 3222 return (dup2(target_fd, fd) == -1) ? false : true; 3223 } 3224 3225 void 3226 NativeProcessLinux::StopMonitoringChildProcess() 3227 { 3228 lldb::thread_result_t thread_result; 3229 3230 if (IS_VALID_LLDB_HOST_THREAD(m_monitor_thread)) 3231 { 3232 Host::ThreadCancel(m_monitor_thread, NULL); 3233 Host::ThreadJoin(m_monitor_thread, &thread_result, NULL); 3234 m_monitor_thread = LLDB_INVALID_HOST_THREAD; 3235 } 3236 } 3237 3238 void 3239 NativeProcessLinux::StopMonitor() 3240 { 3241 StopMonitoringChildProcess(); 3242 StopOpThread(); 3243 sem_destroy(&m_operation_pending); 3244 sem_destroy(&m_operation_done); 3245 3246 // TODO: validate whether this still holds, fix up comment. 3247 // Note: ProcessPOSIX passes the m_terminal_fd file descriptor to 3248 // Process::SetSTDIOFileDescriptor, which in turn transfers ownership of 3249 // the descriptor to a ConnectionFileDescriptor object. Consequently 3250 // even though still has the file descriptor, we shouldn't close it here. 3251 } 3252 3253 void 3254 NativeProcessLinux::StopOpThread() 3255 { 3256 lldb::thread_result_t result; 3257 3258 if (!IS_VALID_LLDB_HOST_THREAD(m_operation_thread)) 3259 return; 3260 3261 Host::ThreadCancel(m_operation_thread, NULL); 3262 Host::ThreadJoin(m_operation_thread, &result, NULL); 3263 m_operation_thread = LLDB_INVALID_HOST_THREAD; 3264 } 3265 3266 bool 3267 NativeProcessLinux::HasThreadNoLock (lldb::tid_t thread_id) 3268 { 3269 for (auto thread_sp : m_threads) 3270 { 3271 assert (thread_sp && "thread list should not contain NULL threads"); 3272 if (thread_sp->GetID () == thread_id) 3273 { 3274 // We have this thread. 3275 return true; 3276 } 3277 } 3278 3279 // We don't have this thread. 3280 return false; 3281 } 3282 3283 NativeThreadProtocolSP 3284 NativeProcessLinux::MaybeGetThreadNoLock (lldb::tid_t thread_id) 3285 { 3286 // CONSIDER organize threads by map - we can do better than linear. 3287 for (auto thread_sp : m_threads) 3288 { 3289 if (thread_sp->GetID () == thread_id) 3290 return thread_sp; 3291 } 3292 3293 // We don't have this thread. 3294 return NativeThreadProtocolSP (); 3295 } 3296 3297 bool 3298 NativeProcessLinux::StopTrackingThread (lldb::tid_t thread_id) 3299 { 3300 Mutex::Locker locker (m_threads_mutex); 3301 for (auto it = m_threads.begin (); it != m_threads.end (); ++it) 3302 { 3303 if (*it && ((*it)->GetID () == thread_id)) 3304 { 3305 m_threads.erase (it); 3306 return true; 3307 } 3308 } 3309 3310 // Didn't find it. 3311 return false; 3312 } 3313 3314 NativeThreadProtocolSP 3315 NativeProcessLinux::AddThread (lldb::tid_t thread_id) 3316 { 3317 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3318 3319 Mutex::Locker locker (m_threads_mutex); 3320 3321 if (log) 3322 { 3323 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " adding thread with tid %" PRIu64, 3324 __FUNCTION__, 3325 GetID (), 3326 thread_id); 3327 } 3328 3329 assert (!HasThreadNoLock (thread_id) && "attempted to add a thread by id that already exists"); 3330 3331 // If this is the first thread, save it as the current thread 3332 if (m_threads.empty ()) 3333 SetCurrentThreadID (thread_id); 3334 3335 NativeThreadProtocolSP thread_sp (new NativeThreadLinux (this, thread_id)); 3336 m_threads.push_back (thread_sp); 3337 3338 return thread_sp; 3339 } 3340 3341 NativeThreadProtocolSP 3342 NativeProcessLinux::GetOrCreateThread (lldb::tid_t thread_id, bool &created) 3343 { 3344 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3345 3346 Mutex::Locker locker (m_threads_mutex); 3347 if (log) 3348 { 3349 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " get/create thread with tid %" PRIu64, 3350 __FUNCTION__, 3351 GetID (), 3352 thread_id); 3353 } 3354 3355 // Retrieve the thread if it is already getting tracked. 3356 NativeThreadProtocolSP thread_sp = MaybeGetThreadNoLock (thread_id); 3357 if (thread_sp) 3358 { 3359 if (log) 3360 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread already tracked, returning", 3361 __FUNCTION__, 3362 GetID (), 3363 thread_id); 3364 created = false; 3365 return thread_sp; 3366 3367 } 3368 3369 // Create the thread metadata since it isn't being tracked. 3370 if (log) 3371 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": thread didn't exist, tracking now", 3372 __FUNCTION__, 3373 GetID (), 3374 thread_id); 3375 3376 thread_sp.reset (new NativeThreadLinux (this, thread_id)); 3377 m_threads.push_back (thread_sp); 3378 created = true; 3379 3380 return thread_sp; 3381 } 3382 3383 Error 3384 NativeProcessLinux::FixupBreakpointPCAsNeeded (NativeThreadProtocolSP &thread_sp) 3385 { 3386 Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_THREAD)); 3387 3388 Error error; 3389 3390 // Get a linux thread pointer. 3391 if (!thread_sp) 3392 { 3393 error.SetErrorString ("null thread_sp"); 3394 if (log) 3395 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3396 return error; 3397 } 3398 NativeThreadLinux *const linux_thread_p = reinterpret_cast<NativeThreadLinux*> (thread_sp.get()); 3399 3400 // Find out the size of a breakpoint (might depend on where we are in the code). 3401 NativeRegisterContextSP context_sp = linux_thread_p->GetRegisterContext (); 3402 if (!context_sp) 3403 { 3404 error.SetErrorString ("cannot get a NativeRegisterContext for the thread"); 3405 if (log) 3406 log->Printf ("NativeProcessLinux::%s failed: %s", __FUNCTION__, error.AsCString ()); 3407 return error; 3408 } 3409 3410 uint32_t breakpoint_size = 0; 3411 error = GetSoftwareBreakpointSize (context_sp, breakpoint_size); 3412 if (error.Fail ()) 3413 { 3414 if (log) 3415 log->Printf ("NativeProcessLinux::%s GetBreakpointSize() failed: %s", __FUNCTION__, error.AsCString ()); 3416 return error; 3417 } 3418 else 3419 { 3420 if (log) 3421 log->Printf ("NativeProcessLinux::%s breakpoint size: %" PRIu32, __FUNCTION__, breakpoint_size); 3422 } 3423 3424 // First try probing for a breakpoint at a software breakpoint location: PC - breakpoint size. 3425 const lldb::addr_t initial_pc_addr = context_sp->GetPC (); 3426 lldb::addr_t breakpoint_addr = initial_pc_addr; 3427 if (breakpoint_size > static_cast<lldb::addr_t> (0)) 3428 { 3429 // Do not allow breakpoint probe to wrap around. 3430 if (breakpoint_addr >= static_cast<lldb::addr_t> (breakpoint_size)) 3431 breakpoint_addr -= static_cast<lldb::addr_t> (breakpoint_size); 3432 } 3433 3434 // Check if we stopped because of a breakpoint. 3435 NativeBreakpointSP breakpoint_sp; 3436 error = m_breakpoint_list.GetBreakpoint (breakpoint_addr, breakpoint_sp); 3437 if (!error.Success () || !breakpoint_sp) 3438 { 3439 // We didn't find one at a software probe location. Nothing to do. 3440 if (log) 3441 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " no lldb breakpoint found at current pc with adjustment: 0x%" PRIx64, __FUNCTION__, GetID (), breakpoint_addr); 3442 return Error (); 3443 } 3444 3445 // If the breakpoint is not a software breakpoint, nothing to do. 3446 if (!breakpoint_sp->IsSoftwareBreakpoint ()) 3447 { 3448 if (log) 3449 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", not software, nothing to adjust", __FUNCTION__, GetID (), breakpoint_addr); 3450 return Error (); 3451 } 3452 3453 // 3454 // We have a software breakpoint and need to adjust the PC. 3455 // 3456 3457 // Sanity check. 3458 if (breakpoint_size == 0) 3459 { 3460 // Nothing to do! How did we get here? 3461 if (log) 3462 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " breakpoint found at 0x%" PRIx64 ", it is software, but the size is zero, nothing to do (unexpected)", __FUNCTION__, GetID (), breakpoint_addr); 3463 return Error (); 3464 } 3465 3466 // Change the program counter. 3467 if (log) 3468 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": changing PC from 0x%" PRIx64 " to 0x%" PRIx64, __FUNCTION__, GetID (), linux_thread_p->GetID (), initial_pc_addr, breakpoint_addr); 3469 3470 error = context_sp->SetPC (breakpoint_addr); 3471 if (error.Fail ()) 3472 { 3473 if (log) 3474 log->Printf ("NativeProcessLinux::%s pid %" PRIu64 " tid %" PRIu64 ": failed to set PC: %s", __FUNCTION__, GetID (), linux_thread_p->GetID (), error.AsCString ()); 3475 return error; 3476 } 3477 3478 return error; 3479 } 3480