1 //===-- OperatingSystemPython.cpp --------------------------------*- C++-*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #ifndef LLDB_DISABLE_PYTHON 11 12 #include "OperatingSystemPython.h" 13 #include "Plugins/Process/Utility/DynamicRegisterInfo.h" 14 #include "Plugins/Process/Utility/RegisterContextDummy.h" 15 #include "Plugins/Process/Utility/RegisterContextMemory.h" 16 #include "Plugins/Process/Utility/ThreadMemory.h" 17 #include "lldb/Core/Debugger.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/ValueObjectVariable.h" 21 #include "lldb/Interpreter/CommandInterpreter.h" 22 #include "lldb/Interpreter/ScriptInterpreter.h" 23 #include "lldb/Symbol/ObjectFile.h" 24 #include "lldb/Symbol/VariableList.h" 25 #include "lldb/Target/Process.h" 26 #include "lldb/Target/StopInfo.h" 27 #include "lldb/Target/Target.h" 28 #include "lldb/Target/Thread.h" 29 #include "lldb/Target/ThreadList.h" 30 #include "lldb/Utility/DataBufferHeap.h" 31 #include "lldb/Utility/RegisterValue.h" 32 #include "lldb/Utility/StreamString.h" 33 #include "lldb/Utility/StructuredData.h" 34 35 using namespace lldb; 36 using namespace lldb_private; 37 38 void OperatingSystemPython::Initialize() { 39 PluginManager::RegisterPlugin(GetPluginNameStatic(), 40 GetPluginDescriptionStatic(), CreateInstance, 41 nullptr); 42 } 43 44 void OperatingSystemPython::Terminate() { 45 PluginManager::UnregisterPlugin(CreateInstance); 46 } 47 48 OperatingSystem *OperatingSystemPython::CreateInstance(Process *process, 49 bool force) { 50 // Python OperatingSystem plug-ins must be requested by name, so force must 51 // be true 52 FileSpec python_os_plugin_spec(process->GetPythonOSPluginPath()); 53 if (python_os_plugin_spec && 54 FileSystem::Instance().Exists(python_os_plugin_spec)) { 55 std::unique_ptr<OperatingSystemPython> os_ap( 56 new OperatingSystemPython(process, python_os_plugin_spec)); 57 if (os_ap.get() && os_ap->IsValid()) 58 return os_ap.release(); 59 } 60 return NULL; 61 } 62 63 ConstString OperatingSystemPython::GetPluginNameStatic() { 64 static ConstString g_name("python"); 65 return g_name; 66 } 67 68 const char *OperatingSystemPython::GetPluginDescriptionStatic() { 69 return "Operating system plug-in that gathers OS information from a python " 70 "class that implements the necessary OperatingSystem functionality."; 71 } 72 73 OperatingSystemPython::OperatingSystemPython(lldb_private::Process *process, 74 const FileSpec &python_module_path) 75 : OperatingSystem(process), m_thread_list_valobj_sp(), m_register_info_ap(), 76 m_interpreter(NULL), m_python_object_sp() { 77 if (!process) 78 return; 79 TargetSP target_sp = process->CalculateTarget(); 80 if (!target_sp) 81 return; 82 m_interpreter = 83 target_sp->GetDebugger().GetCommandInterpreter().GetScriptInterpreter(); 84 if (m_interpreter) { 85 86 std::string os_plugin_class_name( 87 python_module_path.GetFilename().AsCString("")); 88 if (!os_plugin_class_name.empty()) { 89 const bool init_session = false; 90 const bool allow_reload = true; 91 char python_module_path_cstr[PATH_MAX]; 92 python_module_path.GetPath(python_module_path_cstr, 93 sizeof(python_module_path_cstr)); 94 Status error; 95 if (m_interpreter->LoadScriptingModule( 96 python_module_path_cstr, allow_reload, init_session, error)) { 97 // Strip the ".py" extension if there is one 98 size_t py_extension_pos = os_plugin_class_name.rfind(".py"); 99 if (py_extension_pos != std::string::npos) 100 os_plugin_class_name.erase(py_extension_pos); 101 // Add ".OperatingSystemPlugIn" to the module name to get a string like 102 // "modulename.OperatingSystemPlugIn" 103 os_plugin_class_name += ".OperatingSystemPlugIn"; 104 StructuredData::ObjectSP object_sp = 105 m_interpreter->OSPlugin_CreatePluginObject( 106 os_plugin_class_name.c_str(), process->CalculateProcess()); 107 if (object_sp && object_sp->IsValid()) 108 m_python_object_sp = object_sp; 109 } 110 } 111 } 112 } 113 114 OperatingSystemPython::~OperatingSystemPython() {} 115 116 DynamicRegisterInfo *OperatingSystemPython::GetDynamicRegisterInfo() { 117 if (m_register_info_ap.get() == NULL) { 118 if (!m_interpreter || !m_python_object_sp) 119 return NULL; 120 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS)); 121 122 if (log) 123 log->Printf("OperatingSystemPython::GetDynamicRegisterInfo() fetching " 124 "thread register definitions from python for pid %" PRIu64, 125 m_process->GetID()); 126 127 StructuredData::DictionarySP dictionary = 128 m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp); 129 if (!dictionary) 130 return NULL; 131 132 m_register_info_ap.reset(new DynamicRegisterInfo( 133 *dictionary, m_process->GetTarget().GetArchitecture())); 134 assert(m_register_info_ap->GetNumRegisters() > 0); 135 assert(m_register_info_ap->GetNumRegisterSets() > 0); 136 } 137 return m_register_info_ap.get(); 138 } 139 140 //------------------------------------------------------------------ 141 // PluginInterface protocol 142 //------------------------------------------------------------------ 143 ConstString OperatingSystemPython::GetPluginName() { 144 return GetPluginNameStatic(); 145 } 146 147 uint32_t OperatingSystemPython::GetPluginVersion() { return 1; } 148 149 bool OperatingSystemPython::UpdateThreadList(ThreadList &old_thread_list, 150 ThreadList &core_thread_list, 151 ThreadList &new_thread_list) { 152 if (!m_interpreter || !m_python_object_sp) 153 return false; 154 155 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS)); 156 157 // First thing we have to do is to try to get the API lock, and the 158 // interpreter lock. We're going to change the thread content of the process, 159 // and we're going to use python, which requires the API lock to do it. We 160 // need the interpreter lock to make sure thread_info_dict stays alive. 161 // 162 // If someone already has the API lock, that is ok, we just want to avoid 163 // external code from making new API calls while this call is happening. 164 // 165 // This is a recursive lock so we can grant it to any Python code called on 166 // the stack below us. 167 Target &target = m_process->GetTarget(); 168 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 169 std::defer_lock); 170 api_lock.try_lock(); 171 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 172 173 if (log) 174 log->Printf("OperatingSystemPython::UpdateThreadList() fetching thread " 175 "data from python for pid %" PRIu64, 176 m_process->GetID()); 177 178 // The threads that are in "new_thread_list" upon entry are the threads from 179 // the lldb_private::Process subclass, no memory threads will be in this 180 // list. 181 StructuredData::ArraySP threads_list = 182 m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp); 183 184 const uint32_t num_cores = core_thread_list.GetSize(false); 185 186 // Make a map so we can keep track of which cores were used from the 187 // core_thread list. Any real threads/cores that weren't used should later be 188 // put back into the "new_thread_list". 189 std::vector<bool> core_used_map(num_cores, false); 190 if (threads_list) { 191 if (log) { 192 StreamString strm; 193 threads_list->Dump(strm); 194 log->Printf("threads_list = %s", strm.GetData()); 195 } 196 197 const uint32_t num_threads = threads_list->GetSize(); 198 for (uint32_t i = 0; i < num_threads; ++i) { 199 StructuredData::ObjectSP thread_dict_obj = 200 threads_list->GetItemAtIndex(i); 201 if (auto thread_dict = thread_dict_obj->GetAsDictionary()) { 202 ThreadSP thread_sp( 203 CreateThreadFromThreadInfo(*thread_dict, core_thread_list, 204 old_thread_list, core_used_map, NULL)); 205 if (thread_sp) 206 new_thread_list.AddThread(thread_sp); 207 } 208 } 209 } 210 211 // Any real core threads that didn't end up backing a memory thread should 212 // still be in the main thread list, and they should be inserted at the 213 // beginning of the list 214 uint32_t insert_idx = 0; 215 for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx) { 216 if (core_used_map[core_idx] == false) { 217 new_thread_list.InsertThread( 218 core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx); 219 ++insert_idx; 220 } 221 } 222 223 return new_thread_list.GetSize(false) > 0; 224 } 225 226 ThreadSP OperatingSystemPython::CreateThreadFromThreadInfo( 227 StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list, 228 ThreadList &old_thread_list, std::vector<bool> &core_used_map, 229 bool *did_create_ptr) { 230 ThreadSP thread_sp; 231 tid_t tid = LLDB_INVALID_THREAD_ID; 232 if (!thread_dict.GetValueForKeyAsInteger("tid", tid)) 233 return ThreadSP(); 234 235 uint32_t core_number; 236 addr_t reg_data_addr; 237 llvm::StringRef name; 238 llvm::StringRef queue; 239 240 thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX); 241 thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr, 242 LLDB_INVALID_ADDRESS); 243 thread_dict.GetValueForKeyAsString("name", name); 244 thread_dict.GetValueForKeyAsString("queue", queue); 245 246 // See if a thread already exists for "tid" 247 thread_sp = old_thread_list.FindThreadByID(tid, false); 248 if (thread_sp) { 249 // A thread already does exist for "tid", make sure it was an operating 250 // system 251 // plug-in generated thread. 252 if (!IsOperatingSystemPluginThread(thread_sp)) { 253 // We have thread ID overlap between the protocol threads and the 254 // operating system threads, clear the thread so we create an operating 255 // system thread for this. 256 thread_sp.reset(); 257 } 258 } 259 260 if (!thread_sp) { 261 if (did_create_ptr) 262 *did_create_ptr = true; 263 thread_sp.reset( 264 new ThreadMemory(*m_process, tid, name, queue, reg_data_addr)); 265 } 266 267 if (core_number < core_thread_list.GetSize(false)) { 268 ThreadSP core_thread_sp( 269 core_thread_list.GetThreadAtIndex(core_number, false)); 270 if (core_thread_sp) { 271 // Keep track of which cores were set as the backing thread for memory 272 // threads... 273 if (core_number < core_used_map.size()) 274 core_used_map[core_number] = true; 275 276 ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread()); 277 if (backing_core_thread_sp) { 278 thread_sp->SetBackingThread(backing_core_thread_sp); 279 } else { 280 thread_sp->SetBackingThread(core_thread_sp); 281 } 282 } 283 } 284 return thread_sp; 285 } 286 287 void OperatingSystemPython::ThreadWasSelected(Thread *thread) {} 288 289 RegisterContextSP 290 OperatingSystemPython::CreateRegisterContextForThread(Thread *thread, 291 addr_t reg_data_addr) { 292 RegisterContextSP reg_ctx_sp; 293 if (!m_interpreter || !m_python_object_sp || !thread) 294 return reg_ctx_sp; 295 296 if (!IsOperatingSystemPluginThread(thread->shared_from_this())) 297 return reg_ctx_sp; 298 299 // First thing we have to do is to try to get the API lock, and the 300 // interpreter lock. We're going to change the thread content of the process, 301 // and we're going to use python, which requires the API lock to do it. We 302 // need the interpreter lock to make sure thread_info_dict stays alive. 303 // 304 // If someone already has the API lock, that is ok, we just want to avoid 305 // external code from making new API calls while this call is happening. 306 // 307 // This is a recursive lock so we can grant it to any Python code called on 308 // the stack below us. 309 Target &target = m_process->GetTarget(); 310 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 311 std::defer_lock); 312 api_lock.try_lock(); 313 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 314 315 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD)); 316 317 if (reg_data_addr != LLDB_INVALID_ADDRESS) { 318 // The registers data is in contiguous memory, just create the register 319 // context using the address provided 320 if (log) 321 log->Printf("OperatingSystemPython::CreateRegisterContextForThread (tid " 322 "= 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64 323 ") creating memory register context", 324 thread->GetID(), thread->GetProtocolID(), reg_data_addr); 325 reg_ctx_sp.reset(new RegisterContextMemory( 326 *thread, 0, *GetDynamicRegisterInfo(), reg_data_addr)); 327 } else { 328 // No register data address is provided, query the python plug-in to let it 329 // make up the data as it sees fit 330 if (log) 331 log->Printf("OperatingSystemPython::CreateRegisterContextForThread (tid " 332 "= 0x%" PRIx64 ", 0x%" PRIx64 333 ") fetching register data from python", 334 thread->GetID(), thread->GetProtocolID()); 335 336 StructuredData::StringSP reg_context_data = 337 m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp, 338 thread->GetID()); 339 if (reg_context_data) { 340 std::string value = reg_context_data->GetValue(); 341 DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length())); 342 if (data_sp->GetByteSize()) { 343 RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory( 344 *thread, 0, *GetDynamicRegisterInfo(), LLDB_INVALID_ADDRESS); 345 if (reg_ctx_memory) { 346 reg_ctx_sp.reset(reg_ctx_memory); 347 reg_ctx_memory->SetAllRegisterData(data_sp); 348 } 349 } 350 } 351 } 352 // if we still have no register data, fallback on a dummy context to avoid 353 // crashing 354 if (!reg_ctx_sp) { 355 if (log) 356 log->Printf("OperatingSystemPython::CreateRegisterContextForThread (tid " 357 "= 0x%" PRIx64 ") forcing a dummy register context", 358 thread->GetID()); 359 reg_ctx_sp.reset(new RegisterContextDummy( 360 *thread, 0, target.GetArchitecture().GetAddressByteSize())); 361 } 362 return reg_ctx_sp; 363 } 364 365 StopInfoSP 366 OperatingSystemPython::CreateThreadStopReason(lldb_private::Thread *thread) { 367 // We should have gotten the thread stop info from the dictionary of data for 368 // the thread in the initial call to get_thread_info(), this should have been 369 // cached so we can return it here 370 StopInfoSP 371 stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP)); 372 return stop_info_sp; 373 } 374 375 lldb::ThreadSP OperatingSystemPython::CreateThread(lldb::tid_t tid, 376 addr_t context) { 377 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD)); 378 379 if (log) 380 log->Printf("OperatingSystemPython::CreateThread (tid = 0x%" PRIx64 381 ", context = 0x%" PRIx64 ") fetching register data from python", 382 tid, context); 383 384 if (m_interpreter && m_python_object_sp) { 385 // First thing we have to do is to try to get the API lock, and the 386 // interpreter lock. We're going to change the thread content of the 387 // process, and we're going to use python, which requires the API lock to 388 // do it. We need the interpreter lock to make sure thread_info_dict stays 389 // alive. 390 // 391 // If someone already has the API lock, that is ok, we just want to avoid 392 // external code from making new API calls while this call is happening. 393 // 394 // This is a recursive lock so we can grant it to any Python code called on 395 // the stack below us. 396 Target &target = m_process->GetTarget(); 397 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 398 std::defer_lock); 399 api_lock.try_lock(); 400 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 401 402 StructuredData::DictionarySP thread_info_dict = 403 m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context); 404 std::vector<bool> core_used_map; 405 if (thread_info_dict) { 406 ThreadList core_threads(m_process); 407 ThreadList &thread_list = m_process->GetThreadList(); 408 bool did_create = false; 409 ThreadSP thread_sp( 410 CreateThreadFromThreadInfo(*thread_info_dict, core_threads, 411 thread_list, core_used_map, &did_create)); 412 if (did_create) 413 thread_list.AddThread(thread_sp); 414 return thread_sp; 415 } 416 } 417 return ThreadSP(); 418 } 419 420 #endif // #ifndef LLDB_DISABLE_PYTHON 421