1 //===-- OperatingSystemPython.cpp -----------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Host/Config.h" 10 11 #if LLDB_ENABLE_PYTHON 12 13 #include "OperatingSystemPython.h" 14 15 #include "Plugins/Process/Utility/RegisterContextDummy.h" 16 #include "Plugins/Process/Utility/RegisterContextMemory.h" 17 #include "Plugins/Process/Utility/ThreadMemory.h" 18 #include "lldb/Core/Debugger.h" 19 #include "lldb/Core/Module.h" 20 #include "lldb/Core/PluginManager.h" 21 #include "lldb/Core/ValueObjectVariable.h" 22 #include "lldb/Interpreter/CommandInterpreter.h" 23 #include "lldb/Interpreter/ScriptInterpreter.h" 24 #include "lldb/Symbol/ObjectFile.h" 25 #include "lldb/Symbol/VariableList.h" 26 #include "lldb/Target/Process.h" 27 #include "lldb/Target/StopInfo.h" 28 #include "lldb/Target/Target.h" 29 #include "lldb/Target/Thread.h" 30 #include "lldb/Target/ThreadList.h" 31 #include "lldb/Utility/DataBufferHeap.h" 32 #include "lldb/Utility/RegisterValue.h" 33 #include "lldb/Utility/StreamString.h" 34 #include "lldb/Utility/StructuredData.h" 35 36 #include <memory> 37 38 using namespace lldb; 39 using namespace lldb_private; 40 41 LLDB_PLUGIN_DEFINE(OperatingSystemPython) 42 43 void OperatingSystemPython::Initialize() { 44 PluginManager::RegisterPlugin(GetPluginNameStatic(), 45 GetPluginDescriptionStatic(), CreateInstance, 46 nullptr); 47 } 48 49 void OperatingSystemPython::Terminate() { 50 PluginManager::UnregisterPlugin(CreateInstance); 51 } 52 53 OperatingSystem *OperatingSystemPython::CreateInstance(Process *process, 54 bool force) { 55 // Python OperatingSystem plug-ins must be requested by name, so force must 56 // be true 57 FileSpec python_os_plugin_spec(process->GetPythonOSPluginPath()); 58 if (python_os_plugin_spec && 59 FileSystem::Instance().Exists(python_os_plugin_spec)) { 60 std::unique_ptr<OperatingSystemPython> os_up( 61 new OperatingSystemPython(process, python_os_plugin_spec)); 62 if (os_up.get() && os_up->IsValid()) 63 return os_up.release(); 64 } 65 return nullptr; 66 } 67 68 ConstString OperatingSystemPython::GetPluginNameStatic() { 69 static ConstString g_name("python"); 70 return g_name; 71 } 72 73 const char *OperatingSystemPython::GetPluginDescriptionStatic() { 74 return "Operating system plug-in that gathers OS information from a python " 75 "class that implements the necessary OperatingSystem functionality."; 76 } 77 78 OperatingSystemPython::OperatingSystemPython(lldb_private::Process *process, 79 const FileSpec &python_module_path) 80 : OperatingSystem(process), m_thread_list_valobj_sp(), m_register_info_up(), 81 m_interpreter(nullptr), m_python_object_sp() { 82 if (!process) 83 return; 84 TargetSP target_sp = process->CalculateTarget(); 85 if (!target_sp) 86 return; 87 m_interpreter = target_sp->GetDebugger().GetScriptInterpreter(); 88 if (m_interpreter) { 89 90 std::string os_plugin_class_name( 91 python_module_path.GetFilename().AsCString("")); 92 if (!os_plugin_class_name.empty()) { 93 LoadScriptOptions options; 94 char python_module_path_cstr[PATH_MAX]; 95 python_module_path.GetPath(python_module_path_cstr, 96 sizeof(python_module_path_cstr)); 97 Status error; 98 if (m_interpreter->LoadScriptingModule(python_module_path_cstr, options, 99 error)) { 100 // Strip the ".py" extension if there is one 101 size_t py_extension_pos = os_plugin_class_name.rfind(".py"); 102 if (py_extension_pos != std::string::npos) 103 os_plugin_class_name.erase(py_extension_pos); 104 // Add ".OperatingSystemPlugIn" to the module name to get a string like 105 // "modulename.OperatingSystemPlugIn" 106 os_plugin_class_name += ".OperatingSystemPlugIn"; 107 StructuredData::ObjectSP object_sp = 108 m_interpreter->OSPlugin_CreatePluginObject( 109 os_plugin_class_name.c_str(), process->CalculateProcess()); 110 if (object_sp && object_sp->IsValid()) 111 m_python_object_sp = object_sp; 112 } 113 } 114 } 115 } 116 117 OperatingSystemPython::~OperatingSystemPython() = default; 118 119 DynamicRegisterInfo *OperatingSystemPython::GetDynamicRegisterInfo() { 120 if (m_register_info_up == nullptr) { 121 if (!m_interpreter || !m_python_object_sp) 122 return nullptr; 123 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS)); 124 125 LLDB_LOGF(log, 126 "OperatingSystemPython::GetDynamicRegisterInfo() fetching " 127 "thread register definitions from python for pid %" PRIu64, 128 m_process->GetID()); 129 130 StructuredData::DictionarySP dictionary = 131 m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp); 132 if (!dictionary) 133 return nullptr; 134 135 m_register_info_up = std::make_unique<DynamicRegisterInfo>( 136 *dictionary, m_process->GetTarget().GetArchitecture()); 137 assert(m_register_info_up->GetNumRegisters() > 0); 138 assert(m_register_info_up->GetNumRegisterSets() > 0); 139 } 140 return m_register_info_up.get(); 141 } 142 143 bool OperatingSystemPython::UpdateThreadList(ThreadList &old_thread_list, 144 ThreadList &core_thread_list, 145 ThreadList &new_thread_list) { 146 if (!m_interpreter || !m_python_object_sp) 147 return false; 148 149 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS)); 150 151 // First thing we have to do is to try to get the API lock, and the 152 // interpreter lock. We're going to change the thread content of the process, 153 // and we're going to use python, which requires the API lock to do it. We 154 // need the interpreter lock to make sure thread_info_dict stays alive. 155 // 156 // If someone already has the API lock, that is ok, we just want to avoid 157 // external code from making new API calls while this call is happening. 158 // 159 // This is a recursive lock so we can grant it to any Python code called on 160 // the stack below us. 161 Target &target = m_process->GetTarget(); 162 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 163 std::defer_lock); 164 (void)api_lock.try_lock(); // See above. 165 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 166 167 LLDB_LOGF(log, 168 "OperatingSystemPython::UpdateThreadList() fetching thread " 169 "data from python for pid %" PRIu64, 170 m_process->GetID()); 171 172 // The threads that are in "core_thread_list" upon entry are the threads from 173 // the lldb_private::Process subclass, no memory threads will be in this 174 // list. 175 StructuredData::ArraySP threads_list = 176 m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp); 177 178 const uint32_t num_cores = core_thread_list.GetSize(false); 179 180 // Make a map so we can keep track of which cores were used from the 181 // core_thread list. Any real threads/cores that weren't used should later be 182 // put back into the "new_thread_list". 183 std::vector<bool> core_used_map(num_cores, false); 184 if (threads_list) { 185 if (log) { 186 StreamString strm; 187 threads_list->Dump(strm); 188 LLDB_LOGF(log, "threads_list = %s", strm.GetData()); 189 } 190 191 const uint32_t num_threads = threads_list->GetSize(); 192 for (uint32_t i = 0; i < num_threads; ++i) { 193 StructuredData::ObjectSP thread_dict_obj = 194 threads_list->GetItemAtIndex(i); 195 if (auto thread_dict = thread_dict_obj->GetAsDictionary()) { 196 ThreadSP thread_sp(CreateThreadFromThreadInfo( 197 *thread_dict, core_thread_list, old_thread_list, core_used_map, 198 nullptr)); 199 if (thread_sp) 200 new_thread_list.AddThread(thread_sp); 201 } 202 } 203 } 204 205 // Any real core threads that didn't end up backing a memory thread should 206 // still be in the main thread list, and they should be inserted at the 207 // beginning of the list 208 uint32_t insert_idx = 0; 209 for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx) { 210 if (!core_used_map[core_idx]) { 211 new_thread_list.InsertThread( 212 core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx); 213 ++insert_idx; 214 } 215 } 216 217 return new_thread_list.GetSize(false) > 0; 218 } 219 220 ThreadSP OperatingSystemPython::CreateThreadFromThreadInfo( 221 StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list, 222 ThreadList &old_thread_list, std::vector<bool> &core_used_map, 223 bool *did_create_ptr) { 224 ThreadSP thread_sp; 225 tid_t tid = LLDB_INVALID_THREAD_ID; 226 if (!thread_dict.GetValueForKeyAsInteger("tid", tid)) 227 return ThreadSP(); 228 229 uint32_t core_number; 230 addr_t reg_data_addr; 231 llvm::StringRef name; 232 llvm::StringRef queue; 233 234 thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX); 235 thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr, 236 LLDB_INVALID_ADDRESS); 237 thread_dict.GetValueForKeyAsString("name", name); 238 thread_dict.GetValueForKeyAsString("queue", queue); 239 240 // See if a thread already exists for "tid" 241 thread_sp = old_thread_list.FindThreadByID(tid, false); 242 if (thread_sp) { 243 // A thread already does exist for "tid", make sure it was an operating 244 // system 245 // plug-in generated thread. 246 if (!IsOperatingSystemPluginThread(thread_sp)) { 247 // We have thread ID overlap between the protocol threads and the 248 // operating system threads, clear the thread so we create an operating 249 // system thread for this. 250 thread_sp.reset(); 251 } 252 } 253 254 if (!thread_sp) { 255 if (did_create_ptr) 256 *did_create_ptr = true; 257 thread_sp = std::make_shared<ThreadMemory>(*m_process, tid, name, queue, 258 reg_data_addr); 259 } 260 261 if (core_number < core_thread_list.GetSize(false)) { 262 ThreadSP core_thread_sp( 263 core_thread_list.GetThreadAtIndex(core_number, false)); 264 if (core_thread_sp) { 265 // Keep track of which cores were set as the backing thread for memory 266 // threads... 267 if (core_number < core_used_map.size()) 268 core_used_map[core_number] = true; 269 270 ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread()); 271 if (backing_core_thread_sp) { 272 thread_sp->SetBackingThread(backing_core_thread_sp); 273 } else { 274 thread_sp->SetBackingThread(core_thread_sp); 275 } 276 } 277 } 278 return thread_sp; 279 } 280 281 void OperatingSystemPython::ThreadWasSelected(Thread *thread) {} 282 283 RegisterContextSP 284 OperatingSystemPython::CreateRegisterContextForThread(Thread *thread, 285 addr_t reg_data_addr) { 286 RegisterContextSP reg_ctx_sp; 287 if (!m_interpreter || !m_python_object_sp || !thread) 288 return reg_ctx_sp; 289 290 if (!IsOperatingSystemPluginThread(thread->shared_from_this())) 291 return reg_ctx_sp; 292 293 // First thing we have to do is to try to get the API lock, and the 294 // interpreter lock. We're going to change the thread content of the process, 295 // and we're going to use python, which requires the API lock to do it. We 296 // need the interpreter lock to make sure thread_info_dict stays alive. 297 // 298 // If someone already has the API lock, that is ok, we just want to avoid 299 // external code from making new API calls while this call is happening. 300 // 301 // This is a recursive lock so we can grant it to any Python code called on 302 // the stack below us. 303 Target &target = m_process->GetTarget(); 304 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 305 std::defer_lock); 306 (void)api_lock.try_lock(); // See above. 307 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 308 309 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD)); 310 311 if (reg_data_addr != LLDB_INVALID_ADDRESS) { 312 // The registers data is in contiguous memory, just create the register 313 // context using the address provided 314 LLDB_LOGF(log, 315 "OperatingSystemPython::CreateRegisterContextForThread (tid " 316 "= 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64 317 ") creating memory register context", 318 thread->GetID(), thread->GetProtocolID(), reg_data_addr); 319 reg_ctx_sp = std::make_shared<RegisterContextMemory>( 320 *thread, 0, *GetDynamicRegisterInfo(), reg_data_addr); 321 } else { 322 // No register data address is provided, query the python plug-in to let it 323 // make up the data as it sees fit 324 LLDB_LOGF(log, 325 "OperatingSystemPython::CreateRegisterContextForThread (tid " 326 "= 0x%" PRIx64 ", 0x%" PRIx64 327 ") fetching register data from python", 328 thread->GetID(), thread->GetProtocolID()); 329 330 StructuredData::StringSP reg_context_data = 331 m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp, 332 thread->GetID()); 333 if (reg_context_data) { 334 std::string value = std::string(reg_context_data->GetValue()); 335 DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length())); 336 if (data_sp->GetByteSize()) { 337 RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory( 338 *thread, 0, *GetDynamicRegisterInfo(), LLDB_INVALID_ADDRESS); 339 if (reg_ctx_memory) { 340 reg_ctx_sp.reset(reg_ctx_memory); 341 reg_ctx_memory->SetAllRegisterData(data_sp); 342 } 343 } 344 } 345 } 346 // if we still have no register data, fallback on a dummy context to avoid 347 // crashing 348 if (!reg_ctx_sp) { 349 LLDB_LOGF(log, 350 "OperatingSystemPython::CreateRegisterContextForThread (tid " 351 "= 0x%" PRIx64 ") forcing a dummy register context", 352 thread->GetID()); 353 reg_ctx_sp = std::make_shared<RegisterContextDummy>( 354 *thread, 0, target.GetArchitecture().GetAddressByteSize()); 355 } 356 return reg_ctx_sp; 357 } 358 359 StopInfoSP 360 OperatingSystemPython::CreateThreadStopReason(lldb_private::Thread *thread) { 361 // We should have gotten the thread stop info from the dictionary of data for 362 // the thread in the initial call to get_thread_info(), this should have been 363 // cached so we can return it here 364 StopInfoSP 365 stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP)); 366 return stop_info_sp; 367 } 368 369 lldb::ThreadSP OperatingSystemPython::CreateThread(lldb::tid_t tid, 370 addr_t context) { 371 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD)); 372 373 LLDB_LOGF(log, 374 "OperatingSystemPython::CreateThread (tid = 0x%" PRIx64 375 ", context = 0x%" PRIx64 ") fetching register data from python", 376 tid, context); 377 378 if (m_interpreter && m_python_object_sp) { 379 // First thing we have to do is to try to get the API lock, and the 380 // interpreter lock. We're going to change the thread content of the 381 // process, and we're going to use python, which requires the API lock to 382 // do it. We need the interpreter lock to make sure thread_info_dict stays 383 // alive. 384 // 385 // If someone already has the API lock, that is ok, we just want to avoid 386 // external code from making new API calls while this call is happening. 387 // 388 // This is a recursive lock so we can grant it to any Python code called on 389 // the stack below us. 390 Target &target = m_process->GetTarget(); 391 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 392 std::defer_lock); 393 (void)api_lock.try_lock(); // See above. 394 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 395 396 StructuredData::DictionarySP thread_info_dict = 397 m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context); 398 std::vector<bool> core_used_map; 399 if (thread_info_dict) { 400 ThreadList core_threads(m_process); 401 ThreadList &thread_list = m_process->GetThreadList(); 402 bool did_create = false; 403 ThreadSP thread_sp( 404 CreateThreadFromThreadInfo(*thread_info_dict, core_threads, 405 thread_list, core_used_map, &did_create)); 406 if (did_create) 407 thread_list.AddThread(thread_sp); 408 return thread_sp; 409 } 410 } 411 return ThreadSP(); 412 } 413 414 #endif // #if LLDB_ENABLE_PYTHON 415