1 //===-- OperatingSystemPython.cpp --------------------------------*- C++-*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "lldb/Host/Config.h" 10 11 #if LLDB_ENABLE_PYTHON 12 13 #include "OperatingSystemPython.h" 14 15 #include "Plugins/Process/Utility/DynamicRegisterInfo.h" 16 #include "Plugins/Process/Utility/RegisterContextDummy.h" 17 #include "Plugins/Process/Utility/RegisterContextMemory.h" 18 #include "Plugins/Process/Utility/ThreadMemory.h" 19 #include "lldb/Core/Debugger.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/PluginManager.h" 22 #include "lldb/Core/ValueObjectVariable.h" 23 #include "lldb/Interpreter/CommandInterpreter.h" 24 #include "lldb/Interpreter/ScriptInterpreter.h" 25 #include "lldb/Symbol/ObjectFile.h" 26 #include "lldb/Symbol/VariableList.h" 27 #include "lldb/Target/Process.h" 28 #include "lldb/Target/StopInfo.h" 29 #include "lldb/Target/Target.h" 30 #include "lldb/Target/Thread.h" 31 #include "lldb/Target/ThreadList.h" 32 #include "lldb/Utility/DataBufferHeap.h" 33 #include "lldb/Utility/RegisterValue.h" 34 #include "lldb/Utility/StreamString.h" 35 #include "lldb/Utility/StructuredData.h" 36 37 #include <memory> 38 39 using namespace lldb; 40 using namespace lldb_private; 41 42 void OperatingSystemPython::Initialize() { 43 PluginManager::RegisterPlugin(GetPluginNameStatic(), 44 GetPluginDescriptionStatic(), CreateInstance, 45 nullptr); 46 } 47 48 void OperatingSystemPython::Terminate() { 49 PluginManager::UnregisterPlugin(CreateInstance); 50 } 51 52 OperatingSystem *OperatingSystemPython::CreateInstance(Process *process, 53 bool force) { 54 // Python OperatingSystem plug-ins must be requested by name, so force must 55 // be true 56 FileSpec python_os_plugin_spec(process->GetPythonOSPluginPath()); 57 if (python_os_plugin_spec && 58 FileSystem::Instance().Exists(python_os_plugin_spec)) { 59 std::unique_ptr<OperatingSystemPython> os_up( 60 new OperatingSystemPython(process, python_os_plugin_spec)); 61 if (os_up.get() && os_up->IsValid()) 62 return os_up.release(); 63 } 64 return nullptr; 65 } 66 67 ConstString OperatingSystemPython::GetPluginNameStatic() { 68 static ConstString g_name("python"); 69 return g_name; 70 } 71 72 const char *OperatingSystemPython::GetPluginDescriptionStatic() { 73 return "Operating system plug-in that gathers OS information from a python " 74 "class that implements the necessary OperatingSystem functionality."; 75 } 76 77 OperatingSystemPython::OperatingSystemPython(lldb_private::Process *process, 78 const FileSpec &python_module_path) 79 : OperatingSystem(process), m_thread_list_valobj_sp(), m_register_info_up(), 80 m_interpreter(nullptr), m_python_object_sp() { 81 if (!process) 82 return; 83 TargetSP target_sp = process->CalculateTarget(); 84 if (!target_sp) 85 return; 86 m_interpreter = target_sp->GetDebugger().GetScriptInterpreter(); 87 if (m_interpreter) { 88 89 std::string os_plugin_class_name( 90 python_module_path.GetFilename().AsCString("")); 91 if (!os_plugin_class_name.empty()) { 92 const bool init_session = false; 93 const bool allow_reload = true; 94 char python_module_path_cstr[PATH_MAX]; 95 python_module_path.GetPath(python_module_path_cstr, 96 sizeof(python_module_path_cstr)); 97 Status error; 98 if (m_interpreter->LoadScriptingModule( 99 python_module_path_cstr, allow_reload, init_session, error)) { 100 // Strip the ".py" extension if there is one 101 size_t py_extension_pos = os_plugin_class_name.rfind(".py"); 102 if (py_extension_pos != std::string::npos) 103 os_plugin_class_name.erase(py_extension_pos); 104 // Add ".OperatingSystemPlugIn" to the module name to get a string like 105 // "modulename.OperatingSystemPlugIn" 106 os_plugin_class_name += ".OperatingSystemPlugIn"; 107 StructuredData::ObjectSP object_sp = 108 m_interpreter->OSPlugin_CreatePluginObject( 109 os_plugin_class_name.c_str(), process->CalculateProcess()); 110 if (object_sp && object_sp->IsValid()) 111 m_python_object_sp = object_sp; 112 } 113 } 114 } 115 } 116 117 OperatingSystemPython::~OperatingSystemPython() {} 118 119 DynamicRegisterInfo *OperatingSystemPython::GetDynamicRegisterInfo() { 120 if (m_register_info_up == nullptr) { 121 if (!m_interpreter || !m_python_object_sp) 122 return nullptr; 123 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS)); 124 125 LLDB_LOGF(log, 126 "OperatingSystemPython::GetDynamicRegisterInfo() fetching " 127 "thread register definitions from python for pid %" PRIu64, 128 m_process->GetID()); 129 130 StructuredData::DictionarySP dictionary = 131 m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp); 132 if (!dictionary) 133 return nullptr; 134 135 m_register_info_up.reset(new DynamicRegisterInfo( 136 *dictionary, m_process->GetTarget().GetArchitecture())); 137 assert(m_register_info_up->GetNumRegisters() > 0); 138 assert(m_register_info_up->GetNumRegisterSets() > 0); 139 } 140 return m_register_info_up.get(); 141 } 142 143 // PluginInterface protocol 144 ConstString OperatingSystemPython::GetPluginName() { 145 return GetPluginNameStatic(); 146 } 147 148 uint32_t OperatingSystemPython::GetPluginVersion() { return 1; } 149 150 bool OperatingSystemPython::UpdateThreadList(ThreadList &old_thread_list, 151 ThreadList &core_thread_list, 152 ThreadList &new_thread_list) { 153 if (!m_interpreter || !m_python_object_sp) 154 return false; 155 156 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS)); 157 158 // First thing we have to do is to try to get the API lock, and the 159 // interpreter lock. We're going to change the thread content of the process, 160 // and we're going to use python, which requires the API lock to do it. We 161 // need the interpreter lock to make sure thread_info_dict stays alive. 162 // 163 // If someone already has the API lock, that is ok, we just want to avoid 164 // external code from making new API calls while this call is happening. 165 // 166 // This is a recursive lock so we can grant it to any Python code called on 167 // the stack below us. 168 Target &target = m_process->GetTarget(); 169 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 170 std::defer_lock); 171 (void)api_lock.try_lock(); // See above. 172 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 173 174 LLDB_LOGF(log, 175 "OperatingSystemPython::UpdateThreadList() fetching thread " 176 "data from python for pid %" PRIu64, 177 m_process->GetID()); 178 179 // The threads that are in "core_thread_list" upon entry are the threads from 180 // the lldb_private::Process subclass, no memory threads will be in this 181 // list. 182 StructuredData::ArraySP threads_list = 183 m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp); 184 185 const uint32_t num_cores = core_thread_list.GetSize(false); 186 187 // Make a map so we can keep track of which cores were used from the 188 // core_thread list. Any real threads/cores that weren't used should later be 189 // put back into the "new_thread_list". 190 std::vector<bool> core_used_map(num_cores, false); 191 if (threads_list) { 192 if (log) { 193 StreamString strm; 194 threads_list->Dump(strm); 195 LLDB_LOGF(log, "threads_list = %s", strm.GetData()); 196 } 197 198 const uint32_t num_threads = threads_list->GetSize(); 199 for (uint32_t i = 0; i < num_threads; ++i) { 200 StructuredData::ObjectSP thread_dict_obj = 201 threads_list->GetItemAtIndex(i); 202 if (auto thread_dict = thread_dict_obj->GetAsDictionary()) { 203 ThreadSP thread_sp(CreateThreadFromThreadInfo( 204 *thread_dict, core_thread_list, old_thread_list, core_used_map, 205 nullptr)); 206 if (thread_sp) 207 new_thread_list.AddThread(thread_sp); 208 } 209 } 210 } 211 212 // Any real core threads that didn't end up backing a memory thread should 213 // still be in the main thread list, and they should be inserted at the 214 // beginning of the list 215 uint32_t insert_idx = 0; 216 for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx) { 217 if (!core_used_map[core_idx]) { 218 new_thread_list.InsertThread( 219 core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx); 220 ++insert_idx; 221 } 222 } 223 224 return new_thread_list.GetSize(false) > 0; 225 } 226 227 ThreadSP OperatingSystemPython::CreateThreadFromThreadInfo( 228 StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list, 229 ThreadList &old_thread_list, std::vector<bool> &core_used_map, 230 bool *did_create_ptr) { 231 ThreadSP thread_sp; 232 tid_t tid = LLDB_INVALID_THREAD_ID; 233 if (!thread_dict.GetValueForKeyAsInteger("tid", tid)) 234 return ThreadSP(); 235 236 uint32_t core_number; 237 addr_t reg_data_addr; 238 llvm::StringRef name; 239 llvm::StringRef queue; 240 241 thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX); 242 thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr, 243 LLDB_INVALID_ADDRESS); 244 thread_dict.GetValueForKeyAsString("name", name); 245 thread_dict.GetValueForKeyAsString("queue", queue); 246 247 // See if a thread already exists for "tid" 248 thread_sp = old_thread_list.FindThreadByID(tid, false); 249 if (thread_sp) { 250 // A thread already does exist for "tid", make sure it was an operating 251 // system 252 // plug-in generated thread. 253 if (!IsOperatingSystemPluginThread(thread_sp)) { 254 // We have thread ID overlap between the protocol threads and the 255 // operating system threads, clear the thread so we create an operating 256 // system thread for this. 257 thread_sp.reset(); 258 } 259 } 260 261 if (!thread_sp) { 262 if (did_create_ptr) 263 *did_create_ptr = true; 264 thread_sp = std::make_shared<ThreadMemory>(*m_process, tid, name, queue, 265 reg_data_addr); 266 } 267 268 if (core_number < core_thread_list.GetSize(false)) { 269 ThreadSP core_thread_sp( 270 core_thread_list.GetThreadAtIndex(core_number, false)); 271 if (core_thread_sp) { 272 // Keep track of which cores were set as the backing thread for memory 273 // threads... 274 if (core_number < core_used_map.size()) 275 core_used_map[core_number] = true; 276 277 ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread()); 278 if (backing_core_thread_sp) { 279 thread_sp->SetBackingThread(backing_core_thread_sp); 280 } else { 281 thread_sp->SetBackingThread(core_thread_sp); 282 } 283 } 284 } 285 return thread_sp; 286 } 287 288 void OperatingSystemPython::ThreadWasSelected(Thread *thread) {} 289 290 RegisterContextSP 291 OperatingSystemPython::CreateRegisterContextForThread(Thread *thread, 292 addr_t reg_data_addr) { 293 RegisterContextSP reg_ctx_sp; 294 if (!m_interpreter || !m_python_object_sp || !thread) 295 return reg_ctx_sp; 296 297 if (!IsOperatingSystemPluginThread(thread->shared_from_this())) 298 return reg_ctx_sp; 299 300 // First thing we have to do is to try to get the API lock, and the 301 // interpreter lock. We're going to change the thread content of the process, 302 // and we're going to use python, which requires the API lock to do it. We 303 // need the interpreter lock to make sure thread_info_dict stays alive. 304 // 305 // If someone already has the API lock, that is ok, we just want to avoid 306 // external code from making new API calls while this call is happening. 307 // 308 // This is a recursive lock so we can grant it to any Python code called on 309 // the stack below us. 310 Target &target = m_process->GetTarget(); 311 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 312 std::defer_lock); 313 (void)api_lock.try_lock(); // See above. 314 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 315 316 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD)); 317 318 if (reg_data_addr != LLDB_INVALID_ADDRESS) { 319 // The registers data is in contiguous memory, just create the register 320 // context using the address provided 321 LLDB_LOGF(log, 322 "OperatingSystemPython::CreateRegisterContextForThread (tid " 323 "= 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64 324 ") creating memory register context", 325 thread->GetID(), thread->GetProtocolID(), reg_data_addr); 326 reg_ctx_sp = std::make_shared<RegisterContextMemory>( 327 *thread, 0, *GetDynamicRegisterInfo(), reg_data_addr); 328 } else { 329 // No register data address is provided, query the python plug-in to let it 330 // make up the data as it sees fit 331 LLDB_LOGF(log, 332 "OperatingSystemPython::CreateRegisterContextForThread (tid " 333 "= 0x%" PRIx64 ", 0x%" PRIx64 334 ") fetching register data from python", 335 thread->GetID(), thread->GetProtocolID()); 336 337 StructuredData::StringSP reg_context_data = 338 m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp, 339 thread->GetID()); 340 if (reg_context_data) { 341 std::string value = reg_context_data->GetValue(); 342 DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length())); 343 if (data_sp->GetByteSize()) { 344 RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory( 345 *thread, 0, *GetDynamicRegisterInfo(), LLDB_INVALID_ADDRESS); 346 if (reg_ctx_memory) { 347 reg_ctx_sp.reset(reg_ctx_memory); 348 reg_ctx_memory->SetAllRegisterData(data_sp); 349 } 350 } 351 } 352 } 353 // if we still have no register data, fallback on a dummy context to avoid 354 // crashing 355 if (!reg_ctx_sp) { 356 LLDB_LOGF(log, 357 "OperatingSystemPython::CreateRegisterContextForThread (tid " 358 "= 0x%" PRIx64 ") forcing a dummy register context", 359 thread->GetID()); 360 reg_ctx_sp = std::make_shared<RegisterContextDummy>( 361 *thread, 0, target.GetArchitecture().GetAddressByteSize()); 362 } 363 return reg_ctx_sp; 364 } 365 366 StopInfoSP 367 OperatingSystemPython::CreateThreadStopReason(lldb_private::Thread *thread) { 368 // We should have gotten the thread stop info from the dictionary of data for 369 // the thread in the initial call to get_thread_info(), this should have been 370 // cached so we can return it here 371 StopInfoSP 372 stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP)); 373 return stop_info_sp; 374 } 375 376 lldb::ThreadSP OperatingSystemPython::CreateThread(lldb::tid_t tid, 377 addr_t context) { 378 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD)); 379 380 LLDB_LOGF(log, 381 "OperatingSystemPython::CreateThread (tid = 0x%" PRIx64 382 ", context = 0x%" PRIx64 ") fetching register data from python", 383 tid, context); 384 385 if (m_interpreter && m_python_object_sp) { 386 // First thing we have to do is to try to get the API lock, and the 387 // interpreter lock. We're going to change the thread content of the 388 // process, and we're going to use python, which requires the API lock to 389 // do it. We need the interpreter lock to make sure thread_info_dict stays 390 // alive. 391 // 392 // If someone already has the API lock, that is ok, we just want to avoid 393 // external code from making new API calls while this call is happening. 394 // 395 // This is a recursive lock so we can grant it to any Python code called on 396 // the stack below us. 397 Target &target = m_process->GetTarget(); 398 std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(), 399 std::defer_lock); 400 (void)api_lock.try_lock(); // See above. 401 auto interpreter_lock = m_interpreter->AcquireInterpreterLock(); 402 403 StructuredData::DictionarySP thread_info_dict = 404 m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context); 405 std::vector<bool> core_used_map; 406 if (thread_info_dict) { 407 ThreadList core_threads(m_process); 408 ThreadList &thread_list = m_process->GetThreadList(); 409 bool did_create = false; 410 ThreadSP thread_sp( 411 CreateThreadFromThreadInfo(*thread_info_dict, core_threads, 412 thread_list, core_used_map, &did_create)); 413 if (did_create) 414 thread_list.AddThread(thread_sp); 415 return thread_sp; 416 } 417 } 418 return ThreadSP(); 419 } 420 421 #endif // #if LLDB_ENABLE_PYTHON 422