xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision f7899545add32315dbeff8835bb53577296f4233)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Module.h"
20 #include "lldb/Core/ModuleSpec.h"
21 #include "lldb/Core/PluginManager.h"
22 #include "lldb/Core/Section.h"
23 #include "lldb/Core/Stream.h"
24 #include "lldb/Symbol/SymbolContext.h"
25 #include "lldb/Host/Host.h"
26 
27 #include "llvm/ADT/PointerUnion.h"
28 
29 #define CASE_AND_STREAM(s, def, width)                  \
30     case def: s->Printf("%-*s", width, #def); break;
31 
32 using namespace lldb;
33 using namespace lldb_private;
34 using namespace elf;
35 using namespace llvm::ELF;
36 
37 namespace {
38 //===----------------------------------------------------------------------===//
39 /// @class ELFRelocation
40 /// @brief Generic wrapper for ELFRel and ELFRela.
41 ///
42 /// This helper class allows us to parse both ELFRel and ELFRela relocation
43 /// entries in a generic manner.
44 class ELFRelocation
45 {
46 public:
47 
48     /// Constructs an ELFRelocation entry with a personality as given by @p
49     /// type.
50     ///
51     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
52     ELFRelocation(unsigned type);
53 
54     ~ELFRelocation();
55 
56     bool
57     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
58 
59     static unsigned
60     RelocType32(const ELFRelocation &rel);
61 
62     static unsigned
63     RelocType64(const ELFRelocation &rel);
64 
65     static unsigned
66     RelocSymbol32(const ELFRelocation &rel);
67 
68     static unsigned
69     RelocSymbol64(const ELFRelocation &rel);
70 
71 private:
72     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
73 
74     RelocUnion reloc;
75 };
76 
77 ELFRelocation::ELFRelocation(unsigned type)
78 {
79     if (type == DT_REL)
80         reloc = new ELFRel();
81     else if (type == DT_RELA)
82         reloc = new ELFRela();
83     else {
84         assert(false && "unexpected relocation type");
85         reloc = static_cast<ELFRel*>(NULL);
86     }
87 }
88 
89 ELFRelocation::~ELFRelocation()
90 {
91     if (reloc.is<ELFRel*>())
92         delete reloc.get<ELFRel*>();
93     else
94         delete reloc.get<ELFRela*>();
95 }
96 
97 bool
98 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
99 {
100     if (reloc.is<ELFRel*>())
101         return reloc.get<ELFRel*>()->Parse(data, offset);
102     else
103         return reloc.get<ELFRela*>()->Parse(data, offset);
104 }
105 
106 unsigned
107 ELFRelocation::RelocType32(const ELFRelocation &rel)
108 {
109     if (rel.reloc.is<ELFRel*>())
110         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
111     else
112         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
113 }
114 
115 unsigned
116 ELFRelocation::RelocType64(const ELFRelocation &rel)
117 {
118     if (rel.reloc.is<ELFRel*>())
119         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
120     else
121         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
122 }
123 
124 unsigned
125 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
126 {
127     if (rel.reloc.is<ELFRel*>())
128         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
129     else
130         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
131 }
132 
133 unsigned
134 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
135 {
136     if (rel.reloc.is<ELFRel*>())
137         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
138     else
139         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
140 }
141 
142 } // end anonymous namespace
143 
144 //------------------------------------------------------------------
145 // Static methods.
146 //------------------------------------------------------------------
147 void
148 ObjectFileELF::Initialize()
149 {
150     PluginManager::RegisterPlugin(GetPluginNameStatic(),
151                                   GetPluginDescriptionStatic(),
152                                   CreateInstance,
153                                   CreateMemoryInstance,
154                                   GetModuleSpecifications);
155 }
156 
157 void
158 ObjectFileELF::Terminate()
159 {
160     PluginManager::UnregisterPlugin(CreateInstance);
161 }
162 
163 lldb_private::ConstString
164 ObjectFileELF::GetPluginNameStatic()
165 {
166     static ConstString g_name("elf");
167     return g_name;
168 }
169 
170 const char *
171 ObjectFileELF::GetPluginDescriptionStatic()
172 {
173     return "ELF object file reader.";
174 }
175 
176 ObjectFile *
177 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
178                                DataBufferSP &data_sp,
179                                lldb::offset_t data_offset,
180                                const lldb_private::FileSpec* file,
181                                lldb::offset_t file_offset,
182                                lldb::offset_t length)
183 {
184     if (!data_sp)
185     {
186         data_sp = file->MemoryMapFileContents(file_offset, length);
187         data_offset = 0;
188     }
189 
190     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
191     {
192         const uint8_t *magic = data_sp->GetBytes() + data_offset;
193         if (ELFHeader::MagicBytesMatch(magic))
194         {
195             // Update the data to contain the entire file if it doesn't already
196             if (data_sp->GetByteSize() < length) {
197                 data_sp = file->MemoryMapFileContents(file_offset, length);
198                 data_offset = 0;
199                 magic = data_sp->GetBytes();
200             }
201             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
202             if (address_size == 4 || address_size == 8)
203             {
204                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
205                 ArchSpec spec;
206                 if (objfile_ap->GetArchitecture(spec) &&
207                     objfile_ap->SetModulesArchitecture(spec))
208                     return objfile_ap.release();
209             }
210         }
211     }
212     return NULL;
213 }
214 
215 
216 ObjectFile*
217 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
218                                      DataBufferSP& data_sp,
219                                      const lldb::ProcessSP &process_sp,
220                                      lldb::addr_t header_addr)
221 {
222     return NULL;
223 }
224 
225 bool
226 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
227                                   lldb::addr_t data_offset,
228                                   lldb::addr_t data_length)
229 {
230     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
231     {
232         const uint8_t *magic = data_sp->GetBytes() + data_offset;
233         return ELFHeader::MagicBytesMatch(magic);
234     }
235     return false;
236 }
237 
238 /*
239  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
240  *
241  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
242  *   code or tables extracted from it, as desired without restriction.
243  */
244 static uint32_t
245 calc_gnu_debuglink_crc32(const void *buf, size_t size)
246 {
247     static const uint32_t g_crc32_tab[] =
248     {
249         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
250         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
251         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
252         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
253         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
254         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
255         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
256         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
257         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
258         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
259         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
260         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
261         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
262         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
263         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
264         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
265         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
266         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
267         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
268         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
269         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
270         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
271         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
272         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
273         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
274         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
275         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
276         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
277         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
278         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
279         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
280         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
281         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
282         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
283         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
284         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
285         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
286         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
287         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
288         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
289         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
290         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
291         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
292     };
293     const uint8_t *p = (const uint8_t *)buf;
294     uint32_t crc;
295 
296     crc = ~0U;
297     while (size--)
298         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
299     return crc ^ ~0U;
300 }
301 
302 size_t
303 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
304                                         lldb::DataBufferSP& data_sp,
305                                         lldb::offset_t data_offset,
306                                         lldb::offset_t file_offset,
307                                         lldb::offset_t length,
308                                         lldb_private::ModuleSpecList &specs)
309 {
310     const size_t initial_count = specs.GetSize();
311 
312     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
313     {
314         DataExtractor data;
315         data.SetData(data_sp);
316         elf::ELFHeader header;
317         if (header.Parse(data, &data_offset))
318         {
319             if (data_sp)
320             {
321                 ModuleSpec spec;
322                 spec.GetFileSpec() = file;
323                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
324                                                        header.e_machine,
325                                                        LLDB_INVALID_CPUTYPE);
326                 if (spec.GetArchitecture().IsValid())
327                 {
328                     // We could parse the ABI tag information (in .note, .notes, or .note.ABI-tag) to get the
329                     // machine information. However, this info isn't guaranteed to exist or be correct. Details:
330                     //  http://refspecs.linuxfoundation.org/LSB_1.2.0/gLSB/noteabitag.html
331                     // Instead of passing potentially incorrect information down the pipeline, grab
332                     // the host information and use it.
333                     spec.GetArchitecture().GetTriple().setOSName (Host::GetOSString().GetCString());
334                     spec.GetArchitecture().GetTriple().setVendorName(Host::GetVendorString().GetCString());
335 
336                     // Try to get the UUID from the section list. Usually that's at the end, so
337                     // map the file in if we don't have it already.
338                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
339                     if (section_header_end > data_sp->GetByteSize())
340                     {
341                         data_sp = file.MemoryMapFileContents (file_offset, section_header_end);
342                         data.SetData(data_sp);
343                     }
344 
345                     uint32_t gnu_debuglink_crc = 0;
346                     std::string gnu_debuglink_file;
347                     SectionHeaderColl section_headers;
348                     lldb_private::UUID &uuid = spec.GetUUID();
349                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc);
350 
351                     if (!uuid.IsValid())
352                     {
353                         if (!gnu_debuglink_crc)
354                         {
355                             // Need to map entire file into memory to calculate the crc.
356                             data_sp = file.MemoryMapFileContents (file_offset, SIZE_MAX);
357                             data.SetData(data_sp);
358                             gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
359                         }
360                         if (gnu_debuglink_crc)
361                         {
362                             // Use 4 bytes of crc from the .gnu_debuglink section.
363                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
364                             uuid.SetBytes (uuidt, sizeof(uuidt));
365                         }
366                     }
367 
368                     specs.Append(spec);
369                 }
370             }
371         }
372     }
373 
374     return specs.GetSize() - initial_count;
375 }
376 
377 //------------------------------------------------------------------
378 // PluginInterface protocol
379 //------------------------------------------------------------------
380 lldb_private::ConstString
381 ObjectFileELF::GetPluginName()
382 {
383     return GetPluginNameStatic();
384 }
385 
386 uint32_t
387 ObjectFileELF::GetPluginVersion()
388 {
389     return m_plugin_version;
390 }
391 //------------------------------------------------------------------
392 // ObjectFile protocol
393 //------------------------------------------------------------------
394 
395 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
396                               DataBufferSP& data_sp,
397                               lldb::offset_t data_offset,
398                               const FileSpec* file,
399                               lldb::offset_t file_offset,
400                               lldb::offset_t length) :
401     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
402     m_header(),
403     m_program_headers(),
404     m_section_headers(),
405     m_filespec_ap()
406 {
407     if (file)
408         m_file = *file;
409     ::memset(&m_header, 0, sizeof(m_header));
410     m_gnu_debuglink_crc = 0;
411     m_gnu_debuglink_file.clear();
412 }
413 
414 ObjectFileELF::~ObjectFileELF()
415 {
416 }
417 
418 bool
419 ObjectFileELF::IsExecutable() const
420 {
421     return m_header.e_entry != 0;
422 }
423 
424 ByteOrder
425 ObjectFileELF::GetByteOrder() const
426 {
427     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
428         return eByteOrderBig;
429     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
430         return eByteOrderLittle;
431     return eByteOrderInvalid;
432 }
433 
434 uint32_t
435 ObjectFileELF::GetAddressByteSize() const
436 {
437     return m_data.GetAddressByteSize();
438 }
439 
440 size_t
441 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
442 {
443     return std::distance(m_section_headers.begin(), I) + 1u;
444 }
445 
446 size_t
447 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
448 {
449     return std::distance(m_section_headers.begin(), I) + 1u;
450 }
451 
452 bool
453 ObjectFileELF::ParseHeader()
454 {
455     lldb::offset_t offset = 0;
456     return m_header.Parse(m_data, &offset);
457 }
458 
459 bool
460 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
461 {
462     // Need to parse the section list to get the UUIDs, so make sure that's been done.
463     if (!ParseSectionHeaders())
464         return false;
465 
466     if (m_uuid.IsValid())
467     {
468         // We have the full build id uuid.
469         *uuid = m_uuid;
470         return true;
471     }
472     else
473     {
474         if (!m_gnu_debuglink_crc)
475             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
476         if (m_gnu_debuglink_crc)
477         {
478             // Use 4 bytes of crc from the .gnu_debuglink section.
479             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
480             uuid->SetBytes (uuidt, sizeof(uuidt));
481             return true;
482         }
483     }
484 
485     return false;
486 }
487 
488 lldb_private::FileSpecList
489 ObjectFileELF::GetDebugSymbolFilePaths()
490 {
491     FileSpecList file_spec_list;
492 
493     if (!m_gnu_debuglink_file.empty())
494     {
495         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
496         file_spec_list.Append (file_spec);
497     }
498     return file_spec_list;
499 }
500 
501 uint32_t
502 ObjectFileELF::GetDependentModules(FileSpecList &files)
503 {
504     size_t num_modules = ParseDependentModules();
505     uint32_t num_specs = 0;
506 
507     for (unsigned i = 0; i < num_modules; ++i)
508     {
509         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
510             num_specs++;
511     }
512 
513     return num_specs;
514 }
515 
516 Address
517 ObjectFileELF::GetImageInfoAddress()
518 {
519     if (!ParseDynamicSymbols())
520         return Address();
521 
522     SectionList *section_list = GetSectionList();
523     if (!section_list)
524         return Address();
525 
526     // Find the SHT_DYNAMIC (.dynamic) section.
527     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
528     if (!dynsym_section_sp)
529         return Address();
530     assert (dynsym_section_sp->GetObjectFile() == this);
531 
532     user_id_t dynsym_id = dynsym_section_sp->GetID();
533     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
534     if (!dynsym_hdr)
535         return Address();
536 
537     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
538     {
539         ELFDynamic &symbol = m_dynamic_symbols[i];
540 
541         if (symbol.d_tag == DT_DEBUG)
542         {
543             // Compute the offset as the number of previous entries plus the
544             // size of d_tag.
545             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
546             return Address(dynsym_section_sp, offset);
547         }
548     }
549 
550     return Address();
551 }
552 
553 lldb_private::Address
554 ObjectFileELF::GetEntryPointAddress ()
555 {
556     if (m_entry_point_address.IsValid())
557         return m_entry_point_address;
558 
559     if (!ParseHeader() || !IsExecutable())
560         return m_entry_point_address;
561 
562     SectionList *section_list = GetSectionList();
563     addr_t offset = m_header.e_entry;
564 
565     if (!section_list)
566         m_entry_point_address.SetOffset(offset);
567     else
568         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
569     return m_entry_point_address;
570 }
571 
572 //----------------------------------------------------------------------
573 // ParseDependentModules
574 //----------------------------------------------------------------------
575 size_t
576 ObjectFileELF::ParseDependentModules()
577 {
578     if (m_filespec_ap.get())
579         return m_filespec_ap->GetSize();
580 
581     m_filespec_ap.reset(new FileSpecList());
582 
583     if (!ParseSectionHeaders())
584         return 0;
585 
586     SectionList *section_list = GetSectionList();
587     if (!section_list)
588         return 0;
589 
590     // Find the SHT_DYNAMIC section.
591     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
592     if (!dynsym)
593         return 0;
594     assert (dynsym->GetObjectFile() == this);
595 
596     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
597     if (!header)
598         return 0;
599     // sh_link: section header index of string table used by entries in the section.
600     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
601     if (!dynstr)
602         return 0;
603 
604     DataExtractor dynsym_data;
605     DataExtractor dynstr_data;
606     if (ReadSectionData(dynsym, dynsym_data) &&
607         ReadSectionData(dynstr, dynstr_data))
608     {
609         ELFDynamic symbol;
610         const lldb::offset_t section_size = dynsym_data.GetByteSize();
611         lldb::offset_t offset = 0;
612 
613         // The only type of entries we are concerned with are tagged DT_NEEDED,
614         // yielding the name of a required library.
615         while (offset < section_size)
616         {
617             if (!symbol.Parse(dynsym_data, &offset))
618                 break;
619 
620             if (symbol.d_tag != DT_NEEDED)
621                 continue;
622 
623             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
624             const char *lib_name = dynstr_data.PeekCStr(str_index);
625             m_filespec_ap->Append(FileSpec(lib_name, true));
626         }
627     }
628 
629     return m_filespec_ap->GetSize();
630 }
631 
632 //----------------------------------------------------------------------
633 // ParseProgramHeaders
634 //----------------------------------------------------------------------
635 size_t
636 ObjectFileELF::ParseProgramHeaders()
637 {
638     // We have already parsed the program headers
639     if (!m_program_headers.empty())
640         return m_program_headers.size();
641 
642     // If there are no program headers to read we are done.
643     if (m_header.e_phnum == 0)
644         return 0;
645 
646     m_program_headers.resize(m_header.e_phnum);
647     if (m_program_headers.size() != m_header.e_phnum)
648         return 0;
649 
650     const size_t ph_size = m_header.e_phnum * m_header.e_phentsize;
651     const elf_off ph_offset = m_header.e_phoff;
652     DataExtractor data;
653     if (GetData (ph_offset, ph_size, data) != ph_size)
654         return 0;
655 
656     uint32_t idx;
657     lldb::offset_t offset;
658     for (idx = 0, offset = 0; idx < m_header.e_phnum; ++idx)
659     {
660         if (m_program_headers[idx].Parse(data, &offset) == false)
661             break;
662     }
663 
664     if (idx < m_program_headers.size())
665         m_program_headers.resize(idx);
666 
667     return m_program_headers.size();
668 }
669 
670 static bool
671 ParseNoteGNUBuildID(DataExtractor &data, lldb_private::UUID &uuid)
672 {
673     // Try to parse the note section (ie .note.gnu.build-id|.notes|.note|...) and get the build id.
674     // BuildID documentation: https://fedoraproject.org/wiki/Releases/FeatureBuildId
675     struct
676     {
677         uint32_t name_len;  // Length of note name
678         uint32_t desc_len;  // Length of note descriptor
679         uint32_t type;      // Type of note (1 is ABI_TAG, 3 is BUILD_ID)
680     } notehdr;
681     lldb::offset_t offset = 0;
682     static const uint32_t g_gnu_build_id = 3; // NT_GNU_BUILD_ID from elf.h
683 
684     while (true)
685     {
686         if (data.GetU32 (&offset, &notehdr, 3) == NULL)
687             return false;
688 
689         notehdr.name_len = llvm::RoundUpToAlignment (notehdr.name_len, 4);
690         notehdr.desc_len = llvm::RoundUpToAlignment (notehdr.desc_len, 4);
691 
692         lldb::offset_t offset_next_note = offset + notehdr.name_len + notehdr.desc_len;
693 
694         // 16 bytes is UUID|MD5, 20 bytes is SHA1
695         if ((notehdr.type == g_gnu_build_id) && (notehdr.name_len == 4) &&
696             (notehdr.desc_len == 16 || notehdr.desc_len == 20))
697         {
698             char name[4];
699             if (data.GetU8 (&offset, name, 4) == NULL)
700                 return false;
701             if (!strcmp(name, "GNU"))
702             {
703                 uint8_t uuidbuf[20];
704                 if (data.GetU8 (&offset, &uuidbuf, notehdr.desc_len) == NULL)
705                     return false;
706                 uuid.SetBytes (uuidbuf, notehdr.desc_len);
707                 return true;
708             }
709         }
710         offset = offset_next_note;
711     }
712     return false;
713 }
714 
715 //----------------------------------------------------------------------
716 // GetSectionHeaderInfo
717 //----------------------------------------------------------------------
718 size_t
719 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
720                                     lldb_private::DataExtractor &object_data,
721                                     const elf::ELFHeader &header,
722                                     lldb_private::UUID &uuid,
723                                     std::string &gnu_debuglink_file,
724                                     uint32_t &gnu_debuglink_crc)
725 {
726     // We have already parsed the section headers
727     if (!section_headers.empty())
728         return section_headers.size();
729 
730     // If there are no section headers we are done.
731     if (header.e_shnum == 0)
732         return 0;
733 
734     section_headers.resize(header.e_shnum);
735     if (section_headers.size() != header.e_shnum)
736         return 0;
737 
738     const size_t sh_size = header.e_shnum * header.e_shentsize;
739     const elf_off sh_offset = header.e_shoff;
740     DataExtractor sh_data;
741     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
742         return 0;
743 
744     uint32_t idx;
745     lldb::offset_t offset;
746     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
747     {
748         if (section_headers[idx].Parse(sh_data, &offset) == false)
749             break;
750     }
751     if (idx < section_headers.size())
752         section_headers.resize(idx);
753 
754     const unsigned strtab_idx = header.e_shstrndx;
755     if (strtab_idx && strtab_idx < section_headers.size())
756     {
757         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
758         const size_t byte_size = sheader.sh_size;
759         const Elf64_Off offset = sheader.sh_offset;
760         lldb_private::DataExtractor shstr_data;
761 
762         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
763         {
764             for (SectionHeaderCollIter I = section_headers.begin();
765                  I != section_headers.end(); ++I)
766             {
767                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
768                 const ELFSectionHeaderInfo &header = *I;
769                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
770                 ConstString name(shstr_data.PeekCStr(I->sh_name));
771 
772                 I->section_name = name;
773 
774                 if (name == g_sect_name_gnu_debuglink)
775                 {
776                     DataExtractor data;
777                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
778                     {
779                         lldb::offset_t gnu_debuglink_offset = 0;
780                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
781                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
782                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
783                     }
784                 }
785 
786                 if (header.sh_type == SHT_NOTE && !uuid.IsValid())
787                 {
788                     DataExtractor data;
789                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
790                     {
791                         ParseNoteGNUBuildID (data, uuid);
792                     }
793                 }
794             }
795 
796             return section_headers.size();
797         }
798     }
799 
800     section_headers.clear();
801     return 0;
802 }
803 
804 size_t
805 ObjectFileELF::GetProgramHeaderCount()
806 {
807     return ParseProgramHeaders();
808 }
809 
810 const elf::ELFProgramHeader *
811 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
812 {
813     if (!id || !ParseProgramHeaders())
814         return NULL;
815 
816     if (--id < m_program_headers.size())
817         return &m_program_headers[id];
818 
819     return NULL;
820 }
821 
822 DataExtractor
823 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
824 {
825     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
826     if (segment_header == NULL)
827         return DataExtractor();
828     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
829 }
830 
831 //----------------------------------------------------------------------
832 // ParseSectionHeaders
833 //----------------------------------------------------------------------
834 size_t
835 ObjectFileELF::ParseSectionHeaders()
836 {
837     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc);
838 }
839 
840 const ObjectFileELF::ELFSectionHeaderInfo *
841 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
842 {
843     if (!id || !ParseSectionHeaders())
844         return NULL;
845 
846     if (--id < m_section_headers.size())
847         return &m_section_headers[id];
848 
849     return NULL;
850 }
851 
852 void
853 ObjectFileELF::CreateSections(SectionList &unified_section_list)
854 {
855     if (!m_sections_ap.get() && ParseSectionHeaders())
856     {
857         m_sections_ap.reset(new SectionList());
858 
859         for (SectionHeaderCollIter I = m_section_headers.begin();
860              I != m_section_headers.end(); ++I)
861         {
862             const ELFSectionHeaderInfo &header = *I;
863 
864             ConstString& name = I->section_name;
865             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
866             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
867 
868             static ConstString g_sect_name_text (".text");
869             static ConstString g_sect_name_data (".data");
870             static ConstString g_sect_name_bss (".bss");
871             static ConstString g_sect_name_tdata (".tdata");
872             static ConstString g_sect_name_tbss (".tbss");
873             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
874             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
875             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
876             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
877             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
878             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
879             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
880             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
881             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
882             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
883             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
884             static ConstString g_sect_name_eh_frame (".eh_frame");
885 
886             SectionType sect_type = eSectionTypeOther;
887 
888             bool is_thread_specific = false;
889 
890             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
891             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
892             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
893             else if (name == g_sect_name_tdata)
894             {
895                 sect_type = eSectionTypeData;
896                 is_thread_specific = true;
897             }
898             else if (name == g_sect_name_tbss)
899             {
900                 sect_type = eSectionTypeZeroFill;
901                 is_thread_specific = true;
902             }
903             // .debug_abbrev – Abbreviations used in the .debug_info section
904             // .debug_aranges – Lookup table for mapping addresses to compilation units
905             // .debug_frame – Call frame information
906             // .debug_info – The core DWARF information section
907             // .debug_line – Line number information
908             // .debug_loc – Location lists used in DW_AT_location attributes
909             // .debug_macinfo – Macro information
910             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
911             // .debug_pubtypes – Lookup table for mapping type names to compilation units
912             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
913             // .debug_str – String table used in .debug_info
914             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
915             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
916             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
917             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
918             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
919             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
920             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
921             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
922             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
923             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
924             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
925             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
926             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
927             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
928             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
929 
930             switch (header.sh_type)
931             {
932                 case SHT_SYMTAB:
933                     assert (sect_type == eSectionTypeOther);
934                     sect_type = eSectionTypeELFSymbolTable;
935                     break;
936                 case SHT_DYNSYM:
937                     assert (sect_type == eSectionTypeOther);
938                     sect_type = eSectionTypeELFDynamicSymbols;
939                     break;
940                 case SHT_RELA:
941                 case SHT_REL:
942                     assert (sect_type == eSectionTypeOther);
943                     sect_type = eSectionTypeELFRelocationEntries;
944                     break;
945                 case SHT_DYNAMIC:
946                     assert (sect_type == eSectionTypeOther);
947                     sect_type = eSectionTypeELFDynamicLinkInfo;
948                     break;
949             }
950 
951             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
952                                               this,               // ObjectFile to which this section belongs and should read section data from.
953                                               SectionIndex(I),    // Section ID.
954                                               name,               // Section name.
955                                               sect_type,          // Section type.
956                                               header.sh_addr,     // VM address.
957                                               vm_size,            // VM size in bytes of this section.
958                                               header.sh_offset,   // Offset of this section in the file.
959                                               file_size,          // Size of the section as found in the file.
960                                               header.sh_flags));  // Flags for this section.
961 
962             if (is_thread_specific)
963                 section_sp->SetIsThreadSpecific (is_thread_specific);
964             m_sections_ap->AddSection(section_sp);
965         }
966     }
967 
968     if (m_sections_ap.get())
969     {
970         if (GetType() == eTypeDebugInfo)
971         {
972             static const SectionType g_sections[] =
973             {
974                 eSectionTypeDWARFDebugAranges,
975                 eSectionTypeDWARFDebugInfo,
976                 eSectionTypeDWARFDebugAbbrev,
977                 eSectionTypeDWARFDebugFrame,
978                 eSectionTypeDWARFDebugLine,
979                 eSectionTypeDWARFDebugStr,
980                 eSectionTypeDWARFDebugLoc,
981                 eSectionTypeDWARFDebugMacInfo,
982                 eSectionTypeDWARFDebugPubNames,
983                 eSectionTypeDWARFDebugPubTypes,
984                 eSectionTypeDWARFDebugRanges,
985                 eSectionTypeELFSymbolTable,
986             };
987             SectionList *elf_section_list = m_sections_ap.get();
988             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
989             {
990                 SectionType section_type = g_sections[idx];
991                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
992                 if (section_sp)
993                 {
994                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
995                     if (module_section_sp)
996                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
997                     else
998                         unified_section_list.AddSection (section_sp);
999                 }
1000             }
1001         }
1002         else
1003         {
1004             unified_section_list = *m_sections_ap;
1005         }
1006     }
1007 }
1008 
1009 // private
1010 unsigned
1011 ObjectFileELF::ParseSymbols (Symtab *symtab,
1012                              user_id_t start_id,
1013                              SectionList *section_list,
1014                              const size_t num_symbols,
1015                              const DataExtractor &symtab_data,
1016                              const DataExtractor &strtab_data)
1017 {
1018     ELFSymbol symbol;
1019     lldb::offset_t offset = 0;
1020 
1021     static ConstString text_section_name(".text");
1022     static ConstString init_section_name(".init");
1023     static ConstString fini_section_name(".fini");
1024     static ConstString ctors_section_name(".ctors");
1025     static ConstString dtors_section_name(".dtors");
1026 
1027     static ConstString data_section_name(".data");
1028     static ConstString rodata_section_name(".rodata");
1029     static ConstString rodata1_section_name(".rodata1");
1030     static ConstString data2_section_name(".data1");
1031     static ConstString bss_section_name(".bss");
1032 
1033     //StreamFile strm(stdout, false);
1034     unsigned i;
1035     for (i = 0; i < num_symbols; ++i)
1036     {
1037         if (symbol.Parse(symtab_data, &offset) == false)
1038             break;
1039 
1040         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1041 
1042         // No need to add symbols that have no names
1043         if (symbol_name == NULL || symbol_name[0] == '\0')
1044             continue;
1045 
1046         //symbol.Dump (&strm, i, &strtab_data, section_list);
1047 
1048         SectionSP symbol_section_sp;
1049         SymbolType symbol_type = eSymbolTypeInvalid;
1050         Elf64_Half symbol_idx = symbol.st_shndx;
1051 
1052         switch (symbol_idx)
1053         {
1054         case SHN_ABS:
1055             symbol_type = eSymbolTypeAbsolute;
1056             break;
1057         case SHN_UNDEF:
1058             symbol_type = eSymbolTypeUndefined;
1059             break;
1060         default:
1061             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1062             break;
1063         }
1064 
1065         // If a symbol is undefined do not process it further even if it has a STT type
1066         if (symbol_type != eSymbolTypeUndefined)
1067         {
1068             switch (symbol.getType())
1069             {
1070             default:
1071             case STT_NOTYPE:
1072                 // The symbol's type is not specified.
1073                 break;
1074 
1075             case STT_OBJECT:
1076                 // The symbol is associated with a data object, such as a variable,
1077                 // an array, etc.
1078                 symbol_type = eSymbolTypeData;
1079                 break;
1080 
1081             case STT_FUNC:
1082                 // The symbol is associated with a function or other executable code.
1083                 symbol_type = eSymbolTypeCode;
1084                 break;
1085 
1086             case STT_SECTION:
1087                 // The symbol is associated with a section. Symbol table entries of
1088                 // this type exist primarily for relocation and normally have
1089                 // STB_LOCAL binding.
1090                 break;
1091 
1092             case STT_FILE:
1093                 // Conventionally, the symbol's name gives the name of the source
1094                 // file associated with the object file. A file symbol has STB_LOCAL
1095                 // binding, its section index is SHN_ABS, and it precedes the other
1096                 // STB_LOCAL symbols for the file, if it is present.
1097                 symbol_type = eSymbolTypeSourceFile;
1098                 break;
1099 
1100             case STT_GNU_IFUNC:
1101                 // The symbol is associated with an indirect function. The actual
1102                 // function will be resolved if it is referenced.
1103                 symbol_type = eSymbolTypeResolver;
1104                 break;
1105             }
1106         }
1107 
1108         if (symbol_type == eSymbolTypeInvalid)
1109         {
1110             if (symbol_section_sp)
1111             {
1112                 const ConstString &sect_name = symbol_section_sp->GetName();
1113                 if (sect_name == text_section_name ||
1114                     sect_name == init_section_name ||
1115                     sect_name == fini_section_name ||
1116                     sect_name == ctors_section_name ||
1117                     sect_name == dtors_section_name)
1118                 {
1119                     symbol_type = eSymbolTypeCode;
1120                 }
1121                 else if (sect_name == data_section_name ||
1122                          sect_name == data2_section_name ||
1123                          sect_name == rodata_section_name ||
1124                          sect_name == rodata1_section_name ||
1125                          sect_name == bss_section_name)
1126                 {
1127                     symbol_type = eSymbolTypeData;
1128                 }
1129             }
1130         }
1131 
1132         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
1133         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
1134         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
1135         {
1136             ModuleSP module_sp(GetModule());
1137             if (module_sp)
1138             {
1139                 SectionList *module_section_list = module_sp->GetSectionList();
1140                 if (module_section_list && module_section_list != section_list)
1141                 {
1142                     const ConstString &sect_name = symbol_section_sp->GetName();
1143                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
1144                     if (section_sp && section_sp->GetFileSize())
1145                     {
1146                         symbol_section_sp = section_sp;
1147                     }
1148                 }
1149             }
1150         }
1151 
1152         uint64_t symbol_value = symbol.st_value;
1153         if (symbol_section_sp)
1154             symbol_value -= symbol_section_sp->GetFileAddress();
1155         bool is_global = symbol.getBinding() == STB_GLOBAL;
1156         uint32_t flags = symbol.st_other << 8 | symbol.st_info;
1157         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
1158         Symbol dc_symbol(
1159             i + start_id,       // ID is the original symbol table index.
1160             symbol_name,        // Symbol name.
1161             is_mangled,         // Is the symbol name mangled?
1162             symbol_type,        // Type of this symbol
1163             is_global,          // Is this globally visible?
1164             false,              // Is this symbol debug info?
1165             false,              // Is this symbol a trampoline?
1166             false,              // Is this symbol artificial?
1167             symbol_section_sp,  // Section in which this symbol is defined or null.
1168             symbol_value,       // Offset in section or symbol value.
1169             symbol.st_size,     // Size in bytes of this symbol.
1170             true,               // Size is valid
1171             flags);             // Symbol flags.
1172         symtab->AddSymbol(dc_symbol);
1173     }
1174 
1175     return i;
1176 }
1177 
1178 unsigned
1179 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
1180 {
1181     if (symtab->GetObjectFile() != this)
1182     {
1183         // If the symbol table section is owned by a different object file, have it do the
1184         // parsing.
1185         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
1186         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
1187     }
1188 
1189     // Get section list for this object file.
1190     SectionList *section_list = m_sections_ap.get();
1191     if (!section_list)
1192         return 0;
1193 
1194     user_id_t symtab_id = symtab->GetID();
1195     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
1196     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
1197            symtab_hdr->sh_type == SHT_DYNSYM);
1198 
1199     // sh_link: section header index of associated string table.
1200     // Section ID's are ones based.
1201     user_id_t strtab_id = symtab_hdr->sh_link + 1;
1202     Section *strtab = section_list->FindSectionByID(strtab_id).get();
1203 
1204     unsigned num_symbols = 0;
1205     if (symtab && strtab)
1206     {
1207         assert (symtab->GetObjectFile() == this);
1208         assert (strtab->GetObjectFile() == this);
1209 
1210         DataExtractor symtab_data;
1211         DataExtractor strtab_data;
1212         if (ReadSectionData(symtab, symtab_data) &&
1213             ReadSectionData(strtab, strtab_data))
1214         {
1215             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
1216 
1217             num_symbols = ParseSymbols(symbol_table, start_id,
1218                                        section_list, num_symbols,
1219                                        symtab_data, strtab_data);
1220         }
1221     }
1222 
1223     return num_symbols;
1224 }
1225 
1226 size_t
1227 ObjectFileELF::ParseDynamicSymbols()
1228 {
1229     if (m_dynamic_symbols.size())
1230         return m_dynamic_symbols.size();
1231 
1232     SectionList *section_list = GetSectionList();
1233     if (!section_list)
1234         return 0;
1235 
1236     // Find the SHT_DYNAMIC section.
1237     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1238     if (!dynsym)
1239         return 0;
1240     assert (dynsym->GetObjectFile() == this);
1241 
1242     ELFDynamic symbol;
1243     DataExtractor dynsym_data;
1244     if (ReadSectionData(dynsym, dynsym_data))
1245     {
1246         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1247         lldb::offset_t cursor = 0;
1248 
1249         while (cursor < section_size)
1250         {
1251             if (!symbol.Parse(dynsym_data, &cursor))
1252                 break;
1253 
1254             m_dynamic_symbols.push_back(symbol);
1255         }
1256     }
1257 
1258     return m_dynamic_symbols.size();
1259 }
1260 
1261 const ELFDynamic *
1262 ObjectFileELF::FindDynamicSymbol(unsigned tag)
1263 {
1264     if (!ParseDynamicSymbols())
1265         return NULL;
1266 
1267     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
1268     DynamicSymbolCollIter E = m_dynamic_symbols.end();
1269     for ( ; I != E; ++I)
1270     {
1271         ELFDynamic *symbol = &*I;
1272 
1273         if (symbol->d_tag == tag)
1274             return symbol;
1275     }
1276 
1277     return NULL;
1278 }
1279 
1280 unsigned
1281 ObjectFileELF::PLTRelocationType()
1282 {
1283     // DT_PLTREL
1284     //  This member specifies the type of relocation entry to which the
1285     //  procedure linkage table refers. The d_val member holds DT_REL or
1286     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
1287     //  must use the same relocation.
1288     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
1289 
1290     if (symbol)
1291         return symbol->d_val;
1292 
1293     return 0;
1294 }
1295 
1296 static unsigned
1297 ParsePLTRelocations(Symtab *symbol_table,
1298                     user_id_t start_id,
1299                     unsigned rel_type,
1300                     const ELFHeader *hdr,
1301                     const ELFSectionHeader *rel_hdr,
1302                     const ELFSectionHeader *plt_hdr,
1303                     const ELFSectionHeader *sym_hdr,
1304                     const lldb::SectionSP &plt_section_sp,
1305                     DataExtractor &rel_data,
1306                     DataExtractor &symtab_data,
1307                     DataExtractor &strtab_data)
1308 {
1309     ELFRelocation rel(rel_type);
1310     ELFSymbol symbol;
1311     lldb::offset_t offset = 0;
1312     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
1313     // So round the entsize up by the alignment if addralign is set.
1314     const elf_xword plt_entsize = plt_hdr->sh_addralign ?
1315         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
1316     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
1317 
1318     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
1319     reloc_info_fn reloc_type;
1320     reloc_info_fn reloc_symbol;
1321 
1322     if (hdr->Is32Bit())
1323     {
1324         reloc_type = ELFRelocation::RelocType32;
1325         reloc_symbol = ELFRelocation::RelocSymbol32;
1326     }
1327     else
1328     {
1329         reloc_type = ELFRelocation::RelocType64;
1330         reloc_symbol = ELFRelocation::RelocSymbol64;
1331     }
1332 
1333     unsigned slot_type = hdr->GetRelocationJumpSlotType();
1334     unsigned i;
1335     for (i = 0; i < num_relocations; ++i)
1336     {
1337         if (rel.Parse(rel_data, &offset) == false)
1338             break;
1339 
1340         if (reloc_type(rel) != slot_type)
1341             continue;
1342 
1343         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
1344         uint64_t plt_index = (i + 1) * plt_entsize;
1345 
1346         if (!symbol.Parse(symtab_data, &symbol_offset))
1347             break;
1348 
1349         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1350         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
1351 
1352         Symbol jump_symbol(
1353             i + start_id,    // Symbol table index
1354             symbol_name,     // symbol name.
1355             is_mangled,      // is the symbol name mangled?
1356             eSymbolTypeTrampoline, // Type of this symbol
1357             false,           // Is this globally visible?
1358             false,           // Is this symbol debug info?
1359             true,            // Is this symbol a trampoline?
1360             true,            // Is this symbol artificial?
1361             plt_section_sp,  // Section in which this symbol is defined or null.
1362             plt_index,       // Offset in section or symbol value.
1363             plt_entsize,     // Size in bytes of this symbol.
1364             true,            // Size is valid
1365             0);              // Symbol flags.
1366 
1367         symbol_table->AddSymbol(jump_symbol);
1368     }
1369 
1370     return i;
1371 }
1372 
1373 unsigned
1374 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
1375                                       user_id_t start_id,
1376                                       const ELFSectionHeaderInfo *rel_hdr,
1377                                       user_id_t rel_id)
1378 {
1379     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
1380 
1381     // The link field points to the associated symbol table. The info field
1382     // points to the section holding the plt.
1383     user_id_t symtab_id = rel_hdr->sh_link;
1384     user_id_t plt_id = rel_hdr->sh_info;
1385 
1386     if (!symtab_id || !plt_id)
1387         return 0;
1388 
1389     // Section ID's are ones based;
1390     symtab_id++;
1391     plt_id++;
1392 
1393     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
1394     if (!plt_hdr)
1395         return 0;
1396 
1397     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
1398     if (!sym_hdr)
1399         return 0;
1400 
1401     SectionList *section_list = m_sections_ap.get();
1402     if (!section_list)
1403         return 0;
1404 
1405     Section *rel_section = section_list->FindSectionByID(rel_id).get();
1406     if (!rel_section)
1407         return 0;
1408 
1409     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
1410     if (!plt_section_sp)
1411         return 0;
1412 
1413     Section *symtab = section_list->FindSectionByID(symtab_id).get();
1414     if (!symtab)
1415         return 0;
1416 
1417     // sh_link points to associated string table.
1418     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
1419     if (!strtab)
1420         return 0;
1421 
1422     DataExtractor rel_data;
1423     if (!ReadSectionData(rel_section, rel_data))
1424         return 0;
1425 
1426     DataExtractor symtab_data;
1427     if (!ReadSectionData(symtab, symtab_data))
1428         return 0;
1429 
1430     DataExtractor strtab_data;
1431     if (!ReadSectionData(strtab, strtab_data))
1432         return 0;
1433 
1434     unsigned rel_type = PLTRelocationType();
1435     if (!rel_type)
1436         return 0;
1437 
1438     return ParsePLTRelocations (symbol_table,
1439                                 start_id,
1440                                 rel_type,
1441                                 &m_header,
1442                                 rel_hdr,
1443                                 plt_hdr,
1444                                 sym_hdr,
1445                                 plt_section_sp,
1446                                 rel_data,
1447                                 symtab_data,
1448                                 strtab_data);
1449 }
1450 
1451 Symtab *
1452 ObjectFileELF::GetSymtab()
1453 {
1454     ModuleSP module_sp(GetModule());
1455     if (!module_sp)
1456         return NULL;
1457 
1458     // We always want to use the main object file so we (hopefully) only have one cached copy
1459     // of our symtab, dynamic sections, etc.
1460     ObjectFile *module_obj_file = module_sp->GetObjectFile();
1461     if (module_obj_file && module_obj_file != this)
1462         return module_obj_file->GetSymtab();
1463 
1464     if (m_symtab_ap.get() == NULL)
1465     {
1466         SectionList *section_list = GetSectionList();
1467         if (!section_list)
1468             return NULL;
1469 
1470         uint64_t symbol_id = 0;
1471         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
1472 
1473         m_symtab_ap.reset(new Symtab(this));
1474 
1475         // Sharable objects and dynamic executables usually have 2 distinct symbol
1476         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
1477         // version of the symtab that only contains global symbols. The information found
1478         // in the dynsym is therefore also found in the symtab, while the reverse is not
1479         // necessarily true.
1480         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
1481         if (!symtab)
1482         {
1483             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
1484             // then use the dynsym section which should always be there.
1485             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
1486         }
1487         if (symtab)
1488             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
1489 
1490         // DT_JMPREL
1491         //      If present, this entry's d_ptr member holds the address of relocation
1492         //      entries associated solely with the procedure linkage table. Separating
1493         //      these relocation entries lets the dynamic linker ignore them during
1494         //      process initialization, if lazy binding is enabled. If this entry is
1495         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
1496         //      also be present.
1497         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
1498         if (symbol)
1499         {
1500             // Synthesize trampoline symbols to help navigate the PLT.
1501             addr_t addr = symbol->d_ptr;
1502             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
1503             if (reloc_section)
1504             {
1505                 user_id_t reloc_id = reloc_section->GetID();
1506                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
1507                 assert(reloc_header);
1508 
1509                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
1510             }
1511         }
1512     }
1513     return m_symtab_ap.get();
1514 }
1515 
1516 bool
1517 ObjectFileELF::IsStripped ()
1518 {
1519     // TODO: determine this for ELF
1520     return false;
1521 }
1522 
1523 //===----------------------------------------------------------------------===//
1524 // Dump
1525 //
1526 // Dump the specifics of the runtime file container (such as any headers
1527 // segments, sections, etc).
1528 //----------------------------------------------------------------------
1529 void
1530 ObjectFileELF::Dump(Stream *s)
1531 {
1532     DumpELFHeader(s, m_header);
1533     s->EOL();
1534     DumpELFProgramHeaders(s);
1535     s->EOL();
1536     DumpELFSectionHeaders(s);
1537     s->EOL();
1538     SectionList *section_list = GetSectionList();
1539     if (section_list)
1540         section_list->Dump(s, NULL, true, UINT32_MAX);
1541     Symtab *symtab = GetSymtab();
1542     if (symtab)
1543         symtab->Dump(s, NULL, eSortOrderNone);
1544     s->EOL();
1545     DumpDependentModules(s);
1546     s->EOL();
1547 }
1548 
1549 //----------------------------------------------------------------------
1550 // DumpELFHeader
1551 //
1552 // Dump the ELF header to the specified output stream
1553 //----------------------------------------------------------------------
1554 void
1555 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
1556 {
1557     s->PutCString("ELF Header\n");
1558     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
1559     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
1560               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
1561     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
1562               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
1563     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
1564               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
1565 
1566     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
1567     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
1568     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
1569     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
1570     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
1571 
1572     s->Printf("e_type      = 0x%4.4x ", header.e_type);
1573     DumpELFHeader_e_type(s, header.e_type);
1574     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
1575     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
1576     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
1577     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
1578     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
1579     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
1580     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
1581     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
1582     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
1583     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
1584     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
1585     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
1586 }
1587 
1588 //----------------------------------------------------------------------
1589 // DumpELFHeader_e_type
1590 //
1591 // Dump an token value for the ELF header member e_type
1592 //----------------------------------------------------------------------
1593 void
1594 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
1595 {
1596     switch (e_type)
1597     {
1598     case ET_NONE:   *s << "ET_NONE"; break;
1599     case ET_REL:    *s << "ET_REL"; break;
1600     case ET_EXEC:   *s << "ET_EXEC"; break;
1601     case ET_DYN:    *s << "ET_DYN"; break;
1602     case ET_CORE:   *s << "ET_CORE"; break;
1603     default:
1604         break;
1605     }
1606 }
1607 
1608 //----------------------------------------------------------------------
1609 // DumpELFHeader_e_ident_EI_DATA
1610 //
1611 // Dump an token value for the ELF header member e_ident[EI_DATA]
1612 //----------------------------------------------------------------------
1613 void
1614 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
1615 {
1616     switch (ei_data)
1617     {
1618     case ELFDATANONE:   *s << "ELFDATANONE"; break;
1619     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
1620     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
1621     default:
1622         break;
1623     }
1624 }
1625 
1626 
1627 //----------------------------------------------------------------------
1628 // DumpELFProgramHeader
1629 //
1630 // Dump a single ELF program header to the specified output stream
1631 //----------------------------------------------------------------------
1632 void
1633 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
1634 {
1635     DumpELFProgramHeader_p_type(s, ph.p_type);
1636     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
1637     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
1638 
1639     DumpELFProgramHeader_p_flags(s, ph.p_flags);
1640     s->Printf(") %8.8" PRIx64, ph.p_align);
1641 }
1642 
1643 //----------------------------------------------------------------------
1644 // DumpELFProgramHeader_p_type
1645 //
1646 // Dump an token value for the ELF program header member p_type which
1647 // describes the type of the program header
1648 // ----------------------------------------------------------------------
1649 void
1650 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
1651 {
1652     const int kStrWidth = 15;
1653     switch (p_type)
1654     {
1655     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
1656     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
1657     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
1658     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
1659     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
1660     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
1661     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
1662     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
1663     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
1664     default:
1665         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
1666         break;
1667     }
1668 }
1669 
1670 
1671 //----------------------------------------------------------------------
1672 // DumpELFProgramHeader_p_flags
1673 //
1674 // Dump an token value for the ELF program header member p_flags
1675 //----------------------------------------------------------------------
1676 void
1677 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
1678 {
1679     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
1680         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
1681         << ((p_flags & PF_W) ? "PF_W" : "    ")
1682         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
1683         << ((p_flags & PF_R) ? "PF_R" : "    ");
1684 }
1685 
1686 //----------------------------------------------------------------------
1687 // DumpELFProgramHeaders
1688 //
1689 // Dump all of the ELF program header to the specified output stream
1690 //----------------------------------------------------------------------
1691 void
1692 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
1693 {
1694     if (ParseProgramHeaders())
1695     {
1696         s->PutCString("Program Headers\n");
1697         s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
1698                       "p_filesz p_memsz  p_flags                   p_align\n");
1699         s->PutCString("==== --------------- -------- -------- -------- "
1700                       "-------- -------- ------------------------- --------\n");
1701 
1702         uint32_t idx = 0;
1703         for (ProgramHeaderCollConstIter I = m_program_headers.begin();
1704              I != m_program_headers.end(); ++I, ++idx)
1705         {
1706             s->Printf("[%2u] ", idx);
1707             ObjectFileELF::DumpELFProgramHeader(s, *I);
1708             s->EOL();
1709         }
1710     }
1711 }
1712 
1713 //----------------------------------------------------------------------
1714 // DumpELFSectionHeader
1715 //
1716 // Dump a single ELF section header to the specified output stream
1717 //----------------------------------------------------------------------
1718 void
1719 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
1720 {
1721     s->Printf("%8.8x ", sh.sh_name);
1722     DumpELFSectionHeader_sh_type(s, sh.sh_type);
1723     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
1724     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
1725     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
1726     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
1727     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
1728 }
1729 
1730 //----------------------------------------------------------------------
1731 // DumpELFSectionHeader_sh_type
1732 //
1733 // Dump an token value for the ELF section header member sh_type which
1734 // describes the type of the section
1735 //----------------------------------------------------------------------
1736 void
1737 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
1738 {
1739     const int kStrWidth = 12;
1740     switch (sh_type)
1741     {
1742     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
1743     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
1744     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
1745     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
1746     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
1747     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
1748     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
1749     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
1750     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
1751     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
1752     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
1753     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
1754     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
1755     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
1756     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
1757     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
1758     default:
1759         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
1760         break;
1761     }
1762 }
1763 
1764 //----------------------------------------------------------------------
1765 // DumpELFSectionHeader_sh_flags
1766 //
1767 // Dump an token value for the ELF section header member sh_flags
1768 //----------------------------------------------------------------------
1769 void
1770 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
1771 {
1772     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
1773         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
1774         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
1775         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
1776         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
1777 }
1778 
1779 //----------------------------------------------------------------------
1780 // DumpELFSectionHeaders
1781 //
1782 // Dump all of the ELF section header to the specified output stream
1783 //----------------------------------------------------------------------
1784 void
1785 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
1786 {
1787     if (!ParseSectionHeaders())
1788         return;
1789 
1790     s->PutCString("Section Headers\n");
1791     s->PutCString("IDX  name     type         flags                            "
1792                   "addr     offset   size     link     info     addralgn "
1793                   "entsize  Name\n");
1794     s->PutCString("==== -------- ------------ -------------------------------- "
1795                   "-------- -------- -------- -------- -------- -------- "
1796                   "-------- ====================\n");
1797 
1798     uint32_t idx = 0;
1799     for (SectionHeaderCollConstIter I = m_section_headers.begin();
1800          I != m_section_headers.end(); ++I, ++idx)
1801     {
1802         s->Printf("[%2u] ", idx);
1803         ObjectFileELF::DumpELFSectionHeader(s, *I);
1804         const char* section_name = I->section_name.AsCString("");
1805         if (section_name)
1806             *s << ' ' << section_name << "\n";
1807     }
1808 }
1809 
1810 void
1811 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
1812 {
1813     size_t num_modules = ParseDependentModules();
1814 
1815     if (num_modules > 0)
1816     {
1817         s->PutCString("Dependent Modules:\n");
1818         for (unsigned i = 0; i < num_modules; ++i)
1819         {
1820             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
1821             s->Printf("   %s\n", spec.GetFilename().GetCString());
1822         }
1823     }
1824 }
1825 
1826 bool
1827 ObjectFileELF::GetArchitecture (ArchSpec &arch)
1828 {
1829     if (!ParseHeader())
1830         return false;
1831 
1832     arch.SetArchitecture (eArchTypeELF, m_header.e_machine, LLDB_INVALID_CPUTYPE);
1833     arch.GetTriple().setOSName (Host::GetOSString().GetCString());
1834     arch.GetTriple().setVendorName(Host::GetVendorString().GetCString());
1835     return true;
1836 }
1837 
1838 ObjectFile::Type
1839 ObjectFileELF::CalculateType()
1840 {
1841     switch (m_header.e_type)
1842     {
1843         case llvm::ELF::ET_NONE:
1844             // 0 - No file type
1845             return eTypeUnknown;
1846 
1847         case llvm::ELF::ET_REL:
1848             // 1 - Relocatable file
1849             return eTypeObjectFile;
1850 
1851         case llvm::ELF::ET_EXEC:
1852             // 2 - Executable file
1853             return eTypeExecutable;
1854 
1855         case llvm::ELF::ET_DYN:
1856             // 3 - Shared object file
1857             return eTypeSharedLibrary;
1858 
1859         case ET_CORE:
1860             // 4 - Core file
1861             return eTypeCoreFile;
1862 
1863         default:
1864             break;
1865     }
1866     return eTypeUnknown;
1867 }
1868 
1869 ObjectFile::Strata
1870 ObjectFileELF::CalculateStrata()
1871 {
1872     switch (m_header.e_type)
1873     {
1874         case llvm::ELF::ET_NONE:
1875             // 0 - No file type
1876             return eStrataUnknown;
1877 
1878         case llvm::ELF::ET_REL:
1879             // 1 - Relocatable file
1880             return eStrataUnknown;
1881 
1882         case llvm::ELF::ET_EXEC:
1883             // 2 - Executable file
1884             // TODO: is there any way to detect that an executable is a kernel
1885             // related executable by inspecting the program headers, section
1886             // headers, symbols, or any other flag bits???
1887             return eStrataUser;
1888 
1889         case llvm::ELF::ET_DYN:
1890             // 3 - Shared object file
1891             // TODO: is there any way to detect that an shared library is a kernel
1892             // related executable by inspecting the program headers, section
1893             // headers, symbols, or any other flag bits???
1894             return eStrataUnknown;
1895 
1896         case ET_CORE:
1897             // 4 - Core file
1898             // TODO: is there any way to detect that an core file is a kernel
1899             // related executable by inspecting the program headers, section
1900             // headers, symbols, or any other flag bits???
1901             return eStrataUnknown;
1902 
1903         default:
1904             break;
1905     }
1906     return eStrataUnknown;
1907 }
1908 
1909