xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision f03e6d84bc649ff230b197fb9c2dffaeebd9edef)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 #include "lldb/Host/HostInfo.h"
31 
32 #include "llvm/ADT/PointerUnion.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/Support/MathExtras.h"
35 
36 #define CASE_AND_STREAM(s, def, width)                  \
37     case def: s->Printf("%-*s", width, #def); break;
38 
39 using namespace lldb;
40 using namespace lldb_private;
41 using namespace elf;
42 using namespace llvm::ELF;
43 
44 namespace {
45 
46 // ELF note owner definitions
47 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
48 const char *const LLDB_NT_OWNER_GNU     = "GNU";
49 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
50 const char *const LLDB_NT_OWNER_CSR     = "csr";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 subTypeFromElfHeader(const elf::ELFHeader& header)
287 {
288     return
289         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
290         kalimbaVariantFromElfFlags(header.e_flags) :
291         LLDB_INVALID_CPUTYPE;
292 }
293 
294 //! brief kalimbaSectionType
295 //! The kalimba toolchain identifies a code section as being
296 //! one with the SHT_PROGBITS set in the section sh_type and the top
297 //! bit in the 32-bit address field set.
298 static lldb::SectionType
299 kalimbaSectionType(
300     const elf::ELFHeader& header,
301     const elf::ELFSectionHeader& sect_hdr)
302 {
303     if (
304         llvm::ELF::EM_CSR_KALIMBA != header.e_machine ||
305         llvm::ELF::SHT_PROGBITS != sect_hdr.sh_type)
306     {
307         return eSectionTypeOther;
308     }
309 
310     const lldb::addr_t KAL_CODE_BIT = 1 << 31;
311     return KAL_CODE_BIT & sect_hdr.sh_addr ?
312          eSectionTypeCode  : eSectionTypeData;
313 }
314 
315 // Arbitrary constant used as UUID prefix for core files.
316 const uint32_t
317 ObjectFileELF::g_core_uuid_magic(0xE210C);
318 
319 //------------------------------------------------------------------
320 // Static methods.
321 //------------------------------------------------------------------
322 void
323 ObjectFileELF::Initialize()
324 {
325     PluginManager::RegisterPlugin(GetPluginNameStatic(),
326                                   GetPluginDescriptionStatic(),
327                                   CreateInstance,
328                                   CreateMemoryInstance,
329                                   GetModuleSpecifications);
330 }
331 
332 void
333 ObjectFileELF::Terminate()
334 {
335     PluginManager::UnregisterPlugin(CreateInstance);
336 }
337 
338 lldb_private::ConstString
339 ObjectFileELF::GetPluginNameStatic()
340 {
341     static ConstString g_name("elf");
342     return g_name;
343 }
344 
345 const char *
346 ObjectFileELF::GetPluginDescriptionStatic()
347 {
348     return "ELF object file reader.";
349 }
350 
351 ObjectFile *
352 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
353                                DataBufferSP &data_sp,
354                                lldb::offset_t data_offset,
355                                const lldb_private::FileSpec* file,
356                                lldb::offset_t file_offset,
357                                lldb::offset_t length)
358 {
359     if (!data_sp)
360     {
361         data_sp = file->MemoryMapFileContents(file_offset, length);
362         data_offset = 0;
363     }
364 
365     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
366     {
367         const uint8_t *magic = data_sp->GetBytes() + data_offset;
368         if (ELFHeader::MagicBytesMatch(magic))
369         {
370             // Update the data to contain the entire file if it doesn't already
371             if (data_sp->GetByteSize() < length) {
372                 data_sp = file->MemoryMapFileContents(file_offset, length);
373                 data_offset = 0;
374                 magic = data_sp->GetBytes();
375             }
376             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
377             if (address_size == 4 || address_size == 8)
378             {
379                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
380                 ArchSpec spec;
381                 if (objfile_ap->GetArchitecture(spec) &&
382                     objfile_ap->SetModulesArchitecture(spec))
383                     return objfile_ap.release();
384             }
385         }
386     }
387     return NULL;
388 }
389 
390 
391 ObjectFile*
392 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
393                                      DataBufferSP& data_sp,
394                                      const lldb::ProcessSP &process_sp,
395                                      lldb::addr_t header_addr)
396 {
397     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
398     {
399         const uint8_t *magic = data_sp->GetBytes();
400         if (ELFHeader::MagicBytesMatch(magic))
401         {
402             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
403             if (address_size == 4 || address_size == 8)
404             {
405                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
406                 ArchSpec spec;
407                 if (objfile_ap->GetArchitecture(spec) &&
408                     objfile_ap->SetModulesArchitecture(spec))
409                     return objfile_ap.release();
410             }
411         }
412     }
413     return NULL;
414 }
415 
416 bool
417 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
418                                   lldb::addr_t data_offset,
419                                   lldb::addr_t data_length)
420 {
421     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
422     {
423         const uint8_t *magic = data_sp->GetBytes() + data_offset;
424         return ELFHeader::MagicBytesMatch(magic);
425     }
426     return false;
427 }
428 
429 /*
430  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
431  *
432  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
433  *   code or tables extracted from it, as desired without restriction.
434  */
435 static uint32_t
436 calc_crc32(uint32_t crc, const void *buf, size_t size)
437 {
438     static const uint32_t g_crc32_tab[] =
439     {
440         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
441         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
442         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
443         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
444         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
445         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
446         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
447         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
448         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
449         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
450         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
451         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
452         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
453         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
454         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
455         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
456         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
457         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
458         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
459         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
460         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
461         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
462         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
463         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
464         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
465         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
466         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
467         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
468         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
469         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
470         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
471         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
472         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
473         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
474         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
475         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
476         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
477         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
478         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
479         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
480         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
481         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
482         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
483     };
484     const uint8_t *p = (const uint8_t *)buf;
485 
486     crc = crc ^ ~0U;
487     while (size--)
488         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
489     return crc ^ ~0U;
490 }
491 
492 static uint32_t
493 calc_gnu_debuglink_crc32(const void *buf, size_t size)
494 {
495     return calc_crc32(0U, buf, size);
496 }
497 
498 uint32_t
499 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
500                                                DataExtractor& object_data)
501 {
502     typedef ProgramHeaderCollConstIter Iter;
503 
504     uint32_t core_notes_crc = 0;
505 
506     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
507     {
508         if (I->p_type == llvm::ELF::PT_NOTE)
509         {
510             const elf_off ph_offset = I->p_offset;
511             const size_t ph_size = I->p_filesz;
512 
513             DataExtractor segment_data;
514             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
515             {
516                 // The ELF program header contained incorrect data,
517                 // probably corefile is incomplete or corrupted.
518                 break;
519             }
520 
521             core_notes_crc = calc_crc32(core_notes_crc,
522                                         segment_data.GetDataStart(),
523                                         segment_data.GetByteSize());
524         }
525     }
526 
527     return core_notes_crc;
528 }
529 
530 static const char*
531 OSABIAsCString (unsigned char osabi_byte)
532 {
533 #define _MAKE_OSABI_CASE(x) case x: return #x
534     switch (osabi_byte)
535     {
536         _MAKE_OSABI_CASE(ELFOSABI_NONE);
537         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
538         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
539         _MAKE_OSABI_CASE(ELFOSABI_GNU);
540         _MAKE_OSABI_CASE(ELFOSABI_HURD);
541         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
542         _MAKE_OSABI_CASE(ELFOSABI_AIX);
543         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
544         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
545         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
546         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
547         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
548         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
549         _MAKE_OSABI_CASE(ELFOSABI_NSK);
550         _MAKE_OSABI_CASE(ELFOSABI_AROS);
551         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
552         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
553         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
554         _MAKE_OSABI_CASE(ELFOSABI_ARM);
555         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
556         default:
557             return "<unknown-osabi>";
558     }
559 #undef _MAKE_OSABI_CASE
560 }
561 
562 static bool
563 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
564 {
565     switch (osabi_byte)
566     {
567         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
568         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
569         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
570         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
571         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
572         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
573         default:
574             ostype = llvm::Triple::OSType::UnknownOS;
575     }
576     return ostype != llvm::Triple::OSType::UnknownOS;
577 }
578 
579 size_t
580 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
581                                         lldb::DataBufferSP& data_sp,
582                                         lldb::offset_t data_offset,
583                                         lldb::offset_t file_offset,
584                                         lldb::offset_t length,
585                                         lldb_private::ModuleSpecList &specs)
586 {
587     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
588 
589     const size_t initial_count = specs.GetSize();
590 
591     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
592     {
593         DataExtractor data;
594         data.SetData(data_sp);
595         elf::ELFHeader header;
596         if (header.Parse(data, &data_offset))
597         {
598             if (data_sp)
599             {
600                 ModuleSpec spec;
601                 spec.GetFileSpec() = file;
602 
603                 const uint32_t sub_type = subTypeFromElfHeader(header);
604                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
605                                                        header.e_machine,
606                                                        sub_type);
607 
608                 if (spec.GetArchitecture().IsValid())
609                 {
610                     llvm::Triple::OSType ostype;
611                     // First try to determine the OS type from the OSABI field in the elf header.
612 
613                     if (log)
614                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
615                     if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS)
616                     {
617                         spec.GetArchitecture ().GetTriple ().setOS (ostype);
618 
619                         // Also clear the vendor so we don't end up with situations like
620                         // x86_64-apple-FreeBSD.
621                         spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
622 
623                         if (log)
624                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
625                     }
626 
627                     // Try to get the UUID from the section list. Usually that's at the end, so
628                     // map the file in if we don't have it already.
629                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
630                     if (section_header_end > data_sp->GetByteSize())
631                     {
632                         data_sp = file.MemoryMapFileContents (file_offset, section_header_end);
633                         data.SetData(data_sp);
634                     }
635 
636                     uint32_t gnu_debuglink_crc = 0;
637                     std::string gnu_debuglink_file;
638                     SectionHeaderColl section_headers;
639                     lldb_private::UUID &uuid = spec.GetUUID();
640 
641                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
642 
643                     // If the module vendor is not set and the module OS matches this host OS, set the module vendor to the host vendor.
644                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
645                     if (spec_triple.getVendor () == llvm::Triple::VendorType::UnknownVendor)
646                     {
647                         const llvm::Triple &host_triple = HostInfo::GetArchitecture().GetTriple();
648                         if (spec_triple.getOS () == host_triple.getOS ())
649                             spec_triple.setVendor (host_triple.getVendor ());
650                     }
651 
652                     if (log)
653                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
654 
655                     if (!uuid.IsValid())
656                     {
657                         uint32_t core_notes_crc = 0;
658 
659                         if (!gnu_debuglink_crc)
660                         {
661                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
662                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
663                                                               file.GetLastPathComponent().AsCString(),
664                                                               (file.GetByteSize()-file_offset)/1024);
665 
666                             // For core files - which usually don't happen to have a gnu_debuglink,
667                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
668                             // Thus we will need to fallback to something simpler.
669                             if (header.e_type == llvm::ELF::ET_CORE)
670                             {
671                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
672                                 if (program_headers_end > data_sp->GetByteSize())
673                                 {
674                                     data_sp = file.MemoryMapFileContents(file_offset, program_headers_end);
675                                     data.SetData(data_sp);
676                                 }
677                                 ProgramHeaderColl program_headers;
678                                 GetProgramHeaderInfo(program_headers, data, header);
679 
680                                 size_t segment_data_end = 0;
681                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
682                                      I != program_headers.end(); ++I)
683                                 {
684                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
685                                 }
686 
687                                 if (segment_data_end > data_sp->GetByteSize())
688                                 {
689                                     data_sp = file.MemoryMapFileContents(file_offset, segment_data_end);
690                                     data.SetData(data_sp);
691                                 }
692 
693                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
694                             }
695                             else
696                             {
697                                 // Need to map entire file into memory to calculate the crc.
698                                 data_sp = file.MemoryMapFileContents (file_offset, SIZE_MAX);
699                                 data.SetData(data_sp);
700                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
701                             }
702                         }
703                         if (gnu_debuglink_crc)
704                         {
705                             // Use 4 bytes of crc from the .gnu_debuglink section.
706                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
707                             uuid.SetBytes (uuidt, sizeof(uuidt));
708                         }
709                         else if (core_notes_crc)
710                         {
711                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
712                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
713                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
714                             uuid.SetBytes (uuidt, sizeof(uuidt));
715                         }
716                     }
717 
718                     specs.Append(spec);
719                 }
720             }
721         }
722     }
723 
724     return specs.GetSize() - initial_count;
725 }
726 
727 //------------------------------------------------------------------
728 // PluginInterface protocol
729 //------------------------------------------------------------------
730 lldb_private::ConstString
731 ObjectFileELF::GetPluginName()
732 {
733     return GetPluginNameStatic();
734 }
735 
736 uint32_t
737 ObjectFileELF::GetPluginVersion()
738 {
739     return m_plugin_version;
740 }
741 //------------------------------------------------------------------
742 // ObjectFile protocol
743 //------------------------------------------------------------------
744 
745 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
746                               DataBufferSP& data_sp,
747                               lldb::offset_t data_offset,
748                               const FileSpec* file,
749                               lldb::offset_t file_offset,
750                               lldb::offset_t length) :
751     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
752     m_header(),
753     m_uuid(),
754     m_gnu_debuglink_file(),
755     m_gnu_debuglink_crc(0),
756     m_program_headers(),
757     m_section_headers(),
758     m_dynamic_symbols(),
759     m_filespec_ap(),
760     m_entry_point_address(),
761     m_arch_spec()
762 {
763     if (file)
764         m_file = *file;
765     ::memset(&m_header, 0, sizeof(m_header));
766 }
767 
768 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
769                               DataBufferSP& data_sp,
770                               const lldb::ProcessSP &process_sp,
771                               addr_t header_addr) :
772     ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp),
773     m_header(),
774     m_uuid(),
775     m_gnu_debuglink_file(),
776     m_gnu_debuglink_crc(0),
777     m_program_headers(),
778     m_section_headers(),
779     m_dynamic_symbols(),
780     m_filespec_ap(),
781     m_entry_point_address(),
782     m_arch_spec()
783 {
784     ::memset(&m_header, 0, sizeof(m_header));
785 }
786 
787 ObjectFileELF::~ObjectFileELF()
788 {
789 }
790 
791 bool
792 ObjectFileELF::IsExecutable() const
793 {
794     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
795 }
796 
797 bool
798 ObjectFileELF::SetLoadAddress (Target &target,
799                                lldb::addr_t value,
800                                bool value_is_offset)
801 {
802     ModuleSP module_sp = GetModule();
803     if (module_sp)
804     {
805         size_t num_loaded_sections = 0;
806         SectionList *section_list = GetSectionList ();
807         if (section_list)
808         {
809             if (value_is_offset)
810             {
811                 const size_t num_sections = section_list->GetSize();
812                 size_t sect_idx = 0;
813 
814                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
815                 {
816                     // Iterate through the object file sections to find all
817                     // of the sections that have SHF_ALLOC in their flag bits.
818                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
819                     // if (section_sp && !section_sp->IsThreadSpecific())
820                     if (section_sp && section_sp->Test(SHF_ALLOC))
821                     {
822                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value))
823                             ++num_loaded_sections;
824                     }
825                 }
826                 return num_loaded_sections > 0;
827             }
828             else
829             {
830                 // Not sure how to slide an ELF file given the base address
831                 // of the ELF file in memory
832             }
833         }
834     }
835     return false; // If it changed
836 }
837 
838 ByteOrder
839 ObjectFileELF::GetByteOrder() const
840 {
841     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
842         return eByteOrderBig;
843     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
844         return eByteOrderLittle;
845     return eByteOrderInvalid;
846 }
847 
848 uint32_t
849 ObjectFileELF::GetAddressByteSize() const
850 {
851     return m_data.GetAddressByteSize();
852 }
853 
854 // Top 16 bits of the `Symbol` flags are available.
855 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
856 
857 AddressClass
858 ObjectFileELF::GetAddressClass (addr_t file_addr)
859 {
860     auto res = ObjectFile::GetAddressClass (file_addr);
861 
862     if (res != eAddressClassCode)
863         return res;
864 
865     ArchSpec arch_spec;
866     GetArchitecture(arch_spec);
867     if (arch_spec.GetMachine() != llvm::Triple::arm)
868         return res;
869 
870     auto symtab = GetSymtab();
871     if (symtab == nullptr)
872         return res;
873 
874     auto symbol = symtab->FindSymbolContainingFileAddress(file_addr);
875     if (symbol == nullptr)
876         return res;
877 
878     // Thumb symbols have the lower bit set in the flags field so we just check
879     // for that.
880     if (symbol->GetFlags() & ARM_ELF_SYM_IS_THUMB)
881         res = eAddressClassCodeAlternateISA;
882 
883     return res;
884 }
885 
886 size_t
887 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
888 {
889     return std::distance(m_section_headers.begin(), I) + 1u;
890 }
891 
892 size_t
893 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
894 {
895     return std::distance(m_section_headers.begin(), I) + 1u;
896 }
897 
898 bool
899 ObjectFileELF::ParseHeader()
900 {
901     lldb::offset_t offset = 0;
902     return m_header.Parse(m_data, &offset);
903 }
904 
905 bool
906 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
907 {
908     // Need to parse the section list to get the UUIDs, so make sure that's been done.
909     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
910         return false;
911 
912     if (m_uuid.IsValid())
913     {
914         // We have the full build id uuid.
915         *uuid = m_uuid;
916         return true;
917     }
918     else if (GetType() == ObjectFile::eTypeCoreFile)
919     {
920         uint32_t core_notes_crc = 0;
921 
922         if (!ParseProgramHeaders())
923             return false;
924 
925         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
926 
927         if (core_notes_crc)
928         {
929             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
930             // look different form .gnu_debuglink crc - followed by 4 bytes of note
931             // segments crc.
932             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
933             m_uuid.SetBytes (uuidt, sizeof(uuidt));
934         }
935     }
936     else
937     {
938         if (!m_gnu_debuglink_crc)
939             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
940         if (m_gnu_debuglink_crc)
941         {
942             // Use 4 bytes of crc from the .gnu_debuglink section.
943             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
944             m_uuid.SetBytes (uuidt, sizeof(uuidt));
945         }
946     }
947 
948     if (m_uuid.IsValid())
949     {
950         *uuid = m_uuid;
951         return true;
952     }
953 
954     return false;
955 }
956 
957 lldb_private::FileSpecList
958 ObjectFileELF::GetDebugSymbolFilePaths()
959 {
960     FileSpecList file_spec_list;
961 
962     if (!m_gnu_debuglink_file.empty())
963     {
964         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
965         file_spec_list.Append (file_spec);
966     }
967     return file_spec_list;
968 }
969 
970 uint32_t
971 ObjectFileELF::GetDependentModules(FileSpecList &files)
972 {
973     size_t num_modules = ParseDependentModules();
974     uint32_t num_specs = 0;
975 
976     for (unsigned i = 0; i < num_modules; ++i)
977     {
978         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
979             num_specs++;
980     }
981 
982     return num_specs;
983 }
984 
985 Address
986 ObjectFileELF::GetImageInfoAddress(Target *target)
987 {
988     if (!ParseDynamicSymbols())
989         return Address();
990 
991     SectionList *section_list = GetSectionList();
992     if (!section_list)
993         return Address();
994 
995     // Find the SHT_DYNAMIC (.dynamic) section.
996     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
997     if (!dynsym_section_sp)
998         return Address();
999     assert (dynsym_section_sp->GetObjectFile() == this);
1000 
1001     user_id_t dynsym_id = dynsym_section_sp->GetID();
1002     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1003     if (!dynsym_hdr)
1004         return Address();
1005 
1006     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1007     {
1008         ELFDynamic &symbol = m_dynamic_symbols[i];
1009 
1010         if (symbol.d_tag == DT_DEBUG)
1011         {
1012             // Compute the offset as the number of previous entries plus the
1013             // size of d_tag.
1014             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1015             return Address(dynsym_section_sp, offset);
1016         }
1017         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1018         {
1019             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1020             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1021             if (dyn_base == LLDB_INVALID_ADDRESS)
1022                 return Address();
1023             Address addr;
1024             Error error;
1025             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1026                 return addr;
1027         }
1028     }
1029 
1030     return Address();
1031 }
1032 
1033 lldb_private::Address
1034 ObjectFileELF::GetEntryPointAddress ()
1035 {
1036     if (m_entry_point_address.IsValid())
1037         return m_entry_point_address;
1038 
1039     if (!ParseHeader() || !IsExecutable())
1040         return m_entry_point_address;
1041 
1042     SectionList *section_list = GetSectionList();
1043     addr_t offset = m_header.e_entry;
1044 
1045     if (!section_list)
1046         m_entry_point_address.SetOffset(offset);
1047     else
1048         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1049     return m_entry_point_address;
1050 }
1051 
1052 //----------------------------------------------------------------------
1053 // ParseDependentModules
1054 //----------------------------------------------------------------------
1055 size_t
1056 ObjectFileELF::ParseDependentModules()
1057 {
1058     if (m_filespec_ap.get())
1059         return m_filespec_ap->GetSize();
1060 
1061     m_filespec_ap.reset(new FileSpecList());
1062 
1063     if (!ParseSectionHeaders())
1064         return 0;
1065 
1066     SectionList *section_list = GetSectionList();
1067     if (!section_list)
1068         return 0;
1069 
1070     // Find the SHT_DYNAMIC section.
1071     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1072     if (!dynsym)
1073         return 0;
1074     assert (dynsym->GetObjectFile() == this);
1075 
1076     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1077     if (!header)
1078         return 0;
1079     // sh_link: section header index of string table used by entries in the section.
1080     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1081     if (!dynstr)
1082         return 0;
1083 
1084     DataExtractor dynsym_data;
1085     DataExtractor dynstr_data;
1086     if (ReadSectionData(dynsym, dynsym_data) &&
1087         ReadSectionData(dynstr, dynstr_data))
1088     {
1089         ELFDynamic symbol;
1090         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1091         lldb::offset_t offset = 0;
1092 
1093         // The only type of entries we are concerned with are tagged DT_NEEDED,
1094         // yielding the name of a required library.
1095         while (offset < section_size)
1096         {
1097             if (!symbol.Parse(dynsym_data, &offset))
1098                 break;
1099 
1100             if (symbol.d_tag != DT_NEEDED)
1101                 continue;
1102 
1103             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1104             const char *lib_name = dynstr_data.PeekCStr(str_index);
1105             m_filespec_ap->Append(FileSpec(lib_name, true));
1106         }
1107     }
1108 
1109     return m_filespec_ap->GetSize();
1110 }
1111 
1112 //----------------------------------------------------------------------
1113 // GetProgramHeaderInfo
1114 //----------------------------------------------------------------------
1115 size_t
1116 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1117                                     DataExtractor &object_data,
1118                                     const ELFHeader &header)
1119 {
1120     // We have already parsed the program headers
1121     if (!program_headers.empty())
1122         return program_headers.size();
1123 
1124     // If there are no program headers to read we are done.
1125     if (header.e_phnum == 0)
1126         return 0;
1127 
1128     program_headers.resize(header.e_phnum);
1129     if (program_headers.size() != header.e_phnum)
1130         return 0;
1131 
1132     const size_t ph_size = header.e_phnum * header.e_phentsize;
1133     const elf_off ph_offset = header.e_phoff;
1134     DataExtractor data;
1135     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1136         return 0;
1137 
1138     uint32_t idx;
1139     lldb::offset_t offset;
1140     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1141     {
1142         if (program_headers[idx].Parse(data, &offset) == false)
1143             break;
1144     }
1145 
1146     if (idx < program_headers.size())
1147         program_headers.resize(idx);
1148 
1149     return program_headers.size();
1150 
1151 }
1152 
1153 //----------------------------------------------------------------------
1154 // ParseProgramHeaders
1155 //----------------------------------------------------------------------
1156 size_t
1157 ObjectFileELF::ParseProgramHeaders()
1158 {
1159     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1160 }
1161 
1162 lldb_private::Error
1163 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1164 {
1165     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1166     Error error;
1167 
1168     lldb::offset_t offset = 0;
1169 
1170     while (true)
1171     {
1172         // Parse the note header.  If this fails, bail out.
1173         ELFNote note = ELFNote();
1174         if (!note.Parse(data, &offset))
1175         {
1176             // We're done.
1177             return error;
1178         }
1179 
1180         // If a tag processor handles the tag, it should set processed to true, and
1181         // the loop will assume the tag processing has moved entirely past the note's payload.
1182         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1183         bool processed = false;
1184 
1185         if (log)
1186             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1187 
1188         // Process FreeBSD ELF notes.
1189         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1190             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1191             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1192         {
1193             // We'll consume the payload below.
1194             processed = true;
1195 
1196             // Pull out the min version info.
1197             uint32_t version_info;
1198             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1199             {
1200                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1201                 return error;
1202             }
1203 
1204             // Convert the version info into a major/minor number.
1205             const uint32_t version_major = version_info / 100000;
1206             const uint32_t version_minor = (version_info / 1000) % 100;
1207 
1208             char os_name[32];
1209             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1210 
1211             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1212             arch_spec.GetTriple ().setOSName (os_name);
1213             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1214 
1215             if (log)
1216                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1217         }
1218         // Process GNU ELF notes.
1219         else if (note.n_name == LLDB_NT_OWNER_GNU)
1220         {
1221             switch (note.n_type)
1222             {
1223                 case LLDB_NT_GNU_ABI_TAG:
1224                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1225                     {
1226                         // We'll consume the payload below.
1227                         processed = true;
1228 
1229                         // Pull out the min OS version supporting the ABI.
1230                         uint32_t version_info[4];
1231                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1232                         {
1233                             error.SetErrorString ("failed to read GNU ABI note payload");
1234                             return error;
1235                         }
1236 
1237                         // Set the OS per the OS field.
1238                         switch (version_info[0])
1239                         {
1240                             case LLDB_NT_GNU_ABI_OS_LINUX:
1241                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1242                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1243                                 if (log)
1244                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1245                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1246                                 break;
1247                             case LLDB_NT_GNU_ABI_OS_HURD:
1248                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1249                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1250                                 if (log)
1251                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1252                                 break;
1253                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1254                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1255                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1256                                 if (log)
1257                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1258                                 break;
1259                             default:
1260                                 if (log)
1261                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1262                                 break;
1263                         }
1264                     }
1265                     break;
1266 
1267                 case LLDB_NT_GNU_BUILD_ID_TAG:
1268                     // Only bother processing this if we don't already have the uuid set.
1269                     if (!uuid.IsValid())
1270                     {
1271                         // We'll consume the payload below.
1272                         processed = true;
1273 
1274                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1275                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1276                         {
1277                             uint8_t uuidbuf[20];
1278                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1279                             {
1280                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1281                                 return error;
1282                             }
1283 
1284                             // Save the build id as the UUID for the module.
1285                             uuid.SetBytes (uuidbuf, note.n_descsz);
1286                         }
1287                     }
1288                     break;
1289             }
1290         }
1291         // Process NetBSD ELF notes.
1292         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1293                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1294                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1295         {
1296 
1297             // We'll consume the payload below.
1298             processed = true;
1299 
1300             // Pull out the min version info.
1301             uint32_t version_info;
1302             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1303             {
1304                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1305                 return error;
1306             }
1307 
1308             // Set the elf OS version to NetBSD.  Also clear the vendor.
1309             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1310             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1311 
1312             if (log)
1313                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1314         }
1315         // Process CSR kalimba notes
1316         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1317                 (note.n_name == LLDB_NT_OWNER_CSR))
1318         {
1319             // We'll consume the payload below.
1320             processed = true;
1321             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1322             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1323 
1324             // TODO At some point the description string could be processed.
1325             // It could provide a steer towards the kalimba variant which
1326             // this ELF targets.
1327             if(note.n_descsz)
1328             {
1329                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1330                 (void)cstr;
1331             }
1332         }
1333 
1334         if (!processed)
1335             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1336     }
1337 
1338     return error;
1339 }
1340 
1341 
1342 //----------------------------------------------------------------------
1343 // GetSectionHeaderInfo
1344 //----------------------------------------------------------------------
1345 size_t
1346 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1347                                     lldb_private::DataExtractor &object_data,
1348                                     const elf::ELFHeader &header,
1349                                     lldb_private::UUID &uuid,
1350                                     std::string &gnu_debuglink_file,
1351                                     uint32_t &gnu_debuglink_crc,
1352                                     ArchSpec &arch_spec)
1353 {
1354     // Don't reparse the section headers if we already did that.
1355     if (!section_headers.empty())
1356         return section_headers.size();
1357 
1358     // Only initialize the arch_spec to okay defaults if they're not already set.
1359     // We'll refine this with note data as we parse the notes.
1360     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1361     {
1362         const uint32_t sub_type = subTypeFromElfHeader(header);
1363         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type);
1364 
1365         switch (arch_spec.GetAddressByteSize())
1366         {
1367         case 4:
1368             {
1369                 const ArchSpec host_arch32 = HostInfo::GetArchitecture(HostInfo::eArchKind32);
1370                 if (host_arch32.GetCore() == arch_spec.GetCore())
1371                 {
1372                     arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data());
1373                     arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data());
1374                 }
1375             }
1376             break;
1377         case 8:
1378             {
1379                 const ArchSpec host_arch64 = HostInfo::GetArchitecture(HostInfo::eArchKind64);
1380                 if (host_arch64.GetCore() == arch_spec.GetCore())
1381                 {
1382                     arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data());
1383                     arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data());
1384                 }
1385             }
1386             break;
1387         }
1388     }
1389 
1390     // If there are no section headers we are done.
1391     if (header.e_shnum == 0)
1392         return 0;
1393 
1394     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1395 
1396     section_headers.resize(header.e_shnum);
1397     if (section_headers.size() != header.e_shnum)
1398         return 0;
1399 
1400     const size_t sh_size = header.e_shnum * header.e_shentsize;
1401     const elf_off sh_offset = header.e_shoff;
1402     DataExtractor sh_data;
1403     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1404         return 0;
1405 
1406     uint32_t idx;
1407     lldb::offset_t offset;
1408     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1409     {
1410         if (section_headers[idx].Parse(sh_data, &offset) == false)
1411             break;
1412     }
1413     if (idx < section_headers.size())
1414         section_headers.resize(idx);
1415 
1416     const unsigned strtab_idx = header.e_shstrndx;
1417     if (strtab_idx && strtab_idx < section_headers.size())
1418     {
1419         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1420         const size_t byte_size = sheader.sh_size;
1421         const Elf64_Off offset = sheader.sh_offset;
1422         lldb_private::DataExtractor shstr_data;
1423 
1424         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1425         {
1426             for (SectionHeaderCollIter I = section_headers.begin();
1427                  I != section_headers.end(); ++I)
1428             {
1429                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1430                 const ELFSectionHeaderInfo &header = *I;
1431                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1432                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1433 
1434                 I->section_name = name;
1435 
1436                 if (name == g_sect_name_gnu_debuglink)
1437                 {
1438                     DataExtractor data;
1439                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1440                     {
1441                         lldb::offset_t gnu_debuglink_offset = 0;
1442                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1443                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1444                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1445                     }
1446                 }
1447 
1448                 // Process ELF note section entries.
1449                 if (header.sh_type == SHT_NOTE)
1450                 {
1451                     // Allow notes to refine module info.
1452                     DataExtractor data;
1453                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1454                     {
1455                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1456                         if (error.Fail ())
1457                         {
1458                             if (log)
1459                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1460                         }
1461                     }
1462                 }
1463             }
1464 
1465             return section_headers.size();
1466         }
1467     }
1468 
1469     section_headers.clear();
1470     return 0;
1471 }
1472 
1473 size_t
1474 ObjectFileELF::GetProgramHeaderCount()
1475 {
1476     return ParseProgramHeaders();
1477 }
1478 
1479 const elf::ELFProgramHeader *
1480 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1481 {
1482     if (!id || !ParseProgramHeaders())
1483         return NULL;
1484 
1485     if (--id < m_program_headers.size())
1486         return &m_program_headers[id];
1487 
1488     return NULL;
1489 }
1490 
1491 DataExtractor
1492 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1493 {
1494     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1495     if (segment_header == NULL)
1496         return DataExtractor();
1497     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1498 }
1499 
1500 //----------------------------------------------------------------------
1501 // ParseSectionHeaders
1502 //----------------------------------------------------------------------
1503 size_t
1504 ObjectFileELF::ParseSectionHeaders()
1505 {
1506     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1507 }
1508 
1509 const ObjectFileELF::ELFSectionHeaderInfo *
1510 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1511 {
1512     if (!id || !ParseSectionHeaders())
1513         return NULL;
1514 
1515     if (--id < m_section_headers.size())
1516         return &m_section_headers[id];
1517 
1518     return NULL;
1519 }
1520 
1521 void
1522 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1523 {
1524     if (!m_sections_ap.get() && ParseSectionHeaders())
1525     {
1526         m_sections_ap.reset(new SectionList());
1527 
1528         for (SectionHeaderCollIter I = m_section_headers.begin();
1529              I != m_section_headers.end(); ++I)
1530         {
1531             const ELFSectionHeaderInfo &header = *I;
1532 
1533             ConstString& name = I->section_name;
1534             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1535             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1536 
1537             static ConstString g_sect_name_text (".text");
1538             static ConstString g_sect_name_data (".data");
1539             static ConstString g_sect_name_bss (".bss");
1540             static ConstString g_sect_name_tdata (".tdata");
1541             static ConstString g_sect_name_tbss (".tbss");
1542             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1543             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1544             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1545             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1546             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1547             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1548             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1549             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1550             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1551             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1552             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1553             static ConstString g_sect_name_eh_frame (".eh_frame");
1554 
1555             SectionType sect_type = eSectionTypeOther;
1556 
1557             bool is_thread_specific = false;
1558 
1559             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1560             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1561             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1562             else if (name == g_sect_name_tdata)
1563             {
1564                 sect_type = eSectionTypeData;
1565                 is_thread_specific = true;
1566             }
1567             else if (name == g_sect_name_tbss)
1568             {
1569                 sect_type = eSectionTypeZeroFill;
1570                 is_thread_specific = true;
1571             }
1572             // .debug_abbrev – Abbreviations used in the .debug_info section
1573             // .debug_aranges – Lookup table for mapping addresses to compilation units
1574             // .debug_frame – Call frame information
1575             // .debug_info – The core DWARF information section
1576             // .debug_line – Line number information
1577             // .debug_loc – Location lists used in DW_AT_location attributes
1578             // .debug_macinfo – Macro information
1579             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1580             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1581             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1582             // .debug_str – String table used in .debug_info
1583             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1584             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1585             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1586             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1587             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1588             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1589             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1590             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1591             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1592             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1593             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1594             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1595             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1596             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1597             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1598 
1599             switch (header.sh_type)
1600             {
1601                 case SHT_SYMTAB:
1602                     assert (sect_type == eSectionTypeOther);
1603                     sect_type = eSectionTypeELFSymbolTable;
1604                     break;
1605                 case SHT_DYNSYM:
1606                     assert (sect_type == eSectionTypeOther);
1607                     sect_type = eSectionTypeELFDynamicSymbols;
1608                     break;
1609                 case SHT_RELA:
1610                 case SHT_REL:
1611                     assert (sect_type == eSectionTypeOther);
1612                     sect_type = eSectionTypeELFRelocationEntries;
1613                     break;
1614                 case SHT_DYNAMIC:
1615                     assert (sect_type == eSectionTypeOther);
1616                     sect_type = eSectionTypeELFDynamicLinkInfo;
1617                     break;
1618             }
1619 
1620             if (eSectionTypeOther == sect_type)
1621             {
1622                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1623                 // supports linkscripts which (can) give rise to various arbitarily named
1624                 // sections being "Code" or "Data".
1625                 sect_type = kalimbaSectionType(m_header, header);
1626             }
1627 
1628             const uint32_t target_bytes_size =
1629                 eSectionTypeData == sect_type ?
1630                 m_arch_spec.GetDataByteSize() :
1631                     eSectionTypeCode == sect_type ?
1632                     m_arch_spec.GetCodeByteSize() : 1;
1633 
1634             elf::elf_xword log2align = (header.sh_addralign==0)
1635                                         ? 0
1636                                         : llvm::Log2_64(header.sh_addralign);
1637             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1638                                               this,               // ObjectFile to which this section belongs and should read section data from.
1639                                               SectionIndex(I),    // Section ID.
1640                                               name,               // Section name.
1641                                               sect_type,          // Section type.
1642                                               header.sh_addr,     // VM address.
1643                                               vm_size,            // VM size in bytes of this section.
1644                                               header.sh_offset,   // Offset of this section in the file.
1645                                               file_size,          // Size of the section as found in the file.
1646                                               log2align,          // Alignment of the section
1647                                               header.sh_flags,    // Flags for this section.
1648                                               target_bytes_size));// Number of host bytes per target byte
1649 
1650             if (is_thread_specific)
1651                 section_sp->SetIsThreadSpecific (is_thread_specific);
1652             m_sections_ap->AddSection(section_sp);
1653         }
1654     }
1655 
1656     if (m_sections_ap.get())
1657     {
1658         if (GetType() == eTypeDebugInfo)
1659         {
1660             static const SectionType g_sections[] =
1661             {
1662                 eSectionTypeDWARFDebugAranges,
1663                 eSectionTypeDWARFDebugInfo,
1664                 eSectionTypeDWARFDebugAbbrev,
1665                 eSectionTypeDWARFDebugFrame,
1666                 eSectionTypeDWARFDebugLine,
1667                 eSectionTypeDWARFDebugStr,
1668                 eSectionTypeDWARFDebugLoc,
1669                 eSectionTypeDWARFDebugMacInfo,
1670                 eSectionTypeDWARFDebugPubNames,
1671                 eSectionTypeDWARFDebugPubTypes,
1672                 eSectionTypeDWARFDebugRanges,
1673                 eSectionTypeELFSymbolTable,
1674             };
1675             SectionList *elf_section_list = m_sections_ap.get();
1676             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1677             {
1678                 SectionType section_type = g_sections[idx];
1679                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1680                 if (section_sp)
1681                 {
1682                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1683                     if (module_section_sp)
1684                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1685                     else
1686                         unified_section_list.AddSection (section_sp);
1687                 }
1688             }
1689         }
1690         else
1691         {
1692             unified_section_list = *m_sections_ap;
1693         }
1694     }
1695 }
1696 
1697 // private
1698 unsigned
1699 ObjectFileELF::ParseSymbols (Symtab *symtab,
1700                              user_id_t start_id,
1701                              SectionList *section_list,
1702                              const size_t num_symbols,
1703                              const DataExtractor &symtab_data,
1704                              const DataExtractor &strtab_data)
1705 {
1706     ELFSymbol symbol;
1707     lldb::offset_t offset = 0;
1708 
1709     static ConstString text_section_name(".text");
1710     static ConstString init_section_name(".init");
1711     static ConstString fini_section_name(".fini");
1712     static ConstString ctors_section_name(".ctors");
1713     static ConstString dtors_section_name(".dtors");
1714 
1715     static ConstString data_section_name(".data");
1716     static ConstString rodata_section_name(".rodata");
1717     static ConstString rodata1_section_name(".rodata1");
1718     static ConstString data2_section_name(".data1");
1719     static ConstString bss_section_name(".bss");
1720 
1721     //StreamFile strm(stdout, false);
1722     unsigned i;
1723     for (i = 0; i < num_symbols; ++i)
1724     {
1725         if (symbol.Parse(symtab_data, &offset) == false)
1726             break;
1727 
1728         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1729 
1730         // No need to add non-section symbols that have no names
1731         if (symbol.getType() != STT_SECTION &&
1732             (symbol_name == NULL || symbol_name[0] == '\0'))
1733             continue;
1734 
1735         //symbol.Dump (&strm, i, &strtab_data, section_list);
1736 
1737         SectionSP symbol_section_sp;
1738         SymbolType symbol_type = eSymbolTypeInvalid;
1739         Elf64_Half symbol_idx = symbol.st_shndx;
1740 
1741         switch (symbol_idx)
1742         {
1743         case SHN_ABS:
1744             symbol_type = eSymbolTypeAbsolute;
1745             break;
1746         case SHN_UNDEF:
1747             symbol_type = eSymbolTypeUndefined;
1748             break;
1749         default:
1750             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1751             break;
1752         }
1753 
1754         // If a symbol is undefined do not process it further even if it has a STT type
1755         if (symbol_type != eSymbolTypeUndefined)
1756         {
1757             switch (symbol.getType())
1758             {
1759             default:
1760             case STT_NOTYPE:
1761                 // The symbol's type is not specified.
1762                 break;
1763 
1764             case STT_OBJECT:
1765                 // The symbol is associated with a data object, such as a variable,
1766                 // an array, etc.
1767                 symbol_type = eSymbolTypeData;
1768                 break;
1769 
1770             case STT_FUNC:
1771                 // The symbol is associated with a function or other executable code.
1772                 symbol_type = eSymbolTypeCode;
1773                 break;
1774 
1775             case STT_SECTION:
1776                 // The symbol is associated with a section. Symbol table entries of
1777                 // this type exist primarily for relocation and normally have
1778                 // STB_LOCAL binding.
1779                 break;
1780 
1781             case STT_FILE:
1782                 // Conventionally, the symbol's name gives the name of the source
1783                 // file associated with the object file. A file symbol has STB_LOCAL
1784                 // binding, its section index is SHN_ABS, and it precedes the other
1785                 // STB_LOCAL symbols for the file, if it is present.
1786                 symbol_type = eSymbolTypeSourceFile;
1787                 break;
1788 
1789             case STT_GNU_IFUNC:
1790                 // The symbol is associated with an indirect function. The actual
1791                 // function will be resolved if it is referenced.
1792                 symbol_type = eSymbolTypeResolver;
1793                 break;
1794             }
1795         }
1796 
1797         if (symbol_type == eSymbolTypeInvalid)
1798         {
1799             if (symbol_section_sp)
1800             {
1801                 const ConstString &sect_name = symbol_section_sp->GetName();
1802                 if (sect_name == text_section_name ||
1803                     sect_name == init_section_name ||
1804                     sect_name == fini_section_name ||
1805                     sect_name == ctors_section_name ||
1806                     sect_name == dtors_section_name)
1807                 {
1808                     symbol_type = eSymbolTypeCode;
1809                 }
1810                 else if (sect_name == data_section_name ||
1811                          sect_name == data2_section_name ||
1812                          sect_name == rodata_section_name ||
1813                          sect_name == rodata1_section_name ||
1814                          sect_name == bss_section_name)
1815                 {
1816                     symbol_type = eSymbolTypeData;
1817                 }
1818             }
1819         }
1820 
1821         ArchSpec arch;
1822         int64_t symbol_value_offset = 0;
1823         uint32_t additional_flags = 0;
1824 
1825         if (GetArchitecture(arch) &&
1826             arch.GetMachine() == llvm::Triple::arm)
1827         {
1828             // ELF symbol tables may contain some mapping symbols. They provide
1829             // information about the underlying data. There are three of them
1830             // currently defined:
1831             //   $a[.<any>]* - marks an ARM instruction sequence
1832             //   $t[.<any>]* - marks a THUMB instruction sequence
1833             //   $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1834             // These symbols interfere with normal debugger operations and we
1835             // don't need them. We can drop them here.
1836 
1837             static const llvm::StringRef g_armelf_arm_marker("$a");
1838             static const llvm::StringRef g_armelf_thumb_marker("$t");
1839             static const llvm::StringRef g_armelf_data_marker("$d");
1840             llvm::StringRef symbol_name_ref(symbol_name);
1841 
1842             if (symbol_name &&
1843                 (symbol_name_ref.startswith(g_armelf_arm_marker) ||
1844                  symbol_name_ref.startswith(g_armelf_thumb_marker) ||
1845                  symbol_name_ref.startswith(g_armelf_data_marker)))
1846                 continue;
1847 
1848             // THUMB functions have the lower bit of their address set. Fixup
1849             // the actual address and mark the symbol as THUMB.
1850             if (symbol_type == eSymbolTypeCode && symbol.st_value & 1)
1851             {
1852                 // Substracting 1 from the address effectively unsets
1853                 // the low order bit, which results in the address
1854                 // actually pointing to the beginning of the symbol.
1855                 // This delta will be used below in conjuction with
1856                 // symbol.st_value to produce the final symbol_value
1857                 // that we store in the symtab.
1858                 symbol_value_offset = -1;
1859                 additional_flags = ARM_ELF_SYM_IS_THUMB;
1860             }
1861         }
1862 
1863         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
1864         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
1865         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
1866         {
1867             ModuleSP module_sp(GetModule());
1868             if (module_sp)
1869             {
1870                 SectionList *module_section_list = module_sp->GetSectionList();
1871                 if (module_section_list && module_section_list != section_list)
1872                 {
1873                     const ConstString &sect_name = symbol_section_sp->GetName();
1874                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
1875                     if (section_sp && section_sp->GetFileSize())
1876                     {
1877                         symbol_section_sp = section_sp;
1878                     }
1879                 }
1880             }
1881         }
1882 
1883         // symbol_value_offset may contain 0 for ARM symbols or -1 for
1884         // THUMB symbols. See above for more details.
1885         uint64_t symbol_value = symbol.st_value | symbol_value_offset;
1886         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
1887             symbol_value -= symbol_section_sp->GetFileAddress();
1888         bool is_global = symbol.getBinding() == STB_GLOBAL;
1889         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
1890         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
1891 
1892         Symbol dc_symbol(
1893             i + start_id,       // ID is the original symbol table index.
1894             symbol_name,        // Symbol name.
1895             is_mangled,         // Is the symbol name mangled?
1896             symbol_type,        // Type of this symbol
1897             is_global,          // Is this globally visible?
1898             false,              // Is this symbol debug info?
1899             false,              // Is this symbol a trampoline?
1900             false,              // Is this symbol artificial?
1901             symbol_section_sp,  // Section in which this symbol is defined or null.
1902             symbol_value,       // Offset in section or symbol value.
1903             symbol.st_size,     // Size in bytes of this symbol.
1904             true,               // Size is valid
1905             flags);             // Symbol flags.
1906         symtab->AddSymbol(dc_symbol);
1907     }
1908 
1909     return i;
1910 }
1911 
1912 unsigned
1913 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
1914 {
1915     if (symtab->GetObjectFile() != this)
1916     {
1917         // If the symbol table section is owned by a different object file, have it do the
1918         // parsing.
1919         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
1920         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
1921     }
1922 
1923     // Get section list for this object file.
1924     SectionList *section_list = m_sections_ap.get();
1925     if (!section_list)
1926         return 0;
1927 
1928     user_id_t symtab_id = symtab->GetID();
1929     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
1930     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
1931            symtab_hdr->sh_type == SHT_DYNSYM);
1932 
1933     // sh_link: section header index of associated string table.
1934     // Section ID's are ones based.
1935     user_id_t strtab_id = symtab_hdr->sh_link + 1;
1936     Section *strtab = section_list->FindSectionByID(strtab_id).get();
1937 
1938     if (symtab && strtab)
1939     {
1940         assert (symtab->GetObjectFile() == this);
1941         assert (strtab->GetObjectFile() == this);
1942 
1943         DataExtractor symtab_data;
1944         DataExtractor strtab_data;
1945         if (ReadSectionData(symtab, symtab_data) &&
1946             ReadSectionData(strtab, strtab_data))
1947         {
1948             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
1949 
1950             return ParseSymbols(symbol_table, start_id, section_list,
1951                                 num_symbols, symtab_data, strtab_data);
1952         }
1953     }
1954 
1955     return 0;
1956 }
1957 
1958 size_t
1959 ObjectFileELF::ParseDynamicSymbols()
1960 {
1961     if (m_dynamic_symbols.size())
1962         return m_dynamic_symbols.size();
1963 
1964     SectionList *section_list = GetSectionList();
1965     if (!section_list)
1966         return 0;
1967 
1968     // Find the SHT_DYNAMIC section.
1969     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1970     if (!dynsym)
1971         return 0;
1972     assert (dynsym->GetObjectFile() == this);
1973 
1974     ELFDynamic symbol;
1975     DataExtractor dynsym_data;
1976     if (ReadSectionData(dynsym, dynsym_data))
1977     {
1978         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1979         lldb::offset_t cursor = 0;
1980 
1981         while (cursor < section_size)
1982         {
1983             if (!symbol.Parse(dynsym_data, &cursor))
1984                 break;
1985 
1986             m_dynamic_symbols.push_back(symbol);
1987         }
1988     }
1989 
1990     return m_dynamic_symbols.size();
1991 }
1992 
1993 const ELFDynamic *
1994 ObjectFileELF::FindDynamicSymbol(unsigned tag)
1995 {
1996     if (!ParseDynamicSymbols())
1997         return NULL;
1998 
1999     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2000     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2001     for ( ; I != E; ++I)
2002     {
2003         ELFDynamic *symbol = &*I;
2004 
2005         if (symbol->d_tag == tag)
2006             return symbol;
2007     }
2008 
2009     return NULL;
2010 }
2011 
2012 unsigned
2013 ObjectFileELF::PLTRelocationType()
2014 {
2015     // DT_PLTREL
2016     //  This member specifies the type of relocation entry to which the
2017     //  procedure linkage table refers. The d_val member holds DT_REL or
2018     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2019     //  must use the same relocation.
2020     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2021 
2022     if (symbol)
2023         return symbol->d_val;
2024 
2025     return 0;
2026 }
2027 
2028 static unsigned
2029 ParsePLTRelocations(Symtab *symbol_table,
2030                     user_id_t start_id,
2031                     unsigned rel_type,
2032                     const ELFHeader *hdr,
2033                     const ELFSectionHeader *rel_hdr,
2034                     const ELFSectionHeader *plt_hdr,
2035                     const ELFSectionHeader *sym_hdr,
2036                     const lldb::SectionSP &plt_section_sp,
2037                     DataExtractor &rel_data,
2038                     DataExtractor &symtab_data,
2039                     DataExtractor &strtab_data)
2040 {
2041     ELFRelocation rel(rel_type);
2042     ELFSymbol symbol;
2043     lldb::offset_t offset = 0;
2044     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2045     // So round the entsize up by the alignment if addralign is set.
2046     const elf_xword plt_entsize = plt_hdr->sh_addralign ?
2047         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2048     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2049 
2050     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2051     reloc_info_fn reloc_type;
2052     reloc_info_fn reloc_symbol;
2053 
2054     if (hdr->Is32Bit())
2055     {
2056         reloc_type = ELFRelocation::RelocType32;
2057         reloc_symbol = ELFRelocation::RelocSymbol32;
2058     }
2059     else
2060     {
2061         reloc_type = ELFRelocation::RelocType64;
2062         reloc_symbol = ELFRelocation::RelocSymbol64;
2063     }
2064 
2065     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2066     unsigned i;
2067     for (i = 0; i < num_relocations; ++i)
2068     {
2069         if (rel.Parse(rel_data, &offset) == false)
2070             break;
2071 
2072         if (reloc_type(rel) != slot_type)
2073             continue;
2074 
2075         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2076         uint64_t plt_index = (i + 1) * plt_entsize;
2077 
2078         if (!symbol.Parse(symtab_data, &symbol_offset))
2079             break;
2080 
2081         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2082         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2083 
2084         Symbol jump_symbol(
2085             i + start_id,    // Symbol table index
2086             symbol_name,     // symbol name.
2087             is_mangled,      // is the symbol name mangled?
2088             eSymbolTypeTrampoline, // Type of this symbol
2089             false,           // Is this globally visible?
2090             false,           // Is this symbol debug info?
2091             true,            // Is this symbol a trampoline?
2092             true,            // Is this symbol artificial?
2093             plt_section_sp,  // Section in which this symbol is defined or null.
2094             plt_index,       // Offset in section or symbol value.
2095             plt_entsize,     // Size in bytes of this symbol.
2096             true,            // Size is valid
2097             0);              // Symbol flags.
2098 
2099         symbol_table->AddSymbol(jump_symbol);
2100     }
2101 
2102     return i;
2103 }
2104 
2105 unsigned
2106 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2107                                       user_id_t start_id,
2108                                       const ELFSectionHeaderInfo *rel_hdr,
2109                                       user_id_t rel_id)
2110 {
2111     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2112 
2113     // The link field points to the associated symbol table. The info field
2114     // points to the section holding the plt.
2115     user_id_t symtab_id = rel_hdr->sh_link;
2116     user_id_t plt_id = rel_hdr->sh_info;
2117 
2118     if (!symtab_id || !plt_id)
2119         return 0;
2120 
2121     // Section ID's are ones based;
2122     symtab_id++;
2123     plt_id++;
2124 
2125     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2126     if (!plt_hdr)
2127         return 0;
2128 
2129     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2130     if (!sym_hdr)
2131         return 0;
2132 
2133     SectionList *section_list = m_sections_ap.get();
2134     if (!section_list)
2135         return 0;
2136 
2137     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2138     if (!rel_section)
2139         return 0;
2140 
2141     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2142     if (!plt_section_sp)
2143         return 0;
2144 
2145     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2146     if (!symtab)
2147         return 0;
2148 
2149     // sh_link points to associated string table.
2150     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2151     if (!strtab)
2152         return 0;
2153 
2154     DataExtractor rel_data;
2155     if (!ReadSectionData(rel_section, rel_data))
2156         return 0;
2157 
2158     DataExtractor symtab_data;
2159     if (!ReadSectionData(symtab, symtab_data))
2160         return 0;
2161 
2162     DataExtractor strtab_data;
2163     if (!ReadSectionData(strtab, strtab_data))
2164         return 0;
2165 
2166     unsigned rel_type = PLTRelocationType();
2167     if (!rel_type)
2168         return 0;
2169 
2170     return ParsePLTRelocations (symbol_table,
2171                                 start_id,
2172                                 rel_type,
2173                                 &m_header,
2174                                 rel_hdr,
2175                                 plt_hdr,
2176                                 sym_hdr,
2177                                 plt_section_sp,
2178                                 rel_data,
2179                                 symtab_data,
2180                                 strtab_data);
2181 }
2182 
2183 unsigned
2184 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2185                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2186                 DataExtractor &rel_data, DataExtractor &symtab_data,
2187                 DataExtractor &debug_data, Section* rel_section)
2188 {
2189     ELFRelocation rel(rel_hdr->sh_type);
2190     lldb::addr_t offset = 0;
2191     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2192     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2193     reloc_info_fn reloc_type;
2194     reloc_info_fn reloc_symbol;
2195 
2196     if (hdr->Is32Bit())
2197     {
2198         reloc_type = ELFRelocation::RelocType32;
2199         reloc_symbol = ELFRelocation::RelocSymbol32;
2200     }
2201     else
2202     {
2203         reloc_type = ELFRelocation::RelocType64;
2204         reloc_symbol = ELFRelocation::RelocSymbol64;
2205     }
2206 
2207     for (unsigned i = 0; i < num_relocations; ++i)
2208     {
2209         if (rel.Parse(rel_data, &offset) == false)
2210             break;
2211 
2212         Symbol* symbol = NULL;
2213 
2214         if (hdr->Is32Bit())
2215         {
2216             switch (reloc_type(rel)) {
2217             case R_386_32:
2218             case R_386_PC32:
2219             default:
2220                 assert(false && "unexpected relocation type");
2221             }
2222         } else {
2223             switch (reloc_type(rel)) {
2224             case R_X86_64_64:
2225             {
2226                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2227                 if (symbol)
2228                 {
2229                     addr_t value = symbol->GetAddress().GetFileAddress();
2230                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2231                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2232                     *dst = value + ELFRelocation::RelocAddend64(rel);
2233                 }
2234                 break;
2235             }
2236             case R_X86_64_32:
2237             case R_X86_64_32S:
2238             {
2239                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2240                 if (symbol)
2241                 {
2242                     addr_t value = symbol->GetAddress().GetFileAddress();
2243                     value += ELFRelocation::RelocAddend32(rel);
2244                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2245                            (reloc_type(rel) == R_X86_64_32S &&
2246                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2247                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2248                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2249                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2250                     *dst = truncated_addr;
2251                 }
2252                 break;
2253             }
2254             case R_X86_64_PC32:
2255             default:
2256                 assert(false && "unexpected relocation type");
2257             }
2258         }
2259     }
2260 
2261     return 0;
2262 }
2263 
2264 unsigned
2265 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2266 {
2267     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2268 
2269     // Parse in the section list if needed.
2270     SectionList *section_list = GetSectionList();
2271     if (!section_list)
2272         return 0;
2273 
2274     // Section ID's are ones based.
2275     user_id_t symtab_id = rel_hdr->sh_link + 1;
2276     user_id_t debug_id = rel_hdr->sh_info + 1;
2277 
2278     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2279     if (!symtab_hdr)
2280         return 0;
2281 
2282     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2283     if (!debug_hdr)
2284         return 0;
2285 
2286     Section *rel = section_list->FindSectionByID(rel_id).get();
2287     if (!rel)
2288         return 0;
2289 
2290     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2291     if (!symtab)
2292         return 0;
2293 
2294     Section *debug = section_list->FindSectionByID(debug_id).get();
2295     if (!debug)
2296         return 0;
2297 
2298     DataExtractor rel_data;
2299     DataExtractor symtab_data;
2300     DataExtractor debug_data;
2301 
2302     if (ReadSectionData(rel, rel_data) &&
2303         ReadSectionData(symtab, symtab_data) &&
2304         ReadSectionData(debug, debug_data))
2305     {
2306         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2307                         rel_data, symtab_data, debug_data, debug);
2308     }
2309 
2310     return 0;
2311 }
2312 
2313 Symtab *
2314 ObjectFileELF::GetSymtab()
2315 {
2316     ModuleSP module_sp(GetModule());
2317     if (!module_sp)
2318         return NULL;
2319 
2320     // We always want to use the main object file so we (hopefully) only have one cached copy
2321     // of our symtab, dynamic sections, etc.
2322     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2323     if (module_obj_file && module_obj_file != this)
2324         return module_obj_file->GetSymtab();
2325 
2326     if (m_symtab_ap.get() == NULL)
2327     {
2328         SectionList *section_list = GetSectionList();
2329         if (!section_list)
2330             return NULL;
2331 
2332         uint64_t symbol_id = 0;
2333         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2334 
2335         m_symtab_ap.reset(new Symtab(this));
2336 
2337         // Sharable objects and dynamic executables usually have 2 distinct symbol
2338         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2339         // version of the symtab that only contains global symbols. The information found
2340         // in the dynsym is therefore also found in the symtab, while the reverse is not
2341         // necessarily true.
2342         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2343         if (!symtab)
2344         {
2345             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2346             // then use the dynsym section which should always be there.
2347             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2348         }
2349         if (symtab)
2350             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2351 
2352         // DT_JMPREL
2353         //      If present, this entry's d_ptr member holds the address of relocation
2354         //      entries associated solely with the procedure linkage table. Separating
2355         //      these relocation entries lets the dynamic linker ignore them during
2356         //      process initialization, if lazy binding is enabled. If this entry is
2357         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2358         //      also be present.
2359         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2360         if (symbol)
2361         {
2362             // Synthesize trampoline symbols to help navigate the PLT.
2363             addr_t addr = symbol->d_ptr;
2364             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2365             if (reloc_section)
2366             {
2367                 user_id_t reloc_id = reloc_section->GetID();
2368                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2369                 assert(reloc_header);
2370 
2371                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2372             }
2373         }
2374     }
2375 
2376     for (SectionHeaderCollIter I = m_section_headers.begin();
2377          I != m_section_headers.end(); ++I)
2378     {
2379         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2380         {
2381             if (CalculateType() == eTypeObjectFile)
2382             {
2383                 const char *section_name = I->section_name.AsCString("");
2384                 if (strstr(section_name, ".rela.debug") ||
2385                     strstr(section_name, ".rel.debug"))
2386                 {
2387                     const ELFSectionHeader &reloc_header = *I;
2388                     user_id_t reloc_id = SectionIndex(I);
2389                     RelocateDebugSections(&reloc_header, reloc_id);
2390                 }
2391             }
2392         }
2393     }
2394     return m_symtab_ap.get();
2395 }
2396 
2397 Symbol *
2398 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2399 {
2400     if (!m_symtab_ap.get())
2401         return nullptr; // GetSymtab() should be called first.
2402 
2403     const SectionList *section_list = GetSectionList();
2404     if (!section_list)
2405         return nullptr;
2406 
2407     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2408     {
2409         AddressRange range;
2410         if (eh_frame->GetAddressRange (so_addr, range))
2411         {
2412             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2413             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2414             if (symbol)
2415                 return symbol;
2416 
2417             // Note that a (stripped) symbol won't be found by GetSymtab()...
2418             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2419             if (eh_sym_section_sp.get())
2420             {
2421                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2422                 addr_t offset = file_addr - section_base;
2423                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2424 
2425                 Symbol eh_symbol(
2426                         symbol_id,            // Symbol table index.
2427                         "???",                // Symbol name.
2428                         false,                // Is the symbol name mangled?
2429                         eSymbolTypeCode,      // Type of this symbol.
2430                         true,                 // Is this globally visible?
2431                         false,                // Is this symbol debug info?
2432                         false,                // Is this symbol a trampoline?
2433                         true,                 // Is this symbol artificial?
2434                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2435                         offset,               // Offset in section or symbol value.
2436                         range.GetByteSize(),  // Size in bytes of this symbol.
2437                         true,                 // Size is valid.
2438                         0);                   // Symbol flags.
2439                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2440                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2441             }
2442         }
2443     }
2444     return nullptr;
2445 }
2446 
2447 
2448 bool
2449 ObjectFileELF::IsStripped ()
2450 {
2451     // TODO: determine this for ELF
2452     return false;
2453 }
2454 
2455 //===----------------------------------------------------------------------===//
2456 // Dump
2457 //
2458 // Dump the specifics of the runtime file container (such as any headers
2459 // segments, sections, etc).
2460 //----------------------------------------------------------------------
2461 void
2462 ObjectFileELF::Dump(Stream *s)
2463 {
2464     DumpELFHeader(s, m_header);
2465     s->EOL();
2466     DumpELFProgramHeaders(s);
2467     s->EOL();
2468     DumpELFSectionHeaders(s);
2469     s->EOL();
2470     SectionList *section_list = GetSectionList();
2471     if (section_list)
2472         section_list->Dump(s, NULL, true, UINT32_MAX);
2473     Symtab *symtab = GetSymtab();
2474     if (symtab)
2475         symtab->Dump(s, NULL, eSortOrderNone);
2476     s->EOL();
2477     DumpDependentModules(s);
2478     s->EOL();
2479 }
2480 
2481 //----------------------------------------------------------------------
2482 // DumpELFHeader
2483 //
2484 // Dump the ELF header to the specified output stream
2485 //----------------------------------------------------------------------
2486 void
2487 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2488 {
2489     s->PutCString("ELF Header\n");
2490     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2491     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2492               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2493     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2494               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2495     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2496               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2497 
2498     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2499     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2500     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2501     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2502     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2503 
2504     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2505     DumpELFHeader_e_type(s, header.e_type);
2506     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2507     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2508     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2509     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2510     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2511     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2512     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2513     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2514     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2515     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2516     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2517     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2518 }
2519 
2520 //----------------------------------------------------------------------
2521 // DumpELFHeader_e_type
2522 //
2523 // Dump an token value for the ELF header member e_type
2524 //----------------------------------------------------------------------
2525 void
2526 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2527 {
2528     switch (e_type)
2529     {
2530     case ET_NONE:   *s << "ET_NONE"; break;
2531     case ET_REL:    *s << "ET_REL"; break;
2532     case ET_EXEC:   *s << "ET_EXEC"; break;
2533     case ET_DYN:    *s << "ET_DYN"; break;
2534     case ET_CORE:   *s << "ET_CORE"; break;
2535     default:
2536         break;
2537     }
2538 }
2539 
2540 //----------------------------------------------------------------------
2541 // DumpELFHeader_e_ident_EI_DATA
2542 //
2543 // Dump an token value for the ELF header member e_ident[EI_DATA]
2544 //----------------------------------------------------------------------
2545 void
2546 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2547 {
2548     switch (ei_data)
2549     {
2550     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2551     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2552     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2553     default:
2554         break;
2555     }
2556 }
2557 
2558 
2559 //----------------------------------------------------------------------
2560 // DumpELFProgramHeader
2561 //
2562 // Dump a single ELF program header to the specified output stream
2563 //----------------------------------------------------------------------
2564 void
2565 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2566 {
2567     DumpELFProgramHeader_p_type(s, ph.p_type);
2568     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2569     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2570 
2571     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2572     s->Printf(") %8.8" PRIx64, ph.p_align);
2573 }
2574 
2575 //----------------------------------------------------------------------
2576 // DumpELFProgramHeader_p_type
2577 //
2578 // Dump an token value for the ELF program header member p_type which
2579 // describes the type of the program header
2580 // ----------------------------------------------------------------------
2581 void
2582 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2583 {
2584     const int kStrWidth = 15;
2585     switch (p_type)
2586     {
2587     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2588     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2589     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2590     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2591     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2592     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2593     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2594     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2595     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2596     default:
2597         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2598         break;
2599     }
2600 }
2601 
2602 
2603 //----------------------------------------------------------------------
2604 // DumpELFProgramHeader_p_flags
2605 //
2606 // Dump an token value for the ELF program header member p_flags
2607 //----------------------------------------------------------------------
2608 void
2609 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2610 {
2611     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2612         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2613         << ((p_flags & PF_W) ? "PF_W" : "    ")
2614         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2615         << ((p_flags & PF_R) ? "PF_R" : "    ");
2616 }
2617 
2618 //----------------------------------------------------------------------
2619 // DumpELFProgramHeaders
2620 //
2621 // Dump all of the ELF program header to the specified output stream
2622 //----------------------------------------------------------------------
2623 void
2624 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2625 {
2626     if (ParseProgramHeaders())
2627     {
2628         s->PutCString("Program Headers\n");
2629         s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2630                       "p_filesz p_memsz  p_flags                   p_align\n");
2631         s->PutCString("==== --------------- -------- -------- -------- "
2632                       "-------- -------- ------------------------- --------\n");
2633 
2634         uint32_t idx = 0;
2635         for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2636              I != m_program_headers.end(); ++I, ++idx)
2637         {
2638             s->Printf("[%2u] ", idx);
2639             ObjectFileELF::DumpELFProgramHeader(s, *I);
2640             s->EOL();
2641         }
2642     }
2643 }
2644 
2645 //----------------------------------------------------------------------
2646 // DumpELFSectionHeader
2647 //
2648 // Dump a single ELF section header to the specified output stream
2649 //----------------------------------------------------------------------
2650 void
2651 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2652 {
2653     s->Printf("%8.8x ", sh.sh_name);
2654     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2655     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2656     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2657     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2658     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2659     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2660 }
2661 
2662 //----------------------------------------------------------------------
2663 // DumpELFSectionHeader_sh_type
2664 //
2665 // Dump an token value for the ELF section header member sh_type which
2666 // describes the type of the section
2667 //----------------------------------------------------------------------
2668 void
2669 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2670 {
2671     const int kStrWidth = 12;
2672     switch (sh_type)
2673     {
2674     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2675     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2676     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2677     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2678     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2679     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2680     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2681     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2682     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2683     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2684     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2685     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2686     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2687     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2688     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2689     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2690     default:
2691         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2692         break;
2693     }
2694 }
2695 
2696 //----------------------------------------------------------------------
2697 // DumpELFSectionHeader_sh_flags
2698 //
2699 // Dump an token value for the ELF section header member sh_flags
2700 //----------------------------------------------------------------------
2701 void
2702 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2703 {
2704     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2705         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2706         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2707         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2708         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2709 }
2710 
2711 //----------------------------------------------------------------------
2712 // DumpELFSectionHeaders
2713 //
2714 // Dump all of the ELF section header to the specified output stream
2715 //----------------------------------------------------------------------
2716 void
2717 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2718 {
2719     if (!ParseSectionHeaders())
2720         return;
2721 
2722     s->PutCString("Section Headers\n");
2723     s->PutCString("IDX  name     type         flags                            "
2724                   "addr     offset   size     link     info     addralgn "
2725                   "entsize  Name\n");
2726     s->PutCString("==== -------- ------------ -------------------------------- "
2727                   "-------- -------- -------- -------- -------- -------- "
2728                   "-------- ====================\n");
2729 
2730     uint32_t idx = 0;
2731     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2732          I != m_section_headers.end(); ++I, ++idx)
2733     {
2734         s->Printf("[%2u] ", idx);
2735         ObjectFileELF::DumpELFSectionHeader(s, *I);
2736         const char* section_name = I->section_name.AsCString("");
2737         if (section_name)
2738             *s << ' ' << section_name << "\n";
2739     }
2740 }
2741 
2742 void
2743 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2744 {
2745     size_t num_modules = ParseDependentModules();
2746 
2747     if (num_modules > 0)
2748     {
2749         s->PutCString("Dependent Modules:\n");
2750         for (unsigned i = 0; i < num_modules; ++i)
2751         {
2752             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2753             s->Printf("   %s\n", spec.GetFilename().GetCString());
2754         }
2755     }
2756 }
2757 
2758 bool
2759 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2760 {
2761     if (!ParseHeader())
2762         return false;
2763 
2764     if (m_section_headers.empty())
2765     {
2766         // Allow elf notes to be parsed which may affect the detected architecture.
2767         ParseSectionHeaders();
2768     }
2769 
2770     arch = m_arch_spec;
2771     return true;
2772 }
2773 
2774 ObjectFile::Type
2775 ObjectFileELF::CalculateType()
2776 {
2777     switch (m_header.e_type)
2778     {
2779         case llvm::ELF::ET_NONE:
2780             // 0 - No file type
2781             return eTypeUnknown;
2782 
2783         case llvm::ELF::ET_REL:
2784             // 1 - Relocatable file
2785             return eTypeObjectFile;
2786 
2787         case llvm::ELF::ET_EXEC:
2788             // 2 - Executable file
2789             return eTypeExecutable;
2790 
2791         case llvm::ELF::ET_DYN:
2792             // 3 - Shared object file
2793             return eTypeSharedLibrary;
2794 
2795         case ET_CORE:
2796             // 4 - Core file
2797             return eTypeCoreFile;
2798 
2799         default:
2800             break;
2801     }
2802     return eTypeUnknown;
2803 }
2804 
2805 ObjectFile::Strata
2806 ObjectFileELF::CalculateStrata()
2807 {
2808     switch (m_header.e_type)
2809     {
2810         case llvm::ELF::ET_NONE:
2811             // 0 - No file type
2812             return eStrataUnknown;
2813 
2814         case llvm::ELF::ET_REL:
2815             // 1 - Relocatable file
2816             return eStrataUnknown;
2817 
2818         case llvm::ELF::ET_EXEC:
2819             // 2 - Executable file
2820             // TODO: is there any way to detect that an executable is a kernel
2821             // related executable by inspecting the program headers, section
2822             // headers, symbols, or any other flag bits???
2823             return eStrataUser;
2824 
2825         case llvm::ELF::ET_DYN:
2826             // 3 - Shared object file
2827             // TODO: is there any way to detect that an shared library is a kernel
2828             // related executable by inspecting the program headers, section
2829             // headers, symbols, or any other flag bits???
2830             return eStrataUnknown;
2831 
2832         case ET_CORE:
2833             // 4 - Core file
2834             // TODO: is there any way to detect that an core file is a kernel
2835             // related executable by inspecting the program headers, section
2836             // headers, symbols, or any other flag bits???
2837             return eStrataUnknown;
2838 
2839         default:
2840             break;
2841     }
2842     return eStrataUnknown;
2843 }
2844 
2845