xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision eb882fc1f8e76cccfaea5668fd743adb257c7975)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (!value_is_offset)
851             {
852                 bool found_offset = false;
853                 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
854                 {
855                     const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
856                     if (header == nullptr)
857                         continue;
858 
859                     if (header->p_type != PT_LOAD || header->p_offset != 0)
860                         continue;
861 
862                     value = value - header->p_vaddr;
863                     found_offset = true;
864                     break;
865                 }
866                 if (!found_offset)
867                     return false;
868             }
869 
870             const size_t num_sections = section_list->GetSize();
871             size_t sect_idx = 0;
872 
873             for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
874             {
875                 // Iterate through the object file sections to find all
876                 // of the sections that have SHF_ALLOC in their flag bits.
877                 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
878                 // if (section_sp && !section_sp->IsThreadSpecific())
879                 if (section_sp && section_sp->Test(SHF_ALLOC))
880                 {
881                     lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
882 
883                     // On 32-bit systems the load address have to fit into 4 bytes. The rest of
884                     // the bytes are the overflow from the addition.
885                     if (GetAddressByteSize() == 4)
886                         load_addr &= 0xFFFFFFFF;
887 
888                     if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
889                         ++num_loaded_sections;
890                 }
891             }
892             return num_loaded_sections > 0;
893         }
894     }
895     return false;
896 }
897 
898 ByteOrder
899 ObjectFileELF::GetByteOrder() const
900 {
901     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
902         return eByteOrderBig;
903     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
904         return eByteOrderLittle;
905     return eByteOrderInvalid;
906 }
907 
908 uint32_t
909 ObjectFileELF::GetAddressByteSize() const
910 {
911     return m_data.GetAddressByteSize();
912 }
913 
914 // Top 16 bits of the `Symbol` flags are available.
915 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
916 
917 AddressClass
918 ObjectFileELF::GetAddressClass (addr_t file_addr)
919 {
920     Symtab* symtab = GetSymtab();
921     if (!symtab)
922         return eAddressClassUnknown;
923 
924     // The address class is determined based on the symtab. Ask it from the object file what
925     // contains the symtab information.
926     ObjectFile* symtab_objfile = symtab->GetObjectFile();
927     if (symtab_objfile != nullptr && symtab_objfile != this)
928         return symtab_objfile->GetAddressClass(file_addr);
929 
930     auto res = ObjectFile::GetAddressClass (file_addr);
931     if (res != eAddressClassCode)
932         return res;
933 
934     auto ub = m_address_class_map.upper_bound(file_addr);
935     if (ub == m_address_class_map.begin())
936     {
937         // No entry in the address class map before the address. Return
938         // default address class for an address in a code section.
939         return eAddressClassCode;
940     }
941 
942     // Move iterator to the address class entry preceding address
943     --ub;
944 
945     return ub->second;
946 }
947 
948 size_t
949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
950 {
951     return std::distance(m_section_headers.begin(), I) + 1u;
952 }
953 
954 size_t
955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
956 {
957     return std::distance(m_section_headers.begin(), I) + 1u;
958 }
959 
960 bool
961 ObjectFileELF::ParseHeader()
962 {
963     lldb::offset_t offset = 0;
964     if (!m_header.Parse(m_data, &offset))
965         return false;
966 
967     if (!IsInMemory())
968         return true;
969 
970     // For in memory object files m_data might not contain the full object file. Try to load it
971     // until the end of the "Section header table" what is at the end of the ELF file.
972     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
973     if (m_data.GetByteSize() < file_size)
974     {
975         ProcessSP process_sp (m_process_wp.lock());
976         if (!process_sp)
977             return false;
978 
979         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
980         if (!data_sp)
981             return false;
982         m_data.SetData(data_sp, 0, file_size);
983     }
984 
985     return true;
986 }
987 
988 bool
989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
990 {
991     // Need to parse the section list to get the UUIDs, so make sure that's been done.
992     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
993         return false;
994 
995     if (m_uuid.IsValid())
996     {
997         // We have the full build id uuid.
998         *uuid = m_uuid;
999         return true;
1000     }
1001     else if (GetType() == ObjectFile::eTypeCoreFile)
1002     {
1003         uint32_t core_notes_crc = 0;
1004 
1005         if (!ParseProgramHeaders())
1006             return false;
1007 
1008         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
1009 
1010         if (core_notes_crc)
1011         {
1012             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
1013             // look different form .gnu_debuglink crc - followed by 4 bytes of note
1014             // segments crc.
1015             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
1016             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1017         }
1018     }
1019     else
1020     {
1021         if (!m_gnu_debuglink_crc)
1022             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1023         if (m_gnu_debuglink_crc)
1024         {
1025             // Use 4 bytes of crc from the .gnu_debuglink section.
1026             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1027             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1028         }
1029     }
1030 
1031     if (m_uuid.IsValid())
1032     {
1033         *uuid = m_uuid;
1034         return true;
1035     }
1036 
1037     return false;
1038 }
1039 
1040 lldb_private::FileSpecList
1041 ObjectFileELF::GetDebugSymbolFilePaths()
1042 {
1043     FileSpecList file_spec_list;
1044 
1045     if (!m_gnu_debuglink_file.empty())
1046     {
1047         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1048         file_spec_list.Append (file_spec);
1049     }
1050     return file_spec_list;
1051 }
1052 
1053 uint32_t
1054 ObjectFileELF::GetDependentModules(FileSpecList &files)
1055 {
1056     size_t num_modules = ParseDependentModules();
1057     uint32_t num_specs = 0;
1058 
1059     for (unsigned i = 0; i < num_modules; ++i)
1060     {
1061         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1062             num_specs++;
1063     }
1064 
1065     return num_specs;
1066 }
1067 
1068 Address
1069 ObjectFileELF::GetImageInfoAddress(Target *target)
1070 {
1071     if (!ParseDynamicSymbols())
1072         return Address();
1073 
1074     SectionList *section_list = GetSectionList();
1075     if (!section_list)
1076         return Address();
1077 
1078     // Find the SHT_DYNAMIC (.dynamic) section.
1079     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1080     if (!dynsym_section_sp)
1081         return Address();
1082     assert (dynsym_section_sp->GetObjectFile() == this);
1083 
1084     user_id_t dynsym_id = dynsym_section_sp->GetID();
1085     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1086     if (!dynsym_hdr)
1087         return Address();
1088 
1089     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1090     {
1091         ELFDynamic &symbol = m_dynamic_symbols[i];
1092 
1093         if (symbol.d_tag == DT_DEBUG)
1094         {
1095             // Compute the offset as the number of previous entries plus the
1096             // size of d_tag.
1097             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1098             return Address(dynsym_section_sp, offset);
1099         }
1100         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1101         {
1102             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1103             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1104             if (dyn_base == LLDB_INVALID_ADDRESS)
1105                 return Address();
1106             Address addr;
1107             Error error;
1108             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1109                 return addr;
1110         }
1111     }
1112 
1113     return Address();
1114 }
1115 
1116 lldb_private::Address
1117 ObjectFileELF::GetEntryPointAddress ()
1118 {
1119     if (m_entry_point_address.IsValid())
1120         return m_entry_point_address;
1121 
1122     if (!ParseHeader() || !IsExecutable())
1123         return m_entry_point_address;
1124 
1125     SectionList *section_list = GetSectionList();
1126     addr_t offset = m_header.e_entry;
1127 
1128     if (!section_list)
1129         m_entry_point_address.SetOffset(offset);
1130     else
1131         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1132     return m_entry_point_address;
1133 }
1134 
1135 //----------------------------------------------------------------------
1136 // ParseDependentModules
1137 //----------------------------------------------------------------------
1138 size_t
1139 ObjectFileELF::ParseDependentModules()
1140 {
1141     if (m_filespec_ap.get())
1142         return m_filespec_ap->GetSize();
1143 
1144     m_filespec_ap.reset(new FileSpecList());
1145 
1146     if (!ParseSectionHeaders())
1147         return 0;
1148 
1149     SectionList *section_list = GetSectionList();
1150     if (!section_list)
1151         return 0;
1152 
1153     // Find the SHT_DYNAMIC section.
1154     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1155     if (!dynsym)
1156         return 0;
1157     assert (dynsym->GetObjectFile() == this);
1158 
1159     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1160     if (!header)
1161         return 0;
1162     // sh_link: section header index of string table used by entries in the section.
1163     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1164     if (!dynstr)
1165         return 0;
1166 
1167     DataExtractor dynsym_data;
1168     DataExtractor dynstr_data;
1169     if (ReadSectionData(dynsym, dynsym_data) &&
1170         ReadSectionData(dynstr, dynstr_data))
1171     {
1172         ELFDynamic symbol;
1173         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1174         lldb::offset_t offset = 0;
1175 
1176         // The only type of entries we are concerned with are tagged DT_NEEDED,
1177         // yielding the name of a required library.
1178         while (offset < section_size)
1179         {
1180             if (!symbol.Parse(dynsym_data, &offset))
1181                 break;
1182 
1183             if (symbol.d_tag != DT_NEEDED)
1184                 continue;
1185 
1186             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1187             const char *lib_name = dynstr_data.PeekCStr(str_index);
1188             m_filespec_ap->Append(FileSpec(lib_name, true));
1189         }
1190     }
1191 
1192     return m_filespec_ap->GetSize();
1193 }
1194 
1195 //----------------------------------------------------------------------
1196 // GetProgramHeaderInfo
1197 //----------------------------------------------------------------------
1198 size_t
1199 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1200                                     DataExtractor &object_data,
1201                                     const ELFHeader &header)
1202 {
1203     // We have already parsed the program headers
1204     if (!program_headers.empty())
1205         return program_headers.size();
1206 
1207     // If there are no program headers to read we are done.
1208     if (header.e_phnum == 0)
1209         return 0;
1210 
1211     program_headers.resize(header.e_phnum);
1212     if (program_headers.size() != header.e_phnum)
1213         return 0;
1214 
1215     const size_t ph_size = header.e_phnum * header.e_phentsize;
1216     const elf_off ph_offset = header.e_phoff;
1217     DataExtractor data;
1218     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1219         return 0;
1220 
1221     uint32_t idx;
1222     lldb::offset_t offset;
1223     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1224     {
1225         if (program_headers[idx].Parse(data, &offset) == false)
1226             break;
1227     }
1228 
1229     if (idx < program_headers.size())
1230         program_headers.resize(idx);
1231 
1232     return program_headers.size();
1233 
1234 }
1235 
1236 //----------------------------------------------------------------------
1237 // ParseProgramHeaders
1238 //----------------------------------------------------------------------
1239 size_t
1240 ObjectFileELF::ParseProgramHeaders()
1241 {
1242     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1243 }
1244 
1245 lldb_private::Error
1246 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1247 {
1248     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1249     Error error;
1250 
1251     lldb::offset_t offset = 0;
1252 
1253     while (true)
1254     {
1255         // Parse the note header.  If this fails, bail out.
1256         ELFNote note = ELFNote();
1257         if (!note.Parse(data, &offset))
1258         {
1259             // We're done.
1260             return error;
1261         }
1262 
1263         // If a tag processor handles the tag, it should set processed to true, and
1264         // the loop will assume the tag processing has moved entirely past the note's payload.
1265         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1266         bool processed = false;
1267 
1268         if (log)
1269             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1270 
1271         // Process FreeBSD ELF notes.
1272         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1273             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1274             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1275         {
1276             // We'll consume the payload below.
1277             processed = true;
1278 
1279             // Pull out the min version info.
1280             uint32_t version_info;
1281             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1282             {
1283                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1284                 return error;
1285             }
1286 
1287             // Convert the version info into a major/minor number.
1288             const uint32_t version_major = version_info / 100000;
1289             const uint32_t version_minor = (version_info / 1000) % 100;
1290 
1291             char os_name[32];
1292             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1293 
1294             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1295             arch_spec.GetTriple ().setOSName (os_name);
1296             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1297 
1298             if (log)
1299                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1300         }
1301         // Process GNU ELF notes.
1302         else if (note.n_name == LLDB_NT_OWNER_GNU)
1303         {
1304             switch (note.n_type)
1305             {
1306                 case LLDB_NT_GNU_ABI_TAG:
1307                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1308                     {
1309                         // We'll consume the payload below.
1310                         processed = true;
1311 
1312                         // Pull out the min OS version supporting the ABI.
1313                         uint32_t version_info[4];
1314                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1315                         {
1316                             error.SetErrorString ("failed to read GNU ABI note payload");
1317                             return error;
1318                         }
1319 
1320                         // Set the OS per the OS field.
1321                         switch (version_info[0])
1322                         {
1323                             case LLDB_NT_GNU_ABI_OS_LINUX:
1324                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1325                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1326                                 if (log)
1327                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1328                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1329                                 break;
1330                             case LLDB_NT_GNU_ABI_OS_HURD:
1331                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1332                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1333                                 if (log)
1334                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1335                                 break;
1336                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1337                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1338                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1339                                 if (log)
1340                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1341                                 break;
1342                             default:
1343                                 if (log)
1344                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1345                                 break;
1346                         }
1347                     }
1348                     break;
1349 
1350                 case LLDB_NT_GNU_BUILD_ID_TAG:
1351                     // Only bother processing this if we don't already have the uuid set.
1352                     if (!uuid.IsValid())
1353                     {
1354                         // We'll consume the payload below.
1355                         processed = true;
1356 
1357                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1358                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1359                         {
1360                             uint8_t uuidbuf[20];
1361                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1362                             {
1363                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1364                                 return error;
1365                             }
1366 
1367                             // Save the build id as the UUID for the module.
1368                             uuid.SetBytes (uuidbuf, note.n_descsz);
1369                         }
1370                     }
1371                     break;
1372             }
1373         }
1374         // Process NetBSD ELF notes.
1375         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1376                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1377                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1378         {
1379 
1380             // We'll consume the payload below.
1381             processed = true;
1382 
1383             // Pull out the min version info.
1384             uint32_t version_info;
1385             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1386             {
1387                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1388                 return error;
1389             }
1390 
1391             // Set the elf OS version to NetBSD.  Also clear the vendor.
1392             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1393             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1394 
1395             if (log)
1396                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1397         }
1398         // Process CSR kalimba notes
1399         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1400                 (note.n_name == LLDB_NT_OWNER_CSR))
1401         {
1402             // We'll consume the payload below.
1403             processed = true;
1404             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1405             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1406 
1407             // TODO At some point the description string could be processed.
1408             // It could provide a steer towards the kalimba variant which
1409             // this ELF targets.
1410             if(note.n_descsz)
1411             {
1412                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1413                 (void)cstr;
1414             }
1415         }
1416         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1417         {
1418             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1419             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1420         }
1421 
1422         if (!processed)
1423             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1424     }
1425 
1426     return error;
1427 }
1428 
1429 
1430 //----------------------------------------------------------------------
1431 // GetSectionHeaderInfo
1432 //----------------------------------------------------------------------
1433 size_t
1434 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1435                                     lldb_private::DataExtractor &object_data,
1436                                     const elf::ELFHeader &header,
1437                                     lldb_private::UUID &uuid,
1438                                     std::string &gnu_debuglink_file,
1439                                     uint32_t &gnu_debuglink_crc,
1440                                     ArchSpec &arch_spec)
1441 {
1442     // Don't reparse the section headers if we already did that.
1443     if (!section_headers.empty())
1444         return section_headers.size();
1445 
1446     // Only initialize the arch_spec to okay defaults if they're not already set.
1447     // We'll refine this with note data as we parse the notes.
1448     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1449     {
1450         llvm::Triple::OSType ostype;
1451         llvm::Triple::OSType spec_ostype;
1452         const uint32_t sub_type = subTypeFromElfHeader(header);
1453         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1454         //
1455         // Validate if it is ok to remove GetOsFromOSABI
1456         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1457         spec_ostype = arch_spec.GetTriple ().getOS ();
1458         assert(spec_ostype == ostype);
1459     }
1460 
1461     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1462         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1463     {
1464         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1465         {
1466             case llvm::ELF::EF_MIPS_MICROMIPS:
1467                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1468                 break;
1469             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1470                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1471                 break;
1472             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1473                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1474                 break;
1475             default:
1476                 break;
1477         }
1478     }
1479 
1480     // If there are no section headers we are done.
1481     if (header.e_shnum == 0)
1482         return 0;
1483 
1484     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1485 
1486     section_headers.resize(header.e_shnum);
1487     if (section_headers.size() != header.e_shnum)
1488         return 0;
1489 
1490     const size_t sh_size = header.e_shnum * header.e_shentsize;
1491     const elf_off sh_offset = header.e_shoff;
1492     DataExtractor sh_data;
1493     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1494         return 0;
1495 
1496     uint32_t idx;
1497     lldb::offset_t offset;
1498     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1499     {
1500         if (section_headers[idx].Parse(sh_data, &offset) == false)
1501             break;
1502     }
1503     if (idx < section_headers.size())
1504         section_headers.resize(idx);
1505 
1506     const unsigned strtab_idx = header.e_shstrndx;
1507     if (strtab_idx && strtab_idx < section_headers.size())
1508     {
1509         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1510         const size_t byte_size = sheader.sh_size;
1511         const Elf64_Off offset = sheader.sh_offset;
1512         lldb_private::DataExtractor shstr_data;
1513 
1514         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1515         {
1516             for (SectionHeaderCollIter I = section_headers.begin();
1517                  I != section_headers.end(); ++I)
1518             {
1519                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1520                 const ELFSectionHeaderInfo &header = *I;
1521                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1522                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1523 
1524                 I->section_name = name;
1525 
1526                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1527                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1528                 {
1529                     if (header.sh_type == SHT_MIPS_ABIFLAGS)
1530                     {
1531                         DataExtractor data;
1532                         if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1533                         {
1534                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1535                             uint32_t arch_flags = arch_spec.GetFlags ();
1536                             arch_flags |= data.GetU32 (&ase_offset);
1537                             arch_spec.SetFlags (arch_flags);
1538                         }
1539                     }
1540                 }
1541 
1542                 if (name == g_sect_name_gnu_debuglink)
1543                 {
1544                     DataExtractor data;
1545                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1546                     {
1547                         lldb::offset_t gnu_debuglink_offset = 0;
1548                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1549                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1550                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1551                     }
1552                 }
1553 
1554                 // Process ELF note section entries.
1555                 bool is_note_header = (header.sh_type == SHT_NOTE);
1556 
1557                 // The section header ".note.android.ident" is stored as a
1558                 // PROGBITS type header but it is actually a note header.
1559                 static ConstString g_sect_name_android_ident (".note.android.ident");
1560                 if (!is_note_header && name == g_sect_name_android_ident)
1561                     is_note_header = true;
1562 
1563                 if (is_note_header)
1564                 {
1565                     // Allow notes to refine module info.
1566                     DataExtractor data;
1567                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1568                     {
1569                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1570                         if (error.Fail ())
1571                         {
1572                             if (log)
1573                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1574                         }
1575                     }
1576                 }
1577             }
1578 
1579             return section_headers.size();
1580         }
1581     }
1582 
1583     section_headers.clear();
1584     return 0;
1585 }
1586 
1587 size_t
1588 ObjectFileELF::GetProgramHeaderCount()
1589 {
1590     return ParseProgramHeaders();
1591 }
1592 
1593 const elf::ELFProgramHeader *
1594 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1595 {
1596     if (!id || !ParseProgramHeaders())
1597         return NULL;
1598 
1599     if (--id < m_program_headers.size())
1600         return &m_program_headers[id];
1601 
1602     return NULL;
1603 }
1604 
1605 DataExtractor
1606 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1607 {
1608     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1609     if (segment_header == NULL)
1610         return DataExtractor();
1611     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1612 }
1613 
1614 std::string
1615 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1616 {
1617     size_t pos = symbol_name.find('@');
1618     return symbol_name.substr(0, pos).str();
1619 }
1620 
1621 //----------------------------------------------------------------------
1622 // ParseSectionHeaders
1623 //----------------------------------------------------------------------
1624 size_t
1625 ObjectFileELF::ParseSectionHeaders()
1626 {
1627     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1628 }
1629 
1630 const ObjectFileELF::ELFSectionHeaderInfo *
1631 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1632 {
1633     if (!id || !ParseSectionHeaders())
1634         return NULL;
1635 
1636     if (--id < m_section_headers.size())
1637         return &m_section_headers[id];
1638 
1639     return NULL;
1640 }
1641 
1642 lldb::user_id_t
1643 ObjectFileELF::GetSectionIndexByName(const char* name)
1644 {
1645     if (!name || !name[0] || !ParseSectionHeaders())
1646         return 0;
1647     for (size_t i = 1; i < m_section_headers.size(); ++i)
1648         if (m_section_headers[i].section_name == ConstString(name))
1649             return i;
1650     return 0;
1651 }
1652 
1653 void
1654 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1655 {
1656     if (!m_sections_ap.get() && ParseSectionHeaders())
1657     {
1658         m_sections_ap.reset(new SectionList());
1659 
1660         for (SectionHeaderCollIter I = m_section_headers.begin();
1661              I != m_section_headers.end(); ++I)
1662         {
1663             const ELFSectionHeaderInfo &header = *I;
1664 
1665             ConstString& name = I->section_name;
1666             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1667             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1668 
1669             static ConstString g_sect_name_text (".text");
1670             static ConstString g_sect_name_data (".data");
1671             static ConstString g_sect_name_bss (".bss");
1672             static ConstString g_sect_name_tdata (".tdata");
1673             static ConstString g_sect_name_tbss (".tbss");
1674             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1675             static ConstString g_sect_name_dwarf_debug_addr (".debug_addr");
1676             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1677             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1678             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1679             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1680             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1681             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1682             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1683             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1684             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1685             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1686             static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets");
1687             static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo");
1688             static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo");
1689             static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo");
1690             static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo");
1691             static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo");
1692             static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo");
1693             static ConstString g_sect_name_eh_frame (".eh_frame");
1694 
1695             SectionType sect_type = eSectionTypeOther;
1696 
1697             bool is_thread_specific = false;
1698 
1699             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1700             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1701             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1702             else if (name == g_sect_name_tdata)
1703             {
1704                 sect_type = eSectionTypeData;
1705                 is_thread_specific = true;
1706             }
1707             else if (name == g_sect_name_tbss)
1708             {
1709                 sect_type = eSectionTypeZeroFill;
1710                 is_thread_specific = true;
1711             }
1712             // .debug_abbrev – Abbreviations used in the .debug_info section
1713             // .debug_aranges – Lookup table for mapping addresses to compilation units
1714             // .debug_frame – Call frame information
1715             // .debug_info – The core DWARF information section
1716             // .debug_line – Line number information
1717             // .debug_loc – Location lists used in DW_AT_location attributes
1718             // .debug_macinfo – Macro information
1719             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1720             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1721             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1722             // .debug_str – String table used in .debug_info
1723             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1724             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1725             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1726             else if (name == g_sect_name_dwarf_debug_abbrev)          sect_type = eSectionTypeDWARFDebugAbbrev;
1727             else if (name == g_sect_name_dwarf_debug_addr)            sect_type = eSectionTypeDWARFDebugAddr;
1728             else if (name == g_sect_name_dwarf_debug_aranges)         sect_type = eSectionTypeDWARFDebugAranges;
1729             else if (name == g_sect_name_dwarf_debug_frame)           sect_type = eSectionTypeDWARFDebugFrame;
1730             else if (name == g_sect_name_dwarf_debug_info)            sect_type = eSectionTypeDWARFDebugInfo;
1731             else if (name == g_sect_name_dwarf_debug_line)            sect_type = eSectionTypeDWARFDebugLine;
1732             else if (name == g_sect_name_dwarf_debug_loc)             sect_type = eSectionTypeDWARFDebugLoc;
1733             else if (name == g_sect_name_dwarf_debug_macinfo)         sect_type = eSectionTypeDWARFDebugMacInfo;
1734             else if (name == g_sect_name_dwarf_debug_pubnames)        sect_type = eSectionTypeDWARFDebugPubNames;
1735             else if (name == g_sect_name_dwarf_debug_pubtypes)        sect_type = eSectionTypeDWARFDebugPubTypes;
1736             else if (name == g_sect_name_dwarf_debug_ranges)          sect_type = eSectionTypeDWARFDebugRanges;
1737             else if (name == g_sect_name_dwarf_debug_str)             sect_type = eSectionTypeDWARFDebugStr;
1738             else if (name == g_sect_name_dwarf_debug_str_offsets)     sect_type = eSectionTypeDWARFDebugStrOffsets;
1739             else if (name == g_sect_name_dwarf_debug_abbrev_dwo)      sect_type = eSectionTypeDWARFDebugAbbrev;
1740             else if (name == g_sect_name_dwarf_debug_info_dwo)        sect_type = eSectionTypeDWARFDebugInfo;
1741             else if (name == g_sect_name_dwarf_debug_line_dwo)        sect_type = eSectionTypeDWARFDebugLine;
1742             else if (name == g_sect_name_dwarf_debug_loc_dwo)         sect_type = eSectionTypeDWARFDebugLoc;
1743             else if (name == g_sect_name_dwarf_debug_str_dwo)         sect_type = eSectionTypeDWARFDebugStr;
1744             else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets;
1745             else if (name == g_sect_name_eh_frame)                    sect_type = eSectionTypeEHFrame;
1746 
1747             switch (header.sh_type)
1748             {
1749                 case SHT_SYMTAB:
1750                     assert (sect_type == eSectionTypeOther);
1751                     sect_type = eSectionTypeELFSymbolTable;
1752                     break;
1753                 case SHT_DYNSYM:
1754                     assert (sect_type == eSectionTypeOther);
1755                     sect_type = eSectionTypeELFDynamicSymbols;
1756                     break;
1757                 case SHT_RELA:
1758                 case SHT_REL:
1759                     assert (sect_type == eSectionTypeOther);
1760                     sect_type = eSectionTypeELFRelocationEntries;
1761                     break;
1762                 case SHT_DYNAMIC:
1763                     assert (sect_type == eSectionTypeOther);
1764                     sect_type = eSectionTypeELFDynamicLinkInfo;
1765                     break;
1766             }
1767 
1768             if (eSectionTypeOther == sect_type)
1769             {
1770                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1771                 // support linkscripts which (can) give rise to various arbitrarily named
1772                 // sections being "Code" or "Data".
1773                 sect_type = kalimbaSectionType(m_header, header);
1774             }
1775 
1776             const uint32_t target_bytes_size =
1777                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1778                 m_arch_spec.GetDataByteSize() :
1779                     eSectionTypeCode == sect_type ?
1780                     m_arch_spec.GetCodeByteSize() : 1;
1781 
1782             elf::elf_xword log2align = (header.sh_addralign==0)
1783                                         ? 0
1784                                         : llvm::Log2_64(header.sh_addralign);
1785             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1786                                               this,               // ObjectFile to which this section belongs and should read section data from.
1787                                               SectionIndex(I),    // Section ID.
1788                                               name,               // Section name.
1789                                               sect_type,          // Section type.
1790                                               header.sh_addr,     // VM address.
1791                                               vm_size,            // VM size in bytes of this section.
1792                                               header.sh_offset,   // Offset of this section in the file.
1793                                               file_size,          // Size of the section as found in the file.
1794                                               log2align,          // Alignment of the section
1795                                               header.sh_flags,    // Flags for this section.
1796                                               target_bytes_size));// Number of host bytes per target byte
1797 
1798             if (is_thread_specific)
1799                 section_sp->SetIsThreadSpecific (is_thread_specific);
1800             m_sections_ap->AddSection(section_sp);
1801         }
1802     }
1803 
1804     if (m_sections_ap.get())
1805     {
1806         if (GetType() == eTypeDebugInfo)
1807         {
1808             static const SectionType g_sections[] =
1809             {
1810                 eSectionTypeDWARFDebugAbbrev,
1811                 eSectionTypeDWARFDebugAddr,
1812                 eSectionTypeDWARFDebugAranges,
1813                 eSectionTypeDWARFDebugFrame,
1814                 eSectionTypeDWARFDebugInfo,
1815                 eSectionTypeDWARFDebugLine,
1816                 eSectionTypeDWARFDebugLoc,
1817                 eSectionTypeDWARFDebugMacInfo,
1818                 eSectionTypeDWARFDebugPubNames,
1819                 eSectionTypeDWARFDebugPubTypes,
1820                 eSectionTypeDWARFDebugRanges,
1821                 eSectionTypeDWARFDebugStr,
1822                 eSectionTypeDWARFDebugStrOffsets,
1823                 eSectionTypeELFSymbolTable,
1824             };
1825             SectionList *elf_section_list = m_sections_ap.get();
1826             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1827             {
1828                 SectionType section_type = g_sections[idx];
1829                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1830                 if (section_sp)
1831                 {
1832                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1833                     if (module_section_sp)
1834                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1835                     else
1836                         unified_section_list.AddSection (section_sp);
1837                 }
1838             }
1839         }
1840         else
1841         {
1842             unified_section_list = *m_sections_ap;
1843         }
1844     }
1845 }
1846 
1847 // private
1848 unsigned
1849 ObjectFileELF::ParseSymbols (Symtab *symtab,
1850                              user_id_t start_id,
1851                              SectionList *section_list,
1852                              const size_t num_symbols,
1853                              const DataExtractor &symtab_data,
1854                              const DataExtractor &strtab_data)
1855 {
1856     ELFSymbol symbol;
1857     lldb::offset_t offset = 0;
1858 
1859     static ConstString text_section_name(".text");
1860     static ConstString init_section_name(".init");
1861     static ConstString fini_section_name(".fini");
1862     static ConstString ctors_section_name(".ctors");
1863     static ConstString dtors_section_name(".dtors");
1864 
1865     static ConstString data_section_name(".data");
1866     static ConstString rodata_section_name(".rodata");
1867     static ConstString rodata1_section_name(".rodata1");
1868     static ConstString data2_section_name(".data1");
1869     static ConstString bss_section_name(".bss");
1870     static ConstString opd_section_name(".opd");    // For ppc64
1871 
1872     // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full
1873     // .text section what causes issues with displaying unusable symbol name to the user and very
1874     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1875     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1876     // use for the debugger and they are causing a lot of trouble.
1877     // Filtering can't be restricted to Android because this special object file don't contain the
1878     // note section specifying the environment to Android but the custom extension and file name
1879     // makes it highly unlikely that this will collide with anything else.
1880     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat");
1881 
1882     unsigned i;
1883     for (i = 0; i < num_symbols; ++i)
1884     {
1885         if (symbol.Parse(symtab_data, &offset) == false)
1886             break;
1887 
1888         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1889 
1890         // No need to add non-section symbols that have no names
1891         if (symbol.getType() != STT_SECTION &&
1892             (symbol_name == NULL || symbol_name[0] == '\0'))
1893             continue;
1894 
1895         // Skipping oatdata and oatexec sections if it is requested. See details above the
1896         // definition of skip_oatdata_oatexec for the reasons.
1897         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1898             continue;
1899 
1900         SectionSP symbol_section_sp;
1901         SymbolType symbol_type = eSymbolTypeInvalid;
1902         Elf64_Half symbol_idx = symbol.st_shndx;
1903 
1904         switch (symbol_idx)
1905         {
1906         case SHN_ABS:
1907             symbol_type = eSymbolTypeAbsolute;
1908             break;
1909         case SHN_UNDEF:
1910             symbol_type = eSymbolTypeUndefined;
1911             break;
1912         default:
1913             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1914             break;
1915         }
1916 
1917         // If a symbol is undefined do not process it further even if it has a STT type
1918         if (symbol_type != eSymbolTypeUndefined)
1919         {
1920             switch (symbol.getType())
1921             {
1922             default:
1923             case STT_NOTYPE:
1924                 // The symbol's type is not specified.
1925                 break;
1926 
1927             case STT_OBJECT:
1928                 // The symbol is associated with a data object, such as a variable,
1929                 // an array, etc.
1930                 symbol_type = eSymbolTypeData;
1931                 break;
1932 
1933             case STT_FUNC:
1934                 // The symbol is associated with a function or other executable code.
1935                 symbol_type = eSymbolTypeCode;
1936                 break;
1937 
1938             case STT_SECTION:
1939                 // The symbol is associated with a section. Symbol table entries of
1940                 // this type exist primarily for relocation and normally have
1941                 // STB_LOCAL binding.
1942                 break;
1943 
1944             case STT_FILE:
1945                 // Conventionally, the symbol's name gives the name of the source
1946                 // file associated with the object file. A file symbol has STB_LOCAL
1947                 // binding, its section index is SHN_ABS, and it precedes the other
1948                 // STB_LOCAL symbols for the file, if it is present.
1949                 symbol_type = eSymbolTypeSourceFile;
1950                 break;
1951 
1952             case STT_GNU_IFUNC:
1953                 // The symbol is associated with an indirect function. The actual
1954                 // function will be resolved if it is referenced.
1955                 symbol_type = eSymbolTypeResolver;
1956                 break;
1957             }
1958         }
1959 
1960         if (symbol_type == eSymbolTypeInvalid)
1961         {
1962             if (symbol_section_sp)
1963             {
1964                 const ConstString &sect_name = symbol_section_sp->GetName();
1965                 if (sect_name == text_section_name ||
1966                     sect_name == init_section_name ||
1967                     sect_name == fini_section_name ||
1968                     sect_name == ctors_section_name ||
1969                     sect_name == dtors_section_name)
1970                 {
1971                     symbol_type = eSymbolTypeCode;
1972                 }
1973                 else if (sect_name == data_section_name ||
1974                          sect_name == data2_section_name ||
1975                          sect_name == rodata_section_name ||
1976                          sect_name == rodata1_section_name ||
1977                          sect_name == bss_section_name)
1978                 {
1979                     symbol_type = eSymbolTypeData;
1980                 }
1981             }
1982         }
1983 
1984         int64_t symbol_value_offset = 0;
1985         uint32_t additional_flags = 0;
1986 
1987         ArchSpec arch;
1988         if (GetArchitecture(arch))
1989         {
1990             if (arch.GetMachine() == llvm::Triple::arm)
1991             {
1992                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1993                 {
1994                     // These are reserved for the specification (e.g.: mapping
1995                     // symbols). We don't want to add them to the symbol table.
1996 
1997                     if (symbol_type == eSymbolTypeCode)
1998                     {
1999                         llvm::StringRef symbol_name_ref(symbol_name);
2000                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
2001                         {
2002                             // $a[.<any>]* - marks an ARM instruction sequence
2003                             m_address_class_map[symbol.st_value] = eAddressClassCode;
2004                         }
2005                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
2006                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
2007                         {
2008                             // $b[.<any>]* - marks a THUMB BL instruction sequence
2009                             // $t[.<any>]* - marks a THUMB instruction sequence
2010                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2011                         }
2012                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2013                         {
2014                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2015                             m_address_class_map[symbol.st_value] = eAddressClassData;
2016                         }
2017                     }
2018                     continue;
2019                 }
2020             }
2021             else if (arch.GetMachine() == llvm::Triple::aarch64)
2022             {
2023                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
2024                 {
2025                     // These are reserved for the specification (e.g.: mapping
2026                     // symbols). We don't want to add them to the symbol table.
2027 
2028                     if (symbol_type == eSymbolTypeCode)
2029                     {
2030                         llvm::StringRef symbol_name_ref(symbol_name);
2031                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
2032                         {
2033                             // $x[.<any>]* - marks an A64 instruction sequence
2034                             m_address_class_map[symbol.st_value] = eAddressClassCode;
2035                         }
2036                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2037                         {
2038                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2039                             m_address_class_map[symbol.st_value] = eAddressClassData;
2040                         }
2041                     }
2042 
2043                     continue;
2044                 }
2045             }
2046 
2047             if (arch.GetMachine() == llvm::Triple::arm)
2048             {
2049                 if (symbol_type == eSymbolTypeCode)
2050                 {
2051                     if (symbol.st_value & 1)
2052                     {
2053                         // Subtracting 1 from the address effectively unsets
2054                         // the low order bit, which results in the address
2055                         // actually pointing to the beginning of the symbol.
2056                         // This delta will be used below in conjunction with
2057                         // symbol.st_value to produce the final symbol_value
2058                         // that we store in the symtab.
2059                         symbol_value_offset = -1;
2060                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2061                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2062                     }
2063                     else
2064                     {
2065                         // This address is ARM
2066                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2067                     }
2068                 }
2069             }
2070         }
2071 
2072         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2073         // THUMB symbols. See above for more details.
2074         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2075         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2076             symbol_value -= symbol_section_sp->GetFileAddress();
2077 
2078         if (symbol_section_sp)
2079         {
2080             ModuleSP module_sp(GetModule());
2081             if (module_sp)
2082             {
2083                 SectionList *module_section_list = module_sp->GetSectionList();
2084                 if (module_section_list && module_section_list != section_list)
2085                 {
2086                     const ConstString &sect_name = symbol_section_sp->GetName();
2087                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2088                     if (section_sp && section_sp->GetFileSize())
2089                     {
2090                         symbol_section_sp = section_sp;
2091                     }
2092                 }
2093             }
2094         }
2095 
2096         bool is_global = symbol.getBinding() == STB_GLOBAL;
2097         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2098         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2099 
2100         llvm::StringRef symbol_ref(symbol_name);
2101 
2102         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2103         size_t version_pos = symbol_ref.find('@');
2104         bool has_suffix = version_pos != llvm::StringRef::npos;
2105         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2106         Mangled mangled(ConstString(symbol_bare), is_mangled);
2107 
2108         // Now append the suffix back to mangled and unmangled names. Only do it if the
2109         // demangling was successful (string is not empty).
2110         if (has_suffix)
2111         {
2112             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2113 
2114             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2115             if (! mangled_name.empty())
2116                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2117 
2118             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2119             llvm::StringRef demangled_name = demangled.GetStringRef();
2120             if (!demangled_name.empty())
2121                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2122         }
2123 
2124         Symbol dc_symbol(
2125             i + start_id,       // ID is the original symbol table index.
2126             mangled,
2127             symbol_type,        // Type of this symbol
2128             is_global,          // Is this globally visible?
2129             false,              // Is this symbol debug info?
2130             false,              // Is this symbol a trampoline?
2131             false,              // Is this symbol artificial?
2132             AddressRange(
2133                 symbol_section_sp,  // Section in which this symbol is defined or null.
2134                 symbol_value,       // Offset in section or symbol value.
2135                 symbol.st_size),    // Size in bytes of this symbol.
2136             symbol.st_size != 0,    // Size is valid if it is not 0
2137             has_suffix,             // Contains linker annotations?
2138             flags);                 // Symbol flags.
2139         symtab->AddSymbol(dc_symbol);
2140     }
2141     return i;
2142 }
2143 
2144 unsigned
2145 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2146 {
2147     if (symtab->GetObjectFile() != this)
2148     {
2149         // If the symbol table section is owned by a different object file, have it do the
2150         // parsing.
2151         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2152         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2153     }
2154 
2155     // Get section list for this object file.
2156     SectionList *section_list = m_sections_ap.get();
2157     if (!section_list)
2158         return 0;
2159 
2160     user_id_t symtab_id = symtab->GetID();
2161     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2162     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2163            symtab_hdr->sh_type == SHT_DYNSYM);
2164 
2165     // sh_link: section header index of associated string table.
2166     // Section ID's are ones based.
2167     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2168     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2169 
2170     if (symtab && strtab)
2171     {
2172         assert (symtab->GetObjectFile() == this);
2173         assert (strtab->GetObjectFile() == this);
2174 
2175         DataExtractor symtab_data;
2176         DataExtractor strtab_data;
2177         if (ReadSectionData(symtab, symtab_data) &&
2178             ReadSectionData(strtab, strtab_data))
2179         {
2180             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2181 
2182             return ParseSymbols(symbol_table, start_id, section_list,
2183                                 num_symbols, symtab_data, strtab_data);
2184         }
2185     }
2186 
2187     return 0;
2188 }
2189 
2190 size_t
2191 ObjectFileELF::ParseDynamicSymbols()
2192 {
2193     if (m_dynamic_symbols.size())
2194         return m_dynamic_symbols.size();
2195 
2196     SectionList *section_list = GetSectionList();
2197     if (!section_list)
2198         return 0;
2199 
2200     // Find the SHT_DYNAMIC section.
2201     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2202     if (!dynsym)
2203         return 0;
2204     assert (dynsym->GetObjectFile() == this);
2205 
2206     ELFDynamic symbol;
2207     DataExtractor dynsym_data;
2208     if (ReadSectionData(dynsym, dynsym_data))
2209     {
2210         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2211         lldb::offset_t cursor = 0;
2212 
2213         while (cursor < section_size)
2214         {
2215             if (!symbol.Parse(dynsym_data, &cursor))
2216                 break;
2217 
2218             m_dynamic_symbols.push_back(symbol);
2219         }
2220     }
2221 
2222     return m_dynamic_symbols.size();
2223 }
2224 
2225 const ELFDynamic *
2226 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2227 {
2228     if (!ParseDynamicSymbols())
2229         return NULL;
2230 
2231     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2232     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2233     for ( ; I != E; ++I)
2234     {
2235         ELFDynamic *symbol = &*I;
2236 
2237         if (symbol->d_tag == tag)
2238             return symbol;
2239     }
2240 
2241     return NULL;
2242 }
2243 
2244 unsigned
2245 ObjectFileELF::PLTRelocationType()
2246 {
2247     // DT_PLTREL
2248     //  This member specifies the type of relocation entry to which the
2249     //  procedure linkage table refers. The d_val member holds DT_REL or
2250     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2251     //  must use the same relocation.
2252     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2253 
2254     if (symbol)
2255         return symbol->d_val;
2256 
2257     return 0;
2258 }
2259 
2260 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2261 // 0th entry in the plt table is usually a resolution entry which have different size in some
2262 // architectures then the rest of the plt entries.
2263 static std::pair<uint64_t, uint64_t>
2264 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2265 {
2266     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2267 
2268     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2269     // So round the entsize up by the alignment if addralign is set.
2270     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2271         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2272 
2273     if (plt_entsize == 0)
2274     {
2275         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2276         // entries based on the number of entries and the size of the plt section with the
2277         // assumption that the size of the 0th entry is at least as big as the size of the normal
2278         // entries and it isn't much bigger then that.
2279         if (plt_hdr->sh_addralign)
2280             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2281         else
2282             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2283     }
2284 
2285     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2286 
2287     return std::make_pair(plt_entsize, plt_offset);
2288 }
2289 
2290 static unsigned
2291 ParsePLTRelocations(Symtab *symbol_table,
2292                     user_id_t start_id,
2293                     unsigned rel_type,
2294                     const ELFHeader *hdr,
2295                     const ELFSectionHeader *rel_hdr,
2296                     const ELFSectionHeader *plt_hdr,
2297                     const ELFSectionHeader *sym_hdr,
2298                     const lldb::SectionSP &plt_section_sp,
2299                     DataExtractor &rel_data,
2300                     DataExtractor &symtab_data,
2301                     DataExtractor &strtab_data)
2302 {
2303     ELFRelocation rel(rel_type);
2304     ELFSymbol symbol;
2305     lldb::offset_t offset = 0;
2306 
2307     uint64_t plt_offset, plt_entsize;
2308     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2309     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2310 
2311     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2312     reloc_info_fn reloc_type;
2313     reloc_info_fn reloc_symbol;
2314 
2315     if (hdr->Is32Bit())
2316     {
2317         reloc_type = ELFRelocation::RelocType32;
2318         reloc_symbol = ELFRelocation::RelocSymbol32;
2319     }
2320     else
2321     {
2322         reloc_type = ELFRelocation::RelocType64;
2323         reloc_symbol = ELFRelocation::RelocSymbol64;
2324     }
2325 
2326     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2327     unsigned i;
2328     for (i = 0; i < num_relocations; ++i)
2329     {
2330         if (rel.Parse(rel_data, &offset) == false)
2331             break;
2332 
2333         if (reloc_type(rel) != slot_type)
2334             continue;
2335 
2336         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2337         if (!symbol.Parse(symtab_data, &symbol_offset))
2338             break;
2339 
2340         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2341         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2342         uint64_t plt_index = plt_offset + i * plt_entsize;
2343 
2344         Symbol jump_symbol(
2345             i + start_id,    // Symbol table index
2346             symbol_name,     // symbol name.
2347             is_mangled,      // is the symbol name mangled?
2348             eSymbolTypeTrampoline, // Type of this symbol
2349             false,           // Is this globally visible?
2350             false,           // Is this symbol debug info?
2351             true,            // Is this symbol a trampoline?
2352             true,            // Is this symbol artificial?
2353             plt_section_sp,  // Section in which this symbol is defined or null.
2354             plt_index,       // Offset in section or symbol value.
2355             plt_entsize,     // Size in bytes of this symbol.
2356             true,            // Size is valid
2357             false,           // Contains linker annotations?
2358             0);              // Symbol flags.
2359 
2360         symbol_table->AddSymbol(jump_symbol);
2361     }
2362 
2363     return i;
2364 }
2365 
2366 unsigned
2367 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2368                                       user_id_t start_id,
2369                                       const ELFSectionHeaderInfo *rel_hdr,
2370                                       user_id_t rel_id)
2371 {
2372     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2373 
2374     // The link field points to the associated symbol table. The info field
2375     // points to the section holding the plt.
2376     user_id_t symtab_id = rel_hdr->sh_link;
2377     user_id_t plt_id = rel_hdr->sh_info;
2378 
2379     // If the link field doesn't point to the appropriate symbol name table then
2380     // try to find it by name as some compiler don't fill in the link fields.
2381     if (!symtab_id)
2382         symtab_id = GetSectionIndexByName(".dynsym");
2383     if (!plt_id)
2384         plt_id = GetSectionIndexByName(".plt");
2385 
2386     if (!symtab_id || !plt_id)
2387         return 0;
2388 
2389     // Section ID's are ones based;
2390     symtab_id++;
2391     plt_id++;
2392 
2393     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2394     if (!plt_hdr)
2395         return 0;
2396 
2397     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2398     if (!sym_hdr)
2399         return 0;
2400 
2401     SectionList *section_list = m_sections_ap.get();
2402     if (!section_list)
2403         return 0;
2404 
2405     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2406     if (!rel_section)
2407         return 0;
2408 
2409     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2410     if (!plt_section_sp)
2411         return 0;
2412 
2413     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2414     if (!symtab)
2415         return 0;
2416 
2417     // sh_link points to associated string table.
2418     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2419     if (!strtab)
2420         return 0;
2421 
2422     DataExtractor rel_data;
2423     if (!ReadSectionData(rel_section, rel_data))
2424         return 0;
2425 
2426     DataExtractor symtab_data;
2427     if (!ReadSectionData(symtab, symtab_data))
2428         return 0;
2429 
2430     DataExtractor strtab_data;
2431     if (!ReadSectionData(strtab, strtab_data))
2432         return 0;
2433 
2434     unsigned rel_type = PLTRelocationType();
2435     if (!rel_type)
2436         return 0;
2437 
2438     return ParsePLTRelocations (symbol_table,
2439                                 start_id,
2440                                 rel_type,
2441                                 &m_header,
2442                                 rel_hdr,
2443                                 plt_hdr,
2444                                 sym_hdr,
2445                                 plt_section_sp,
2446                                 rel_data,
2447                                 symtab_data,
2448                                 strtab_data);
2449 }
2450 
2451 unsigned
2452 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2453                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2454                 DataExtractor &rel_data, DataExtractor &symtab_data,
2455                 DataExtractor &debug_data, Section* rel_section)
2456 {
2457     ELFRelocation rel(rel_hdr->sh_type);
2458     lldb::addr_t offset = 0;
2459     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2460     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2461     reloc_info_fn reloc_type;
2462     reloc_info_fn reloc_symbol;
2463 
2464     if (hdr->Is32Bit())
2465     {
2466         reloc_type = ELFRelocation::RelocType32;
2467         reloc_symbol = ELFRelocation::RelocSymbol32;
2468     }
2469     else
2470     {
2471         reloc_type = ELFRelocation::RelocType64;
2472         reloc_symbol = ELFRelocation::RelocSymbol64;
2473     }
2474 
2475     for (unsigned i = 0; i < num_relocations; ++i)
2476     {
2477         if (rel.Parse(rel_data, &offset) == false)
2478             break;
2479 
2480         Symbol* symbol = NULL;
2481 
2482         if (hdr->Is32Bit())
2483         {
2484             switch (reloc_type(rel)) {
2485             case R_386_32:
2486             case R_386_PC32:
2487             default:
2488                 assert(false && "unexpected relocation type");
2489             }
2490         } else {
2491             switch (reloc_type(rel)) {
2492             case R_X86_64_64:
2493             {
2494                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2495                 if (symbol)
2496                 {
2497                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2498                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2499                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2500                     *dst = value + ELFRelocation::RelocAddend64(rel);
2501                 }
2502                 break;
2503             }
2504             case R_X86_64_32:
2505             case R_X86_64_32S:
2506             {
2507                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2508                 if (symbol)
2509                 {
2510                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2511                     value += ELFRelocation::RelocAddend32(rel);
2512                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2513                            (reloc_type(rel) == R_X86_64_32S &&
2514                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2515                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2516                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2517                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2518                     *dst = truncated_addr;
2519                 }
2520                 break;
2521             }
2522             case R_X86_64_PC32:
2523             default:
2524                 assert(false && "unexpected relocation type");
2525             }
2526         }
2527     }
2528 
2529     return 0;
2530 }
2531 
2532 unsigned
2533 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2534 {
2535     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2536 
2537     // Parse in the section list if needed.
2538     SectionList *section_list = GetSectionList();
2539     if (!section_list)
2540         return 0;
2541 
2542     // Section ID's are ones based.
2543     user_id_t symtab_id = rel_hdr->sh_link + 1;
2544     user_id_t debug_id = rel_hdr->sh_info + 1;
2545 
2546     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2547     if (!symtab_hdr)
2548         return 0;
2549 
2550     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2551     if (!debug_hdr)
2552         return 0;
2553 
2554     Section *rel = section_list->FindSectionByID(rel_id).get();
2555     if (!rel)
2556         return 0;
2557 
2558     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2559     if (!symtab)
2560         return 0;
2561 
2562     Section *debug = section_list->FindSectionByID(debug_id).get();
2563     if (!debug)
2564         return 0;
2565 
2566     DataExtractor rel_data;
2567     DataExtractor symtab_data;
2568     DataExtractor debug_data;
2569 
2570     if (ReadSectionData(rel, rel_data) &&
2571         ReadSectionData(symtab, symtab_data) &&
2572         ReadSectionData(debug, debug_data))
2573     {
2574         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2575                         rel_data, symtab_data, debug_data, debug);
2576     }
2577 
2578     return 0;
2579 }
2580 
2581 Symtab *
2582 ObjectFileELF::GetSymtab()
2583 {
2584     ModuleSP module_sp(GetModule());
2585     if (!module_sp)
2586         return NULL;
2587 
2588     // We always want to use the main object file so we (hopefully) only have one cached copy
2589     // of our symtab, dynamic sections, etc.
2590     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2591     if (module_obj_file && module_obj_file != this)
2592         return module_obj_file->GetSymtab();
2593 
2594     if (m_symtab_ap.get() == NULL)
2595     {
2596         SectionList *section_list = module_sp->GetSectionList();
2597         if (!section_list)
2598             return NULL;
2599 
2600         uint64_t symbol_id = 0;
2601         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2602 
2603         // Sharable objects and dynamic executables usually have 2 distinct symbol
2604         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2605         // version of the symtab that only contains global symbols. The information found
2606         // in the dynsym is therefore also found in the symtab, while the reverse is not
2607         // necessarily true.
2608         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2609         if (!symtab)
2610         {
2611             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2612             // then use the dynsym section which should always be there.
2613             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2614         }
2615         if (symtab)
2616         {
2617             m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2618             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2619         }
2620 
2621         // DT_JMPREL
2622         //      If present, this entry's d_ptr member holds the address of relocation
2623         //      entries associated solely with the procedure linkage table. Separating
2624         //      these relocation entries lets the dynamic linker ignore them during
2625         //      process initialization, if lazy binding is enabled. If this entry is
2626         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2627         //      also be present.
2628         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2629         if (symbol)
2630         {
2631             // Synthesize trampoline symbols to help navigate the PLT.
2632             addr_t addr = symbol->d_ptr;
2633             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2634             if (reloc_section)
2635             {
2636                 user_id_t reloc_id = reloc_section->GetID();
2637                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2638                 assert(reloc_header);
2639 
2640                 if (m_symtab_ap == nullptr)
2641                     m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2642 
2643                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2644             }
2645         }
2646 
2647         // If we still don't have any symtab then create an empty instance to avoid do the section
2648         // lookup next time.
2649         if (m_symtab_ap == nullptr)
2650             m_symtab_ap.reset(new Symtab(this));
2651 
2652         m_symtab_ap->CalculateSymbolSizes();
2653     }
2654 
2655     for (SectionHeaderCollIter I = m_section_headers.begin();
2656          I != m_section_headers.end(); ++I)
2657     {
2658         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2659         {
2660             if (CalculateType() == eTypeObjectFile)
2661             {
2662                 const char *section_name = I->section_name.AsCString("");
2663                 if (strstr(section_name, ".rela.debug") ||
2664                     strstr(section_name, ".rel.debug"))
2665                 {
2666                     const ELFSectionHeader &reloc_header = *I;
2667                     user_id_t reloc_id = SectionIndex(I);
2668                     RelocateDebugSections(&reloc_header, reloc_id);
2669                 }
2670             }
2671         }
2672     }
2673     return m_symtab_ap.get();
2674 }
2675 
2676 Symbol *
2677 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2678 {
2679     if (!m_symtab_ap.get())
2680         return nullptr; // GetSymtab() should be called first.
2681 
2682     const SectionList *section_list = GetSectionList();
2683     if (!section_list)
2684         return nullptr;
2685 
2686     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2687     {
2688         AddressRange range;
2689         if (eh_frame->GetAddressRange (so_addr, range))
2690         {
2691             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2692             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2693             if (symbol)
2694                 return symbol;
2695 
2696             // Note that a (stripped) symbol won't be found by GetSymtab()...
2697             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2698             if (eh_sym_section_sp.get())
2699             {
2700                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2701                 addr_t offset = file_addr - section_base;
2702                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2703 
2704                 Symbol eh_symbol(
2705                         symbol_id,            // Symbol table index.
2706                         "???",                // Symbol name.
2707                         false,                // Is the symbol name mangled?
2708                         eSymbolTypeCode,      // Type of this symbol.
2709                         true,                 // Is this globally visible?
2710                         false,                // Is this symbol debug info?
2711                         false,                // Is this symbol a trampoline?
2712                         true,                 // Is this symbol artificial?
2713                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2714                         offset,               // Offset in section or symbol value.
2715                         range.GetByteSize(),  // Size in bytes of this symbol.
2716                         true,                 // Size is valid.
2717                         false,                // Contains linker annotations?
2718                         0);                   // Symbol flags.
2719                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2720                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2721             }
2722         }
2723     }
2724     return nullptr;
2725 }
2726 
2727 
2728 bool
2729 ObjectFileELF::IsStripped ()
2730 {
2731     // TODO: determine this for ELF
2732     return false;
2733 }
2734 
2735 //===----------------------------------------------------------------------===//
2736 // Dump
2737 //
2738 // Dump the specifics of the runtime file container (such as any headers
2739 // segments, sections, etc).
2740 //----------------------------------------------------------------------
2741 void
2742 ObjectFileELF::Dump(Stream *s)
2743 {
2744     DumpELFHeader(s, m_header);
2745     s->EOL();
2746     DumpELFProgramHeaders(s);
2747     s->EOL();
2748     DumpELFSectionHeaders(s);
2749     s->EOL();
2750     SectionList *section_list = GetSectionList();
2751     if (section_list)
2752         section_list->Dump(s, NULL, true, UINT32_MAX);
2753     Symtab *symtab = GetSymtab();
2754     if (symtab)
2755         symtab->Dump(s, NULL, eSortOrderNone);
2756     s->EOL();
2757     DumpDependentModules(s);
2758     s->EOL();
2759 }
2760 
2761 //----------------------------------------------------------------------
2762 // DumpELFHeader
2763 //
2764 // Dump the ELF header to the specified output stream
2765 //----------------------------------------------------------------------
2766 void
2767 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2768 {
2769     s->PutCString("ELF Header\n");
2770     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2771     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2772               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2773     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2774               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2775     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2776               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2777 
2778     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2779     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2780     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2781     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2782     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2783 
2784     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2785     DumpELFHeader_e_type(s, header.e_type);
2786     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2787     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2788     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2789     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2790     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2791     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2792     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2793     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2794     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2795     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2796     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2797     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2798 }
2799 
2800 //----------------------------------------------------------------------
2801 // DumpELFHeader_e_type
2802 //
2803 // Dump an token value for the ELF header member e_type
2804 //----------------------------------------------------------------------
2805 void
2806 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2807 {
2808     switch (e_type)
2809     {
2810     case ET_NONE:   *s << "ET_NONE"; break;
2811     case ET_REL:    *s << "ET_REL"; break;
2812     case ET_EXEC:   *s << "ET_EXEC"; break;
2813     case ET_DYN:    *s << "ET_DYN"; break;
2814     case ET_CORE:   *s << "ET_CORE"; break;
2815     default:
2816         break;
2817     }
2818 }
2819 
2820 //----------------------------------------------------------------------
2821 // DumpELFHeader_e_ident_EI_DATA
2822 //
2823 // Dump an token value for the ELF header member e_ident[EI_DATA]
2824 //----------------------------------------------------------------------
2825 void
2826 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2827 {
2828     switch (ei_data)
2829     {
2830     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2831     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2832     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2833     default:
2834         break;
2835     }
2836 }
2837 
2838 
2839 //----------------------------------------------------------------------
2840 // DumpELFProgramHeader
2841 //
2842 // Dump a single ELF program header to the specified output stream
2843 //----------------------------------------------------------------------
2844 void
2845 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2846 {
2847     DumpELFProgramHeader_p_type(s, ph.p_type);
2848     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2849     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2850 
2851     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2852     s->Printf(") %8.8" PRIx64, ph.p_align);
2853 }
2854 
2855 //----------------------------------------------------------------------
2856 // DumpELFProgramHeader_p_type
2857 //
2858 // Dump an token value for the ELF program header member p_type which
2859 // describes the type of the program header
2860 // ----------------------------------------------------------------------
2861 void
2862 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2863 {
2864     const int kStrWidth = 15;
2865     switch (p_type)
2866     {
2867     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2868     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2869     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2870     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2871     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2872     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2873     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2874     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2875     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2876     default:
2877         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2878         break;
2879     }
2880 }
2881 
2882 
2883 //----------------------------------------------------------------------
2884 // DumpELFProgramHeader_p_flags
2885 //
2886 // Dump an token value for the ELF program header member p_flags
2887 //----------------------------------------------------------------------
2888 void
2889 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2890 {
2891     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2892         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2893         << ((p_flags & PF_W) ? "PF_W" : "    ")
2894         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2895         << ((p_flags & PF_R) ? "PF_R" : "    ");
2896 }
2897 
2898 //----------------------------------------------------------------------
2899 // DumpELFProgramHeaders
2900 //
2901 // Dump all of the ELF program header to the specified output stream
2902 //----------------------------------------------------------------------
2903 void
2904 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2905 {
2906     if (!ParseProgramHeaders())
2907         return;
2908 
2909     s->PutCString("Program Headers\n");
2910     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2911                   "p_filesz p_memsz  p_flags                   p_align\n");
2912     s->PutCString("==== --------------- -------- -------- -------- "
2913                   "-------- -------- ------------------------- --------\n");
2914 
2915     uint32_t idx = 0;
2916     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2917          I != m_program_headers.end(); ++I, ++idx)
2918     {
2919         s->Printf("[%2u] ", idx);
2920         ObjectFileELF::DumpELFProgramHeader(s, *I);
2921         s->EOL();
2922     }
2923 }
2924 
2925 //----------------------------------------------------------------------
2926 // DumpELFSectionHeader
2927 //
2928 // Dump a single ELF section header to the specified output stream
2929 //----------------------------------------------------------------------
2930 void
2931 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2932 {
2933     s->Printf("%8.8x ", sh.sh_name);
2934     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2935     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2936     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2937     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2938     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2939     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2940 }
2941 
2942 //----------------------------------------------------------------------
2943 // DumpELFSectionHeader_sh_type
2944 //
2945 // Dump an token value for the ELF section header member sh_type which
2946 // describes the type of the section
2947 //----------------------------------------------------------------------
2948 void
2949 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2950 {
2951     const int kStrWidth = 12;
2952     switch (sh_type)
2953     {
2954     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2955     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2956     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2957     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2958     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2959     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2960     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2961     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2962     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2963     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2964     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2965     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2966     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2967     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2968     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2969     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2970     default:
2971         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2972         break;
2973     }
2974 }
2975 
2976 //----------------------------------------------------------------------
2977 // DumpELFSectionHeader_sh_flags
2978 //
2979 // Dump an token value for the ELF section header member sh_flags
2980 //----------------------------------------------------------------------
2981 void
2982 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2983 {
2984     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2985         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2986         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2987         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2988         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2989 }
2990 
2991 //----------------------------------------------------------------------
2992 // DumpELFSectionHeaders
2993 //
2994 // Dump all of the ELF section header to the specified output stream
2995 //----------------------------------------------------------------------
2996 void
2997 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2998 {
2999     if (!ParseSectionHeaders())
3000         return;
3001 
3002     s->PutCString("Section Headers\n");
3003     s->PutCString("IDX  name     type         flags                            "
3004                   "addr     offset   size     link     info     addralgn "
3005                   "entsize  Name\n");
3006     s->PutCString("==== -------- ------------ -------------------------------- "
3007                   "-------- -------- -------- -------- -------- -------- "
3008                   "-------- ====================\n");
3009 
3010     uint32_t idx = 0;
3011     for (SectionHeaderCollConstIter I = m_section_headers.begin();
3012          I != m_section_headers.end(); ++I, ++idx)
3013     {
3014         s->Printf("[%2u] ", idx);
3015         ObjectFileELF::DumpELFSectionHeader(s, *I);
3016         const char* section_name = I->section_name.AsCString("");
3017         if (section_name)
3018             *s << ' ' << section_name << "\n";
3019     }
3020 }
3021 
3022 void
3023 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
3024 {
3025     size_t num_modules = ParseDependentModules();
3026 
3027     if (num_modules > 0)
3028     {
3029         s->PutCString("Dependent Modules:\n");
3030         for (unsigned i = 0; i < num_modules; ++i)
3031         {
3032             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3033             s->Printf("   %s\n", spec.GetFilename().GetCString());
3034         }
3035     }
3036 }
3037 
3038 bool
3039 ObjectFileELF::GetArchitecture (ArchSpec &arch)
3040 {
3041     if (!ParseHeader())
3042         return false;
3043 
3044     if (m_section_headers.empty())
3045     {
3046         // Allow elf notes to be parsed which may affect the detected architecture.
3047         ParseSectionHeaders();
3048     }
3049 
3050     arch = m_arch_spec;
3051     return true;
3052 }
3053 
3054 ObjectFile::Type
3055 ObjectFileELF::CalculateType()
3056 {
3057     switch (m_header.e_type)
3058     {
3059         case llvm::ELF::ET_NONE:
3060             // 0 - No file type
3061             return eTypeUnknown;
3062 
3063         case llvm::ELF::ET_REL:
3064             // 1 - Relocatable file
3065             return eTypeObjectFile;
3066 
3067         case llvm::ELF::ET_EXEC:
3068             // 2 - Executable file
3069             return eTypeExecutable;
3070 
3071         case llvm::ELF::ET_DYN:
3072             // 3 - Shared object file
3073             return eTypeSharedLibrary;
3074 
3075         case ET_CORE:
3076             // 4 - Core file
3077             return eTypeCoreFile;
3078 
3079         default:
3080             break;
3081     }
3082     return eTypeUnknown;
3083 }
3084 
3085 ObjectFile::Strata
3086 ObjectFileELF::CalculateStrata()
3087 {
3088     switch (m_header.e_type)
3089     {
3090         case llvm::ELF::ET_NONE:
3091             // 0 - No file type
3092             return eStrataUnknown;
3093 
3094         case llvm::ELF::ET_REL:
3095             // 1 - Relocatable file
3096             return eStrataUnknown;
3097 
3098         case llvm::ELF::ET_EXEC:
3099             // 2 - Executable file
3100             // TODO: is there any way to detect that an executable is a kernel
3101             // related executable by inspecting the program headers, section
3102             // headers, symbols, or any other flag bits???
3103             return eStrataUser;
3104 
3105         case llvm::ELF::ET_DYN:
3106             // 3 - Shared object file
3107             // TODO: is there any way to detect that an shared library is a kernel
3108             // related executable by inspecting the program headers, section
3109             // headers, symbols, or any other flag bits???
3110             return eStrataUnknown;
3111 
3112         case ET_CORE:
3113             // 4 - Core file
3114             // TODO: is there any way to detect that an core file is a kernel
3115             // related executable by inspecting the program headers, section
3116             // headers, symbols, or any other flag bits???
3117             return eStrataUnknown;
3118 
3119         default:
3120             break;
3121     }
3122     return eStrataUnknown;
3123 }
3124 
3125