xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision e8659b5df619b0915ed6d71fe544d8514a11334a)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 static bool
601 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
602 {
603     switch (osabi_byte)
604     {
605         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
606         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
607         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
608         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
609         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
610         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
611         default:
612             ostype = llvm::Triple::OSType::UnknownOS;
613     }
614     return ostype != llvm::Triple::OSType::UnknownOS;
615 }
616 
617 size_t
618 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
619                                         lldb::DataBufferSP& data_sp,
620                                         lldb::offset_t data_offset,
621                                         lldb::offset_t file_offset,
622                                         lldb::offset_t length,
623                                         lldb_private::ModuleSpecList &specs)
624 {
625     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
626 
627     const size_t initial_count = specs.GetSize();
628 
629     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
630     {
631         DataExtractor data;
632         data.SetData(data_sp);
633         elf::ELFHeader header;
634         if (header.Parse(data, &data_offset))
635         {
636             if (data_sp)
637             {
638                 ModuleSpec spec (file);
639 
640                 const uint32_t sub_type = subTypeFromElfHeader(header);
641                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
642                                                        header.e_machine,
643                                                        sub_type);
644 
645                 if (spec.GetArchitecture().IsValid())
646                 {
647                     llvm::Triple::OSType ostype;
648                     // First try to determine the OS type from the OSABI field in the elf header.
649 
650                     if (log)
651                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
652                     if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS)
653                     {
654                         spec.GetArchitecture ().GetTriple ().setOS (ostype);
655 
656                         // Also clear the vendor so we don't end up with situations like
657                         // x86_64-apple-FreeBSD.
658                         spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
659 
660                         if (log)
661                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
662                     }
663 
664                     // Try to get the UUID from the section list. Usually that's at the end, so
665                     // map the file in if we don't have it already.
666                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
667                     if (section_header_end > data_sp->GetByteSize())
668                     {
669                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
670                         data.SetData(data_sp);
671                     }
672 
673                     uint32_t gnu_debuglink_crc = 0;
674                     std::string gnu_debuglink_file;
675                     SectionHeaderColl section_headers;
676                     lldb_private::UUID &uuid = spec.GetUUID();
677 
678                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
679 
680                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
681 
682                     if (log)
683                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
684 
685                     if (!uuid.IsValid())
686                     {
687                         uint32_t core_notes_crc = 0;
688 
689                         if (!gnu_debuglink_crc)
690                         {
691                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
692                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
693                                                               file.GetLastPathComponent().AsCString(),
694                                                               (file.GetByteSize()-file_offset)/1024);
695 
696                             // For core files - which usually don't happen to have a gnu_debuglink,
697                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
698                             // Thus we will need to fallback to something simpler.
699                             if (header.e_type == llvm::ELF::ET_CORE)
700                             {
701                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
702                                 if (program_headers_end > data_sp->GetByteSize())
703                                 {
704                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
705                                     data.SetData(data_sp);
706                                 }
707                                 ProgramHeaderColl program_headers;
708                                 GetProgramHeaderInfo(program_headers, data, header);
709 
710                                 size_t segment_data_end = 0;
711                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
712                                      I != program_headers.end(); ++I)
713                                 {
714                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
715                                 }
716 
717                                 if (segment_data_end > data_sp->GetByteSize())
718                                 {
719                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
720                                     data.SetData(data_sp);
721                                 }
722 
723                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
724                             }
725                             else
726                             {
727                                 // Need to map entire file into memory to calculate the crc.
728                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
729                                 data.SetData(data_sp);
730                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
731                             }
732                         }
733                         if (gnu_debuglink_crc)
734                         {
735                             // Use 4 bytes of crc from the .gnu_debuglink section.
736                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
737                             uuid.SetBytes (uuidt, sizeof(uuidt));
738                         }
739                         else if (core_notes_crc)
740                         {
741                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
742                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
743                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
744                             uuid.SetBytes (uuidt, sizeof(uuidt));
745                         }
746                     }
747 
748                     specs.Append(spec);
749                 }
750             }
751         }
752     }
753 
754     return specs.GetSize() - initial_count;
755 }
756 
757 //------------------------------------------------------------------
758 // PluginInterface protocol
759 //------------------------------------------------------------------
760 lldb_private::ConstString
761 ObjectFileELF::GetPluginName()
762 {
763     return GetPluginNameStatic();
764 }
765 
766 uint32_t
767 ObjectFileELF::GetPluginVersion()
768 {
769     return m_plugin_version;
770 }
771 //------------------------------------------------------------------
772 // ObjectFile protocol
773 //------------------------------------------------------------------
774 
775 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
776                               DataBufferSP& data_sp,
777                               lldb::offset_t data_offset,
778                               const FileSpec* file,
779                               lldb::offset_t file_offset,
780                               lldb::offset_t length) :
781     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
782     m_header(),
783     m_uuid(),
784     m_gnu_debuglink_file(),
785     m_gnu_debuglink_crc(0),
786     m_program_headers(),
787     m_section_headers(),
788     m_dynamic_symbols(),
789     m_filespec_ap(),
790     m_entry_point_address(),
791     m_arch_spec()
792 {
793     if (file)
794         m_file = *file;
795     ::memset(&m_header, 0, sizeof(m_header));
796 }
797 
798 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
799                               DataBufferSP& data_sp,
800                               const lldb::ProcessSP &process_sp,
801                               addr_t header_addr) :
802     ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp),
803     m_header(),
804     m_uuid(),
805     m_gnu_debuglink_file(),
806     m_gnu_debuglink_crc(0),
807     m_program_headers(),
808     m_section_headers(),
809     m_dynamic_symbols(),
810     m_filespec_ap(),
811     m_entry_point_address(),
812     m_arch_spec()
813 {
814     ::memset(&m_header, 0, sizeof(m_header));
815 }
816 
817 ObjectFileELF::~ObjectFileELF()
818 {
819 }
820 
821 bool
822 ObjectFileELF::IsExecutable() const
823 {
824     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
825 }
826 
827 bool
828 ObjectFileELF::SetLoadAddress (Target &target,
829                                lldb::addr_t value,
830                                bool value_is_offset)
831 {
832     ModuleSP module_sp = GetModule();
833     if (module_sp)
834     {
835         size_t num_loaded_sections = 0;
836         SectionList *section_list = GetSectionList ();
837         if (section_list)
838         {
839             if (value_is_offset)
840             {
841                 const size_t num_sections = section_list->GetSize();
842                 size_t sect_idx = 0;
843 
844                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
845                 {
846                     // Iterate through the object file sections to find all
847                     // of the sections that have SHF_ALLOC in their flag bits.
848                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
849                     // if (section_sp && !section_sp->IsThreadSpecific())
850                     if (section_sp && section_sp->Test(SHF_ALLOC))
851                     {
852                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value))
853                             ++num_loaded_sections;
854                     }
855                 }
856                 return num_loaded_sections > 0;
857             }
858             else
859             {
860                 // Not sure how to slide an ELF file given the base address
861                 // of the ELF file in memory
862             }
863         }
864     }
865     return false; // If it changed
866 }
867 
868 ByteOrder
869 ObjectFileELF::GetByteOrder() const
870 {
871     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
872         return eByteOrderBig;
873     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
874         return eByteOrderLittle;
875     return eByteOrderInvalid;
876 }
877 
878 uint32_t
879 ObjectFileELF::GetAddressByteSize() const
880 {
881     return m_data.GetAddressByteSize();
882 }
883 
884 // Top 16 bits of the `Symbol` flags are available.
885 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
886 
887 AddressClass
888 ObjectFileELF::GetAddressClass (addr_t file_addr)
889 {
890     auto res = ObjectFile::GetAddressClass (file_addr);
891 
892     if (res != eAddressClassCode)
893         return res;
894 
895     auto ub = m_address_class_map.upper_bound(file_addr);
896     if (ub == m_address_class_map.begin())
897     {
898         // No entry in the address class map before the address. Return
899         // default address class for an address in a code section.
900         return eAddressClassCode;
901     }
902 
903     // Move iterator to the address class entry preceding address
904     --ub;
905 
906     return ub->second;
907 }
908 
909 size_t
910 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
911 {
912     return std::distance(m_section_headers.begin(), I) + 1u;
913 }
914 
915 size_t
916 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
917 {
918     return std::distance(m_section_headers.begin(), I) + 1u;
919 }
920 
921 bool
922 ObjectFileELF::ParseHeader()
923 {
924     lldb::offset_t offset = 0;
925     return m_header.Parse(m_data, &offset);
926 }
927 
928 bool
929 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
930 {
931     // Need to parse the section list to get the UUIDs, so make sure that's been done.
932     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
933         return false;
934 
935     if (m_uuid.IsValid())
936     {
937         // We have the full build id uuid.
938         *uuid = m_uuid;
939         return true;
940     }
941     else if (GetType() == ObjectFile::eTypeCoreFile)
942     {
943         uint32_t core_notes_crc = 0;
944 
945         if (!ParseProgramHeaders())
946             return false;
947 
948         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
949 
950         if (core_notes_crc)
951         {
952             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
953             // look different form .gnu_debuglink crc - followed by 4 bytes of note
954             // segments crc.
955             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
956             m_uuid.SetBytes (uuidt, sizeof(uuidt));
957         }
958     }
959     else
960     {
961         if (!m_gnu_debuglink_crc)
962             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
963         if (m_gnu_debuglink_crc)
964         {
965             // Use 4 bytes of crc from the .gnu_debuglink section.
966             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
967             m_uuid.SetBytes (uuidt, sizeof(uuidt));
968         }
969     }
970 
971     if (m_uuid.IsValid())
972     {
973         *uuid = m_uuid;
974         return true;
975     }
976 
977     return false;
978 }
979 
980 lldb_private::FileSpecList
981 ObjectFileELF::GetDebugSymbolFilePaths()
982 {
983     FileSpecList file_spec_list;
984 
985     if (!m_gnu_debuglink_file.empty())
986     {
987         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
988         file_spec_list.Append (file_spec);
989     }
990     return file_spec_list;
991 }
992 
993 uint32_t
994 ObjectFileELF::GetDependentModules(FileSpecList &files)
995 {
996     size_t num_modules = ParseDependentModules();
997     uint32_t num_specs = 0;
998 
999     for (unsigned i = 0; i < num_modules; ++i)
1000     {
1001         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1002             num_specs++;
1003     }
1004 
1005     return num_specs;
1006 }
1007 
1008 Address
1009 ObjectFileELF::GetImageInfoAddress(Target *target)
1010 {
1011     if (!ParseDynamicSymbols())
1012         return Address();
1013 
1014     SectionList *section_list = GetSectionList();
1015     if (!section_list)
1016         return Address();
1017 
1018     // Find the SHT_DYNAMIC (.dynamic) section.
1019     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1020     if (!dynsym_section_sp)
1021         return Address();
1022     assert (dynsym_section_sp->GetObjectFile() == this);
1023 
1024     user_id_t dynsym_id = dynsym_section_sp->GetID();
1025     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1026     if (!dynsym_hdr)
1027         return Address();
1028 
1029     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1030     {
1031         ELFDynamic &symbol = m_dynamic_symbols[i];
1032 
1033         if (symbol.d_tag == DT_DEBUG)
1034         {
1035             // Compute the offset as the number of previous entries plus the
1036             // size of d_tag.
1037             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1038             return Address(dynsym_section_sp, offset);
1039         }
1040         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1041         {
1042             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1043             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1044             if (dyn_base == LLDB_INVALID_ADDRESS)
1045                 return Address();
1046             Address addr;
1047             Error error;
1048             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1049                 return addr;
1050         }
1051     }
1052 
1053     return Address();
1054 }
1055 
1056 lldb_private::Address
1057 ObjectFileELF::GetEntryPointAddress ()
1058 {
1059     if (m_entry_point_address.IsValid())
1060         return m_entry_point_address;
1061 
1062     if (!ParseHeader() || !IsExecutable())
1063         return m_entry_point_address;
1064 
1065     SectionList *section_list = GetSectionList();
1066     addr_t offset = m_header.e_entry;
1067 
1068     if (!section_list)
1069         m_entry_point_address.SetOffset(offset);
1070     else
1071         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1072     return m_entry_point_address;
1073 }
1074 
1075 //----------------------------------------------------------------------
1076 // ParseDependentModules
1077 //----------------------------------------------------------------------
1078 size_t
1079 ObjectFileELF::ParseDependentModules()
1080 {
1081     if (m_filespec_ap.get())
1082         return m_filespec_ap->GetSize();
1083 
1084     m_filespec_ap.reset(new FileSpecList());
1085 
1086     if (!ParseSectionHeaders())
1087         return 0;
1088 
1089     SectionList *section_list = GetSectionList();
1090     if (!section_list)
1091         return 0;
1092 
1093     // Find the SHT_DYNAMIC section.
1094     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1095     if (!dynsym)
1096         return 0;
1097     assert (dynsym->GetObjectFile() == this);
1098 
1099     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1100     if (!header)
1101         return 0;
1102     // sh_link: section header index of string table used by entries in the section.
1103     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1104     if (!dynstr)
1105         return 0;
1106 
1107     DataExtractor dynsym_data;
1108     DataExtractor dynstr_data;
1109     if (ReadSectionData(dynsym, dynsym_data) &&
1110         ReadSectionData(dynstr, dynstr_data))
1111     {
1112         ELFDynamic symbol;
1113         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1114         lldb::offset_t offset = 0;
1115 
1116         // The only type of entries we are concerned with are tagged DT_NEEDED,
1117         // yielding the name of a required library.
1118         while (offset < section_size)
1119         {
1120             if (!symbol.Parse(dynsym_data, &offset))
1121                 break;
1122 
1123             if (symbol.d_tag != DT_NEEDED)
1124                 continue;
1125 
1126             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1127             const char *lib_name = dynstr_data.PeekCStr(str_index);
1128             m_filespec_ap->Append(FileSpec(lib_name, true));
1129         }
1130     }
1131 
1132     return m_filespec_ap->GetSize();
1133 }
1134 
1135 //----------------------------------------------------------------------
1136 // GetProgramHeaderInfo
1137 //----------------------------------------------------------------------
1138 size_t
1139 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1140                                     DataExtractor &object_data,
1141                                     const ELFHeader &header)
1142 {
1143     // We have already parsed the program headers
1144     if (!program_headers.empty())
1145         return program_headers.size();
1146 
1147     // If there are no program headers to read we are done.
1148     if (header.e_phnum == 0)
1149         return 0;
1150 
1151     program_headers.resize(header.e_phnum);
1152     if (program_headers.size() != header.e_phnum)
1153         return 0;
1154 
1155     const size_t ph_size = header.e_phnum * header.e_phentsize;
1156     const elf_off ph_offset = header.e_phoff;
1157     DataExtractor data;
1158     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1159         return 0;
1160 
1161     uint32_t idx;
1162     lldb::offset_t offset;
1163     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1164     {
1165         if (program_headers[idx].Parse(data, &offset) == false)
1166             break;
1167     }
1168 
1169     if (idx < program_headers.size())
1170         program_headers.resize(idx);
1171 
1172     return program_headers.size();
1173 
1174 }
1175 
1176 //----------------------------------------------------------------------
1177 // ParseProgramHeaders
1178 //----------------------------------------------------------------------
1179 size_t
1180 ObjectFileELF::ParseProgramHeaders()
1181 {
1182     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1183 }
1184 
1185 lldb_private::Error
1186 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1187 {
1188     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1189     Error error;
1190 
1191     lldb::offset_t offset = 0;
1192 
1193     while (true)
1194     {
1195         // Parse the note header.  If this fails, bail out.
1196         ELFNote note = ELFNote();
1197         if (!note.Parse(data, &offset))
1198         {
1199             // We're done.
1200             return error;
1201         }
1202 
1203         // If a tag processor handles the tag, it should set processed to true, and
1204         // the loop will assume the tag processing has moved entirely past the note's payload.
1205         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1206         bool processed = false;
1207 
1208         if (log)
1209             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1210 
1211         // Process FreeBSD ELF notes.
1212         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1213             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1214             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1215         {
1216             // We'll consume the payload below.
1217             processed = true;
1218 
1219             // Pull out the min version info.
1220             uint32_t version_info;
1221             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1222             {
1223                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1224                 return error;
1225             }
1226 
1227             // Convert the version info into a major/minor number.
1228             const uint32_t version_major = version_info / 100000;
1229             const uint32_t version_minor = (version_info / 1000) % 100;
1230 
1231             char os_name[32];
1232             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1233 
1234             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1235             arch_spec.GetTriple ().setOSName (os_name);
1236             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1237 
1238             if (log)
1239                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1240         }
1241         // Process GNU ELF notes.
1242         else if (note.n_name == LLDB_NT_OWNER_GNU)
1243         {
1244             switch (note.n_type)
1245             {
1246                 case LLDB_NT_GNU_ABI_TAG:
1247                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1248                     {
1249                         // We'll consume the payload below.
1250                         processed = true;
1251 
1252                         // Pull out the min OS version supporting the ABI.
1253                         uint32_t version_info[4];
1254                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1255                         {
1256                             error.SetErrorString ("failed to read GNU ABI note payload");
1257                             return error;
1258                         }
1259 
1260                         // Set the OS per the OS field.
1261                         switch (version_info[0])
1262                         {
1263                             case LLDB_NT_GNU_ABI_OS_LINUX:
1264                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1265                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1266                                 if (log)
1267                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1268                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1269                                 break;
1270                             case LLDB_NT_GNU_ABI_OS_HURD:
1271                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1272                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1273                                 if (log)
1274                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1275                                 break;
1276                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1277                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1278                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1279                                 if (log)
1280                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1281                                 break;
1282                             default:
1283                                 if (log)
1284                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1285                                 break;
1286                         }
1287                     }
1288                     break;
1289 
1290                 case LLDB_NT_GNU_BUILD_ID_TAG:
1291                     // Only bother processing this if we don't already have the uuid set.
1292                     if (!uuid.IsValid())
1293                     {
1294                         // We'll consume the payload below.
1295                         processed = true;
1296 
1297                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1298                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1299                         {
1300                             uint8_t uuidbuf[20];
1301                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1302                             {
1303                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1304                                 return error;
1305                             }
1306 
1307                             // Save the build id as the UUID for the module.
1308                             uuid.SetBytes (uuidbuf, note.n_descsz);
1309                         }
1310                     }
1311                     break;
1312             }
1313         }
1314         // Process NetBSD ELF notes.
1315         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1316                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1317                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1318         {
1319 
1320             // We'll consume the payload below.
1321             processed = true;
1322 
1323             // Pull out the min version info.
1324             uint32_t version_info;
1325             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1326             {
1327                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1328                 return error;
1329             }
1330 
1331             // Set the elf OS version to NetBSD.  Also clear the vendor.
1332             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1333             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1334 
1335             if (log)
1336                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1337         }
1338         // Process CSR kalimba notes
1339         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1340                 (note.n_name == LLDB_NT_OWNER_CSR))
1341         {
1342             // We'll consume the payload below.
1343             processed = true;
1344             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1345             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1346 
1347             // TODO At some point the description string could be processed.
1348             // It could provide a steer towards the kalimba variant which
1349             // this ELF targets.
1350             if(note.n_descsz)
1351             {
1352                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1353                 (void)cstr;
1354             }
1355         }
1356         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1357         {
1358             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1359             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1360         }
1361 
1362         if (!processed)
1363             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1364     }
1365 
1366     return error;
1367 }
1368 
1369 
1370 //----------------------------------------------------------------------
1371 // GetSectionHeaderInfo
1372 //----------------------------------------------------------------------
1373 size_t
1374 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1375                                     lldb_private::DataExtractor &object_data,
1376                                     const elf::ELFHeader &header,
1377                                     lldb_private::UUID &uuid,
1378                                     std::string &gnu_debuglink_file,
1379                                     uint32_t &gnu_debuglink_crc,
1380                                     ArchSpec &arch_spec)
1381 {
1382     // Don't reparse the section headers if we already did that.
1383     if (!section_headers.empty())
1384         return section_headers.size();
1385 
1386     // Only initialize the arch_spec to okay defaults if they're not already set.
1387     // We'll refine this with note data as we parse the notes.
1388     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1389     {
1390         const uint32_t sub_type = subTypeFromElfHeader(header);
1391         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type);
1392     }
1393 
1394     // If there are no section headers we are done.
1395     if (header.e_shnum == 0)
1396         return 0;
1397 
1398     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1399 
1400     section_headers.resize(header.e_shnum);
1401     if (section_headers.size() != header.e_shnum)
1402         return 0;
1403 
1404     const size_t sh_size = header.e_shnum * header.e_shentsize;
1405     const elf_off sh_offset = header.e_shoff;
1406     DataExtractor sh_data;
1407     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1408         return 0;
1409 
1410     uint32_t idx;
1411     lldb::offset_t offset;
1412     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1413     {
1414         if (section_headers[idx].Parse(sh_data, &offset) == false)
1415             break;
1416     }
1417     if (idx < section_headers.size())
1418         section_headers.resize(idx);
1419 
1420     const unsigned strtab_idx = header.e_shstrndx;
1421     if (strtab_idx && strtab_idx < section_headers.size())
1422     {
1423         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1424         const size_t byte_size = sheader.sh_size;
1425         const Elf64_Off offset = sheader.sh_offset;
1426         lldb_private::DataExtractor shstr_data;
1427 
1428         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1429         {
1430             for (SectionHeaderCollIter I = section_headers.begin();
1431                  I != section_headers.end(); ++I)
1432             {
1433                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1434                 const ELFSectionHeaderInfo &header = *I;
1435                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1436                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1437 
1438                 I->section_name = name;
1439 
1440                 if (name == g_sect_name_gnu_debuglink)
1441                 {
1442                     DataExtractor data;
1443                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1444                     {
1445                         lldb::offset_t gnu_debuglink_offset = 0;
1446                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1447                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1448                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1449                     }
1450                 }
1451 
1452                 // Process ELF note section entries.
1453                 bool is_note_header = (header.sh_type == SHT_NOTE);
1454 
1455                 // The section header ".note.android.ident" is stored as a
1456                 // PROGBITS type header but it is actually a note header.
1457                 static ConstString g_sect_name_android_ident (".note.android.ident");
1458                 if (!is_note_header && name == g_sect_name_android_ident)
1459                     is_note_header = true;
1460 
1461                 if (is_note_header)
1462                 {
1463                     // Allow notes to refine module info.
1464                     DataExtractor data;
1465                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1466                     {
1467                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1468                         if (error.Fail ())
1469                         {
1470                             if (log)
1471                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1472                         }
1473                     }
1474                 }
1475             }
1476 
1477             return section_headers.size();
1478         }
1479     }
1480 
1481     section_headers.clear();
1482     return 0;
1483 }
1484 
1485 size_t
1486 ObjectFileELF::GetProgramHeaderCount()
1487 {
1488     return ParseProgramHeaders();
1489 }
1490 
1491 const elf::ELFProgramHeader *
1492 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1493 {
1494     if (!id || !ParseProgramHeaders())
1495         return NULL;
1496 
1497     if (--id < m_program_headers.size())
1498         return &m_program_headers[id];
1499 
1500     return NULL;
1501 }
1502 
1503 DataExtractor
1504 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1505 {
1506     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1507     if (segment_header == NULL)
1508         return DataExtractor();
1509     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1510 }
1511 
1512 std::string
1513 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1514 {
1515     size_t pos = symbol_name.find("@");
1516     return symbol_name.substr(0, pos).str();
1517 }
1518 
1519 //----------------------------------------------------------------------
1520 // ParseSectionHeaders
1521 //----------------------------------------------------------------------
1522 size_t
1523 ObjectFileELF::ParseSectionHeaders()
1524 {
1525     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1526 }
1527 
1528 const ObjectFileELF::ELFSectionHeaderInfo *
1529 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1530 {
1531     if (!id || !ParseSectionHeaders())
1532         return NULL;
1533 
1534     if (--id < m_section_headers.size())
1535         return &m_section_headers[id];
1536 
1537     return NULL;
1538 }
1539 
1540 void
1541 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1542 {
1543     if (!m_sections_ap.get() && ParseSectionHeaders())
1544     {
1545         m_sections_ap.reset(new SectionList());
1546 
1547         for (SectionHeaderCollIter I = m_section_headers.begin();
1548              I != m_section_headers.end(); ++I)
1549         {
1550             const ELFSectionHeaderInfo &header = *I;
1551 
1552             ConstString& name = I->section_name;
1553             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1554             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1555 
1556             static ConstString g_sect_name_text (".text");
1557             static ConstString g_sect_name_data (".data");
1558             static ConstString g_sect_name_bss (".bss");
1559             static ConstString g_sect_name_tdata (".tdata");
1560             static ConstString g_sect_name_tbss (".tbss");
1561             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1562             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1563             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1564             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1565             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1566             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1567             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1568             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1569             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1570             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1571             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1572             static ConstString g_sect_name_eh_frame (".eh_frame");
1573 
1574             SectionType sect_type = eSectionTypeOther;
1575 
1576             bool is_thread_specific = false;
1577 
1578             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1579             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1580             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1581             else if (name == g_sect_name_tdata)
1582             {
1583                 sect_type = eSectionTypeData;
1584                 is_thread_specific = true;
1585             }
1586             else if (name == g_sect_name_tbss)
1587             {
1588                 sect_type = eSectionTypeZeroFill;
1589                 is_thread_specific = true;
1590             }
1591             // .debug_abbrev – Abbreviations used in the .debug_info section
1592             // .debug_aranges – Lookup table for mapping addresses to compilation units
1593             // .debug_frame – Call frame information
1594             // .debug_info – The core DWARF information section
1595             // .debug_line – Line number information
1596             // .debug_loc – Location lists used in DW_AT_location attributes
1597             // .debug_macinfo – Macro information
1598             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1599             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1600             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1601             // .debug_str – String table used in .debug_info
1602             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1603             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1604             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1605             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1606             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1607             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1608             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1609             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1610             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1611             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1612             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1613             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1614             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1615             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1616             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1617 
1618             switch (header.sh_type)
1619             {
1620                 case SHT_SYMTAB:
1621                     assert (sect_type == eSectionTypeOther);
1622                     sect_type = eSectionTypeELFSymbolTable;
1623                     break;
1624                 case SHT_DYNSYM:
1625                     assert (sect_type == eSectionTypeOther);
1626                     sect_type = eSectionTypeELFDynamicSymbols;
1627                     break;
1628                 case SHT_RELA:
1629                 case SHT_REL:
1630                     assert (sect_type == eSectionTypeOther);
1631                     sect_type = eSectionTypeELFRelocationEntries;
1632                     break;
1633                 case SHT_DYNAMIC:
1634                     assert (sect_type == eSectionTypeOther);
1635                     sect_type = eSectionTypeELFDynamicLinkInfo;
1636                     break;
1637             }
1638 
1639             if (eSectionTypeOther == sect_type)
1640             {
1641                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1642                 // supports linkscripts which (can) give rise to various arbitarily named
1643                 // sections being "Code" or "Data".
1644                 sect_type = kalimbaSectionType(m_header, header);
1645             }
1646 
1647             const uint32_t target_bytes_size =
1648                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1649                 m_arch_spec.GetDataByteSize() :
1650                     eSectionTypeCode == sect_type ?
1651                     m_arch_spec.GetCodeByteSize() : 1;
1652 
1653             elf::elf_xword log2align = (header.sh_addralign==0)
1654                                         ? 0
1655                                         : llvm::Log2_64(header.sh_addralign);
1656             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1657                                               this,               // ObjectFile to which this section belongs and should read section data from.
1658                                               SectionIndex(I),    // Section ID.
1659                                               name,               // Section name.
1660                                               sect_type,          // Section type.
1661                                               header.sh_addr,     // VM address.
1662                                               vm_size,            // VM size in bytes of this section.
1663                                               header.sh_offset,   // Offset of this section in the file.
1664                                               file_size,          // Size of the section as found in the file.
1665                                               log2align,          // Alignment of the section
1666                                               header.sh_flags,    // Flags for this section.
1667                                               target_bytes_size));// Number of host bytes per target byte
1668 
1669             if (is_thread_specific)
1670                 section_sp->SetIsThreadSpecific (is_thread_specific);
1671             m_sections_ap->AddSection(section_sp);
1672         }
1673     }
1674 
1675     if (m_sections_ap.get())
1676     {
1677         if (GetType() == eTypeDebugInfo)
1678         {
1679             static const SectionType g_sections[] =
1680             {
1681                 eSectionTypeDWARFDebugAranges,
1682                 eSectionTypeDWARFDebugInfo,
1683                 eSectionTypeDWARFDebugAbbrev,
1684                 eSectionTypeDWARFDebugFrame,
1685                 eSectionTypeDWARFDebugLine,
1686                 eSectionTypeDWARFDebugStr,
1687                 eSectionTypeDWARFDebugLoc,
1688                 eSectionTypeDWARFDebugMacInfo,
1689                 eSectionTypeDWARFDebugPubNames,
1690                 eSectionTypeDWARFDebugPubTypes,
1691                 eSectionTypeDWARFDebugRanges,
1692                 eSectionTypeELFSymbolTable,
1693             };
1694             SectionList *elf_section_list = m_sections_ap.get();
1695             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1696             {
1697                 SectionType section_type = g_sections[idx];
1698                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1699                 if (section_sp)
1700                 {
1701                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1702                     if (module_section_sp)
1703                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1704                     else
1705                         unified_section_list.AddSection (section_sp);
1706                 }
1707             }
1708         }
1709         else
1710         {
1711             unified_section_list = *m_sections_ap;
1712         }
1713     }
1714 }
1715 
1716 // private
1717 unsigned
1718 ObjectFileELF::ParseSymbols (Symtab *symtab,
1719                              user_id_t start_id,
1720                              SectionList *section_list,
1721                              const size_t num_symbols,
1722                              const DataExtractor &symtab_data,
1723                              const DataExtractor &strtab_data)
1724 {
1725     ELFSymbol symbol;
1726     lldb::offset_t offset = 0;
1727 
1728     static ConstString text_section_name(".text");
1729     static ConstString init_section_name(".init");
1730     static ConstString fini_section_name(".fini");
1731     static ConstString ctors_section_name(".ctors");
1732     static ConstString dtors_section_name(".dtors");
1733 
1734     static ConstString data_section_name(".data");
1735     static ConstString rodata_section_name(".rodata");
1736     static ConstString rodata1_section_name(".rodata1");
1737     static ConstString data2_section_name(".data1");
1738     static ConstString bss_section_name(".bss");
1739     static ConstString opd_section_name(".opd");    // For ppc64
1740 
1741     //StreamFile strm(stdout, false);
1742     unsigned i;
1743     for (i = 0; i < num_symbols; ++i)
1744     {
1745         if (symbol.Parse(symtab_data, &offset) == false)
1746             break;
1747 
1748         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1749 
1750         // No need to add non-section symbols that have no names
1751         if (symbol.getType() != STT_SECTION &&
1752             (symbol_name == NULL || symbol_name[0] == '\0'))
1753             continue;
1754 
1755         //symbol.Dump (&strm, i, &strtab_data, section_list);
1756 
1757         SectionSP symbol_section_sp;
1758         SymbolType symbol_type = eSymbolTypeInvalid;
1759         Elf64_Half symbol_idx = symbol.st_shndx;
1760 
1761         switch (symbol_idx)
1762         {
1763         case SHN_ABS:
1764             symbol_type = eSymbolTypeAbsolute;
1765             break;
1766         case SHN_UNDEF:
1767             symbol_type = eSymbolTypeUndefined;
1768             break;
1769         default:
1770             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1771             break;
1772         }
1773 
1774         // If a symbol is undefined do not process it further even if it has a STT type
1775         if (symbol_type != eSymbolTypeUndefined)
1776         {
1777             switch (symbol.getType())
1778             {
1779             default:
1780             case STT_NOTYPE:
1781                 // The symbol's type is not specified.
1782                 break;
1783 
1784             case STT_OBJECT:
1785                 // The symbol is associated with a data object, such as a variable,
1786                 // an array, etc.
1787                 symbol_type = eSymbolTypeData;
1788                 break;
1789 
1790             case STT_FUNC:
1791                 // The symbol is associated with a function or other executable code.
1792                 symbol_type = eSymbolTypeCode;
1793                 break;
1794 
1795             case STT_SECTION:
1796                 // The symbol is associated with a section. Symbol table entries of
1797                 // this type exist primarily for relocation and normally have
1798                 // STB_LOCAL binding.
1799                 break;
1800 
1801             case STT_FILE:
1802                 // Conventionally, the symbol's name gives the name of the source
1803                 // file associated with the object file. A file symbol has STB_LOCAL
1804                 // binding, its section index is SHN_ABS, and it precedes the other
1805                 // STB_LOCAL symbols for the file, if it is present.
1806                 symbol_type = eSymbolTypeSourceFile;
1807                 break;
1808 
1809             case STT_GNU_IFUNC:
1810                 // The symbol is associated with an indirect function. The actual
1811                 // function will be resolved if it is referenced.
1812                 symbol_type = eSymbolTypeResolver;
1813                 break;
1814             }
1815         }
1816 
1817         if (symbol_type == eSymbolTypeInvalid)
1818         {
1819             if (symbol_section_sp)
1820             {
1821                 const ConstString &sect_name = symbol_section_sp->GetName();
1822                 if (sect_name == text_section_name ||
1823                     sect_name == init_section_name ||
1824                     sect_name == fini_section_name ||
1825                     sect_name == ctors_section_name ||
1826                     sect_name == dtors_section_name)
1827                 {
1828                     symbol_type = eSymbolTypeCode;
1829                 }
1830                 else if (sect_name == data_section_name ||
1831                          sect_name == data2_section_name ||
1832                          sect_name == rodata_section_name ||
1833                          sect_name == rodata1_section_name ||
1834                          sect_name == bss_section_name)
1835                 {
1836                     symbol_type = eSymbolTypeData;
1837                 }
1838             }
1839         }
1840 
1841         int64_t symbol_value_offset = 0;
1842         uint32_t additional_flags = 0;
1843 
1844         ArchSpec arch;
1845         if (GetArchitecture(arch))
1846         {
1847             if (arch.GetMachine() == llvm::Triple::arm)
1848             {
1849                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1850                 {
1851                     // These are reserved for the specification (e.g.: mapping
1852                     // symbols). We don't want to add them to the symbol table.
1853 
1854                     if (symbol_type == eSymbolTypeCode)
1855                     {
1856                         llvm::StringRef symbol_name_ref(symbol_name);
1857                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1858                         {
1859                             // $a[.<any>]* - marks an ARM instruction sequence
1860                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1861                         }
1862                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1863                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1864                         {
1865                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1866                             // $t[.<any>]* - marks a THUMB instruction sequence
1867                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1868                         }
1869                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1870                         {
1871                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1872                             m_address_class_map[symbol.st_value] = eAddressClassData;
1873                         }
1874                     }
1875 
1876                     continue;
1877                 }
1878             }
1879             else if (arch.GetMachine() == llvm::Triple::aarch64)
1880             {
1881                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1882                 {
1883                     // These are reserved for the specification (e.g.: mapping
1884                     // symbols). We don't want to add them to the symbol table.
1885 
1886                     if (symbol_type == eSymbolTypeCode)
1887                     {
1888                         llvm::StringRef symbol_name_ref(symbol_name);
1889                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
1890                         {
1891                             // $x[.<any>]* - marks an A64 instruction sequence
1892                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1893                         }
1894                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1895                         {
1896                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1897                             m_address_class_map[symbol.st_value] = eAddressClassData;
1898                         }
1899                     }
1900 
1901                     continue;
1902                 }
1903             }
1904 
1905             if (arch.GetMachine() == llvm::Triple::arm)
1906             {
1907                 // THUMB functions have the lower bit of their address set. Fixup
1908                 // the actual address and mark the symbol as THUMB.
1909                 if (symbol_type == eSymbolTypeCode && symbol.st_value & 1)
1910                 {
1911                     // Substracting 1 from the address effectively unsets
1912                     // the low order bit, which results in the address
1913                     // actually pointing to the beginning of the symbol.
1914                     // This delta will be used below in conjuction with
1915                     // symbol.st_value to produce the final symbol_value
1916                     // that we store in the symtab.
1917                     symbol_value_offset = -1;
1918                     additional_flags = ARM_ELF_SYM_IS_THUMB;
1919                 }
1920             }
1921         }
1922 
1923         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
1924         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
1925         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
1926         {
1927             ModuleSP module_sp(GetModule());
1928             if (module_sp)
1929             {
1930                 SectionList *module_section_list = module_sp->GetSectionList();
1931                 if (module_section_list && module_section_list != section_list)
1932                 {
1933                     const ConstString &sect_name = symbol_section_sp->GetName();
1934                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
1935                     if (section_sp && section_sp->GetFileSize())
1936                     {
1937                         symbol_section_sp = section_sp;
1938                     }
1939                 }
1940             }
1941         }
1942 
1943         // symbol_value_offset may contain 0 for ARM symbols or -1 for
1944         // THUMB symbols. See above for more details.
1945         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
1946         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
1947             symbol_value -= symbol_section_sp->GetFileAddress();
1948         bool is_global = symbol.getBinding() == STB_GLOBAL;
1949         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
1950         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
1951 
1952         llvm::StringRef symbol_ref(symbol_name);
1953 
1954         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
1955         size_t version_pos = symbol_ref.find('@');
1956         bool has_suffix = version_pos != llvm::StringRef::npos;
1957         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
1958         Mangled mangled(ConstString(symbol_bare), is_mangled);
1959 
1960         // Now append the suffix back to mangled and unmangled names. Only do it if the
1961         // demangling was sucessful (string is not empty).
1962         if (has_suffix)
1963         {
1964             llvm::StringRef suffix = symbol_ref.substr(version_pos);
1965 
1966             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
1967             if (! mangled_name.empty())
1968                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
1969 
1970             llvm::StringRef demangled_name = mangled.GetDemangledName().GetStringRef();
1971             if (! demangled_name.empty())
1972                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
1973         }
1974 
1975         Symbol dc_symbol(
1976             i + start_id,       // ID is the original symbol table index.
1977             mangled,
1978             symbol_type,        // Type of this symbol
1979             is_global,          // Is this globally visible?
1980             false,              // Is this symbol debug info?
1981             false,              // Is this symbol a trampoline?
1982             false,              // Is this symbol artificial?
1983             AddressRange(
1984                 symbol_section_sp,  // Section in which this symbol is defined or null.
1985                 symbol_value,       // Offset in section or symbol value.
1986                 symbol.st_size),    // Size in bytes of this symbol.
1987             true,               // Size is valid
1988             has_suffix,         // Contains linker annotations?
1989             flags);             // Symbol flags.
1990         symtab->AddSymbol(dc_symbol);
1991     }
1992     return i;
1993 }
1994 
1995 unsigned
1996 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
1997 {
1998     if (symtab->GetObjectFile() != this)
1999     {
2000         // If the symbol table section is owned by a different object file, have it do the
2001         // parsing.
2002         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2003         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2004     }
2005 
2006     // Get section list for this object file.
2007     SectionList *section_list = m_sections_ap.get();
2008     if (!section_list)
2009         return 0;
2010 
2011     user_id_t symtab_id = symtab->GetID();
2012     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2013     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2014            symtab_hdr->sh_type == SHT_DYNSYM);
2015 
2016     // sh_link: section header index of associated string table.
2017     // Section ID's are ones based.
2018     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2019     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2020 
2021     if (symtab && strtab)
2022     {
2023         assert (symtab->GetObjectFile() == this);
2024         assert (strtab->GetObjectFile() == this);
2025 
2026         DataExtractor symtab_data;
2027         DataExtractor strtab_data;
2028         if (ReadSectionData(symtab, symtab_data) &&
2029             ReadSectionData(strtab, strtab_data))
2030         {
2031             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2032 
2033             return ParseSymbols(symbol_table, start_id, section_list,
2034                                 num_symbols, symtab_data, strtab_data);
2035         }
2036     }
2037 
2038     return 0;
2039 }
2040 
2041 size_t
2042 ObjectFileELF::ParseDynamicSymbols()
2043 {
2044     if (m_dynamic_symbols.size())
2045         return m_dynamic_symbols.size();
2046 
2047     SectionList *section_list = GetSectionList();
2048     if (!section_list)
2049         return 0;
2050 
2051     // Find the SHT_DYNAMIC section.
2052     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2053     if (!dynsym)
2054         return 0;
2055     assert (dynsym->GetObjectFile() == this);
2056 
2057     ELFDynamic symbol;
2058     DataExtractor dynsym_data;
2059     if (ReadSectionData(dynsym, dynsym_data))
2060     {
2061         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2062         lldb::offset_t cursor = 0;
2063 
2064         while (cursor < section_size)
2065         {
2066             if (!symbol.Parse(dynsym_data, &cursor))
2067                 break;
2068 
2069             m_dynamic_symbols.push_back(symbol);
2070         }
2071     }
2072 
2073     return m_dynamic_symbols.size();
2074 }
2075 
2076 const ELFDynamic *
2077 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2078 {
2079     if (!ParseDynamicSymbols())
2080         return NULL;
2081 
2082     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2083     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2084     for ( ; I != E; ++I)
2085     {
2086         ELFDynamic *symbol = &*I;
2087 
2088         if (symbol->d_tag == tag)
2089             return symbol;
2090     }
2091 
2092     return NULL;
2093 }
2094 
2095 unsigned
2096 ObjectFileELF::PLTRelocationType()
2097 {
2098     // DT_PLTREL
2099     //  This member specifies the type of relocation entry to which the
2100     //  procedure linkage table refers. The d_val member holds DT_REL or
2101     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2102     //  must use the same relocation.
2103     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2104 
2105     if (symbol)
2106         return symbol->d_val;
2107 
2108     return 0;
2109 }
2110 
2111 static unsigned
2112 ParsePLTRelocations(Symtab *symbol_table,
2113                     user_id_t start_id,
2114                     unsigned rel_type,
2115                     const ELFHeader *hdr,
2116                     const ELFSectionHeader *rel_hdr,
2117                     const ELFSectionHeader *plt_hdr,
2118                     const ELFSectionHeader *sym_hdr,
2119                     const lldb::SectionSP &plt_section_sp,
2120                     DataExtractor &rel_data,
2121                     DataExtractor &symtab_data,
2122                     DataExtractor &strtab_data)
2123 {
2124     ELFRelocation rel(rel_type);
2125     ELFSymbol symbol;
2126     lldb::offset_t offset = 0;
2127     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2128     // So round the entsize up by the alignment if addralign is set.
2129     const elf_xword plt_entsize = plt_hdr->sh_addralign ?
2130         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2131     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2132 
2133     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2134     reloc_info_fn reloc_type;
2135     reloc_info_fn reloc_symbol;
2136 
2137     if (hdr->Is32Bit())
2138     {
2139         reloc_type = ELFRelocation::RelocType32;
2140         reloc_symbol = ELFRelocation::RelocSymbol32;
2141     }
2142     else
2143     {
2144         reloc_type = ELFRelocation::RelocType64;
2145         reloc_symbol = ELFRelocation::RelocSymbol64;
2146     }
2147 
2148     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2149     unsigned i;
2150     for (i = 0; i < num_relocations; ++i)
2151     {
2152         if (rel.Parse(rel_data, &offset) == false)
2153             break;
2154 
2155         if (reloc_type(rel) != slot_type)
2156             continue;
2157 
2158         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2159         uint64_t plt_index = (i + 1) * plt_entsize;
2160 
2161         if (!symbol.Parse(symtab_data, &symbol_offset))
2162             break;
2163 
2164         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2165         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2166 
2167         Symbol jump_symbol(
2168             i + start_id,    // Symbol table index
2169             symbol_name,     // symbol name.
2170             is_mangled,      // is the symbol name mangled?
2171             eSymbolTypeTrampoline, // Type of this symbol
2172             false,           // Is this globally visible?
2173             false,           // Is this symbol debug info?
2174             true,            // Is this symbol a trampoline?
2175             true,            // Is this symbol artificial?
2176             plt_section_sp,  // Section in which this symbol is defined or null.
2177             plt_index,       // Offset in section or symbol value.
2178             plt_entsize,     // Size in bytes of this symbol.
2179             true,            // Size is valid
2180             false,           // Contains linker annotations?
2181             0);              // Symbol flags.
2182 
2183         symbol_table->AddSymbol(jump_symbol);
2184     }
2185 
2186     return i;
2187 }
2188 
2189 unsigned
2190 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2191                                       user_id_t start_id,
2192                                       const ELFSectionHeaderInfo *rel_hdr,
2193                                       user_id_t rel_id)
2194 {
2195     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2196 
2197     // The link field points to the associated symbol table. The info field
2198     // points to the section holding the plt.
2199     user_id_t symtab_id = rel_hdr->sh_link;
2200     user_id_t plt_id = rel_hdr->sh_info;
2201 
2202     if (!symtab_id || !plt_id)
2203         return 0;
2204 
2205     // Section ID's are ones based;
2206     symtab_id++;
2207     plt_id++;
2208 
2209     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2210     if (!plt_hdr)
2211         return 0;
2212 
2213     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2214     if (!sym_hdr)
2215         return 0;
2216 
2217     SectionList *section_list = m_sections_ap.get();
2218     if (!section_list)
2219         return 0;
2220 
2221     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2222     if (!rel_section)
2223         return 0;
2224 
2225     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2226     if (!plt_section_sp)
2227         return 0;
2228 
2229     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2230     if (!symtab)
2231         return 0;
2232 
2233     // sh_link points to associated string table.
2234     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2235     if (!strtab)
2236         return 0;
2237 
2238     DataExtractor rel_data;
2239     if (!ReadSectionData(rel_section, rel_data))
2240         return 0;
2241 
2242     DataExtractor symtab_data;
2243     if (!ReadSectionData(symtab, symtab_data))
2244         return 0;
2245 
2246     DataExtractor strtab_data;
2247     if (!ReadSectionData(strtab, strtab_data))
2248         return 0;
2249 
2250     unsigned rel_type = PLTRelocationType();
2251     if (!rel_type)
2252         return 0;
2253 
2254     return ParsePLTRelocations (symbol_table,
2255                                 start_id,
2256                                 rel_type,
2257                                 &m_header,
2258                                 rel_hdr,
2259                                 plt_hdr,
2260                                 sym_hdr,
2261                                 plt_section_sp,
2262                                 rel_data,
2263                                 symtab_data,
2264                                 strtab_data);
2265 }
2266 
2267 unsigned
2268 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2269                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2270                 DataExtractor &rel_data, DataExtractor &symtab_data,
2271                 DataExtractor &debug_data, Section* rel_section)
2272 {
2273     ELFRelocation rel(rel_hdr->sh_type);
2274     lldb::addr_t offset = 0;
2275     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2276     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2277     reloc_info_fn reloc_type;
2278     reloc_info_fn reloc_symbol;
2279 
2280     if (hdr->Is32Bit())
2281     {
2282         reloc_type = ELFRelocation::RelocType32;
2283         reloc_symbol = ELFRelocation::RelocSymbol32;
2284     }
2285     else
2286     {
2287         reloc_type = ELFRelocation::RelocType64;
2288         reloc_symbol = ELFRelocation::RelocSymbol64;
2289     }
2290 
2291     for (unsigned i = 0; i < num_relocations; ++i)
2292     {
2293         if (rel.Parse(rel_data, &offset) == false)
2294             break;
2295 
2296         Symbol* symbol = NULL;
2297 
2298         if (hdr->Is32Bit())
2299         {
2300             switch (reloc_type(rel)) {
2301             case R_386_32:
2302             case R_386_PC32:
2303             default:
2304                 assert(false && "unexpected relocation type");
2305             }
2306         } else {
2307             switch (reloc_type(rel)) {
2308             case R_X86_64_64:
2309             {
2310                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2311                 if (symbol)
2312                 {
2313                     addr_t value = symbol->GetAddress().GetFileAddress();
2314                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2315                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2316                     *dst = value + ELFRelocation::RelocAddend64(rel);
2317                 }
2318                 break;
2319             }
2320             case R_X86_64_32:
2321             case R_X86_64_32S:
2322             {
2323                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2324                 if (symbol)
2325                 {
2326                     addr_t value = symbol->GetAddress().GetFileAddress();
2327                     value += ELFRelocation::RelocAddend32(rel);
2328                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2329                            (reloc_type(rel) == R_X86_64_32S &&
2330                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2331                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2332                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2333                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2334                     *dst = truncated_addr;
2335                 }
2336                 break;
2337             }
2338             case R_X86_64_PC32:
2339             default:
2340                 assert(false && "unexpected relocation type");
2341             }
2342         }
2343     }
2344 
2345     return 0;
2346 }
2347 
2348 unsigned
2349 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2350 {
2351     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2352 
2353     // Parse in the section list if needed.
2354     SectionList *section_list = GetSectionList();
2355     if (!section_list)
2356         return 0;
2357 
2358     // Section ID's are ones based.
2359     user_id_t symtab_id = rel_hdr->sh_link + 1;
2360     user_id_t debug_id = rel_hdr->sh_info + 1;
2361 
2362     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2363     if (!symtab_hdr)
2364         return 0;
2365 
2366     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2367     if (!debug_hdr)
2368         return 0;
2369 
2370     Section *rel = section_list->FindSectionByID(rel_id).get();
2371     if (!rel)
2372         return 0;
2373 
2374     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2375     if (!symtab)
2376         return 0;
2377 
2378     Section *debug = section_list->FindSectionByID(debug_id).get();
2379     if (!debug)
2380         return 0;
2381 
2382     DataExtractor rel_data;
2383     DataExtractor symtab_data;
2384     DataExtractor debug_data;
2385 
2386     if (ReadSectionData(rel, rel_data) &&
2387         ReadSectionData(symtab, symtab_data) &&
2388         ReadSectionData(debug, debug_data))
2389     {
2390         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2391                         rel_data, symtab_data, debug_data, debug);
2392     }
2393 
2394     return 0;
2395 }
2396 
2397 Symtab *
2398 ObjectFileELF::GetSymtab()
2399 {
2400     ModuleSP module_sp(GetModule());
2401     if (!module_sp)
2402         return NULL;
2403 
2404     // We always want to use the main object file so we (hopefully) only have one cached copy
2405     // of our symtab, dynamic sections, etc.
2406     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2407     if (module_obj_file && module_obj_file != this)
2408         return module_obj_file->GetSymtab();
2409 
2410     if (m_symtab_ap.get() == NULL)
2411     {
2412         SectionList *section_list = module_sp->GetSectionList();
2413         if (!section_list)
2414             return NULL;
2415 
2416         uint64_t symbol_id = 0;
2417         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2418 
2419         m_symtab_ap.reset(new Symtab(this));
2420 
2421         // Sharable objects and dynamic executables usually have 2 distinct symbol
2422         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2423         // version of the symtab that only contains global symbols. The information found
2424         // in the dynsym is therefore also found in the symtab, while the reverse is not
2425         // necessarily true.
2426         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2427         if (!symtab)
2428         {
2429             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2430             // then use the dynsym section which should always be there.
2431             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2432         }
2433         if (symtab)
2434             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2435 
2436         // DT_JMPREL
2437         //      If present, this entry's d_ptr member holds the address of relocation
2438         //      entries associated solely with the procedure linkage table. Separating
2439         //      these relocation entries lets the dynamic linker ignore them during
2440         //      process initialization, if lazy binding is enabled. If this entry is
2441         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2442         //      also be present.
2443         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2444         if (symbol)
2445         {
2446             // Synthesize trampoline symbols to help navigate the PLT.
2447             addr_t addr = symbol->d_ptr;
2448             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2449             if (reloc_section)
2450             {
2451                 user_id_t reloc_id = reloc_section->GetID();
2452                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2453                 assert(reloc_header);
2454 
2455                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2456             }
2457         }
2458     }
2459 
2460     for (SectionHeaderCollIter I = m_section_headers.begin();
2461          I != m_section_headers.end(); ++I)
2462     {
2463         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2464         {
2465             if (CalculateType() == eTypeObjectFile)
2466             {
2467                 const char *section_name = I->section_name.AsCString("");
2468                 if (strstr(section_name, ".rela.debug") ||
2469                     strstr(section_name, ".rel.debug"))
2470                 {
2471                     const ELFSectionHeader &reloc_header = *I;
2472                     user_id_t reloc_id = SectionIndex(I);
2473                     RelocateDebugSections(&reloc_header, reloc_id);
2474                 }
2475             }
2476         }
2477     }
2478     return m_symtab_ap.get();
2479 }
2480 
2481 Symbol *
2482 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2483 {
2484     if (!m_symtab_ap.get())
2485         return nullptr; // GetSymtab() should be called first.
2486 
2487     const SectionList *section_list = GetSectionList();
2488     if (!section_list)
2489         return nullptr;
2490 
2491     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2492     {
2493         AddressRange range;
2494         if (eh_frame->GetAddressRange (so_addr, range))
2495         {
2496             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2497             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2498             if (symbol)
2499                 return symbol;
2500 
2501             // Note that a (stripped) symbol won't be found by GetSymtab()...
2502             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2503             if (eh_sym_section_sp.get())
2504             {
2505                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2506                 addr_t offset = file_addr - section_base;
2507                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2508 
2509                 Symbol eh_symbol(
2510                         symbol_id,            // Symbol table index.
2511                         "???",                // Symbol name.
2512                         false,                // Is the symbol name mangled?
2513                         eSymbolTypeCode,      // Type of this symbol.
2514                         true,                 // Is this globally visible?
2515                         false,                // Is this symbol debug info?
2516                         false,                // Is this symbol a trampoline?
2517                         true,                 // Is this symbol artificial?
2518                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2519                         offset,               // Offset in section or symbol value.
2520                         range.GetByteSize(),  // Size in bytes of this symbol.
2521                         true,                 // Size is valid.
2522                         false,                // Contains linker annotations?
2523                         0);                   // Symbol flags.
2524                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2525                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2526             }
2527         }
2528     }
2529     return nullptr;
2530 }
2531 
2532 
2533 bool
2534 ObjectFileELF::IsStripped ()
2535 {
2536     // TODO: determine this for ELF
2537     return false;
2538 }
2539 
2540 //===----------------------------------------------------------------------===//
2541 // Dump
2542 //
2543 // Dump the specifics of the runtime file container (such as any headers
2544 // segments, sections, etc).
2545 //----------------------------------------------------------------------
2546 void
2547 ObjectFileELF::Dump(Stream *s)
2548 {
2549     DumpELFHeader(s, m_header);
2550     s->EOL();
2551     DumpELFProgramHeaders(s);
2552     s->EOL();
2553     DumpELFSectionHeaders(s);
2554     s->EOL();
2555     SectionList *section_list = GetSectionList();
2556     if (section_list)
2557         section_list->Dump(s, NULL, true, UINT32_MAX);
2558     Symtab *symtab = GetSymtab();
2559     if (symtab)
2560         symtab->Dump(s, NULL, eSortOrderNone);
2561     s->EOL();
2562     DumpDependentModules(s);
2563     s->EOL();
2564 }
2565 
2566 //----------------------------------------------------------------------
2567 // DumpELFHeader
2568 //
2569 // Dump the ELF header to the specified output stream
2570 //----------------------------------------------------------------------
2571 void
2572 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2573 {
2574     s->PutCString("ELF Header\n");
2575     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2576     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2577               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2578     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2579               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2580     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2581               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2582 
2583     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2584     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2585     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2586     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2587     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2588 
2589     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2590     DumpELFHeader_e_type(s, header.e_type);
2591     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2592     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2593     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2594     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2595     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2596     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2597     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2598     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2599     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2600     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2601     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2602     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2603 }
2604 
2605 //----------------------------------------------------------------------
2606 // DumpELFHeader_e_type
2607 //
2608 // Dump an token value for the ELF header member e_type
2609 //----------------------------------------------------------------------
2610 void
2611 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2612 {
2613     switch (e_type)
2614     {
2615     case ET_NONE:   *s << "ET_NONE"; break;
2616     case ET_REL:    *s << "ET_REL"; break;
2617     case ET_EXEC:   *s << "ET_EXEC"; break;
2618     case ET_DYN:    *s << "ET_DYN"; break;
2619     case ET_CORE:   *s << "ET_CORE"; break;
2620     default:
2621         break;
2622     }
2623 }
2624 
2625 //----------------------------------------------------------------------
2626 // DumpELFHeader_e_ident_EI_DATA
2627 //
2628 // Dump an token value for the ELF header member e_ident[EI_DATA]
2629 //----------------------------------------------------------------------
2630 void
2631 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2632 {
2633     switch (ei_data)
2634     {
2635     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2636     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2637     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2638     default:
2639         break;
2640     }
2641 }
2642 
2643 
2644 //----------------------------------------------------------------------
2645 // DumpELFProgramHeader
2646 //
2647 // Dump a single ELF program header to the specified output stream
2648 //----------------------------------------------------------------------
2649 void
2650 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2651 {
2652     DumpELFProgramHeader_p_type(s, ph.p_type);
2653     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2654     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2655 
2656     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2657     s->Printf(") %8.8" PRIx64, ph.p_align);
2658 }
2659 
2660 //----------------------------------------------------------------------
2661 // DumpELFProgramHeader_p_type
2662 //
2663 // Dump an token value for the ELF program header member p_type which
2664 // describes the type of the program header
2665 // ----------------------------------------------------------------------
2666 void
2667 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2668 {
2669     const int kStrWidth = 15;
2670     switch (p_type)
2671     {
2672     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2673     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2674     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2675     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2676     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2677     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2678     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2679     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2680     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2681     default:
2682         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2683         break;
2684     }
2685 }
2686 
2687 
2688 //----------------------------------------------------------------------
2689 // DumpELFProgramHeader_p_flags
2690 //
2691 // Dump an token value for the ELF program header member p_flags
2692 //----------------------------------------------------------------------
2693 void
2694 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2695 {
2696     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2697         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2698         << ((p_flags & PF_W) ? "PF_W" : "    ")
2699         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2700         << ((p_flags & PF_R) ? "PF_R" : "    ");
2701 }
2702 
2703 //----------------------------------------------------------------------
2704 // DumpELFProgramHeaders
2705 //
2706 // Dump all of the ELF program header to the specified output stream
2707 //----------------------------------------------------------------------
2708 void
2709 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2710 {
2711     if (!ParseProgramHeaders())
2712         return;
2713 
2714     s->PutCString("Program Headers\n");
2715     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2716                   "p_filesz p_memsz  p_flags                   p_align\n");
2717     s->PutCString("==== --------------- -------- -------- -------- "
2718                   "-------- -------- ------------------------- --------\n");
2719 
2720     uint32_t idx = 0;
2721     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2722          I != m_program_headers.end(); ++I, ++idx)
2723     {
2724         s->Printf("[%2u] ", idx);
2725         ObjectFileELF::DumpELFProgramHeader(s, *I);
2726         s->EOL();
2727     }
2728 }
2729 
2730 //----------------------------------------------------------------------
2731 // DumpELFSectionHeader
2732 //
2733 // Dump a single ELF section header to the specified output stream
2734 //----------------------------------------------------------------------
2735 void
2736 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2737 {
2738     s->Printf("%8.8x ", sh.sh_name);
2739     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2740     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2741     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2742     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2743     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2744     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2745 }
2746 
2747 //----------------------------------------------------------------------
2748 // DumpELFSectionHeader_sh_type
2749 //
2750 // Dump an token value for the ELF section header member sh_type which
2751 // describes the type of the section
2752 //----------------------------------------------------------------------
2753 void
2754 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2755 {
2756     const int kStrWidth = 12;
2757     switch (sh_type)
2758     {
2759     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2760     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2761     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2762     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2763     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2764     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2765     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2766     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2767     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2768     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2769     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2770     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2771     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2772     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2773     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2774     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2775     default:
2776         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2777         break;
2778     }
2779 }
2780 
2781 //----------------------------------------------------------------------
2782 // DumpELFSectionHeader_sh_flags
2783 //
2784 // Dump an token value for the ELF section header member sh_flags
2785 //----------------------------------------------------------------------
2786 void
2787 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2788 {
2789     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2790         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2791         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2792         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2793         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2794 }
2795 
2796 //----------------------------------------------------------------------
2797 // DumpELFSectionHeaders
2798 //
2799 // Dump all of the ELF section header to the specified output stream
2800 //----------------------------------------------------------------------
2801 void
2802 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2803 {
2804     if (!ParseSectionHeaders())
2805         return;
2806 
2807     s->PutCString("Section Headers\n");
2808     s->PutCString("IDX  name     type         flags                            "
2809                   "addr     offset   size     link     info     addralgn "
2810                   "entsize  Name\n");
2811     s->PutCString("==== -------- ------------ -------------------------------- "
2812                   "-------- -------- -------- -------- -------- -------- "
2813                   "-------- ====================\n");
2814 
2815     uint32_t idx = 0;
2816     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2817          I != m_section_headers.end(); ++I, ++idx)
2818     {
2819         s->Printf("[%2u] ", idx);
2820         ObjectFileELF::DumpELFSectionHeader(s, *I);
2821         const char* section_name = I->section_name.AsCString("");
2822         if (section_name)
2823             *s << ' ' << section_name << "\n";
2824     }
2825 }
2826 
2827 void
2828 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2829 {
2830     size_t num_modules = ParseDependentModules();
2831 
2832     if (num_modules > 0)
2833     {
2834         s->PutCString("Dependent Modules:\n");
2835         for (unsigned i = 0; i < num_modules; ++i)
2836         {
2837             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2838             s->Printf("   %s\n", spec.GetFilename().GetCString());
2839         }
2840     }
2841 }
2842 
2843 bool
2844 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2845 {
2846     if (!ParseHeader())
2847         return false;
2848 
2849     if (m_section_headers.empty())
2850     {
2851         // Allow elf notes to be parsed which may affect the detected architecture.
2852         ParseSectionHeaders();
2853     }
2854 
2855     arch = m_arch_spec;
2856     return true;
2857 }
2858 
2859 ObjectFile::Type
2860 ObjectFileELF::CalculateType()
2861 {
2862     switch (m_header.e_type)
2863     {
2864         case llvm::ELF::ET_NONE:
2865             // 0 - No file type
2866             return eTypeUnknown;
2867 
2868         case llvm::ELF::ET_REL:
2869             // 1 - Relocatable file
2870             return eTypeObjectFile;
2871 
2872         case llvm::ELF::ET_EXEC:
2873             // 2 - Executable file
2874             return eTypeExecutable;
2875 
2876         case llvm::ELF::ET_DYN:
2877             // 3 - Shared object file
2878             return eTypeSharedLibrary;
2879 
2880         case ET_CORE:
2881             // 4 - Core file
2882             return eTypeCoreFile;
2883 
2884         default:
2885             break;
2886     }
2887     return eTypeUnknown;
2888 }
2889 
2890 ObjectFile::Strata
2891 ObjectFileELF::CalculateStrata()
2892 {
2893     switch (m_header.e_type)
2894     {
2895         case llvm::ELF::ET_NONE:
2896             // 0 - No file type
2897             return eStrataUnknown;
2898 
2899         case llvm::ELF::ET_REL:
2900             // 1 - Relocatable file
2901             return eStrataUnknown;
2902 
2903         case llvm::ELF::ET_EXEC:
2904             // 2 - Executable file
2905             // TODO: is there any way to detect that an executable is a kernel
2906             // related executable by inspecting the program headers, section
2907             // headers, symbols, or any other flag bits???
2908             return eStrataUser;
2909 
2910         case llvm::ELF::ET_DYN:
2911             // 3 - Shared object file
2912             // TODO: is there any way to detect that an shared library is a kernel
2913             // related executable by inspecting the program headers, section
2914             // headers, symbols, or any other flag bits???
2915             return eStrataUnknown;
2916 
2917         case ET_CORE:
2918             // 4 - Core file
2919             // TODO: is there any way to detect that an core file is a kernel
2920             // related executable by inspecting the program headers, section
2921             // headers, symbols, or any other flag bits???
2922             return eStrataUnknown;
2923 
2924         default:
2925             break;
2926     }
2927     return eStrataUnknown;
2928 }
2929 
2930