1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 static bool 601 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 602 { 603 switch (osabi_byte) 604 { 605 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 606 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 607 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 608 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 609 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 610 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 611 default: 612 ostype = llvm::Triple::OSType::UnknownOS; 613 } 614 return ostype != llvm::Triple::OSType::UnknownOS; 615 } 616 617 size_t 618 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 619 lldb::DataBufferSP& data_sp, 620 lldb::offset_t data_offset, 621 lldb::offset_t file_offset, 622 lldb::offset_t length, 623 lldb_private::ModuleSpecList &specs) 624 { 625 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 626 627 const size_t initial_count = specs.GetSize(); 628 629 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 630 { 631 DataExtractor data; 632 data.SetData(data_sp); 633 elf::ELFHeader header; 634 if (header.Parse(data, &data_offset)) 635 { 636 if (data_sp) 637 { 638 ModuleSpec spec (file); 639 640 const uint32_t sub_type = subTypeFromElfHeader(header); 641 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 642 header.e_machine, 643 sub_type); 644 645 if (spec.GetArchitecture().IsValid()) 646 { 647 llvm::Triple::OSType ostype; 648 // First try to determine the OS type from the OSABI field in the elf header. 649 650 if (log) 651 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 652 if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS) 653 { 654 spec.GetArchitecture ().GetTriple ().setOS (ostype); 655 656 // Also clear the vendor so we don't end up with situations like 657 // x86_64-apple-FreeBSD. 658 spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 659 660 if (log) 661 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 662 } 663 664 // Try to get the UUID from the section list. Usually that's at the end, so 665 // map the file in if we don't have it already. 666 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 667 if (section_header_end > data_sp->GetByteSize()) 668 { 669 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 670 data.SetData(data_sp); 671 } 672 673 uint32_t gnu_debuglink_crc = 0; 674 std::string gnu_debuglink_file; 675 SectionHeaderColl section_headers; 676 lldb_private::UUID &uuid = spec.GetUUID(); 677 678 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 679 680 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 681 682 if (log) 683 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 684 685 if (!uuid.IsValid()) 686 { 687 uint32_t core_notes_crc = 0; 688 689 if (!gnu_debuglink_crc) 690 { 691 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 692 "Calculating module crc32 %s with size %" PRIu64 " KiB", 693 file.GetLastPathComponent().AsCString(), 694 (file.GetByteSize()-file_offset)/1024); 695 696 // For core files - which usually don't happen to have a gnu_debuglink, 697 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 698 // Thus we will need to fallback to something simpler. 699 if (header.e_type == llvm::ELF::ET_CORE) 700 { 701 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 702 if (program_headers_end > data_sp->GetByteSize()) 703 { 704 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 705 data.SetData(data_sp); 706 } 707 ProgramHeaderColl program_headers; 708 GetProgramHeaderInfo(program_headers, data, header); 709 710 size_t segment_data_end = 0; 711 for (ProgramHeaderCollConstIter I = program_headers.begin(); 712 I != program_headers.end(); ++I) 713 { 714 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 715 } 716 717 if (segment_data_end > data_sp->GetByteSize()) 718 { 719 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 720 data.SetData(data_sp); 721 } 722 723 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 724 } 725 else 726 { 727 // Need to map entire file into memory to calculate the crc. 728 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 729 data.SetData(data_sp); 730 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 731 } 732 } 733 if (gnu_debuglink_crc) 734 { 735 // Use 4 bytes of crc from the .gnu_debuglink section. 736 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 737 uuid.SetBytes (uuidt, sizeof(uuidt)); 738 } 739 else if (core_notes_crc) 740 { 741 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 742 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 743 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 744 uuid.SetBytes (uuidt, sizeof(uuidt)); 745 } 746 } 747 748 specs.Append(spec); 749 } 750 } 751 } 752 } 753 754 return specs.GetSize() - initial_count; 755 } 756 757 //------------------------------------------------------------------ 758 // PluginInterface protocol 759 //------------------------------------------------------------------ 760 lldb_private::ConstString 761 ObjectFileELF::GetPluginName() 762 { 763 return GetPluginNameStatic(); 764 } 765 766 uint32_t 767 ObjectFileELF::GetPluginVersion() 768 { 769 return m_plugin_version; 770 } 771 //------------------------------------------------------------------ 772 // ObjectFile protocol 773 //------------------------------------------------------------------ 774 775 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 776 DataBufferSP& data_sp, 777 lldb::offset_t data_offset, 778 const FileSpec* file, 779 lldb::offset_t file_offset, 780 lldb::offset_t length) : 781 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 782 m_header(), 783 m_uuid(), 784 m_gnu_debuglink_file(), 785 m_gnu_debuglink_crc(0), 786 m_program_headers(), 787 m_section_headers(), 788 m_dynamic_symbols(), 789 m_filespec_ap(), 790 m_entry_point_address(), 791 m_arch_spec() 792 { 793 if (file) 794 m_file = *file; 795 ::memset(&m_header, 0, sizeof(m_header)); 796 } 797 798 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 799 DataBufferSP& data_sp, 800 const lldb::ProcessSP &process_sp, 801 addr_t header_addr) : 802 ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp), 803 m_header(), 804 m_uuid(), 805 m_gnu_debuglink_file(), 806 m_gnu_debuglink_crc(0), 807 m_program_headers(), 808 m_section_headers(), 809 m_dynamic_symbols(), 810 m_filespec_ap(), 811 m_entry_point_address(), 812 m_arch_spec() 813 { 814 ::memset(&m_header, 0, sizeof(m_header)); 815 } 816 817 ObjectFileELF::~ObjectFileELF() 818 { 819 } 820 821 bool 822 ObjectFileELF::IsExecutable() const 823 { 824 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 825 } 826 827 bool 828 ObjectFileELF::SetLoadAddress (Target &target, 829 lldb::addr_t value, 830 bool value_is_offset) 831 { 832 ModuleSP module_sp = GetModule(); 833 if (module_sp) 834 { 835 size_t num_loaded_sections = 0; 836 SectionList *section_list = GetSectionList (); 837 if (section_list) 838 { 839 if (value_is_offset) 840 { 841 const size_t num_sections = section_list->GetSize(); 842 size_t sect_idx = 0; 843 844 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 845 { 846 // Iterate through the object file sections to find all 847 // of the sections that have SHF_ALLOC in their flag bits. 848 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 849 // if (section_sp && !section_sp->IsThreadSpecific()) 850 if (section_sp && section_sp->Test(SHF_ALLOC)) 851 { 852 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 853 ++num_loaded_sections; 854 } 855 } 856 return num_loaded_sections > 0; 857 } 858 else 859 { 860 // Not sure how to slide an ELF file given the base address 861 // of the ELF file in memory 862 } 863 } 864 } 865 return false; // If it changed 866 } 867 868 ByteOrder 869 ObjectFileELF::GetByteOrder() const 870 { 871 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 872 return eByteOrderBig; 873 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 874 return eByteOrderLittle; 875 return eByteOrderInvalid; 876 } 877 878 uint32_t 879 ObjectFileELF::GetAddressByteSize() const 880 { 881 return m_data.GetAddressByteSize(); 882 } 883 884 // Top 16 bits of the `Symbol` flags are available. 885 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 886 887 AddressClass 888 ObjectFileELF::GetAddressClass (addr_t file_addr) 889 { 890 auto res = ObjectFile::GetAddressClass (file_addr); 891 892 if (res != eAddressClassCode) 893 return res; 894 895 auto ub = m_address_class_map.upper_bound(file_addr); 896 if (ub == m_address_class_map.begin()) 897 { 898 // No entry in the address class map before the address. Return 899 // default address class for an address in a code section. 900 return eAddressClassCode; 901 } 902 903 // Move iterator to the address class entry preceding address 904 --ub; 905 906 return ub->second; 907 } 908 909 size_t 910 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 911 { 912 return std::distance(m_section_headers.begin(), I) + 1u; 913 } 914 915 size_t 916 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 917 { 918 return std::distance(m_section_headers.begin(), I) + 1u; 919 } 920 921 bool 922 ObjectFileELF::ParseHeader() 923 { 924 lldb::offset_t offset = 0; 925 return m_header.Parse(m_data, &offset); 926 } 927 928 bool 929 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 930 { 931 // Need to parse the section list to get the UUIDs, so make sure that's been done. 932 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 933 return false; 934 935 if (m_uuid.IsValid()) 936 { 937 // We have the full build id uuid. 938 *uuid = m_uuid; 939 return true; 940 } 941 else if (GetType() == ObjectFile::eTypeCoreFile) 942 { 943 uint32_t core_notes_crc = 0; 944 945 if (!ParseProgramHeaders()) 946 return false; 947 948 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 949 950 if (core_notes_crc) 951 { 952 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 953 // look different form .gnu_debuglink crc - followed by 4 bytes of note 954 // segments crc. 955 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 956 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 957 } 958 } 959 else 960 { 961 if (!m_gnu_debuglink_crc) 962 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 963 if (m_gnu_debuglink_crc) 964 { 965 // Use 4 bytes of crc from the .gnu_debuglink section. 966 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 967 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 968 } 969 } 970 971 if (m_uuid.IsValid()) 972 { 973 *uuid = m_uuid; 974 return true; 975 } 976 977 return false; 978 } 979 980 lldb_private::FileSpecList 981 ObjectFileELF::GetDebugSymbolFilePaths() 982 { 983 FileSpecList file_spec_list; 984 985 if (!m_gnu_debuglink_file.empty()) 986 { 987 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 988 file_spec_list.Append (file_spec); 989 } 990 return file_spec_list; 991 } 992 993 uint32_t 994 ObjectFileELF::GetDependentModules(FileSpecList &files) 995 { 996 size_t num_modules = ParseDependentModules(); 997 uint32_t num_specs = 0; 998 999 for (unsigned i = 0; i < num_modules; ++i) 1000 { 1001 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1002 num_specs++; 1003 } 1004 1005 return num_specs; 1006 } 1007 1008 Address 1009 ObjectFileELF::GetImageInfoAddress(Target *target) 1010 { 1011 if (!ParseDynamicSymbols()) 1012 return Address(); 1013 1014 SectionList *section_list = GetSectionList(); 1015 if (!section_list) 1016 return Address(); 1017 1018 // Find the SHT_DYNAMIC (.dynamic) section. 1019 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1020 if (!dynsym_section_sp) 1021 return Address(); 1022 assert (dynsym_section_sp->GetObjectFile() == this); 1023 1024 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1025 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1026 if (!dynsym_hdr) 1027 return Address(); 1028 1029 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1030 { 1031 ELFDynamic &symbol = m_dynamic_symbols[i]; 1032 1033 if (symbol.d_tag == DT_DEBUG) 1034 { 1035 // Compute the offset as the number of previous entries plus the 1036 // size of d_tag. 1037 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1038 return Address(dynsym_section_sp, offset); 1039 } 1040 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1041 { 1042 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1043 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1044 if (dyn_base == LLDB_INVALID_ADDRESS) 1045 return Address(); 1046 Address addr; 1047 Error error; 1048 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1049 return addr; 1050 } 1051 } 1052 1053 return Address(); 1054 } 1055 1056 lldb_private::Address 1057 ObjectFileELF::GetEntryPointAddress () 1058 { 1059 if (m_entry_point_address.IsValid()) 1060 return m_entry_point_address; 1061 1062 if (!ParseHeader() || !IsExecutable()) 1063 return m_entry_point_address; 1064 1065 SectionList *section_list = GetSectionList(); 1066 addr_t offset = m_header.e_entry; 1067 1068 if (!section_list) 1069 m_entry_point_address.SetOffset(offset); 1070 else 1071 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1072 return m_entry_point_address; 1073 } 1074 1075 //---------------------------------------------------------------------- 1076 // ParseDependentModules 1077 //---------------------------------------------------------------------- 1078 size_t 1079 ObjectFileELF::ParseDependentModules() 1080 { 1081 if (m_filespec_ap.get()) 1082 return m_filespec_ap->GetSize(); 1083 1084 m_filespec_ap.reset(new FileSpecList()); 1085 1086 if (!ParseSectionHeaders()) 1087 return 0; 1088 1089 SectionList *section_list = GetSectionList(); 1090 if (!section_list) 1091 return 0; 1092 1093 // Find the SHT_DYNAMIC section. 1094 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1095 if (!dynsym) 1096 return 0; 1097 assert (dynsym->GetObjectFile() == this); 1098 1099 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1100 if (!header) 1101 return 0; 1102 // sh_link: section header index of string table used by entries in the section. 1103 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1104 if (!dynstr) 1105 return 0; 1106 1107 DataExtractor dynsym_data; 1108 DataExtractor dynstr_data; 1109 if (ReadSectionData(dynsym, dynsym_data) && 1110 ReadSectionData(dynstr, dynstr_data)) 1111 { 1112 ELFDynamic symbol; 1113 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1114 lldb::offset_t offset = 0; 1115 1116 // The only type of entries we are concerned with are tagged DT_NEEDED, 1117 // yielding the name of a required library. 1118 while (offset < section_size) 1119 { 1120 if (!symbol.Parse(dynsym_data, &offset)) 1121 break; 1122 1123 if (symbol.d_tag != DT_NEEDED) 1124 continue; 1125 1126 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1127 const char *lib_name = dynstr_data.PeekCStr(str_index); 1128 m_filespec_ap->Append(FileSpec(lib_name, true)); 1129 } 1130 } 1131 1132 return m_filespec_ap->GetSize(); 1133 } 1134 1135 //---------------------------------------------------------------------- 1136 // GetProgramHeaderInfo 1137 //---------------------------------------------------------------------- 1138 size_t 1139 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1140 DataExtractor &object_data, 1141 const ELFHeader &header) 1142 { 1143 // We have already parsed the program headers 1144 if (!program_headers.empty()) 1145 return program_headers.size(); 1146 1147 // If there are no program headers to read we are done. 1148 if (header.e_phnum == 0) 1149 return 0; 1150 1151 program_headers.resize(header.e_phnum); 1152 if (program_headers.size() != header.e_phnum) 1153 return 0; 1154 1155 const size_t ph_size = header.e_phnum * header.e_phentsize; 1156 const elf_off ph_offset = header.e_phoff; 1157 DataExtractor data; 1158 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1159 return 0; 1160 1161 uint32_t idx; 1162 lldb::offset_t offset; 1163 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1164 { 1165 if (program_headers[idx].Parse(data, &offset) == false) 1166 break; 1167 } 1168 1169 if (idx < program_headers.size()) 1170 program_headers.resize(idx); 1171 1172 return program_headers.size(); 1173 1174 } 1175 1176 //---------------------------------------------------------------------- 1177 // ParseProgramHeaders 1178 //---------------------------------------------------------------------- 1179 size_t 1180 ObjectFileELF::ParseProgramHeaders() 1181 { 1182 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1183 } 1184 1185 lldb_private::Error 1186 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1187 { 1188 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1189 Error error; 1190 1191 lldb::offset_t offset = 0; 1192 1193 while (true) 1194 { 1195 // Parse the note header. If this fails, bail out. 1196 ELFNote note = ELFNote(); 1197 if (!note.Parse(data, &offset)) 1198 { 1199 // We're done. 1200 return error; 1201 } 1202 1203 // If a tag processor handles the tag, it should set processed to true, and 1204 // the loop will assume the tag processing has moved entirely past the note's payload. 1205 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1206 bool processed = false; 1207 1208 if (log) 1209 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1210 1211 // Process FreeBSD ELF notes. 1212 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1213 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1214 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1215 { 1216 // We'll consume the payload below. 1217 processed = true; 1218 1219 // Pull out the min version info. 1220 uint32_t version_info; 1221 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1222 { 1223 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1224 return error; 1225 } 1226 1227 // Convert the version info into a major/minor number. 1228 const uint32_t version_major = version_info / 100000; 1229 const uint32_t version_minor = (version_info / 1000) % 100; 1230 1231 char os_name[32]; 1232 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1233 1234 // Set the elf OS version to FreeBSD. Also clear the vendor. 1235 arch_spec.GetTriple ().setOSName (os_name); 1236 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1237 1238 if (log) 1239 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1240 } 1241 // Process GNU ELF notes. 1242 else if (note.n_name == LLDB_NT_OWNER_GNU) 1243 { 1244 switch (note.n_type) 1245 { 1246 case LLDB_NT_GNU_ABI_TAG: 1247 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1248 { 1249 // We'll consume the payload below. 1250 processed = true; 1251 1252 // Pull out the min OS version supporting the ABI. 1253 uint32_t version_info[4]; 1254 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1255 { 1256 error.SetErrorString ("failed to read GNU ABI note payload"); 1257 return error; 1258 } 1259 1260 // Set the OS per the OS field. 1261 switch (version_info[0]) 1262 { 1263 case LLDB_NT_GNU_ABI_OS_LINUX: 1264 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1265 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1266 if (log) 1267 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1268 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1269 break; 1270 case LLDB_NT_GNU_ABI_OS_HURD: 1271 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1272 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1273 if (log) 1274 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1275 break; 1276 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1277 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1278 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1279 if (log) 1280 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1281 break; 1282 default: 1283 if (log) 1284 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1285 break; 1286 } 1287 } 1288 break; 1289 1290 case LLDB_NT_GNU_BUILD_ID_TAG: 1291 // Only bother processing this if we don't already have the uuid set. 1292 if (!uuid.IsValid()) 1293 { 1294 // We'll consume the payload below. 1295 processed = true; 1296 1297 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1298 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1299 { 1300 uint8_t uuidbuf[20]; 1301 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1302 { 1303 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1304 return error; 1305 } 1306 1307 // Save the build id as the UUID for the module. 1308 uuid.SetBytes (uuidbuf, note.n_descsz); 1309 } 1310 } 1311 break; 1312 } 1313 } 1314 // Process NetBSD ELF notes. 1315 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1316 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1317 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1318 { 1319 1320 // We'll consume the payload below. 1321 processed = true; 1322 1323 // Pull out the min version info. 1324 uint32_t version_info; 1325 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1326 { 1327 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1328 return error; 1329 } 1330 1331 // Set the elf OS version to NetBSD. Also clear the vendor. 1332 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1333 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1334 1335 if (log) 1336 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1337 } 1338 // Process CSR kalimba notes 1339 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1340 (note.n_name == LLDB_NT_OWNER_CSR)) 1341 { 1342 // We'll consume the payload below. 1343 processed = true; 1344 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1345 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1346 1347 // TODO At some point the description string could be processed. 1348 // It could provide a steer towards the kalimba variant which 1349 // this ELF targets. 1350 if(note.n_descsz) 1351 { 1352 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1353 (void)cstr; 1354 } 1355 } 1356 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1357 { 1358 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1359 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1360 } 1361 1362 if (!processed) 1363 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1364 } 1365 1366 return error; 1367 } 1368 1369 1370 //---------------------------------------------------------------------- 1371 // GetSectionHeaderInfo 1372 //---------------------------------------------------------------------- 1373 size_t 1374 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1375 lldb_private::DataExtractor &object_data, 1376 const elf::ELFHeader &header, 1377 lldb_private::UUID &uuid, 1378 std::string &gnu_debuglink_file, 1379 uint32_t &gnu_debuglink_crc, 1380 ArchSpec &arch_spec) 1381 { 1382 // Don't reparse the section headers if we already did that. 1383 if (!section_headers.empty()) 1384 return section_headers.size(); 1385 1386 // Only initialize the arch_spec to okay defaults if they're not already set. 1387 // We'll refine this with note data as we parse the notes. 1388 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1389 { 1390 const uint32_t sub_type = subTypeFromElfHeader(header); 1391 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type); 1392 } 1393 1394 // If there are no section headers we are done. 1395 if (header.e_shnum == 0) 1396 return 0; 1397 1398 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1399 1400 section_headers.resize(header.e_shnum); 1401 if (section_headers.size() != header.e_shnum) 1402 return 0; 1403 1404 const size_t sh_size = header.e_shnum * header.e_shentsize; 1405 const elf_off sh_offset = header.e_shoff; 1406 DataExtractor sh_data; 1407 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1408 return 0; 1409 1410 uint32_t idx; 1411 lldb::offset_t offset; 1412 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1413 { 1414 if (section_headers[idx].Parse(sh_data, &offset) == false) 1415 break; 1416 } 1417 if (idx < section_headers.size()) 1418 section_headers.resize(idx); 1419 1420 const unsigned strtab_idx = header.e_shstrndx; 1421 if (strtab_idx && strtab_idx < section_headers.size()) 1422 { 1423 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1424 const size_t byte_size = sheader.sh_size; 1425 const Elf64_Off offset = sheader.sh_offset; 1426 lldb_private::DataExtractor shstr_data; 1427 1428 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1429 { 1430 for (SectionHeaderCollIter I = section_headers.begin(); 1431 I != section_headers.end(); ++I) 1432 { 1433 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1434 const ELFSectionHeaderInfo &header = *I; 1435 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1436 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1437 1438 I->section_name = name; 1439 1440 if (name == g_sect_name_gnu_debuglink) 1441 { 1442 DataExtractor data; 1443 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1444 { 1445 lldb::offset_t gnu_debuglink_offset = 0; 1446 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1447 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1448 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1449 } 1450 } 1451 1452 // Process ELF note section entries. 1453 bool is_note_header = (header.sh_type == SHT_NOTE); 1454 1455 // The section header ".note.android.ident" is stored as a 1456 // PROGBITS type header but it is actually a note header. 1457 static ConstString g_sect_name_android_ident (".note.android.ident"); 1458 if (!is_note_header && name == g_sect_name_android_ident) 1459 is_note_header = true; 1460 1461 if (is_note_header) 1462 { 1463 // Allow notes to refine module info. 1464 DataExtractor data; 1465 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1466 { 1467 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1468 if (error.Fail ()) 1469 { 1470 if (log) 1471 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1472 } 1473 } 1474 } 1475 } 1476 1477 return section_headers.size(); 1478 } 1479 } 1480 1481 section_headers.clear(); 1482 return 0; 1483 } 1484 1485 size_t 1486 ObjectFileELF::GetProgramHeaderCount() 1487 { 1488 return ParseProgramHeaders(); 1489 } 1490 1491 const elf::ELFProgramHeader * 1492 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1493 { 1494 if (!id || !ParseProgramHeaders()) 1495 return NULL; 1496 1497 if (--id < m_program_headers.size()) 1498 return &m_program_headers[id]; 1499 1500 return NULL; 1501 } 1502 1503 DataExtractor 1504 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1505 { 1506 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1507 if (segment_header == NULL) 1508 return DataExtractor(); 1509 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1510 } 1511 1512 std::string 1513 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1514 { 1515 size_t pos = symbol_name.find("@"); 1516 return symbol_name.substr(0, pos).str(); 1517 } 1518 1519 //---------------------------------------------------------------------- 1520 // ParseSectionHeaders 1521 //---------------------------------------------------------------------- 1522 size_t 1523 ObjectFileELF::ParseSectionHeaders() 1524 { 1525 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1526 } 1527 1528 const ObjectFileELF::ELFSectionHeaderInfo * 1529 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1530 { 1531 if (!id || !ParseSectionHeaders()) 1532 return NULL; 1533 1534 if (--id < m_section_headers.size()) 1535 return &m_section_headers[id]; 1536 1537 return NULL; 1538 } 1539 1540 void 1541 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1542 { 1543 if (!m_sections_ap.get() && ParseSectionHeaders()) 1544 { 1545 m_sections_ap.reset(new SectionList()); 1546 1547 for (SectionHeaderCollIter I = m_section_headers.begin(); 1548 I != m_section_headers.end(); ++I) 1549 { 1550 const ELFSectionHeaderInfo &header = *I; 1551 1552 ConstString& name = I->section_name; 1553 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1554 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1555 1556 static ConstString g_sect_name_text (".text"); 1557 static ConstString g_sect_name_data (".data"); 1558 static ConstString g_sect_name_bss (".bss"); 1559 static ConstString g_sect_name_tdata (".tdata"); 1560 static ConstString g_sect_name_tbss (".tbss"); 1561 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1562 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1563 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1564 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1565 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1566 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1567 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1568 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1569 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1570 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1571 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1572 static ConstString g_sect_name_eh_frame (".eh_frame"); 1573 1574 SectionType sect_type = eSectionTypeOther; 1575 1576 bool is_thread_specific = false; 1577 1578 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1579 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1580 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1581 else if (name == g_sect_name_tdata) 1582 { 1583 sect_type = eSectionTypeData; 1584 is_thread_specific = true; 1585 } 1586 else if (name == g_sect_name_tbss) 1587 { 1588 sect_type = eSectionTypeZeroFill; 1589 is_thread_specific = true; 1590 } 1591 // .debug_abbrev – Abbreviations used in the .debug_info section 1592 // .debug_aranges – Lookup table for mapping addresses to compilation units 1593 // .debug_frame – Call frame information 1594 // .debug_info – The core DWARF information section 1595 // .debug_line – Line number information 1596 // .debug_loc – Location lists used in DW_AT_location attributes 1597 // .debug_macinfo – Macro information 1598 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1599 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1600 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1601 // .debug_str – String table used in .debug_info 1602 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1603 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1604 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1605 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1606 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1607 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1608 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1609 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1610 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1611 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1612 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1613 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1614 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1615 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1616 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1617 1618 switch (header.sh_type) 1619 { 1620 case SHT_SYMTAB: 1621 assert (sect_type == eSectionTypeOther); 1622 sect_type = eSectionTypeELFSymbolTable; 1623 break; 1624 case SHT_DYNSYM: 1625 assert (sect_type == eSectionTypeOther); 1626 sect_type = eSectionTypeELFDynamicSymbols; 1627 break; 1628 case SHT_RELA: 1629 case SHT_REL: 1630 assert (sect_type == eSectionTypeOther); 1631 sect_type = eSectionTypeELFRelocationEntries; 1632 break; 1633 case SHT_DYNAMIC: 1634 assert (sect_type == eSectionTypeOther); 1635 sect_type = eSectionTypeELFDynamicLinkInfo; 1636 break; 1637 } 1638 1639 if (eSectionTypeOther == sect_type) 1640 { 1641 // the kalimba toolchain assumes that ELF section names are free-form. It does 1642 // supports linkscripts which (can) give rise to various arbitarily named 1643 // sections being "Code" or "Data". 1644 sect_type = kalimbaSectionType(m_header, header); 1645 } 1646 1647 const uint32_t target_bytes_size = 1648 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1649 m_arch_spec.GetDataByteSize() : 1650 eSectionTypeCode == sect_type ? 1651 m_arch_spec.GetCodeByteSize() : 1; 1652 1653 elf::elf_xword log2align = (header.sh_addralign==0) 1654 ? 0 1655 : llvm::Log2_64(header.sh_addralign); 1656 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1657 this, // ObjectFile to which this section belongs and should read section data from. 1658 SectionIndex(I), // Section ID. 1659 name, // Section name. 1660 sect_type, // Section type. 1661 header.sh_addr, // VM address. 1662 vm_size, // VM size in bytes of this section. 1663 header.sh_offset, // Offset of this section in the file. 1664 file_size, // Size of the section as found in the file. 1665 log2align, // Alignment of the section 1666 header.sh_flags, // Flags for this section. 1667 target_bytes_size));// Number of host bytes per target byte 1668 1669 if (is_thread_specific) 1670 section_sp->SetIsThreadSpecific (is_thread_specific); 1671 m_sections_ap->AddSection(section_sp); 1672 } 1673 } 1674 1675 if (m_sections_ap.get()) 1676 { 1677 if (GetType() == eTypeDebugInfo) 1678 { 1679 static const SectionType g_sections[] = 1680 { 1681 eSectionTypeDWARFDebugAranges, 1682 eSectionTypeDWARFDebugInfo, 1683 eSectionTypeDWARFDebugAbbrev, 1684 eSectionTypeDWARFDebugFrame, 1685 eSectionTypeDWARFDebugLine, 1686 eSectionTypeDWARFDebugStr, 1687 eSectionTypeDWARFDebugLoc, 1688 eSectionTypeDWARFDebugMacInfo, 1689 eSectionTypeDWARFDebugPubNames, 1690 eSectionTypeDWARFDebugPubTypes, 1691 eSectionTypeDWARFDebugRanges, 1692 eSectionTypeELFSymbolTable, 1693 }; 1694 SectionList *elf_section_list = m_sections_ap.get(); 1695 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1696 { 1697 SectionType section_type = g_sections[idx]; 1698 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1699 if (section_sp) 1700 { 1701 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1702 if (module_section_sp) 1703 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1704 else 1705 unified_section_list.AddSection (section_sp); 1706 } 1707 } 1708 } 1709 else 1710 { 1711 unified_section_list = *m_sections_ap; 1712 } 1713 } 1714 } 1715 1716 // private 1717 unsigned 1718 ObjectFileELF::ParseSymbols (Symtab *symtab, 1719 user_id_t start_id, 1720 SectionList *section_list, 1721 const size_t num_symbols, 1722 const DataExtractor &symtab_data, 1723 const DataExtractor &strtab_data) 1724 { 1725 ELFSymbol symbol; 1726 lldb::offset_t offset = 0; 1727 1728 static ConstString text_section_name(".text"); 1729 static ConstString init_section_name(".init"); 1730 static ConstString fini_section_name(".fini"); 1731 static ConstString ctors_section_name(".ctors"); 1732 static ConstString dtors_section_name(".dtors"); 1733 1734 static ConstString data_section_name(".data"); 1735 static ConstString rodata_section_name(".rodata"); 1736 static ConstString rodata1_section_name(".rodata1"); 1737 static ConstString data2_section_name(".data1"); 1738 static ConstString bss_section_name(".bss"); 1739 static ConstString opd_section_name(".opd"); // For ppc64 1740 1741 //StreamFile strm(stdout, false); 1742 unsigned i; 1743 for (i = 0; i < num_symbols; ++i) 1744 { 1745 if (symbol.Parse(symtab_data, &offset) == false) 1746 break; 1747 1748 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1749 1750 // No need to add non-section symbols that have no names 1751 if (symbol.getType() != STT_SECTION && 1752 (symbol_name == NULL || symbol_name[0] == '\0')) 1753 continue; 1754 1755 //symbol.Dump (&strm, i, &strtab_data, section_list); 1756 1757 SectionSP symbol_section_sp; 1758 SymbolType symbol_type = eSymbolTypeInvalid; 1759 Elf64_Half symbol_idx = symbol.st_shndx; 1760 1761 switch (symbol_idx) 1762 { 1763 case SHN_ABS: 1764 symbol_type = eSymbolTypeAbsolute; 1765 break; 1766 case SHN_UNDEF: 1767 symbol_type = eSymbolTypeUndefined; 1768 break; 1769 default: 1770 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1771 break; 1772 } 1773 1774 // If a symbol is undefined do not process it further even if it has a STT type 1775 if (symbol_type != eSymbolTypeUndefined) 1776 { 1777 switch (symbol.getType()) 1778 { 1779 default: 1780 case STT_NOTYPE: 1781 // The symbol's type is not specified. 1782 break; 1783 1784 case STT_OBJECT: 1785 // The symbol is associated with a data object, such as a variable, 1786 // an array, etc. 1787 symbol_type = eSymbolTypeData; 1788 break; 1789 1790 case STT_FUNC: 1791 // The symbol is associated with a function or other executable code. 1792 symbol_type = eSymbolTypeCode; 1793 break; 1794 1795 case STT_SECTION: 1796 // The symbol is associated with a section. Symbol table entries of 1797 // this type exist primarily for relocation and normally have 1798 // STB_LOCAL binding. 1799 break; 1800 1801 case STT_FILE: 1802 // Conventionally, the symbol's name gives the name of the source 1803 // file associated with the object file. A file symbol has STB_LOCAL 1804 // binding, its section index is SHN_ABS, and it precedes the other 1805 // STB_LOCAL symbols for the file, if it is present. 1806 symbol_type = eSymbolTypeSourceFile; 1807 break; 1808 1809 case STT_GNU_IFUNC: 1810 // The symbol is associated with an indirect function. The actual 1811 // function will be resolved if it is referenced. 1812 symbol_type = eSymbolTypeResolver; 1813 break; 1814 } 1815 } 1816 1817 if (symbol_type == eSymbolTypeInvalid) 1818 { 1819 if (symbol_section_sp) 1820 { 1821 const ConstString §_name = symbol_section_sp->GetName(); 1822 if (sect_name == text_section_name || 1823 sect_name == init_section_name || 1824 sect_name == fini_section_name || 1825 sect_name == ctors_section_name || 1826 sect_name == dtors_section_name) 1827 { 1828 symbol_type = eSymbolTypeCode; 1829 } 1830 else if (sect_name == data_section_name || 1831 sect_name == data2_section_name || 1832 sect_name == rodata_section_name || 1833 sect_name == rodata1_section_name || 1834 sect_name == bss_section_name) 1835 { 1836 symbol_type = eSymbolTypeData; 1837 } 1838 } 1839 } 1840 1841 int64_t symbol_value_offset = 0; 1842 uint32_t additional_flags = 0; 1843 1844 ArchSpec arch; 1845 if (GetArchitecture(arch)) 1846 { 1847 if (arch.GetMachine() == llvm::Triple::arm) 1848 { 1849 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1850 { 1851 // These are reserved for the specification (e.g.: mapping 1852 // symbols). We don't want to add them to the symbol table. 1853 1854 if (symbol_type == eSymbolTypeCode) 1855 { 1856 llvm::StringRef symbol_name_ref(symbol_name); 1857 if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a.")) 1858 { 1859 // $a[.<any>]* - marks an ARM instruction sequence 1860 m_address_class_map[symbol.st_value] = eAddressClassCode; 1861 } 1862 else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") || 1863 symbol_name_ref == "$t" || symbol_name_ref.startswith("$t.")) 1864 { 1865 // $b[.<any>]* - marks a THUMB BL instruction sequence 1866 // $t[.<any>]* - marks a THUMB instruction sequence 1867 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 1868 } 1869 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1870 { 1871 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1872 m_address_class_map[symbol.st_value] = eAddressClassData; 1873 } 1874 } 1875 1876 continue; 1877 } 1878 } 1879 else if (arch.GetMachine() == llvm::Triple::aarch64) 1880 { 1881 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1882 { 1883 // These are reserved for the specification (e.g.: mapping 1884 // symbols). We don't want to add them to the symbol table. 1885 1886 if (symbol_type == eSymbolTypeCode) 1887 { 1888 llvm::StringRef symbol_name_ref(symbol_name); 1889 if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x.")) 1890 { 1891 // $x[.<any>]* - marks an A64 instruction sequence 1892 m_address_class_map[symbol.st_value] = eAddressClassCode; 1893 } 1894 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1895 { 1896 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1897 m_address_class_map[symbol.st_value] = eAddressClassData; 1898 } 1899 } 1900 1901 continue; 1902 } 1903 } 1904 1905 if (arch.GetMachine() == llvm::Triple::arm) 1906 { 1907 // THUMB functions have the lower bit of their address set. Fixup 1908 // the actual address and mark the symbol as THUMB. 1909 if (symbol_type == eSymbolTypeCode && symbol.st_value & 1) 1910 { 1911 // Substracting 1 from the address effectively unsets 1912 // the low order bit, which results in the address 1913 // actually pointing to the beginning of the symbol. 1914 // This delta will be used below in conjuction with 1915 // symbol.st_value to produce the final symbol_value 1916 // that we store in the symtab. 1917 symbol_value_offset = -1; 1918 additional_flags = ARM_ELF_SYM_IS_THUMB; 1919 } 1920 } 1921 } 1922 1923 // If the symbol section we've found has no data (SHT_NOBITS), then check the module section 1924 // list. This can happen if we're parsing the debug file and it has no .text section, for example. 1925 if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0)) 1926 { 1927 ModuleSP module_sp(GetModule()); 1928 if (module_sp) 1929 { 1930 SectionList *module_section_list = module_sp->GetSectionList(); 1931 if (module_section_list && module_section_list != section_list) 1932 { 1933 const ConstString §_name = symbol_section_sp->GetName(); 1934 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 1935 if (section_sp && section_sp->GetFileSize()) 1936 { 1937 symbol_section_sp = section_sp; 1938 } 1939 } 1940 } 1941 } 1942 1943 // symbol_value_offset may contain 0 for ARM symbols or -1 for 1944 // THUMB symbols. See above for more details. 1945 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 1946 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 1947 symbol_value -= symbol_section_sp->GetFileAddress(); 1948 bool is_global = symbol.getBinding() == STB_GLOBAL; 1949 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 1950 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 1951 1952 llvm::StringRef symbol_ref(symbol_name); 1953 1954 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 1955 size_t version_pos = symbol_ref.find('@'); 1956 bool has_suffix = version_pos != llvm::StringRef::npos; 1957 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 1958 Mangled mangled(ConstString(symbol_bare), is_mangled); 1959 1960 // Now append the suffix back to mangled and unmangled names. Only do it if the 1961 // demangling was sucessful (string is not empty). 1962 if (has_suffix) 1963 { 1964 llvm::StringRef suffix = symbol_ref.substr(version_pos); 1965 1966 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 1967 if (! mangled_name.empty()) 1968 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 1969 1970 llvm::StringRef demangled_name = mangled.GetDemangledName().GetStringRef(); 1971 if (! demangled_name.empty()) 1972 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 1973 } 1974 1975 Symbol dc_symbol( 1976 i + start_id, // ID is the original symbol table index. 1977 mangled, 1978 symbol_type, // Type of this symbol 1979 is_global, // Is this globally visible? 1980 false, // Is this symbol debug info? 1981 false, // Is this symbol a trampoline? 1982 false, // Is this symbol artificial? 1983 AddressRange( 1984 symbol_section_sp, // Section in which this symbol is defined or null. 1985 symbol_value, // Offset in section or symbol value. 1986 symbol.st_size), // Size in bytes of this symbol. 1987 true, // Size is valid 1988 has_suffix, // Contains linker annotations? 1989 flags); // Symbol flags. 1990 symtab->AddSymbol(dc_symbol); 1991 } 1992 return i; 1993 } 1994 1995 unsigned 1996 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 1997 { 1998 if (symtab->GetObjectFile() != this) 1999 { 2000 // If the symbol table section is owned by a different object file, have it do the 2001 // parsing. 2002 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2003 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2004 } 2005 2006 // Get section list for this object file. 2007 SectionList *section_list = m_sections_ap.get(); 2008 if (!section_list) 2009 return 0; 2010 2011 user_id_t symtab_id = symtab->GetID(); 2012 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2013 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2014 symtab_hdr->sh_type == SHT_DYNSYM); 2015 2016 // sh_link: section header index of associated string table. 2017 // Section ID's are ones based. 2018 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2019 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2020 2021 if (symtab && strtab) 2022 { 2023 assert (symtab->GetObjectFile() == this); 2024 assert (strtab->GetObjectFile() == this); 2025 2026 DataExtractor symtab_data; 2027 DataExtractor strtab_data; 2028 if (ReadSectionData(symtab, symtab_data) && 2029 ReadSectionData(strtab, strtab_data)) 2030 { 2031 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2032 2033 return ParseSymbols(symbol_table, start_id, section_list, 2034 num_symbols, symtab_data, strtab_data); 2035 } 2036 } 2037 2038 return 0; 2039 } 2040 2041 size_t 2042 ObjectFileELF::ParseDynamicSymbols() 2043 { 2044 if (m_dynamic_symbols.size()) 2045 return m_dynamic_symbols.size(); 2046 2047 SectionList *section_list = GetSectionList(); 2048 if (!section_list) 2049 return 0; 2050 2051 // Find the SHT_DYNAMIC section. 2052 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2053 if (!dynsym) 2054 return 0; 2055 assert (dynsym->GetObjectFile() == this); 2056 2057 ELFDynamic symbol; 2058 DataExtractor dynsym_data; 2059 if (ReadSectionData(dynsym, dynsym_data)) 2060 { 2061 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2062 lldb::offset_t cursor = 0; 2063 2064 while (cursor < section_size) 2065 { 2066 if (!symbol.Parse(dynsym_data, &cursor)) 2067 break; 2068 2069 m_dynamic_symbols.push_back(symbol); 2070 } 2071 } 2072 2073 return m_dynamic_symbols.size(); 2074 } 2075 2076 const ELFDynamic * 2077 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2078 { 2079 if (!ParseDynamicSymbols()) 2080 return NULL; 2081 2082 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2083 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2084 for ( ; I != E; ++I) 2085 { 2086 ELFDynamic *symbol = &*I; 2087 2088 if (symbol->d_tag == tag) 2089 return symbol; 2090 } 2091 2092 return NULL; 2093 } 2094 2095 unsigned 2096 ObjectFileELF::PLTRelocationType() 2097 { 2098 // DT_PLTREL 2099 // This member specifies the type of relocation entry to which the 2100 // procedure linkage table refers. The d_val member holds DT_REL or 2101 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2102 // must use the same relocation. 2103 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2104 2105 if (symbol) 2106 return symbol->d_val; 2107 2108 return 0; 2109 } 2110 2111 static unsigned 2112 ParsePLTRelocations(Symtab *symbol_table, 2113 user_id_t start_id, 2114 unsigned rel_type, 2115 const ELFHeader *hdr, 2116 const ELFSectionHeader *rel_hdr, 2117 const ELFSectionHeader *plt_hdr, 2118 const ELFSectionHeader *sym_hdr, 2119 const lldb::SectionSP &plt_section_sp, 2120 DataExtractor &rel_data, 2121 DataExtractor &symtab_data, 2122 DataExtractor &strtab_data) 2123 { 2124 ELFRelocation rel(rel_type); 2125 ELFSymbol symbol; 2126 lldb::offset_t offset = 0; 2127 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2128 // So round the entsize up by the alignment if addralign is set. 2129 const elf_xword plt_entsize = plt_hdr->sh_addralign ? 2130 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2131 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2132 2133 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2134 reloc_info_fn reloc_type; 2135 reloc_info_fn reloc_symbol; 2136 2137 if (hdr->Is32Bit()) 2138 { 2139 reloc_type = ELFRelocation::RelocType32; 2140 reloc_symbol = ELFRelocation::RelocSymbol32; 2141 } 2142 else 2143 { 2144 reloc_type = ELFRelocation::RelocType64; 2145 reloc_symbol = ELFRelocation::RelocSymbol64; 2146 } 2147 2148 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2149 unsigned i; 2150 for (i = 0; i < num_relocations; ++i) 2151 { 2152 if (rel.Parse(rel_data, &offset) == false) 2153 break; 2154 2155 if (reloc_type(rel) != slot_type) 2156 continue; 2157 2158 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2159 uint64_t plt_index = (i + 1) * plt_entsize; 2160 2161 if (!symbol.Parse(symtab_data, &symbol_offset)) 2162 break; 2163 2164 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2165 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2166 2167 Symbol jump_symbol( 2168 i + start_id, // Symbol table index 2169 symbol_name, // symbol name. 2170 is_mangled, // is the symbol name mangled? 2171 eSymbolTypeTrampoline, // Type of this symbol 2172 false, // Is this globally visible? 2173 false, // Is this symbol debug info? 2174 true, // Is this symbol a trampoline? 2175 true, // Is this symbol artificial? 2176 plt_section_sp, // Section in which this symbol is defined or null. 2177 plt_index, // Offset in section or symbol value. 2178 plt_entsize, // Size in bytes of this symbol. 2179 true, // Size is valid 2180 false, // Contains linker annotations? 2181 0); // Symbol flags. 2182 2183 symbol_table->AddSymbol(jump_symbol); 2184 } 2185 2186 return i; 2187 } 2188 2189 unsigned 2190 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2191 user_id_t start_id, 2192 const ELFSectionHeaderInfo *rel_hdr, 2193 user_id_t rel_id) 2194 { 2195 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2196 2197 // The link field points to the associated symbol table. The info field 2198 // points to the section holding the plt. 2199 user_id_t symtab_id = rel_hdr->sh_link; 2200 user_id_t plt_id = rel_hdr->sh_info; 2201 2202 if (!symtab_id || !plt_id) 2203 return 0; 2204 2205 // Section ID's are ones based; 2206 symtab_id++; 2207 plt_id++; 2208 2209 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2210 if (!plt_hdr) 2211 return 0; 2212 2213 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2214 if (!sym_hdr) 2215 return 0; 2216 2217 SectionList *section_list = m_sections_ap.get(); 2218 if (!section_list) 2219 return 0; 2220 2221 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2222 if (!rel_section) 2223 return 0; 2224 2225 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2226 if (!plt_section_sp) 2227 return 0; 2228 2229 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2230 if (!symtab) 2231 return 0; 2232 2233 // sh_link points to associated string table. 2234 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2235 if (!strtab) 2236 return 0; 2237 2238 DataExtractor rel_data; 2239 if (!ReadSectionData(rel_section, rel_data)) 2240 return 0; 2241 2242 DataExtractor symtab_data; 2243 if (!ReadSectionData(symtab, symtab_data)) 2244 return 0; 2245 2246 DataExtractor strtab_data; 2247 if (!ReadSectionData(strtab, strtab_data)) 2248 return 0; 2249 2250 unsigned rel_type = PLTRelocationType(); 2251 if (!rel_type) 2252 return 0; 2253 2254 return ParsePLTRelocations (symbol_table, 2255 start_id, 2256 rel_type, 2257 &m_header, 2258 rel_hdr, 2259 plt_hdr, 2260 sym_hdr, 2261 plt_section_sp, 2262 rel_data, 2263 symtab_data, 2264 strtab_data); 2265 } 2266 2267 unsigned 2268 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2269 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2270 DataExtractor &rel_data, DataExtractor &symtab_data, 2271 DataExtractor &debug_data, Section* rel_section) 2272 { 2273 ELFRelocation rel(rel_hdr->sh_type); 2274 lldb::addr_t offset = 0; 2275 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2276 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2277 reloc_info_fn reloc_type; 2278 reloc_info_fn reloc_symbol; 2279 2280 if (hdr->Is32Bit()) 2281 { 2282 reloc_type = ELFRelocation::RelocType32; 2283 reloc_symbol = ELFRelocation::RelocSymbol32; 2284 } 2285 else 2286 { 2287 reloc_type = ELFRelocation::RelocType64; 2288 reloc_symbol = ELFRelocation::RelocSymbol64; 2289 } 2290 2291 for (unsigned i = 0; i < num_relocations; ++i) 2292 { 2293 if (rel.Parse(rel_data, &offset) == false) 2294 break; 2295 2296 Symbol* symbol = NULL; 2297 2298 if (hdr->Is32Bit()) 2299 { 2300 switch (reloc_type(rel)) { 2301 case R_386_32: 2302 case R_386_PC32: 2303 default: 2304 assert(false && "unexpected relocation type"); 2305 } 2306 } else { 2307 switch (reloc_type(rel)) { 2308 case R_X86_64_64: 2309 { 2310 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2311 if (symbol) 2312 { 2313 addr_t value = symbol->GetAddress().GetFileAddress(); 2314 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2315 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2316 *dst = value + ELFRelocation::RelocAddend64(rel); 2317 } 2318 break; 2319 } 2320 case R_X86_64_32: 2321 case R_X86_64_32S: 2322 { 2323 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2324 if (symbol) 2325 { 2326 addr_t value = symbol->GetAddress().GetFileAddress(); 2327 value += ELFRelocation::RelocAddend32(rel); 2328 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2329 (reloc_type(rel) == R_X86_64_32S && 2330 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2331 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2332 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2333 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2334 *dst = truncated_addr; 2335 } 2336 break; 2337 } 2338 case R_X86_64_PC32: 2339 default: 2340 assert(false && "unexpected relocation type"); 2341 } 2342 } 2343 } 2344 2345 return 0; 2346 } 2347 2348 unsigned 2349 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2350 { 2351 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2352 2353 // Parse in the section list if needed. 2354 SectionList *section_list = GetSectionList(); 2355 if (!section_list) 2356 return 0; 2357 2358 // Section ID's are ones based. 2359 user_id_t symtab_id = rel_hdr->sh_link + 1; 2360 user_id_t debug_id = rel_hdr->sh_info + 1; 2361 2362 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2363 if (!symtab_hdr) 2364 return 0; 2365 2366 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2367 if (!debug_hdr) 2368 return 0; 2369 2370 Section *rel = section_list->FindSectionByID(rel_id).get(); 2371 if (!rel) 2372 return 0; 2373 2374 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2375 if (!symtab) 2376 return 0; 2377 2378 Section *debug = section_list->FindSectionByID(debug_id).get(); 2379 if (!debug) 2380 return 0; 2381 2382 DataExtractor rel_data; 2383 DataExtractor symtab_data; 2384 DataExtractor debug_data; 2385 2386 if (ReadSectionData(rel, rel_data) && 2387 ReadSectionData(symtab, symtab_data) && 2388 ReadSectionData(debug, debug_data)) 2389 { 2390 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2391 rel_data, symtab_data, debug_data, debug); 2392 } 2393 2394 return 0; 2395 } 2396 2397 Symtab * 2398 ObjectFileELF::GetSymtab() 2399 { 2400 ModuleSP module_sp(GetModule()); 2401 if (!module_sp) 2402 return NULL; 2403 2404 // We always want to use the main object file so we (hopefully) only have one cached copy 2405 // of our symtab, dynamic sections, etc. 2406 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2407 if (module_obj_file && module_obj_file != this) 2408 return module_obj_file->GetSymtab(); 2409 2410 if (m_symtab_ap.get() == NULL) 2411 { 2412 SectionList *section_list = module_sp->GetSectionList(); 2413 if (!section_list) 2414 return NULL; 2415 2416 uint64_t symbol_id = 0; 2417 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2418 2419 m_symtab_ap.reset(new Symtab(this)); 2420 2421 // Sharable objects and dynamic executables usually have 2 distinct symbol 2422 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2423 // version of the symtab that only contains global symbols. The information found 2424 // in the dynsym is therefore also found in the symtab, while the reverse is not 2425 // necessarily true. 2426 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2427 if (!symtab) 2428 { 2429 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2430 // then use the dynsym section which should always be there. 2431 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2432 } 2433 if (symtab) 2434 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2435 2436 // DT_JMPREL 2437 // If present, this entry's d_ptr member holds the address of relocation 2438 // entries associated solely with the procedure linkage table. Separating 2439 // these relocation entries lets the dynamic linker ignore them during 2440 // process initialization, if lazy binding is enabled. If this entry is 2441 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2442 // also be present. 2443 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2444 if (symbol) 2445 { 2446 // Synthesize trampoline symbols to help navigate the PLT. 2447 addr_t addr = symbol->d_ptr; 2448 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2449 if (reloc_section) 2450 { 2451 user_id_t reloc_id = reloc_section->GetID(); 2452 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2453 assert(reloc_header); 2454 2455 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2456 } 2457 } 2458 } 2459 2460 for (SectionHeaderCollIter I = m_section_headers.begin(); 2461 I != m_section_headers.end(); ++I) 2462 { 2463 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2464 { 2465 if (CalculateType() == eTypeObjectFile) 2466 { 2467 const char *section_name = I->section_name.AsCString(""); 2468 if (strstr(section_name, ".rela.debug") || 2469 strstr(section_name, ".rel.debug")) 2470 { 2471 const ELFSectionHeader &reloc_header = *I; 2472 user_id_t reloc_id = SectionIndex(I); 2473 RelocateDebugSections(&reloc_header, reloc_id); 2474 } 2475 } 2476 } 2477 } 2478 return m_symtab_ap.get(); 2479 } 2480 2481 Symbol * 2482 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2483 { 2484 if (!m_symtab_ap.get()) 2485 return nullptr; // GetSymtab() should be called first. 2486 2487 const SectionList *section_list = GetSectionList(); 2488 if (!section_list) 2489 return nullptr; 2490 2491 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2492 { 2493 AddressRange range; 2494 if (eh_frame->GetAddressRange (so_addr, range)) 2495 { 2496 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2497 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2498 if (symbol) 2499 return symbol; 2500 2501 // Note that a (stripped) symbol won't be found by GetSymtab()... 2502 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2503 if (eh_sym_section_sp.get()) 2504 { 2505 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2506 addr_t offset = file_addr - section_base; 2507 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2508 2509 Symbol eh_symbol( 2510 symbol_id, // Symbol table index. 2511 "???", // Symbol name. 2512 false, // Is the symbol name mangled? 2513 eSymbolTypeCode, // Type of this symbol. 2514 true, // Is this globally visible? 2515 false, // Is this symbol debug info? 2516 false, // Is this symbol a trampoline? 2517 true, // Is this symbol artificial? 2518 eh_sym_section_sp, // Section in which this symbol is defined or null. 2519 offset, // Offset in section or symbol value. 2520 range.GetByteSize(), // Size in bytes of this symbol. 2521 true, // Size is valid. 2522 false, // Contains linker annotations? 2523 0); // Symbol flags. 2524 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2525 return m_symtab_ap->SymbolAtIndex(symbol_id); 2526 } 2527 } 2528 } 2529 return nullptr; 2530 } 2531 2532 2533 bool 2534 ObjectFileELF::IsStripped () 2535 { 2536 // TODO: determine this for ELF 2537 return false; 2538 } 2539 2540 //===----------------------------------------------------------------------===// 2541 // Dump 2542 // 2543 // Dump the specifics of the runtime file container (such as any headers 2544 // segments, sections, etc). 2545 //---------------------------------------------------------------------- 2546 void 2547 ObjectFileELF::Dump(Stream *s) 2548 { 2549 DumpELFHeader(s, m_header); 2550 s->EOL(); 2551 DumpELFProgramHeaders(s); 2552 s->EOL(); 2553 DumpELFSectionHeaders(s); 2554 s->EOL(); 2555 SectionList *section_list = GetSectionList(); 2556 if (section_list) 2557 section_list->Dump(s, NULL, true, UINT32_MAX); 2558 Symtab *symtab = GetSymtab(); 2559 if (symtab) 2560 symtab->Dump(s, NULL, eSortOrderNone); 2561 s->EOL(); 2562 DumpDependentModules(s); 2563 s->EOL(); 2564 } 2565 2566 //---------------------------------------------------------------------- 2567 // DumpELFHeader 2568 // 2569 // Dump the ELF header to the specified output stream 2570 //---------------------------------------------------------------------- 2571 void 2572 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2573 { 2574 s->PutCString("ELF Header\n"); 2575 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2576 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2577 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2578 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2579 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2580 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2581 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2582 2583 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2584 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2585 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2586 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2587 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2588 2589 s->Printf("e_type = 0x%4.4x ", header.e_type); 2590 DumpELFHeader_e_type(s, header.e_type); 2591 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2592 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2593 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2594 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2595 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2596 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2597 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2598 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2599 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2600 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2601 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2602 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2603 } 2604 2605 //---------------------------------------------------------------------- 2606 // DumpELFHeader_e_type 2607 // 2608 // Dump an token value for the ELF header member e_type 2609 //---------------------------------------------------------------------- 2610 void 2611 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2612 { 2613 switch (e_type) 2614 { 2615 case ET_NONE: *s << "ET_NONE"; break; 2616 case ET_REL: *s << "ET_REL"; break; 2617 case ET_EXEC: *s << "ET_EXEC"; break; 2618 case ET_DYN: *s << "ET_DYN"; break; 2619 case ET_CORE: *s << "ET_CORE"; break; 2620 default: 2621 break; 2622 } 2623 } 2624 2625 //---------------------------------------------------------------------- 2626 // DumpELFHeader_e_ident_EI_DATA 2627 // 2628 // Dump an token value for the ELF header member e_ident[EI_DATA] 2629 //---------------------------------------------------------------------- 2630 void 2631 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2632 { 2633 switch (ei_data) 2634 { 2635 case ELFDATANONE: *s << "ELFDATANONE"; break; 2636 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2637 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2638 default: 2639 break; 2640 } 2641 } 2642 2643 2644 //---------------------------------------------------------------------- 2645 // DumpELFProgramHeader 2646 // 2647 // Dump a single ELF program header to the specified output stream 2648 //---------------------------------------------------------------------- 2649 void 2650 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2651 { 2652 DumpELFProgramHeader_p_type(s, ph.p_type); 2653 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2654 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2655 2656 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2657 s->Printf(") %8.8" PRIx64, ph.p_align); 2658 } 2659 2660 //---------------------------------------------------------------------- 2661 // DumpELFProgramHeader_p_type 2662 // 2663 // Dump an token value for the ELF program header member p_type which 2664 // describes the type of the program header 2665 // ---------------------------------------------------------------------- 2666 void 2667 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2668 { 2669 const int kStrWidth = 15; 2670 switch (p_type) 2671 { 2672 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2673 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2674 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2675 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2676 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2677 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2678 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2679 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2680 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2681 default: 2682 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2683 break; 2684 } 2685 } 2686 2687 2688 //---------------------------------------------------------------------- 2689 // DumpELFProgramHeader_p_flags 2690 // 2691 // Dump an token value for the ELF program header member p_flags 2692 //---------------------------------------------------------------------- 2693 void 2694 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2695 { 2696 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2697 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2698 << ((p_flags & PF_W) ? "PF_W" : " ") 2699 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2700 << ((p_flags & PF_R) ? "PF_R" : " "); 2701 } 2702 2703 //---------------------------------------------------------------------- 2704 // DumpELFProgramHeaders 2705 // 2706 // Dump all of the ELF program header to the specified output stream 2707 //---------------------------------------------------------------------- 2708 void 2709 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2710 { 2711 if (!ParseProgramHeaders()) 2712 return; 2713 2714 s->PutCString("Program Headers\n"); 2715 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2716 "p_filesz p_memsz p_flags p_align\n"); 2717 s->PutCString("==== --------------- -------- -------- -------- " 2718 "-------- -------- ------------------------- --------\n"); 2719 2720 uint32_t idx = 0; 2721 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2722 I != m_program_headers.end(); ++I, ++idx) 2723 { 2724 s->Printf("[%2u] ", idx); 2725 ObjectFileELF::DumpELFProgramHeader(s, *I); 2726 s->EOL(); 2727 } 2728 } 2729 2730 //---------------------------------------------------------------------- 2731 // DumpELFSectionHeader 2732 // 2733 // Dump a single ELF section header to the specified output stream 2734 //---------------------------------------------------------------------- 2735 void 2736 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2737 { 2738 s->Printf("%8.8x ", sh.sh_name); 2739 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2740 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2741 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2742 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2743 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2744 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2745 } 2746 2747 //---------------------------------------------------------------------- 2748 // DumpELFSectionHeader_sh_type 2749 // 2750 // Dump an token value for the ELF section header member sh_type which 2751 // describes the type of the section 2752 //---------------------------------------------------------------------- 2753 void 2754 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2755 { 2756 const int kStrWidth = 12; 2757 switch (sh_type) 2758 { 2759 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2760 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2761 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2762 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2763 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2764 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2765 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2766 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2767 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2768 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2769 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2770 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2771 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2772 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2773 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2774 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2775 default: 2776 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2777 break; 2778 } 2779 } 2780 2781 //---------------------------------------------------------------------- 2782 // DumpELFSectionHeader_sh_flags 2783 // 2784 // Dump an token value for the ELF section header member sh_flags 2785 //---------------------------------------------------------------------- 2786 void 2787 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2788 { 2789 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2790 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2791 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2792 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2793 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2794 } 2795 2796 //---------------------------------------------------------------------- 2797 // DumpELFSectionHeaders 2798 // 2799 // Dump all of the ELF section header to the specified output stream 2800 //---------------------------------------------------------------------- 2801 void 2802 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2803 { 2804 if (!ParseSectionHeaders()) 2805 return; 2806 2807 s->PutCString("Section Headers\n"); 2808 s->PutCString("IDX name type flags " 2809 "addr offset size link info addralgn " 2810 "entsize Name\n"); 2811 s->PutCString("==== -------- ------------ -------------------------------- " 2812 "-------- -------- -------- -------- -------- -------- " 2813 "-------- ====================\n"); 2814 2815 uint32_t idx = 0; 2816 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2817 I != m_section_headers.end(); ++I, ++idx) 2818 { 2819 s->Printf("[%2u] ", idx); 2820 ObjectFileELF::DumpELFSectionHeader(s, *I); 2821 const char* section_name = I->section_name.AsCString(""); 2822 if (section_name) 2823 *s << ' ' << section_name << "\n"; 2824 } 2825 } 2826 2827 void 2828 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 2829 { 2830 size_t num_modules = ParseDependentModules(); 2831 2832 if (num_modules > 0) 2833 { 2834 s->PutCString("Dependent Modules:\n"); 2835 for (unsigned i = 0; i < num_modules; ++i) 2836 { 2837 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 2838 s->Printf(" %s\n", spec.GetFilename().GetCString()); 2839 } 2840 } 2841 } 2842 2843 bool 2844 ObjectFileELF::GetArchitecture (ArchSpec &arch) 2845 { 2846 if (!ParseHeader()) 2847 return false; 2848 2849 if (m_section_headers.empty()) 2850 { 2851 // Allow elf notes to be parsed which may affect the detected architecture. 2852 ParseSectionHeaders(); 2853 } 2854 2855 arch = m_arch_spec; 2856 return true; 2857 } 2858 2859 ObjectFile::Type 2860 ObjectFileELF::CalculateType() 2861 { 2862 switch (m_header.e_type) 2863 { 2864 case llvm::ELF::ET_NONE: 2865 // 0 - No file type 2866 return eTypeUnknown; 2867 2868 case llvm::ELF::ET_REL: 2869 // 1 - Relocatable file 2870 return eTypeObjectFile; 2871 2872 case llvm::ELF::ET_EXEC: 2873 // 2 - Executable file 2874 return eTypeExecutable; 2875 2876 case llvm::ELF::ET_DYN: 2877 // 3 - Shared object file 2878 return eTypeSharedLibrary; 2879 2880 case ET_CORE: 2881 // 4 - Core file 2882 return eTypeCoreFile; 2883 2884 default: 2885 break; 2886 } 2887 return eTypeUnknown; 2888 } 2889 2890 ObjectFile::Strata 2891 ObjectFileELF::CalculateStrata() 2892 { 2893 switch (m_header.e_type) 2894 { 2895 case llvm::ELF::ET_NONE: 2896 // 0 - No file type 2897 return eStrataUnknown; 2898 2899 case llvm::ELF::ET_REL: 2900 // 1 - Relocatable file 2901 return eStrataUnknown; 2902 2903 case llvm::ELF::ET_EXEC: 2904 // 2 - Executable file 2905 // TODO: is there any way to detect that an executable is a kernel 2906 // related executable by inspecting the program headers, section 2907 // headers, symbols, or any other flag bits??? 2908 return eStrataUser; 2909 2910 case llvm::ELF::ET_DYN: 2911 // 3 - Shared object file 2912 // TODO: is there any way to detect that an shared library is a kernel 2913 // related executable by inspecting the program headers, section 2914 // headers, symbols, or any other flag bits??? 2915 return eStrataUnknown; 2916 2917 case ET_CORE: 2918 // 4 - Core file 2919 // TODO: is there any way to detect that an core file is a kernel 2920 // related executable by inspecting the program headers, section 2921 // headers, symbols, or any other flag bits??? 2922 return eStrataUnknown; 2923 2924 default: 2925 break; 2926 } 2927 return eStrataUnknown; 2928 } 2929 2930