1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 // 601 // WARNING : This function is being deprecated 602 // It's functionality has moved to ArchSpec::SetArchitecture 603 // This function is only being kept to validate the move. 604 // 605 // TODO : Remove this function 606 static bool 607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 608 { 609 switch (osabi_byte) 610 { 611 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 612 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 613 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 614 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 615 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 616 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 617 default: 618 ostype = llvm::Triple::OSType::UnknownOS; 619 } 620 return ostype != llvm::Triple::OSType::UnknownOS; 621 } 622 623 size_t 624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 625 lldb::DataBufferSP& data_sp, 626 lldb::offset_t data_offset, 627 lldb::offset_t file_offset, 628 lldb::offset_t length, 629 lldb_private::ModuleSpecList &specs) 630 { 631 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 632 633 const size_t initial_count = specs.GetSize(); 634 635 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 636 { 637 DataExtractor data; 638 data.SetData(data_sp); 639 elf::ELFHeader header; 640 if (header.Parse(data, &data_offset)) 641 { 642 if (data_sp) 643 { 644 ModuleSpec spec (file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 648 header.e_machine, 649 sub_type, 650 header.e_ident[EI_OSABI]); 651 652 if (spec.GetArchitecture().IsValid()) 653 { 654 llvm::Triple::OSType ostype; 655 llvm::Triple::VendorType vendor; 656 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 657 658 if (log) 659 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 665 // 666 // Validate it is ok to remove GetOsFromOSABI 667 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 668 assert(spec_ostype == ostype); 669 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 670 { 671 if (log) 672 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 673 } 674 675 // Try to get the UUID from the section list. Usually that's at the end, so 676 // map the file in if we don't have it already. 677 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 678 if (section_header_end > data_sp->GetByteSize()) 679 { 680 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 681 data.SetData(data_sp); 682 } 683 684 uint32_t gnu_debuglink_crc = 0; 685 std::string gnu_debuglink_file; 686 SectionHeaderColl section_headers; 687 lldb_private::UUID &uuid = spec.GetUUID(); 688 689 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 690 691 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 692 693 if (log) 694 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 695 696 if (!uuid.IsValid()) 697 { 698 uint32_t core_notes_crc = 0; 699 700 if (!gnu_debuglink_crc) 701 { 702 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 703 "Calculating module crc32 %s with size %" PRIu64 " KiB", 704 file.GetLastPathComponent().AsCString(), 705 (file.GetByteSize()-file_offset)/1024); 706 707 // For core files - which usually don't happen to have a gnu_debuglink, 708 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 709 // Thus we will need to fallback to something simpler. 710 if (header.e_type == llvm::ELF::ET_CORE) 711 { 712 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 713 if (program_headers_end > data_sp->GetByteSize()) 714 { 715 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 716 data.SetData(data_sp); 717 } 718 ProgramHeaderColl program_headers; 719 GetProgramHeaderInfo(program_headers, data, header); 720 721 size_t segment_data_end = 0; 722 for (ProgramHeaderCollConstIter I = program_headers.begin(); 723 I != program_headers.end(); ++I) 724 { 725 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 726 } 727 728 if (segment_data_end > data_sp->GetByteSize()) 729 { 730 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 731 data.SetData(data_sp); 732 } 733 734 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 735 } 736 else 737 { 738 // Need to map entire file into memory to calculate the crc. 739 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 740 data.SetData(data_sp); 741 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 742 } 743 } 744 if (gnu_debuglink_crc) 745 { 746 // Use 4 bytes of crc from the .gnu_debuglink section. 747 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 748 uuid.SetBytes (uuidt, sizeof(uuidt)); 749 } 750 else if (core_notes_crc) 751 { 752 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 753 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 754 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 755 uuid.SetBytes (uuidt, sizeof(uuidt)); 756 } 757 } 758 759 specs.Append(spec); 760 } 761 } 762 } 763 } 764 765 return specs.GetSize() - initial_count; 766 } 767 768 //------------------------------------------------------------------ 769 // PluginInterface protocol 770 //------------------------------------------------------------------ 771 lldb_private::ConstString 772 ObjectFileELF::GetPluginName() 773 { 774 return GetPluginNameStatic(); 775 } 776 777 uint32_t 778 ObjectFileELF::GetPluginVersion() 779 { 780 return m_plugin_version; 781 } 782 //------------------------------------------------------------------ 783 // ObjectFile protocol 784 //------------------------------------------------------------------ 785 786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 787 DataBufferSP& data_sp, 788 lldb::offset_t data_offset, 789 const FileSpec* file, 790 lldb::offset_t file_offset, 791 lldb::offset_t length) : 792 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 793 m_header(), 794 m_uuid(), 795 m_gnu_debuglink_file(), 796 m_gnu_debuglink_crc(0), 797 m_program_headers(), 798 m_section_headers(), 799 m_dynamic_symbols(), 800 m_filespec_ap(), 801 m_entry_point_address(), 802 m_arch_spec() 803 { 804 if (file) 805 m_file = *file; 806 ::memset(&m_header, 0, sizeof(m_header)); 807 } 808 809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 810 DataBufferSP& header_data_sp, 811 const lldb::ProcessSP &process_sp, 812 addr_t header_addr) : 813 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 814 m_header(), 815 m_uuid(), 816 m_gnu_debuglink_file(), 817 m_gnu_debuglink_crc(0), 818 m_program_headers(), 819 m_section_headers(), 820 m_dynamic_symbols(), 821 m_filespec_ap(), 822 m_entry_point_address(), 823 m_arch_spec() 824 { 825 ::memset(&m_header, 0, sizeof(m_header)); 826 } 827 828 ObjectFileELF::~ObjectFileELF() 829 { 830 } 831 832 bool 833 ObjectFileELF::IsExecutable() const 834 { 835 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 836 } 837 838 bool 839 ObjectFileELF::SetLoadAddress (Target &target, 840 lldb::addr_t value, 841 bool value_is_offset) 842 { 843 ModuleSP module_sp = GetModule(); 844 if (module_sp) 845 { 846 size_t num_loaded_sections = 0; 847 SectionList *section_list = GetSectionList (); 848 if (section_list) 849 { 850 if (value_is_offset) 851 { 852 const size_t num_sections = section_list->GetSize(); 853 size_t sect_idx = 0; 854 855 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 856 { 857 // Iterate through the object file sections to find all 858 // of the sections that have SHF_ALLOC in their flag bits. 859 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 860 // if (section_sp && !section_sp->IsThreadSpecific()) 861 if (section_sp && section_sp->Test(SHF_ALLOC)) 862 { 863 lldb::addr_t load_addr = section_sp->GetFileAddress() + value; 864 865 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 866 // the bytes are the overflow from the addition. 867 if (GetAddressByteSize() == 4) 868 load_addr &= 0xFFFFFFFF; 869 870 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 871 ++num_loaded_sections; 872 } 873 } 874 return num_loaded_sections > 0; 875 } 876 else 877 { 878 // Not sure how to slide an ELF file given the base address 879 // of the ELF file in memory 880 } 881 } 882 } 883 return false; // If it changed 884 } 885 886 ByteOrder 887 ObjectFileELF::GetByteOrder() const 888 { 889 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 890 return eByteOrderBig; 891 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 892 return eByteOrderLittle; 893 return eByteOrderInvalid; 894 } 895 896 uint32_t 897 ObjectFileELF::GetAddressByteSize() const 898 { 899 return m_data.GetAddressByteSize(); 900 } 901 902 // Top 16 bits of the `Symbol` flags are available. 903 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 904 905 AddressClass 906 ObjectFileELF::GetAddressClass (addr_t file_addr) 907 { 908 auto res = ObjectFile::GetAddressClass (file_addr); 909 910 if (res != eAddressClassCode) 911 return res; 912 913 auto ub = m_address_class_map.upper_bound(file_addr); 914 if (ub == m_address_class_map.begin()) 915 { 916 // No entry in the address class map before the address. Return 917 // default address class for an address in a code section. 918 return eAddressClassCode; 919 } 920 921 // Move iterator to the address class entry preceding address 922 --ub; 923 924 return ub->second; 925 } 926 927 size_t 928 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 929 { 930 return std::distance(m_section_headers.begin(), I) + 1u; 931 } 932 933 size_t 934 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 935 { 936 return std::distance(m_section_headers.begin(), I) + 1u; 937 } 938 939 bool 940 ObjectFileELF::ParseHeader() 941 { 942 lldb::offset_t offset = 0; 943 if (!m_header.Parse(m_data, &offset)) 944 return false; 945 946 if (!IsInMemory()) 947 return true; 948 949 // For in memory object files m_data might not contain the full object file. Try to load it 950 // until the end of the "Section header table" what is at the end of the ELF file. 951 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 952 if (m_data.GetByteSize() < file_size) 953 { 954 ProcessSP process_sp (m_process_wp.lock()); 955 if (!process_sp) 956 return false; 957 958 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 959 if (!data_sp) 960 return false; 961 m_data.SetData(data_sp, 0, file_size); 962 } 963 964 return true; 965 } 966 967 bool 968 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 969 { 970 // Need to parse the section list to get the UUIDs, so make sure that's been done. 971 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 972 return false; 973 974 if (m_uuid.IsValid()) 975 { 976 // We have the full build id uuid. 977 *uuid = m_uuid; 978 return true; 979 } 980 else if (GetType() == ObjectFile::eTypeCoreFile) 981 { 982 uint32_t core_notes_crc = 0; 983 984 if (!ParseProgramHeaders()) 985 return false; 986 987 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 988 989 if (core_notes_crc) 990 { 991 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 992 // look different form .gnu_debuglink crc - followed by 4 bytes of note 993 // segments crc. 994 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 995 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 996 } 997 } 998 else 999 { 1000 if (!m_gnu_debuglink_crc) 1001 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1002 if (m_gnu_debuglink_crc) 1003 { 1004 // Use 4 bytes of crc from the .gnu_debuglink section. 1005 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1006 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1007 } 1008 } 1009 1010 if (m_uuid.IsValid()) 1011 { 1012 *uuid = m_uuid; 1013 return true; 1014 } 1015 1016 return false; 1017 } 1018 1019 lldb_private::FileSpecList 1020 ObjectFileELF::GetDebugSymbolFilePaths() 1021 { 1022 FileSpecList file_spec_list; 1023 1024 if (!m_gnu_debuglink_file.empty()) 1025 { 1026 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1027 file_spec_list.Append (file_spec); 1028 } 1029 return file_spec_list; 1030 } 1031 1032 uint32_t 1033 ObjectFileELF::GetDependentModules(FileSpecList &files) 1034 { 1035 size_t num_modules = ParseDependentModules(); 1036 uint32_t num_specs = 0; 1037 1038 for (unsigned i = 0; i < num_modules; ++i) 1039 { 1040 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1041 num_specs++; 1042 } 1043 1044 return num_specs; 1045 } 1046 1047 Address 1048 ObjectFileELF::GetImageInfoAddress(Target *target) 1049 { 1050 if (!ParseDynamicSymbols()) 1051 return Address(); 1052 1053 SectionList *section_list = GetSectionList(); 1054 if (!section_list) 1055 return Address(); 1056 1057 // Find the SHT_DYNAMIC (.dynamic) section. 1058 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1059 if (!dynsym_section_sp) 1060 return Address(); 1061 assert (dynsym_section_sp->GetObjectFile() == this); 1062 1063 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1064 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1065 if (!dynsym_hdr) 1066 return Address(); 1067 1068 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1069 { 1070 ELFDynamic &symbol = m_dynamic_symbols[i]; 1071 1072 if (symbol.d_tag == DT_DEBUG) 1073 { 1074 // Compute the offset as the number of previous entries plus the 1075 // size of d_tag. 1076 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1077 return Address(dynsym_section_sp, offset); 1078 } 1079 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1080 { 1081 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1082 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1083 if (dyn_base == LLDB_INVALID_ADDRESS) 1084 return Address(); 1085 Address addr; 1086 Error error; 1087 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1088 return addr; 1089 } 1090 } 1091 1092 return Address(); 1093 } 1094 1095 lldb_private::Address 1096 ObjectFileELF::GetEntryPointAddress () 1097 { 1098 if (m_entry_point_address.IsValid()) 1099 return m_entry_point_address; 1100 1101 if (!ParseHeader() || !IsExecutable()) 1102 return m_entry_point_address; 1103 1104 SectionList *section_list = GetSectionList(); 1105 addr_t offset = m_header.e_entry; 1106 1107 if (!section_list) 1108 m_entry_point_address.SetOffset(offset); 1109 else 1110 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1111 return m_entry_point_address; 1112 } 1113 1114 //---------------------------------------------------------------------- 1115 // ParseDependentModules 1116 //---------------------------------------------------------------------- 1117 size_t 1118 ObjectFileELF::ParseDependentModules() 1119 { 1120 if (m_filespec_ap.get()) 1121 return m_filespec_ap->GetSize(); 1122 1123 m_filespec_ap.reset(new FileSpecList()); 1124 1125 if (!ParseSectionHeaders()) 1126 return 0; 1127 1128 SectionList *section_list = GetSectionList(); 1129 if (!section_list) 1130 return 0; 1131 1132 // Find the SHT_DYNAMIC section. 1133 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1134 if (!dynsym) 1135 return 0; 1136 assert (dynsym->GetObjectFile() == this); 1137 1138 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1139 if (!header) 1140 return 0; 1141 // sh_link: section header index of string table used by entries in the section. 1142 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1143 if (!dynstr) 1144 return 0; 1145 1146 DataExtractor dynsym_data; 1147 DataExtractor dynstr_data; 1148 if (ReadSectionData(dynsym, dynsym_data) && 1149 ReadSectionData(dynstr, dynstr_data)) 1150 { 1151 ELFDynamic symbol; 1152 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1153 lldb::offset_t offset = 0; 1154 1155 // The only type of entries we are concerned with are tagged DT_NEEDED, 1156 // yielding the name of a required library. 1157 while (offset < section_size) 1158 { 1159 if (!symbol.Parse(dynsym_data, &offset)) 1160 break; 1161 1162 if (symbol.d_tag != DT_NEEDED) 1163 continue; 1164 1165 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1166 const char *lib_name = dynstr_data.PeekCStr(str_index); 1167 m_filespec_ap->Append(FileSpec(lib_name, true)); 1168 } 1169 } 1170 1171 return m_filespec_ap->GetSize(); 1172 } 1173 1174 //---------------------------------------------------------------------- 1175 // GetProgramHeaderInfo 1176 //---------------------------------------------------------------------- 1177 size_t 1178 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1179 DataExtractor &object_data, 1180 const ELFHeader &header) 1181 { 1182 // We have already parsed the program headers 1183 if (!program_headers.empty()) 1184 return program_headers.size(); 1185 1186 // If there are no program headers to read we are done. 1187 if (header.e_phnum == 0) 1188 return 0; 1189 1190 program_headers.resize(header.e_phnum); 1191 if (program_headers.size() != header.e_phnum) 1192 return 0; 1193 1194 const size_t ph_size = header.e_phnum * header.e_phentsize; 1195 const elf_off ph_offset = header.e_phoff; 1196 DataExtractor data; 1197 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1198 return 0; 1199 1200 uint32_t idx; 1201 lldb::offset_t offset; 1202 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1203 { 1204 if (program_headers[idx].Parse(data, &offset) == false) 1205 break; 1206 } 1207 1208 if (idx < program_headers.size()) 1209 program_headers.resize(idx); 1210 1211 return program_headers.size(); 1212 1213 } 1214 1215 //---------------------------------------------------------------------- 1216 // ParseProgramHeaders 1217 //---------------------------------------------------------------------- 1218 size_t 1219 ObjectFileELF::ParseProgramHeaders() 1220 { 1221 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1222 } 1223 1224 lldb_private::Error 1225 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1226 { 1227 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1228 Error error; 1229 1230 lldb::offset_t offset = 0; 1231 1232 while (true) 1233 { 1234 // Parse the note header. If this fails, bail out. 1235 ELFNote note = ELFNote(); 1236 if (!note.Parse(data, &offset)) 1237 { 1238 // We're done. 1239 return error; 1240 } 1241 1242 // If a tag processor handles the tag, it should set processed to true, and 1243 // the loop will assume the tag processing has moved entirely past the note's payload. 1244 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1245 bool processed = false; 1246 1247 if (log) 1248 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1249 1250 // Process FreeBSD ELF notes. 1251 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1252 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1253 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1254 { 1255 // We'll consume the payload below. 1256 processed = true; 1257 1258 // Pull out the min version info. 1259 uint32_t version_info; 1260 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1261 { 1262 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1263 return error; 1264 } 1265 1266 // Convert the version info into a major/minor number. 1267 const uint32_t version_major = version_info / 100000; 1268 const uint32_t version_minor = (version_info / 1000) % 100; 1269 1270 char os_name[32]; 1271 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1272 1273 // Set the elf OS version to FreeBSD. Also clear the vendor. 1274 arch_spec.GetTriple ().setOSName (os_name); 1275 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1276 1277 if (log) 1278 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1279 } 1280 // Process GNU ELF notes. 1281 else if (note.n_name == LLDB_NT_OWNER_GNU) 1282 { 1283 switch (note.n_type) 1284 { 1285 case LLDB_NT_GNU_ABI_TAG: 1286 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1287 { 1288 // We'll consume the payload below. 1289 processed = true; 1290 1291 // Pull out the min OS version supporting the ABI. 1292 uint32_t version_info[4]; 1293 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1294 { 1295 error.SetErrorString ("failed to read GNU ABI note payload"); 1296 return error; 1297 } 1298 1299 // Set the OS per the OS field. 1300 switch (version_info[0]) 1301 { 1302 case LLDB_NT_GNU_ABI_OS_LINUX: 1303 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1304 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1305 if (log) 1306 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1307 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1308 break; 1309 case LLDB_NT_GNU_ABI_OS_HURD: 1310 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1311 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1312 if (log) 1313 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1314 break; 1315 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1316 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1317 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1318 if (log) 1319 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1320 break; 1321 default: 1322 if (log) 1323 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1324 break; 1325 } 1326 } 1327 break; 1328 1329 case LLDB_NT_GNU_BUILD_ID_TAG: 1330 // Only bother processing this if we don't already have the uuid set. 1331 if (!uuid.IsValid()) 1332 { 1333 // We'll consume the payload below. 1334 processed = true; 1335 1336 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1337 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1338 { 1339 uint8_t uuidbuf[20]; 1340 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1341 { 1342 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1343 return error; 1344 } 1345 1346 // Save the build id as the UUID for the module. 1347 uuid.SetBytes (uuidbuf, note.n_descsz); 1348 } 1349 } 1350 break; 1351 } 1352 } 1353 // Process NetBSD ELF notes. 1354 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1355 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1356 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1357 { 1358 1359 // We'll consume the payload below. 1360 processed = true; 1361 1362 // Pull out the min version info. 1363 uint32_t version_info; 1364 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1365 { 1366 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1367 return error; 1368 } 1369 1370 // Set the elf OS version to NetBSD. Also clear the vendor. 1371 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1372 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1373 1374 if (log) 1375 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1376 } 1377 // Process CSR kalimba notes 1378 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1379 (note.n_name == LLDB_NT_OWNER_CSR)) 1380 { 1381 // We'll consume the payload below. 1382 processed = true; 1383 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1384 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1385 1386 // TODO At some point the description string could be processed. 1387 // It could provide a steer towards the kalimba variant which 1388 // this ELF targets. 1389 if(note.n_descsz) 1390 { 1391 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1392 (void)cstr; 1393 } 1394 } 1395 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1396 { 1397 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1398 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1399 } 1400 1401 if (!processed) 1402 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1403 } 1404 1405 return error; 1406 } 1407 1408 1409 //---------------------------------------------------------------------- 1410 // GetSectionHeaderInfo 1411 //---------------------------------------------------------------------- 1412 size_t 1413 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1414 lldb_private::DataExtractor &object_data, 1415 const elf::ELFHeader &header, 1416 lldb_private::UUID &uuid, 1417 std::string &gnu_debuglink_file, 1418 uint32_t &gnu_debuglink_crc, 1419 ArchSpec &arch_spec) 1420 { 1421 // Don't reparse the section headers if we already did that. 1422 if (!section_headers.empty()) 1423 return section_headers.size(); 1424 1425 // Only initialize the arch_spec to okay defaults if they're not already set. 1426 // We'll refine this with note data as we parse the notes. 1427 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1428 { 1429 llvm::Triple::OSType ostype; 1430 llvm::Triple::OSType spec_ostype; 1431 const uint32_t sub_type = subTypeFromElfHeader(header); 1432 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1433 // 1434 // Validate if it is ok to remove GetOsFromOSABI 1435 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1436 spec_ostype = arch_spec.GetTriple ().getOS (); 1437 assert(spec_ostype == ostype); 1438 } 1439 1440 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1441 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1442 { 1443 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1444 { 1445 case llvm::ELF::EF_MIPS_MICROMIPS: 1446 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1447 break; 1448 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1449 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1450 break; 1451 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1452 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1453 break; 1454 default: 1455 break; 1456 } 1457 } 1458 1459 // If there are no section headers we are done. 1460 if (header.e_shnum == 0) 1461 return 0; 1462 1463 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1464 1465 section_headers.resize(header.e_shnum); 1466 if (section_headers.size() != header.e_shnum) 1467 return 0; 1468 1469 const size_t sh_size = header.e_shnum * header.e_shentsize; 1470 const elf_off sh_offset = header.e_shoff; 1471 DataExtractor sh_data; 1472 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1473 return 0; 1474 1475 uint32_t idx; 1476 lldb::offset_t offset; 1477 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1478 { 1479 if (section_headers[idx].Parse(sh_data, &offset) == false) 1480 break; 1481 } 1482 if (idx < section_headers.size()) 1483 section_headers.resize(idx); 1484 1485 const unsigned strtab_idx = header.e_shstrndx; 1486 if (strtab_idx && strtab_idx < section_headers.size()) 1487 { 1488 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1489 const size_t byte_size = sheader.sh_size; 1490 const Elf64_Off offset = sheader.sh_offset; 1491 lldb_private::DataExtractor shstr_data; 1492 1493 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1494 { 1495 for (SectionHeaderCollIter I = section_headers.begin(); 1496 I != section_headers.end(); ++I) 1497 { 1498 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1499 const ELFSectionHeaderInfo &header = *I; 1500 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1501 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1502 1503 I->section_name = name; 1504 1505 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1506 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1507 { 1508 if (header.sh_type == SHT_MIPS_ABIFLAGS) 1509 { 1510 DataExtractor data; 1511 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1512 { 1513 lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0 1514 uint32_t arch_flags = arch_spec.GetFlags (); 1515 arch_flags |= data.GetU32 (&ase_offset); 1516 arch_spec.SetFlags (arch_flags); 1517 } 1518 } 1519 } 1520 1521 if (name == g_sect_name_gnu_debuglink) 1522 { 1523 DataExtractor data; 1524 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1525 { 1526 lldb::offset_t gnu_debuglink_offset = 0; 1527 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1528 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1529 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1530 } 1531 } 1532 1533 // Process ELF note section entries. 1534 bool is_note_header = (header.sh_type == SHT_NOTE); 1535 1536 // The section header ".note.android.ident" is stored as a 1537 // PROGBITS type header but it is actually a note header. 1538 static ConstString g_sect_name_android_ident (".note.android.ident"); 1539 if (!is_note_header && name == g_sect_name_android_ident) 1540 is_note_header = true; 1541 1542 if (is_note_header) 1543 { 1544 // Allow notes to refine module info. 1545 DataExtractor data; 1546 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1547 { 1548 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1549 if (error.Fail ()) 1550 { 1551 if (log) 1552 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1553 } 1554 } 1555 } 1556 } 1557 1558 return section_headers.size(); 1559 } 1560 } 1561 1562 section_headers.clear(); 1563 return 0; 1564 } 1565 1566 size_t 1567 ObjectFileELF::GetProgramHeaderCount() 1568 { 1569 return ParseProgramHeaders(); 1570 } 1571 1572 const elf::ELFProgramHeader * 1573 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1574 { 1575 if (!id || !ParseProgramHeaders()) 1576 return NULL; 1577 1578 if (--id < m_program_headers.size()) 1579 return &m_program_headers[id]; 1580 1581 return NULL; 1582 } 1583 1584 DataExtractor 1585 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1586 { 1587 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1588 if (segment_header == NULL) 1589 return DataExtractor(); 1590 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1591 } 1592 1593 std::string 1594 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1595 { 1596 size_t pos = symbol_name.find('@'); 1597 return symbol_name.substr(0, pos).str(); 1598 } 1599 1600 //---------------------------------------------------------------------- 1601 // ParseSectionHeaders 1602 //---------------------------------------------------------------------- 1603 size_t 1604 ObjectFileELF::ParseSectionHeaders() 1605 { 1606 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1607 } 1608 1609 const ObjectFileELF::ELFSectionHeaderInfo * 1610 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1611 { 1612 if (!id || !ParseSectionHeaders()) 1613 return NULL; 1614 1615 if (--id < m_section_headers.size()) 1616 return &m_section_headers[id]; 1617 1618 return NULL; 1619 } 1620 1621 lldb::user_id_t 1622 ObjectFileELF::GetSectionIndexByName(const char* name) 1623 { 1624 if (!name || !name[0] || !ParseSectionHeaders()) 1625 return 0; 1626 for (size_t i = 1; i < m_section_headers.size(); ++i) 1627 if (m_section_headers[i].section_name == ConstString(name)) 1628 return i; 1629 return 0; 1630 } 1631 1632 void 1633 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1634 { 1635 if (!m_sections_ap.get() && ParseSectionHeaders()) 1636 { 1637 m_sections_ap.reset(new SectionList()); 1638 1639 for (SectionHeaderCollIter I = m_section_headers.begin(); 1640 I != m_section_headers.end(); ++I) 1641 { 1642 const ELFSectionHeaderInfo &header = *I; 1643 1644 ConstString& name = I->section_name; 1645 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1646 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1647 1648 static ConstString g_sect_name_text (".text"); 1649 static ConstString g_sect_name_data (".data"); 1650 static ConstString g_sect_name_bss (".bss"); 1651 static ConstString g_sect_name_tdata (".tdata"); 1652 static ConstString g_sect_name_tbss (".tbss"); 1653 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1654 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1655 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1656 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1657 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1658 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1659 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1660 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1661 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1662 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1663 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1664 static ConstString g_sect_name_eh_frame (".eh_frame"); 1665 1666 SectionType sect_type = eSectionTypeOther; 1667 1668 bool is_thread_specific = false; 1669 1670 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1671 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1672 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1673 else if (name == g_sect_name_tdata) 1674 { 1675 sect_type = eSectionTypeData; 1676 is_thread_specific = true; 1677 } 1678 else if (name == g_sect_name_tbss) 1679 { 1680 sect_type = eSectionTypeZeroFill; 1681 is_thread_specific = true; 1682 } 1683 // .debug_abbrev – Abbreviations used in the .debug_info section 1684 // .debug_aranges – Lookup table for mapping addresses to compilation units 1685 // .debug_frame – Call frame information 1686 // .debug_info – The core DWARF information section 1687 // .debug_line – Line number information 1688 // .debug_loc – Location lists used in DW_AT_location attributes 1689 // .debug_macinfo – Macro information 1690 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1691 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1692 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1693 // .debug_str – String table used in .debug_info 1694 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1695 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1696 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1697 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1698 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1699 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1700 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1701 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1702 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1703 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1704 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1705 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1706 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1707 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1708 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1709 1710 switch (header.sh_type) 1711 { 1712 case SHT_SYMTAB: 1713 assert (sect_type == eSectionTypeOther); 1714 sect_type = eSectionTypeELFSymbolTable; 1715 break; 1716 case SHT_DYNSYM: 1717 assert (sect_type == eSectionTypeOther); 1718 sect_type = eSectionTypeELFDynamicSymbols; 1719 break; 1720 case SHT_RELA: 1721 case SHT_REL: 1722 assert (sect_type == eSectionTypeOther); 1723 sect_type = eSectionTypeELFRelocationEntries; 1724 break; 1725 case SHT_DYNAMIC: 1726 assert (sect_type == eSectionTypeOther); 1727 sect_type = eSectionTypeELFDynamicLinkInfo; 1728 break; 1729 } 1730 1731 if (eSectionTypeOther == sect_type) 1732 { 1733 // the kalimba toolchain assumes that ELF section names are free-form. It does 1734 // support linkscripts which (can) give rise to various arbitrarily named 1735 // sections being "Code" or "Data". 1736 sect_type = kalimbaSectionType(m_header, header); 1737 } 1738 1739 const uint32_t target_bytes_size = 1740 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1741 m_arch_spec.GetDataByteSize() : 1742 eSectionTypeCode == sect_type ? 1743 m_arch_spec.GetCodeByteSize() : 1; 1744 1745 elf::elf_xword log2align = (header.sh_addralign==0) 1746 ? 0 1747 : llvm::Log2_64(header.sh_addralign); 1748 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1749 this, // ObjectFile to which this section belongs and should read section data from. 1750 SectionIndex(I), // Section ID. 1751 name, // Section name. 1752 sect_type, // Section type. 1753 header.sh_addr, // VM address. 1754 vm_size, // VM size in bytes of this section. 1755 header.sh_offset, // Offset of this section in the file. 1756 file_size, // Size of the section as found in the file. 1757 log2align, // Alignment of the section 1758 header.sh_flags, // Flags for this section. 1759 target_bytes_size));// Number of host bytes per target byte 1760 1761 if (is_thread_specific) 1762 section_sp->SetIsThreadSpecific (is_thread_specific); 1763 m_sections_ap->AddSection(section_sp); 1764 } 1765 } 1766 1767 if (m_sections_ap.get()) 1768 { 1769 if (GetType() == eTypeDebugInfo) 1770 { 1771 static const SectionType g_sections[] = 1772 { 1773 eSectionTypeDWARFDebugAranges, 1774 eSectionTypeDWARFDebugInfo, 1775 eSectionTypeDWARFDebugAbbrev, 1776 eSectionTypeDWARFDebugFrame, 1777 eSectionTypeDWARFDebugLine, 1778 eSectionTypeDWARFDebugStr, 1779 eSectionTypeDWARFDebugLoc, 1780 eSectionTypeDWARFDebugMacInfo, 1781 eSectionTypeDWARFDebugPubNames, 1782 eSectionTypeDWARFDebugPubTypes, 1783 eSectionTypeDWARFDebugRanges, 1784 eSectionTypeELFSymbolTable, 1785 }; 1786 SectionList *elf_section_list = m_sections_ap.get(); 1787 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1788 { 1789 SectionType section_type = g_sections[idx]; 1790 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1791 if (section_sp) 1792 { 1793 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1794 if (module_section_sp) 1795 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1796 else 1797 unified_section_list.AddSection (section_sp); 1798 } 1799 } 1800 } 1801 else 1802 { 1803 unified_section_list = *m_sections_ap; 1804 } 1805 } 1806 } 1807 1808 // private 1809 unsigned 1810 ObjectFileELF::ParseSymbols (Symtab *symtab, 1811 user_id_t start_id, 1812 SectionList *section_list, 1813 const size_t num_symbols, 1814 const DataExtractor &symtab_data, 1815 const DataExtractor &strtab_data) 1816 { 1817 ELFSymbol symbol; 1818 lldb::offset_t offset = 0; 1819 1820 static ConstString text_section_name(".text"); 1821 static ConstString init_section_name(".init"); 1822 static ConstString fini_section_name(".fini"); 1823 static ConstString ctors_section_name(".ctors"); 1824 static ConstString dtors_section_name(".dtors"); 1825 1826 static ConstString data_section_name(".data"); 1827 static ConstString rodata_section_name(".rodata"); 1828 static ConstString rodata1_section_name(".rodata1"); 1829 static ConstString data2_section_name(".data1"); 1830 static ConstString bss_section_name(".bss"); 1831 static ConstString opd_section_name(".opd"); // For ppc64 1832 1833 // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full 1834 // .text section what causes issues with displaying unusable symbol name to the user and very 1835 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 1836 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 1837 // use for the debugger and they are causing a lot of trouble. 1838 // Filtering can't be restricted to Android because this special object file don't contain the 1839 // note section specifying the environment to Android but the custom extension and file name 1840 // makes it highly unlikely that this will collide with anything else. 1841 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat"); 1842 1843 unsigned i; 1844 for (i = 0; i < num_symbols; ++i) 1845 { 1846 if (symbol.Parse(symtab_data, &offset) == false) 1847 break; 1848 1849 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1850 1851 // No need to add non-section symbols that have no names 1852 if (symbol.getType() != STT_SECTION && 1853 (symbol_name == NULL || symbol_name[0] == '\0')) 1854 continue; 1855 1856 // Skipping oatdata and oatexec sections if it is requested. See details above the 1857 // definition of skip_oatdata_oatexec for the reasons. 1858 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 1859 continue; 1860 1861 SectionSP symbol_section_sp; 1862 SymbolType symbol_type = eSymbolTypeInvalid; 1863 Elf64_Half symbol_idx = symbol.st_shndx; 1864 1865 switch (symbol_idx) 1866 { 1867 case SHN_ABS: 1868 symbol_type = eSymbolTypeAbsolute; 1869 break; 1870 case SHN_UNDEF: 1871 symbol_type = eSymbolTypeUndefined; 1872 break; 1873 default: 1874 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1875 break; 1876 } 1877 1878 // If a symbol is undefined do not process it further even if it has a STT type 1879 if (symbol_type != eSymbolTypeUndefined) 1880 { 1881 switch (symbol.getType()) 1882 { 1883 default: 1884 case STT_NOTYPE: 1885 // The symbol's type is not specified. 1886 break; 1887 1888 case STT_OBJECT: 1889 // The symbol is associated with a data object, such as a variable, 1890 // an array, etc. 1891 symbol_type = eSymbolTypeData; 1892 break; 1893 1894 case STT_FUNC: 1895 // The symbol is associated with a function or other executable code. 1896 symbol_type = eSymbolTypeCode; 1897 break; 1898 1899 case STT_SECTION: 1900 // The symbol is associated with a section. Symbol table entries of 1901 // this type exist primarily for relocation and normally have 1902 // STB_LOCAL binding. 1903 break; 1904 1905 case STT_FILE: 1906 // Conventionally, the symbol's name gives the name of the source 1907 // file associated with the object file. A file symbol has STB_LOCAL 1908 // binding, its section index is SHN_ABS, and it precedes the other 1909 // STB_LOCAL symbols for the file, if it is present. 1910 symbol_type = eSymbolTypeSourceFile; 1911 break; 1912 1913 case STT_GNU_IFUNC: 1914 // The symbol is associated with an indirect function. The actual 1915 // function will be resolved if it is referenced. 1916 symbol_type = eSymbolTypeResolver; 1917 break; 1918 } 1919 } 1920 1921 if (symbol_type == eSymbolTypeInvalid) 1922 { 1923 if (symbol_section_sp) 1924 { 1925 const ConstString §_name = symbol_section_sp->GetName(); 1926 if (sect_name == text_section_name || 1927 sect_name == init_section_name || 1928 sect_name == fini_section_name || 1929 sect_name == ctors_section_name || 1930 sect_name == dtors_section_name) 1931 { 1932 symbol_type = eSymbolTypeCode; 1933 } 1934 else if (sect_name == data_section_name || 1935 sect_name == data2_section_name || 1936 sect_name == rodata_section_name || 1937 sect_name == rodata1_section_name || 1938 sect_name == bss_section_name) 1939 { 1940 symbol_type = eSymbolTypeData; 1941 } 1942 } 1943 } 1944 1945 int64_t symbol_value_offset = 0; 1946 uint32_t additional_flags = 0; 1947 1948 ArchSpec arch; 1949 if (GetArchitecture(arch)) 1950 { 1951 if (arch.GetMachine() == llvm::Triple::arm) 1952 { 1953 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1954 { 1955 // These are reserved for the specification (e.g.: mapping 1956 // symbols). We don't want to add them to the symbol table. 1957 1958 if (symbol_type == eSymbolTypeCode) 1959 { 1960 llvm::StringRef symbol_name_ref(symbol_name); 1961 if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a.")) 1962 { 1963 // $a[.<any>]* - marks an ARM instruction sequence 1964 m_address_class_map[symbol.st_value] = eAddressClassCode; 1965 } 1966 else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") || 1967 symbol_name_ref == "$t" || symbol_name_ref.startswith("$t.")) 1968 { 1969 // $b[.<any>]* - marks a THUMB BL instruction sequence 1970 // $t[.<any>]* - marks a THUMB instruction sequence 1971 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 1972 } 1973 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1974 { 1975 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1976 m_address_class_map[symbol.st_value] = eAddressClassData; 1977 } 1978 } 1979 1980 continue; 1981 } 1982 } 1983 else if (arch.GetMachine() == llvm::Triple::aarch64) 1984 { 1985 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1986 { 1987 // These are reserved for the specification (e.g.: mapping 1988 // symbols). We don't want to add them to the symbol table. 1989 1990 if (symbol_type == eSymbolTypeCode) 1991 { 1992 llvm::StringRef symbol_name_ref(symbol_name); 1993 if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x.")) 1994 { 1995 // $x[.<any>]* - marks an A64 instruction sequence 1996 m_address_class_map[symbol.st_value] = eAddressClassCode; 1997 } 1998 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1999 { 2000 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2001 m_address_class_map[symbol.st_value] = eAddressClassData; 2002 } 2003 } 2004 2005 continue; 2006 } 2007 } 2008 2009 if (arch.GetMachine() == llvm::Triple::arm) 2010 { 2011 if (symbol_type == eSymbolTypeCode) 2012 { 2013 if (symbol.st_value & 1) 2014 { 2015 // Subtracting 1 from the address effectively unsets 2016 // the low order bit, which results in the address 2017 // actually pointing to the beginning of the symbol. 2018 // This delta will be used below in conjunction with 2019 // symbol.st_value to produce the final symbol_value 2020 // that we store in the symtab. 2021 symbol_value_offset = -1; 2022 additional_flags = ARM_ELF_SYM_IS_THUMB; 2023 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2024 } 2025 else 2026 { 2027 // This address is ARM 2028 m_address_class_map[symbol.st_value] = eAddressClassCode; 2029 } 2030 } 2031 } 2032 } 2033 2034 // If the symbol section we've found has no data (SHT_NOBITS), then check the module section 2035 // list. This can happen if we're parsing the debug file and it has no .text section, for example. 2036 if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0)) 2037 { 2038 ModuleSP module_sp(GetModule()); 2039 if (module_sp) 2040 { 2041 SectionList *module_section_list = module_sp->GetSectionList(); 2042 if (module_section_list && module_section_list != section_list) 2043 { 2044 const ConstString §_name = symbol_section_sp->GetName(); 2045 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 2046 if (section_sp && section_sp->GetFileSize()) 2047 { 2048 symbol_section_sp = section_sp; 2049 } 2050 } 2051 } 2052 } 2053 2054 // symbol_value_offset may contain 0 for ARM symbols or -1 for 2055 // THUMB symbols. See above for more details. 2056 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2057 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2058 symbol_value -= symbol_section_sp->GetFileAddress(); 2059 bool is_global = symbol.getBinding() == STB_GLOBAL; 2060 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2061 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2062 2063 llvm::StringRef symbol_ref(symbol_name); 2064 2065 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2066 size_t version_pos = symbol_ref.find('@'); 2067 bool has_suffix = version_pos != llvm::StringRef::npos; 2068 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2069 Mangled mangled(ConstString(symbol_bare), is_mangled); 2070 2071 // Now append the suffix back to mangled and unmangled names. Only do it if the 2072 // demangling was successful (string is not empty). 2073 if (has_suffix) 2074 { 2075 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2076 2077 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2078 if (! mangled_name.empty()) 2079 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2080 2081 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2082 llvm::StringRef demangled_name = demangled.GetStringRef(); 2083 if (!demangled_name.empty()) 2084 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2085 } 2086 2087 Symbol dc_symbol( 2088 i + start_id, // ID is the original symbol table index. 2089 mangled, 2090 symbol_type, // Type of this symbol 2091 is_global, // Is this globally visible? 2092 false, // Is this symbol debug info? 2093 false, // Is this symbol a trampoline? 2094 false, // Is this symbol artificial? 2095 AddressRange( 2096 symbol_section_sp, // Section in which this symbol is defined or null. 2097 symbol_value, // Offset in section or symbol value. 2098 symbol.st_size), // Size in bytes of this symbol. 2099 symbol.st_size != 0, // Size is valid if it is not 0 2100 has_suffix, // Contains linker annotations? 2101 flags); // Symbol flags. 2102 symtab->AddSymbol(dc_symbol); 2103 } 2104 return i; 2105 } 2106 2107 unsigned 2108 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 2109 { 2110 if (symtab->GetObjectFile() != this) 2111 { 2112 // If the symbol table section is owned by a different object file, have it do the 2113 // parsing. 2114 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2115 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2116 } 2117 2118 // Get section list for this object file. 2119 SectionList *section_list = m_sections_ap.get(); 2120 if (!section_list) 2121 return 0; 2122 2123 user_id_t symtab_id = symtab->GetID(); 2124 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2125 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2126 symtab_hdr->sh_type == SHT_DYNSYM); 2127 2128 // sh_link: section header index of associated string table. 2129 // Section ID's are ones based. 2130 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2131 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2132 2133 if (symtab && strtab) 2134 { 2135 assert (symtab->GetObjectFile() == this); 2136 assert (strtab->GetObjectFile() == this); 2137 2138 DataExtractor symtab_data; 2139 DataExtractor strtab_data; 2140 if (ReadSectionData(symtab, symtab_data) && 2141 ReadSectionData(strtab, strtab_data)) 2142 { 2143 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2144 2145 return ParseSymbols(symbol_table, start_id, section_list, 2146 num_symbols, symtab_data, strtab_data); 2147 } 2148 } 2149 2150 return 0; 2151 } 2152 2153 size_t 2154 ObjectFileELF::ParseDynamicSymbols() 2155 { 2156 if (m_dynamic_symbols.size()) 2157 return m_dynamic_symbols.size(); 2158 2159 SectionList *section_list = GetSectionList(); 2160 if (!section_list) 2161 return 0; 2162 2163 // Find the SHT_DYNAMIC section. 2164 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2165 if (!dynsym) 2166 return 0; 2167 assert (dynsym->GetObjectFile() == this); 2168 2169 ELFDynamic symbol; 2170 DataExtractor dynsym_data; 2171 if (ReadSectionData(dynsym, dynsym_data)) 2172 { 2173 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2174 lldb::offset_t cursor = 0; 2175 2176 while (cursor < section_size) 2177 { 2178 if (!symbol.Parse(dynsym_data, &cursor)) 2179 break; 2180 2181 m_dynamic_symbols.push_back(symbol); 2182 } 2183 } 2184 2185 return m_dynamic_symbols.size(); 2186 } 2187 2188 const ELFDynamic * 2189 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2190 { 2191 if (!ParseDynamicSymbols()) 2192 return NULL; 2193 2194 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2195 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2196 for ( ; I != E; ++I) 2197 { 2198 ELFDynamic *symbol = &*I; 2199 2200 if (symbol->d_tag == tag) 2201 return symbol; 2202 } 2203 2204 return NULL; 2205 } 2206 2207 unsigned 2208 ObjectFileELF::PLTRelocationType() 2209 { 2210 // DT_PLTREL 2211 // This member specifies the type of relocation entry to which the 2212 // procedure linkage table refers. The d_val member holds DT_REL or 2213 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2214 // must use the same relocation. 2215 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2216 2217 if (symbol) 2218 return symbol->d_val; 2219 2220 return 0; 2221 } 2222 2223 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2224 // 0th entry in the plt table is usually a resolution entry which have different size in some 2225 // architectures then the rest of the plt entries. 2226 static std::pair<uint64_t, uint64_t> 2227 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2228 { 2229 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2230 2231 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2232 // So round the entsize up by the alignment if addralign is set. 2233 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2234 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2235 2236 if (plt_entsize == 0) 2237 { 2238 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2239 // entries based on the number of entries and the size of the plt section with the 2240 // assumption that the size of the 0th entry is at least as big as the size of the normal 2241 // entries and it isn't much bigger then that. 2242 if (plt_hdr->sh_addralign) 2243 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2244 else 2245 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2246 } 2247 2248 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2249 2250 return std::make_pair(plt_entsize, plt_offset); 2251 } 2252 2253 static unsigned 2254 ParsePLTRelocations(Symtab *symbol_table, 2255 user_id_t start_id, 2256 unsigned rel_type, 2257 const ELFHeader *hdr, 2258 const ELFSectionHeader *rel_hdr, 2259 const ELFSectionHeader *plt_hdr, 2260 const ELFSectionHeader *sym_hdr, 2261 const lldb::SectionSP &plt_section_sp, 2262 DataExtractor &rel_data, 2263 DataExtractor &symtab_data, 2264 DataExtractor &strtab_data) 2265 { 2266 ELFRelocation rel(rel_type); 2267 ELFSymbol symbol; 2268 lldb::offset_t offset = 0; 2269 2270 uint64_t plt_offset, plt_entsize; 2271 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2272 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2273 2274 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2275 reloc_info_fn reloc_type; 2276 reloc_info_fn reloc_symbol; 2277 2278 if (hdr->Is32Bit()) 2279 { 2280 reloc_type = ELFRelocation::RelocType32; 2281 reloc_symbol = ELFRelocation::RelocSymbol32; 2282 } 2283 else 2284 { 2285 reloc_type = ELFRelocation::RelocType64; 2286 reloc_symbol = ELFRelocation::RelocSymbol64; 2287 } 2288 2289 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2290 unsigned i; 2291 for (i = 0; i < num_relocations; ++i) 2292 { 2293 if (rel.Parse(rel_data, &offset) == false) 2294 break; 2295 2296 if (reloc_type(rel) != slot_type) 2297 continue; 2298 2299 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2300 if (!symbol.Parse(symtab_data, &symbol_offset)) 2301 break; 2302 2303 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2304 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2305 uint64_t plt_index = plt_offset + i * plt_entsize; 2306 2307 Symbol jump_symbol( 2308 i + start_id, // Symbol table index 2309 symbol_name, // symbol name. 2310 is_mangled, // is the symbol name mangled? 2311 eSymbolTypeTrampoline, // Type of this symbol 2312 false, // Is this globally visible? 2313 false, // Is this symbol debug info? 2314 true, // Is this symbol a trampoline? 2315 true, // Is this symbol artificial? 2316 plt_section_sp, // Section in which this symbol is defined or null. 2317 plt_index, // Offset in section or symbol value. 2318 plt_entsize, // Size in bytes of this symbol. 2319 true, // Size is valid 2320 false, // Contains linker annotations? 2321 0); // Symbol flags. 2322 2323 symbol_table->AddSymbol(jump_symbol); 2324 } 2325 2326 return i; 2327 } 2328 2329 unsigned 2330 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2331 user_id_t start_id, 2332 const ELFSectionHeaderInfo *rel_hdr, 2333 user_id_t rel_id) 2334 { 2335 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2336 2337 // The link field points to the associated symbol table. The info field 2338 // points to the section holding the plt. 2339 user_id_t symtab_id = rel_hdr->sh_link; 2340 user_id_t plt_id = rel_hdr->sh_info; 2341 2342 // If the link field doesn't point to the appropriate symbol name table then 2343 // try to find it by name as some compiler don't fill in the link fields. 2344 if (!symtab_id) 2345 symtab_id = GetSectionIndexByName(".dynsym"); 2346 if (!plt_id) 2347 plt_id = GetSectionIndexByName(".plt"); 2348 2349 if (!symtab_id || !plt_id) 2350 return 0; 2351 2352 // Section ID's are ones based; 2353 symtab_id++; 2354 plt_id++; 2355 2356 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2357 if (!plt_hdr) 2358 return 0; 2359 2360 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2361 if (!sym_hdr) 2362 return 0; 2363 2364 SectionList *section_list = m_sections_ap.get(); 2365 if (!section_list) 2366 return 0; 2367 2368 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2369 if (!rel_section) 2370 return 0; 2371 2372 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2373 if (!plt_section_sp) 2374 return 0; 2375 2376 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2377 if (!symtab) 2378 return 0; 2379 2380 // sh_link points to associated string table. 2381 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2382 if (!strtab) 2383 return 0; 2384 2385 DataExtractor rel_data; 2386 if (!ReadSectionData(rel_section, rel_data)) 2387 return 0; 2388 2389 DataExtractor symtab_data; 2390 if (!ReadSectionData(symtab, symtab_data)) 2391 return 0; 2392 2393 DataExtractor strtab_data; 2394 if (!ReadSectionData(strtab, strtab_data)) 2395 return 0; 2396 2397 unsigned rel_type = PLTRelocationType(); 2398 if (!rel_type) 2399 return 0; 2400 2401 return ParsePLTRelocations (symbol_table, 2402 start_id, 2403 rel_type, 2404 &m_header, 2405 rel_hdr, 2406 plt_hdr, 2407 sym_hdr, 2408 plt_section_sp, 2409 rel_data, 2410 symtab_data, 2411 strtab_data); 2412 } 2413 2414 unsigned 2415 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2416 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2417 DataExtractor &rel_data, DataExtractor &symtab_data, 2418 DataExtractor &debug_data, Section* rel_section) 2419 { 2420 ELFRelocation rel(rel_hdr->sh_type); 2421 lldb::addr_t offset = 0; 2422 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2423 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2424 reloc_info_fn reloc_type; 2425 reloc_info_fn reloc_symbol; 2426 2427 if (hdr->Is32Bit()) 2428 { 2429 reloc_type = ELFRelocation::RelocType32; 2430 reloc_symbol = ELFRelocation::RelocSymbol32; 2431 } 2432 else 2433 { 2434 reloc_type = ELFRelocation::RelocType64; 2435 reloc_symbol = ELFRelocation::RelocSymbol64; 2436 } 2437 2438 for (unsigned i = 0; i < num_relocations; ++i) 2439 { 2440 if (rel.Parse(rel_data, &offset) == false) 2441 break; 2442 2443 Symbol* symbol = NULL; 2444 2445 if (hdr->Is32Bit()) 2446 { 2447 switch (reloc_type(rel)) { 2448 case R_386_32: 2449 case R_386_PC32: 2450 default: 2451 assert(false && "unexpected relocation type"); 2452 } 2453 } else { 2454 switch (reloc_type(rel)) { 2455 case R_X86_64_64: 2456 { 2457 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2458 if (symbol) 2459 { 2460 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2461 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2462 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2463 *dst = value + ELFRelocation::RelocAddend64(rel); 2464 } 2465 break; 2466 } 2467 case R_X86_64_32: 2468 case R_X86_64_32S: 2469 { 2470 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2471 if (symbol) 2472 { 2473 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2474 value += ELFRelocation::RelocAddend32(rel); 2475 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2476 (reloc_type(rel) == R_X86_64_32S && 2477 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2478 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2479 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2480 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2481 *dst = truncated_addr; 2482 } 2483 break; 2484 } 2485 case R_X86_64_PC32: 2486 default: 2487 assert(false && "unexpected relocation type"); 2488 } 2489 } 2490 } 2491 2492 return 0; 2493 } 2494 2495 unsigned 2496 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2497 { 2498 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2499 2500 // Parse in the section list if needed. 2501 SectionList *section_list = GetSectionList(); 2502 if (!section_list) 2503 return 0; 2504 2505 // Section ID's are ones based. 2506 user_id_t symtab_id = rel_hdr->sh_link + 1; 2507 user_id_t debug_id = rel_hdr->sh_info + 1; 2508 2509 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2510 if (!symtab_hdr) 2511 return 0; 2512 2513 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2514 if (!debug_hdr) 2515 return 0; 2516 2517 Section *rel = section_list->FindSectionByID(rel_id).get(); 2518 if (!rel) 2519 return 0; 2520 2521 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2522 if (!symtab) 2523 return 0; 2524 2525 Section *debug = section_list->FindSectionByID(debug_id).get(); 2526 if (!debug) 2527 return 0; 2528 2529 DataExtractor rel_data; 2530 DataExtractor symtab_data; 2531 DataExtractor debug_data; 2532 2533 if (ReadSectionData(rel, rel_data) && 2534 ReadSectionData(symtab, symtab_data) && 2535 ReadSectionData(debug, debug_data)) 2536 { 2537 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2538 rel_data, symtab_data, debug_data, debug); 2539 } 2540 2541 return 0; 2542 } 2543 2544 Symtab * 2545 ObjectFileELF::GetSymtab() 2546 { 2547 ModuleSP module_sp(GetModule()); 2548 if (!module_sp) 2549 return NULL; 2550 2551 // We always want to use the main object file so we (hopefully) only have one cached copy 2552 // of our symtab, dynamic sections, etc. 2553 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2554 if (module_obj_file && module_obj_file != this) 2555 return module_obj_file->GetSymtab(); 2556 2557 if (m_symtab_ap.get() == NULL) 2558 { 2559 SectionList *section_list = module_sp->GetSectionList(); 2560 if (!section_list) 2561 return NULL; 2562 2563 uint64_t symbol_id = 0; 2564 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2565 2566 m_symtab_ap.reset(new Symtab(this)); 2567 2568 // Sharable objects and dynamic executables usually have 2 distinct symbol 2569 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2570 // version of the symtab that only contains global symbols. The information found 2571 // in the dynsym is therefore also found in the symtab, while the reverse is not 2572 // necessarily true. 2573 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2574 if (!symtab) 2575 { 2576 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2577 // then use the dynsym section which should always be there. 2578 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2579 } 2580 if (symtab) 2581 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2582 2583 // DT_JMPREL 2584 // If present, this entry's d_ptr member holds the address of relocation 2585 // entries associated solely with the procedure linkage table. Separating 2586 // these relocation entries lets the dynamic linker ignore them during 2587 // process initialization, if lazy binding is enabled. If this entry is 2588 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2589 // also be present. 2590 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2591 if (symbol) 2592 { 2593 // Synthesize trampoline symbols to help navigate the PLT. 2594 addr_t addr = symbol->d_ptr; 2595 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2596 if (reloc_section) 2597 { 2598 user_id_t reloc_id = reloc_section->GetID(); 2599 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2600 assert(reloc_header); 2601 2602 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2603 } 2604 } 2605 m_symtab_ap->CalculateSymbolSizes(); 2606 } 2607 2608 for (SectionHeaderCollIter I = m_section_headers.begin(); 2609 I != m_section_headers.end(); ++I) 2610 { 2611 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2612 { 2613 if (CalculateType() == eTypeObjectFile) 2614 { 2615 const char *section_name = I->section_name.AsCString(""); 2616 if (strstr(section_name, ".rela.debug") || 2617 strstr(section_name, ".rel.debug")) 2618 { 2619 const ELFSectionHeader &reloc_header = *I; 2620 user_id_t reloc_id = SectionIndex(I); 2621 RelocateDebugSections(&reloc_header, reloc_id); 2622 } 2623 } 2624 } 2625 } 2626 return m_symtab_ap.get(); 2627 } 2628 2629 Symbol * 2630 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2631 { 2632 if (!m_symtab_ap.get()) 2633 return nullptr; // GetSymtab() should be called first. 2634 2635 const SectionList *section_list = GetSectionList(); 2636 if (!section_list) 2637 return nullptr; 2638 2639 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2640 { 2641 AddressRange range; 2642 if (eh_frame->GetAddressRange (so_addr, range)) 2643 { 2644 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2645 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2646 if (symbol) 2647 return symbol; 2648 2649 // Note that a (stripped) symbol won't be found by GetSymtab()... 2650 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2651 if (eh_sym_section_sp.get()) 2652 { 2653 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2654 addr_t offset = file_addr - section_base; 2655 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2656 2657 Symbol eh_symbol( 2658 symbol_id, // Symbol table index. 2659 "???", // Symbol name. 2660 false, // Is the symbol name mangled? 2661 eSymbolTypeCode, // Type of this symbol. 2662 true, // Is this globally visible? 2663 false, // Is this symbol debug info? 2664 false, // Is this symbol a trampoline? 2665 true, // Is this symbol artificial? 2666 eh_sym_section_sp, // Section in which this symbol is defined or null. 2667 offset, // Offset in section or symbol value. 2668 range.GetByteSize(), // Size in bytes of this symbol. 2669 true, // Size is valid. 2670 false, // Contains linker annotations? 2671 0); // Symbol flags. 2672 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2673 return m_symtab_ap->SymbolAtIndex(symbol_id); 2674 } 2675 } 2676 } 2677 return nullptr; 2678 } 2679 2680 2681 bool 2682 ObjectFileELF::IsStripped () 2683 { 2684 // TODO: determine this for ELF 2685 return false; 2686 } 2687 2688 //===----------------------------------------------------------------------===// 2689 // Dump 2690 // 2691 // Dump the specifics of the runtime file container (such as any headers 2692 // segments, sections, etc). 2693 //---------------------------------------------------------------------- 2694 void 2695 ObjectFileELF::Dump(Stream *s) 2696 { 2697 DumpELFHeader(s, m_header); 2698 s->EOL(); 2699 DumpELFProgramHeaders(s); 2700 s->EOL(); 2701 DumpELFSectionHeaders(s); 2702 s->EOL(); 2703 SectionList *section_list = GetSectionList(); 2704 if (section_list) 2705 section_list->Dump(s, NULL, true, UINT32_MAX); 2706 Symtab *symtab = GetSymtab(); 2707 if (symtab) 2708 symtab->Dump(s, NULL, eSortOrderNone); 2709 s->EOL(); 2710 DumpDependentModules(s); 2711 s->EOL(); 2712 } 2713 2714 //---------------------------------------------------------------------- 2715 // DumpELFHeader 2716 // 2717 // Dump the ELF header to the specified output stream 2718 //---------------------------------------------------------------------- 2719 void 2720 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2721 { 2722 s->PutCString("ELF Header\n"); 2723 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2724 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2725 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2726 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2727 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2728 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2729 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2730 2731 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2732 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2733 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2734 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2735 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2736 2737 s->Printf("e_type = 0x%4.4x ", header.e_type); 2738 DumpELFHeader_e_type(s, header.e_type); 2739 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2740 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2741 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2742 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2743 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2744 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2745 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2746 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2747 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2748 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2749 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2750 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2751 } 2752 2753 //---------------------------------------------------------------------- 2754 // DumpELFHeader_e_type 2755 // 2756 // Dump an token value for the ELF header member e_type 2757 //---------------------------------------------------------------------- 2758 void 2759 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2760 { 2761 switch (e_type) 2762 { 2763 case ET_NONE: *s << "ET_NONE"; break; 2764 case ET_REL: *s << "ET_REL"; break; 2765 case ET_EXEC: *s << "ET_EXEC"; break; 2766 case ET_DYN: *s << "ET_DYN"; break; 2767 case ET_CORE: *s << "ET_CORE"; break; 2768 default: 2769 break; 2770 } 2771 } 2772 2773 //---------------------------------------------------------------------- 2774 // DumpELFHeader_e_ident_EI_DATA 2775 // 2776 // Dump an token value for the ELF header member e_ident[EI_DATA] 2777 //---------------------------------------------------------------------- 2778 void 2779 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2780 { 2781 switch (ei_data) 2782 { 2783 case ELFDATANONE: *s << "ELFDATANONE"; break; 2784 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2785 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2786 default: 2787 break; 2788 } 2789 } 2790 2791 2792 //---------------------------------------------------------------------- 2793 // DumpELFProgramHeader 2794 // 2795 // Dump a single ELF program header to the specified output stream 2796 //---------------------------------------------------------------------- 2797 void 2798 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2799 { 2800 DumpELFProgramHeader_p_type(s, ph.p_type); 2801 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2802 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2803 2804 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2805 s->Printf(") %8.8" PRIx64, ph.p_align); 2806 } 2807 2808 //---------------------------------------------------------------------- 2809 // DumpELFProgramHeader_p_type 2810 // 2811 // Dump an token value for the ELF program header member p_type which 2812 // describes the type of the program header 2813 // ---------------------------------------------------------------------- 2814 void 2815 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2816 { 2817 const int kStrWidth = 15; 2818 switch (p_type) 2819 { 2820 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2821 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2822 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2823 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2824 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2825 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2826 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2827 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2828 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2829 default: 2830 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2831 break; 2832 } 2833 } 2834 2835 2836 //---------------------------------------------------------------------- 2837 // DumpELFProgramHeader_p_flags 2838 // 2839 // Dump an token value for the ELF program header member p_flags 2840 //---------------------------------------------------------------------- 2841 void 2842 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2843 { 2844 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2845 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2846 << ((p_flags & PF_W) ? "PF_W" : " ") 2847 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2848 << ((p_flags & PF_R) ? "PF_R" : " "); 2849 } 2850 2851 //---------------------------------------------------------------------- 2852 // DumpELFProgramHeaders 2853 // 2854 // Dump all of the ELF program header to the specified output stream 2855 //---------------------------------------------------------------------- 2856 void 2857 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2858 { 2859 if (!ParseProgramHeaders()) 2860 return; 2861 2862 s->PutCString("Program Headers\n"); 2863 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2864 "p_filesz p_memsz p_flags p_align\n"); 2865 s->PutCString("==== --------------- -------- -------- -------- " 2866 "-------- -------- ------------------------- --------\n"); 2867 2868 uint32_t idx = 0; 2869 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2870 I != m_program_headers.end(); ++I, ++idx) 2871 { 2872 s->Printf("[%2u] ", idx); 2873 ObjectFileELF::DumpELFProgramHeader(s, *I); 2874 s->EOL(); 2875 } 2876 } 2877 2878 //---------------------------------------------------------------------- 2879 // DumpELFSectionHeader 2880 // 2881 // Dump a single ELF section header to the specified output stream 2882 //---------------------------------------------------------------------- 2883 void 2884 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2885 { 2886 s->Printf("%8.8x ", sh.sh_name); 2887 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2888 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2889 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2890 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2891 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2892 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2893 } 2894 2895 //---------------------------------------------------------------------- 2896 // DumpELFSectionHeader_sh_type 2897 // 2898 // Dump an token value for the ELF section header member sh_type which 2899 // describes the type of the section 2900 //---------------------------------------------------------------------- 2901 void 2902 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2903 { 2904 const int kStrWidth = 12; 2905 switch (sh_type) 2906 { 2907 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2908 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2909 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2910 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2911 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2912 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2913 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2914 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2915 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2916 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2917 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2918 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2919 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2920 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2921 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2922 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2923 default: 2924 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2925 break; 2926 } 2927 } 2928 2929 //---------------------------------------------------------------------- 2930 // DumpELFSectionHeader_sh_flags 2931 // 2932 // Dump an token value for the ELF section header member sh_flags 2933 //---------------------------------------------------------------------- 2934 void 2935 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2936 { 2937 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2938 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2939 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2940 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2941 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2942 } 2943 2944 //---------------------------------------------------------------------- 2945 // DumpELFSectionHeaders 2946 // 2947 // Dump all of the ELF section header to the specified output stream 2948 //---------------------------------------------------------------------- 2949 void 2950 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2951 { 2952 if (!ParseSectionHeaders()) 2953 return; 2954 2955 s->PutCString("Section Headers\n"); 2956 s->PutCString("IDX name type flags " 2957 "addr offset size link info addralgn " 2958 "entsize Name\n"); 2959 s->PutCString("==== -------- ------------ -------------------------------- " 2960 "-------- -------- -------- -------- -------- -------- " 2961 "-------- ====================\n"); 2962 2963 uint32_t idx = 0; 2964 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2965 I != m_section_headers.end(); ++I, ++idx) 2966 { 2967 s->Printf("[%2u] ", idx); 2968 ObjectFileELF::DumpELFSectionHeader(s, *I); 2969 const char* section_name = I->section_name.AsCString(""); 2970 if (section_name) 2971 *s << ' ' << section_name << "\n"; 2972 } 2973 } 2974 2975 void 2976 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 2977 { 2978 size_t num_modules = ParseDependentModules(); 2979 2980 if (num_modules > 0) 2981 { 2982 s->PutCString("Dependent Modules:\n"); 2983 for (unsigned i = 0; i < num_modules; ++i) 2984 { 2985 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 2986 s->Printf(" %s\n", spec.GetFilename().GetCString()); 2987 } 2988 } 2989 } 2990 2991 bool 2992 ObjectFileELF::GetArchitecture (ArchSpec &arch) 2993 { 2994 if (!ParseHeader()) 2995 return false; 2996 2997 if (m_section_headers.empty()) 2998 { 2999 // Allow elf notes to be parsed which may affect the detected architecture. 3000 ParseSectionHeaders(); 3001 } 3002 3003 arch = m_arch_spec; 3004 return true; 3005 } 3006 3007 ObjectFile::Type 3008 ObjectFileELF::CalculateType() 3009 { 3010 switch (m_header.e_type) 3011 { 3012 case llvm::ELF::ET_NONE: 3013 // 0 - No file type 3014 return eTypeUnknown; 3015 3016 case llvm::ELF::ET_REL: 3017 // 1 - Relocatable file 3018 return eTypeObjectFile; 3019 3020 case llvm::ELF::ET_EXEC: 3021 // 2 - Executable file 3022 return eTypeExecutable; 3023 3024 case llvm::ELF::ET_DYN: 3025 // 3 - Shared object file 3026 return eTypeSharedLibrary; 3027 3028 case ET_CORE: 3029 // 4 - Core file 3030 return eTypeCoreFile; 3031 3032 default: 3033 break; 3034 } 3035 return eTypeUnknown; 3036 } 3037 3038 ObjectFile::Strata 3039 ObjectFileELF::CalculateStrata() 3040 { 3041 switch (m_header.e_type) 3042 { 3043 case llvm::ELF::ET_NONE: 3044 // 0 - No file type 3045 return eStrataUnknown; 3046 3047 case llvm::ELF::ET_REL: 3048 // 1 - Relocatable file 3049 return eStrataUnknown; 3050 3051 case llvm::ELF::ET_EXEC: 3052 // 2 - Executable file 3053 // TODO: is there any way to detect that an executable is a kernel 3054 // related executable by inspecting the program headers, section 3055 // headers, symbols, or any other flag bits??? 3056 return eStrataUser; 3057 3058 case llvm::ELF::ET_DYN: 3059 // 3 - Shared object file 3060 // TODO: is there any way to detect that an shared library is a kernel 3061 // related executable by inspecting the program headers, section 3062 // headers, symbols, or any other flag bits??? 3063 return eStrataUnknown; 3064 3065 case ET_CORE: 3066 // 4 - Core file 3067 // TODO: is there any way to detect that an core file is a kernel 3068 // related executable by inspecting the program headers, section 3069 // headers, symbols, or any other flag bits??? 3070 return eStrataUnknown; 3071 3072 default: 3073 break; 3074 } 3075 return eStrataUnknown; 3076 } 3077 3078