xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision e171da5cb781dfaa06f8637b35c06f93e8bb5604)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (value_is_offset)
851             {
852                 const size_t num_sections = section_list->GetSize();
853                 size_t sect_idx = 0;
854 
855                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
856                 {
857                     // Iterate through the object file sections to find all
858                     // of the sections that have SHF_ALLOC in their flag bits.
859                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
860                     // if (section_sp && !section_sp->IsThreadSpecific())
861                     if (section_sp && section_sp->Test(SHF_ALLOC))
862                     {
863                         lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
864 
865                         // On 32-bit systems the load address have to fit into 4 bytes. The rest of
866                         // the bytes are the overflow from the addition.
867                         if (GetAddressByteSize() == 4)
868                             load_addr &= 0xFFFFFFFF;
869 
870                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
871                             ++num_loaded_sections;
872                     }
873                 }
874                 return num_loaded_sections > 0;
875             }
876             else
877             {
878                 // Not sure how to slide an ELF file given the base address
879                 // of the ELF file in memory
880             }
881         }
882     }
883     return false; // If it changed
884 }
885 
886 ByteOrder
887 ObjectFileELF::GetByteOrder() const
888 {
889     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
890         return eByteOrderBig;
891     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
892         return eByteOrderLittle;
893     return eByteOrderInvalid;
894 }
895 
896 uint32_t
897 ObjectFileELF::GetAddressByteSize() const
898 {
899     return m_data.GetAddressByteSize();
900 }
901 
902 // Top 16 bits of the `Symbol` flags are available.
903 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
904 
905 AddressClass
906 ObjectFileELF::GetAddressClass (addr_t file_addr)
907 {
908     auto res = ObjectFile::GetAddressClass (file_addr);
909 
910     if (res != eAddressClassCode)
911         return res;
912 
913     auto ub = m_address_class_map.upper_bound(file_addr);
914     if (ub == m_address_class_map.begin())
915     {
916         // No entry in the address class map before the address. Return
917         // default address class for an address in a code section.
918         return eAddressClassCode;
919     }
920 
921     // Move iterator to the address class entry preceding address
922     --ub;
923 
924     return ub->second;
925 }
926 
927 size_t
928 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
929 {
930     return std::distance(m_section_headers.begin(), I) + 1u;
931 }
932 
933 size_t
934 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
935 {
936     return std::distance(m_section_headers.begin(), I) + 1u;
937 }
938 
939 bool
940 ObjectFileELF::ParseHeader()
941 {
942     lldb::offset_t offset = 0;
943     if (!m_header.Parse(m_data, &offset))
944         return false;
945 
946     if (!IsInMemory())
947         return true;
948 
949     // For in memory object files m_data might not contain the full object file. Try to load it
950     // until the end of the "Section header table" what is at the end of the ELF file.
951     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
952     if (m_data.GetByteSize() < file_size)
953     {
954         ProcessSP process_sp (m_process_wp.lock());
955         if (!process_sp)
956             return false;
957 
958         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
959         if (!data_sp)
960             return false;
961         m_data.SetData(data_sp, 0, file_size);
962     }
963 
964     return true;
965 }
966 
967 bool
968 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
969 {
970     // Need to parse the section list to get the UUIDs, so make sure that's been done.
971     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
972         return false;
973 
974     if (m_uuid.IsValid())
975     {
976         // We have the full build id uuid.
977         *uuid = m_uuid;
978         return true;
979     }
980     else if (GetType() == ObjectFile::eTypeCoreFile)
981     {
982         uint32_t core_notes_crc = 0;
983 
984         if (!ParseProgramHeaders())
985             return false;
986 
987         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
988 
989         if (core_notes_crc)
990         {
991             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
992             // look different form .gnu_debuglink crc - followed by 4 bytes of note
993             // segments crc.
994             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
995             m_uuid.SetBytes (uuidt, sizeof(uuidt));
996         }
997     }
998     else
999     {
1000         if (!m_gnu_debuglink_crc)
1001             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1002         if (m_gnu_debuglink_crc)
1003         {
1004             // Use 4 bytes of crc from the .gnu_debuglink section.
1005             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1006             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1007         }
1008     }
1009 
1010     if (m_uuid.IsValid())
1011     {
1012         *uuid = m_uuid;
1013         return true;
1014     }
1015 
1016     return false;
1017 }
1018 
1019 lldb_private::FileSpecList
1020 ObjectFileELF::GetDebugSymbolFilePaths()
1021 {
1022     FileSpecList file_spec_list;
1023 
1024     if (!m_gnu_debuglink_file.empty())
1025     {
1026         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1027         file_spec_list.Append (file_spec);
1028     }
1029     return file_spec_list;
1030 }
1031 
1032 uint32_t
1033 ObjectFileELF::GetDependentModules(FileSpecList &files)
1034 {
1035     size_t num_modules = ParseDependentModules();
1036     uint32_t num_specs = 0;
1037 
1038     for (unsigned i = 0; i < num_modules; ++i)
1039     {
1040         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1041             num_specs++;
1042     }
1043 
1044     return num_specs;
1045 }
1046 
1047 Address
1048 ObjectFileELF::GetImageInfoAddress(Target *target)
1049 {
1050     if (!ParseDynamicSymbols())
1051         return Address();
1052 
1053     SectionList *section_list = GetSectionList();
1054     if (!section_list)
1055         return Address();
1056 
1057     // Find the SHT_DYNAMIC (.dynamic) section.
1058     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1059     if (!dynsym_section_sp)
1060         return Address();
1061     assert (dynsym_section_sp->GetObjectFile() == this);
1062 
1063     user_id_t dynsym_id = dynsym_section_sp->GetID();
1064     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1065     if (!dynsym_hdr)
1066         return Address();
1067 
1068     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1069     {
1070         ELFDynamic &symbol = m_dynamic_symbols[i];
1071 
1072         if (symbol.d_tag == DT_DEBUG)
1073         {
1074             // Compute the offset as the number of previous entries plus the
1075             // size of d_tag.
1076             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1077             return Address(dynsym_section_sp, offset);
1078         }
1079         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1080         {
1081             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1082             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1083             if (dyn_base == LLDB_INVALID_ADDRESS)
1084                 return Address();
1085             Address addr;
1086             Error error;
1087             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1088                 return addr;
1089         }
1090     }
1091 
1092     return Address();
1093 }
1094 
1095 lldb_private::Address
1096 ObjectFileELF::GetEntryPointAddress ()
1097 {
1098     if (m_entry_point_address.IsValid())
1099         return m_entry_point_address;
1100 
1101     if (!ParseHeader() || !IsExecutable())
1102         return m_entry_point_address;
1103 
1104     SectionList *section_list = GetSectionList();
1105     addr_t offset = m_header.e_entry;
1106 
1107     if (!section_list)
1108         m_entry_point_address.SetOffset(offset);
1109     else
1110         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1111     return m_entry_point_address;
1112 }
1113 
1114 //----------------------------------------------------------------------
1115 // ParseDependentModules
1116 //----------------------------------------------------------------------
1117 size_t
1118 ObjectFileELF::ParseDependentModules()
1119 {
1120     if (m_filespec_ap.get())
1121         return m_filespec_ap->GetSize();
1122 
1123     m_filespec_ap.reset(new FileSpecList());
1124 
1125     if (!ParseSectionHeaders())
1126         return 0;
1127 
1128     SectionList *section_list = GetSectionList();
1129     if (!section_list)
1130         return 0;
1131 
1132     // Find the SHT_DYNAMIC section.
1133     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1134     if (!dynsym)
1135         return 0;
1136     assert (dynsym->GetObjectFile() == this);
1137 
1138     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1139     if (!header)
1140         return 0;
1141     // sh_link: section header index of string table used by entries in the section.
1142     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1143     if (!dynstr)
1144         return 0;
1145 
1146     DataExtractor dynsym_data;
1147     DataExtractor dynstr_data;
1148     if (ReadSectionData(dynsym, dynsym_data) &&
1149         ReadSectionData(dynstr, dynstr_data))
1150     {
1151         ELFDynamic symbol;
1152         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1153         lldb::offset_t offset = 0;
1154 
1155         // The only type of entries we are concerned with are tagged DT_NEEDED,
1156         // yielding the name of a required library.
1157         while (offset < section_size)
1158         {
1159             if (!symbol.Parse(dynsym_data, &offset))
1160                 break;
1161 
1162             if (symbol.d_tag != DT_NEEDED)
1163                 continue;
1164 
1165             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1166             const char *lib_name = dynstr_data.PeekCStr(str_index);
1167             m_filespec_ap->Append(FileSpec(lib_name, true));
1168         }
1169     }
1170 
1171     return m_filespec_ap->GetSize();
1172 }
1173 
1174 //----------------------------------------------------------------------
1175 // GetProgramHeaderInfo
1176 //----------------------------------------------------------------------
1177 size_t
1178 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1179                                     DataExtractor &object_data,
1180                                     const ELFHeader &header)
1181 {
1182     // We have already parsed the program headers
1183     if (!program_headers.empty())
1184         return program_headers.size();
1185 
1186     // If there are no program headers to read we are done.
1187     if (header.e_phnum == 0)
1188         return 0;
1189 
1190     program_headers.resize(header.e_phnum);
1191     if (program_headers.size() != header.e_phnum)
1192         return 0;
1193 
1194     const size_t ph_size = header.e_phnum * header.e_phentsize;
1195     const elf_off ph_offset = header.e_phoff;
1196     DataExtractor data;
1197     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1198         return 0;
1199 
1200     uint32_t idx;
1201     lldb::offset_t offset;
1202     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1203     {
1204         if (program_headers[idx].Parse(data, &offset) == false)
1205             break;
1206     }
1207 
1208     if (idx < program_headers.size())
1209         program_headers.resize(idx);
1210 
1211     return program_headers.size();
1212 
1213 }
1214 
1215 //----------------------------------------------------------------------
1216 // ParseProgramHeaders
1217 //----------------------------------------------------------------------
1218 size_t
1219 ObjectFileELF::ParseProgramHeaders()
1220 {
1221     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1222 }
1223 
1224 lldb_private::Error
1225 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1226 {
1227     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1228     Error error;
1229 
1230     lldb::offset_t offset = 0;
1231 
1232     while (true)
1233     {
1234         // Parse the note header.  If this fails, bail out.
1235         ELFNote note = ELFNote();
1236         if (!note.Parse(data, &offset))
1237         {
1238             // We're done.
1239             return error;
1240         }
1241 
1242         // If a tag processor handles the tag, it should set processed to true, and
1243         // the loop will assume the tag processing has moved entirely past the note's payload.
1244         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1245         bool processed = false;
1246 
1247         if (log)
1248             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1249 
1250         // Process FreeBSD ELF notes.
1251         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1252             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1253             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1254         {
1255             // We'll consume the payload below.
1256             processed = true;
1257 
1258             // Pull out the min version info.
1259             uint32_t version_info;
1260             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1261             {
1262                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1263                 return error;
1264             }
1265 
1266             // Convert the version info into a major/minor number.
1267             const uint32_t version_major = version_info / 100000;
1268             const uint32_t version_minor = (version_info / 1000) % 100;
1269 
1270             char os_name[32];
1271             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1272 
1273             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1274             arch_spec.GetTriple ().setOSName (os_name);
1275             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1276 
1277             if (log)
1278                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1279         }
1280         // Process GNU ELF notes.
1281         else if (note.n_name == LLDB_NT_OWNER_GNU)
1282         {
1283             switch (note.n_type)
1284             {
1285                 case LLDB_NT_GNU_ABI_TAG:
1286                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1287                     {
1288                         // We'll consume the payload below.
1289                         processed = true;
1290 
1291                         // Pull out the min OS version supporting the ABI.
1292                         uint32_t version_info[4];
1293                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1294                         {
1295                             error.SetErrorString ("failed to read GNU ABI note payload");
1296                             return error;
1297                         }
1298 
1299                         // Set the OS per the OS field.
1300                         switch (version_info[0])
1301                         {
1302                             case LLDB_NT_GNU_ABI_OS_LINUX:
1303                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1304                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1305                                 if (log)
1306                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1307                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1308                                 break;
1309                             case LLDB_NT_GNU_ABI_OS_HURD:
1310                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1311                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1312                                 if (log)
1313                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1314                                 break;
1315                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1316                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1317                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1318                                 if (log)
1319                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1320                                 break;
1321                             default:
1322                                 if (log)
1323                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1324                                 break;
1325                         }
1326                     }
1327                     break;
1328 
1329                 case LLDB_NT_GNU_BUILD_ID_TAG:
1330                     // Only bother processing this if we don't already have the uuid set.
1331                     if (!uuid.IsValid())
1332                     {
1333                         // We'll consume the payload below.
1334                         processed = true;
1335 
1336                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1337                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1338                         {
1339                             uint8_t uuidbuf[20];
1340                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1341                             {
1342                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1343                                 return error;
1344                             }
1345 
1346                             // Save the build id as the UUID for the module.
1347                             uuid.SetBytes (uuidbuf, note.n_descsz);
1348                         }
1349                     }
1350                     break;
1351             }
1352         }
1353         // Process NetBSD ELF notes.
1354         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1355                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1356                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1357         {
1358 
1359             // We'll consume the payload below.
1360             processed = true;
1361 
1362             // Pull out the min version info.
1363             uint32_t version_info;
1364             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1365             {
1366                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1367                 return error;
1368             }
1369 
1370             // Set the elf OS version to NetBSD.  Also clear the vendor.
1371             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1372             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1373 
1374             if (log)
1375                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1376         }
1377         // Process CSR kalimba notes
1378         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1379                 (note.n_name == LLDB_NT_OWNER_CSR))
1380         {
1381             // We'll consume the payload below.
1382             processed = true;
1383             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1384             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1385 
1386             // TODO At some point the description string could be processed.
1387             // It could provide a steer towards the kalimba variant which
1388             // this ELF targets.
1389             if(note.n_descsz)
1390             {
1391                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1392                 (void)cstr;
1393             }
1394         }
1395         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1396         {
1397             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1398             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1399         }
1400 
1401         if (!processed)
1402             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1403     }
1404 
1405     return error;
1406 }
1407 
1408 
1409 //----------------------------------------------------------------------
1410 // GetSectionHeaderInfo
1411 //----------------------------------------------------------------------
1412 size_t
1413 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1414                                     lldb_private::DataExtractor &object_data,
1415                                     const elf::ELFHeader &header,
1416                                     lldb_private::UUID &uuid,
1417                                     std::string &gnu_debuglink_file,
1418                                     uint32_t &gnu_debuglink_crc,
1419                                     ArchSpec &arch_spec)
1420 {
1421     // Don't reparse the section headers if we already did that.
1422     if (!section_headers.empty())
1423         return section_headers.size();
1424 
1425     // Only initialize the arch_spec to okay defaults if they're not already set.
1426     // We'll refine this with note data as we parse the notes.
1427     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1428     {
1429         llvm::Triple::OSType ostype;
1430         llvm::Triple::OSType spec_ostype;
1431         const uint32_t sub_type = subTypeFromElfHeader(header);
1432         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1433         //
1434         // Validate if it is ok to remove GetOsFromOSABI
1435         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1436         spec_ostype = arch_spec.GetTriple ().getOS ();
1437         assert(spec_ostype == ostype);
1438     }
1439 
1440     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1441         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1442     {
1443         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1444         {
1445             case llvm::ELF::EF_MIPS_MICROMIPS:
1446                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1447                 break;
1448             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1449                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1450                 break;
1451             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1452                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1453                 break;
1454             default:
1455                 break;
1456         }
1457     }
1458 
1459     // If there are no section headers we are done.
1460     if (header.e_shnum == 0)
1461         return 0;
1462 
1463     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1464 
1465     section_headers.resize(header.e_shnum);
1466     if (section_headers.size() != header.e_shnum)
1467         return 0;
1468 
1469     const size_t sh_size = header.e_shnum * header.e_shentsize;
1470     const elf_off sh_offset = header.e_shoff;
1471     DataExtractor sh_data;
1472     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1473         return 0;
1474 
1475     uint32_t idx;
1476     lldb::offset_t offset;
1477     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1478     {
1479         if (section_headers[idx].Parse(sh_data, &offset) == false)
1480             break;
1481     }
1482     if (idx < section_headers.size())
1483         section_headers.resize(idx);
1484 
1485     const unsigned strtab_idx = header.e_shstrndx;
1486     if (strtab_idx && strtab_idx < section_headers.size())
1487     {
1488         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1489         const size_t byte_size = sheader.sh_size;
1490         const Elf64_Off offset = sheader.sh_offset;
1491         lldb_private::DataExtractor shstr_data;
1492 
1493         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1494         {
1495             for (SectionHeaderCollIter I = section_headers.begin();
1496                  I != section_headers.end(); ++I)
1497             {
1498                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1499                 const ELFSectionHeaderInfo &header = *I;
1500                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1501                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1502 
1503                 I->section_name = name;
1504 
1505                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1506                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1507                 {
1508                     if (header.sh_type == SHT_MIPS_ABIFLAGS)
1509                     {
1510                         DataExtractor data;
1511                         if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1512                         {
1513                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1514                             uint32_t arch_flags = arch_spec.GetFlags ();
1515                             arch_flags |= data.GetU32 (&ase_offset);
1516                             arch_spec.SetFlags (arch_flags);
1517                         }
1518                     }
1519                 }
1520 
1521                 if (name == g_sect_name_gnu_debuglink)
1522                 {
1523                     DataExtractor data;
1524                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1525                     {
1526                         lldb::offset_t gnu_debuglink_offset = 0;
1527                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1528                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1529                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1530                     }
1531                 }
1532 
1533                 // Process ELF note section entries.
1534                 bool is_note_header = (header.sh_type == SHT_NOTE);
1535 
1536                 // The section header ".note.android.ident" is stored as a
1537                 // PROGBITS type header but it is actually a note header.
1538                 static ConstString g_sect_name_android_ident (".note.android.ident");
1539                 if (!is_note_header && name == g_sect_name_android_ident)
1540                     is_note_header = true;
1541 
1542                 if (is_note_header)
1543                 {
1544                     // Allow notes to refine module info.
1545                     DataExtractor data;
1546                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1547                     {
1548                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1549                         if (error.Fail ())
1550                         {
1551                             if (log)
1552                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1553                         }
1554                     }
1555                 }
1556             }
1557 
1558             return section_headers.size();
1559         }
1560     }
1561 
1562     section_headers.clear();
1563     return 0;
1564 }
1565 
1566 size_t
1567 ObjectFileELF::GetProgramHeaderCount()
1568 {
1569     return ParseProgramHeaders();
1570 }
1571 
1572 const elf::ELFProgramHeader *
1573 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1574 {
1575     if (!id || !ParseProgramHeaders())
1576         return NULL;
1577 
1578     if (--id < m_program_headers.size())
1579         return &m_program_headers[id];
1580 
1581     return NULL;
1582 }
1583 
1584 DataExtractor
1585 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1586 {
1587     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1588     if (segment_header == NULL)
1589         return DataExtractor();
1590     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1591 }
1592 
1593 std::string
1594 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1595 {
1596     size_t pos = symbol_name.find('@');
1597     return symbol_name.substr(0, pos).str();
1598 }
1599 
1600 //----------------------------------------------------------------------
1601 // ParseSectionHeaders
1602 //----------------------------------------------------------------------
1603 size_t
1604 ObjectFileELF::ParseSectionHeaders()
1605 {
1606     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1607 }
1608 
1609 const ObjectFileELF::ELFSectionHeaderInfo *
1610 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1611 {
1612     if (!id || !ParseSectionHeaders())
1613         return NULL;
1614 
1615     if (--id < m_section_headers.size())
1616         return &m_section_headers[id];
1617 
1618     return NULL;
1619 }
1620 
1621 lldb::user_id_t
1622 ObjectFileELF::GetSectionIndexByName(const char* name)
1623 {
1624     if (!name || !name[0] || !ParseSectionHeaders())
1625         return 0;
1626     for (size_t i = 1; i < m_section_headers.size(); ++i)
1627         if (m_section_headers[i].section_name == ConstString(name))
1628             return i;
1629     return 0;
1630 }
1631 
1632 void
1633 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1634 {
1635     if (!m_sections_ap.get() && ParseSectionHeaders())
1636     {
1637         m_sections_ap.reset(new SectionList());
1638 
1639         for (SectionHeaderCollIter I = m_section_headers.begin();
1640              I != m_section_headers.end(); ++I)
1641         {
1642             const ELFSectionHeaderInfo &header = *I;
1643 
1644             ConstString& name = I->section_name;
1645             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1646             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1647 
1648             static ConstString g_sect_name_text (".text");
1649             static ConstString g_sect_name_data (".data");
1650             static ConstString g_sect_name_bss (".bss");
1651             static ConstString g_sect_name_tdata (".tdata");
1652             static ConstString g_sect_name_tbss (".tbss");
1653             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1654             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1655             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1656             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1657             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1658             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1659             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1660             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1661             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1662             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1663             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1664             static ConstString g_sect_name_eh_frame (".eh_frame");
1665 
1666             SectionType sect_type = eSectionTypeOther;
1667 
1668             bool is_thread_specific = false;
1669 
1670             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1671             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1672             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1673             else if (name == g_sect_name_tdata)
1674             {
1675                 sect_type = eSectionTypeData;
1676                 is_thread_specific = true;
1677             }
1678             else if (name == g_sect_name_tbss)
1679             {
1680                 sect_type = eSectionTypeZeroFill;
1681                 is_thread_specific = true;
1682             }
1683             // .debug_abbrev – Abbreviations used in the .debug_info section
1684             // .debug_aranges – Lookup table for mapping addresses to compilation units
1685             // .debug_frame – Call frame information
1686             // .debug_info – The core DWARF information section
1687             // .debug_line – Line number information
1688             // .debug_loc – Location lists used in DW_AT_location attributes
1689             // .debug_macinfo – Macro information
1690             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1691             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1692             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1693             // .debug_str – String table used in .debug_info
1694             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1695             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1696             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1697             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1698             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1699             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1700             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1701             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1702             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1703             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1704             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1705             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1706             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1707             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1708             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1709 
1710             switch (header.sh_type)
1711             {
1712                 case SHT_SYMTAB:
1713                     assert (sect_type == eSectionTypeOther);
1714                     sect_type = eSectionTypeELFSymbolTable;
1715                     break;
1716                 case SHT_DYNSYM:
1717                     assert (sect_type == eSectionTypeOther);
1718                     sect_type = eSectionTypeELFDynamicSymbols;
1719                     break;
1720                 case SHT_RELA:
1721                 case SHT_REL:
1722                     assert (sect_type == eSectionTypeOther);
1723                     sect_type = eSectionTypeELFRelocationEntries;
1724                     break;
1725                 case SHT_DYNAMIC:
1726                     assert (sect_type == eSectionTypeOther);
1727                     sect_type = eSectionTypeELFDynamicLinkInfo;
1728                     break;
1729             }
1730 
1731             if (eSectionTypeOther == sect_type)
1732             {
1733                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1734                 // support linkscripts which (can) give rise to various arbitrarily named
1735                 // sections being "Code" or "Data".
1736                 sect_type = kalimbaSectionType(m_header, header);
1737             }
1738 
1739             const uint32_t target_bytes_size =
1740                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1741                 m_arch_spec.GetDataByteSize() :
1742                     eSectionTypeCode == sect_type ?
1743                     m_arch_spec.GetCodeByteSize() : 1;
1744 
1745             elf::elf_xword log2align = (header.sh_addralign==0)
1746                                         ? 0
1747                                         : llvm::Log2_64(header.sh_addralign);
1748             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1749                                               this,               // ObjectFile to which this section belongs and should read section data from.
1750                                               SectionIndex(I),    // Section ID.
1751                                               name,               // Section name.
1752                                               sect_type,          // Section type.
1753                                               header.sh_addr,     // VM address.
1754                                               vm_size,            // VM size in bytes of this section.
1755                                               header.sh_offset,   // Offset of this section in the file.
1756                                               file_size,          // Size of the section as found in the file.
1757                                               log2align,          // Alignment of the section
1758                                               header.sh_flags,    // Flags for this section.
1759                                               target_bytes_size));// Number of host bytes per target byte
1760 
1761             if (is_thread_specific)
1762                 section_sp->SetIsThreadSpecific (is_thread_specific);
1763             m_sections_ap->AddSection(section_sp);
1764         }
1765     }
1766 
1767     if (m_sections_ap.get())
1768     {
1769         if (GetType() == eTypeDebugInfo)
1770         {
1771             static const SectionType g_sections[] =
1772             {
1773                 eSectionTypeDWARFDebugAranges,
1774                 eSectionTypeDWARFDebugInfo,
1775                 eSectionTypeDWARFDebugAbbrev,
1776                 eSectionTypeDWARFDebugFrame,
1777                 eSectionTypeDWARFDebugLine,
1778                 eSectionTypeDWARFDebugStr,
1779                 eSectionTypeDWARFDebugLoc,
1780                 eSectionTypeDWARFDebugMacInfo,
1781                 eSectionTypeDWARFDebugPubNames,
1782                 eSectionTypeDWARFDebugPubTypes,
1783                 eSectionTypeDWARFDebugRanges,
1784                 eSectionTypeELFSymbolTable,
1785             };
1786             SectionList *elf_section_list = m_sections_ap.get();
1787             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1788             {
1789                 SectionType section_type = g_sections[idx];
1790                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1791                 if (section_sp)
1792                 {
1793                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1794                     if (module_section_sp)
1795                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1796                     else
1797                         unified_section_list.AddSection (section_sp);
1798                 }
1799             }
1800         }
1801         else
1802         {
1803             unified_section_list = *m_sections_ap;
1804         }
1805     }
1806 }
1807 
1808 // private
1809 unsigned
1810 ObjectFileELF::ParseSymbols (Symtab *symtab,
1811                              user_id_t start_id,
1812                              SectionList *section_list,
1813                              const size_t num_symbols,
1814                              const DataExtractor &symtab_data,
1815                              const DataExtractor &strtab_data)
1816 {
1817     ELFSymbol symbol;
1818     lldb::offset_t offset = 0;
1819 
1820     static ConstString text_section_name(".text");
1821     static ConstString init_section_name(".init");
1822     static ConstString fini_section_name(".fini");
1823     static ConstString ctors_section_name(".ctors");
1824     static ConstString dtors_section_name(".dtors");
1825 
1826     static ConstString data_section_name(".data");
1827     static ConstString rodata_section_name(".rodata");
1828     static ConstString rodata1_section_name(".rodata1");
1829     static ConstString data2_section_name(".data1");
1830     static ConstString bss_section_name(".bss");
1831     static ConstString opd_section_name(".opd");    // For ppc64
1832 
1833     // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full
1834     // .text section what causes issues with displaying unusable symbol name to the user and very
1835     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1836     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1837     // use for the debugger and they are causing a lot of trouble.
1838     // Filtering can't be restricted to Android because this special object file don't contain the
1839     // note section specifying the environment to Android but the custom extension and file name
1840     // makes it highly unlikely that this will collide with anything else.
1841     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat");
1842 
1843     unsigned i;
1844     for (i = 0; i < num_symbols; ++i)
1845     {
1846         if (symbol.Parse(symtab_data, &offset) == false)
1847             break;
1848 
1849         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1850 
1851         // No need to add non-section symbols that have no names
1852         if (symbol.getType() != STT_SECTION &&
1853             (symbol_name == NULL || symbol_name[0] == '\0'))
1854             continue;
1855 
1856         // Skipping oatdata and oatexec sections if it is requested. See details above the
1857         // definition of skip_oatdata_oatexec for the reasons.
1858         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1859             continue;
1860 
1861         SectionSP symbol_section_sp;
1862         SymbolType symbol_type = eSymbolTypeInvalid;
1863         Elf64_Half symbol_idx = symbol.st_shndx;
1864 
1865         switch (symbol_idx)
1866         {
1867         case SHN_ABS:
1868             symbol_type = eSymbolTypeAbsolute;
1869             break;
1870         case SHN_UNDEF:
1871             symbol_type = eSymbolTypeUndefined;
1872             break;
1873         default:
1874             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1875             break;
1876         }
1877 
1878         // If a symbol is undefined do not process it further even if it has a STT type
1879         if (symbol_type != eSymbolTypeUndefined)
1880         {
1881             switch (symbol.getType())
1882             {
1883             default:
1884             case STT_NOTYPE:
1885                 // The symbol's type is not specified.
1886                 break;
1887 
1888             case STT_OBJECT:
1889                 // The symbol is associated with a data object, such as a variable,
1890                 // an array, etc.
1891                 symbol_type = eSymbolTypeData;
1892                 break;
1893 
1894             case STT_FUNC:
1895                 // The symbol is associated with a function or other executable code.
1896                 symbol_type = eSymbolTypeCode;
1897                 break;
1898 
1899             case STT_SECTION:
1900                 // The symbol is associated with a section. Symbol table entries of
1901                 // this type exist primarily for relocation and normally have
1902                 // STB_LOCAL binding.
1903                 break;
1904 
1905             case STT_FILE:
1906                 // Conventionally, the symbol's name gives the name of the source
1907                 // file associated with the object file. A file symbol has STB_LOCAL
1908                 // binding, its section index is SHN_ABS, and it precedes the other
1909                 // STB_LOCAL symbols for the file, if it is present.
1910                 symbol_type = eSymbolTypeSourceFile;
1911                 break;
1912 
1913             case STT_GNU_IFUNC:
1914                 // The symbol is associated with an indirect function. The actual
1915                 // function will be resolved if it is referenced.
1916                 symbol_type = eSymbolTypeResolver;
1917                 break;
1918             }
1919         }
1920 
1921         if (symbol_type == eSymbolTypeInvalid)
1922         {
1923             if (symbol_section_sp)
1924             {
1925                 const ConstString &sect_name = symbol_section_sp->GetName();
1926                 if (sect_name == text_section_name ||
1927                     sect_name == init_section_name ||
1928                     sect_name == fini_section_name ||
1929                     sect_name == ctors_section_name ||
1930                     sect_name == dtors_section_name)
1931                 {
1932                     symbol_type = eSymbolTypeCode;
1933                 }
1934                 else if (sect_name == data_section_name ||
1935                          sect_name == data2_section_name ||
1936                          sect_name == rodata_section_name ||
1937                          sect_name == rodata1_section_name ||
1938                          sect_name == bss_section_name)
1939                 {
1940                     symbol_type = eSymbolTypeData;
1941                 }
1942             }
1943         }
1944 
1945         int64_t symbol_value_offset = 0;
1946         uint32_t additional_flags = 0;
1947 
1948         ArchSpec arch;
1949         if (GetArchitecture(arch))
1950         {
1951             if (arch.GetMachine() == llvm::Triple::arm)
1952             {
1953                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1954                 {
1955                     // These are reserved for the specification (e.g.: mapping
1956                     // symbols). We don't want to add them to the symbol table.
1957 
1958                     if (symbol_type == eSymbolTypeCode)
1959                     {
1960                         llvm::StringRef symbol_name_ref(symbol_name);
1961                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1962                         {
1963                             // $a[.<any>]* - marks an ARM instruction sequence
1964                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1965                         }
1966                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1967                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1968                         {
1969                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1970                             // $t[.<any>]* - marks a THUMB instruction sequence
1971                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1972                         }
1973                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1974                         {
1975                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1976                             m_address_class_map[symbol.st_value] = eAddressClassData;
1977                         }
1978                     }
1979 
1980                     continue;
1981                 }
1982             }
1983             else if (arch.GetMachine() == llvm::Triple::aarch64)
1984             {
1985                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1986                 {
1987                     // These are reserved for the specification (e.g.: mapping
1988                     // symbols). We don't want to add them to the symbol table.
1989 
1990                     if (symbol_type == eSymbolTypeCode)
1991                     {
1992                         llvm::StringRef symbol_name_ref(symbol_name);
1993                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
1994                         {
1995                             // $x[.<any>]* - marks an A64 instruction sequence
1996                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1997                         }
1998                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1999                         {
2000                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2001                             m_address_class_map[symbol.st_value] = eAddressClassData;
2002                         }
2003                     }
2004 
2005                     continue;
2006                 }
2007             }
2008 
2009             if (arch.GetMachine() == llvm::Triple::arm)
2010             {
2011                 if (symbol_type == eSymbolTypeCode)
2012                 {
2013                     if (symbol.st_value & 1)
2014                     {
2015                         // Subtracting 1 from the address effectively unsets
2016                         // the low order bit, which results in the address
2017                         // actually pointing to the beginning of the symbol.
2018                         // This delta will be used below in conjunction with
2019                         // symbol.st_value to produce the final symbol_value
2020                         // that we store in the symtab.
2021                         symbol_value_offset = -1;
2022                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2023                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2024                     }
2025                     else
2026                     {
2027                         // This address is ARM
2028                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2029                     }
2030                 }
2031             }
2032         }
2033 
2034         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
2035         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
2036         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
2037         {
2038             ModuleSP module_sp(GetModule());
2039             if (module_sp)
2040             {
2041                 SectionList *module_section_list = module_sp->GetSectionList();
2042                 if (module_section_list && module_section_list != section_list)
2043                 {
2044                     const ConstString &sect_name = symbol_section_sp->GetName();
2045                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2046                     if (section_sp && section_sp->GetFileSize())
2047                     {
2048                         symbol_section_sp = section_sp;
2049                     }
2050                 }
2051             }
2052         }
2053 
2054         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2055         // THUMB symbols. See above for more details.
2056         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2057         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2058             symbol_value -= symbol_section_sp->GetFileAddress();
2059         bool is_global = symbol.getBinding() == STB_GLOBAL;
2060         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2061         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2062 
2063         llvm::StringRef symbol_ref(symbol_name);
2064 
2065         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2066         size_t version_pos = symbol_ref.find('@');
2067         bool has_suffix = version_pos != llvm::StringRef::npos;
2068         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2069         Mangled mangled(ConstString(symbol_bare), is_mangled);
2070 
2071         // Now append the suffix back to mangled and unmangled names. Only do it if the
2072         // demangling was successful (string is not empty).
2073         if (has_suffix)
2074         {
2075             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2076 
2077             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2078             if (! mangled_name.empty())
2079                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2080 
2081             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2082             llvm::StringRef demangled_name = demangled.GetStringRef();
2083             if (!demangled_name.empty())
2084                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2085         }
2086 
2087         Symbol dc_symbol(
2088             i + start_id,       // ID is the original symbol table index.
2089             mangled,
2090             symbol_type,        // Type of this symbol
2091             is_global,          // Is this globally visible?
2092             false,              // Is this symbol debug info?
2093             false,              // Is this symbol a trampoline?
2094             false,              // Is this symbol artificial?
2095             AddressRange(
2096                 symbol_section_sp,  // Section in which this symbol is defined or null.
2097                 symbol_value,       // Offset in section or symbol value.
2098                 symbol.st_size),    // Size in bytes of this symbol.
2099             symbol.st_size != 0,    // Size is valid if it is not 0
2100             has_suffix,             // Contains linker annotations?
2101             flags);                 // Symbol flags.
2102         symtab->AddSymbol(dc_symbol);
2103     }
2104     return i;
2105 }
2106 
2107 unsigned
2108 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2109 {
2110     if (symtab->GetObjectFile() != this)
2111     {
2112         // If the symbol table section is owned by a different object file, have it do the
2113         // parsing.
2114         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2115         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2116     }
2117 
2118     // Get section list for this object file.
2119     SectionList *section_list = m_sections_ap.get();
2120     if (!section_list)
2121         return 0;
2122 
2123     user_id_t symtab_id = symtab->GetID();
2124     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2125     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2126            symtab_hdr->sh_type == SHT_DYNSYM);
2127 
2128     // sh_link: section header index of associated string table.
2129     // Section ID's are ones based.
2130     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2131     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2132 
2133     if (symtab && strtab)
2134     {
2135         assert (symtab->GetObjectFile() == this);
2136         assert (strtab->GetObjectFile() == this);
2137 
2138         DataExtractor symtab_data;
2139         DataExtractor strtab_data;
2140         if (ReadSectionData(symtab, symtab_data) &&
2141             ReadSectionData(strtab, strtab_data))
2142         {
2143             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2144 
2145             return ParseSymbols(symbol_table, start_id, section_list,
2146                                 num_symbols, symtab_data, strtab_data);
2147         }
2148     }
2149 
2150     return 0;
2151 }
2152 
2153 size_t
2154 ObjectFileELF::ParseDynamicSymbols()
2155 {
2156     if (m_dynamic_symbols.size())
2157         return m_dynamic_symbols.size();
2158 
2159     SectionList *section_list = GetSectionList();
2160     if (!section_list)
2161         return 0;
2162 
2163     // Find the SHT_DYNAMIC section.
2164     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2165     if (!dynsym)
2166         return 0;
2167     assert (dynsym->GetObjectFile() == this);
2168 
2169     ELFDynamic symbol;
2170     DataExtractor dynsym_data;
2171     if (ReadSectionData(dynsym, dynsym_data))
2172     {
2173         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2174         lldb::offset_t cursor = 0;
2175 
2176         while (cursor < section_size)
2177         {
2178             if (!symbol.Parse(dynsym_data, &cursor))
2179                 break;
2180 
2181             m_dynamic_symbols.push_back(symbol);
2182         }
2183     }
2184 
2185     return m_dynamic_symbols.size();
2186 }
2187 
2188 const ELFDynamic *
2189 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2190 {
2191     if (!ParseDynamicSymbols())
2192         return NULL;
2193 
2194     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2195     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2196     for ( ; I != E; ++I)
2197     {
2198         ELFDynamic *symbol = &*I;
2199 
2200         if (symbol->d_tag == tag)
2201             return symbol;
2202     }
2203 
2204     return NULL;
2205 }
2206 
2207 unsigned
2208 ObjectFileELF::PLTRelocationType()
2209 {
2210     // DT_PLTREL
2211     //  This member specifies the type of relocation entry to which the
2212     //  procedure linkage table refers. The d_val member holds DT_REL or
2213     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2214     //  must use the same relocation.
2215     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2216 
2217     if (symbol)
2218         return symbol->d_val;
2219 
2220     return 0;
2221 }
2222 
2223 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2224 // 0th entry in the plt table is usually a resolution entry which have different size in some
2225 // architectures then the rest of the plt entries.
2226 static std::pair<uint64_t, uint64_t>
2227 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2228 {
2229     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2230 
2231     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2232     // So round the entsize up by the alignment if addralign is set.
2233     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2234         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2235 
2236     if (plt_entsize == 0)
2237     {
2238         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2239         // entries based on the number of entries and the size of the plt section with the
2240         // assumption that the size of the 0th entry is at least as big as the size of the normal
2241         // entries and it isn't much bigger then that.
2242         if (plt_hdr->sh_addralign)
2243             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2244         else
2245             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2246     }
2247 
2248     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2249 
2250     return std::make_pair(plt_entsize, plt_offset);
2251 }
2252 
2253 static unsigned
2254 ParsePLTRelocations(Symtab *symbol_table,
2255                     user_id_t start_id,
2256                     unsigned rel_type,
2257                     const ELFHeader *hdr,
2258                     const ELFSectionHeader *rel_hdr,
2259                     const ELFSectionHeader *plt_hdr,
2260                     const ELFSectionHeader *sym_hdr,
2261                     const lldb::SectionSP &plt_section_sp,
2262                     DataExtractor &rel_data,
2263                     DataExtractor &symtab_data,
2264                     DataExtractor &strtab_data)
2265 {
2266     ELFRelocation rel(rel_type);
2267     ELFSymbol symbol;
2268     lldb::offset_t offset = 0;
2269 
2270     uint64_t plt_offset, plt_entsize;
2271     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2272     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2273 
2274     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2275     reloc_info_fn reloc_type;
2276     reloc_info_fn reloc_symbol;
2277 
2278     if (hdr->Is32Bit())
2279     {
2280         reloc_type = ELFRelocation::RelocType32;
2281         reloc_symbol = ELFRelocation::RelocSymbol32;
2282     }
2283     else
2284     {
2285         reloc_type = ELFRelocation::RelocType64;
2286         reloc_symbol = ELFRelocation::RelocSymbol64;
2287     }
2288 
2289     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2290     unsigned i;
2291     for (i = 0; i < num_relocations; ++i)
2292     {
2293         if (rel.Parse(rel_data, &offset) == false)
2294             break;
2295 
2296         if (reloc_type(rel) != slot_type)
2297             continue;
2298 
2299         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2300         if (!symbol.Parse(symtab_data, &symbol_offset))
2301             break;
2302 
2303         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2304         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2305         uint64_t plt_index = plt_offset + i * plt_entsize;
2306 
2307         Symbol jump_symbol(
2308             i + start_id,    // Symbol table index
2309             symbol_name,     // symbol name.
2310             is_mangled,      // is the symbol name mangled?
2311             eSymbolTypeTrampoline, // Type of this symbol
2312             false,           // Is this globally visible?
2313             false,           // Is this symbol debug info?
2314             true,            // Is this symbol a trampoline?
2315             true,            // Is this symbol artificial?
2316             plt_section_sp,  // Section in which this symbol is defined or null.
2317             plt_index,       // Offset in section or symbol value.
2318             plt_entsize,     // Size in bytes of this symbol.
2319             true,            // Size is valid
2320             false,           // Contains linker annotations?
2321             0);              // Symbol flags.
2322 
2323         symbol_table->AddSymbol(jump_symbol);
2324     }
2325 
2326     return i;
2327 }
2328 
2329 unsigned
2330 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2331                                       user_id_t start_id,
2332                                       const ELFSectionHeaderInfo *rel_hdr,
2333                                       user_id_t rel_id)
2334 {
2335     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2336 
2337     // The link field points to the associated symbol table. The info field
2338     // points to the section holding the plt.
2339     user_id_t symtab_id = rel_hdr->sh_link;
2340     user_id_t plt_id = rel_hdr->sh_info;
2341 
2342     // If the link field doesn't point to the appropriate symbol name table then
2343     // try to find it by name as some compiler don't fill in the link fields.
2344     if (!symtab_id)
2345         symtab_id = GetSectionIndexByName(".dynsym");
2346     if (!plt_id)
2347         plt_id = GetSectionIndexByName(".plt");
2348 
2349     if (!symtab_id || !plt_id)
2350         return 0;
2351 
2352     // Section ID's are ones based;
2353     symtab_id++;
2354     plt_id++;
2355 
2356     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2357     if (!plt_hdr)
2358         return 0;
2359 
2360     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2361     if (!sym_hdr)
2362         return 0;
2363 
2364     SectionList *section_list = m_sections_ap.get();
2365     if (!section_list)
2366         return 0;
2367 
2368     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2369     if (!rel_section)
2370         return 0;
2371 
2372     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2373     if (!plt_section_sp)
2374         return 0;
2375 
2376     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2377     if (!symtab)
2378         return 0;
2379 
2380     // sh_link points to associated string table.
2381     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2382     if (!strtab)
2383         return 0;
2384 
2385     DataExtractor rel_data;
2386     if (!ReadSectionData(rel_section, rel_data))
2387         return 0;
2388 
2389     DataExtractor symtab_data;
2390     if (!ReadSectionData(symtab, symtab_data))
2391         return 0;
2392 
2393     DataExtractor strtab_data;
2394     if (!ReadSectionData(strtab, strtab_data))
2395         return 0;
2396 
2397     unsigned rel_type = PLTRelocationType();
2398     if (!rel_type)
2399         return 0;
2400 
2401     return ParsePLTRelocations (symbol_table,
2402                                 start_id,
2403                                 rel_type,
2404                                 &m_header,
2405                                 rel_hdr,
2406                                 plt_hdr,
2407                                 sym_hdr,
2408                                 plt_section_sp,
2409                                 rel_data,
2410                                 symtab_data,
2411                                 strtab_data);
2412 }
2413 
2414 unsigned
2415 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2416                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2417                 DataExtractor &rel_data, DataExtractor &symtab_data,
2418                 DataExtractor &debug_data, Section* rel_section)
2419 {
2420     ELFRelocation rel(rel_hdr->sh_type);
2421     lldb::addr_t offset = 0;
2422     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2423     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2424     reloc_info_fn reloc_type;
2425     reloc_info_fn reloc_symbol;
2426 
2427     if (hdr->Is32Bit())
2428     {
2429         reloc_type = ELFRelocation::RelocType32;
2430         reloc_symbol = ELFRelocation::RelocSymbol32;
2431     }
2432     else
2433     {
2434         reloc_type = ELFRelocation::RelocType64;
2435         reloc_symbol = ELFRelocation::RelocSymbol64;
2436     }
2437 
2438     for (unsigned i = 0; i < num_relocations; ++i)
2439     {
2440         if (rel.Parse(rel_data, &offset) == false)
2441             break;
2442 
2443         Symbol* symbol = NULL;
2444 
2445         if (hdr->Is32Bit())
2446         {
2447             switch (reloc_type(rel)) {
2448             case R_386_32:
2449             case R_386_PC32:
2450             default:
2451                 assert(false && "unexpected relocation type");
2452             }
2453         } else {
2454             switch (reloc_type(rel)) {
2455             case R_X86_64_64:
2456             {
2457                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2458                 if (symbol)
2459                 {
2460                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2461                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2462                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2463                     *dst = value + ELFRelocation::RelocAddend64(rel);
2464                 }
2465                 break;
2466             }
2467             case R_X86_64_32:
2468             case R_X86_64_32S:
2469             {
2470                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2471                 if (symbol)
2472                 {
2473                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2474                     value += ELFRelocation::RelocAddend32(rel);
2475                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2476                            (reloc_type(rel) == R_X86_64_32S &&
2477                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2478                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2479                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2480                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2481                     *dst = truncated_addr;
2482                 }
2483                 break;
2484             }
2485             case R_X86_64_PC32:
2486             default:
2487                 assert(false && "unexpected relocation type");
2488             }
2489         }
2490     }
2491 
2492     return 0;
2493 }
2494 
2495 unsigned
2496 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2497 {
2498     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2499 
2500     // Parse in the section list if needed.
2501     SectionList *section_list = GetSectionList();
2502     if (!section_list)
2503         return 0;
2504 
2505     // Section ID's are ones based.
2506     user_id_t symtab_id = rel_hdr->sh_link + 1;
2507     user_id_t debug_id = rel_hdr->sh_info + 1;
2508 
2509     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2510     if (!symtab_hdr)
2511         return 0;
2512 
2513     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2514     if (!debug_hdr)
2515         return 0;
2516 
2517     Section *rel = section_list->FindSectionByID(rel_id).get();
2518     if (!rel)
2519         return 0;
2520 
2521     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2522     if (!symtab)
2523         return 0;
2524 
2525     Section *debug = section_list->FindSectionByID(debug_id).get();
2526     if (!debug)
2527         return 0;
2528 
2529     DataExtractor rel_data;
2530     DataExtractor symtab_data;
2531     DataExtractor debug_data;
2532 
2533     if (ReadSectionData(rel, rel_data) &&
2534         ReadSectionData(symtab, symtab_data) &&
2535         ReadSectionData(debug, debug_data))
2536     {
2537         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2538                         rel_data, symtab_data, debug_data, debug);
2539     }
2540 
2541     return 0;
2542 }
2543 
2544 Symtab *
2545 ObjectFileELF::GetSymtab()
2546 {
2547     ModuleSP module_sp(GetModule());
2548     if (!module_sp)
2549         return NULL;
2550 
2551     // We always want to use the main object file so we (hopefully) only have one cached copy
2552     // of our symtab, dynamic sections, etc.
2553     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2554     if (module_obj_file && module_obj_file != this)
2555         return module_obj_file->GetSymtab();
2556 
2557     if (m_symtab_ap.get() == NULL)
2558     {
2559         SectionList *section_list = module_sp->GetSectionList();
2560         if (!section_list)
2561             return NULL;
2562 
2563         uint64_t symbol_id = 0;
2564         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2565 
2566         m_symtab_ap.reset(new Symtab(this));
2567 
2568         // Sharable objects and dynamic executables usually have 2 distinct symbol
2569         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2570         // version of the symtab that only contains global symbols. The information found
2571         // in the dynsym is therefore also found in the symtab, while the reverse is not
2572         // necessarily true.
2573         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2574         if (!symtab)
2575         {
2576             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2577             // then use the dynsym section which should always be there.
2578             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2579         }
2580         if (symtab)
2581             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2582 
2583         // DT_JMPREL
2584         //      If present, this entry's d_ptr member holds the address of relocation
2585         //      entries associated solely with the procedure linkage table. Separating
2586         //      these relocation entries lets the dynamic linker ignore them during
2587         //      process initialization, if lazy binding is enabled. If this entry is
2588         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2589         //      also be present.
2590         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2591         if (symbol)
2592         {
2593             // Synthesize trampoline symbols to help navigate the PLT.
2594             addr_t addr = symbol->d_ptr;
2595             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2596             if (reloc_section)
2597             {
2598                 user_id_t reloc_id = reloc_section->GetID();
2599                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2600                 assert(reloc_header);
2601 
2602                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2603             }
2604         }
2605         m_symtab_ap->CalculateSymbolSizes();
2606     }
2607 
2608     for (SectionHeaderCollIter I = m_section_headers.begin();
2609          I != m_section_headers.end(); ++I)
2610     {
2611         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2612         {
2613             if (CalculateType() == eTypeObjectFile)
2614             {
2615                 const char *section_name = I->section_name.AsCString("");
2616                 if (strstr(section_name, ".rela.debug") ||
2617                     strstr(section_name, ".rel.debug"))
2618                 {
2619                     const ELFSectionHeader &reloc_header = *I;
2620                     user_id_t reloc_id = SectionIndex(I);
2621                     RelocateDebugSections(&reloc_header, reloc_id);
2622                 }
2623             }
2624         }
2625     }
2626     return m_symtab_ap.get();
2627 }
2628 
2629 Symbol *
2630 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2631 {
2632     if (!m_symtab_ap.get())
2633         return nullptr; // GetSymtab() should be called first.
2634 
2635     const SectionList *section_list = GetSectionList();
2636     if (!section_list)
2637         return nullptr;
2638 
2639     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2640     {
2641         AddressRange range;
2642         if (eh_frame->GetAddressRange (so_addr, range))
2643         {
2644             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2645             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2646             if (symbol)
2647                 return symbol;
2648 
2649             // Note that a (stripped) symbol won't be found by GetSymtab()...
2650             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2651             if (eh_sym_section_sp.get())
2652             {
2653                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2654                 addr_t offset = file_addr - section_base;
2655                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2656 
2657                 Symbol eh_symbol(
2658                         symbol_id,            // Symbol table index.
2659                         "???",                // Symbol name.
2660                         false,                // Is the symbol name mangled?
2661                         eSymbolTypeCode,      // Type of this symbol.
2662                         true,                 // Is this globally visible?
2663                         false,                // Is this symbol debug info?
2664                         false,                // Is this symbol a trampoline?
2665                         true,                 // Is this symbol artificial?
2666                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2667                         offset,               // Offset in section or symbol value.
2668                         range.GetByteSize(),  // Size in bytes of this symbol.
2669                         true,                 // Size is valid.
2670                         false,                // Contains linker annotations?
2671                         0);                   // Symbol flags.
2672                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2673                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2674             }
2675         }
2676     }
2677     return nullptr;
2678 }
2679 
2680 
2681 bool
2682 ObjectFileELF::IsStripped ()
2683 {
2684     // TODO: determine this for ELF
2685     return false;
2686 }
2687 
2688 //===----------------------------------------------------------------------===//
2689 // Dump
2690 //
2691 // Dump the specifics of the runtime file container (such as any headers
2692 // segments, sections, etc).
2693 //----------------------------------------------------------------------
2694 void
2695 ObjectFileELF::Dump(Stream *s)
2696 {
2697     DumpELFHeader(s, m_header);
2698     s->EOL();
2699     DumpELFProgramHeaders(s);
2700     s->EOL();
2701     DumpELFSectionHeaders(s);
2702     s->EOL();
2703     SectionList *section_list = GetSectionList();
2704     if (section_list)
2705         section_list->Dump(s, NULL, true, UINT32_MAX);
2706     Symtab *symtab = GetSymtab();
2707     if (symtab)
2708         symtab->Dump(s, NULL, eSortOrderNone);
2709     s->EOL();
2710     DumpDependentModules(s);
2711     s->EOL();
2712 }
2713 
2714 //----------------------------------------------------------------------
2715 // DumpELFHeader
2716 //
2717 // Dump the ELF header to the specified output stream
2718 //----------------------------------------------------------------------
2719 void
2720 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2721 {
2722     s->PutCString("ELF Header\n");
2723     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2724     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2725               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2726     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2727               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2728     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2729               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2730 
2731     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2732     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2733     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2734     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2735     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2736 
2737     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2738     DumpELFHeader_e_type(s, header.e_type);
2739     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2740     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2741     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2742     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2743     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2744     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2745     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2746     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2747     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2748     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2749     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2750     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2751 }
2752 
2753 //----------------------------------------------------------------------
2754 // DumpELFHeader_e_type
2755 //
2756 // Dump an token value for the ELF header member e_type
2757 //----------------------------------------------------------------------
2758 void
2759 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2760 {
2761     switch (e_type)
2762     {
2763     case ET_NONE:   *s << "ET_NONE"; break;
2764     case ET_REL:    *s << "ET_REL"; break;
2765     case ET_EXEC:   *s << "ET_EXEC"; break;
2766     case ET_DYN:    *s << "ET_DYN"; break;
2767     case ET_CORE:   *s << "ET_CORE"; break;
2768     default:
2769         break;
2770     }
2771 }
2772 
2773 //----------------------------------------------------------------------
2774 // DumpELFHeader_e_ident_EI_DATA
2775 //
2776 // Dump an token value for the ELF header member e_ident[EI_DATA]
2777 //----------------------------------------------------------------------
2778 void
2779 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2780 {
2781     switch (ei_data)
2782     {
2783     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2784     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2785     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2786     default:
2787         break;
2788     }
2789 }
2790 
2791 
2792 //----------------------------------------------------------------------
2793 // DumpELFProgramHeader
2794 //
2795 // Dump a single ELF program header to the specified output stream
2796 //----------------------------------------------------------------------
2797 void
2798 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2799 {
2800     DumpELFProgramHeader_p_type(s, ph.p_type);
2801     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2802     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2803 
2804     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2805     s->Printf(") %8.8" PRIx64, ph.p_align);
2806 }
2807 
2808 //----------------------------------------------------------------------
2809 // DumpELFProgramHeader_p_type
2810 //
2811 // Dump an token value for the ELF program header member p_type which
2812 // describes the type of the program header
2813 // ----------------------------------------------------------------------
2814 void
2815 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2816 {
2817     const int kStrWidth = 15;
2818     switch (p_type)
2819     {
2820     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2821     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2822     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2823     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2824     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2825     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2826     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2827     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2828     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2829     default:
2830         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2831         break;
2832     }
2833 }
2834 
2835 
2836 //----------------------------------------------------------------------
2837 // DumpELFProgramHeader_p_flags
2838 //
2839 // Dump an token value for the ELF program header member p_flags
2840 //----------------------------------------------------------------------
2841 void
2842 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2843 {
2844     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2845         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2846         << ((p_flags & PF_W) ? "PF_W" : "    ")
2847         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2848         << ((p_flags & PF_R) ? "PF_R" : "    ");
2849 }
2850 
2851 //----------------------------------------------------------------------
2852 // DumpELFProgramHeaders
2853 //
2854 // Dump all of the ELF program header to the specified output stream
2855 //----------------------------------------------------------------------
2856 void
2857 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2858 {
2859     if (!ParseProgramHeaders())
2860         return;
2861 
2862     s->PutCString("Program Headers\n");
2863     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2864                   "p_filesz p_memsz  p_flags                   p_align\n");
2865     s->PutCString("==== --------------- -------- -------- -------- "
2866                   "-------- -------- ------------------------- --------\n");
2867 
2868     uint32_t idx = 0;
2869     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2870          I != m_program_headers.end(); ++I, ++idx)
2871     {
2872         s->Printf("[%2u] ", idx);
2873         ObjectFileELF::DumpELFProgramHeader(s, *I);
2874         s->EOL();
2875     }
2876 }
2877 
2878 //----------------------------------------------------------------------
2879 // DumpELFSectionHeader
2880 //
2881 // Dump a single ELF section header to the specified output stream
2882 //----------------------------------------------------------------------
2883 void
2884 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2885 {
2886     s->Printf("%8.8x ", sh.sh_name);
2887     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2888     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2889     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2890     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2891     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2892     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2893 }
2894 
2895 //----------------------------------------------------------------------
2896 // DumpELFSectionHeader_sh_type
2897 //
2898 // Dump an token value for the ELF section header member sh_type which
2899 // describes the type of the section
2900 //----------------------------------------------------------------------
2901 void
2902 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2903 {
2904     const int kStrWidth = 12;
2905     switch (sh_type)
2906     {
2907     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2908     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2909     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2910     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2911     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2912     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2913     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2914     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2915     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2916     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2917     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2918     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2919     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2920     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2921     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2922     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2923     default:
2924         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2925         break;
2926     }
2927 }
2928 
2929 //----------------------------------------------------------------------
2930 // DumpELFSectionHeader_sh_flags
2931 //
2932 // Dump an token value for the ELF section header member sh_flags
2933 //----------------------------------------------------------------------
2934 void
2935 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2936 {
2937     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2938         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2939         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2940         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2941         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2942 }
2943 
2944 //----------------------------------------------------------------------
2945 // DumpELFSectionHeaders
2946 //
2947 // Dump all of the ELF section header to the specified output stream
2948 //----------------------------------------------------------------------
2949 void
2950 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2951 {
2952     if (!ParseSectionHeaders())
2953         return;
2954 
2955     s->PutCString("Section Headers\n");
2956     s->PutCString("IDX  name     type         flags                            "
2957                   "addr     offset   size     link     info     addralgn "
2958                   "entsize  Name\n");
2959     s->PutCString("==== -------- ------------ -------------------------------- "
2960                   "-------- -------- -------- -------- -------- -------- "
2961                   "-------- ====================\n");
2962 
2963     uint32_t idx = 0;
2964     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2965          I != m_section_headers.end(); ++I, ++idx)
2966     {
2967         s->Printf("[%2u] ", idx);
2968         ObjectFileELF::DumpELFSectionHeader(s, *I);
2969         const char* section_name = I->section_name.AsCString("");
2970         if (section_name)
2971             *s << ' ' << section_name << "\n";
2972     }
2973 }
2974 
2975 void
2976 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2977 {
2978     size_t num_modules = ParseDependentModules();
2979 
2980     if (num_modules > 0)
2981     {
2982         s->PutCString("Dependent Modules:\n");
2983         for (unsigned i = 0; i < num_modules; ++i)
2984         {
2985             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2986             s->Printf("   %s\n", spec.GetFilename().GetCString());
2987         }
2988     }
2989 }
2990 
2991 bool
2992 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2993 {
2994     if (!ParseHeader())
2995         return false;
2996 
2997     if (m_section_headers.empty())
2998     {
2999         // Allow elf notes to be parsed which may affect the detected architecture.
3000         ParseSectionHeaders();
3001     }
3002 
3003     arch = m_arch_spec;
3004     return true;
3005 }
3006 
3007 ObjectFile::Type
3008 ObjectFileELF::CalculateType()
3009 {
3010     switch (m_header.e_type)
3011     {
3012         case llvm::ELF::ET_NONE:
3013             // 0 - No file type
3014             return eTypeUnknown;
3015 
3016         case llvm::ELF::ET_REL:
3017             // 1 - Relocatable file
3018             return eTypeObjectFile;
3019 
3020         case llvm::ELF::ET_EXEC:
3021             // 2 - Executable file
3022             return eTypeExecutable;
3023 
3024         case llvm::ELF::ET_DYN:
3025             // 3 - Shared object file
3026             return eTypeSharedLibrary;
3027 
3028         case ET_CORE:
3029             // 4 - Core file
3030             return eTypeCoreFile;
3031 
3032         default:
3033             break;
3034     }
3035     return eTypeUnknown;
3036 }
3037 
3038 ObjectFile::Strata
3039 ObjectFileELF::CalculateStrata()
3040 {
3041     switch (m_header.e_type)
3042     {
3043         case llvm::ELF::ET_NONE:
3044             // 0 - No file type
3045             return eStrataUnknown;
3046 
3047         case llvm::ELF::ET_REL:
3048             // 1 - Relocatable file
3049             return eStrataUnknown;
3050 
3051         case llvm::ELF::ET_EXEC:
3052             // 2 - Executable file
3053             // TODO: is there any way to detect that an executable is a kernel
3054             // related executable by inspecting the program headers, section
3055             // headers, symbols, or any other flag bits???
3056             return eStrataUser;
3057 
3058         case llvm::ELF::ET_DYN:
3059             // 3 - Shared object file
3060             // TODO: is there any way to detect that an shared library is a kernel
3061             // related executable by inspecting the program headers, section
3062             // headers, symbols, or any other flag bits???
3063             return eStrataUnknown;
3064 
3065         case ET_CORE:
3066             // 4 - Core file
3067             // TODO: is there any way to detect that an core file is a kernel
3068             // related executable by inspecting the program headers, section
3069             // headers, symbols, or any other flag bits???
3070             return eStrataUnknown;
3071 
3072         default:
3073             break;
3074     }
3075     return eStrataUnknown;
3076 }
3077 
3078