xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision ddaf6a7259a5f56431ca7889c912601e94d1ce20)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (value_is_offset)
851             {
852                 const size_t num_sections = section_list->GetSize();
853                 size_t sect_idx = 0;
854 
855                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
856                 {
857                     // Iterate through the object file sections to find all
858                     // of the sections that have SHF_ALLOC in their flag bits.
859                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
860                     // if (section_sp && !section_sp->IsThreadSpecific())
861                     if (section_sp && section_sp->Test(SHF_ALLOC))
862                     {
863                         lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
864 
865                         // On 32-bit systems the load address have to fit into 4 bytes. The rest of
866                         // the bytes are the overflow from the addition.
867                         if (GetAddressByteSize() == 4)
868                             load_addr &= 0xFFFFFFFF;
869 
870                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
871                             ++num_loaded_sections;
872                     }
873                 }
874                 return num_loaded_sections > 0;
875             }
876             else
877             {
878                 // Not sure how to slide an ELF file given the base address
879                 // of the ELF file in memory
880             }
881         }
882     }
883     return false; // If it changed
884 }
885 
886 ByteOrder
887 ObjectFileELF::GetByteOrder() const
888 {
889     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
890         return eByteOrderBig;
891     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
892         return eByteOrderLittle;
893     return eByteOrderInvalid;
894 }
895 
896 uint32_t
897 ObjectFileELF::GetAddressByteSize() const
898 {
899     return m_data.GetAddressByteSize();
900 }
901 
902 // Top 16 bits of the `Symbol` flags are available.
903 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
904 
905 AddressClass
906 ObjectFileELF::GetAddressClass (addr_t file_addr)
907 {
908     auto res = ObjectFile::GetAddressClass (file_addr);
909 
910     if (res != eAddressClassCode)
911         return res;
912 
913     auto ub = m_address_class_map.upper_bound(file_addr);
914     if (ub == m_address_class_map.begin())
915     {
916         // No entry in the address class map before the address. Return
917         // default address class for an address in a code section.
918         return eAddressClassCode;
919     }
920 
921     // Move iterator to the address class entry preceding address
922     --ub;
923 
924     return ub->second;
925 }
926 
927 size_t
928 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
929 {
930     return std::distance(m_section_headers.begin(), I) + 1u;
931 }
932 
933 size_t
934 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
935 {
936     return std::distance(m_section_headers.begin(), I) + 1u;
937 }
938 
939 bool
940 ObjectFileELF::ParseHeader()
941 {
942     lldb::offset_t offset = 0;
943     if (!m_header.Parse(m_data, &offset))
944         return false;
945 
946     if (!IsInMemory())
947         return true;
948 
949     // For in memory object files m_data might not contain the full object file. Try to load it
950     // until the end of the "Section header table" what is at the end of the ELF file.
951     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
952     if (m_data.GetByteSize() < file_size)
953     {
954         ProcessSP process_sp (m_process_wp.lock());
955         if (!process_sp)
956             return false;
957 
958         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
959         if (!data_sp)
960             return false;
961         m_data.SetData(data_sp, 0, file_size);
962     }
963 
964     return true;
965 }
966 
967 bool
968 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
969 {
970     // Need to parse the section list to get the UUIDs, so make sure that's been done.
971     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
972         return false;
973 
974     if (m_uuid.IsValid())
975     {
976         // We have the full build id uuid.
977         *uuid = m_uuid;
978         return true;
979     }
980     else if (GetType() == ObjectFile::eTypeCoreFile)
981     {
982         uint32_t core_notes_crc = 0;
983 
984         if (!ParseProgramHeaders())
985             return false;
986 
987         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
988 
989         if (core_notes_crc)
990         {
991             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
992             // look different form .gnu_debuglink crc - followed by 4 bytes of note
993             // segments crc.
994             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
995             m_uuid.SetBytes (uuidt, sizeof(uuidt));
996         }
997     }
998     else
999     {
1000         if (!m_gnu_debuglink_crc)
1001             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1002         if (m_gnu_debuglink_crc)
1003         {
1004             // Use 4 bytes of crc from the .gnu_debuglink section.
1005             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1006             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1007         }
1008     }
1009 
1010     if (m_uuid.IsValid())
1011     {
1012         *uuid = m_uuid;
1013         return true;
1014     }
1015 
1016     return false;
1017 }
1018 
1019 lldb_private::FileSpecList
1020 ObjectFileELF::GetDebugSymbolFilePaths()
1021 {
1022     FileSpecList file_spec_list;
1023 
1024     if (!m_gnu_debuglink_file.empty())
1025     {
1026         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1027         file_spec_list.Append (file_spec);
1028     }
1029     return file_spec_list;
1030 }
1031 
1032 uint32_t
1033 ObjectFileELF::GetDependentModules(FileSpecList &files)
1034 {
1035     size_t num_modules = ParseDependentModules();
1036     uint32_t num_specs = 0;
1037 
1038     for (unsigned i = 0; i < num_modules; ++i)
1039     {
1040         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1041             num_specs++;
1042     }
1043 
1044     return num_specs;
1045 }
1046 
1047 Address
1048 ObjectFileELF::GetImageInfoAddress(Target *target)
1049 {
1050     if (!ParseDynamicSymbols())
1051         return Address();
1052 
1053     SectionList *section_list = GetSectionList();
1054     if (!section_list)
1055         return Address();
1056 
1057     // Find the SHT_DYNAMIC (.dynamic) section.
1058     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1059     if (!dynsym_section_sp)
1060         return Address();
1061     assert (dynsym_section_sp->GetObjectFile() == this);
1062 
1063     user_id_t dynsym_id = dynsym_section_sp->GetID();
1064     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1065     if (!dynsym_hdr)
1066         return Address();
1067 
1068     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1069     {
1070         ELFDynamic &symbol = m_dynamic_symbols[i];
1071 
1072         if (symbol.d_tag == DT_DEBUG)
1073         {
1074             // Compute the offset as the number of previous entries plus the
1075             // size of d_tag.
1076             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1077             return Address(dynsym_section_sp, offset);
1078         }
1079         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1080         {
1081             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1082             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1083             if (dyn_base == LLDB_INVALID_ADDRESS)
1084                 return Address();
1085             Address addr;
1086             Error error;
1087             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1088                 return addr;
1089         }
1090     }
1091 
1092     return Address();
1093 }
1094 
1095 lldb_private::Address
1096 ObjectFileELF::GetEntryPointAddress ()
1097 {
1098     if (m_entry_point_address.IsValid())
1099         return m_entry_point_address;
1100 
1101     if (!ParseHeader() || !IsExecutable())
1102         return m_entry_point_address;
1103 
1104     SectionList *section_list = GetSectionList();
1105     addr_t offset = m_header.e_entry;
1106 
1107     if (!section_list)
1108         m_entry_point_address.SetOffset(offset);
1109     else
1110         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1111     return m_entry_point_address;
1112 }
1113 
1114 //----------------------------------------------------------------------
1115 // ParseDependentModules
1116 //----------------------------------------------------------------------
1117 size_t
1118 ObjectFileELF::ParseDependentModules()
1119 {
1120     if (m_filespec_ap.get())
1121         return m_filespec_ap->GetSize();
1122 
1123     m_filespec_ap.reset(new FileSpecList());
1124 
1125     if (!ParseSectionHeaders())
1126         return 0;
1127 
1128     SectionList *section_list = GetSectionList();
1129     if (!section_list)
1130         return 0;
1131 
1132     // Find the SHT_DYNAMIC section.
1133     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1134     if (!dynsym)
1135         return 0;
1136     assert (dynsym->GetObjectFile() == this);
1137 
1138     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1139     if (!header)
1140         return 0;
1141     // sh_link: section header index of string table used by entries in the section.
1142     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1143     if (!dynstr)
1144         return 0;
1145 
1146     DataExtractor dynsym_data;
1147     DataExtractor dynstr_data;
1148     if (ReadSectionData(dynsym, dynsym_data) &&
1149         ReadSectionData(dynstr, dynstr_data))
1150     {
1151         ELFDynamic symbol;
1152         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1153         lldb::offset_t offset = 0;
1154 
1155         // The only type of entries we are concerned with are tagged DT_NEEDED,
1156         // yielding the name of a required library.
1157         while (offset < section_size)
1158         {
1159             if (!symbol.Parse(dynsym_data, &offset))
1160                 break;
1161 
1162             if (symbol.d_tag != DT_NEEDED)
1163                 continue;
1164 
1165             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1166             const char *lib_name = dynstr_data.PeekCStr(str_index);
1167             m_filespec_ap->Append(FileSpec(lib_name, true));
1168         }
1169     }
1170 
1171     return m_filespec_ap->GetSize();
1172 }
1173 
1174 //----------------------------------------------------------------------
1175 // GetProgramHeaderInfo
1176 //----------------------------------------------------------------------
1177 size_t
1178 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1179                                     DataExtractor &object_data,
1180                                     const ELFHeader &header)
1181 {
1182     // We have already parsed the program headers
1183     if (!program_headers.empty())
1184         return program_headers.size();
1185 
1186     // If there are no program headers to read we are done.
1187     if (header.e_phnum == 0)
1188         return 0;
1189 
1190     program_headers.resize(header.e_phnum);
1191     if (program_headers.size() != header.e_phnum)
1192         return 0;
1193 
1194     const size_t ph_size = header.e_phnum * header.e_phentsize;
1195     const elf_off ph_offset = header.e_phoff;
1196     DataExtractor data;
1197     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1198         return 0;
1199 
1200     uint32_t idx;
1201     lldb::offset_t offset;
1202     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1203     {
1204         if (program_headers[idx].Parse(data, &offset) == false)
1205             break;
1206     }
1207 
1208     if (idx < program_headers.size())
1209         program_headers.resize(idx);
1210 
1211     return program_headers.size();
1212 
1213 }
1214 
1215 //----------------------------------------------------------------------
1216 // ParseProgramHeaders
1217 //----------------------------------------------------------------------
1218 size_t
1219 ObjectFileELF::ParseProgramHeaders()
1220 {
1221     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1222 }
1223 
1224 lldb_private::Error
1225 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1226 {
1227     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1228     Error error;
1229 
1230     lldb::offset_t offset = 0;
1231 
1232     while (true)
1233     {
1234         // Parse the note header.  If this fails, bail out.
1235         ELFNote note = ELFNote();
1236         if (!note.Parse(data, &offset))
1237         {
1238             // We're done.
1239             return error;
1240         }
1241 
1242         // If a tag processor handles the tag, it should set processed to true, and
1243         // the loop will assume the tag processing has moved entirely past the note's payload.
1244         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1245         bool processed = false;
1246 
1247         if (log)
1248             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1249 
1250         // Process FreeBSD ELF notes.
1251         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1252             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1253             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1254         {
1255             // We'll consume the payload below.
1256             processed = true;
1257 
1258             // Pull out the min version info.
1259             uint32_t version_info;
1260             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1261             {
1262                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1263                 return error;
1264             }
1265 
1266             // Convert the version info into a major/minor number.
1267             const uint32_t version_major = version_info / 100000;
1268             const uint32_t version_minor = (version_info / 1000) % 100;
1269 
1270             char os_name[32];
1271             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1272 
1273             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1274             arch_spec.GetTriple ().setOSName (os_name);
1275             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1276 
1277             if (log)
1278                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1279         }
1280         // Process GNU ELF notes.
1281         else if (note.n_name == LLDB_NT_OWNER_GNU)
1282         {
1283             switch (note.n_type)
1284             {
1285                 case LLDB_NT_GNU_ABI_TAG:
1286                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1287                     {
1288                         // We'll consume the payload below.
1289                         processed = true;
1290 
1291                         // Pull out the min OS version supporting the ABI.
1292                         uint32_t version_info[4];
1293                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1294                         {
1295                             error.SetErrorString ("failed to read GNU ABI note payload");
1296                             return error;
1297                         }
1298 
1299                         // Set the OS per the OS field.
1300                         switch (version_info[0])
1301                         {
1302                             case LLDB_NT_GNU_ABI_OS_LINUX:
1303                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1304                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1305                                 if (log)
1306                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1307                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1308                                 break;
1309                             case LLDB_NT_GNU_ABI_OS_HURD:
1310                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1311                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1312                                 if (log)
1313                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1314                                 break;
1315                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1316                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1317                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1318                                 if (log)
1319                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1320                                 break;
1321                             default:
1322                                 if (log)
1323                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1324                                 break;
1325                         }
1326                     }
1327                     break;
1328 
1329                 case LLDB_NT_GNU_BUILD_ID_TAG:
1330                     // Only bother processing this if we don't already have the uuid set.
1331                     if (!uuid.IsValid())
1332                     {
1333                         // We'll consume the payload below.
1334                         processed = true;
1335 
1336                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1337                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1338                         {
1339                             uint8_t uuidbuf[20];
1340                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1341                             {
1342                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1343                                 return error;
1344                             }
1345 
1346                             // Save the build id as the UUID for the module.
1347                             uuid.SetBytes (uuidbuf, note.n_descsz);
1348                         }
1349                     }
1350                     break;
1351             }
1352         }
1353         // Process NetBSD ELF notes.
1354         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1355                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1356                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1357         {
1358 
1359             // We'll consume the payload below.
1360             processed = true;
1361 
1362             // Pull out the min version info.
1363             uint32_t version_info;
1364             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1365             {
1366                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1367                 return error;
1368             }
1369 
1370             // Set the elf OS version to NetBSD.  Also clear the vendor.
1371             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1372             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1373 
1374             if (log)
1375                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1376         }
1377         // Process CSR kalimba notes
1378         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1379                 (note.n_name == LLDB_NT_OWNER_CSR))
1380         {
1381             // We'll consume the payload below.
1382             processed = true;
1383             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1384             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1385 
1386             // TODO At some point the description string could be processed.
1387             // It could provide a steer towards the kalimba variant which
1388             // this ELF targets.
1389             if(note.n_descsz)
1390             {
1391                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1392                 (void)cstr;
1393             }
1394         }
1395         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1396         {
1397             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1398             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1399         }
1400 
1401         if (!processed)
1402             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1403     }
1404 
1405     return error;
1406 }
1407 
1408 
1409 //----------------------------------------------------------------------
1410 // GetSectionHeaderInfo
1411 //----------------------------------------------------------------------
1412 size_t
1413 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1414                                     lldb_private::DataExtractor &object_data,
1415                                     const elf::ELFHeader &header,
1416                                     lldb_private::UUID &uuid,
1417                                     std::string &gnu_debuglink_file,
1418                                     uint32_t &gnu_debuglink_crc,
1419                                     ArchSpec &arch_spec)
1420 {
1421     // Don't reparse the section headers if we already did that.
1422     if (!section_headers.empty())
1423         return section_headers.size();
1424 
1425     // Only initialize the arch_spec to okay defaults if they're not already set.
1426     // We'll refine this with note data as we parse the notes.
1427     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1428     {
1429         llvm::Triple::OSType ostype;
1430         llvm::Triple::OSType spec_ostype;
1431         const uint32_t sub_type = subTypeFromElfHeader(header);
1432         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1433         //
1434         // Validate if it is ok to remove GetOsFromOSABI
1435         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1436         spec_ostype = arch_spec.GetTriple ().getOS ();
1437         assert(spec_ostype == ostype);
1438     }
1439 
1440     // If there are no section headers we are done.
1441     if (header.e_shnum == 0)
1442         return 0;
1443 
1444     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1445 
1446     section_headers.resize(header.e_shnum);
1447     if (section_headers.size() != header.e_shnum)
1448         return 0;
1449 
1450     const size_t sh_size = header.e_shnum * header.e_shentsize;
1451     const elf_off sh_offset = header.e_shoff;
1452     DataExtractor sh_data;
1453     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1454         return 0;
1455 
1456     uint32_t idx;
1457     lldb::offset_t offset;
1458     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1459     {
1460         if (section_headers[idx].Parse(sh_data, &offset) == false)
1461             break;
1462     }
1463     if (idx < section_headers.size())
1464         section_headers.resize(idx);
1465 
1466     const unsigned strtab_idx = header.e_shstrndx;
1467     if (strtab_idx && strtab_idx < section_headers.size())
1468     {
1469         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1470         const size_t byte_size = sheader.sh_size;
1471         const Elf64_Off offset = sheader.sh_offset;
1472         lldb_private::DataExtractor shstr_data;
1473 
1474         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1475         {
1476             for (SectionHeaderCollIter I = section_headers.begin();
1477                  I != section_headers.end(); ++I)
1478             {
1479                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1480                 const ELFSectionHeaderInfo &header = *I;
1481                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1482                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1483 
1484                 I->section_name = name;
1485 
1486                 if (name == g_sect_name_gnu_debuglink)
1487                 {
1488                     DataExtractor data;
1489                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1490                     {
1491                         lldb::offset_t gnu_debuglink_offset = 0;
1492                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1493                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1494                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1495                     }
1496                 }
1497 
1498                 // Process ELF note section entries.
1499                 bool is_note_header = (header.sh_type == SHT_NOTE);
1500 
1501                 // The section header ".note.android.ident" is stored as a
1502                 // PROGBITS type header but it is actually a note header.
1503                 static ConstString g_sect_name_android_ident (".note.android.ident");
1504                 if (!is_note_header && name == g_sect_name_android_ident)
1505                     is_note_header = true;
1506 
1507                 if (is_note_header)
1508                 {
1509                     // Allow notes to refine module info.
1510                     DataExtractor data;
1511                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1512                     {
1513                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1514                         if (error.Fail ())
1515                         {
1516                             if (log)
1517                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1518                         }
1519                     }
1520                 }
1521             }
1522 
1523             return section_headers.size();
1524         }
1525     }
1526 
1527     section_headers.clear();
1528     return 0;
1529 }
1530 
1531 size_t
1532 ObjectFileELF::GetProgramHeaderCount()
1533 {
1534     return ParseProgramHeaders();
1535 }
1536 
1537 const elf::ELFProgramHeader *
1538 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1539 {
1540     if (!id || !ParseProgramHeaders())
1541         return NULL;
1542 
1543     if (--id < m_program_headers.size())
1544         return &m_program_headers[id];
1545 
1546     return NULL;
1547 }
1548 
1549 DataExtractor
1550 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1551 {
1552     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1553     if (segment_header == NULL)
1554         return DataExtractor();
1555     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1556 }
1557 
1558 std::string
1559 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1560 {
1561     size_t pos = symbol_name.find('@');
1562     return symbol_name.substr(0, pos).str();
1563 }
1564 
1565 //----------------------------------------------------------------------
1566 // ParseSectionHeaders
1567 //----------------------------------------------------------------------
1568 size_t
1569 ObjectFileELF::ParseSectionHeaders()
1570 {
1571     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1572 }
1573 
1574 const ObjectFileELF::ELFSectionHeaderInfo *
1575 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1576 {
1577     if (!id || !ParseSectionHeaders())
1578         return NULL;
1579 
1580     if (--id < m_section_headers.size())
1581         return &m_section_headers[id];
1582 
1583     return NULL;
1584 }
1585 
1586 lldb::user_id_t
1587 ObjectFileELF::GetSectionIndexByName(const char* name)
1588 {
1589     if (!name || !name[0] || !ParseSectionHeaders())
1590         return 0;
1591     for (size_t i = 1; i < m_section_headers.size(); ++i)
1592         if (m_section_headers[i].section_name == ConstString(name))
1593             return i;
1594     return 0;
1595 }
1596 
1597 void
1598 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1599 {
1600     if (!m_sections_ap.get() && ParseSectionHeaders())
1601     {
1602         m_sections_ap.reset(new SectionList());
1603 
1604         for (SectionHeaderCollIter I = m_section_headers.begin();
1605              I != m_section_headers.end(); ++I)
1606         {
1607             const ELFSectionHeaderInfo &header = *I;
1608 
1609             ConstString& name = I->section_name;
1610             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1611             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1612 
1613             static ConstString g_sect_name_text (".text");
1614             static ConstString g_sect_name_data (".data");
1615             static ConstString g_sect_name_bss (".bss");
1616             static ConstString g_sect_name_tdata (".tdata");
1617             static ConstString g_sect_name_tbss (".tbss");
1618             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1619             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1620             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1621             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1622             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1623             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1624             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1625             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1626             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1627             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1628             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1629             static ConstString g_sect_name_eh_frame (".eh_frame");
1630 
1631             SectionType sect_type = eSectionTypeOther;
1632 
1633             bool is_thread_specific = false;
1634 
1635             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1636             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1637             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1638             else if (name == g_sect_name_tdata)
1639             {
1640                 sect_type = eSectionTypeData;
1641                 is_thread_specific = true;
1642             }
1643             else if (name == g_sect_name_tbss)
1644             {
1645                 sect_type = eSectionTypeZeroFill;
1646                 is_thread_specific = true;
1647             }
1648             // .debug_abbrev – Abbreviations used in the .debug_info section
1649             // .debug_aranges – Lookup table for mapping addresses to compilation units
1650             // .debug_frame – Call frame information
1651             // .debug_info – The core DWARF information section
1652             // .debug_line – Line number information
1653             // .debug_loc – Location lists used in DW_AT_location attributes
1654             // .debug_macinfo – Macro information
1655             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1656             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1657             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1658             // .debug_str – String table used in .debug_info
1659             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1660             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1661             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1662             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1663             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1664             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1665             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1666             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1667             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1668             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1669             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1670             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1671             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1672             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1673             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1674 
1675             switch (header.sh_type)
1676             {
1677                 case SHT_SYMTAB:
1678                     assert (sect_type == eSectionTypeOther);
1679                     sect_type = eSectionTypeELFSymbolTable;
1680                     break;
1681                 case SHT_DYNSYM:
1682                     assert (sect_type == eSectionTypeOther);
1683                     sect_type = eSectionTypeELFDynamicSymbols;
1684                     break;
1685                 case SHT_RELA:
1686                 case SHT_REL:
1687                     assert (sect_type == eSectionTypeOther);
1688                     sect_type = eSectionTypeELFRelocationEntries;
1689                     break;
1690                 case SHT_DYNAMIC:
1691                     assert (sect_type == eSectionTypeOther);
1692                     sect_type = eSectionTypeELFDynamicLinkInfo;
1693                     break;
1694             }
1695 
1696             if (eSectionTypeOther == sect_type)
1697             {
1698                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1699                 // supports linkscripts which (can) give rise to various arbitarily named
1700                 // sections being "Code" or "Data".
1701                 sect_type = kalimbaSectionType(m_header, header);
1702             }
1703 
1704             const uint32_t target_bytes_size =
1705                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1706                 m_arch_spec.GetDataByteSize() :
1707                     eSectionTypeCode == sect_type ?
1708                     m_arch_spec.GetCodeByteSize() : 1;
1709 
1710             elf::elf_xword log2align = (header.sh_addralign==0)
1711                                         ? 0
1712                                         : llvm::Log2_64(header.sh_addralign);
1713             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1714                                               this,               // ObjectFile to which this section belongs and should read section data from.
1715                                               SectionIndex(I),    // Section ID.
1716                                               name,               // Section name.
1717                                               sect_type,          // Section type.
1718                                               header.sh_addr,     // VM address.
1719                                               vm_size,            // VM size in bytes of this section.
1720                                               header.sh_offset,   // Offset of this section in the file.
1721                                               file_size,          // Size of the section as found in the file.
1722                                               log2align,          // Alignment of the section
1723                                               header.sh_flags,    // Flags for this section.
1724                                               target_bytes_size));// Number of host bytes per target byte
1725 
1726             if (is_thread_specific)
1727                 section_sp->SetIsThreadSpecific (is_thread_specific);
1728             m_sections_ap->AddSection(section_sp);
1729         }
1730     }
1731 
1732     if (m_sections_ap.get())
1733     {
1734         if (GetType() == eTypeDebugInfo)
1735         {
1736             static const SectionType g_sections[] =
1737             {
1738                 eSectionTypeDWARFDebugAranges,
1739                 eSectionTypeDWARFDebugInfo,
1740                 eSectionTypeDWARFDebugAbbrev,
1741                 eSectionTypeDWARFDebugFrame,
1742                 eSectionTypeDWARFDebugLine,
1743                 eSectionTypeDWARFDebugStr,
1744                 eSectionTypeDWARFDebugLoc,
1745                 eSectionTypeDWARFDebugMacInfo,
1746                 eSectionTypeDWARFDebugPubNames,
1747                 eSectionTypeDWARFDebugPubTypes,
1748                 eSectionTypeDWARFDebugRanges,
1749                 eSectionTypeELFSymbolTable,
1750             };
1751             SectionList *elf_section_list = m_sections_ap.get();
1752             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1753             {
1754                 SectionType section_type = g_sections[idx];
1755                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1756                 if (section_sp)
1757                 {
1758                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1759                     if (module_section_sp)
1760                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1761                     else
1762                         unified_section_list.AddSection (section_sp);
1763                 }
1764             }
1765         }
1766         else
1767         {
1768             unified_section_list = *m_sections_ap;
1769         }
1770     }
1771 }
1772 
1773 // private
1774 unsigned
1775 ObjectFileELF::ParseSymbols (Symtab *symtab,
1776                              user_id_t start_id,
1777                              SectionList *section_list,
1778                              const size_t num_symbols,
1779                              const DataExtractor &symtab_data,
1780                              const DataExtractor &strtab_data)
1781 {
1782     ELFSymbol symbol;
1783     lldb::offset_t offset = 0;
1784 
1785     static ConstString text_section_name(".text");
1786     static ConstString init_section_name(".init");
1787     static ConstString fini_section_name(".fini");
1788     static ConstString ctors_section_name(".ctors");
1789     static ConstString dtors_section_name(".dtors");
1790 
1791     static ConstString data_section_name(".data");
1792     static ConstString rodata_section_name(".rodata");
1793     static ConstString rodata1_section_name(".rodata1");
1794     static ConstString data2_section_name(".data1");
1795     static ConstString bss_section_name(".bss");
1796     static ConstString opd_section_name(".opd");    // For ppc64
1797 
1798     //StreamFile strm(stdout, false);
1799     unsigned i;
1800     for (i = 0; i < num_symbols; ++i)
1801     {
1802         if (symbol.Parse(symtab_data, &offset) == false)
1803             break;
1804 
1805         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1806 
1807         // No need to add non-section symbols that have no names
1808         if (symbol.getType() != STT_SECTION &&
1809             (symbol_name == NULL || symbol_name[0] == '\0'))
1810             continue;
1811 
1812         //symbol.Dump (&strm, i, &strtab_data, section_list);
1813 
1814         SectionSP symbol_section_sp;
1815         SymbolType symbol_type = eSymbolTypeInvalid;
1816         Elf64_Half symbol_idx = symbol.st_shndx;
1817 
1818         switch (symbol_idx)
1819         {
1820         case SHN_ABS:
1821             symbol_type = eSymbolTypeAbsolute;
1822             break;
1823         case SHN_UNDEF:
1824             symbol_type = eSymbolTypeUndefined;
1825             break;
1826         default:
1827             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1828             break;
1829         }
1830 
1831         // If a symbol is undefined do not process it further even if it has a STT type
1832         if (symbol_type != eSymbolTypeUndefined)
1833         {
1834             switch (symbol.getType())
1835             {
1836             default:
1837             case STT_NOTYPE:
1838                 // The symbol's type is not specified.
1839                 break;
1840 
1841             case STT_OBJECT:
1842                 // The symbol is associated with a data object, such as a variable,
1843                 // an array, etc.
1844                 symbol_type = eSymbolTypeData;
1845                 break;
1846 
1847             case STT_FUNC:
1848                 // The symbol is associated with a function or other executable code.
1849                 symbol_type = eSymbolTypeCode;
1850                 break;
1851 
1852             case STT_SECTION:
1853                 // The symbol is associated with a section. Symbol table entries of
1854                 // this type exist primarily for relocation and normally have
1855                 // STB_LOCAL binding.
1856                 break;
1857 
1858             case STT_FILE:
1859                 // Conventionally, the symbol's name gives the name of the source
1860                 // file associated with the object file. A file symbol has STB_LOCAL
1861                 // binding, its section index is SHN_ABS, and it precedes the other
1862                 // STB_LOCAL symbols for the file, if it is present.
1863                 symbol_type = eSymbolTypeSourceFile;
1864                 break;
1865 
1866             case STT_GNU_IFUNC:
1867                 // The symbol is associated with an indirect function. The actual
1868                 // function will be resolved if it is referenced.
1869                 symbol_type = eSymbolTypeResolver;
1870                 break;
1871             }
1872         }
1873 
1874         if (symbol_type == eSymbolTypeInvalid)
1875         {
1876             if (symbol_section_sp)
1877             {
1878                 const ConstString &sect_name = symbol_section_sp->GetName();
1879                 if (sect_name == text_section_name ||
1880                     sect_name == init_section_name ||
1881                     sect_name == fini_section_name ||
1882                     sect_name == ctors_section_name ||
1883                     sect_name == dtors_section_name)
1884                 {
1885                     symbol_type = eSymbolTypeCode;
1886                 }
1887                 else if (sect_name == data_section_name ||
1888                          sect_name == data2_section_name ||
1889                          sect_name == rodata_section_name ||
1890                          sect_name == rodata1_section_name ||
1891                          sect_name == bss_section_name)
1892                 {
1893                     symbol_type = eSymbolTypeData;
1894                 }
1895             }
1896         }
1897 
1898         int64_t symbol_value_offset = 0;
1899         uint32_t additional_flags = 0;
1900 
1901         ArchSpec arch;
1902         if (GetArchitecture(arch))
1903         {
1904             if (arch.GetMachine() == llvm::Triple::arm)
1905             {
1906                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1907                 {
1908                     // These are reserved for the specification (e.g.: mapping
1909                     // symbols). We don't want to add them to the symbol table.
1910 
1911                     if (symbol_type == eSymbolTypeCode)
1912                     {
1913                         llvm::StringRef symbol_name_ref(symbol_name);
1914                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1915                         {
1916                             // $a[.<any>]* - marks an ARM instruction sequence
1917                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1918                         }
1919                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1920                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1921                         {
1922                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1923                             // $t[.<any>]* - marks a THUMB instruction sequence
1924                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1925                         }
1926                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1927                         {
1928                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1929                             m_address_class_map[symbol.st_value] = eAddressClassData;
1930                         }
1931                     }
1932 
1933                     continue;
1934                 }
1935             }
1936             else if (arch.GetMachine() == llvm::Triple::aarch64)
1937             {
1938                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1939                 {
1940                     // These are reserved for the specification (e.g.: mapping
1941                     // symbols). We don't want to add them to the symbol table.
1942 
1943                     if (symbol_type == eSymbolTypeCode)
1944                     {
1945                         llvm::StringRef symbol_name_ref(symbol_name);
1946                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
1947                         {
1948                             // $x[.<any>]* - marks an A64 instruction sequence
1949                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1950                         }
1951                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1952                         {
1953                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1954                             m_address_class_map[symbol.st_value] = eAddressClassData;
1955                         }
1956                     }
1957 
1958                     continue;
1959                 }
1960             }
1961 
1962             if (arch.GetMachine() == llvm::Triple::arm)
1963             {
1964                 if (symbol_type == eSymbolTypeCode)
1965                 {
1966                     if (symbol.st_value & 1)
1967                     {
1968                         // Subtracting 1 from the address effectively unsets
1969                         // the low order bit, which results in the address
1970                         // actually pointing to the beginning of the symbol.
1971                         // This delta will be used below in conjunction with
1972                         // symbol.st_value to produce the final symbol_value
1973                         // that we store in the symtab.
1974                         symbol_value_offset = -1;
1975                         additional_flags = ARM_ELF_SYM_IS_THUMB;
1976                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
1977                     }
1978                     else
1979                     {
1980                         // This address is ARM
1981                         m_address_class_map[symbol.st_value] = eAddressClassCode;
1982                     }
1983                 }
1984             }
1985         }
1986 
1987         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
1988         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
1989         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
1990         {
1991             ModuleSP module_sp(GetModule());
1992             if (module_sp)
1993             {
1994                 SectionList *module_section_list = module_sp->GetSectionList();
1995                 if (module_section_list && module_section_list != section_list)
1996                 {
1997                     const ConstString &sect_name = symbol_section_sp->GetName();
1998                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
1999                     if (section_sp && section_sp->GetFileSize())
2000                     {
2001                         symbol_section_sp = section_sp;
2002                     }
2003                 }
2004             }
2005         }
2006 
2007         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2008         // THUMB symbols. See above for more details.
2009         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2010         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2011             symbol_value -= symbol_section_sp->GetFileAddress();
2012         bool is_global = symbol.getBinding() == STB_GLOBAL;
2013         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2014         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2015 
2016         llvm::StringRef symbol_ref(symbol_name);
2017 
2018         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2019         size_t version_pos = symbol_ref.find('@');
2020         bool has_suffix = version_pos != llvm::StringRef::npos;
2021         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2022         Mangled mangled(ConstString(symbol_bare), is_mangled);
2023 
2024         // Now append the suffix back to mangled and unmangled names. Only do it if the
2025         // demangling was sucessful (string is not empty).
2026         if (has_suffix)
2027         {
2028             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2029 
2030             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2031             if (! mangled_name.empty())
2032                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2033 
2034             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2035             llvm::StringRef demangled_name = demangled.GetStringRef();
2036             if (!demangled_name.empty())
2037                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2038         }
2039 
2040         Symbol dc_symbol(
2041             i + start_id,       // ID is the original symbol table index.
2042             mangled,
2043             symbol_type,        // Type of this symbol
2044             is_global,          // Is this globally visible?
2045             false,              // Is this symbol debug info?
2046             false,              // Is this symbol a trampoline?
2047             false,              // Is this symbol artificial?
2048             AddressRange(
2049                 symbol_section_sp,  // Section in which this symbol is defined or null.
2050                 symbol_value,       // Offset in section or symbol value.
2051                 symbol.st_size),    // Size in bytes of this symbol.
2052             symbol.st_size != 0,    // Size is valid if it is not 0
2053             has_suffix,             // Contains linker annotations?
2054             flags);                 // Symbol flags.
2055         symtab->AddSymbol(dc_symbol);
2056     }
2057     return i;
2058 }
2059 
2060 unsigned
2061 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2062 {
2063     if (symtab->GetObjectFile() != this)
2064     {
2065         // If the symbol table section is owned by a different object file, have it do the
2066         // parsing.
2067         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2068         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2069     }
2070 
2071     // Get section list for this object file.
2072     SectionList *section_list = m_sections_ap.get();
2073     if (!section_list)
2074         return 0;
2075 
2076     user_id_t symtab_id = symtab->GetID();
2077     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2078     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2079            symtab_hdr->sh_type == SHT_DYNSYM);
2080 
2081     // sh_link: section header index of associated string table.
2082     // Section ID's are ones based.
2083     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2084     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2085 
2086     if (symtab && strtab)
2087     {
2088         assert (symtab->GetObjectFile() == this);
2089         assert (strtab->GetObjectFile() == this);
2090 
2091         DataExtractor symtab_data;
2092         DataExtractor strtab_data;
2093         if (ReadSectionData(symtab, symtab_data) &&
2094             ReadSectionData(strtab, strtab_data))
2095         {
2096             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2097 
2098             return ParseSymbols(symbol_table, start_id, section_list,
2099                                 num_symbols, symtab_data, strtab_data);
2100         }
2101     }
2102 
2103     return 0;
2104 }
2105 
2106 size_t
2107 ObjectFileELF::ParseDynamicSymbols()
2108 {
2109     if (m_dynamic_symbols.size())
2110         return m_dynamic_symbols.size();
2111 
2112     SectionList *section_list = GetSectionList();
2113     if (!section_list)
2114         return 0;
2115 
2116     // Find the SHT_DYNAMIC section.
2117     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2118     if (!dynsym)
2119         return 0;
2120     assert (dynsym->GetObjectFile() == this);
2121 
2122     ELFDynamic symbol;
2123     DataExtractor dynsym_data;
2124     if (ReadSectionData(dynsym, dynsym_data))
2125     {
2126         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2127         lldb::offset_t cursor = 0;
2128 
2129         while (cursor < section_size)
2130         {
2131             if (!symbol.Parse(dynsym_data, &cursor))
2132                 break;
2133 
2134             m_dynamic_symbols.push_back(symbol);
2135         }
2136     }
2137 
2138     return m_dynamic_symbols.size();
2139 }
2140 
2141 const ELFDynamic *
2142 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2143 {
2144     if (!ParseDynamicSymbols())
2145         return NULL;
2146 
2147     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2148     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2149     for ( ; I != E; ++I)
2150     {
2151         ELFDynamic *symbol = &*I;
2152 
2153         if (symbol->d_tag == tag)
2154             return symbol;
2155     }
2156 
2157     return NULL;
2158 }
2159 
2160 unsigned
2161 ObjectFileELF::PLTRelocationType()
2162 {
2163     // DT_PLTREL
2164     //  This member specifies the type of relocation entry to which the
2165     //  procedure linkage table refers. The d_val member holds DT_REL or
2166     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2167     //  must use the same relocation.
2168     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2169 
2170     if (symbol)
2171         return symbol->d_val;
2172 
2173     return 0;
2174 }
2175 
2176 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2177 // 0th entry in the plt table is ususally a resolution entry which have different size in some
2178 // architectures then the rest of the plt entries.
2179 static std::pair<uint64_t, uint64_t>
2180 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2181 {
2182     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2183 
2184     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2185     // So round the entsize up by the alignment if addralign is set.
2186     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2187         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2188 
2189     if (plt_entsize == 0)
2190     {
2191         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2192         // entries based on the number of entries and the size of the plt section with the
2193         // asumption that the size of the 0th entry is at least as big as the size of the normal
2194         // entries and it isn't mutch bigger then that.
2195         if (plt_hdr->sh_addralign)
2196             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2197         else
2198             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2199     }
2200 
2201     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2202 
2203     return std::make_pair(plt_entsize, plt_offset);
2204 }
2205 
2206 static unsigned
2207 ParsePLTRelocations(Symtab *symbol_table,
2208                     user_id_t start_id,
2209                     unsigned rel_type,
2210                     const ELFHeader *hdr,
2211                     const ELFSectionHeader *rel_hdr,
2212                     const ELFSectionHeader *plt_hdr,
2213                     const ELFSectionHeader *sym_hdr,
2214                     const lldb::SectionSP &plt_section_sp,
2215                     DataExtractor &rel_data,
2216                     DataExtractor &symtab_data,
2217                     DataExtractor &strtab_data)
2218 {
2219     ELFRelocation rel(rel_type);
2220     ELFSymbol symbol;
2221     lldb::offset_t offset = 0;
2222 
2223     uint64_t plt_offset, plt_entsize;
2224     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2225     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2226 
2227     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2228     reloc_info_fn reloc_type;
2229     reloc_info_fn reloc_symbol;
2230 
2231     if (hdr->Is32Bit())
2232     {
2233         reloc_type = ELFRelocation::RelocType32;
2234         reloc_symbol = ELFRelocation::RelocSymbol32;
2235     }
2236     else
2237     {
2238         reloc_type = ELFRelocation::RelocType64;
2239         reloc_symbol = ELFRelocation::RelocSymbol64;
2240     }
2241 
2242     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2243     unsigned i;
2244     for (i = 0; i < num_relocations; ++i)
2245     {
2246         if (rel.Parse(rel_data, &offset) == false)
2247             break;
2248 
2249         if (reloc_type(rel) != slot_type)
2250             continue;
2251 
2252         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2253         if (!symbol.Parse(symtab_data, &symbol_offset))
2254             break;
2255 
2256         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2257         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2258         uint64_t plt_index = plt_offset + i * plt_entsize;
2259 
2260         Symbol jump_symbol(
2261             i + start_id,    // Symbol table index
2262             symbol_name,     // symbol name.
2263             is_mangled,      // is the symbol name mangled?
2264             eSymbolTypeTrampoline, // Type of this symbol
2265             false,           // Is this globally visible?
2266             false,           // Is this symbol debug info?
2267             true,            // Is this symbol a trampoline?
2268             true,            // Is this symbol artificial?
2269             plt_section_sp,  // Section in which this symbol is defined or null.
2270             plt_index,       // Offset in section or symbol value.
2271             plt_entsize,     // Size in bytes of this symbol.
2272             true,            // Size is valid
2273             false,           // Contains linker annotations?
2274             0);              // Symbol flags.
2275 
2276         symbol_table->AddSymbol(jump_symbol);
2277     }
2278 
2279     return i;
2280 }
2281 
2282 unsigned
2283 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2284                                       user_id_t start_id,
2285                                       const ELFSectionHeaderInfo *rel_hdr,
2286                                       user_id_t rel_id)
2287 {
2288     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2289 
2290     // The link field points to the associated symbol table. The info field
2291     // points to the section holding the plt.
2292     user_id_t symtab_id = rel_hdr->sh_link;
2293     user_id_t plt_id = rel_hdr->sh_info;
2294 
2295     // If the link field doesn't point to the appropriate symbol name table then
2296     // try to find it by name as some compiler don't fill in the link fields.
2297     if (!symtab_id)
2298         symtab_id = GetSectionIndexByName(".dynsym");
2299     if (!plt_id)
2300         plt_id = GetSectionIndexByName(".plt");
2301 
2302     if (!symtab_id || !plt_id)
2303         return 0;
2304 
2305     // Section ID's are ones based;
2306     symtab_id++;
2307     plt_id++;
2308 
2309     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2310     if (!plt_hdr)
2311         return 0;
2312 
2313     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2314     if (!sym_hdr)
2315         return 0;
2316 
2317     SectionList *section_list = m_sections_ap.get();
2318     if (!section_list)
2319         return 0;
2320 
2321     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2322     if (!rel_section)
2323         return 0;
2324 
2325     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2326     if (!plt_section_sp)
2327         return 0;
2328 
2329     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2330     if (!symtab)
2331         return 0;
2332 
2333     // sh_link points to associated string table.
2334     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2335     if (!strtab)
2336         return 0;
2337 
2338     DataExtractor rel_data;
2339     if (!ReadSectionData(rel_section, rel_data))
2340         return 0;
2341 
2342     DataExtractor symtab_data;
2343     if (!ReadSectionData(symtab, symtab_data))
2344         return 0;
2345 
2346     DataExtractor strtab_data;
2347     if (!ReadSectionData(strtab, strtab_data))
2348         return 0;
2349 
2350     unsigned rel_type = PLTRelocationType();
2351     if (!rel_type)
2352         return 0;
2353 
2354     return ParsePLTRelocations (symbol_table,
2355                                 start_id,
2356                                 rel_type,
2357                                 &m_header,
2358                                 rel_hdr,
2359                                 plt_hdr,
2360                                 sym_hdr,
2361                                 plt_section_sp,
2362                                 rel_data,
2363                                 symtab_data,
2364                                 strtab_data);
2365 }
2366 
2367 unsigned
2368 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2369                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2370                 DataExtractor &rel_data, DataExtractor &symtab_data,
2371                 DataExtractor &debug_data, Section* rel_section)
2372 {
2373     ELFRelocation rel(rel_hdr->sh_type);
2374     lldb::addr_t offset = 0;
2375     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2376     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2377     reloc_info_fn reloc_type;
2378     reloc_info_fn reloc_symbol;
2379 
2380     if (hdr->Is32Bit())
2381     {
2382         reloc_type = ELFRelocation::RelocType32;
2383         reloc_symbol = ELFRelocation::RelocSymbol32;
2384     }
2385     else
2386     {
2387         reloc_type = ELFRelocation::RelocType64;
2388         reloc_symbol = ELFRelocation::RelocSymbol64;
2389     }
2390 
2391     for (unsigned i = 0; i < num_relocations; ++i)
2392     {
2393         if (rel.Parse(rel_data, &offset) == false)
2394             break;
2395 
2396         Symbol* symbol = NULL;
2397 
2398         if (hdr->Is32Bit())
2399         {
2400             switch (reloc_type(rel)) {
2401             case R_386_32:
2402             case R_386_PC32:
2403             default:
2404                 assert(false && "unexpected relocation type");
2405             }
2406         } else {
2407             switch (reloc_type(rel)) {
2408             case R_X86_64_64:
2409             {
2410                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2411                 if (symbol)
2412                 {
2413                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2414                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2415                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2416                     *dst = value + ELFRelocation::RelocAddend64(rel);
2417                 }
2418                 break;
2419             }
2420             case R_X86_64_32:
2421             case R_X86_64_32S:
2422             {
2423                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2424                 if (symbol)
2425                 {
2426                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2427                     value += ELFRelocation::RelocAddend32(rel);
2428                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2429                            (reloc_type(rel) == R_X86_64_32S &&
2430                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2431                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2432                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2433                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2434                     *dst = truncated_addr;
2435                 }
2436                 break;
2437             }
2438             case R_X86_64_PC32:
2439             default:
2440                 assert(false && "unexpected relocation type");
2441             }
2442         }
2443     }
2444 
2445     return 0;
2446 }
2447 
2448 unsigned
2449 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2450 {
2451     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2452 
2453     // Parse in the section list if needed.
2454     SectionList *section_list = GetSectionList();
2455     if (!section_list)
2456         return 0;
2457 
2458     // Section ID's are ones based.
2459     user_id_t symtab_id = rel_hdr->sh_link + 1;
2460     user_id_t debug_id = rel_hdr->sh_info + 1;
2461 
2462     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2463     if (!symtab_hdr)
2464         return 0;
2465 
2466     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2467     if (!debug_hdr)
2468         return 0;
2469 
2470     Section *rel = section_list->FindSectionByID(rel_id).get();
2471     if (!rel)
2472         return 0;
2473 
2474     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2475     if (!symtab)
2476         return 0;
2477 
2478     Section *debug = section_list->FindSectionByID(debug_id).get();
2479     if (!debug)
2480         return 0;
2481 
2482     DataExtractor rel_data;
2483     DataExtractor symtab_data;
2484     DataExtractor debug_data;
2485 
2486     if (ReadSectionData(rel, rel_data) &&
2487         ReadSectionData(symtab, symtab_data) &&
2488         ReadSectionData(debug, debug_data))
2489     {
2490         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2491                         rel_data, symtab_data, debug_data, debug);
2492     }
2493 
2494     return 0;
2495 }
2496 
2497 Symtab *
2498 ObjectFileELF::GetSymtab()
2499 {
2500     ModuleSP module_sp(GetModule());
2501     if (!module_sp)
2502         return NULL;
2503 
2504     // We always want to use the main object file so we (hopefully) only have one cached copy
2505     // of our symtab, dynamic sections, etc.
2506     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2507     if (module_obj_file && module_obj_file != this)
2508         return module_obj_file->GetSymtab();
2509 
2510     if (m_symtab_ap.get() == NULL)
2511     {
2512         SectionList *section_list = module_sp->GetSectionList();
2513         if (!section_list)
2514             return NULL;
2515 
2516         uint64_t symbol_id = 0;
2517         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2518 
2519         m_symtab_ap.reset(new Symtab(this));
2520 
2521         // Sharable objects and dynamic executables usually have 2 distinct symbol
2522         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2523         // version of the symtab that only contains global symbols. The information found
2524         // in the dynsym is therefore also found in the symtab, while the reverse is not
2525         // necessarily true.
2526         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2527         if (!symtab)
2528         {
2529             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2530             // then use the dynsym section which should always be there.
2531             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2532         }
2533         if (symtab)
2534             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2535 
2536         // DT_JMPREL
2537         //      If present, this entry's d_ptr member holds the address of relocation
2538         //      entries associated solely with the procedure linkage table. Separating
2539         //      these relocation entries lets the dynamic linker ignore them during
2540         //      process initialization, if lazy binding is enabled. If this entry is
2541         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2542         //      also be present.
2543         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2544         if (symbol)
2545         {
2546             // Synthesize trampoline symbols to help navigate the PLT.
2547             addr_t addr = symbol->d_ptr;
2548             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2549             if (reloc_section)
2550             {
2551                 user_id_t reloc_id = reloc_section->GetID();
2552                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2553                 assert(reloc_header);
2554 
2555                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2556             }
2557         }
2558         m_symtab_ap->CalculateSymbolSizes();
2559     }
2560 
2561     for (SectionHeaderCollIter I = m_section_headers.begin();
2562          I != m_section_headers.end(); ++I)
2563     {
2564         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2565         {
2566             if (CalculateType() == eTypeObjectFile)
2567             {
2568                 const char *section_name = I->section_name.AsCString("");
2569                 if (strstr(section_name, ".rela.debug") ||
2570                     strstr(section_name, ".rel.debug"))
2571                 {
2572                     const ELFSectionHeader &reloc_header = *I;
2573                     user_id_t reloc_id = SectionIndex(I);
2574                     RelocateDebugSections(&reloc_header, reloc_id);
2575                 }
2576             }
2577         }
2578     }
2579     return m_symtab_ap.get();
2580 }
2581 
2582 Symbol *
2583 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2584 {
2585     if (!m_symtab_ap.get())
2586         return nullptr; // GetSymtab() should be called first.
2587 
2588     const SectionList *section_list = GetSectionList();
2589     if (!section_list)
2590         return nullptr;
2591 
2592     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2593     {
2594         AddressRange range;
2595         if (eh_frame->GetAddressRange (so_addr, range))
2596         {
2597             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2598             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2599             if (symbol)
2600                 return symbol;
2601 
2602             // Note that a (stripped) symbol won't be found by GetSymtab()...
2603             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2604             if (eh_sym_section_sp.get())
2605             {
2606                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2607                 addr_t offset = file_addr - section_base;
2608                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2609 
2610                 Symbol eh_symbol(
2611                         symbol_id,            // Symbol table index.
2612                         "???",                // Symbol name.
2613                         false,                // Is the symbol name mangled?
2614                         eSymbolTypeCode,      // Type of this symbol.
2615                         true,                 // Is this globally visible?
2616                         false,                // Is this symbol debug info?
2617                         false,                // Is this symbol a trampoline?
2618                         true,                 // Is this symbol artificial?
2619                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2620                         offset,               // Offset in section or symbol value.
2621                         range.GetByteSize(),  // Size in bytes of this symbol.
2622                         true,                 // Size is valid.
2623                         false,                // Contains linker annotations?
2624                         0);                   // Symbol flags.
2625                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2626                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2627             }
2628         }
2629     }
2630     return nullptr;
2631 }
2632 
2633 
2634 bool
2635 ObjectFileELF::IsStripped ()
2636 {
2637     // TODO: determine this for ELF
2638     return false;
2639 }
2640 
2641 //===----------------------------------------------------------------------===//
2642 // Dump
2643 //
2644 // Dump the specifics of the runtime file container (such as any headers
2645 // segments, sections, etc).
2646 //----------------------------------------------------------------------
2647 void
2648 ObjectFileELF::Dump(Stream *s)
2649 {
2650     DumpELFHeader(s, m_header);
2651     s->EOL();
2652     DumpELFProgramHeaders(s);
2653     s->EOL();
2654     DumpELFSectionHeaders(s);
2655     s->EOL();
2656     SectionList *section_list = GetSectionList();
2657     if (section_list)
2658         section_list->Dump(s, NULL, true, UINT32_MAX);
2659     Symtab *symtab = GetSymtab();
2660     if (symtab)
2661         symtab->Dump(s, NULL, eSortOrderNone);
2662     s->EOL();
2663     DumpDependentModules(s);
2664     s->EOL();
2665 }
2666 
2667 //----------------------------------------------------------------------
2668 // DumpELFHeader
2669 //
2670 // Dump the ELF header to the specified output stream
2671 //----------------------------------------------------------------------
2672 void
2673 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2674 {
2675     s->PutCString("ELF Header\n");
2676     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2677     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2678               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2679     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2680               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2681     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2682               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2683 
2684     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2685     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2686     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2687     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2688     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2689 
2690     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2691     DumpELFHeader_e_type(s, header.e_type);
2692     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2693     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2694     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2695     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2696     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2697     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2698     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2699     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2700     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2701     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2702     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2703     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2704 }
2705 
2706 //----------------------------------------------------------------------
2707 // DumpELFHeader_e_type
2708 //
2709 // Dump an token value for the ELF header member e_type
2710 //----------------------------------------------------------------------
2711 void
2712 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2713 {
2714     switch (e_type)
2715     {
2716     case ET_NONE:   *s << "ET_NONE"; break;
2717     case ET_REL:    *s << "ET_REL"; break;
2718     case ET_EXEC:   *s << "ET_EXEC"; break;
2719     case ET_DYN:    *s << "ET_DYN"; break;
2720     case ET_CORE:   *s << "ET_CORE"; break;
2721     default:
2722         break;
2723     }
2724 }
2725 
2726 //----------------------------------------------------------------------
2727 // DumpELFHeader_e_ident_EI_DATA
2728 //
2729 // Dump an token value for the ELF header member e_ident[EI_DATA]
2730 //----------------------------------------------------------------------
2731 void
2732 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2733 {
2734     switch (ei_data)
2735     {
2736     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2737     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2738     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2739     default:
2740         break;
2741     }
2742 }
2743 
2744 
2745 //----------------------------------------------------------------------
2746 // DumpELFProgramHeader
2747 //
2748 // Dump a single ELF program header to the specified output stream
2749 //----------------------------------------------------------------------
2750 void
2751 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2752 {
2753     DumpELFProgramHeader_p_type(s, ph.p_type);
2754     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2755     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2756 
2757     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2758     s->Printf(") %8.8" PRIx64, ph.p_align);
2759 }
2760 
2761 //----------------------------------------------------------------------
2762 // DumpELFProgramHeader_p_type
2763 //
2764 // Dump an token value for the ELF program header member p_type which
2765 // describes the type of the program header
2766 // ----------------------------------------------------------------------
2767 void
2768 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2769 {
2770     const int kStrWidth = 15;
2771     switch (p_type)
2772     {
2773     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2774     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2775     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2776     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2777     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2778     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2779     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2780     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2781     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2782     default:
2783         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2784         break;
2785     }
2786 }
2787 
2788 
2789 //----------------------------------------------------------------------
2790 // DumpELFProgramHeader_p_flags
2791 //
2792 // Dump an token value for the ELF program header member p_flags
2793 //----------------------------------------------------------------------
2794 void
2795 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2796 {
2797     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2798         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2799         << ((p_flags & PF_W) ? "PF_W" : "    ")
2800         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2801         << ((p_flags & PF_R) ? "PF_R" : "    ");
2802 }
2803 
2804 //----------------------------------------------------------------------
2805 // DumpELFProgramHeaders
2806 //
2807 // Dump all of the ELF program header to the specified output stream
2808 //----------------------------------------------------------------------
2809 void
2810 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2811 {
2812     if (!ParseProgramHeaders())
2813         return;
2814 
2815     s->PutCString("Program Headers\n");
2816     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2817                   "p_filesz p_memsz  p_flags                   p_align\n");
2818     s->PutCString("==== --------------- -------- -------- -------- "
2819                   "-------- -------- ------------------------- --------\n");
2820 
2821     uint32_t idx = 0;
2822     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2823          I != m_program_headers.end(); ++I, ++idx)
2824     {
2825         s->Printf("[%2u] ", idx);
2826         ObjectFileELF::DumpELFProgramHeader(s, *I);
2827         s->EOL();
2828     }
2829 }
2830 
2831 //----------------------------------------------------------------------
2832 // DumpELFSectionHeader
2833 //
2834 // Dump a single ELF section header to the specified output stream
2835 //----------------------------------------------------------------------
2836 void
2837 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2838 {
2839     s->Printf("%8.8x ", sh.sh_name);
2840     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2841     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2842     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2843     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2844     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2845     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2846 }
2847 
2848 //----------------------------------------------------------------------
2849 // DumpELFSectionHeader_sh_type
2850 //
2851 // Dump an token value for the ELF section header member sh_type which
2852 // describes the type of the section
2853 //----------------------------------------------------------------------
2854 void
2855 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2856 {
2857     const int kStrWidth = 12;
2858     switch (sh_type)
2859     {
2860     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2861     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2862     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2863     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2864     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2865     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2866     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2867     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2868     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2869     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2870     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2871     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2872     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2873     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2874     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2875     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2876     default:
2877         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2878         break;
2879     }
2880 }
2881 
2882 //----------------------------------------------------------------------
2883 // DumpELFSectionHeader_sh_flags
2884 //
2885 // Dump an token value for the ELF section header member sh_flags
2886 //----------------------------------------------------------------------
2887 void
2888 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2889 {
2890     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2891         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2892         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2893         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2894         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2895 }
2896 
2897 //----------------------------------------------------------------------
2898 // DumpELFSectionHeaders
2899 //
2900 // Dump all of the ELF section header to the specified output stream
2901 //----------------------------------------------------------------------
2902 void
2903 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2904 {
2905     if (!ParseSectionHeaders())
2906         return;
2907 
2908     s->PutCString("Section Headers\n");
2909     s->PutCString("IDX  name     type         flags                            "
2910                   "addr     offset   size     link     info     addralgn "
2911                   "entsize  Name\n");
2912     s->PutCString("==== -------- ------------ -------------------------------- "
2913                   "-------- -------- -------- -------- -------- -------- "
2914                   "-------- ====================\n");
2915 
2916     uint32_t idx = 0;
2917     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2918          I != m_section_headers.end(); ++I, ++idx)
2919     {
2920         s->Printf("[%2u] ", idx);
2921         ObjectFileELF::DumpELFSectionHeader(s, *I);
2922         const char* section_name = I->section_name.AsCString("");
2923         if (section_name)
2924             *s << ' ' << section_name << "\n";
2925     }
2926 }
2927 
2928 void
2929 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2930 {
2931     size_t num_modules = ParseDependentModules();
2932 
2933     if (num_modules > 0)
2934     {
2935         s->PutCString("Dependent Modules:\n");
2936         for (unsigned i = 0; i < num_modules; ++i)
2937         {
2938             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2939             s->Printf("   %s\n", spec.GetFilename().GetCString());
2940         }
2941     }
2942 }
2943 
2944 bool
2945 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2946 {
2947     if (!ParseHeader())
2948         return false;
2949 
2950     if (m_section_headers.empty())
2951     {
2952         // Allow elf notes to be parsed which may affect the detected architecture.
2953         ParseSectionHeaders();
2954     }
2955 
2956     arch = m_arch_spec;
2957     return true;
2958 }
2959 
2960 ObjectFile::Type
2961 ObjectFileELF::CalculateType()
2962 {
2963     switch (m_header.e_type)
2964     {
2965         case llvm::ELF::ET_NONE:
2966             // 0 - No file type
2967             return eTypeUnknown;
2968 
2969         case llvm::ELF::ET_REL:
2970             // 1 - Relocatable file
2971             return eTypeObjectFile;
2972 
2973         case llvm::ELF::ET_EXEC:
2974             // 2 - Executable file
2975             return eTypeExecutable;
2976 
2977         case llvm::ELF::ET_DYN:
2978             // 3 - Shared object file
2979             return eTypeSharedLibrary;
2980 
2981         case ET_CORE:
2982             // 4 - Core file
2983             return eTypeCoreFile;
2984 
2985         default:
2986             break;
2987     }
2988     return eTypeUnknown;
2989 }
2990 
2991 ObjectFile::Strata
2992 ObjectFileELF::CalculateStrata()
2993 {
2994     switch (m_header.e_type)
2995     {
2996         case llvm::ELF::ET_NONE:
2997             // 0 - No file type
2998             return eStrataUnknown;
2999 
3000         case llvm::ELF::ET_REL:
3001             // 1 - Relocatable file
3002             return eStrataUnknown;
3003 
3004         case llvm::ELF::ET_EXEC:
3005             // 2 - Executable file
3006             // TODO: is there any way to detect that an executable is a kernel
3007             // related executable by inspecting the program headers, section
3008             // headers, symbols, or any other flag bits???
3009             return eStrataUser;
3010 
3011         case llvm::ELF::ET_DYN:
3012             // 3 - Shared object file
3013             // TODO: is there any way to detect that an shared library is a kernel
3014             // related executable by inspecting the program headers, section
3015             // headers, symbols, or any other flag bits???
3016             return eStrataUnknown;
3017 
3018         case ET_CORE:
3019             // 4 - Core file
3020             // TODO: is there any way to detect that an core file is a kernel
3021             // related executable by inspecting the program headers, section
3022             // headers, symbols, or any other flag bits???
3023             return eStrataUnknown;
3024 
3025         default:
3026             break;
3027     }
3028     return eStrataUnknown;
3029 }
3030 
3031