xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision d00438e8f0d6c98e56b01c26147cb3d79df46ccb)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (value_is_offset)
851             {
852                 const size_t num_sections = section_list->GetSize();
853                 size_t sect_idx = 0;
854 
855                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
856                 {
857                     // Iterate through the object file sections to find all
858                     // of the sections that have SHF_ALLOC in their flag bits.
859                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
860                     // if (section_sp && !section_sp->IsThreadSpecific())
861                     if (section_sp && section_sp->Test(SHF_ALLOC))
862                     {
863                         lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
864 
865                         // On 32-bit systems the load address have to fit into 4 bytes. The rest of
866                         // the bytes are the overflow from the addition.
867                         if (GetAddressByteSize() == 4)
868                             load_addr &= 0xFFFFFFFF;
869 
870                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
871                             ++num_loaded_sections;
872                     }
873                 }
874                 return num_loaded_sections > 0;
875             }
876             else
877             {
878                 // Not sure how to slide an ELF file given the base address
879                 // of the ELF file in memory
880             }
881         }
882     }
883     return false; // If it changed
884 }
885 
886 ByteOrder
887 ObjectFileELF::GetByteOrder() const
888 {
889     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
890         return eByteOrderBig;
891     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
892         return eByteOrderLittle;
893     return eByteOrderInvalid;
894 }
895 
896 uint32_t
897 ObjectFileELF::GetAddressByteSize() const
898 {
899     return m_data.GetAddressByteSize();
900 }
901 
902 // Top 16 bits of the `Symbol` flags are available.
903 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
904 
905 AddressClass
906 ObjectFileELF::GetAddressClass (addr_t file_addr)
907 {
908     Symtab* symtab = GetSymtab();
909     if (!symtab)
910         return eAddressClassUnknown;
911 
912     // The address class is determined based on the symtab. Ask it from the object file what
913     // contains the symtab information.
914     ObjectFile* symtab_objfile = symtab->GetObjectFile();
915     if (symtab_objfile != nullptr && symtab_objfile != this)
916         return symtab_objfile->GetAddressClass(file_addr);
917 
918     auto res = ObjectFile::GetAddressClass (file_addr);
919     if (res != eAddressClassCode)
920         return res;
921 
922     auto ub = m_address_class_map.upper_bound(file_addr);
923     if (ub == m_address_class_map.begin())
924     {
925         // No entry in the address class map before the address. Return
926         // default address class for an address in a code section.
927         return eAddressClassCode;
928     }
929 
930     // Move iterator to the address class entry preceding address
931     --ub;
932 
933     return ub->second;
934 }
935 
936 size_t
937 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
938 {
939     return std::distance(m_section_headers.begin(), I) + 1u;
940 }
941 
942 size_t
943 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
944 {
945     return std::distance(m_section_headers.begin(), I) + 1u;
946 }
947 
948 bool
949 ObjectFileELF::ParseHeader()
950 {
951     lldb::offset_t offset = 0;
952     if (!m_header.Parse(m_data, &offset))
953         return false;
954 
955     if (!IsInMemory())
956         return true;
957 
958     // For in memory object files m_data might not contain the full object file. Try to load it
959     // until the end of the "Section header table" what is at the end of the ELF file.
960     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
961     if (m_data.GetByteSize() < file_size)
962     {
963         ProcessSP process_sp (m_process_wp.lock());
964         if (!process_sp)
965             return false;
966 
967         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
968         if (!data_sp)
969             return false;
970         m_data.SetData(data_sp, 0, file_size);
971     }
972 
973     return true;
974 }
975 
976 bool
977 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
978 {
979     // Need to parse the section list to get the UUIDs, so make sure that's been done.
980     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
981         return false;
982 
983     if (m_uuid.IsValid())
984     {
985         // We have the full build id uuid.
986         *uuid = m_uuid;
987         return true;
988     }
989     else if (GetType() == ObjectFile::eTypeCoreFile)
990     {
991         uint32_t core_notes_crc = 0;
992 
993         if (!ParseProgramHeaders())
994             return false;
995 
996         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
997 
998         if (core_notes_crc)
999         {
1000             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
1001             // look different form .gnu_debuglink crc - followed by 4 bytes of note
1002             // segments crc.
1003             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
1004             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1005         }
1006     }
1007     else
1008     {
1009         if (!m_gnu_debuglink_crc)
1010             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1011         if (m_gnu_debuglink_crc)
1012         {
1013             // Use 4 bytes of crc from the .gnu_debuglink section.
1014             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1015             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1016         }
1017     }
1018 
1019     if (m_uuid.IsValid())
1020     {
1021         *uuid = m_uuid;
1022         return true;
1023     }
1024 
1025     return false;
1026 }
1027 
1028 lldb_private::FileSpecList
1029 ObjectFileELF::GetDebugSymbolFilePaths()
1030 {
1031     FileSpecList file_spec_list;
1032 
1033     if (!m_gnu_debuglink_file.empty())
1034     {
1035         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1036         file_spec_list.Append (file_spec);
1037     }
1038     return file_spec_list;
1039 }
1040 
1041 uint32_t
1042 ObjectFileELF::GetDependentModules(FileSpecList &files)
1043 {
1044     size_t num_modules = ParseDependentModules();
1045     uint32_t num_specs = 0;
1046 
1047     for (unsigned i = 0; i < num_modules; ++i)
1048     {
1049         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1050             num_specs++;
1051     }
1052 
1053     return num_specs;
1054 }
1055 
1056 Address
1057 ObjectFileELF::GetImageInfoAddress(Target *target)
1058 {
1059     if (!ParseDynamicSymbols())
1060         return Address();
1061 
1062     SectionList *section_list = GetSectionList();
1063     if (!section_list)
1064         return Address();
1065 
1066     // Find the SHT_DYNAMIC (.dynamic) section.
1067     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1068     if (!dynsym_section_sp)
1069         return Address();
1070     assert (dynsym_section_sp->GetObjectFile() == this);
1071 
1072     user_id_t dynsym_id = dynsym_section_sp->GetID();
1073     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1074     if (!dynsym_hdr)
1075         return Address();
1076 
1077     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1078     {
1079         ELFDynamic &symbol = m_dynamic_symbols[i];
1080 
1081         if (symbol.d_tag == DT_DEBUG)
1082         {
1083             // Compute the offset as the number of previous entries plus the
1084             // size of d_tag.
1085             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1086             return Address(dynsym_section_sp, offset);
1087         }
1088         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1089         {
1090             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1091             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1092             if (dyn_base == LLDB_INVALID_ADDRESS)
1093                 return Address();
1094             Address addr;
1095             Error error;
1096             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1097                 return addr;
1098         }
1099     }
1100 
1101     return Address();
1102 }
1103 
1104 lldb_private::Address
1105 ObjectFileELF::GetEntryPointAddress ()
1106 {
1107     if (m_entry_point_address.IsValid())
1108         return m_entry_point_address;
1109 
1110     if (!ParseHeader() || !IsExecutable())
1111         return m_entry_point_address;
1112 
1113     SectionList *section_list = GetSectionList();
1114     addr_t offset = m_header.e_entry;
1115 
1116     if (!section_list)
1117         m_entry_point_address.SetOffset(offset);
1118     else
1119         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1120     return m_entry_point_address;
1121 }
1122 
1123 //----------------------------------------------------------------------
1124 // ParseDependentModules
1125 //----------------------------------------------------------------------
1126 size_t
1127 ObjectFileELF::ParseDependentModules()
1128 {
1129     if (m_filespec_ap.get())
1130         return m_filespec_ap->GetSize();
1131 
1132     m_filespec_ap.reset(new FileSpecList());
1133 
1134     if (!ParseSectionHeaders())
1135         return 0;
1136 
1137     SectionList *section_list = GetSectionList();
1138     if (!section_list)
1139         return 0;
1140 
1141     // Find the SHT_DYNAMIC section.
1142     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1143     if (!dynsym)
1144         return 0;
1145     assert (dynsym->GetObjectFile() == this);
1146 
1147     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1148     if (!header)
1149         return 0;
1150     // sh_link: section header index of string table used by entries in the section.
1151     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1152     if (!dynstr)
1153         return 0;
1154 
1155     DataExtractor dynsym_data;
1156     DataExtractor dynstr_data;
1157     if (ReadSectionData(dynsym, dynsym_data) &&
1158         ReadSectionData(dynstr, dynstr_data))
1159     {
1160         ELFDynamic symbol;
1161         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1162         lldb::offset_t offset = 0;
1163 
1164         // The only type of entries we are concerned with are tagged DT_NEEDED,
1165         // yielding the name of a required library.
1166         while (offset < section_size)
1167         {
1168             if (!symbol.Parse(dynsym_data, &offset))
1169                 break;
1170 
1171             if (symbol.d_tag != DT_NEEDED)
1172                 continue;
1173 
1174             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1175             const char *lib_name = dynstr_data.PeekCStr(str_index);
1176             m_filespec_ap->Append(FileSpec(lib_name, true));
1177         }
1178     }
1179 
1180     return m_filespec_ap->GetSize();
1181 }
1182 
1183 //----------------------------------------------------------------------
1184 // GetProgramHeaderInfo
1185 //----------------------------------------------------------------------
1186 size_t
1187 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1188                                     DataExtractor &object_data,
1189                                     const ELFHeader &header)
1190 {
1191     // We have already parsed the program headers
1192     if (!program_headers.empty())
1193         return program_headers.size();
1194 
1195     // If there are no program headers to read we are done.
1196     if (header.e_phnum == 0)
1197         return 0;
1198 
1199     program_headers.resize(header.e_phnum);
1200     if (program_headers.size() != header.e_phnum)
1201         return 0;
1202 
1203     const size_t ph_size = header.e_phnum * header.e_phentsize;
1204     const elf_off ph_offset = header.e_phoff;
1205     DataExtractor data;
1206     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1207         return 0;
1208 
1209     uint32_t idx;
1210     lldb::offset_t offset;
1211     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1212     {
1213         if (program_headers[idx].Parse(data, &offset) == false)
1214             break;
1215     }
1216 
1217     if (idx < program_headers.size())
1218         program_headers.resize(idx);
1219 
1220     return program_headers.size();
1221 
1222 }
1223 
1224 //----------------------------------------------------------------------
1225 // ParseProgramHeaders
1226 //----------------------------------------------------------------------
1227 size_t
1228 ObjectFileELF::ParseProgramHeaders()
1229 {
1230     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1231 }
1232 
1233 lldb_private::Error
1234 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1235 {
1236     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1237     Error error;
1238 
1239     lldb::offset_t offset = 0;
1240 
1241     while (true)
1242     {
1243         // Parse the note header.  If this fails, bail out.
1244         ELFNote note = ELFNote();
1245         if (!note.Parse(data, &offset))
1246         {
1247             // We're done.
1248             return error;
1249         }
1250 
1251         // If a tag processor handles the tag, it should set processed to true, and
1252         // the loop will assume the tag processing has moved entirely past the note's payload.
1253         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1254         bool processed = false;
1255 
1256         if (log)
1257             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1258 
1259         // Process FreeBSD ELF notes.
1260         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1261             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1262             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1263         {
1264             // We'll consume the payload below.
1265             processed = true;
1266 
1267             // Pull out the min version info.
1268             uint32_t version_info;
1269             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1270             {
1271                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1272                 return error;
1273             }
1274 
1275             // Convert the version info into a major/minor number.
1276             const uint32_t version_major = version_info / 100000;
1277             const uint32_t version_minor = (version_info / 1000) % 100;
1278 
1279             char os_name[32];
1280             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1281 
1282             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1283             arch_spec.GetTriple ().setOSName (os_name);
1284             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1285 
1286             if (log)
1287                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1288         }
1289         // Process GNU ELF notes.
1290         else if (note.n_name == LLDB_NT_OWNER_GNU)
1291         {
1292             switch (note.n_type)
1293             {
1294                 case LLDB_NT_GNU_ABI_TAG:
1295                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1296                     {
1297                         // We'll consume the payload below.
1298                         processed = true;
1299 
1300                         // Pull out the min OS version supporting the ABI.
1301                         uint32_t version_info[4];
1302                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1303                         {
1304                             error.SetErrorString ("failed to read GNU ABI note payload");
1305                             return error;
1306                         }
1307 
1308                         // Set the OS per the OS field.
1309                         switch (version_info[0])
1310                         {
1311                             case LLDB_NT_GNU_ABI_OS_LINUX:
1312                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1313                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1314                                 if (log)
1315                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1316                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1317                                 break;
1318                             case LLDB_NT_GNU_ABI_OS_HURD:
1319                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1320                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1321                                 if (log)
1322                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1323                                 break;
1324                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1325                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1326                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1327                                 if (log)
1328                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1329                                 break;
1330                             default:
1331                                 if (log)
1332                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1333                                 break;
1334                         }
1335                     }
1336                     break;
1337 
1338                 case LLDB_NT_GNU_BUILD_ID_TAG:
1339                     // Only bother processing this if we don't already have the uuid set.
1340                     if (!uuid.IsValid())
1341                     {
1342                         // We'll consume the payload below.
1343                         processed = true;
1344 
1345                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1346                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1347                         {
1348                             uint8_t uuidbuf[20];
1349                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1350                             {
1351                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1352                                 return error;
1353                             }
1354 
1355                             // Save the build id as the UUID for the module.
1356                             uuid.SetBytes (uuidbuf, note.n_descsz);
1357                         }
1358                     }
1359                     break;
1360             }
1361         }
1362         // Process NetBSD ELF notes.
1363         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1364                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1365                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1366         {
1367 
1368             // We'll consume the payload below.
1369             processed = true;
1370 
1371             // Pull out the min version info.
1372             uint32_t version_info;
1373             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1374             {
1375                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1376                 return error;
1377             }
1378 
1379             // Set the elf OS version to NetBSD.  Also clear the vendor.
1380             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1381             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1382 
1383             if (log)
1384                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1385         }
1386         // Process CSR kalimba notes
1387         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1388                 (note.n_name == LLDB_NT_OWNER_CSR))
1389         {
1390             // We'll consume the payload below.
1391             processed = true;
1392             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1393             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1394 
1395             // TODO At some point the description string could be processed.
1396             // It could provide a steer towards the kalimba variant which
1397             // this ELF targets.
1398             if(note.n_descsz)
1399             {
1400                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1401                 (void)cstr;
1402             }
1403         }
1404         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1405         {
1406             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1407             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1408         }
1409 
1410         if (!processed)
1411             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1412     }
1413 
1414     return error;
1415 }
1416 
1417 
1418 //----------------------------------------------------------------------
1419 // GetSectionHeaderInfo
1420 //----------------------------------------------------------------------
1421 size_t
1422 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1423                                     lldb_private::DataExtractor &object_data,
1424                                     const elf::ELFHeader &header,
1425                                     lldb_private::UUID &uuid,
1426                                     std::string &gnu_debuglink_file,
1427                                     uint32_t &gnu_debuglink_crc,
1428                                     ArchSpec &arch_spec)
1429 {
1430     // Don't reparse the section headers if we already did that.
1431     if (!section_headers.empty())
1432         return section_headers.size();
1433 
1434     // Only initialize the arch_spec to okay defaults if they're not already set.
1435     // We'll refine this with note data as we parse the notes.
1436     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1437     {
1438         llvm::Triple::OSType ostype;
1439         llvm::Triple::OSType spec_ostype;
1440         const uint32_t sub_type = subTypeFromElfHeader(header);
1441         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1442         //
1443         // Validate if it is ok to remove GetOsFromOSABI
1444         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1445         spec_ostype = arch_spec.GetTriple ().getOS ();
1446         assert(spec_ostype == ostype);
1447     }
1448 
1449     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1450         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1451     {
1452         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1453         {
1454             case llvm::ELF::EF_MIPS_MICROMIPS:
1455                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1456                 break;
1457             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1458                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1459                 break;
1460             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1461                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1462                 break;
1463             default:
1464                 break;
1465         }
1466     }
1467 
1468     // If there are no section headers we are done.
1469     if (header.e_shnum == 0)
1470         return 0;
1471 
1472     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1473 
1474     section_headers.resize(header.e_shnum);
1475     if (section_headers.size() != header.e_shnum)
1476         return 0;
1477 
1478     const size_t sh_size = header.e_shnum * header.e_shentsize;
1479     const elf_off sh_offset = header.e_shoff;
1480     DataExtractor sh_data;
1481     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1482         return 0;
1483 
1484     uint32_t idx;
1485     lldb::offset_t offset;
1486     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1487     {
1488         if (section_headers[idx].Parse(sh_data, &offset) == false)
1489             break;
1490     }
1491     if (idx < section_headers.size())
1492         section_headers.resize(idx);
1493 
1494     const unsigned strtab_idx = header.e_shstrndx;
1495     if (strtab_idx && strtab_idx < section_headers.size())
1496     {
1497         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1498         const size_t byte_size = sheader.sh_size;
1499         const Elf64_Off offset = sheader.sh_offset;
1500         lldb_private::DataExtractor shstr_data;
1501 
1502         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1503         {
1504             for (SectionHeaderCollIter I = section_headers.begin();
1505                  I != section_headers.end(); ++I)
1506             {
1507                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1508                 const ELFSectionHeaderInfo &header = *I;
1509                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1510                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1511 
1512                 I->section_name = name;
1513 
1514                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1515                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1516                 {
1517                     if (header.sh_type == SHT_MIPS_ABIFLAGS)
1518                     {
1519                         DataExtractor data;
1520                         if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1521                         {
1522                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1523                             uint32_t arch_flags = arch_spec.GetFlags ();
1524                             arch_flags |= data.GetU32 (&ase_offset);
1525                             arch_spec.SetFlags (arch_flags);
1526                         }
1527                     }
1528                 }
1529 
1530                 if (name == g_sect_name_gnu_debuglink)
1531                 {
1532                     DataExtractor data;
1533                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1534                     {
1535                         lldb::offset_t gnu_debuglink_offset = 0;
1536                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1537                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1538                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1539                     }
1540                 }
1541 
1542                 // Process ELF note section entries.
1543                 bool is_note_header = (header.sh_type == SHT_NOTE);
1544 
1545                 // The section header ".note.android.ident" is stored as a
1546                 // PROGBITS type header but it is actually a note header.
1547                 static ConstString g_sect_name_android_ident (".note.android.ident");
1548                 if (!is_note_header && name == g_sect_name_android_ident)
1549                     is_note_header = true;
1550 
1551                 if (is_note_header)
1552                 {
1553                     // Allow notes to refine module info.
1554                     DataExtractor data;
1555                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1556                     {
1557                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1558                         if (error.Fail ())
1559                         {
1560                             if (log)
1561                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1562                         }
1563                     }
1564                 }
1565             }
1566 
1567             return section_headers.size();
1568         }
1569     }
1570 
1571     section_headers.clear();
1572     return 0;
1573 }
1574 
1575 size_t
1576 ObjectFileELF::GetProgramHeaderCount()
1577 {
1578     return ParseProgramHeaders();
1579 }
1580 
1581 const elf::ELFProgramHeader *
1582 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1583 {
1584     if (!id || !ParseProgramHeaders())
1585         return NULL;
1586 
1587     if (--id < m_program_headers.size())
1588         return &m_program_headers[id];
1589 
1590     return NULL;
1591 }
1592 
1593 DataExtractor
1594 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1595 {
1596     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1597     if (segment_header == NULL)
1598         return DataExtractor();
1599     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1600 }
1601 
1602 std::string
1603 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1604 {
1605     size_t pos = symbol_name.find('@');
1606     return symbol_name.substr(0, pos).str();
1607 }
1608 
1609 //----------------------------------------------------------------------
1610 // ParseSectionHeaders
1611 //----------------------------------------------------------------------
1612 size_t
1613 ObjectFileELF::ParseSectionHeaders()
1614 {
1615     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1616 }
1617 
1618 const ObjectFileELF::ELFSectionHeaderInfo *
1619 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1620 {
1621     if (!id || !ParseSectionHeaders())
1622         return NULL;
1623 
1624     if (--id < m_section_headers.size())
1625         return &m_section_headers[id];
1626 
1627     return NULL;
1628 }
1629 
1630 lldb::user_id_t
1631 ObjectFileELF::GetSectionIndexByName(const char* name)
1632 {
1633     if (!name || !name[0] || !ParseSectionHeaders())
1634         return 0;
1635     for (size_t i = 1; i < m_section_headers.size(); ++i)
1636         if (m_section_headers[i].section_name == ConstString(name))
1637             return i;
1638     return 0;
1639 }
1640 
1641 void
1642 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1643 {
1644     if (!m_sections_ap.get() && ParseSectionHeaders())
1645     {
1646         m_sections_ap.reset(new SectionList());
1647 
1648         for (SectionHeaderCollIter I = m_section_headers.begin();
1649              I != m_section_headers.end(); ++I)
1650         {
1651             const ELFSectionHeaderInfo &header = *I;
1652 
1653             ConstString& name = I->section_name;
1654             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1655             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1656 
1657             static ConstString g_sect_name_text (".text");
1658             static ConstString g_sect_name_data (".data");
1659             static ConstString g_sect_name_bss (".bss");
1660             static ConstString g_sect_name_tdata (".tdata");
1661             static ConstString g_sect_name_tbss (".tbss");
1662             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1663             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1664             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1665             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1666             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1667             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1668             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1669             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1670             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1671             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1672             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1673             static ConstString g_sect_name_eh_frame (".eh_frame");
1674 
1675             SectionType sect_type = eSectionTypeOther;
1676 
1677             bool is_thread_specific = false;
1678 
1679             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1680             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1681             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1682             else if (name == g_sect_name_tdata)
1683             {
1684                 sect_type = eSectionTypeData;
1685                 is_thread_specific = true;
1686             }
1687             else if (name == g_sect_name_tbss)
1688             {
1689                 sect_type = eSectionTypeZeroFill;
1690                 is_thread_specific = true;
1691             }
1692             // .debug_abbrev – Abbreviations used in the .debug_info section
1693             // .debug_aranges – Lookup table for mapping addresses to compilation units
1694             // .debug_frame – Call frame information
1695             // .debug_info – The core DWARF information section
1696             // .debug_line – Line number information
1697             // .debug_loc – Location lists used in DW_AT_location attributes
1698             // .debug_macinfo – Macro information
1699             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1700             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1701             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1702             // .debug_str – String table used in .debug_info
1703             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1704             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1705             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1706             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1707             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1708             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1709             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1710             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1711             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1712             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1713             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1714             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1715             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1716             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1717             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1718 
1719             switch (header.sh_type)
1720             {
1721                 case SHT_SYMTAB:
1722                     assert (sect_type == eSectionTypeOther);
1723                     sect_type = eSectionTypeELFSymbolTable;
1724                     break;
1725                 case SHT_DYNSYM:
1726                     assert (sect_type == eSectionTypeOther);
1727                     sect_type = eSectionTypeELFDynamicSymbols;
1728                     break;
1729                 case SHT_RELA:
1730                 case SHT_REL:
1731                     assert (sect_type == eSectionTypeOther);
1732                     sect_type = eSectionTypeELFRelocationEntries;
1733                     break;
1734                 case SHT_DYNAMIC:
1735                     assert (sect_type == eSectionTypeOther);
1736                     sect_type = eSectionTypeELFDynamicLinkInfo;
1737                     break;
1738             }
1739 
1740             if (eSectionTypeOther == sect_type)
1741             {
1742                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1743                 // support linkscripts which (can) give rise to various arbitrarily named
1744                 // sections being "Code" or "Data".
1745                 sect_type = kalimbaSectionType(m_header, header);
1746             }
1747 
1748             const uint32_t target_bytes_size =
1749                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1750                 m_arch_spec.GetDataByteSize() :
1751                     eSectionTypeCode == sect_type ?
1752                     m_arch_spec.GetCodeByteSize() : 1;
1753 
1754             elf::elf_xword log2align = (header.sh_addralign==0)
1755                                         ? 0
1756                                         : llvm::Log2_64(header.sh_addralign);
1757             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1758                                               this,               // ObjectFile to which this section belongs and should read section data from.
1759                                               SectionIndex(I),    // Section ID.
1760                                               name,               // Section name.
1761                                               sect_type,          // Section type.
1762                                               header.sh_addr,     // VM address.
1763                                               vm_size,            // VM size in bytes of this section.
1764                                               header.sh_offset,   // Offset of this section in the file.
1765                                               file_size,          // Size of the section as found in the file.
1766                                               log2align,          // Alignment of the section
1767                                               header.sh_flags,    // Flags for this section.
1768                                               target_bytes_size));// Number of host bytes per target byte
1769 
1770             if (is_thread_specific)
1771                 section_sp->SetIsThreadSpecific (is_thread_specific);
1772             m_sections_ap->AddSection(section_sp);
1773         }
1774     }
1775 
1776     if (m_sections_ap.get())
1777     {
1778         if (GetType() == eTypeDebugInfo)
1779         {
1780             static const SectionType g_sections[] =
1781             {
1782                 eSectionTypeDWARFDebugAranges,
1783                 eSectionTypeDWARFDebugInfo,
1784                 eSectionTypeDWARFDebugAbbrev,
1785                 eSectionTypeDWARFDebugFrame,
1786                 eSectionTypeDWARFDebugLine,
1787                 eSectionTypeDWARFDebugStr,
1788                 eSectionTypeDWARFDebugLoc,
1789                 eSectionTypeDWARFDebugMacInfo,
1790                 eSectionTypeDWARFDebugPubNames,
1791                 eSectionTypeDWARFDebugPubTypes,
1792                 eSectionTypeDWARFDebugRanges,
1793                 eSectionTypeELFSymbolTable,
1794             };
1795             SectionList *elf_section_list = m_sections_ap.get();
1796             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1797             {
1798                 SectionType section_type = g_sections[idx];
1799                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1800                 if (section_sp)
1801                 {
1802                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1803                     if (module_section_sp)
1804                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1805                     else
1806                         unified_section_list.AddSection (section_sp);
1807                 }
1808             }
1809         }
1810         else
1811         {
1812             unified_section_list = *m_sections_ap;
1813         }
1814     }
1815 }
1816 
1817 // private
1818 unsigned
1819 ObjectFileELF::ParseSymbols (Symtab *symtab,
1820                              user_id_t start_id,
1821                              SectionList *section_list,
1822                              const size_t num_symbols,
1823                              const DataExtractor &symtab_data,
1824                              const DataExtractor &strtab_data)
1825 {
1826     ELFSymbol symbol;
1827     lldb::offset_t offset = 0;
1828 
1829     static ConstString text_section_name(".text");
1830     static ConstString init_section_name(".init");
1831     static ConstString fini_section_name(".fini");
1832     static ConstString ctors_section_name(".ctors");
1833     static ConstString dtors_section_name(".dtors");
1834 
1835     static ConstString data_section_name(".data");
1836     static ConstString rodata_section_name(".rodata");
1837     static ConstString rodata1_section_name(".rodata1");
1838     static ConstString data2_section_name(".data1");
1839     static ConstString bss_section_name(".bss");
1840     static ConstString opd_section_name(".opd");    // For ppc64
1841 
1842     // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full
1843     // .text section what causes issues with displaying unusable symbol name to the user and very
1844     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1845     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1846     // use for the debugger and they are causing a lot of trouble.
1847     // Filtering can't be restricted to Android because this special object file don't contain the
1848     // note section specifying the environment to Android but the custom extension and file name
1849     // makes it highly unlikely that this will collide with anything else.
1850     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat");
1851 
1852     unsigned i;
1853     for (i = 0; i < num_symbols; ++i)
1854     {
1855         if (symbol.Parse(symtab_data, &offset) == false)
1856             break;
1857 
1858         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1859 
1860         // No need to add non-section symbols that have no names
1861         if (symbol.getType() != STT_SECTION &&
1862             (symbol_name == NULL || symbol_name[0] == '\0'))
1863             continue;
1864 
1865         // Skipping oatdata and oatexec sections if it is requested. See details above the
1866         // definition of skip_oatdata_oatexec for the reasons.
1867         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1868             continue;
1869 
1870         SectionSP symbol_section_sp;
1871         SymbolType symbol_type = eSymbolTypeInvalid;
1872         Elf64_Half symbol_idx = symbol.st_shndx;
1873 
1874         switch (symbol_idx)
1875         {
1876         case SHN_ABS:
1877             symbol_type = eSymbolTypeAbsolute;
1878             break;
1879         case SHN_UNDEF:
1880             symbol_type = eSymbolTypeUndefined;
1881             break;
1882         default:
1883             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1884             break;
1885         }
1886 
1887         // If a symbol is undefined do not process it further even if it has a STT type
1888         if (symbol_type != eSymbolTypeUndefined)
1889         {
1890             switch (symbol.getType())
1891             {
1892             default:
1893             case STT_NOTYPE:
1894                 // The symbol's type is not specified.
1895                 break;
1896 
1897             case STT_OBJECT:
1898                 // The symbol is associated with a data object, such as a variable,
1899                 // an array, etc.
1900                 symbol_type = eSymbolTypeData;
1901                 break;
1902 
1903             case STT_FUNC:
1904                 // The symbol is associated with a function or other executable code.
1905                 symbol_type = eSymbolTypeCode;
1906                 break;
1907 
1908             case STT_SECTION:
1909                 // The symbol is associated with a section. Symbol table entries of
1910                 // this type exist primarily for relocation and normally have
1911                 // STB_LOCAL binding.
1912                 break;
1913 
1914             case STT_FILE:
1915                 // Conventionally, the symbol's name gives the name of the source
1916                 // file associated with the object file. A file symbol has STB_LOCAL
1917                 // binding, its section index is SHN_ABS, and it precedes the other
1918                 // STB_LOCAL symbols for the file, if it is present.
1919                 symbol_type = eSymbolTypeSourceFile;
1920                 break;
1921 
1922             case STT_GNU_IFUNC:
1923                 // The symbol is associated with an indirect function. The actual
1924                 // function will be resolved if it is referenced.
1925                 symbol_type = eSymbolTypeResolver;
1926                 break;
1927             }
1928         }
1929 
1930         if (symbol_type == eSymbolTypeInvalid)
1931         {
1932             if (symbol_section_sp)
1933             {
1934                 const ConstString &sect_name = symbol_section_sp->GetName();
1935                 if (sect_name == text_section_name ||
1936                     sect_name == init_section_name ||
1937                     sect_name == fini_section_name ||
1938                     sect_name == ctors_section_name ||
1939                     sect_name == dtors_section_name)
1940                 {
1941                     symbol_type = eSymbolTypeCode;
1942                 }
1943                 else if (sect_name == data_section_name ||
1944                          sect_name == data2_section_name ||
1945                          sect_name == rodata_section_name ||
1946                          sect_name == rodata1_section_name ||
1947                          sect_name == bss_section_name)
1948                 {
1949                     symbol_type = eSymbolTypeData;
1950                 }
1951             }
1952         }
1953 
1954         int64_t symbol_value_offset = 0;
1955         uint32_t additional_flags = 0;
1956 
1957         ArchSpec arch;
1958         if (GetArchitecture(arch))
1959         {
1960             if (arch.GetMachine() == llvm::Triple::arm)
1961             {
1962                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1963                 {
1964                     // These are reserved for the specification (e.g.: mapping
1965                     // symbols). We don't want to add them to the symbol table.
1966 
1967                     if (symbol_type == eSymbolTypeCode)
1968                     {
1969                         llvm::StringRef symbol_name_ref(symbol_name);
1970                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1971                         {
1972                             // $a[.<any>]* - marks an ARM instruction sequence
1973                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1974                         }
1975                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1976                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1977                         {
1978                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1979                             // $t[.<any>]* - marks a THUMB instruction sequence
1980                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1981                         }
1982                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1983                         {
1984                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1985                             m_address_class_map[symbol.st_value] = eAddressClassData;
1986                         }
1987                     }
1988                     continue;
1989                 }
1990             }
1991             else if (arch.GetMachine() == llvm::Triple::aarch64)
1992             {
1993                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1994                 {
1995                     // These are reserved for the specification (e.g.: mapping
1996                     // symbols). We don't want to add them to the symbol table.
1997 
1998                     if (symbol_type == eSymbolTypeCode)
1999                     {
2000                         llvm::StringRef symbol_name_ref(symbol_name);
2001                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
2002                         {
2003                             // $x[.<any>]* - marks an A64 instruction sequence
2004                             m_address_class_map[symbol.st_value] = eAddressClassCode;
2005                         }
2006                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2007                         {
2008                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2009                             m_address_class_map[symbol.st_value] = eAddressClassData;
2010                         }
2011                     }
2012 
2013                     continue;
2014                 }
2015             }
2016 
2017             if (arch.GetMachine() == llvm::Triple::arm)
2018             {
2019                 if (symbol_type == eSymbolTypeCode)
2020                 {
2021                     if (symbol.st_value & 1)
2022                     {
2023                         // Subtracting 1 from the address effectively unsets
2024                         // the low order bit, which results in the address
2025                         // actually pointing to the beginning of the symbol.
2026                         // This delta will be used below in conjunction with
2027                         // symbol.st_value to produce the final symbol_value
2028                         // that we store in the symtab.
2029                         symbol_value_offset = -1;
2030                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2031                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2032                     }
2033                     else
2034                     {
2035                         // This address is ARM
2036                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2037                     }
2038                 }
2039             }
2040         }
2041 
2042         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2043         // THUMB symbols. See above for more details.
2044         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2045         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2046             symbol_value -= symbol_section_sp->GetFileAddress();
2047 
2048         if (symbol_section_sp)
2049         {
2050             ModuleSP module_sp(GetModule());
2051             if (module_sp)
2052             {
2053                 SectionList *module_section_list = module_sp->GetSectionList();
2054                 if (module_section_list && module_section_list != section_list)
2055                 {
2056                     const ConstString &sect_name = symbol_section_sp->GetName();
2057                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2058                     if (section_sp && section_sp->GetFileSize())
2059                     {
2060                         symbol_section_sp = section_sp;
2061                     }
2062                 }
2063             }
2064         }
2065 
2066         bool is_global = symbol.getBinding() == STB_GLOBAL;
2067         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2068         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2069 
2070         llvm::StringRef symbol_ref(symbol_name);
2071 
2072         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2073         size_t version_pos = symbol_ref.find('@');
2074         bool has_suffix = version_pos != llvm::StringRef::npos;
2075         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2076         Mangled mangled(ConstString(symbol_bare), is_mangled);
2077 
2078         // Now append the suffix back to mangled and unmangled names. Only do it if the
2079         // demangling was successful (string is not empty).
2080         if (has_suffix)
2081         {
2082             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2083 
2084             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2085             if (! mangled_name.empty())
2086                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2087 
2088             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2089             llvm::StringRef demangled_name = demangled.GetStringRef();
2090             if (!demangled_name.empty())
2091                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2092         }
2093 
2094         Symbol dc_symbol(
2095             i + start_id,       // ID is the original symbol table index.
2096             mangled,
2097             symbol_type,        // Type of this symbol
2098             is_global,          // Is this globally visible?
2099             false,              // Is this symbol debug info?
2100             false,              // Is this symbol a trampoline?
2101             false,              // Is this symbol artificial?
2102             AddressRange(
2103                 symbol_section_sp,  // Section in which this symbol is defined or null.
2104                 symbol_value,       // Offset in section or symbol value.
2105                 symbol.st_size),    // Size in bytes of this symbol.
2106             symbol.st_size != 0,    // Size is valid if it is not 0
2107             has_suffix,             // Contains linker annotations?
2108             flags);                 // Symbol flags.
2109         symtab->AddSymbol(dc_symbol);
2110     }
2111     return i;
2112 }
2113 
2114 unsigned
2115 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2116 {
2117     if (symtab->GetObjectFile() != this)
2118     {
2119         // If the symbol table section is owned by a different object file, have it do the
2120         // parsing.
2121         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2122         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2123     }
2124 
2125     // Get section list for this object file.
2126     SectionList *section_list = m_sections_ap.get();
2127     if (!section_list)
2128         return 0;
2129 
2130     user_id_t symtab_id = symtab->GetID();
2131     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2132     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2133            symtab_hdr->sh_type == SHT_DYNSYM);
2134 
2135     // sh_link: section header index of associated string table.
2136     // Section ID's are ones based.
2137     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2138     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2139 
2140     if (symtab && strtab)
2141     {
2142         assert (symtab->GetObjectFile() == this);
2143         assert (strtab->GetObjectFile() == this);
2144 
2145         DataExtractor symtab_data;
2146         DataExtractor strtab_data;
2147         if (ReadSectionData(symtab, symtab_data) &&
2148             ReadSectionData(strtab, strtab_data))
2149         {
2150             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2151 
2152             return ParseSymbols(symbol_table, start_id, section_list,
2153                                 num_symbols, symtab_data, strtab_data);
2154         }
2155     }
2156 
2157     return 0;
2158 }
2159 
2160 size_t
2161 ObjectFileELF::ParseDynamicSymbols()
2162 {
2163     if (m_dynamic_symbols.size())
2164         return m_dynamic_symbols.size();
2165 
2166     SectionList *section_list = GetSectionList();
2167     if (!section_list)
2168         return 0;
2169 
2170     // Find the SHT_DYNAMIC section.
2171     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2172     if (!dynsym)
2173         return 0;
2174     assert (dynsym->GetObjectFile() == this);
2175 
2176     ELFDynamic symbol;
2177     DataExtractor dynsym_data;
2178     if (ReadSectionData(dynsym, dynsym_data))
2179     {
2180         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2181         lldb::offset_t cursor = 0;
2182 
2183         while (cursor < section_size)
2184         {
2185             if (!symbol.Parse(dynsym_data, &cursor))
2186                 break;
2187 
2188             m_dynamic_symbols.push_back(symbol);
2189         }
2190     }
2191 
2192     return m_dynamic_symbols.size();
2193 }
2194 
2195 const ELFDynamic *
2196 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2197 {
2198     if (!ParseDynamicSymbols())
2199         return NULL;
2200 
2201     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2202     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2203     for ( ; I != E; ++I)
2204     {
2205         ELFDynamic *symbol = &*I;
2206 
2207         if (symbol->d_tag == tag)
2208             return symbol;
2209     }
2210 
2211     return NULL;
2212 }
2213 
2214 unsigned
2215 ObjectFileELF::PLTRelocationType()
2216 {
2217     // DT_PLTREL
2218     //  This member specifies the type of relocation entry to which the
2219     //  procedure linkage table refers. The d_val member holds DT_REL or
2220     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2221     //  must use the same relocation.
2222     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2223 
2224     if (symbol)
2225         return symbol->d_val;
2226 
2227     return 0;
2228 }
2229 
2230 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2231 // 0th entry in the plt table is usually a resolution entry which have different size in some
2232 // architectures then the rest of the plt entries.
2233 static std::pair<uint64_t, uint64_t>
2234 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2235 {
2236     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2237 
2238     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2239     // So round the entsize up by the alignment if addralign is set.
2240     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2241         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2242 
2243     if (plt_entsize == 0)
2244     {
2245         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2246         // entries based on the number of entries and the size of the plt section with the
2247         // assumption that the size of the 0th entry is at least as big as the size of the normal
2248         // entries and it isn't much bigger then that.
2249         if (plt_hdr->sh_addralign)
2250             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2251         else
2252             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2253     }
2254 
2255     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2256 
2257     return std::make_pair(plt_entsize, plt_offset);
2258 }
2259 
2260 static unsigned
2261 ParsePLTRelocations(Symtab *symbol_table,
2262                     user_id_t start_id,
2263                     unsigned rel_type,
2264                     const ELFHeader *hdr,
2265                     const ELFSectionHeader *rel_hdr,
2266                     const ELFSectionHeader *plt_hdr,
2267                     const ELFSectionHeader *sym_hdr,
2268                     const lldb::SectionSP &plt_section_sp,
2269                     DataExtractor &rel_data,
2270                     DataExtractor &symtab_data,
2271                     DataExtractor &strtab_data)
2272 {
2273     ELFRelocation rel(rel_type);
2274     ELFSymbol symbol;
2275     lldb::offset_t offset = 0;
2276 
2277     uint64_t plt_offset, plt_entsize;
2278     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2279     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2280 
2281     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2282     reloc_info_fn reloc_type;
2283     reloc_info_fn reloc_symbol;
2284 
2285     if (hdr->Is32Bit())
2286     {
2287         reloc_type = ELFRelocation::RelocType32;
2288         reloc_symbol = ELFRelocation::RelocSymbol32;
2289     }
2290     else
2291     {
2292         reloc_type = ELFRelocation::RelocType64;
2293         reloc_symbol = ELFRelocation::RelocSymbol64;
2294     }
2295 
2296     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2297     unsigned i;
2298     for (i = 0; i < num_relocations; ++i)
2299     {
2300         if (rel.Parse(rel_data, &offset) == false)
2301             break;
2302 
2303         if (reloc_type(rel) != slot_type)
2304             continue;
2305 
2306         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2307         if (!symbol.Parse(symtab_data, &symbol_offset))
2308             break;
2309 
2310         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2311         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2312         uint64_t plt_index = plt_offset + i * plt_entsize;
2313 
2314         Symbol jump_symbol(
2315             i + start_id,    // Symbol table index
2316             symbol_name,     // symbol name.
2317             is_mangled,      // is the symbol name mangled?
2318             eSymbolTypeTrampoline, // Type of this symbol
2319             false,           // Is this globally visible?
2320             false,           // Is this symbol debug info?
2321             true,            // Is this symbol a trampoline?
2322             true,            // Is this symbol artificial?
2323             plt_section_sp,  // Section in which this symbol is defined or null.
2324             plt_index,       // Offset in section or symbol value.
2325             plt_entsize,     // Size in bytes of this symbol.
2326             true,            // Size is valid
2327             false,           // Contains linker annotations?
2328             0);              // Symbol flags.
2329 
2330         symbol_table->AddSymbol(jump_symbol);
2331     }
2332 
2333     return i;
2334 }
2335 
2336 unsigned
2337 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2338                                       user_id_t start_id,
2339                                       const ELFSectionHeaderInfo *rel_hdr,
2340                                       user_id_t rel_id)
2341 {
2342     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2343 
2344     // The link field points to the associated symbol table. The info field
2345     // points to the section holding the plt.
2346     user_id_t symtab_id = rel_hdr->sh_link;
2347     user_id_t plt_id = rel_hdr->sh_info;
2348 
2349     // If the link field doesn't point to the appropriate symbol name table then
2350     // try to find it by name as some compiler don't fill in the link fields.
2351     if (!symtab_id)
2352         symtab_id = GetSectionIndexByName(".dynsym");
2353     if (!plt_id)
2354         plt_id = GetSectionIndexByName(".plt");
2355 
2356     if (!symtab_id || !plt_id)
2357         return 0;
2358 
2359     // Section ID's are ones based;
2360     symtab_id++;
2361     plt_id++;
2362 
2363     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2364     if (!plt_hdr)
2365         return 0;
2366 
2367     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2368     if (!sym_hdr)
2369         return 0;
2370 
2371     SectionList *section_list = m_sections_ap.get();
2372     if (!section_list)
2373         return 0;
2374 
2375     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2376     if (!rel_section)
2377         return 0;
2378 
2379     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2380     if (!plt_section_sp)
2381         return 0;
2382 
2383     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2384     if (!symtab)
2385         return 0;
2386 
2387     // sh_link points to associated string table.
2388     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2389     if (!strtab)
2390         return 0;
2391 
2392     DataExtractor rel_data;
2393     if (!ReadSectionData(rel_section, rel_data))
2394         return 0;
2395 
2396     DataExtractor symtab_data;
2397     if (!ReadSectionData(symtab, symtab_data))
2398         return 0;
2399 
2400     DataExtractor strtab_data;
2401     if (!ReadSectionData(strtab, strtab_data))
2402         return 0;
2403 
2404     unsigned rel_type = PLTRelocationType();
2405     if (!rel_type)
2406         return 0;
2407 
2408     return ParsePLTRelocations (symbol_table,
2409                                 start_id,
2410                                 rel_type,
2411                                 &m_header,
2412                                 rel_hdr,
2413                                 plt_hdr,
2414                                 sym_hdr,
2415                                 plt_section_sp,
2416                                 rel_data,
2417                                 symtab_data,
2418                                 strtab_data);
2419 }
2420 
2421 unsigned
2422 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2423                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2424                 DataExtractor &rel_data, DataExtractor &symtab_data,
2425                 DataExtractor &debug_data, Section* rel_section)
2426 {
2427     ELFRelocation rel(rel_hdr->sh_type);
2428     lldb::addr_t offset = 0;
2429     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2430     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2431     reloc_info_fn reloc_type;
2432     reloc_info_fn reloc_symbol;
2433 
2434     if (hdr->Is32Bit())
2435     {
2436         reloc_type = ELFRelocation::RelocType32;
2437         reloc_symbol = ELFRelocation::RelocSymbol32;
2438     }
2439     else
2440     {
2441         reloc_type = ELFRelocation::RelocType64;
2442         reloc_symbol = ELFRelocation::RelocSymbol64;
2443     }
2444 
2445     for (unsigned i = 0; i < num_relocations; ++i)
2446     {
2447         if (rel.Parse(rel_data, &offset) == false)
2448             break;
2449 
2450         Symbol* symbol = NULL;
2451 
2452         if (hdr->Is32Bit())
2453         {
2454             switch (reloc_type(rel)) {
2455             case R_386_32:
2456             case R_386_PC32:
2457             default:
2458                 assert(false && "unexpected relocation type");
2459             }
2460         } else {
2461             switch (reloc_type(rel)) {
2462             case R_X86_64_64:
2463             {
2464                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2465                 if (symbol)
2466                 {
2467                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2468                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2469                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2470                     *dst = value + ELFRelocation::RelocAddend64(rel);
2471                 }
2472                 break;
2473             }
2474             case R_X86_64_32:
2475             case R_X86_64_32S:
2476             {
2477                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2478                 if (symbol)
2479                 {
2480                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2481                     value += ELFRelocation::RelocAddend32(rel);
2482                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2483                            (reloc_type(rel) == R_X86_64_32S &&
2484                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2485                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2486                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2487                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2488                     *dst = truncated_addr;
2489                 }
2490                 break;
2491             }
2492             case R_X86_64_PC32:
2493             default:
2494                 assert(false && "unexpected relocation type");
2495             }
2496         }
2497     }
2498 
2499     return 0;
2500 }
2501 
2502 unsigned
2503 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2504 {
2505     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2506 
2507     // Parse in the section list if needed.
2508     SectionList *section_list = GetSectionList();
2509     if (!section_list)
2510         return 0;
2511 
2512     // Section ID's are ones based.
2513     user_id_t symtab_id = rel_hdr->sh_link + 1;
2514     user_id_t debug_id = rel_hdr->sh_info + 1;
2515 
2516     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2517     if (!symtab_hdr)
2518         return 0;
2519 
2520     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2521     if (!debug_hdr)
2522         return 0;
2523 
2524     Section *rel = section_list->FindSectionByID(rel_id).get();
2525     if (!rel)
2526         return 0;
2527 
2528     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2529     if (!symtab)
2530         return 0;
2531 
2532     Section *debug = section_list->FindSectionByID(debug_id).get();
2533     if (!debug)
2534         return 0;
2535 
2536     DataExtractor rel_data;
2537     DataExtractor symtab_data;
2538     DataExtractor debug_data;
2539 
2540     if (ReadSectionData(rel, rel_data) &&
2541         ReadSectionData(symtab, symtab_data) &&
2542         ReadSectionData(debug, debug_data))
2543     {
2544         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2545                         rel_data, symtab_data, debug_data, debug);
2546     }
2547 
2548     return 0;
2549 }
2550 
2551 Symtab *
2552 ObjectFileELF::GetSymtab()
2553 {
2554     ModuleSP module_sp(GetModule());
2555     if (!module_sp)
2556         return NULL;
2557 
2558     // We always want to use the main object file so we (hopefully) only have one cached copy
2559     // of our symtab, dynamic sections, etc.
2560     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2561     if (module_obj_file && module_obj_file != this)
2562         return module_obj_file->GetSymtab();
2563 
2564     if (m_symtab_ap.get() == NULL)
2565     {
2566         SectionList *section_list = module_sp->GetSectionList();
2567         if (!section_list)
2568             return NULL;
2569 
2570         uint64_t symbol_id = 0;
2571         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2572 
2573         // Sharable objects and dynamic executables usually have 2 distinct symbol
2574         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2575         // version of the symtab that only contains global symbols. The information found
2576         // in the dynsym is therefore also found in the symtab, while the reverse is not
2577         // necessarily true.
2578         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2579         if (!symtab)
2580         {
2581             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2582             // then use the dynsym section which should always be there.
2583             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2584         }
2585         if (symtab)
2586         {
2587             m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2588             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2589         }
2590 
2591         // DT_JMPREL
2592         //      If present, this entry's d_ptr member holds the address of relocation
2593         //      entries associated solely with the procedure linkage table. Separating
2594         //      these relocation entries lets the dynamic linker ignore them during
2595         //      process initialization, if lazy binding is enabled. If this entry is
2596         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2597         //      also be present.
2598         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2599         if (symbol)
2600         {
2601             // Synthesize trampoline symbols to help navigate the PLT.
2602             addr_t addr = symbol->d_ptr;
2603             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2604             if (reloc_section)
2605             {
2606                 user_id_t reloc_id = reloc_section->GetID();
2607                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2608                 assert(reloc_header);
2609 
2610                 if (m_symtab_ap == nullptr)
2611                     m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2612 
2613                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2614             }
2615         }
2616 
2617         // If we still don't have any symtab then create an empty instance to avoid do the section
2618         // lookup next time.
2619         if (m_symtab_ap == nullptr)
2620             m_symtab_ap.reset(new Symtab(this));
2621 
2622         m_symtab_ap->CalculateSymbolSizes();
2623     }
2624 
2625     for (SectionHeaderCollIter I = m_section_headers.begin();
2626          I != m_section_headers.end(); ++I)
2627     {
2628         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2629         {
2630             if (CalculateType() == eTypeObjectFile)
2631             {
2632                 const char *section_name = I->section_name.AsCString("");
2633                 if (strstr(section_name, ".rela.debug") ||
2634                     strstr(section_name, ".rel.debug"))
2635                 {
2636                     const ELFSectionHeader &reloc_header = *I;
2637                     user_id_t reloc_id = SectionIndex(I);
2638                     RelocateDebugSections(&reloc_header, reloc_id);
2639                 }
2640             }
2641         }
2642     }
2643     return m_symtab_ap.get();
2644 }
2645 
2646 Symbol *
2647 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2648 {
2649     if (!m_symtab_ap.get())
2650         return nullptr; // GetSymtab() should be called first.
2651 
2652     const SectionList *section_list = GetSectionList();
2653     if (!section_list)
2654         return nullptr;
2655 
2656     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2657     {
2658         AddressRange range;
2659         if (eh_frame->GetAddressRange (so_addr, range))
2660         {
2661             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2662             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2663             if (symbol)
2664                 return symbol;
2665 
2666             // Note that a (stripped) symbol won't be found by GetSymtab()...
2667             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2668             if (eh_sym_section_sp.get())
2669             {
2670                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2671                 addr_t offset = file_addr - section_base;
2672                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2673 
2674                 Symbol eh_symbol(
2675                         symbol_id,            // Symbol table index.
2676                         "???",                // Symbol name.
2677                         false,                // Is the symbol name mangled?
2678                         eSymbolTypeCode,      // Type of this symbol.
2679                         true,                 // Is this globally visible?
2680                         false,                // Is this symbol debug info?
2681                         false,                // Is this symbol a trampoline?
2682                         true,                 // Is this symbol artificial?
2683                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2684                         offset,               // Offset in section or symbol value.
2685                         range.GetByteSize(),  // Size in bytes of this symbol.
2686                         true,                 // Size is valid.
2687                         false,                // Contains linker annotations?
2688                         0);                   // Symbol flags.
2689                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2690                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2691             }
2692         }
2693     }
2694     return nullptr;
2695 }
2696 
2697 
2698 bool
2699 ObjectFileELF::IsStripped ()
2700 {
2701     // TODO: determine this for ELF
2702     return false;
2703 }
2704 
2705 //===----------------------------------------------------------------------===//
2706 // Dump
2707 //
2708 // Dump the specifics of the runtime file container (such as any headers
2709 // segments, sections, etc).
2710 //----------------------------------------------------------------------
2711 void
2712 ObjectFileELF::Dump(Stream *s)
2713 {
2714     DumpELFHeader(s, m_header);
2715     s->EOL();
2716     DumpELFProgramHeaders(s);
2717     s->EOL();
2718     DumpELFSectionHeaders(s);
2719     s->EOL();
2720     SectionList *section_list = GetSectionList();
2721     if (section_list)
2722         section_list->Dump(s, NULL, true, UINT32_MAX);
2723     Symtab *symtab = GetSymtab();
2724     if (symtab)
2725         symtab->Dump(s, NULL, eSortOrderNone);
2726     s->EOL();
2727     DumpDependentModules(s);
2728     s->EOL();
2729 }
2730 
2731 //----------------------------------------------------------------------
2732 // DumpELFHeader
2733 //
2734 // Dump the ELF header to the specified output stream
2735 //----------------------------------------------------------------------
2736 void
2737 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2738 {
2739     s->PutCString("ELF Header\n");
2740     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2741     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2742               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2743     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2744               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2745     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2746               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2747 
2748     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2749     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2750     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2751     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2752     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2753 
2754     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2755     DumpELFHeader_e_type(s, header.e_type);
2756     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2757     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2758     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2759     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2760     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2761     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2762     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2763     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2764     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2765     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2766     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2767     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2768 }
2769 
2770 //----------------------------------------------------------------------
2771 // DumpELFHeader_e_type
2772 //
2773 // Dump an token value for the ELF header member e_type
2774 //----------------------------------------------------------------------
2775 void
2776 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2777 {
2778     switch (e_type)
2779     {
2780     case ET_NONE:   *s << "ET_NONE"; break;
2781     case ET_REL:    *s << "ET_REL"; break;
2782     case ET_EXEC:   *s << "ET_EXEC"; break;
2783     case ET_DYN:    *s << "ET_DYN"; break;
2784     case ET_CORE:   *s << "ET_CORE"; break;
2785     default:
2786         break;
2787     }
2788 }
2789 
2790 //----------------------------------------------------------------------
2791 // DumpELFHeader_e_ident_EI_DATA
2792 //
2793 // Dump an token value for the ELF header member e_ident[EI_DATA]
2794 //----------------------------------------------------------------------
2795 void
2796 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2797 {
2798     switch (ei_data)
2799     {
2800     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2801     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2802     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2803     default:
2804         break;
2805     }
2806 }
2807 
2808 
2809 //----------------------------------------------------------------------
2810 // DumpELFProgramHeader
2811 //
2812 // Dump a single ELF program header to the specified output stream
2813 //----------------------------------------------------------------------
2814 void
2815 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2816 {
2817     DumpELFProgramHeader_p_type(s, ph.p_type);
2818     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2819     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2820 
2821     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2822     s->Printf(") %8.8" PRIx64, ph.p_align);
2823 }
2824 
2825 //----------------------------------------------------------------------
2826 // DumpELFProgramHeader_p_type
2827 //
2828 // Dump an token value for the ELF program header member p_type which
2829 // describes the type of the program header
2830 // ----------------------------------------------------------------------
2831 void
2832 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2833 {
2834     const int kStrWidth = 15;
2835     switch (p_type)
2836     {
2837     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2838     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2839     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2840     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2841     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2842     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2843     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2844     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2845     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2846     default:
2847         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2848         break;
2849     }
2850 }
2851 
2852 
2853 //----------------------------------------------------------------------
2854 // DumpELFProgramHeader_p_flags
2855 //
2856 // Dump an token value for the ELF program header member p_flags
2857 //----------------------------------------------------------------------
2858 void
2859 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2860 {
2861     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2862         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2863         << ((p_flags & PF_W) ? "PF_W" : "    ")
2864         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2865         << ((p_flags & PF_R) ? "PF_R" : "    ");
2866 }
2867 
2868 //----------------------------------------------------------------------
2869 // DumpELFProgramHeaders
2870 //
2871 // Dump all of the ELF program header to the specified output stream
2872 //----------------------------------------------------------------------
2873 void
2874 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2875 {
2876     if (!ParseProgramHeaders())
2877         return;
2878 
2879     s->PutCString("Program Headers\n");
2880     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2881                   "p_filesz p_memsz  p_flags                   p_align\n");
2882     s->PutCString("==== --------------- -------- -------- -------- "
2883                   "-------- -------- ------------------------- --------\n");
2884 
2885     uint32_t idx = 0;
2886     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2887          I != m_program_headers.end(); ++I, ++idx)
2888     {
2889         s->Printf("[%2u] ", idx);
2890         ObjectFileELF::DumpELFProgramHeader(s, *I);
2891         s->EOL();
2892     }
2893 }
2894 
2895 //----------------------------------------------------------------------
2896 // DumpELFSectionHeader
2897 //
2898 // Dump a single ELF section header to the specified output stream
2899 //----------------------------------------------------------------------
2900 void
2901 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2902 {
2903     s->Printf("%8.8x ", sh.sh_name);
2904     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2905     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2906     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2907     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2908     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2909     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2910 }
2911 
2912 //----------------------------------------------------------------------
2913 // DumpELFSectionHeader_sh_type
2914 //
2915 // Dump an token value for the ELF section header member sh_type which
2916 // describes the type of the section
2917 //----------------------------------------------------------------------
2918 void
2919 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2920 {
2921     const int kStrWidth = 12;
2922     switch (sh_type)
2923     {
2924     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2925     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2926     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2927     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2928     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2929     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2930     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2931     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2932     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2933     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2934     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2935     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2936     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2937     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2938     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2939     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2940     default:
2941         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2942         break;
2943     }
2944 }
2945 
2946 //----------------------------------------------------------------------
2947 // DumpELFSectionHeader_sh_flags
2948 //
2949 // Dump an token value for the ELF section header member sh_flags
2950 //----------------------------------------------------------------------
2951 void
2952 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2953 {
2954     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2955         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2956         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2957         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2958         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2959 }
2960 
2961 //----------------------------------------------------------------------
2962 // DumpELFSectionHeaders
2963 //
2964 // Dump all of the ELF section header to the specified output stream
2965 //----------------------------------------------------------------------
2966 void
2967 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2968 {
2969     if (!ParseSectionHeaders())
2970         return;
2971 
2972     s->PutCString("Section Headers\n");
2973     s->PutCString("IDX  name     type         flags                            "
2974                   "addr     offset   size     link     info     addralgn "
2975                   "entsize  Name\n");
2976     s->PutCString("==== -------- ------------ -------------------------------- "
2977                   "-------- -------- -------- -------- -------- -------- "
2978                   "-------- ====================\n");
2979 
2980     uint32_t idx = 0;
2981     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2982          I != m_section_headers.end(); ++I, ++idx)
2983     {
2984         s->Printf("[%2u] ", idx);
2985         ObjectFileELF::DumpELFSectionHeader(s, *I);
2986         const char* section_name = I->section_name.AsCString("");
2987         if (section_name)
2988             *s << ' ' << section_name << "\n";
2989     }
2990 }
2991 
2992 void
2993 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2994 {
2995     size_t num_modules = ParseDependentModules();
2996 
2997     if (num_modules > 0)
2998     {
2999         s->PutCString("Dependent Modules:\n");
3000         for (unsigned i = 0; i < num_modules; ++i)
3001         {
3002             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3003             s->Printf("   %s\n", spec.GetFilename().GetCString());
3004         }
3005     }
3006 }
3007 
3008 bool
3009 ObjectFileELF::GetArchitecture (ArchSpec &arch)
3010 {
3011     if (!ParseHeader())
3012         return false;
3013 
3014     if (m_section_headers.empty())
3015     {
3016         // Allow elf notes to be parsed which may affect the detected architecture.
3017         ParseSectionHeaders();
3018     }
3019 
3020     arch = m_arch_spec;
3021     return true;
3022 }
3023 
3024 ObjectFile::Type
3025 ObjectFileELF::CalculateType()
3026 {
3027     switch (m_header.e_type)
3028     {
3029         case llvm::ELF::ET_NONE:
3030             // 0 - No file type
3031             return eTypeUnknown;
3032 
3033         case llvm::ELF::ET_REL:
3034             // 1 - Relocatable file
3035             return eTypeObjectFile;
3036 
3037         case llvm::ELF::ET_EXEC:
3038             // 2 - Executable file
3039             return eTypeExecutable;
3040 
3041         case llvm::ELF::ET_DYN:
3042             // 3 - Shared object file
3043             return eTypeSharedLibrary;
3044 
3045         case ET_CORE:
3046             // 4 - Core file
3047             return eTypeCoreFile;
3048 
3049         default:
3050             break;
3051     }
3052     return eTypeUnknown;
3053 }
3054 
3055 ObjectFile::Strata
3056 ObjectFileELF::CalculateStrata()
3057 {
3058     switch (m_header.e_type)
3059     {
3060         case llvm::ELF::ET_NONE:
3061             // 0 - No file type
3062             return eStrataUnknown;
3063 
3064         case llvm::ELF::ET_REL:
3065             // 1 - Relocatable file
3066             return eStrataUnknown;
3067 
3068         case llvm::ELF::ET_EXEC:
3069             // 2 - Executable file
3070             // TODO: is there any way to detect that an executable is a kernel
3071             // related executable by inspecting the program headers, section
3072             // headers, symbols, or any other flag bits???
3073             return eStrataUser;
3074 
3075         case llvm::ELF::ET_DYN:
3076             // 3 - Shared object file
3077             // TODO: is there any way to detect that an shared library is a kernel
3078             // related executable by inspecting the program headers, section
3079             // headers, symbols, or any other flag bits???
3080             return eStrataUnknown;
3081 
3082         case ET_CORE:
3083             // 4 - Core file
3084             // TODO: is there any way to detect that an core file is a kernel
3085             // related executable by inspecting the program headers, section
3086             // headers, symbols, or any other flag bits???
3087             return eStrataUnknown;
3088 
3089         default:
3090             break;
3091     }
3092     return eStrataUnknown;
3093 }
3094 
3095