1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <algorithm> 13 #include <cassert> 14 #include <unordered_map> 15 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Symbol/DWARFCallFrameInfo.h" 22 #include "lldb/Symbol/SymbolContext.h" 23 #include "lldb/Target/SectionLoadList.h" 24 #include "lldb/Target/Target.h" 25 #include "lldb/Utility/ArchSpec.h" 26 #include "lldb/Utility/DataBufferHeap.h" 27 #include "lldb/Utility/Log.h" 28 #include "lldb/Utility/Status.h" 29 #include "lldb/Utility/Stream.h" 30 #include "lldb/Utility/Timer.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Object/Decompressor.h" 35 #include "llvm/Support/ARMBuildAttributes.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/MipsABIFlags.h" 39 40 #define CASE_AND_STREAM(s, def, width) \ 41 case def: \ 42 s->Printf("%-*s", width, #def); \ 43 break; 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace elf; 48 using namespace llvm::ELF; 49 50 namespace { 51 52 // ELF note owner definitions 53 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 54 const char *const LLDB_NT_OWNER_GNU = "GNU"; 55 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 56 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD"; 57 const char *const LLDB_NT_OWNER_CSR = "csr"; 58 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 59 const char *const LLDB_NT_OWNER_CORE = "CORE"; 60 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 61 62 // ELF note type definitions 63 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 64 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 65 66 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 68 69 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 70 71 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 72 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 73 74 // GNU ABI note OS constants 75 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 76 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 77 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 78 79 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 80 #define NT_PRSTATUS 1 81 #define NT_PRFPREG 2 82 #define NT_PRPSINFO 3 83 #define NT_TASKSTRUCT 4 84 #define NT_AUXV 6 85 #define NT_SIGINFO 0x53494749 86 #define NT_FILE 0x46494c45 87 #define NT_PRXFPREG 0x46e62b7f 88 #define NT_PPC_VMX 0x100 89 #define NT_PPC_SPE 0x101 90 #define NT_PPC_VSX 0x102 91 #define NT_386_TLS 0x200 92 #define NT_386_IOPERM 0x201 93 #define NT_X86_XSTATE 0x202 94 #define NT_S390_HIGH_GPRS 0x300 95 #define NT_S390_TIMER 0x301 96 #define NT_S390_TODCMP 0x302 97 #define NT_S390_TODPREG 0x303 98 #define NT_S390_CTRS 0x304 99 #define NT_S390_PREFIX 0x305 100 #define NT_S390_LAST_BREAK 0x306 101 #define NT_S390_SYSTEM_CALL 0x307 102 #define NT_S390_TDB 0x308 103 #define NT_S390_VXRS_LOW 0x309 104 #define NT_S390_VXRS_HIGH 0x30a 105 #define NT_ARM_VFP 0x400 106 #define NT_ARM_TLS 0x401 107 #define NT_ARM_HW_BREAK 0x402 108 #define NT_ARM_HW_WATCH 0x403 109 #define NT_ARM_SYSTEM_CALL 0x404 110 #define NT_METAG_CBUF 0x500 111 #define NT_METAG_RPIPE 0x501 112 #define NT_METAG_TLS 0x502 113 114 //===----------------------------------------------------------------------===// 115 /// @class ELFRelocation 116 /// Generic wrapper for ELFRel and ELFRela. 117 /// 118 /// This helper class allows us to parse both ELFRel and ELFRela relocation 119 /// entries in a generic manner. 120 class ELFRelocation { 121 public: 122 /// Constructs an ELFRelocation entry with a personality as given by @p 123 /// type. 124 /// 125 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 126 ELFRelocation(unsigned type); 127 128 ~ELFRelocation(); 129 130 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 131 132 static unsigned RelocType32(const ELFRelocation &rel); 133 134 static unsigned RelocType64(const ELFRelocation &rel); 135 136 static unsigned RelocSymbol32(const ELFRelocation &rel); 137 138 static unsigned RelocSymbol64(const ELFRelocation &rel); 139 140 static unsigned RelocOffset32(const ELFRelocation &rel); 141 142 static unsigned RelocOffset64(const ELFRelocation &rel); 143 144 static unsigned RelocAddend32(const ELFRelocation &rel); 145 146 static unsigned RelocAddend64(const ELFRelocation &rel); 147 148 private: 149 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion; 150 151 RelocUnion reloc; 152 }; 153 154 ELFRelocation::ELFRelocation(unsigned type) { 155 if (type == DT_REL || type == SHT_REL) 156 reloc = new ELFRel(); 157 else if (type == DT_RELA || type == SHT_RELA) 158 reloc = new ELFRela(); 159 else { 160 assert(false && "unexpected relocation type"); 161 reloc = static_cast<ELFRel *>(NULL); 162 } 163 } 164 165 ELFRelocation::~ELFRelocation() { 166 if (reloc.is<ELFRel *>()) 167 delete reloc.get<ELFRel *>(); 168 else 169 delete reloc.get<ELFRela *>(); 170 } 171 172 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, 173 lldb::offset_t *offset) { 174 if (reloc.is<ELFRel *>()) 175 return reloc.get<ELFRel *>()->Parse(data, offset); 176 else 177 return reloc.get<ELFRela *>()->Parse(data, offset); 178 } 179 180 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { 181 if (rel.reloc.is<ELFRel *>()) 182 return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>()); 183 else 184 return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>()); 185 } 186 187 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { 188 if (rel.reloc.is<ELFRel *>()) 189 return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>()); 190 else 191 return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>()); 192 } 193 194 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { 195 if (rel.reloc.is<ELFRel *>()) 196 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>()); 197 else 198 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>()); 199 } 200 201 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { 202 if (rel.reloc.is<ELFRel *>()) 203 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>()); 204 else 205 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>()); 206 } 207 208 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) { 209 if (rel.reloc.is<ELFRel *>()) 210 return rel.reloc.get<ELFRel *>()->r_offset; 211 else 212 return rel.reloc.get<ELFRela *>()->r_offset; 213 } 214 215 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) { 216 if (rel.reloc.is<ELFRel *>()) 217 return rel.reloc.get<ELFRel *>()->r_offset; 218 else 219 return rel.reloc.get<ELFRela *>()->r_offset; 220 } 221 222 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) { 223 if (rel.reloc.is<ELFRel *>()) 224 return 0; 225 else 226 return rel.reloc.get<ELFRela *>()->r_addend; 227 } 228 229 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) { 230 if (rel.reloc.is<ELFRel *>()) 231 return 0; 232 else 233 return rel.reloc.get<ELFRela *>()->r_addend; 234 } 235 236 } // end anonymous namespace 237 238 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { 239 // Read all fields. 240 if (data.GetU32(offset, &n_namesz, 3) == NULL) 241 return false; 242 243 // The name field is required to be nul-terminated, and n_namesz includes the 244 // terminating nul in observed implementations (contrary to the ELF-64 spec). 245 // A special case is needed for cores generated by some older Linux versions, 246 // which write a note named "CORE" without a nul terminator and n_namesz = 4. 247 if (n_namesz == 4) { 248 char buf[4]; 249 if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) 250 return false; 251 if (strncmp(buf, "CORE", 4) == 0) { 252 n_name = "CORE"; 253 *offset += 4; 254 return true; 255 } 256 } 257 258 const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); 259 if (cstr == NULL) { 260 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 261 if (log) 262 log->Printf("Failed to parse note name lacking nul terminator"); 263 264 return false; 265 } 266 n_name = cstr; 267 return true; 268 } 269 270 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) { 271 const uint32_t dsp_rev = e_flags & 0xFF; 272 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 273 switch (dsp_rev) { 274 // TODO(mg11) Support more variants 275 case 10: 276 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 277 break; 278 case 14: 279 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 280 break; 281 case 17: 282 case 20: 283 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 284 break; 285 default: 286 break; 287 } 288 return kal_arch_variant; 289 } 290 291 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) { 292 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH; 293 uint32_t endian = header.e_ident[EI_DATA]; 294 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 295 uint32_t fileclass = header.e_ident[EI_CLASS]; 296 297 // If there aren't any elf flags available (e.g core elf file) then return 298 // default 299 // 32 or 64 bit arch (without any architecture revision) based on object file's class. 300 if (header.e_type == ET_CORE) { 301 switch (fileclass) { 302 case llvm::ELF::ELFCLASS32: 303 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 304 : ArchSpec::eMIPSSubType_mips32; 305 case llvm::ELF::ELFCLASS64: 306 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 307 : ArchSpec::eMIPSSubType_mips64; 308 default: 309 return arch_variant; 310 } 311 } 312 313 switch (mips_arch) { 314 case llvm::ELF::EF_MIPS_ARCH_1: 315 case llvm::ELF::EF_MIPS_ARCH_2: 316 case llvm::ELF::EF_MIPS_ARCH_32: 317 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 318 : ArchSpec::eMIPSSubType_mips32; 319 case llvm::ELF::EF_MIPS_ARCH_32R2: 320 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el 321 : ArchSpec::eMIPSSubType_mips32r2; 322 case llvm::ELF::EF_MIPS_ARCH_32R6: 323 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el 324 : ArchSpec::eMIPSSubType_mips32r6; 325 case llvm::ELF::EF_MIPS_ARCH_3: 326 case llvm::ELF::EF_MIPS_ARCH_4: 327 case llvm::ELF::EF_MIPS_ARCH_5: 328 case llvm::ELF::EF_MIPS_ARCH_64: 329 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 330 : ArchSpec::eMIPSSubType_mips64; 331 case llvm::ELF::EF_MIPS_ARCH_64R2: 332 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el 333 : ArchSpec::eMIPSSubType_mips64r2; 334 case llvm::ELF::EF_MIPS_ARCH_64R6: 335 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el 336 : ArchSpec::eMIPSSubType_mips64r6; 337 default: 338 break; 339 } 340 341 return arch_variant; 342 } 343 344 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { 345 if (header.e_machine == llvm::ELF::EM_MIPS) 346 return mipsVariantFromElfFlags(header); 347 348 return llvm::ELF::EM_CSR_KALIMBA == header.e_machine 349 ? kalimbaVariantFromElfFlags(header.e_flags) 350 : LLDB_INVALID_CPUTYPE; 351 } 352 353 //! The kalimba toolchain identifies a code section as being 354 //! one with the SHT_PROGBITS set in the section sh_type and the top 355 //! bit in the 32-bit address field set. 356 static lldb::SectionType 357 kalimbaSectionType(const elf::ELFHeader &header, 358 const elf::ELFSectionHeader §_hdr) { 359 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) { 360 return eSectionTypeOther; 361 } 362 363 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) { 364 return eSectionTypeZeroFill; 365 } 366 367 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) { 368 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 369 return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode 370 : eSectionTypeData; 371 } 372 373 return eSectionTypeOther; 374 } 375 376 // Arbitrary constant used as UUID prefix for core files. 377 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); 378 379 //------------------------------------------------------------------ 380 // Static methods. 381 //------------------------------------------------------------------ 382 void ObjectFileELF::Initialize() { 383 PluginManager::RegisterPlugin(GetPluginNameStatic(), 384 GetPluginDescriptionStatic(), CreateInstance, 385 CreateMemoryInstance, GetModuleSpecifications); 386 } 387 388 void ObjectFileELF::Terminate() { 389 PluginManager::UnregisterPlugin(CreateInstance); 390 } 391 392 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { 393 static ConstString g_name("elf"); 394 return g_name; 395 } 396 397 const char *ObjectFileELF::GetPluginDescriptionStatic() { 398 return "ELF object file reader."; 399 } 400 401 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, 402 DataBufferSP &data_sp, 403 lldb::offset_t data_offset, 404 const lldb_private::FileSpec *file, 405 lldb::offset_t file_offset, 406 lldb::offset_t length) { 407 if (!data_sp) { 408 data_sp = MapFileData(*file, length, file_offset); 409 if (!data_sp) 410 return nullptr; 411 data_offset = 0; 412 } 413 414 assert(data_sp); 415 416 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset)) 417 return nullptr; 418 419 const uint8_t *magic = data_sp->GetBytes() + data_offset; 420 if (!ELFHeader::MagicBytesMatch(magic)) 421 return nullptr; 422 423 // Update the data to contain the entire file if it doesn't already 424 if (data_sp->GetByteSize() < length) { 425 data_sp = MapFileData(*file, length, file_offset); 426 if (!data_sp) 427 return nullptr; 428 data_offset = 0; 429 magic = data_sp->GetBytes(); 430 } 431 432 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 433 if (address_size == 4 || address_size == 8) { 434 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF( 435 module_sp, data_sp, data_offset, file, file_offset, length)); 436 ArchSpec spec; 437 if (objfile_ap->GetArchitecture(spec) && 438 objfile_ap->SetModulesArchitecture(spec)) 439 return objfile_ap.release(); 440 } 441 442 return NULL; 443 } 444 445 ObjectFile *ObjectFileELF::CreateMemoryInstance( 446 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 447 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { 448 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { 449 const uint8_t *magic = data_sp->GetBytes(); 450 if (ELFHeader::MagicBytesMatch(magic)) { 451 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 452 if (address_size == 4 || address_size == 8) { 453 std::unique_ptr<ObjectFileELF> objfile_ap( 454 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 455 ArchSpec spec; 456 if (objfile_ap->GetArchitecture(spec) && 457 objfile_ap->SetModulesArchitecture(spec)) 458 return objfile_ap.release(); 459 } 460 } 461 } 462 return NULL; 463 } 464 465 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, 466 lldb::addr_t data_offset, 467 lldb::addr_t data_length) { 468 if (data_sp && 469 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { 470 const uint8_t *magic = data_sp->GetBytes() + data_offset; 471 return ELFHeader::MagicBytesMatch(magic); 472 } 473 return false; 474 } 475 476 /* 477 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 478 * 479 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 480 * code or tables extracted from it, as desired without restriction. 481 */ 482 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) { 483 static const uint32_t g_crc32_tab[] = { 484 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 485 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 486 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 487 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 488 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 489 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 490 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 491 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 492 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 493 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 494 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 495 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 496 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 497 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 498 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 499 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 500 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 501 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 502 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 503 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 504 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 505 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 506 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 507 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 508 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 509 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 510 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 511 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 512 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 513 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 514 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 515 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 516 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 517 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 518 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 519 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 520 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 521 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 522 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 523 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 524 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 525 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 526 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; 527 const uint8_t *p = (const uint8_t *)buf; 528 529 crc = crc ^ ~0U; 530 while (size--) 531 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 532 return crc ^ ~0U; 533 } 534 535 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) { 536 return calc_crc32(0U, buf, size); 537 } 538 539 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( 540 const ProgramHeaderColl &program_headers, DataExtractor &object_data) { 541 typedef ProgramHeaderCollConstIter Iter; 542 543 uint32_t core_notes_crc = 0; 544 545 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) { 546 if (I->p_type == llvm::ELF::PT_NOTE) { 547 const elf_off ph_offset = I->p_offset; 548 const size_t ph_size = I->p_filesz; 549 550 DataExtractor segment_data; 551 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { 552 // The ELF program header contained incorrect data, probably corefile 553 // is incomplete or corrupted. 554 break; 555 } 556 557 core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(), 558 segment_data.GetByteSize()); 559 } 560 } 561 562 return core_notes_crc; 563 } 564 565 static const char *OSABIAsCString(unsigned char osabi_byte) { 566 #define _MAKE_OSABI_CASE(x) \ 567 case x: \ 568 return #x 569 switch (osabi_byte) { 570 _MAKE_OSABI_CASE(ELFOSABI_NONE); 571 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 572 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 573 _MAKE_OSABI_CASE(ELFOSABI_GNU); 574 _MAKE_OSABI_CASE(ELFOSABI_HURD); 575 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 576 _MAKE_OSABI_CASE(ELFOSABI_AIX); 577 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 578 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 579 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 580 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 581 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 582 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 583 _MAKE_OSABI_CASE(ELFOSABI_NSK); 584 _MAKE_OSABI_CASE(ELFOSABI_AROS); 585 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 586 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 587 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 588 _MAKE_OSABI_CASE(ELFOSABI_ARM); 589 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 590 default: 591 return "<unknown-osabi>"; 592 } 593 #undef _MAKE_OSABI_CASE 594 } 595 596 // 597 // WARNING : This function is being deprecated 598 // It's functionality has moved to ArchSpec::SetArchitecture This function is 599 // only being kept to validate the move. 600 // 601 // TODO : Remove this function 602 static bool GetOsFromOSABI(unsigned char osabi_byte, 603 llvm::Triple::OSType &ostype) { 604 switch (osabi_byte) { 605 case ELFOSABI_AIX: 606 ostype = llvm::Triple::OSType::AIX; 607 break; 608 case ELFOSABI_FREEBSD: 609 ostype = llvm::Triple::OSType::FreeBSD; 610 break; 611 case ELFOSABI_GNU: 612 ostype = llvm::Triple::OSType::Linux; 613 break; 614 case ELFOSABI_NETBSD: 615 ostype = llvm::Triple::OSType::NetBSD; 616 break; 617 case ELFOSABI_OPENBSD: 618 ostype = llvm::Triple::OSType::OpenBSD; 619 break; 620 case ELFOSABI_SOLARIS: 621 ostype = llvm::Triple::OSType::Solaris; 622 break; 623 default: 624 ostype = llvm::Triple::OSType::UnknownOS; 625 } 626 return ostype != llvm::Triple::OSType::UnknownOS; 627 } 628 629 size_t ObjectFileELF::GetModuleSpecifications( 630 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 631 lldb::offset_t data_offset, lldb::offset_t file_offset, 632 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 633 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 634 635 const size_t initial_count = specs.GetSize(); 636 637 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 638 DataExtractor data; 639 data.SetData(data_sp); 640 elf::ELFHeader header; 641 lldb::offset_t header_offset = data_offset; 642 if (header.Parse(data, &header_offset)) { 643 if (data_sp) { 644 ModuleSpec spec(file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture( 648 eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 649 650 if (spec.GetArchitecture().IsValid()) { 651 llvm::Triple::OSType ostype; 652 llvm::Triple::VendorType vendor; 653 llvm::Triple::OSType spec_ostype = 654 spec.GetArchitecture().GetTriple().getOS(); 655 656 if (log) 657 log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s", 658 __FUNCTION__, file.GetPath().c_str(), 659 OSABIAsCString(header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture().GetTriple().getVendor(); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 UNUSED_IF_ASSERT_DISABLED(vendor); 665 666 // 667 // Validate it is ok to remove GetOsFromOSABI 668 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 669 assert(spec_ostype == ostype); 670 if (spec_ostype != llvm::Triple::OSType::UnknownOS) { 671 if (log) 672 log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type " 673 "from ELF header OSABI.", 674 __FUNCTION__, file.GetPath().c_str()); 675 } 676 677 data_sp = MapFileData(file, -1, file_offset); 678 if (data_sp) 679 data.SetData(data_sp); 680 // In case there is header extension in the section #0, the header we 681 // parsed above could have sentinel values for e_phnum, e_shnum, and 682 // e_shstrndx. In this case we need to reparse the header with a 683 // bigger data source to get the actual values. 684 if (header.HasHeaderExtension()) { 685 lldb::offset_t header_offset = data_offset; 686 header.Parse(data, &header_offset); 687 } 688 689 uint32_t gnu_debuglink_crc = 0; 690 std::string gnu_debuglink_file; 691 SectionHeaderColl section_headers; 692 lldb_private::UUID &uuid = spec.GetUUID(); 693 694 GetSectionHeaderInfo(section_headers, data, header, uuid, 695 gnu_debuglink_file, gnu_debuglink_crc, 696 spec.GetArchitecture()); 697 698 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); 699 700 if (log) 701 log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s " 702 "(architecture %s)", 703 __FUNCTION__, file.GetPath().c_str(), 704 spec_triple.getTriple().c_str(), 705 spec.GetArchitecture().GetArchitectureName()); 706 707 if (!uuid.IsValid()) { 708 uint32_t core_notes_crc = 0; 709 710 if (!gnu_debuglink_crc) { 711 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 712 lldb_private::Timer scoped_timer( 713 func_cat, 714 "Calculating module crc32 %s with size %" PRIu64 " KiB", 715 file.GetLastPathComponent().AsCString(), 716 (file.GetByteSize() - file_offset) / 1024); 717 718 // For core files - which usually don't happen to have a 719 // gnu_debuglink, and are pretty bulky - calculating whole 720 // contents crc32 would be too much of luxury. Thus we will need 721 // to fallback to something simpler. 722 if (header.e_type == llvm::ELF::ET_CORE) { 723 ProgramHeaderColl program_headers; 724 GetProgramHeaderInfo(program_headers, data, header); 725 726 core_notes_crc = 727 CalculateELFNotesSegmentsCRC32(program_headers, data); 728 } else { 729 gnu_debuglink_crc = calc_gnu_debuglink_crc32( 730 data.GetDataStart(), data.GetByteSize()); 731 } 732 } 733 using u32le = llvm::support::ulittle32_t; 734 if (gnu_debuglink_crc) { 735 // Use 4 bytes of crc from the .gnu_debuglink section. 736 u32le data(gnu_debuglink_crc); 737 uuid = UUID::fromData(&data, sizeof(data)); 738 } else if (core_notes_crc) { 739 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make 740 // it look different form .gnu_debuglink crc followed by 4 bytes 741 // of note segments crc. 742 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 743 uuid = UUID::fromData(data, sizeof(data)); 744 } 745 } 746 747 specs.Append(spec); 748 } 749 } 750 } 751 } 752 753 return specs.GetSize() - initial_count; 754 } 755 756 //------------------------------------------------------------------ 757 // PluginInterface protocol 758 //------------------------------------------------------------------ 759 lldb_private::ConstString ObjectFileELF::GetPluginName() { 760 return GetPluginNameStatic(); 761 } 762 763 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } 764 //------------------------------------------------------------------ 765 // ObjectFile protocol 766 //------------------------------------------------------------------ 767 768 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 769 DataBufferSP &data_sp, lldb::offset_t data_offset, 770 const FileSpec *file, lldb::offset_t file_offset, 771 lldb::offset_t length) 772 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 773 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 774 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 775 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 776 if (file) 777 m_file = *file; 778 ::memset(&m_header, 0, sizeof(m_header)); 779 } 780 781 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 782 DataBufferSP &header_data_sp, 783 const lldb::ProcessSP &process_sp, 784 addr_t header_addr) 785 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 786 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 787 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 788 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 789 ::memset(&m_header, 0, sizeof(m_header)); 790 } 791 792 ObjectFileELF::~ObjectFileELF() {} 793 794 bool ObjectFileELF::IsExecutable() const { 795 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 796 } 797 798 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, 799 bool value_is_offset) { 800 ModuleSP module_sp = GetModule(); 801 if (module_sp) { 802 size_t num_loaded_sections = 0; 803 SectionList *section_list = GetSectionList(); 804 if (section_list) { 805 if (!value_is_offset) { 806 bool found_offset = false; 807 for (size_t i = 1, count = GetProgramHeaderCount(); i <= count; ++i) { 808 const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i); 809 if (header == nullptr) 810 continue; 811 812 if (header->p_type != PT_LOAD || header->p_offset != 0) 813 continue; 814 815 value = value - header->p_vaddr; 816 found_offset = true; 817 break; 818 } 819 if (!found_offset) 820 return false; 821 } 822 823 const size_t num_sections = section_list->GetSize(); 824 size_t sect_idx = 0; 825 826 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 827 // Iterate through the object file sections to find all of the sections 828 // that have SHF_ALLOC in their flag bits. 829 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 830 if (section_sp && section_sp->Test(SHF_ALLOC)) { 831 lldb::addr_t load_addr = section_sp->GetFileAddress(); 832 // We don't want to update the load address of a section with type 833 // eSectionTypeAbsoluteAddress as they already have the absolute load 834 // address already specified 835 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 836 load_addr += value; 837 838 // On 32-bit systems the load address have to fit into 4 bytes. The 839 // rest of the bytes are the overflow from the addition. 840 if (GetAddressByteSize() == 4) 841 load_addr &= 0xFFFFFFFF; 842 843 if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, 844 load_addr)) 845 ++num_loaded_sections; 846 } 847 } 848 return num_loaded_sections > 0; 849 } 850 } 851 return false; 852 } 853 854 ByteOrder ObjectFileELF::GetByteOrder() const { 855 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 856 return eByteOrderBig; 857 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 858 return eByteOrderLittle; 859 return eByteOrderInvalid; 860 } 861 862 uint32_t ObjectFileELF::GetAddressByteSize() const { 863 return m_data.GetAddressByteSize(); 864 } 865 866 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { 867 Symtab *symtab = GetSymtab(); 868 if (!symtab) 869 return AddressClass::eUnknown; 870 871 // The address class is determined based on the symtab. Ask it from the 872 // object file what contains the symtab information. 873 ObjectFile *symtab_objfile = symtab->GetObjectFile(); 874 if (symtab_objfile != nullptr && symtab_objfile != this) 875 return symtab_objfile->GetAddressClass(file_addr); 876 877 auto res = ObjectFile::GetAddressClass(file_addr); 878 if (res != AddressClass::eCode) 879 return res; 880 881 auto ub = m_address_class_map.upper_bound(file_addr); 882 if (ub == m_address_class_map.begin()) { 883 // No entry in the address class map before the address. Return default 884 // address class for an address in a code section. 885 return AddressClass::eCode; 886 } 887 888 // Move iterator to the address class entry preceding address 889 --ub; 890 891 return ub->second; 892 } 893 894 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { 895 return std::distance(m_section_headers.begin(), I) + 1u; 896 } 897 898 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { 899 return std::distance(m_section_headers.begin(), I) + 1u; 900 } 901 902 bool ObjectFileELF::ParseHeader() { 903 lldb::offset_t offset = 0; 904 return m_header.Parse(m_data, &offset); 905 } 906 907 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) { 908 // Need to parse the section list to get the UUIDs, so make sure that's been 909 // done. 910 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 911 return false; 912 913 using u32le = llvm::support::ulittle32_t; 914 if (m_uuid.IsValid()) { 915 // We have the full build id uuid. 916 *uuid = m_uuid; 917 return true; 918 } else if (GetType() == ObjectFile::eTypeCoreFile) { 919 uint32_t core_notes_crc = 0; 920 921 if (!ParseProgramHeaders()) 922 return false; 923 924 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 925 926 if (core_notes_crc) { 927 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look 928 // different form .gnu_debuglink crc - followed by 4 bytes of note 929 // segments crc. 930 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 931 m_uuid = UUID::fromData(data, sizeof(data)); 932 } 933 } else { 934 if (!m_gnu_debuglink_crc) 935 m_gnu_debuglink_crc = 936 calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize()); 937 if (m_gnu_debuglink_crc) { 938 // Use 4 bytes of crc from the .gnu_debuglink section. 939 u32le data(m_gnu_debuglink_crc); 940 m_uuid = UUID::fromData(&data, sizeof(data)); 941 } 942 } 943 944 if (m_uuid.IsValid()) { 945 *uuid = m_uuid; 946 return true; 947 } 948 949 return false; 950 } 951 952 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() { 953 FileSpecList file_spec_list; 954 955 if (!m_gnu_debuglink_file.empty()) { 956 FileSpec file_spec(m_gnu_debuglink_file, false); 957 file_spec_list.Append(file_spec); 958 } 959 return file_spec_list; 960 } 961 962 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { 963 size_t num_modules = ParseDependentModules(); 964 uint32_t num_specs = 0; 965 966 for (unsigned i = 0; i < num_modules; ++i) { 967 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 968 num_specs++; 969 } 970 971 return num_specs; 972 } 973 974 Address ObjectFileELF::GetImageInfoAddress(Target *target) { 975 if (!ParseDynamicSymbols()) 976 return Address(); 977 978 SectionList *section_list = GetSectionList(); 979 if (!section_list) 980 return Address(); 981 982 // Find the SHT_DYNAMIC (.dynamic) section. 983 SectionSP dynsym_section_sp( 984 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); 985 if (!dynsym_section_sp) 986 return Address(); 987 assert(dynsym_section_sp->GetObjectFile() == this); 988 989 user_id_t dynsym_id = dynsym_section_sp->GetID(); 990 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 991 if (!dynsym_hdr) 992 return Address(); 993 994 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { 995 ELFDynamic &symbol = m_dynamic_symbols[i]; 996 997 if (symbol.d_tag == DT_DEBUG) { 998 // Compute the offset as the number of previous entries plus the size of 999 // d_tag. 1000 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1001 return Address(dynsym_section_sp, offset); 1002 } 1003 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP 1004 // exists in non-PIE. 1005 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || 1006 symbol.d_tag == DT_MIPS_RLD_MAP_REL) && 1007 target) { 1008 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1009 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1010 if (dyn_base == LLDB_INVALID_ADDRESS) 1011 return Address(); 1012 1013 Status error; 1014 if (symbol.d_tag == DT_MIPS_RLD_MAP) { 1015 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1016 Address addr; 1017 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, 1018 addr)) 1019 return addr; 1020 } 1021 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { 1022 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, 1023 // relative to the address of the tag. 1024 uint64_t rel_offset; 1025 rel_offset = target->ReadUnsignedIntegerFromMemory( 1026 dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1027 if (error.Success() && rel_offset != UINT64_MAX) { 1028 Address addr; 1029 addr_t debug_ptr_address = 1030 dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1031 addr.SetOffset(debug_ptr_address); 1032 return addr; 1033 } 1034 } 1035 } 1036 } 1037 1038 return Address(); 1039 } 1040 1041 lldb_private::Address ObjectFileELF::GetEntryPointAddress() { 1042 if (m_entry_point_address.IsValid()) 1043 return m_entry_point_address; 1044 1045 if (!ParseHeader() || !IsExecutable()) 1046 return m_entry_point_address; 1047 1048 SectionList *section_list = GetSectionList(); 1049 addr_t offset = m_header.e_entry; 1050 1051 if (!section_list) 1052 m_entry_point_address.SetOffset(offset); 1053 else 1054 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1055 return m_entry_point_address; 1056 } 1057 1058 //---------------------------------------------------------------------- 1059 // ParseDependentModules 1060 //---------------------------------------------------------------------- 1061 size_t ObjectFileELF::ParseDependentModules() { 1062 if (m_filespec_ap.get()) 1063 return m_filespec_ap->GetSize(); 1064 1065 m_filespec_ap.reset(new FileSpecList()); 1066 1067 if (!ParseSectionHeaders()) 1068 return 0; 1069 1070 SectionList *section_list = GetSectionList(); 1071 if (!section_list) 1072 return 0; 1073 1074 // Find the SHT_DYNAMIC section. 1075 Section *dynsym = 1076 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 1077 .get(); 1078 if (!dynsym) 1079 return 0; 1080 assert(dynsym->GetObjectFile() == this); 1081 1082 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); 1083 if (!header) 1084 return 0; 1085 // sh_link: section header index of string table used by entries in the 1086 // section. 1087 Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get(); 1088 if (!dynstr) 1089 return 0; 1090 1091 DataExtractor dynsym_data; 1092 DataExtractor dynstr_data; 1093 if (ReadSectionData(dynsym, dynsym_data) && 1094 ReadSectionData(dynstr, dynstr_data)) { 1095 ELFDynamic symbol; 1096 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1097 lldb::offset_t offset = 0; 1098 1099 // The only type of entries we are concerned with are tagged DT_NEEDED, 1100 // yielding the name of a required library. 1101 while (offset < section_size) { 1102 if (!symbol.Parse(dynsym_data, &offset)) 1103 break; 1104 1105 if (symbol.d_tag != DT_NEEDED) 1106 continue; 1107 1108 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1109 const char *lib_name = dynstr_data.PeekCStr(str_index); 1110 m_filespec_ap->Append(FileSpec(lib_name, true)); 1111 } 1112 } 1113 1114 return m_filespec_ap->GetSize(); 1115 } 1116 1117 //---------------------------------------------------------------------- 1118 // GetProgramHeaderInfo 1119 //---------------------------------------------------------------------- 1120 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1121 DataExtractor &object_data, 1122 const ELFHeader &header) { 1123 // We have already parsed the program headers 1124 if (!program_headers.empty()) 1125 return program_headers.size(); 1126 1127 // If there are no program headers to read we are done. 1128 if (header.e_phnum == 0) 1129 return 0; 1130 1131 program_headers.resize(header.e_phnum); 1132 if (program_headers.size() != header.e_phnum) 1133 return 0; 1134 1135 const size_t ph_size = header.e_phnum * header.e_phentsize; 1136 const elf_off ph_offset = header.e_phoff; 1137 DataExtractor data; 1138 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1139 return 0; 1140 1141 uint32_t idx; 1142 lldb::offset_t offset; 1143 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { 1144 if (program_headers[idx].Parse(data, &offset) == false) 1145 break; 1146 } 1147 1148 if (idx < program_headers.size()) 1149 program_headers.resize(idx); 1150 1151 return program_headers.size(); 1152 } 1153 1154 //---------------------------------------------------------------------- 1155 // ParseProgramHeaders 1156 //---------------------------------------------------------------------- 1157 size_t ObjectFileELF::ParseProgramHeaders() { 1158 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1159 } 1160 1161 lldb_private::Status 1162 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, 1163 lldb_private::ArchSpec &arch_spec, 1164 lldb_private::UUID &uuid) { 1165 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1166 Status error; 1167 1168 lldb::offset_t offset = 0; 1169 1170 while (true) { 1171 // Parse the note header. If this fails, bail out. 1172 const lldb::offset_t note_offset = offset; 1173 ELFNote note = ELFNote(); 1174 if (!note.Parse(data, &offset)) { 1175 // We're done. 1176 return error; 1177 } 1178 1179 if (log) 1180 log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, 1181 __FUNCTION__, note.n_name.c_str(), note.n_type); 1182 1183 // Process FreeBSD ELF notes. 1184 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1185 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1186 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { 1187 // Pull out the min version info. 1188 uint32_t version_info; 1189 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1190 error.SetErrorString("failed to read FreeBSD ABI note payload"); 1191 return error; 1192 } 1193 1194 // Convert the version info into a major/minor number. 1195 const uint32_t version_major = version_info / 100000; 1196 const uint32_t version_minor = (version_info / 1000) % 100; 1197 1198 char os_name[32]; 1199 snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, 1200 version_major, version_minor); 1201 1202 // Set the elf OS version to FreeBSD. Also clear the vendor. 1203 arch_spec.GetTriple().setOSName(os_name); 1204 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1205 1206 if (log) 1207 log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 1208 ".%" PRIu32, 1209 __FUNCTION__, version_major, version_minor, 1210 static_cast<uint32_t>(version_info % 1000)); 1211 } 1212 // Process GNU ELF notes. 1213 else if (note.n_name == LLDB_NT_OWNER_GNU) { 1214 switch (note.n_type) { 1215 case LLDB_NT_GNU_ABI_TAG: 1216 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { 1217 // Pull out the min OS version supporting the ABI. 1218 uint32_t version_info[4]; 1219 if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == 1220 nullptr) { 1221 error.SetErrorString("failed to read GNU ABI note payload"); 1222 return error; 1223 } 1224 1225 // Set the OS per the OS field. 1226 switch (version_info[0]) { 1227 case LLDB_NT_GNU_ABI_OS_LINUX: 1228 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1229 arch_spec.GetTriple().setVendor( 1230 llvm::Triple::VendorType::UnknownVendor); 1231 if (log) 1232 log->Printf( 1233 "ObjectFileELF::%s detected Linux, min version %" PRIu32 1234 ".%" PRIu32 ".%" PRIu32, 1235 __FUNCTION__, version_info[1], version_info[2], 1236 version_info[3]); 1237 // FIXME we have the minimal version number, we could be propagating 1238 // that. version_info[1] = OS Major, version_info[2] = OS Minor, 1239 // version_info[3] = Revision. 1240 break; 1241 case LLDB_NT_GNU_ABI_OS_HURD: 1242 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1243 arch_spec.GetTriple().setVendor( 1244 llvm::Triple::VendorType::UnknownVendor); 1245 if (log) 1246 log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min " 1247 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1248 __FUNCTION__, version_info[1], version_info[2], 1249 version_info[3]); 1250 break; 1251 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1252 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); 1253 arch_spec.GetTriple().setVendor( 1254 llvm::Triple::VendorType::UnknownVendor); 1255 if (log) 1256 log->Printf( 1257 "ObjectFileELF::%s detected Solaris, min version %" PRIu32 1258 ".%" PRIu32 ".%" PRIu32, 1259 __FUNCTION__, version_info[1], version_info[2], 1260 version_info[3]); 1261 break; 1262 default: 1263 if (log) 1264 log->Printf( 1265 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 1266 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1267 __FUNCTION__, version_info[0], version_info[1], 1268 version_info[2], version_info[3]); 1269 break; 1270 } 1271 } 1272 break; 1273 1274 case LLDB_NT_GNU_BUILD_ID_TAG: 1275 // Only bother processing this if we don't already have the uuid set. 1276 if (!uuid.IsValid()) { 1277 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a 1278 // build-id of a different length. Accept it as long as it's at least 1279 // 4 bytes as it will be better than our own crc32. 1280 if (note.n_descsz >= 4) { 1281 if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) { 1282 // Save the build id as the UUID for the module. 1283 uuid = UUID::fromData(buf, note.n_descsz); 1284 } else { 1285 error.SetErrorString("failed to read GNU_BUILD_ID note payload"); 1286 return error; 1287 } 1288 } 1289 } 1290 break; 1291 } 1292 if (arch_spec.IsMIPS() && 1293 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1294 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform 1295 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1296 } 1297 // Process NetBSD ELF notes. 1298 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1299 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1300 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) { 1301 // Pull out the min version info. 1302 uint32_t version_info; 1303 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1304 error.SetErrorString("failed to read NetBSD ABI note payload"); 1305 return error; 1306 } 1307 1308 // Set the elf OS version to NetBSD. Also clear the vendor. 1309 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); 1310 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1311 1312 if (log) 1313 log->Printf( 1314 "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, 1315 __FUNCTION__, version_info); 1316 } 1317 // Process OpenBSD ELF notes. 1318 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) { 1319 // Set the elf OS version to OpenBSD. Also clear the vendor. 1320 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD); 1321 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1322 } 1323 // Process CSR kalimba notes 1324 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1325 (note.n_name == LLDB_NT_OWNER_CSR)) { 1326 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1327 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1328 1329 // TODO At some point the description string could be processed. 1330 // It could provide a steer towards the kalimba variant which this ELF 1331 // targets. 1332 if (note.n_descsz) { 1333 const char *cstr = 1334 data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4)); 1335 (void)cstr; 1336 } 1337 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { 1338 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1339 arch_spec.GetTriple().setEnvironment( 1340 llvm::Triple::EnvironmentType::Android); 1341 } else if (note.n_name == LLDB_NT_OWNER_LINUX) { 1342 // This is sometimes found in core files and usually contains extended 1343 // register info 1344 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1345 } else if (note.n_name == LLDB_NT_OWNER_CORE) { 1346 // Parse the NT_FILE to look for stuff in paths to shared libraries As 1347 // the contents look like this in a 64 bit ELF core file: count = 1348 // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index 1349 // start end file_ofs path ===== 1350 // ------------------ ------------------ ------------------ 1351 // ------------------------------------- [ 0] 0x0000000000400000 1352 // 0x0000000000401000 0x0000000000000000 /tmp/a.out [ 1] 1353 // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [ 1354 // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1355 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 1356 // /lib/x86_64-linux-gnu/libc-2.19.so [ 4] 0x00007fa79cba8000 1357 // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux- 1358 // gnu/libc-2.19.so [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 1359 // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [ 6] 1360 // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64 1361 // -linux-gnu/libc-2.19.so [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 1362 // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [ 8] 1363 // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64 1364 // -linux-gnu/ld-2.19.so [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 1365 // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs 1366 // the count, page_size, start, end, file_ofs are uint32_t For reference: 1367 // see readelf source code (in binutils). 1368 if (note.n_type == NT_FILE) { 1369 uint64_t count = data.GetAddress(&offset); 1370 const char *cstr; 1371 data.GetAddress(&offset); // Skip page size 1372 offset += count * 3 * 1373 data.GetAddressByteSize(); // Skip all start/end/file_ofs 1374 for (size_t i = 0; i < count; ++i) { 1375 cstr = data.GetCStr(&offset); 1376 if (cstr == nullptr) { 1377 error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " 1378 "at an offset after the end " 1379 "(GetCStr returned nullptr)", 1380 __FUNCTION__); 1381 return error; 1382 } 1383 llvm::StringRef path(cstr); 1384 if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { 1385 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1386 break; 1387 } 1388 } 1389 if (arch_spec.IsMIPS() && 1390 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1391 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some 1392 // cases (e.g. compile with -nostdlib) Hence set OS to Linux 1393 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1394 } 1395 } 1396 1397 // Calculate the offset of the next note just in case "offset" has been 1398 // used to poke at the contents of the note data 1399 offset = note_offset + note.GetByteSize(); 1400 } 1401 1402 return error; 1403 } 1404 1405 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, 1406 ArchSpec &arch_spec) { 1407 lldb::offset_t Offset = 0; 1408 1409 uint8_t FormatVersion = data.GetU8(&Offset); 1410 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1411 return; 1412 1413 Offset = Offset + sizeof(uint32_t); // Section Length 1414 llvm::StringRef VendorName = data.GetCStr(&Offset); 1415 1416 if (VendorName != "aeabi") 1417 return; 1418 1419 if (arch_spec.GetTriple().getEnvironment() == 1420 llvm::Triple::UnknownEnvironment) 1421 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1422 1423 while (Offset < length) { 1424 uint8_t Tag = data.GetU8(&Offset); 1425 uint32_t Size = data.GetU32(&Offset); 1426 1427 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1428 continue; 1429 1430 while (Offset < length) { 1431 uint64_t Tag = data.GetULEB128(&Offset); 1432 switch (Tag) { 1433 default: 1434 if (Tag < 32) 1435 data.GetULEB128(&Offset); 1436 else if (Tag % 2 == 0) 1437 data.GetULEB128(&Offset); 1438 else 1439 data.GetCStr(&Offset); 1440 1441 break; 1442 1443 case llvm::ARMBuildAttrs::CPU_raw_name: 1444 case llvm::ARMBuildAttrs::CPU_name: 1445 data.GetCStr(&Offset); 1446 1447 break; 1448 1449 case llvm::ARMBuildAttrs::ABI_VFP_args: { 1450 uint64_t VFPArgs = data.GetULEB128(&Offset); 1451 1452 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { 1453 if (arch_spec.GetTriple().getEnvironment() == 1454 llvm::Triple::UnknownEnvironment || 1455 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1456 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1457 1458 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1459 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { 1460 if (arch_spec.GetTriple().getEnvironment() == 1461 llvm::Triple::UnknownEnvironment || 1462 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1463 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1464 1465 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1466 } 1467 1468 break; 1469 } 1470 } 1471 } 1472 } 1473 } 1474 1475 //---------------------------------------------------------------------- 1476 // GetSectionHeaderInfo 1477 //---------------------------------------------------------------------- 1478 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1479 DataExtractor &object_data, 1480 const elf::ELFHeader &header, 1481 lldb_private::UUID &uuid, 1482 std::string &gnu_debuglink_file, 1483 uint32_t &gnu_debuglink_crc, 1484 ArchSpec &arch_spec) { 1485 // Don't reparse the section headers if we already did that. 1486 if (!section_headers.empty()) 1487 return section_headers.size(); 1488 1489 // Only initialize the arch_spec to okay defaults if they're not already set. 1490 // We'll refine this with note data as we parse the notes. 1491 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { 1492 llvm::Triple::OSType ostype; 1493 llvm::Triple::OSType spec_ostype; 1494 const uint32_t sub_type = subTypeFromElfHeader(header); 1495 arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, 1496 header.e_ident[EI_OSABI]); 1497 1498 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is 1499 // determined based on EI_OSABI flag and the info extracted from ELF notes 1500 // (see RefineModuleDetailsFromNote). However in some cases that still 1501 // might be not enough: for example a shared library might not have any 1502 // notes at all and have EI_OSABI flag set to System V, as result the OS 1503 // will be set to UnknownOS. 1504 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 1505 spec_ostype = arch_spec.GetTriple().getOS(); 1506 assert(spec_ostype == ostype); 1507 UNUSED_IF_ASSERT_DISABLED(spec_ostype); 1508 } 1509 1510 if (arch_spec.GetMachine() == llvm::Triple::mips || 1511 arch_spec.GetMachine() == llvm::Triple::mipsel || 1512 arch_spec.GetMachine() == llvm::Triple::mips64 || 1513 arch_spec.GetMachine() == llvm::Triple::mips64el) { 1514 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { 1515 case llvm::ELF::EF_MIPS_MICROMIPS: 1516 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); 1517 break; 1518 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1519 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); 1520 break; 1521 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1522 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); 1523 break; 1524 default: 1525 break; 1526 } 1527 } 1528 1529 if (arch_spec.GetMachine() == llvm::Triple::arm || 1530 arch_spec.GetMachine() == llvm::Triple::thumb) { 1531 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1532 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1533 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1534 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1535 } 1536 1537 // If there are no section headers we are done. 1538 if (header.e_shnum == 0) 1539 return 0; 1540 1541 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1542 1543 section_headers.resize(header.e_shnum); 1544 if (section_headers.size() != header.e_shnum) 1545 return 0; 1546 1547 const size_t sh_size = header.e_shnum * header.e_shentsize; 1548 const elf_off sh_offset = header.e_shoff; 1549 DataExtractor sh_data; 1550 if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size) 1551 return 0; 1552 1553 uint32_t idx; 1554 lldb::offset_t offset; 1555 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { 1556 if (section_headers[idx].Parse(sh_data, &offset) == false) 1557 break; 1558 } 1559 if (idx < section_headers.size()) 1560 section_headers.resize(idx); 1561 1562 const unsigned strtab_idx = header.e_shstrndx; 1563 if (strtab_idx && strtab_idx < section_headers.size()) { 1564 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1565 const size_t byte_size = sheader.sh_size; 1566 const Elf64_Off offset = sheader.sh_offset; 1567 lldb_private::DataExtractor shstr_data; 1568 1569 if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) { 1570 for (SectionHeaderCollIter I = section_headers.begin(); 1571 I != section_headers.end(); ++I) { 1572 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); 1573 const ELFSectionHeaderInfo &sheader = *I; 1574 const uint64_t section_size = 1575 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1576 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1577 1578 I->section_name = name; 1579 1580 if (arch_spec.IsMIPS()) { 1581 uint32_t arch_flags = arch_spec.GetFlags(); 1582 DataExtractor data; 1583 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { 1584 1585 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1586 section_size) == section_size)) { 1587 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1588 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1589 arch_flags |= data.GetU32(&offset); 1590 1591 // The floating point ABI is at offset 7 1592 offset = 7; 1593 switch (data.GetU8(&offset)) { 1594 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: 1595 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1596 break; 1597 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: 1598 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1599 break; 1600 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: 1601 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1602 break; 1603 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: 1604 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1605 break; 1606 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: 1607 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1608 break; 1609 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: 1610 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1611 break; 1612 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: 1613 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1614 break; 1615 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: 1616 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1617 break; 1618 } 1619 } 1620 } 1621 // Settings appropriate ArchSpec ABI Flags 1622 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { 1623 case llvm::ELF::EF_MIPS_ABI_O32: 1624 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1625 break; 1626 case EF_MIPS_ABI_O64: 1627 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1628 break; 1629 case EF_MIPS_ABI_EABI32: 1630 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1631 break; 1632 case EF_MIPS_ABI_EABI64: 1633 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1634 break; 1635 default: 1636 // ABI Mask doesn't cover N32 and N64 ABI. 1637 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1638 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1639 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1640 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1641 break; 1642 } 1643 arch_spec.SetFlags(arch_flags); 1644 } 1645 1646 if (arch_spec.GetMachine() == llvm::Triple::arm || 1647 arch_spec.GetMachine() == llvm::Triple::thumb) { 1648 DataExtractor data; 1649 1650 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1651 data.SetData(object_data, sheader.sh_offset, section_size) == section_size) 1652 ParseARMAttributes(data, section_size, arch_spec); 1653 } 1654 1655 if (name == g_sect_name_gnu_debuglink) { 1656 DataExtractor data; 1657 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1658 section_size) == section_size)) { 1659 lldb::offset_t gnu_debuglink_offset = 0; 1660 gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); 1661 gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); 1662 data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1663 } 1664 } 1665 1666 // Process ELF note section entries. 1667 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1668 1669 // The section header ".note.android.ident" is stored as a 1670 // PROGBITS type header but it is actually a note header. 1671 static ConstString g_sect_name_android_ident(".note.android.ident"); 1672 if (!is_note_header && name == g_sect_name_android_ident) 1673 is_note_header = true; 1674 1675 if (is_note_header) { 1676 // Allow notes to refine module info. 1677 DataExtractor data; 1678 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1679 section_size) == section_size)) { 1680 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid); 1681 if (error.Fail()) { 1682 if (log) 1683 log->Printf("ObjectFileELF::%s ELF note processing failed: %s", 1684 __FUNCTION__, error.AsCString()); 1685 } 1686 } 1687 } 1688 } 1689 1690 // Make any unknown triple components to be unspecified unknowns. 1691 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1692 arch_spec.GetTriple().setVendorName(llvm::StringRef()); 1693 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1694 arch_spec.GetTriple().setOSName(llvm::StringRef()); 1695 1696 return section_headers.size(); 1697 } 1698 } 1699 1700 section_headers.clear(); 1701 return 0; 1702 } 1703 1704 size_t ObjectFileELF::GetProgramHeaderCount() { return ParseProgramHeaders(); } 1705 1706 const elf::ELFProgramHeader * 1707 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) { 1708 if (!id || !ParseProgramHeaders()) 1709 return NULL; 1710 1711 if (--id < m_program_headers.size()) 1712 return &m_program_headers[id]; 1713 1714 return NULL; 1715 } 1716 1717 DataExtractor ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) { 1718 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1719 if (segment_header == NULL) 1720 return DataExtractor(); 1721 return DataExtractor(m_data, segment_header->p_offset, 1722 segment_header->p_filesz); 1723 } 1724 1725 llvm::StringRef 1726 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { 1727 size_t pos = symbol_name.find('@'); 1728 return symbol_name.substr(0, pos); 1729 } 1730 1731 //---------------------------------------------------------------------- 1732 // ParseSectionHeaders 1733 //---------------------------------------------------------------------- 1734 size_t ObjectFileELF::ParseSectionHeaders() { 1735 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, 1736 m_gnu_debuglink_file, m_gnu_debuglink_crc, 1737 m_arch_spec); 1738 } 1739 1740 const ObjectFileELF::ELFSectionHeaderInfo * 1741 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { 1742 if (!id || !ParseSectionHeaders()) 1743 return NULL; 1744 1745 if (--id < m_section_headers.size()) 1746 return &m_section_headers[id]; 1747 1748 return NULL; 1749 } 1750 1751 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { 1752 if (!name || !name[0] || !ParseSectionHeaders()) 1753 return 0; 1754 for (size_t i = 1; i < m_section_headers.size(); ++i) 1755 if (m_section_headers[i].section_name == ConstString(name)) 1756 return i; 1757 return 0; 1758 } 1759 1760 void ObjectFileELF::CreateSections(SectionList &unified_section_list) { 1761 if (!m_sections_ap.get() && ParseSectionHeaders()) { 1762 m_sections_ap.reset(new SectionList()); 1763 1764 // Object files frequently have 0 for every section address, meaning we 1765 // need to compute synthetic addresses in order for "file addresses" from 1766 // different sections to not overlap 1767 bool synthaddrs = (CalculateType() == ObjectFile::Type::eTypeObjectFile); 1768 uint64_t nextaddr = 0; 1769 1770 for (SectionHeaderCollIter I = m_section_headers.begin(); 1771 I != m_section_headers.end(); ++I) { 1772 const ELFSectionHeaderInfo &header = *I; 1773 1774 ConstString &name = I->section_name; 1775 const uint64_t file_size = 1776 header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1777 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1778 1779 static ConstString g_sect_name_text(".text"); 1780 static ConstString g_sect_name_data(".data"); 1781 static ConstString g_sect_name_bss(".bss"); 1782 static ConstString g_sect_name_tdata(".tdata"); 1783 static ConstString g_sect_name_tbss(".tbss"); 1784 static ConstString g_sect_name_dwarf_debug_abbrev(".debug_abbrev"); 1785 static ConstString g_sect_name_dwarf_debug_addr(".debug_addr"); 1786 static ConstString g_sect_name_dwarf_debug_aranges(".debug_aranges"); 1787 static ConstString g_sect_name_dwarf_debug_cu_index(".debug_cu_index"); 1788 static ConstString g_sect_name_dwarf_debug_frame(".debug_frame"); 1789 static ConstString g_sect_name_dwarf_debug_info(".debug_info"); 1790 static ConstString g_sect_name_dwarf_debug_line(".debug_line"); 1791 static ConstString g_sect_name_dwarf_debug_line_str(".debug_line_str"); 1792 static ConstString g_sect_name_dwarf_debug_loc(".debug_loc"); 1793 static ConstString g_sect_name_dwarf_debug_macinfo(".debug_macinfo"); 1794 static ConstString g_sect_name_dwarf_debug_macro(".debug_macro"); 1795 static ConstString g_sect_name_dwarf_debug_names(".debug_names"); 1796 static ConstString g_sect_name_dwarf_debug_pubnames(".debug_pubnames"); 1797 static ConstString g_sect_name_dwarf_debug_pubtypes(".debug_pubtypes"); 1798 static ConstString g_sect_name_dwarf_debug_ranges(".debug_ranges"); 1799 static ConstString g_sect_name_dwarf_debug_str(".debug_str"); 1800 static ConstString g_sect_name_dwarf_debug_str_offsets( 1801 ".debug_str_offsets"); 1802 static ConstString g_sect_name_dwarf_debug_abbrev_dwo( 1803 ".debug_abbrev.dwo"); 1804 static ConstString g_sect_name_dwarf_debug_info_dwo(".debug_info.dwo"); 1805 static ConstString g_sect_name_dwarf_debug_line_dwo(".debug_line.dwo"); 1806 static ConstString g_sect_name_dwarf_debug_line_str_dwo(".debug_line_str.dwo"); 1807 static ConstString g_sect_name_dwarf_debug_macro_dwo(".debug_macro.dwo"); 1808 static ConstString g_sect_name_dwarf_debug_loc_dwo(".debug_loc.dwo"); 1809 static ConstString g_sect_name_dwarf_debug_str_dwo(".debug_str.dwo"); 1810 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo( 1811 ".debug_str_offsets.dwo"); 1812 static ConstString g_sect_name_dwarf_debug_types(".debug_types"); 1813 static ConstString g_sect_name_eh_frame(".eh_frame"); 1814 static ConstString g_sect_name_arm_exidx(".ARM.exidx"); 1815 static ConstString g_sect_name_arm_extab(".ARM.extab"); 1816 static ConstString g_sect_name_go_symtab(".gosymtab"); 1817 static ConstString g_sect_name_dwarf_gnu_debugaltlink(".gnu_debugaltlink"); 1818 1819 SectionType sect_type = eSectionTypeOther; 1820 1821 bool is_thread_specific = false; 1822 1823 if (name == g_sect_name_text) 1824 sect_type = eSectionTypeCode; 1825 else if (name == g_sect_name_data) 1826 sect_type = eSectionTypeData; 1827 else if (name == g_sect_name_bss) 1828 sect_type = eSectionTypeZeroFill; 1829 else if (name == g_sect_name_tdata) { 1830 sect_type = eSectionTypeData; 1831 is_thread_specific = true; 1832 } else if (name == g_sect_name_tbss) { 1833 sect_type = eSectionTypeZeroFill; 1834 is_thread_specific = true; 1835 } 1836 // .debug_abbrev – Abbreviations used in the .debug_info section 1837 // .debug_aranges – Lookup table for mapping addresses to compilation 1838 // units .debug_frame – Call frame information .debug_info – The core 1839 // DWARF information section .debug_line – Line number information 1840 // .debug_loc – Location lists used in DW_AT_location attributes 1841 // .debug_macinfo – Macro information .debug_pubnames – Lookup table 1842 // for mapping object and function names to compilation units 1843 // .debug_pubtypes – Lookup table for mapping type names to compilation 1844 // units .debug_ranges – Address ranges used in DW_AT_ranges attributes 1845 // .debug_str – String table used in .debug_info MISSING? 1846 // .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, 1847 // http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html MISSING? 1848 // .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build 1849 // /gdb-add-index?pathrev=144644 MISSING? .debug_types - Type 1850 // descriptions from DWARF 4? See 1851 // http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1852 else if (name == g_sect_name_dwarf_debug_abbrev) 1853 sect_type = eSectionTypeDWARFDebugAbbrev; 1854 else if (name == g_sect_name_dwarf_debug_addr) 1855 sect_type = eSectionTypeDWARFDebugAddr; 1856 else if (name == g_sect_name_dwarf_debug_aranges) 1857 sect_type = eSectionTypeDWARFDebugAranges; 1858 else if (name == g_sect_name_dwarf_debug_cu_index) 1859 sect_type = eSectionTypeDWARFDebugCuIndex; 1860 else if (name == g_sect_name_dwarf_debug_frame) 1861 sect_type = eSectionTypeDWARFDebugFrame; 1862 else if (name == g_sect_name_dwarf_debug_info) 1863 sect_type = eSectionTypeDWARFDebugInfo; 1864 else if (name == g_sect_name_dwarf_debug_line) 1865 sect_type = eSectionTypeDWARFDebugLine; 1866 else if (name == g_sect_name_dwarf_debug_line_str) 1867 sect_type = eSectionTypeDWARFDebugLineStr; 1868 else if (name == g_sect_name_dwarf_debug_loc) 1869 sect_type = eSectionTypeDWARFDebugLoc; 1870 else if (name == g_sect_name_dwarf_debug_macinfo) 1871 sect_type = eSectionTypeDWARFDebugMacInfo; 1872 else if (name == g_sect_name_dwarf_debug_macro) 1873 sect_type = eSectionTypeDWARFDebugMacro; 1874 else if (name == g_sect_name_dwarf_debug_names) 1875 sect_type = eSectionTypeDWARFDebugNames; 1876 else if (name == g_sect_name_dwarf_debug_pubnames) 1877 sect_type = eSectionTypeDWARFDebugPubNames; 1878 else if (name == g_sect_name_dwarf_debug_pubtypes) 1879 sect_type = eSectionTypeDWARFDebugPubTypes; 1880 else if (name == g_sect_name_dwarf_debug_ranges) 1881 sect_type = eSectionTypeDWARFDebugRanges; 1882 else if (name == g_sect_name_dwarf_debug_str) 1883 sect_type = eSectionTypeDWARFDebugStr; 1884 else if (name == g_sect_name_dwarf_debug_types) 1885 sect_type = eSectionTypeDWARFDebugTypes; 1886 else if (name == g_sect_name_dwarf_debug_str_offsets) 1887 sect_type = eSectionTypeDWARFDebugStrOffsets; 1888 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) 1889 sect_type = eSectionTypeDWARFDebugAbbrev; 1890 else if (name == g_sect_name_dwarf_debug_info_dwo) 1891 sect_type = eSectionTypeDWARFDebugInfo; 1892 else if (name == g_sect_name_dwarf_debug_line_dwo) 1893 sect_type = eSectionTypeDWARFDebugLine; 1894 else if (name == g_sect_name_dwarf_debug_line_str_dwo) 1895 sect_type = eSectionTypeDWARFDebugLineStr; 1896 else if (name == g_sect_name_dwarf_debug_macro_dwo) 1897 sect_type = eSectionTypeDWARFDebugMacro; 1898 else if (name == g_sect_name_dwarf_debug_loc_dwo) 1899 sect_type = eSectionTypeDWARFDebugLoc; 1900 else if (name == g_sect_name_dwarf_debug_str_dwo) 1901 sect_type = eSectionTypeDWARFDebugStr; 1902 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) 1903 sect_type = eSectionTypeDWARFDebugStrOffsets; 1904 else if (name == g_sect_name_eh_frame) 1905 sect_type = eSectionTypeEHFrame; 1906 else if (name == g_sect_name_arm_exidx) 1907 sect_type = eSectionTypeARMexidx; 1908 else if (name == g_sect_name_arm_extab) 1909 sect_type = eSectionTypeARMextab; 1910 else if (name == g_sect_name_go_symtab) 1911 sect_type = eSectionTypeGoSymtab; 1912 else if (name == g_sect_name_dwarf_gnu_debugaltlink) 1913 sect_type = eSectionTypeDWARFGNUDebugAltLink; 1914 1915 const uint32_t permissions = 1916 ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0u) | 1917 ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0u) | 1918 ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0u); 1919 switch (header.sh_type) { 1920 case SHT_SYMTAB: 1921 assert(sect_type == eSectionTypeOther); 1922 sect_type = eSectionTypeELFSymbolTable; 1923 break; 1924 case SHT_DYNSYM: 1925 assert(sect_type == eSectionTypeOther); 1926 sect_type = eSectionTypeELFDynamicSymbols; 1927 break; 1928 case SHT_RELA: 1929 case SHT_REL: 1930 assert(sect_type == eSectionTypeOther); 1931 sect_type = eSectionTypeELFRelocationEntries; 1932 break; 1933 case SHT_DYNAMIC: 1934 assert(sect_type == eSectionTypeOther); 1935 sect_type = eSectionTypeELFDynamicLinkInfo; 1936 break; 1937 } 1938 1939 if (eSectionTypeOther == sect_type) { 1940 // the kalimba toolchain assumes that ELF section names are free-form. 1941 // It does support linkscripts which (can) give rise to various 1942 // arbitrarily named sections being "Code" or "Data". 1943 sect_type = kalimbaSectionType(m_header, header); 1944 } 1945 1946 // In common case ELF code section can have arbitrary name (for example, 1947 // we can specify it using section attribute for particular function) so 1948 // assume that section is a code section if it has SHF_EXECINSTR flag set 1949 // and has SHT_PROGBITS type. 1950 if (eSectionTypeOther == sect_type && 1951 llvm::ELF::SHT_PROGBITS == header.sh_type && 1952 (header.sh_flags & SHF_EXECINSTR)) { 1953 sect_type = eSectionTypeCode; 1954 } 1955 1956 const uint32_t target_bytes_size = 1957 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) 1958 ? m_arch_spec.GetDataByteSize() 1959 : eSectionTypeCode == sect_type ? m_arch_spec.GetCodeByteSize() 1960 : 1; 1961 elf::elf_xword log2align = 1962 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); 1963 1964 uint64_t addr = header.sh_addr; 1965 1966 if ((header.sh_flags & SHF_ALLOC) && synthaddrs) { 1967 nextaddr = 1968 (nextaddr + header.sh_addralign - 1) & ~(header.sh_addralign - 1); 1969 addr = nextaddr; 1970 nextaddr += vm_size; 1971 } 1972 1973 SectionSP section_sp(new Section( 1974 GetModule(), // Module to which this section belongs. 1975 this, // ObjectFile to which this section belongs and should read 1976 // section data from. 1977 SectionIndex(I), // Section ID. 1978 name, // Section name. 1979 sect_type, // Section type. 1980 addr, // VM address. 1981 vm_size, // VM size in bytes of this section. 1982 header.sh_offset, // Offset of this section in the file. 1983 file_size, // Size of the section as found in the file. 1984 log2align, // Alignment of the section 1985 header.sh_flags, // Flags for this section. 1986 target_bytes_size)); // Number of host bytes per target byte 1987 1988 section_sp->SetPermissions(permissions); 1989 if (is_thread_specific) 1990 section_sp->SetIsThreadSpecific(is_thread_specific); 1991 m_sections_ap->AddSection(section_sp); 1992 } 1993 } 1994 1995 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the 1996 // unified section list. 1997 if (GetType() != eTypeDebugInfo) 1998 unified_section_list = *m_sections_ap; 1999 } 2000 2001 // Find the arm/aarch64 mapping symbol character in the given symbol name. 2002 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we 2003 // recognize cases when the mapping symbol prefixed by an arbitrary string 2004 // because if a symbol prefix added to each symbol in the object file with 2005 // objcopy then the mapping symbols are also prefixed. 2006 static char FindArmAarch64MappingSymbol(const char *symbol_name) { 2007 if (!symbol_name) 2008 return '\0'; 2009 2010 const char *dollar_pos = ::strchr(symbol_name, '$'); 2011 if (!dollar_pos || dollar_pos[1] == '\0') 2012 return '\0'; 2013 2014 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 2015 return dollar_pos[1]; 2016 return '\0'; 2017 } 2018 2019 #define STO_MIPS_ISA (3 << 6) 2020 #define STO_MICROMIPS (2 << 6) 2021 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) 2022 2023 // private 2024 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, 2025 SectionList *section_list, 2026 const size_t num_symbols, 2027 const DataExtractor &symtab_data, 2028 const DataExtractor &strtab_data) { 2029 ELFSymbol symbol; 2030 lldb::offset_t offset = 0; 2031 2032 static ConstString text_section_name(".text"); 2033 static ConstString init_section_name(".init"); 2034 static ConstString fini_section_name(".fini"); 2035 static ConstString ctors_section_name(".ctors"); 2036 static ConstString dtors_section_name(".dtors"); 2037 2038 static ConstString data_section_name(".data"); 2039 static ConstString rodata_section_name(".rodata"); 2040 static ConstString rodata1_section_name(".rodata1"); 2041 static ConstString data2_section_name(".data1"); 2042 static ConstString bss_section_name(".bss"); 2043 static ConstString opd_section_name(".opd"); // For ppc64 2044 2045 // On Android the oatdata and the oatexec symbols in the oat and odex files 2046 // covers the full .text section what causes issues with displaying unusable 2047 // symbol name to the user and very slow unwinding speed because the 2048 // instruction emulation based unwind plans try to emulate all instructions 2049 // in these symbols. Don't add these symbols to the symbol list as they have 2050 // no use for the debugger and they are causing a lot of trouble. Filtering 2051 // can't be restricted to Android because this special object file don't 2052 // contain the note section specifying the environment to Android but the 2053 // custom extension and file name makes it highly unlikely that this will 2054 // collide with anything else. 2055 ConstString file_extension = m_file.GetFileNameExtension(); 2056 bool skip_oatdata_oatexec = file_extension == ConstString(".oat") || 2057 file_extension == ConstString(".odex"); 2058 2059 ArchSpec arch; 2060 GetArchitecture(arch); 2061 ModuleSP module_sp(GetModule()); 2062 SectionList *module_section_list = 2063 module_sp ? module_sp->GetSectionList() : nullptr; 2064 2065 // Local cache to avoid doing a FindSectionByName for each symbol. The "const 2066 // char*" key must came from a ConstString object so they can be compared by 2067 // pointer 2068 std::unordered_map<const char *, lldb::SectionSP> section_name_to_section; 2069 2070 unsigned i; 2071 for (i = 0; i < num_symbols; ++i) { 2072 if (symbol.Parse(symtab_data, &offset) == false) 2073 break; 2074 2075 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2076 if (!symbol_name) 2077 symbol_name = ""; 2078 2079 // No need to add non-section symbols that have no names 2080 if (symbol.getType() != STT_SECTION && 2081 (symbol_name == nullptr || symbol_name[0] == '\0')) 2082 continue; 2083 2084 // Skipping oatdata and oatexec sections if it is requested. See details 2085 // above the definition of skip_oatdata_oatexec for the reasons. 2086 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || 2087 ::strcmp(symbol_name, "oatexec") == 0)) 2088 continue; 2089 2090 SectionSP symbol_section_sp; 2091 SymbolType symbol_type = eSymbolTypeInvalid; 2092 Elf64_Half section_idx = symbol.st_shndx; 2093 2094 switch (section_idx) { 2095 case SHN_ABS: 2096 symbol_type = eSymbolTypeAbsolute; 2097 break; 2098 case SHN_UNDEF: 2099 symbol_type = eSymbolTypeUndefined; 2100 break; 2101 default: 2102 symbol_section_sp = section_list->GetSectionAtIndex(section_idx); 2103 break; 2104 } 2105 2106 // If a symbol is undefined do not process it further even if it has a STT 2107 // type 2108 if (symbol_type != eSymbolTypeUndefined) { 2109 switch (symbol.getType()) { 2110 default: 2111 case STT_NOTYPE: 2112 // The symbol's type is not specified. 2113 break; 2114 2115 case STT_OBJECT: 2116 // The symbol is associated with a data object, such as a variable, an 2117 // array, etc. 2118 symbol_type = eSymbolTypeData; 2119 break; 2120 2121 case STT_FUNC: 2122 // The symbol is associated with a function or other executable code. 2123 symbol_type = eSymbolTypeCode; 2124 break; 2125 2126 case STT_SECTION: 2127 // The symbol is associated with a section. Symbol table entries of 2128 // this type exist primarily for relocation and normally have STB_LOCAL 2129 // binding. 2130 break; 2131 2132 case STT_FILE: 2133 // Conventionally, the symbol's name gives the name of the source file 2134 // associated with the object file. A file symbol has STB_LOCAL 2135 // binding, its section index is SHN_ABS, and it precedes the other 2136 // STB_LOCAL symbols for the file, if it is present. 2137 symbol_type = eSymbolTypeSourceFile; 2138 break; 2139 2140 case STT_GNU_IFUNC: 2141 // The symbol is associated with an indirect function. The actual 2142 // function will be resolved if it is referenced. 2143 symbol_type = eSymbolTypeResolver; 2144 break; 2145 } 2146 } 2147 2148 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { 2149 if (symbol_section_sp) { 2150 const ConstString §_name = symbol_section_sp->GetName(); 2151 if (sect_name == text_section_name || sect_name == init_section_name || 2152 sect_name == fini_section_name || sect_name == ctors_section_name || 2153 sect_name == dtors_section_name) { 2154 symbol_type = eSymbolTypeCode; 2155 } else if (sect_name == data_section_name || 2156 sect_name == data2_section_name || 2157 sect_name == rodata_section_name || 2158 sect_name == rodata1_section_name || 2159 sect_name == bss_section_name) { 2160 symbol_type = eSymbolTypeData; 2161 } 2162 } 2163 } 2164 2165 int64_t symbol_value_offset = 0; 2166 uint32_t additional_flags = 0; 2167 2168 if (arch.IsValid()) { 2169 if (arch.GetMachine() == llvm::Triple::arm) { 2170 if (symbol.getBinding() == STB_LOCAL) { 2171 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2172 if (symbol_type == eSymbolTypeCode) { 2173 switch (mapping_symbol) { 2174 case 'a': 2175 // $a[.<any>]* - marks an ARM instruction sequence 2176 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2177 break; 2178 case 'b': 2179 case 't': 2180 // $b[.<any>]* - marks a THUMB BL instruction sequence 2181 // $t[.<any>]* - marks a THUMB instruction sequence 2182 m_address_class_map[symbol.st_value] = 2183 AddressClass::eCodeAlternateISA; 2184 break; 2185 case 'd': 2186 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2187 m_address_class_map[symbol.st_value] = AddressClass::eData; 2188 break; 2189 } 2190 } 2191 if (mapping_symbol) 2192 continue; 2193 } 2194 } else if (arch.GetMachine() == llvm::Triple::aarch64) { 2195 if (symbol.getBinding() == STB_LOCAL) { 2196 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2197 if (symbol_type == eSymbolTypeCode) { 2198 switch (mapping_symbol) { 2199 case 'x': 2200 // $x[.<any>]* - marks an A64 instruction sequence 2201 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2202 break; 2203 case 'd': 2204 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2205 m_address_class_map[symbol.st_value] = AddressClass::eData; 2206 break; 2207 } 2208 } 2209 if (mapping_symbol) 2210 continue; 2211 } 2212 } 2213 2214 if (arch.GetMachine() == llvm::Triple::arm) { 2215 if (symbol_type == eSymbolTypeCode) { 2216 if (symbol.st_value & 1) { 2217 // Subtracting 1 from the address effectively unsets the low order 2218 // bit, which results in the address actually pointing to the 2219 // beginning of the symbol. This delta will be used below in 2220 // conjunction with symbol.st_value to produce the final 2221 // symbol_value that we store in the symtab. 2222 symbol_value_offset = -1; 2223 m_address_class_map[symbol.st_value ^ 1] = 2224 AddressClass::eCodeAlternateISA; 2225 } else { 2226 // This address is ARM 2227 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2228 } 2229 } 2230 } 2231 2232 /* 2233 * MIPS: 2234 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for 2235 * MIPS). 2236 * This allows processor to switch between microMIPS and MIPS without any 2237 * need 2238 * for special mode-control register. However, apart from .debug_line, 2239 * none of 2240 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use 2241 * st_other 2242 * flag to check whether the symbol is microMIPS and then set the address 2243 * class 2244 * accordingly. 2245 */ 2246 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2247 if (llvm_arch == llvm::Triple::mips || 2248 llvm_arch == llvm::Triple::mipsel || 2249 llvm_arch == llvm::Triple::mips64 || 2250 llvm_arch == llvm::Triple::mips64el) { 2251 if (IS_MICROMIPS(symbol.st_other)) 2252 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2253 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { 2254 symbol.st_value = symbol.st_value & (~1ull); 2255 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2256 } else { 2257 if (symbol_type == eSymbolTypeCode) 2258 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2259 else if (symbol_type == eSymbolTypeData) 2260 m_address_class_map[symbol.st_value] = AddressClass::eData; 2261 else 2262 m_address_class_map[symbol.st_value] = AddressClass::eUnknown; 2263 } 2264 } 2265 } 2266 2267 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB 2268 // symbols. See above for more details. 2269 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2270 2271 if (symbol_section_sp == nullptr && section_idx == SHN_ABS && 2272 symbol.st_size != 0) { 2273 // We don't have a section for a symbol with non-zero size. Create a new 2274 // section for it so the address range covered by the symbol is also 2275 // covered by the module (represented through the section list). It is 2276 // needed so module lookup for the addresses covered by this symbol will 2277 // be successfull. This case happens for absolute symbols. 2278 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2279 symbol_section_sp = 2280 std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name, 2281 eSectionTypeAbsoluteAddress, symbol_value, 2282 symbol.st_size, 0, 0, 0, SHF_ALLOC); 2283 2284 module_section_list->AddSection(symbol_section_sp); 2285 section_list->AddSection(symbol_section_sp); 2286 } 2287 2288 if (symbol_section_sp && 2289 CalculateType() != ObjectFile::Type::eTypeObjectFile) 2290 symbol_value -= symbol_section_sp->GetFileAddress(); 2291 2292 if (symbol_section_sp && module_section_list && 2293 module_section_list != section_list) { 2294 const ConstString §_name = symbol_section_sp->GetName(); 2295 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2296 if (section_it == section_name_to_section.end()) 2297 section_it = 2298 section_name_to_section 2299 .emplace(sect_name.GetCString(), 2300 module_section_list->FindSectionByName(sect_name)) 2301 .first; 2302 if (section_it->second) 2303 symbol_section_sp = section_it->second; 2304 } 2305 2306 bool is_global = symbol.getBinding() == STB_GLOBAL; 2307 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2308 bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z'); 2309 2310 llvm::StringRef symbol_ref(symbol_name); 2311 2312 // Symbol names may contain @VERSION suffixes. Find those and strip them 2313 // temporarily. 2314 size_t version_pos = symbol_ref.find('@'); 2315 bool has_suffix = version_pos != llvm::StringRef::npos; 2316 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2317 Mangled mangled(ConstString(symbol_bare), is_mangled); 2318 2319 // Now append the suffix back to mangled and unmangled names. Only do it if 2320 // the demangling was successful (string is not empty). 2321 if (has_suffix) { 2322 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2323 2324 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2325 if (!mangled_name.empty()) 2326 mangled.SetMangledName(ConstString((mangled_name + suffix).str())); 2327 2328 ConstString demangled = 2329 mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2330 llvm::StringRef demangled_name = demangled.GetStringRef(); 2331 if (!demangled_name.empty()) 2332 mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); 2333 } 2334 2335 // In ELF all symbol should have a valid size but it is not true for some 2336 // function symbols coming from hand written assembly. As none of the 2337 // function symbol should have 0 size we try to calculate the size for 2338 // these symbols in the symtab with saying that their original size is not 2339 // valid. 2340 bool symbol_size_valid = 2341 symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2342 2343 Symbol dc_symbol( 2344 i + start_id, // ID is the original symbol table index. 2345 mangled, 2346 symbol_type, // Type of this symbol 2347 is_global, // Is this globally visible? 2348 false, // Is this symbol debug info? 2349 false, // Is this symbol a trampoline? 2350 false, // Is this symbol artificial? 2351 AddressRange(symbol_section_sp, // Section in which this symbol is 2352 // defined or null. 2353 symbol_value, // Offset in section or symbol value. 2354 symbol.st_size), // Size in bytes of this symbol. 2355 symbol_size_valid, // Symbol size is valid 2356 has_suffix, // Contains linker annotations? 2357 flags); // Symbol flags. 2358 symtab->AddSymbol(dc_symbol); 2359 } 2360 return i; 2361 } 2362 2363 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2364 user_id_t start_id, 2365 lldb_private::Section *symtab) { 2366 if (symtab->GetObjectFile() != this) { 2367 // If the symbol table section is owned by a different object file, have it 2368 // do the parsing. 2369 ObjectFileELF *obj_file_elf = 2370 static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2371 return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); 2372 } 2373 2374 // Get section list for this object file. 2375 SectionList *section_list = m_sections_ap.get(); 2376 if (!section_list) 2377 return 0; 2378 2379 user_id_t symtab_id = symtab->GetID(); 2380 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2381 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2382 symtab_hdr->sh_type == SHT_DYNSYM); 2383 2384 // sh_link: section header index of associated string table. Section ID's are 2385 // ones based. 2386 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2387 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2388 2389 if (symtab && strtab) { 2390 assert(symtab->GetObjectFile() == this); 2391 assert(strtab->GetObjectFile() == this); 2392 2393 DataExtractor symtab_data; 2394 DataExtractor strtab_data; 2395 if (ReadSectionData(symtab, symtab_data) && 2396 ReadSectionData(strtab, strtab_data)) { 2397 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2398 2399 return ParseSymbols(symbol_table, start_id, section_list, num_symbols, 2400 symtab_data, strtab_data); 2401 } 2402 } 2403 2404 return 0; 2405 } 2406 2407 size_t ObjectFileELF::ParseDynamicSymbols() { 2408 if (m_dynamic_symbols.size()) 2409 return m_dynamic_symbols.size(); 2410 2411 SectionList *section_list = GetSectionList(); 2412 if (!section_list) 2413 return 0; 2414 2415 // Find the SHT_DYNAMIC section. 2416 Section *dynsym = 2417 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 2418 .get(); 2419 if (!dynsym) 2420 return 0; 2421 assert(dynsym->GetObjectFile() == this); 2422 2423 ELFDynamic symbol; 2424 DataExtractor dynsym_data; 2425 if (ReadSectionData(dynsym, dynsym_data)) { 2426 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2427 lldb::offset_t cursor = 0; 2428 2429 while (cursor < section_size) { 2430 if (!symbol.Parse(dynsym_data, &cursor)) 2431 break; 2432 2433 m_dynamic_symbols.push_back(symbol); 2434 } 2435 } 2436 2437 return m_dynamic_symbols.size(); 2438 } 2439 2440 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { 2441 if (!ParseDynamicSymbols()) 2442 return NULL; 2443 2444 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2445 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2446 for (; I != E; ++I) { 2447 ELFDynamic *symbol = &*I; 2448 2449 if (symbol->d_tag == tag) 2450 return symbol; 2451 } 2452 2453 return NULL; 2454 } 2455 2456 unsigned ObjectFileELF::PLTRelocationType() { 2457 // DT_PLTREL 2458 // This member specifies the type of relocation entry to which the 2459 // procedure linkage table refers. The d_val member holds DT_REL or 2460 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2461 // must use the same relocation. 2462 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2463 2464 if (symbol) 2465 return symbol->d_val; 2466 2467 return 0; 2468 } 2469 2470 // Returns the size of the normal plt entries and the offset of the first 2471 // normal plt entry. The 0th entry in the plt table is usually a resolution 2472 // entry which have different size in some architectures then the rest of the 2473 // plt entries. 2474 static std::pair<uint64_t, uint64_t> 2475 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, 2476 const ELFSectionHeader *plt_hdr) { 2477 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2478 2479 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 2480 // 16 bytes. So round the entsize up by the alignment if addralign is set. 2481 elf_xword plt_entsize = 2482 plt_hdr->sh_addralign 2483 ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) 2484 : plt_hdr->sh_entsize; 2485 2486 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2487 // PLT entries relocation code in general requires multiple instruction and 2488 // should be greater than 4 bytes in most cases. Try to guess correct size 2489 // just in case. 2490 if (plt_entsize <= 4) { 2491 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the 2492 // size of the plt entries based on the number of entries and the size of 2493 // the plt section with the assumption that the size of the 0th entry is at 2494 // least as big as the size of the normal entries and it isn't much bigger 2495 // then that. 2496 if (plt_hdr->sh_addralign) 2497 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / 2498 (num_relocations + 1) * plt_hdr->sh_addralign; 2499 else 2500 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2501 } 2502 2503 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2504 2505 return std::make_pair(plt_entsize, plt_offset); 2506 } 2507 2508 static unsigned ParsePLTRelocations( 2509 Symtab *symbol_table, user_id_t start_id, unsigned rel_type, 2510 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2511 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, 2512 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, 2513 DataExtractor &symtab_data, DataExtractor &strtab_data) { 2514 ELFRelocation rel(rel_type); 2515 ELFSymbol symbol; 2516 lldb::offset_t offset = 0; 2517 2518 uint64_t plt_offset, plt_entsize; 2519 std::tie(plt_entsize, plt_offset) = 2520 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2521 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2522 2523 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2524 reloc_info_fn reloc_type; 2525 reloc_info_fn reloc_symbol; 2526 2527 if (hdr->Is32Bit()) { 2528 reloc_type = ELFRelocation::RelocType32; 2529 reloc_symbol = ELFRelocation::RelocSymbol32; 2530 } else { 2531 reloc_type = ELFRelocation::RelocType64; 2532 reloc_symbol = ELFRelocation::RelocSymbol64; 2533 } 2534 2535 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2536 unsigned i; 2537 for (i = 0; i < num_relocations; ++i) { 2538 if (rel.Parse(rel_data, &offset) == false) 2539 break; 2540 2541 if (reloc_type(rel) != slot_type) 2542 continue; 2543 2544 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2545 if (!symbol.Parse(symtab_data, &symbol_offset)) 2546 break; 2547 2548 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2549 bool is_mangled = 2550 symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2551 uint64_t plt_index = plt_offset + i * plt_entsize; 2552 2553 Symbol jump_symbol( 2554 i + start_id, // Symbol table index 2555 symbol_name, // symbol name. 2556 is_mangled, // is the symbol name mangled? 2557 eSymbolTypeTrampoline, // Type of this symbol 2558 false, // Is this globally visible? 2559 false, // Is this symbol debug info? 2560 true, // Is this symbol a trampoline? 2561 true, // Is this symbol artificial? 2562 plt_section_sp, // Section in which this symbol is defined or null. 2563 plt_index, // Offset in section or symbol value. 2564 plt_entsize, // Size in bytes of this symbol. 2565 true, // Size is valid 2566 false, // Contains linker annotations? 2567 0); // Symbol flags. 2568 2569 symbol_table->AddSymbol(jump_symbol); 2570 } 2571 2572 return i; 2573 } 2574 2575 unsigned 2576 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, 2577 const ELFSectionHeaderInfo *rel_hdr, 2578 user_id_t rel_id) { 2579 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2580 2581 // The link field points to the associated symbol table. 2582 user_id_t symtab_id = rel_hdr->sh_link; 2583 2584 // If the link field doesn't point to the appropriate symbol name table then 2585 // try to find it by name as some compiler don't fill in the link fields. 2586 if (!symtab_id) 2587 symtab_id = GetSectionIndexByName(".dynsym"); 2588 2589 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2590 // point that to the .got.plt or .got section instead of .plt. 2591 user_id_t plt_id = GetSectionIndexByName(".plt"); 2592 2593 if (!symtab_id || !plt_id) 2594 return 0; 2595 2596 // Section ID's are ones based; 2597 symtab_id++; 2598 plt_id++; 2599 2600 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2601 if (!plt_hdr) 2602 return 0; 2603 2604 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2605 if (!sym_hdr) 2606 return 0; 2607 2608 SectionList *section_list = m_sections_ap.get(); 2609 if (!section_list) 2610 return 0; 2611 2612 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2613 if (!rel_section) 2614 return 0; 2615 2616 SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); 2617 if (!plt_section_sp) 2618 return 0; 2619 2620 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2621 if (!symtab) 2622 return 0; 2623 2624 // sh_link points to associated string table. 2625 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2626 if (!strtab) 2627 return 0; 2628 2629 DataExtractor rel_data; 2630 if (!ReadSectionData(rel_section, rel_data)) 2631 return 0; 2632 2633 DataExtractor symtab_data; 2634 if (!ReadSectionData(symtab, symtab_data)) 2635 return 0; 2636 2637 DataExtractor strtab_data; 2638 if (!ReadSectionData(strtab, strtab_data)) 2639 return 0; 2640 2641 unsigned rel_type = PLTRelocationType(); 2642 if (!rel_type) 2643 return 0; 2644 2645 return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, 2646 rel_hdr, plt_hdr, sym_hdr, plt_section_sp, 2647 rel_data, symtab_data, strtab_data); 2648 } 2649 2650 unsigned ObjectFileELF::ApplyRelocations( 2651 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2652 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2653 DataExtractor &rel_data, DataExtractor &symtab_data, 2654 DataExtractor &debug_data, Section *rel_section) { 2655 ELFRelocation rel(rel_hdr->sh_type); 2656 lldb::addr_t offset = 0; 2657 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2658 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2659 reloc_info_fn reloc_type; 2660 reloc_info_fn reloc_symbol; 2661 2662 if (hdr->Is32Bit()) { 2663 reloc_type = ELFRelocation::RelocType32; 2664 reloc_symbol = ELFRelocation::RelocSymbol32; 2665 } else { 2666 reloc_type = ELFRelocation::RelocType64; 2667 reloc_symbol = ELFRelocation::RelocSymbol64; 2668 } 2669 2670 for (unsigned i = 0; i < num_relocations; ++i) { 2671 if (rel.Parse(rel_data, &offset) == false) 2672 break; 2673 2674 Symbol *symbol = NULL; 2675 2676 if (hdr->Is32Bit()) { 2677 switch (reloc_type(rel)) { 2678 case R_386_32: 2679 case R_386_PC32: 2680 default: 2681 // FIXME: This asserts with this input: 2682 // 2683 // foo.cpp 2684 // int main(int argc, char **argv) { return 0; } 2685 // 2686 // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o 2687 // 2688 // and running this on the foo.o module. 2689 assert(false && "unexpected relocation type"); 2690 } 2691 } else { 2692 switch (reloc_type(rel)) { 2693 case R_X86_64_64: { 2694 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2695 if (symbol) { 2696 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2697 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2698 uint64_t *dst = reinterpret_cast<uint64_t *>( 2699 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2700 ELFRelocation::RelocOffset64(rel)); 2701 *dst = value + ELFRelocation::RelocAddend64(rel); 2702 } 2703 break; 2704 } 2705 case R_X86_64_32: 2706 case R_X86_64_32S: 2707 case R_AARCH64_ABS32: { 2708 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2709 if (symbol) { 2710 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2711 value += ELFRelocation::RelocAddend32(rel); 2712 if ((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2713 (reloc_type(rel) == R_X86_64_32S && 2714 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)) || 2715 (reloc_type(rel) == R_AARCH64_ABS32 && (value <= UINT32_MAX))) { 2716 Log *log = 2717 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 2718 log->Printf("Failed to apply debug info relocations"); 2719 } 2720 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2721 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2722 uint32_t *dst = reinterpret_cast<uint32_t *>( 2723 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2724 ELFRelocation::RelocOffset32(rel)); 2725 *dst = truncated_addr; 2726 } 2727 break; 2728 } 2729 case R_X86_64_PC32: 2730 default: 2731 assert(false && "unexpected relocation type"); 2732 } 2733 } 2734 } 2735 2736 return 0; 2737 } 2738 2739 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, 2740 user_id_t rel_id, 2741 lldb_private::Symtab *thetab) { 2742 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2743 2744 // Parse in the section list if needed. 2745 SectionList *section_list = GetSectionList(); 2746 if (!section_list) 2747 return 0; 2748 2749 // Section ID's are ones based. 2750 user_id_t symtab_id = rel_hdr->sh_link + 1; 2751 user_id_t debug_id = rel_hdr->sh_info + 1; 2752 2753 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2754 if (!symtab_hdr) 2755 return 0; 2756 2757 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2758 if (!debug_hdr) 2759 return 0; 2760 2761 Section *rel = section_list->FindSectionByID(rel_id).get(); 2762 if (!rel) 2763 return 0; 2764 2765 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2766 if (!symtab) 2767 return 0; 2768 2769 Section *debug = section_list->FindSectionByID(debug_id).get(); 2770 if (!debug) 2771 return 0; 2772 2773 DataExtractor rel_data; 2774 DataExtractor symtab_data; 2775 DataExtractor debug_data; 2776 2777 if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) && 2778 GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) && 2779 GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) { 2780 ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr, 2781 rel_data, symtab_data, debug_data, debug); 2782 } 2783 2784 return 0; 2785 } 2786 2787 Symtab *ObjectFileELF::GetSymtab() { 2788 ModuleSP module_sp(GetModule()); 2789 if (!module_sp) 2790 return NULL; 2791 2792 // We always want to use the main object file so we (hopefully) only have one 2793 // cached copy of our symtab, dynamic sections, etc. 2794 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2795 if (module_obj_file && module_obj_file != this) 2796 return module_obj_file->GetSymtab(); 2797 2798 if (m_symtab_ap.get() == NULL) { 2799 SectionList *section_list = module_sp->GetSectionList(); 2800 if (!section_list) 2801 return NULL; 2802 2803 uint64_t symbol_id = 0; 2804 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2805 2806 // Sharable objects and dynamic executables usually have 2 distinct symbol 2807 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a 2808 // smaller version of the symtab that only contains global symbols. The 2809 // information found in the dynsym is therefore also found in the symtab, 2810 // while the reverse is not necessarily true. 2811 Section *symtab = 2812 section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); 2813 if (!symtab) { 2814 // The symtab section is non-allocable and can be stripped, so if it 2815 // doesn't exist then use the dynsym section which should always be 2816 // there. 2817 symtab = 2818 section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) 2819 .get(); 2820 } 2821 if (symtab) { 2822 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2823 symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab); 2824 } 2825 2826 // DT_JMPREL 2827 // If present, this entry's d_ptr member holds the address of 2828 // relocation 2829 // entries associated solely with the procedure linkage table. 2830 // Separating 2831 // these relocation entries lets the dynamic linker ignore them during 2832 // process initialization, if lazy binding is enabled. If this entry is 2833 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2834 // also be present. 2835 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2836 if (symbol) { 2837 // Synthesize trampoline symbols to help navigate the PLT. 2838 addr_t addr = symbol->d_ptr; 2839 Section *reloc_section = 2840 section_list->FindSectionContainingFileAddress(addr).get(); 2841 if (reloc_section) { 2842 user_id_t reloc_id = reloc_section->GetID(); 2843 const ELFSectionHeaderInfo *reloc_header = 2844 GetSectionHeaderByIndex(reloc_id); 2845 assert(reloc_header); 2846 2847 if (m_symtab_ap == nullptr) 2848 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2849 2850 ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header, 2851 reloc_id); 2852 } 2853 } 2854 2855 DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo(); 2856 if (eh_frame) { 2857 if (m_symtab_ap == nullptr) 2858 m_symtab_ap.reset(new Symtab(this)); 2859 ParseUnwindSymbols(m_symtab_ap.get(), eh_frame); 2860 } 2861 2862 // If we still don't have any symtab then create an empty instance to avoid 2863 // do the section lookup next time. 2864 if (m_symtab_ap == nullptr) 2865 m_symtab_ap.reset(new Symtab(this)); 2866 2867 m_symtab_ap->CalculateSymbolSizes(); 2868 } 2869 2870 return m_symtab_ap.get(); 2871 } 2872 2873 void ObjectFileELF::RelocateSection(lldb_private::Section *section) 2874 { 2875 static const char *debug_prefix = ".debug"; 2876 2877 // Set relocated bit so we stop getting called, regardless of whether we 2878 // actually relocate. 2879 section->SetIsRelocated(true); 2880 2881 // We only relocate in ELF relocatable files 2882 if (CalculateType() != eTypeObjectFile) 2883 return; 2884 2885 const char *section_name = section->GetName().GetCString(); 2886 // Can't relocate that which can't be named 2887 if (section_name == nullptr) 2888 return; 2889 2890 // We don't relocate non-debug sections at the moment 2891 if (strncmp(section_name, debug_prefix, strlen(debug_prefix))) 2892 return; 2893 2894 // Relocation section names to look for 2895 std::string needle = std::string(".rel") + section_name; 2896 std::string needlea = std::string(".rela") + section_name; 2897 2898 for (SectionHeaderCollIter I = m_section_headers.begin(); 2899 I != m_section_headers.end(); ++I) { 2900 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { 2901 const char *hay_name = I->section_name.GetCString(); 2902 if (hay_name == nullptr) 2903 continue; 2904 if (needle == hay_name || needlea == hay_name) { 2905 const ELFSectionHeader &reloc_header = *I; 2906 user_id_t reloc_id = SectionIndex(I); 2907 RelocateDebugSections(&reloc_header, reloc_id, GetSymtab()); 2908 break; 2909 } 2910 } 2911 } 2912 } 2913 2914 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, 2915 DWARFCallFrameInfo *eh_frame) { 2916 SectionList *section_list = GetSectionList(); 2917 if (!section_list) 2918 return; 2919 2920 // First we save the new symbols into a separate list and add them to the 2921 // symbol table after we colleced all symbols we want to add. This is 2922 // neccessary because adding a new symbol invalidates the internal index of 2923 // the symtab what causing the next lookup to be slow because it have to 2924 // recalculate the index first. 2925 std::vector<Symbol> new_symbols; 2926 2927 eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols]( 2928 lldb::addr_t file_addr, uint32_t size, dw_offset_t) { 2929 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 2930 if (symbol) { 2931 if (!symbol->GetByteSizeIsValid()) { 2932 symbol->SetByteSize(size); 2933 symbol->SetSizeIsSynthesized(true); 2934 } 2935 } else { 2936 SectionSP section_sp = 2937 section_list->FindSectionContainingFileAddress(file_addr); 2938 if (section_sp) { 2939 addr_t offset = file_addr - section_sp->GetFileAddress(); 2940 const char *symbol_name = GetNextSyntheticSymbolName().GetCString(); 2941 uint64_t symbol_id = symbol_table->GetNumSymbols(); 2942 Symbol eh_symbol( 2943 symbol_id, // Symbol table index. 2944 symbol_name, // Symbol name. 2945 false, // Is the symbol name mangled? 2946 eSymbolTypeCode, // Type of this symbol. 2947 true, // Is this globally visible? 2948 false, // Is this symbol debug info? 2949 false, // Is this symbol a trampoline? 2950 true, // Is this symbol artificial? 2951 section_sp, // Section in which this symbol is defined or null. 2952 offset, // Offset in section or symbol value. 2953 0, // Size: Don't specify the size as an FDE can 2954 false, // Size is valid: cover multiple symbols. 2955 false, // Contains linker annotations? 2956 0); // Symbol flags. 2957 new_symbols.push_back(eh_symbol); 2958 } 2959 } 2960 return true; 2961 }); 2962 2963 for (const Symbol &s : new_symbols) 2964 symbol_table->AddSymbol(s); 2965 } 2966 2967 bool ObjectFileELF::IsStripped() { 2968 // TODO: determine this for ELF 2969 return false; 2970 } 2971 2972 //===----------------------------------------------------------------------===// 2973 // Dump 2974 // 2975 // Dump the specifics of the runtime file container (such as any headers 2976 // segments, sections, etc). 2977 //---------------------------------------------------------------------- 2978 void ObjectFileELF::Dump(Stream *s) { 2979 ModuleSP module_sp(GetModule()); 2980 if (!module_sp) { 2981 return; 2982 } 2983 2984 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2985 s->Printf("%p: ", static_cast<void *>(this)); 2986 s->Indent(); 2987 s->PutCString("ObjectFileELF"); 2988 2989 ArchSpec header_arch; 2990 GetArchitecture(header_arch); 2991 2992 *s << ", file = '" << m_file 2993 << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2994 2995 DumpELFHeader(s, m_header); 2996 s->EOL(); 2997 DumpELFProgramHeaders(s); 2998 s->EOL(); 2999 DumpELFSectionHeaders(s); 3000 s->EOL(); 3001 SectionList *section_list = GetSectionList(); 3002 if (section_list) 3003 section_list->Dump(s, NULL, true, UINT32_MAX); 3004 Symtab *symtab = GetSymtab(); 3005 if (symtab) 3006 symtab->Dump(s, NULL, eSortOrderNone); 3007 s->EOL(); 3008 DumpDependentModules(s); 3009 s->EOL(); 3010 } 3011 3012 //---------------------------------------------------------------------- 3013 // DumpELFHeader 3014 // 3015 // Dump the ELF header to the specified output stream 3016 //---------------------------------------------------------------------- 3017 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { 3018 s->PutCString("ELF Header\n"); 3019 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 3020 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], 3021 header.e_ident[EI_MAG1]); 3022 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], 3023 header.e_ident[EI_MAG2]); 3024 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], 3025 header.e_ident[EI_MAG3]); 3026 3027 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 3028 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 3029 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 3030 s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 3031 s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 3032 3033 s->Printf("e_type = 0x%4.4x ", header.e_type); 3034 DumpELFHeader_e_type(s, header.e_type); 3035 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 3036 s->Printf("e_version = 0x%8.8x\n", header.e_version); 3037 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 3038 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 3039 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 3040 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 3041 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 3042 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 3043 s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum); 3044 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 3045 s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum); 3046 s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx); 3047 } 3048 3049 //---------------------------------------------------------------------- 3050 // DumpELFHeader_e_type 3051 // 3052 // Dump an token value for the ELF header member e_type 3053 //---------------------------------------------------------------------- 3054 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { 3055 switch (e_type) { 3056 case ET_NONE: 3057 *s << "ET_NONE"; 3058 break; 3059 case ET_REL: 3060 *s << "ET_REL"; 3061 break; 3062 case ET_EXEC: 3063 *s << "ET_EXEC"; 3064 break; 3065 case ET_DYN: 3066 *s << "ET_DYN"; 3067 break; 3068 case ET_CORE: 3069 *s << "ET_CORE"; 3070 break; 3071 default: 3072 break; 3073 } 3074 } 3075 3076 //---------------------------------------------------------------------- 3077 // DumpELFHeader_e_ident_EI_DATA 3078 // 3079 // Dump an token value for the ELF header member e_ident[EI_DATA] 3080 //---------------------------------------------------------------------- 3081 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, 3082 unsigned char ei_data) { 3083 switch (ei_data) { 3084 case ELFDATANONE: 3085 *s << "ELFDATANONE"; 3086 break; 3087 case ELFDATA2LSB: 3088 *s << "ELFDATA2LSB - Little Endian"; 3089 break; 3090 case ELFDATA2MSB: 3091 *s << "ELFDATA2MSB - Big Endian"; 3092 break; 3093 default: 3094 break; 3095 } 3096 } 3097 3098 //---------------------------------------------------------------------- 3099 // DumpELFProgramHeader 3100 // 3101 // Dump a single ELF program header to the specified output stream 3102 //---------------------------------------------------------------------- 3103 void ObjectFileELF::DumpELFProgramHeader(Stream *s, 3104 const ELFProgramHeader &ph) { 3105 DumpELFProgramHeader_p_type(s, ph.p_type); 3106 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, 3107 ph.p_vaddr, ph.p_paddr); 3108 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, 3109 ph.p_flags); 3110 3111 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3112 s->Printf(") %8.8" PRIx64, ph.p_align); 3113 } 3114 3115 //---------------------------------------------------------------------- 3116 // DumpELFProgramHeader_p_type 3117 // 3118 // Dump an token value for the ELF program header member p_type which describes 3119 // the type of the program header 3120 // ---------------------------------------------------------------------- 3121 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { 3122 const int kStrWidth = 15; 3123 switch (p_type) { 3124 CASE_AND_STREAM(s, PT_NULL, kStrWidth); 3125 CASE_AND_STREAM(s, PT_LOAD, kStrWidth); 3126 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); 3127 CASE_AND_STREAM(s, PT_INTERP, kStrWidth); 3128 CASE_AND_STREAM(s, PT_NOTE, kStrWidth); 3129 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); 3130 CASE_AND_STREAM(s, PT_PHDR, kStrWidth); 3131 CASE_AND_STREAM(s, PT_TLS, kStrWidth); 3132 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3133 default: 3134 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3135 break; 3136 } 3137 } 3138 3139 //---------------------------------------------------------------------- 3140 // DumpELFProgramHeader_p_flags 3141 // 3142 // Dump an token value for the ELF program header member p_flags 3143 //---------------------------------------------------------------------- 3144 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { 3145 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3146 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3147 << ((p_flags & PF_W) ? "PF_W" : " ") 3148 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3149 << ((p_flags & PF_R) ? "PF_R" : " "); 3150 } 3151 3152 //---------------------------------------------------------------------- 3153 // DumpELFProgramHeaders 3154 // 3155 // Dump all of the ELF program header to the specified output stream 3156 //---------------------------------------------------------------------- 3157 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { 3158 if (!ParseProgramHeaders()) 3159 return; 3160 3161 s->PutCString("Program Headers\n"); 3162 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3163 "p_filesz p_memsz p_flags p_align\n"); 3164 s->PutCString("==== --------------- -------- -------- -------- " 3165 "-------- -------- ------------------------- --------\n"); 3166 3167 uint32_t idx = 0; 3168 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 3169 I != m_program_headers.end(); ++I, ++idx) { 3170 s->Printf("[%2u] ", idx); 3171 ObjectFileELF::DumpELFProgramHeader(s, *I); 3172 s->EOL(); 3173 } 3174 } 3175 3176 //---------------------------------------------------------------------- 3177 // DumpELFSectionHeader 3178 // 3179 // Dump a single ELF section header to the specified output stream 3180 //---------------------------------------------------------------------- 3181 void ObjectFileELF::DumpELFSectionHeader(Stream *s, 3182 const ELFSectionHeaderInfo &sh) { 3183 s->Printf("%8.8x ", sh.sh_name); 3184 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3185 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3186 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3187 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, 3188 sh.sh_offset, sh.sh_size); 3189 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3190 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3191 } 3192 3193 //---------------------------------------------------------------------- 3194 // DumpELFSectionHeader_sh_type 3195 // 3196 // Dump an token value for the ELF section header member sh_type which 3197 // describes the type of the section 3198 //---------------------------------------------------------------------- 3199 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { 3200 const int kStrWidth = 12; 3201 switch (sh_type) { 3202 CASE_AND_STREAM(s, SHT_NULL, kStrWidth); 3203 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); 3204 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); 3205 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); 3206 CASE_AND_STREAM(s, SHT_RELA, kStrWidth); 3207 CASE_AND_STREAM(s, SHT_HASH, kStrWidth); 3208 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); 3209 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); 3210 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); 3211 CASE_AND_STREAM(s, SHT_REL, kStrWidth); 3212 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); 3213 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); 3214 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); 3215 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); 3216 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); 3217 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); 3218 default: 3219 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3220 break; 3221 } 3222 } 3223 3224 //---------------------------------------------------------------------- 3225 // DumpELFSectionHeader_sh_flags 3226 // 3227 // Dump an token value for the ELF section header member sh_flags 3228 //---------------------------------------------------------------------- 3229 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, 3230 elf_xword sh_flags) { 3231 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3232 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3233 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3234 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3235 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3236 } 3237 3238 //---------------------------------------------------------------------- 3239 // DumpELFSectionHeaders 3240 // 3241 // Dump all of the ELF section header to the specified output stream 3242 //---------------------------------------------------------------------- 3243 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { 3244 if (!ParseSectionHeaders()) 3245 return; 3246 3247 s->PutCString("Section Headers\n"); 3248 s->PutCString("IDX name type flags " 3249 "addr offset size link info addralgn " 3250 "entsize Name\n"); 3251 s->PutCString("==== -------- ------------ -------------------------------- " 3252 "-------- -------- -------- -------- -------- -------- " 3253 "-------- ====================\n"); 3254 3255 uint32_t idx = 0; 3256 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3257 I != m_section_headers.end(); ++I, ++idx) { 3258 s->Printf("[%2u] ", idx); 3259 ObjectFileELF::DumpELFSectionHeader(s, *I); 3260 const char *section_name = I->section_name.AsCString(""); 3261 if (section_name) 3262 *s << ' ' << section_name << "\n"; 3263 } 3264 } 3265 3266 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { 3267 size_t num_modules = ParseDependentModules(); 3268 3269 if (num_modules > 0) { 3270 s->PutCString("Dependent Modules:\n"); 3271 for (unsigned i = 0; i < num_modules; ++i) { 3272 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3273 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3274 } 3275 } 3276 } 3277 3278 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) { 3279 if (!ParseHeader()) 3280 return false; 3281 3282 if (m_section_headers.empty()) { 3283 // Allow elf notes to be parsed which may affect the detected architecture. 3284 ParseSectionHeaders(); 3285 } 3286 3287 if (CalculateType() == eTypeCoreFile && 3288 m_arch_spec.TripleOSIsUnspecifiedUnknown()) { 3289 // Core files don't have section headers yet they have PT_NOTE program 3290 // headers that might shed more light on the architecture 3291 if (ParseProgramHeaders()) { 3292 for (size_t i = 1, count = GetProgramHeaderCount(); i <= count; ++i) { 3293 const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i); 3294 if (header && header->p_type == PT_NOTE && header->p_offset != 0 && 3295 header->p_filesz > 0) { 3296 DataExtractor data; 3297 if (data.SetData(m_data, header->p_offset, header->p_filesz) == 3298 header->p_filesz) { 3299 lldb_private::UUID uuid; 3300 RefineModuleDetailsFromNote(data, m_arch_spec, uuid); 3301 } 3302 } 3303 } 3304 } 3305 } 3306 arch = m_arch_spec; 3307 return true; 3308 } 3309 3310 ObjectFile::Type ObjectFileELF::CalculateType() { 3311 switch (m_header.e_type) { 3312 case llvm::ELF::ET_NONE: 3313 // 0 - No file type 3314 return eTypeUnknown; 3315 3316 case llvm::ELF::ET_REL: 3317 // 1 - Relocatable file 3318 return eTypeObjectFile; 3319 3320 case llvm::ELF::ET_EXEC: 3321 // 2 - Executable file 3322 return eTypeExecutable; 3323 3324 case llvm::ELF::ET_DYN: 3325 // 3 - Shared object file 3326 return eTypeSharedLibrary; 3327 3328 case ET_CORE: 3329 // 4 - Core file 3330 return eTypeCoreFile; 3331 3332 default: 3333 break; 3334 } 3335 return eTypeUnknown; 3336 } 3337 3338 ObjectFile::Strata ObjectFileELF::CalculateStrata() { 3339 switch (m_header.e_type) { 3340 case llvm::ELF::ET_NONE: 3341 // 0 - No file type 3342 return eStrataUnknown; 3343 3344 case llvm::ELF::ET_REL: 3345 // 1 - Relocatable file 3346 return eStrataUnknown; 3347 3348 case llvm::ELF::ET_EXEC: 3349 // 2 - Executable file 3350 // TODO: is there any way to detect that an executable is a kernel 3351 // related executable by inspecting the program headers, section headers, 3352 // symbols, or any other flag bits??? 3353 return eStrataUser; 3354 3355 case llvm::ELF::ET_DYN: 3356 // 3 - Shared object file 3357 // TODO: is there any way to detect that an shared library is a kernel 3358 // related executable by inspecting the program headers, section headers, 3359 // symbols, or any other flag bits??? 3360 return eStrataUnknown; 3361 3362 case ET_CORE: 3363 // 4 - Core file 3364 // TODO: is there any way to detect that an core file is a kernel 3365 // related executable by inspecting the program headers, section headers, 3366 // symbols, or any other flag bits??? 3367 return eStrataUnknown; 3368 3369 default: 3370 break; 3371 } 3372 return eStrataUnknown; 3373 } 3374 3375 size_t ObjectFileELF::ReadSectionData(Section *section, 3376 lldb::offset_t section_offset, void *dst, 3377 size_t dst_len) { 3378 // If some other objectfile owns this data, pass this to them. 3379 if (section->GetObjectFile() != this) 3380 return section->GetObjectFile()->ReadSectionData(section, section_offset, 3381 dst, dst_len); 3382 3383 if (!section->Test(SHF_COMPRESSED)) 3384 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len); 3385 3386 // For compressed sections we need to read to full data to be able to 3387 // decompress. 3388 DataExtractor data; 3389 ReadSectionData(section, data); 3390 return data.CopyData(section_offset, dst_len, dst); 3391 } 3392 3393 size_t ObjectFileELF::ReadSectionData(Section *section, 3394 DataExtractor §ion_data) { 3395 // If some other objectfile owns this data, pass this to them. 3396 if (section->GetObjectFile() != this) 3397 return section->GetObjectFile()->ReadSectionData(section, section_data); 3398 3399 size_t result = ObjectFile::ReadSectionData(section, section_data); 3400 if (result == 0 || !section->Test(SHF_COMPRESSED)) 3401 return result; 3402 3403 auto Decompressor = llvm::object::Decompressor::create( 3404 section->GetName().GetStringRef(), 3405 {reinterpret_cast<const char *>(section_data.GetDataStart()), 3406 size_t(section_data.GetByteSize())}, 3407 GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8); 3408 if (!Decompressor) { 3409 GetModule()->ReportWarning( 3410 "Unable to initialize decompressor for section '%s': %s", 3411 section->GetName().GetCString(), 3412 llvm::toString(Decompressor.takeError()).c_str()); 3413 section_data.Clear(); 3414 return 0; 3415 } 3416 3417 auto buffer_sp = 3418 std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0); 3419 if (auto error = Decompressor->decompress( 3420 {reinterpret_cast<char *>(buffer_sp->GetBytes()), 3421 size_t(buffer_sp->GetByteSize())})) { 3422 GetModule()->ReportWarning( 3423 "Decompression of section '%s' failed: %s", 3424 section->GetName().GetCString(), 3425 llvm::toString(std::move(error)).c_str()); 3426 section_data.Clear(); 3427 return 0; 3428 } 3429 3430 section_data.SetData(buffer_sp); 3431 return buffer_sp->GetByteSize(); 3432 } 3433 3434 bool ObjectFileELF::AnySegmentHasPhysicalAddress() { 3435 size_t header_count = ParseProgramHeaders(); 3436 for (size_t i = 1; i <= header_count; ++i) { 3437 auto header = GetProgramHeaderByIndex(i); 3438 if (header->p_paddr != 0) 3439 return true; 3440 } 3441 return false; 3442 } 3443 3444 std::vector<ObjectFile::LoadableData> 3445 ObjectFileELF::GetLoadableData(Target &target) { 3446 // Create a list of loadable data from loadable segments, using physical 3447 // addresses if they aren't all null 3448 std::vector<LoadableData> loadables; 3449 size_t header_count = ParseProgramHeaders(); 3450 bool should_use_paddr = AnySegmentHasPhysicalAddress(); 3451 for (size_t i = 1; i <= header_count; ++i) { 3452 LoadableData loadable; 3453 auto header = GetProgramHeaderByIndex(i); 3454 if (header->p_type != llvm::ELF::PT_LOAD) 3455 continue; 3456 loadable.Dest = should_use_paddr ? header->p_paddr : header->p_vaddr; 3457 if (loadable.Dest == LLDB_INVALID_ADDRESS) 3458 continue; 3459 if (header->p_filesz == 0) 3460 continue; 3461 auto segment_data = GetSegmentDataByIndex(i); 3462 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(), 3463 segment_data.GetByteSize()); 3464 loadables.push_back(loadable); 3465 } 3466 return loadables; 3467 } 3468