xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision c178d4c0cea7a94e9ac2c7c076861f721290cd22)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (!value_is_offset)
851             {
852                 bool found_offset = false;
853                 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
854                 {
855                     const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
856                     if (header == nullptr)
857                         continue;
858 
859                     if (header->p_type != PT_LOAD || header->p_offset != 0)
860                         continue;
861 
862                     value = value - header->p_vaddr;
863                     found_offset = true;
864                     break;
865                 }
866                 if (!found_offset)
867                     return false;
868             }
869 
870             const size_t num_sections = section_list->GetSize();
871             size_t sect_idx = 0;
872 
873             for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
874             {
875                 // Iterate through the object file sections to find all
876                 // of the sections that have SHF_ALLOC in their flag bits.
877                 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
878                 // if (section_sp && !section_sp->IsThreadSpecific())
879                 if (section_sp && section_sp->Test(SHF_ALLOC))
880                 {
881                     lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
882 
883                     // On 32-bit systems the load address have to fit into 4 bytes. The rest of
884                     // the bytes are the overflow from the addition.
885                     if (GetAddressByteSize() == 4)
886                         load_addr &= 0xFFFFFFFF;
887 
888                     if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
889                         ++num_loaded_sections;
890                 }
891             }
892             return num_loaded_sections > 0;
893         }
894     }
895     return false;
896 }
897 
898 ByteOrder
899 ObjectFileELF::GetByteOrder() const
900 {
901     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
902         return eByteOrderBig;
903     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
904         return eByteOrderLittle;
905     return eByteOrderInvalid;
906 }
907 
908 uint32_t
909 ObjectFileELF::GetAddressByteSize() const
910 {
911     return m_data.GetAddressByteSize();
912 }
913 
914 // Top 16 bits of the `Symbol` flags are available.
915 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
916 
917 AddressClass
918 ObjectFileELF::GetAddressClass (addr_t file_addr)
919 {
920     Symtab* symtab = GetSymtab();
921     if (!symtab)
922         return eAddressClassUnknown;
923 
924     // The address class is determined based on the symtab. Ask it from the object file what
925     // contains the symtab information.
926     ObjectFile* symtab_objfile = symtab->GetObjectFile();
927     if (symtab_objfile != nullptr && symtab_objfile != this)
928         return symtab_objfile->GetAddressClass(file_addr);
929 
930     auto res = ObjectFile::GetAddressClass (file_addr);
931     if (res != eAddressClassCode)
932         return res;
933 
934     auto ub = m_address_class_map.upper_bound(file_addr);
935     if (ub == m_address_class_map.begin())
936     {
937         // No entry in the address class map before the address. Return
938         // default address class for an address in a code section.
939         return eAddressClassCode;
940     }
941 
942     // Move iterator to the address class entry preceding address
943     --ub;
944 
945     return ub->second;
946 }
947 
948 size_t
949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
950 {
951     return std::distance(m_section_headers.begin(), I) + 1u;
952 }
953 
954 size_t
955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
956 {
957     return std::distance(m_section_headers.begin(), I) + 1u;
958 }
959 
960 bool
961 ObjectFileELF::ParseHeader()
962 {
963     lldb::offset_t offset = 0;
964     if (!m_header.Parse(m_data, &offset))
965         return false;
966 
967     if (!IsInMemory())
968         return true;
969 
970     // For in memory object files m_data might not contain the full object file. Try to load it
971     // until the end of the "Section header table" what is at the end of the ELF file.
972     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
973     if (m_data.GetByteSize() < file_size)
974     {
975         ProcessSP process_sp (m_process_wp.lock());
976         if (!process_sp)
977             return false;
978 
979         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
980         if (!data_sp)
981             return false;
982         m_data.SetData(data_sp, 0, file_size);
983     }
984 
985     return true;
986 }
987 
988 bool
989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
990 {
991     // Need to parse the section list to get the UUIDs, so make sure that's been done.
992     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
993         return false;
994 
995     if (m_uuid.IsValid())
996     {
997         // We have the full build id uuid.
998         *uuid = m_uuid;
999         return true;
1000     }
1001     else if (GetType() == ObjectFile::eTypeCoreFile)
1002     {
1003         uint32_t core_notes_crc = 0;
1004 
1005         if (!ParseProgramHeaders())
1006             return false;
1007 
1008         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
1009 
1010         if (core_notes_crc)
1011         {
1012             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
1013             // look different form .gnu_debuglink crc - followed by 4 bytes of note
1014             // segments crc.
1015             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
1016             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1017         }
1018     }
1019     else
1020     {
1021         if (!m_gnu_debuglink_crc)
1022             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1023         if (m_gnu_debuglink_crc)
1024         {
1025             // Use 4 bytes of crc from the .gnu_debuglink section.
1026             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1027             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1028         }
1029     }
1030 
1031     if (m_uuid.IsValid())
1032     {
1033         *uuid = m_uuid;
1034         return true;
1035     }
1036 
1037     return false;
1038 }
1039 
1040 lldb_private::FileSpecList
1041 ObjectFileELF::GetDebugSymbolFilePaths()
1042 {
1043     FileSpecList file_spec_list;
1044 
1045     if (!m_gnu_debuglink_file.empty())
1046     {
1047         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1048         file_spec_list.Append (file_spec);
1049     }
1050     return file_spec_list;
1051 }
1052 
1053 uint32_t
1054 ObjectFileELF::GetDependentModules(FileSpecList &files)
1055 {
1056     size_t num_modules = ParseDependentModules();
1057     uint32_t num_specs = 0;
1058 
1059     for (unsigned i = 0; i < num_modules; ++i)
1060     {
1061         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1062             num_specs++;
1063     }
1064 
1065     return num_specs;
1066 }
1067 
1068 Address
1069 ObjectFileELF::GetImageInfoAddress(Target *target)
1070 {
1071     if (!ParseDynamicSymbols())
1072         return Address();
1073 
1074     SectionList *section_list = GetSectionList();
1075     if (!section_list)
1076         return Address();
1077 
1078     // Find the SHT_DYNAMIC (.dynamic) section.
1079     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1080     if (!dynsym_section_sp)
1081         return Address();
1082     assert (dynsym_section_sp->GetObjectFile() == this);
1083 
1084     user_id_t dynsym_id = dynsym_section_sp->GetID();
1085     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1086     if (!dynsym_hdr)
1087         return Address();
1088 
1089     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1090     {
1091         ELFDynamic &symbol = m_dynamic_symbols[i];
1092 
1093         if (symbol.d_tag == DT_DEBUG)
1094         {
1095             // Compute the offset as the number of previous entries plus the
1096             // size of d_tag.
1097             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1098             return Address(dynsym_section_sp, offset);
1099         }
1100         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1101         {
1102             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1103             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1104             if (dyn_base == LLDB_INVALID_ADDRESS)
1105                 return Address();
1106             Address addr;
1107             Error error;
1108             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1109                 return addr;
1110         }
1111     }
1112 
1113     return Address();
1114 }
1115 
1116 lldb_private::Address
1117 ObjectFileELF::GetEntryPointAddress ()
1118 {
1119     if (m_entry_point_address.IsValid())
1120         return m_entry_point_address;
1121 
1122     if (!ParseHeader() || !IsExecutable())
1123         return m_entry_point_address;
1124 
1125     SectionList *section_list = GetSectionList();
1126     addr_t offset = m_header.e_entry;
1127 
1128     if (!section_list)
1129         m_entry_point_address.SetOffset(offset);
1130     else
1131         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1132     return m_entry_point_address;
1133 }
1134 
1135 //----------------------------------------------------------------------
1136 // ParseDependentModules
1137 //----------------------------------------------------------------------
1138 size_t
1139 ObjectFileELF::ParseDependentModules()
1140 {
1141     if (m_filespec_ap.get())
1142         return m_filespec_ap->GetSize();
1143 
1144     m_filespec_ap.reset(new FileSpecList());
1145 
1146     if (!ParseSectionHeaders())
1147         return 0;
1148 
1149     SectionList *section_list = GetSectionList();
1150     if (!section_list)
1151         return 0;
1152 
1153     // Find the SHT_DYNAMIC section.
1154     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1155     if (!dynsym)
1156         return 0;
1157     assert (dynsym->GetObjectFile() == this);
1158 
1159     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1160     if (!header)
1161         return 0;
1162     // sh_link: section header index of string table used by entries in the section.
1163     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1164     if (!dynstr)
1165         return 0;
1166 
1167     DataExtractor dynsym_data;
1168     DataExtractor dynstr_data;
1169     if (ReadSectionData(dynsym, dynsym_data) &&
1170         ReadSectionData(dynstr, dynstr_data))
1171     {
1172         ELFDynamic symbol;
1173         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1174         lldb::offset_t offset = 0;
1175 
1176         // The only type of entries we are concerned with are tagged DT_NEEDED,
1177         // yielding the name of a required library.
1178         while (offset < section_size)
1179         {
1180             if (!symbol.Parse(dynsym_data, &offset))
1181                 break;
1182 
1183             if (symbol.d_tag != DT_NEEDED)
1184                 continue;
1185 
1186             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1187             const char *lib_name = dynstr_data.PeekCStr(str_index);
1188             m_filespec_ap->Append(FileSpec(lib_name, true));
1189         }
1190     }
1191 
1192     return m_filespec_ap->GetSize();
1193 }
1194 
1195 //----------------------------------------------------------------------
1196 // GetProgramHeaderInfo
1197 //----------------------------------------------------------------------
1198 size_t
1199 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1200                                     DataExtractor &object_data,
1201                                     const ELFHeader &header)
1202 {
1203     // We have already parsed the program headers
1204     if (!program_headers.empty())
1205         return program_headers.size();
1206 
1207     // If there are no program headers to read we are done.
1208     if (header.e_phnum == 0)
1209         return 0;
1210 
1211     program_headers.resize(header.e_phnum);
1212     if (program_headers.size() != header.e_phnum)
1213         return 0;
1214 
1215     const size_t ph_size = header.e_phnum * header.e_phentsize;
1216     const elf_off ph_offset = header.e_phoff;
1217     DataExtractor data;
1218     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1219         return 0;
1220 
1221     uint32_t idx;
1222     lldb::offset_t offset;
1223     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1224     {
1225         if (program_headers[idx].Parse(data, &offset) == false)
1226             break;
1227     }
1228 
1229     if (idx < program_headers.size())
1230         program_headers.resize(idx);
1231 
1232     return program_headers.size();
1233 
1234 }
1235 
1236 //----------------------------------------------------------------------
1237 // ParseProgramHeaders
1238 //----------------------------------------------------------------------
1239 size_t
1240 ObjectFileELF::ParseProgramHeaders()
1241 {
1242     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1243 }
1244 
1245 lldb_private::Error
1246 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1247 {
1248     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1249     Error error;
1250 
1251     lldb::offset_t offset = 0;
1252 
1253     while (true)
1254     {
1255         // Parse the note header.  If this fails, bail out.
1256         ELFNote note = ELFNote();
1257         if (!note.Parse(data, &offset))
1258         {
1259             // We're done.
1260             return error;
1261         }
1262 
1263         // If a tag processor handles the tag, it should set processed to true, and
1264         // the loop will assume the tag processing has moved entirely past the note's payload.
1265         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1266         bool processed = false;
1267 
1268         if (log)
1269             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1270 
1271         // Process FreeBSD ELF notes.
1272         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1273             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1274             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1275         {
1276             // We'll consume the payload below.
1277             processed = true;
1278 
1279             // Pull out the min version info.
1280             uint32_t version_info;
1281             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1282             {
1283                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1284                 return error;
1285             }
1286 
1287             // Convert the version info into a major/minor number.
1288             const uint32_t version_major = version_info / 100000;
1289             const uint32_t version_minor = (version_info / 1000) % 100;
1290 
1291             char os_name[32];
1292             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1293 
1294             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1295             arch_spec.GetTriple ().setOSName (os_name);
1296             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1297 
1298             if (log)
1299                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1300         }
1301         // Process GNU ELF notes.
1302         else if (note.n_name == LLDB_NT_OWNER_GNU)
1303         {
1304             switch (note.n_type)
1305             {
1306                 case LLDB_NT_GNU_ABI_TAG:
1307                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1308                     {
1309                         // We'll consume the payload below.
1310                         processed = true;
1311 
1312                         // Pull out the min OS version supporting the ABI.
1313                         uint32_t version_info[4];
1314                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1315                         {
1316                             error.SetErrorString ("failed to read GNU ABI note payload");
1317                             return error;
1318                         }
1319 
1320                         // Set the OS per the OS field.
1321                         switch (version_info[0])
1322                         {
1323                             case LLDB_NT_GNU_ABI_OS_LINUX:
1324                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1325                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1326                                 if (log)
1327                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1328                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1329                                 break;
1330                             case LLDB_NT_GNU_ABI_OS_HURD:
1331                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1332                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1333                                 if (log)
1334                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1335                                 break;
1336                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1337                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1338                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1339                                 if (log)
1340                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1341                                 break;
1342                             default:
1343                                 if (log)
1344                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1345                                 break;
1346                         }
1347                     }
1348                     break;
1349 
1350                 case LLDB_NT_GNU_BUILD_ID_TAG:
1351                     // Only bother processing this if we don't already have the uuid set.
1352                     if (!uuid.IsValid())
1353                     {
1354                         // We'll consume the payload below.
1355                         processed = true;
1356 
1357                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1358                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1359                         {
1360                             uint8_t uuidbuf[20];
1361                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1362                             {
1363                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1364                                 return error;
1365                             }
1366 
1367                             // Save the build id as the UUID for the module.
1368                             uuid.SetBytes (uuidbuf, note.n_descsz);
1369                         }
1370                     }
1371                     break;
1372             }
1373         }
1374         // Process NetBSD ELF notes.
1375         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1376                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1377                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1378         {
1379 
1380             // We'll consume the payload below.
1381             processed = true;
1382 
1383             // Pull out the min version info.
1384             uint32_t version_info;
1385             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1386             {
1387                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1388                 return error;
1389             }
1390 
1391             // Set the elf OS version to NetBSD.  Also clear the vendor.
1392             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1393             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1394 
1395             if (log)
1396                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1397         }
1398         // Process CSR kalimba notes
1399         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1400                 (note.n_name == LLDB_NT_OWNER_CSR))
1401         {
1402             // We'll consume the payload below.
1403             processed = true;
1404             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1405             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1406 
1407             // TODO At some point the description string could be processed.
1408             // It could provide a steer towards the kalimba variant which
1409             // this ELF targets.
1410             if(note.n_descsz)
1411             {
1412                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1413                 (void)cstr;
1414             }
1415         }
1416         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1417         {
1418             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1419             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1420         }
1421 
1422         if (!processed)
1423             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1424     }
1425 
1426     return error;
1427 }
1428 
1429 
1430 //----------------------------------------------------------------------
1431 // GetSectionHeaderInfo
1432 //----------------------------------------------------------------------
1433 size_t
1434 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1435                                     lldb_private::DataExtractor &object_data,
1436                                     const elf::ELFHeader &header,
1437                                     lldb_private::UUID &uuid,
1438                                     std::string &gnu_debuglink_file,
1439                                     uint32_t &gnu_debuglink_crc,
1440                                     ArchSpec &arch_spec)
1441 {
1442     // Don't reparse the section headers if we already did that.
1443     if (!section_headers.empty())
1444         return section_headers.size();
1445 
1446     // Only initialize the arch_spec to okay defaults if they're not already set.
1447     // We'll refine this with note data as we parse the notes.
1448     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1449     {
1450         llvm::Triple::OSType ostype;
1451         llvm::Triple::OSType spec_ostype;
1452         const uint32_t sub_type = subTypeFromElfHeader(header);
1453         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1454         //
1455         // Validate if it is ok to remove GetOsFromOSABI
1456         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1457         spec_ostype = arch_spec.GetTriple ().getOS ();
1458         assert(spec_ostype == ostype);
1459     }
1460 
1461     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1462         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1463     {
1464         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1465         {
1466             case llvm::ELF::EF_MIPS_MICROMIPS:
1467                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1468                 break;
1469             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1470                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1471                 break;
1472             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1473                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1474                 break;
1475             default:
1476                 break;
1477         }
1478     }
1479 
1480     // If there are no section headers we are done.
1481     if (header.e_shnum == 0)
1482         return 0;
1483 
1484     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1485 
1486     section_headers.resize(header.e_shnum);
1487     if (section_headers.size() != header.e_shnum)
1488         return 0;
1489 
1490     const size_t sh_size = header.e_shnum * header.e_shentsize;
1491     const elf_off sh_offset = header.e_shoff;
1492     DataExtractor sh_data;
1493     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1494         return 0;
1495 
1496     uint32_t idx;
1497     lldb::offset_t offset;
1498     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1499     {
1500         if (section_headers[idx].Parse(sh_data, &offset) == false)
1501             break;
1502     }
1503     if (idx < section_headers.size())
1504         section_headers.resize(idx);
1505 
1506     const unsigned strtab_idx = header.e_shstrndx;
1507     if (strtab_idx && strtab_idx < section_headers.size())
1508     {
1509         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1510         const size_t byte_size = sheader.sh_size;
1511         const Elf64_Off offset = sheader.sh_offset;
1512         lldb_private::DataExtractor shstr_data;
1513 
1514         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1515         {
1516             for (SectionHeaderCollIter I = section_headers.begin();
1517                  I != section_headers.end(); ++I)
1518             {
1519                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1520                 const ELFSectionHeaderInfo &header = *I;
1521                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1522                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1523 
1524                 I->section_name = name;
1525 
1526                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1527                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1528                 {
1529                     if (header.sh_type == SHT_MIPS_ABIFLAGS)
1530                     {
1531                         DataExtractor data;
1532                         if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1533                         {
1534                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1535                             uint32_t arch_flags = arch_spec.GetFlags ();
1536                             arch_flags |= data.GetU32 (&ase_offset);
1537                             arch_spec.SetFlags (arch_flags);
1538                         }
1539                     }
1540                 }
1541 
1542                 if (name == g_sect_name_gnu_debuglink)
1543                 {
1544                     DataExtractor data;
1545                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1546                     {
1547                         lldb::offset_t gnu_debuglink_offset = 0;
1548                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1549                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1550                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1551                     }
1552                 }
1553 
1554                 // Process ELF note section entries.
1555                 bool is_note_header = (header.sh_type == SHT_NOTE);
1556 
1557                 // The section header ".note.android.ident" is stored as a
1558                 // PROGBITS type header but it is actually a note header.
1559                 static ConstString g_sect_name_android_ident (".note.android.ident");
1560                 if (!is_note_header && name == g_sect_name_android_ident)
1561                     is_note_header = true;
1562 
1563                 if (is_note_header)
1564                 {
1565                     // Allow notes to refine module info.
1566                     DataExtractor data;
1567                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1568                     {
1569                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1570                         if (error.Fail ())
1571                         {
1572                             if (log)
1573                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1574                         }
1575                     }
1576                 }
1577             }
1578 
1579             return section_headers.size();
1580         }
1581     }
1582 
1583     section_headers.clear();
1584     return 0;
1585 }
1586 
1587 size_t
1588 ObjectFileELF::GetProgramHeaderCount()
1589 {
1590     return ParseProgramHeaders();
1591 }
1592 
1593 const elf::ELFProgramHeader *
1594 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1595 {
1596     if (!id || !ParseProgramHeaders())
1597         return NULL;
1598 
1599     if (--id < m_program_headers.size())
1600         return &m_program_headers[id];
1601 
1602     return NULL;
1603 }
1604 
1605 DataExtractor
1606 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1607 {
1608     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1609     if (segment_header == NULL)
1610         return DataExtractor();
1611     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1612 }
1613 
1614 std::string
1615 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1616 {
1617     size_t pos = symbol_name.find('@');
1618     return symbol_name.substr(0, pos).str();
1619 }
1620 
1621 //----------------------------------------------------------------------
1622 // ParseSectionHeaders
1623 //----------------------------------------------------------------------
1624 size_t
1625 ObjectFileELF::ParseSectionHeaders()
1626 {
1627     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1628 }
1629 
1630 const ObjectFileELF::ELFSectionHeaderInfo *
1631 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1632 {
1633     if (!id || !ParseSectionHeaders())
1634         return NULL;
1635 
1636     if (--id < m_section_headers.size())
1637         return &m_section_headers[id];
1638 
1639     return NULL;
1640 }
1641 
1642 lldb::user_id_t
1643 ObjectFileELF::GetSectionIndexByName(const char* name)
1644 {
1645     if (!name || !name[0] || !ParseSectionHeaders())
1646         return 0;
1647     for (size_t i = 1; i < m_section_headers.size(); ++i)
1648         if (m_section_headers[i].section_name == ConstString(name))
1649             return i;
1650     return 0;
1651 }
1652 
1653 void
1654 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1655 {
1656     if (!m_sections_ap.get() && ParseSectionHeaders())
1657     {
1658         m_sections_ap.reset(new SectionList());
1659 
1660         for (SectionHeaderCollIter I = m_section_headers.begin();
1661              I != m_section_headers.end(); ++I)
1662         {
1663             const ELFSectionHeaderInfo &header = *I;
1664 
1665             ConstString& name = I->section_name;
1666             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1667             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1668 
1669             static ConstString g_sect_name_text (".text");
1670             static ConstString g_sect_name_data (".data");
1671             static ConstString g_sect_name_bss (".bss");
1672             static ConstString g_sect_name_tdata (".tdata");
1673             static ConstString g_sect_name_tbss (".tbss");
1674             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1675             static ConstString g_sect_name_dwarf_debug_addr (".debug_addr");
1676             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1677             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1678             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1679             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1680             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1681             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1682             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1683             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1684             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1685             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1686             static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets");
1687             static ConstString g_sect_name_eh_frame (".eh_frame");
1688 
1689             SectionType sect_type = eSectionTypeOther;
1690 
1691             bool is_thread_specific = false;
1692 
1693             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1694             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1695             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1696             else if (name == g_sect_name_tdata)
1697             {
1698                 sect_type = eSectionTypeData;
1699                 is_thread_specific = true;
1700             }
1701             else if (name == g_sect_name_tbss)
1702             {
1703                 sect_type = eSectionTypeZeroFill;
1704                 is_thread_specific = true;
1705             }
1706             // .debug_abbrev – Abbreviations used in the .debug_info section
1707             // .debug_aranges – Lookup table for mapping addresses to compilation units
1708             // .debug_frame – Call frame information
1709             // .debug_info – The core DWARF information section
1710             // .debug_line – Line number information
1711             // .debug_loc – Location lists used in DW_AT_location attributes
1712             // .debug_macinfo – Macro information
1713             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1714             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1715             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1716             // .debug_str – String table used in .debug_info
1717             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1718             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1719             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1720             else if (name == g_sect_name_dwarf_debug_abbrev)      sect_type = eSectionTypeDWARFDebugAbbrev;
1721             else if (name == g_sect_name_dwarf_debug_addr)        sect_type = eSectionTypeDWARFDebugAddr;
1722             else if (name == g_sect_name_dwarf_debug_aranges)     sect_type = eSectionTypeDWARFDebugAranges;
1723             else if (name == g_sect_name_dwarf_debug_frame)       sect_type = eSectionTypeDWARFDebugFrame;
1724             else if (name == g_sect_name_dwarf_debug_info)        sect_type = eSectionTypeDWARFDebugInfo;
1725             else if (name == g_sect_name_dwarf_debug_line)        sect_type = eSectionTypeDWARFDebugLine;
1726             else if (name == g_sect_name_dwarf_debug_loc)         sect_type = eSectionTypeDWARFDebugLoc;
1727             else if (name == g_sect_name_dwarf_debug_macinfo)     sect_type = eSectionTypeDWARFDebugMacInfo;
1728             else if (name == g_sect_name_dwarf_debug_pubnames)    sect_type = eSectionTypeDWARFDebugPubNames;
1729             else if (name == g_sect_name_dwarf_debug_pubtypes)    sect_type = eSectionTypeDWARFDebugPubTypes;
1730             else if (name == g_sect_name_dwarf_debug_ranges)      sect_type = eSectionTypeDWARFDebugRanges;
1731             else if (name == g_sect_name_dwarf_debug_str)         sect_type = eSectionTypeDWARFDebugStr;
1732             else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets;
1733             else if (name == g_sect_name_eh_frame)                sect_type = eSectionTypeEHFrame;
1734 
1735             switch (header.sh_type)
1736             {
1737                 case SHT_SYMTAB:
1738                     assert (sect_type == eSectionTypeOther);
1739                     sect_type = eSectionTypeELFSymbolTable;
1740                     break;
1741                 case SHT_DYNSYM:
1742                     assert (sect_type == eSectionTypeOther);
1743                     sect_type = eSectionTypeELFDynamicSymbols;
1744                     break;
1745                 case SHT_RELA:
1746                 case SHT_REL:
1747                     assert (sect_type == eSectionTypeOther);
1748                     sect_type = eSectionTypeELFRelocationEntries;
1749                     break;
1750                 case SHT_DYNAMIC:
1751                     assert (sect_type == eSectionTypeOther);
1752                     sect_type = eSectionTypeELFDynamicLinkInfo;
1753                     break;
1754             }
1755 
1756             if (eSectionTypeOther == sect_type)
1757             {
1758                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1759                 // support linkscripts which (can) give rise to various arbitrarily named
1760                 // sections being "Code" or "Data".
1761                 sect_type = kalimbaSectionType(m_header, header);
1762             }
1763 
1764             const uint32_t target_bytes_size =
1765                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1766                 m_arch_spec.GetDataByteSize() :
1767                     eSectionTypeCode == sect_type ?
1768                     m_arch_spec.GetCodeByteSize() : 1;
1769 
1770             elf::elf_xword log2align = (header.sh_addralign==0)
1771                                         ? 0
1772                                         : llvm::Log2_64(header.sh_addralign);
1773             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1774                                               this,               // ObjectFile to which this section belongs and should read section data from.
1775                                               SectionIndex(I),    // Section ID.
1776                                               name,               // Section name.
1777                                               sect_type,          // Section type.
1778                                               header.sh_addr,     // VM address.
1779                                               vm_size,            // VM size in bytes of this section.
1780                                               header.sh_offset,   // Offset of this section in the file.
1781                                               file_size,          // Size of the section as found in the file.
1782                                               log2align,          // Alignment of the section
1783                                               header.sh_flags,    // Flags for this section.
1784                                               target_bytes_size));// Number of host bytes per target byte
1785 
1786             if (is_thread_specific)
1787                 section_sp->SetIsThreadSpecific (is_thread_specific);
1788             m_sections_ap->AddSection(section_sp);
1789         }
1790     }
1791 
1792     if (m_sections_ap.get())
1793     {
1794         if (GetType() == eTypeDebugInfo)
1795         {
1796             static const SectionType g_sections[] =
1797             {
1798                 eSectionTypeDWARFDebugAbbrev,
1799                 eSectionTypeDWARFDebugAddr,
1800                 eSectionTypeDWARFDebugAranges,
1801                 eSectionTypeDWARFDebugFrame,
1802                 eSectionTypeDWARFDebugInfo,
1803                 eSectionTypeDWARFDebugLine,
1804                 eSectionTypeDWARFDebugLoc,
1805                 eSectionTypeDWARFDebugMacInfo,
1806                 eSectionTypeDWARFDebugPubNames,
1807                 eSectionTypeDWARFDebugPubTypes,
1808                 eSectionTypeDWARFDebugRanges,
1809                 eSectionTypeDWARFDebugStr,
1810                 eSectionTypeDWARFDebugStrOffsets,
1811                 eSectionTypeELFSymbolTable,
1812             };
1813             SectionList *elf_section_list = m_sections_ap.get();
1814             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1815             {
1816                 SectionType section_type = g_sections[idx];
1817                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1818                 if (section_sp)
1819                 {
1820                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1821                     if (module_section_sp)
1822                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1823                     else
1824                         unified_section_list.AddSection (section_sp);
1825                 }
1826             }
1827         }
1828         else
1829         {
1830             unified_section_list = *m_sections_ap;
1831         }
1832     }
1833 }
1834 
1835 // private
1836 unsigned
1837 ObjectFileELF::ParseSymbols (Symtab *symtab,
1838                              user_id_t start_id,
1839                              SectionList *section_list,
1840                              const size_t num_symbols,
1841                              const DataExtractor &symtab_data,
1842                              const DataExtractor &strtab_data)
1843 {
1844     ELFSymbol symbol;
1845     lldb::offset_t offset = 0;
1846 
1847     static ConstString text_section_name(".text");
1848     static ConstString init_section_name(".init");
1849     static ConstString fini_section_name(".fini");
1850     static ConstString ctors_section_name(".ctors");
1851     static ConstString dtors_section_name(".dtors");
1852 
1853     static ConstString data_section_name(".data");
1854     static ConstString rodata_section_name(".rodata");
1855     static ConstString rodata1_section_name(".rodata1");
1856     static ConstString data2_section_name(".data1");
1857     static ConstString bss_section_name(".bss");
1858     static ConstString opd_section_name(".opd");    // For ppc64
1859 
1860     // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full
1861     // .text section what causes issues with displaying unusable symbol name to the user and very
1862     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1863     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1864     // use for the debugger and they are causing a lot of trouble.
1865     // Filtering can't be restricted to Android because this special object file don't contain the
1866     // note section specifying the environment to Android but the custom extension and file name
1867     // makes it highly unlikely that this will collide with anything else.
1868     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat");
1869 
1870     unsigned i;
1871     for (i = 0; i < num_symbols; ++i)
1872     {
1873         if (symbol.Parse(symtab_data, &offset) == false)
1874             break;
1875 
1876         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1877 
1878         // No need to add non-section symbols that have no names
1879         if (symbol.getType() != STT_SECTION &&
1880             (symbol_name == NULL || symbol_name[0] == '\0'))
1881             continue;
1882 
1883         // Skipping oatdata and oatexec sections if it is requested. See details above the
1884         // definition of skip_oatdata_oatexec for the reasons.
1885         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1886             continue;
1887 
1888         SectionSP symbol_section_sp;
1889         SymbolType symbol_type = eSymbolTypeInvalid;
1890         Elf64_Half symbol_idx = symbol.st_shndx;
1891 
1892         switch (symbol_idx)
1893         {
1894         case SHN_ABS:
1895             symbol_type = eSymbolTypeAbsolute;
1896             break;
1897         case SHN_UNDEF:
1898             symbol_type = eSymbolTypeUndefined;
1899             break;
1900         default:
1901             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1902             break;
1903         }
1904 
1905         // If a symbol is undefined do not process it further even if it has a STT type
1906         if (symbol_type != eSymbolTypeUndefined)
1907         {
1908             switch (symbol.getType())
1909             {
1910             default:
1911             case STT_NOTYPE:
1912                 // The symbol's type is not specified.
1913                 break;
1914 
1915             case STT_OBJECT:
1916                 // The symbol is associated with a data object, such as a variable,
1917                 // an array, etc.
1918                 symbol_type = eSymbolTypeData;
1919                 break;
1920 
1921             case STT_FUNC:
1922                 // The symbol is associated with a function or other executable code.
1923                 symbol_type = eSymbolTypeCode;
1924                 break;
1925 
1926             case STT_SECTION:
1927                 // The symbol is associated with a section. Symbol table entries of
1928                 // this type exist primarily for relocation and normally have
1929                 // STB_LOCAL binding.
1930                 break;
1931 
1932             case STT_FILE:
1933                 // Conventionally, the symbol's name gives the name of the source
1934                 // file associated with the object file. A file symbol has STB_LOCAL
1935                 // binding, its section index is SHN_ABS, and it precedes the other
1936                 // STB_LOCAL symbols for the file, if it is present.
1937                 symbol_type = eSymbolTypeSourceFile;
1938                 break;
1939 
1940             case STT_GNU_IFUNC:
1941                 // The symbol is associated with an indirect function. The actual
1942                 // function will be resolved if it is referenced.
1943                 symbol_type = eSymbolTypeResolver;
1944                 break;
1945             }
1946         }
1947 
1948         if (symbol_type == eSymbolTypeInvalid)
1949         {
1950             if (symbol_section_sp)
1951             {
1952                 const ConstString &sect_name = symbol_section_sp->GetName();
1953                 if (sect_name == text_section_name ||
1954                     sect_name == init_section_name ||
1955                     sect_name == fini_section_name ||
1956                     sect_name == ctors_section_name ||
1957                     sect_name == dtors_section_name)
1958                 {
1959                     symbol_type = eSymbolTypeCode;
1960                 }
1961                 else if (sect_name == data_section_name ||
1962                          sect_name == data2_section_name ||
1963                          sect_name == rodata_section_name ||
1964                          sect_name == rodata1_section_name ||
1965                          sect_name == bss_section_name)
1966                 {
1967                     symbol_type = eSymbolTypeData;
1968                 }
1969             }
1970         }
1971 
1972         int64_t symbol_value_offset = 0;
1973         uint32_t additional_flags = 0;
1974 
1975         ArchSpec arch;
1976         if (GetArchitecture(arch))
1977         {
1978             if (arch.GetMachine() == llvm::Triple::arm)
1979             {
1980                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1981                 {
1982                     // These are reserved for the specification (e.g.: mapping
1983                     // symbols). We don't want to add them to the symbol table.
1984 
1985                     if (symbol_type == eSymbolTypeCode)
1986                     {
1987                         llvm::StringRef symbol_name_ref(symbol_name);
1988                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1989                         {
1990                             // $a[.<any>]* - marks an ARM instruction sequence
1991                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1992                         }
1993                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1994                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1995                         {
1996                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1997                             // $t[.<any>]* - marks a THUMB instruction sequence
1998                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1999                         }
2000                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2001                         {
2002                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2003                             m_address_class_map[symbol.st_value] = eAddressClassData;
2004                         }
2005                     }
2006                     continue;
2007                 }
2008             }
2009             else if (arch.GetMachine() == llvm::Triple::aarch64)
2010             {
2011                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
2012                 {
2013                     // These are reserved for the specification (e.g.: mapping
2014                     // symbols). We don't want to add them to the symbol table.
2015 
2016                     if (symbol_type == eSymbolTypeCode)
2017                     {
2018                         llvm::StringRef symbol_name_ref(symbol_name);
2019                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
2020                         {
2021                             // $x[.<any>]* - marks an A64 instruction sequence
2022                             m_address_class_map[symbol.st_value] = eAddressClassCode;
2023                         }
2024                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2025                         {
2026                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2027                             m_address_class_map[symbol.st_value] = eAddressClassData;
2028                         }
2029                     }
2030 
2031                     continue;
2032                 }
2033             }
2034 
2035             if (arch.GetMachine() == llvm::Triple::arm)
2036             {
2037                 if (symbol_type == eSymbolTypeCode)
2038                 {
2039                     if (symbol.st_value & 1)
2040                     {
2041                         // Subtracting 1 from the address effectively unsets
2042                         // the low order bit, which results in the address
2043                         // actually pointing to the beginning of the symbol.
2044                         // This delta will be used below in conjunction with
2045                         // symbol.st_value to produce the final symbol_value
2046                         // that we store in the symtab.
2047                         symbol_value_offset = -1;
2048                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2049                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2050                     }
2051                     else
2052                     {
2053                         // This address is ARM
2054                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2055                     }
2056                 }
2057             }
2058         }
2059 
2060         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2061         // THUMB symbols. See above for more details.
2062         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2063         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2064             symbol_value -= symbol_section_sp->GetFileAddress();
2065 
2066         if (symbol_section_sp)
2067         {
2068             ModuleSP module_sp(GetModule());
2069             if (module_sp)
2070             {
2071                 SectionList *module_section_list = module_sp->GetSectionList();
2072                 if (module_section_list && module_section_list != section_list)
2073                 {
2074                     const ConstString &sect_name = symbol_section_sp->GetName();
2075                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2076                     if (section_sp && section_sp->GetFileSize())
2077                     {
2078                         symbol_section_sp = section_sp;
2079                     }
2080                 }
2081             }
2082         }
2083 
2084         bool is_global = symbol.getBinding() == STB_GLOBAL;
2085         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2086         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2087 
2088         llvm::StringRef symbol_ref(symbol_name);
2089 
2090         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2091         size_t version_pos = symbol_ref.find('@');
2092         bool has_suffix = version_pos != llvm::StringRef::npos;
2093         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2094         Mangled mangled(ConstString(symbol_bare), is_mangled);
2095 
2096         // Now append the suffix back to mangled and unmangled names. Only do it if the
2097         // demangling was successful (string is not empty).
2098         if (has_suffix)
2099         {
2100             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2101 
2102             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2103             if (! mangled_name.empty())
2104                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2105 
2106             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2107             llvm::StringRef demangled_name = demangled.GetStringRef();
2108             if (!demangled_name.empty())
2109                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2110         }
2111 
2112         Symbol dc_symbol(
2113             i + start_id,       // ID is the original symbol table index.
2114             mangled,
2115             symbol_type,        // Type of this symbol
2116             is_global,          // Is this globally visible?
2117             false,              // Is this symbol debug info?
2118             false,              // Is this symbol a trampoline?
2119             false,              // Is this symbol artificial?
2120             AddressRange(
2121                 symbol_section_sp,  // Section in which this symbol is defined or null.
2122                 symbol_value,       // Offset in section or symbol value.
2123                 symbol.st_size),    // Size in bytes of this symbol.
2124             symbol.st_size != 0,    // Size is valid if it is not 0
2125             has_suffix,             // Contains linker annotations?
2126             flags);                 // Symbol flags.
2127         symtab->AddSymbol(dc_symbol);
2128     }
2129     return i;
2130 }
2131 
2132 unsigned
2133 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2134 {
2135     if (symtab->GetObjectFile() != this)
2136     {
2137         // If the symbol table section is owned by a different object file, have it do the
2138         // parsing.
2139         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2140         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2141     }
2142 
2143     // Get section list for this object file.
2144     SectionList *section_list = m_sections_ap.get();
2145     if (!section_list)
2146         return 0;
2147 
2148     user_id_t symtab_id = symtab->GetID();
2149     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2150     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2151            symtab_hdr->sh_type == SHT_DYNSYM);
2152 
2153     // sh_link: section header index of associated string table.
2154     // Section ID's are ones based.
2155     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2156     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2157 
2158     if (symtab && strtab)
2159     {
2160         assert (symtab->GetObjectFile() == this);
2161         assert (strtab->GetObjectFile() == this);
2162 
2163         DataExtractor symtab_data;
2164         DataExtractor strtab_data;
2165         if (ReadSectionData(symtab, symtab_data) &&
2166             ReadSectionData(strtab, strtab_data))
2167         {
2168             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2169 
2170             return ParseSymbols(symbol_table, start_id, section_list,
2171                                 num_symbols, symtab_data, strtab_data);
2172         }
2173     }
2174 
2175     return 0;
2176 }
2177 
2178 size_t
2179 ObjectFileELF::ParseDynamicSymbols()
2180 {
2181     if (m_dynamic_symbols.size())
2182         return m_dynamic_symbols.size();
2183 
2184     SectionList *section_list = GetSectionList();
2185     if (!section_list)
2186         return 0;
2187 
2188     // Find the SHT_DYNAMIC section.
2189     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2190     if (!dynsym)
2191         return 0;
2192     assert (dynsym->GetObjectFile() == this);
2193 
2194     ELFDynamic symbol;
2195     DataExtractor dynsym_data;
2196     if (ReadSectionData(dynsym, dynsym_data))
2197     {
2198         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2199         lldb::offset_t cursor = 0;
2200 
2201         while (cursor < section_size)
2202         {
2203             if (!symbol.Parse(dynsym_data, &cursor))
2204                 break;
2205 
2206             m_dynamic_symbols.push_back(symbol);
2207         }
2208     }
2209 
2210     return m_dynamic_symbols.size();
2211 }
2212 
2213 const ELFDynamic *
2214 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2215 {
2216     if (!ParseDynamicSymbols())
2217         return NULL;
2218 
2219     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2220     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2221     for ( ; I != E; ++I)
2222     {
2223         ELFDynamic *symbol = &*I;
2224 
2225         if (symbol->d_tag == tag)
2226             return symbol;
2227     }
2228 
2229     return NULL;
2230 }
2231 
2232 unsigned
2233 ObjectFileELF::PLTRelocationType()
2234 {
2235     // DT_PLTREL
2236     //  This member specifies the type of relocation entry to which the
2237     //  procedure linkage table refers. The d_val member holds DT_REL or
2238     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2239     //  must use the same relocation.
2240     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2241 
2242     if (symbol)
2243         return symbol->d_val;
2244 
2245     return 0;
2246 }
2247 
2248 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2249 // 0th entry in the plt table is usually a resolution entry which have different size in some
2250 // architectures then the rest of the plt entries.
2251 static std::pair<uint64_t, uint64_t>
2252 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2253 {
2254     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2255 
2256     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2257     // So round the entsize up by the alignment if addralign is set.
2258     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2259         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2260 
2261     if (plt_entsize == 0)
2262     {
2263         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2264         // entries based on the number of entries and the size of the plt section with the
2265         // assumption that the size of the 0th entry is at least as big as the size of the normal
2266         // entries and it isn't much bigger then that.
2267         if (plt_hdr->sh_addralign)
2268             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2269         else
2270             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2271     }
2272 
2273     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2274 
2275     return std::make_pair(plt_entsize, plt_offset);
2276 }
2277 
2278 static unsigned
2279 ParsePLTRelocations(Symtab *symbol_table,
2280                     user_id_t start_id,
2281                     unsigned rel_type,
2282                     const ELFHeader *hdr,
2283                     const ELFSectionHeader *rel_hdr,
2284                     const ELFSectionHeader *plt_hdr,
2285                     const ELFSectionHeader *sym_hdr,
2286                     const lldb::SectionSP &plt_section_sp,
2287                     DataExtractor &rel_data,
2288                     DataExtractor &symtab_data,
2289                     DataExtractor &strtab_data)
2290 {
2291     ELFRelocation rel(rel_type);
2292     ELFSymbol symbol;
2293     lldb::offset_t offset = 0;
2294 
2295     uint64_t plt_offset, plt_entsize;
2296     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2297     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2298 
2299     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2300     reloc_info_fn reloc_type;
2301     reloc_info_fn reloc_symbol;
2302 
2303     if (hdr->Is32Bit())
2304     {
2305         reloc_type = ELFRelocation::RelocType32;
2306         reloc_symbol = ELFRelocation::RelocSymbol32;
2307     }
2308     else
2309     {
2310         reloc_type = ELFRelocation::RelocType64;
2311         reloc_symbol = ELFRelocation::RelocSymbol64;
2312     }
2313 
2314     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2315     unsigned i;
2316     for (i = 0; i < num_relocations; ++i)
2317     {
2318         if (rel.Parse(rel_data, &offset) == false)
2319             break;
2320 
2321         if (reloc_type(rel) != slot_type)
2322             continue;
2323 
2324         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2325         if (!symbol.Parse(symtab_data, &symbol_offset))
2326             break;
2327 
2328         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2329         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2330         uint64_t plt_index = plt_offset + i * plt_entsize;
2331 
2332         Symbol jump_symbol(
2333             i + start_id,    // Symbol table index
2334             symbol_name,     // symbol name.
2335             is_mangled,      // is the symbol name mangled?
2336             eSymbolTypeTrampoline, // Type of this symbol
2337             false,           // Is this globally visible?
2338             false,           // Is this symbol debug info?
2339             true,            // Is this symbol a trampoline?
2340             true,            // Is this symbol artificial?
2341             plt_section_sp,  // Section in which this symbol is defined or null.
2342             plt_index,       // Offset in section or symbol value.
2343             plt_entsize,     // Size in bytes of this symbol.
2344             true,            // Size is valid
2345             false,           // Contains linker annotations?
2346             0);              // Symbol flags.
2347 
2348         symbol_table->AddSymbol(jump_symbol);
2349     }
2350 
2351     return i;
2352 }
2353 
2354 unsigned
2355 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2356                                       user_id_t start_id,
2357                                       const ELFSectionHeaderInfo *rel_hdr,
2358                                       user_id_t rel_id)
2359 {
2360     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2361 
2362     // The link field points to the associated symbol table. The info field
2363     // points to the section holding the plt.
2364     user_id_t symtab_id = rel_hdr->sh_link;
2365     user_id_t plt_id = rel_hdr->sh_info;
2366 
2367     // If the link field doesn't point to the appropriate symbol name table then
2368     // try to find it by name as some compiler don't fill in the link fields.
2369     if (!symtab_id)
2370         symtab_id = GetSectionIndexByName(".dynsym");
2371     if (!plt_id)
2372         plt_id = GetSectionIndexByName(".plt");
2373 
2374     if (!symtab_id || !plt_id)
2375         return 0;
2376 
2377     // Section ID's are ones based;
2378     symtab_id++;
2379     plt_id++;
2380 
2381     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2382     if (!plt_hdr)
2383         return 0;
2384 
2385     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2386     if (!sym_hdr)
2387         return 0;
2388 
2389     SectionList *section_list = m_sections_ap.get();
2390     if (!section_list)
2391         return 0;
2392 
2393     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2394     if (!rel_section)
2395         return 0;
2396 
2397     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2398     if (!plt_section_sp)
2399         return 0;
2400 
2401     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2402     if (!symtab)
2403         return 0;
2404 
2405     // sh_link points to associated string table.
2406     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2407     if (!strtab)
2408         return 0;
2409 
2410     DataExtractor rel_data;
2411     if (!ReadSectionData(rel_section, rel_data))
2412         return 0;
2413 
2414     DataExtractor symtab_data;
2415     if (!ReadSectionData(symtab, symtab_data))
2416         return 0;
2417 
2418     DataExtractor strtab_data;
2419     if (!ReadSectionData(strtab, strtab_data))
2420         return 0;
2421 
2422     unsigned rel_type = PLTRelocationType();
2423     if (!rel_type)
2424         return 0;
2425 
2426     return ParsePLTRelocations (symbol_table,
2427                                 start_id,
2428                                 rel_type,
2429                                 &m_header,
2430                                 rel_hdr,
2431                                 plt_hdr,
2432                                 sym_hdr,
2433                                 plt_section_sp,
2434                                 rel_data,
2435                                 symtab_data,
2436                                 strtab_data);
2437 }
2438 
2439 unsigned
2440 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2441                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2442                 DataExtractor &rel_data, DataExtractor &symtab_data,
2443                 DataExtractor &debug_data, Section* rel_section)
2444 {
2445     ELFRelocation rel(rel_hdr->sh_type);
2446     lldb::addr_t offset = 0;
2447     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2448     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2449     reloc_info_fn reloc_type;
2450     reloc_info_fn reloc_symbol;
2451 
2452     if (hdr->Is32Bit())
2453     {
2454         reloc_type = ELFRelocation::RelocType32;
2455         reloc_symbol = ELFRelocation::RelocSymbol32;
2456     }
2457     else
2458     {
2459         reloc_type = ELFRelocation::RelocType64;
2460         reloc_symbol = ELFRelocation::RelocSymbol64;
2461     }
2462 
2463     for (unsigned i = 0; i < num_relocations; ++i)
2464     {
2465         if (rel.Parse(rel_data, &offset) == false)
2466             break;
2467 
2468         Symbol* symbol = NULL;
2469 
2470         if (hdr->Is32Bit())
2471         {
2472             switch (reloc_type(rel)) {
2473             case R_386_32:
2474             case R_386_PC32:
2475             default:
2476                 assert(false && "unexpected relocation type");
2477             }
2478         } else {
2479             switch (reloc_type(rel)) {
2480             case R_X86_64_64:
2481             {
2482                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2483                 if (symbol)
2484                 {
2485                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2486                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2487                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2488                     *dst = value + ELFRelocation::RelocAddend64(rel);
2489                 }
2490                 break;
2491             }
2492             case R_X86_64_32:
2493             case R_X86_64_32S:
2494             {
2495                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2496                 if (symbol)
2497                 {
2498                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2499                     value += ELFRelocation::RelocAddend32(rel);
2500                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2501                            (reloc_type(rel) == R_X86_64_32S &&
2502                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2503                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2504                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2505                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2506                     *dst = truncated_addr;
2507                 }
2508                 break;
2509             }
2510             case R_X86_64_PC32:
2511             default:
2512                 assert(false && "unexpected relocation type");
2513             }
2514         }
2515     }
2516 
2517     return 0;
2518 }
2519 
2520 unsigned
2521 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2522 {
2523     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2524 
2525     // Parse in the section list if needed.
2526     SectionList *section_list = GetSectionList();
2527     if (!section_list)
2528         return 0;
2529 
2530     // Section ID's are ones based.
2531     user_id_t symtab_id = rel_hdr->sh_link + 1;
2532     user_id_t debug_id = rel_hdr->sh_info + 1;
2533 
2534     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2535     if (!symtab_hdr)
2536         return 0;
2537 
2538     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2539     if (!debug_hdr)
2540         return 0;
2541 
2542     Section *rel = section_list->FindSectionByID(rel_id).get();
2543     if (!rel)
2544         return 0;
2545 
2546     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2547     if (!symtab)
2548         return 0;
2549 
2550     Section *debug = section_list->FindSectionByID(debug_id).get();
2551     if (!debug)
2552         return 0;
2553 
2554     DataExtractor rel_data;
2555     DataExtractor symtab_data;
2556     DataExtractor debug_data;
2557 
2558     if (ReadSectionData(rel, rel_data) &&
2559         ReadSectionData(symtab, symtab_data) &&
2560         ReadSectionData(debug, debug_data))
2561     {
2562         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2563                         rel_data, symtab_data, debug_data, debug);
2564     }
2565 
2566     return 0;
2567 }
2568 
2569 Symtab *
2570 ObjectFileELF::GetSymtab()
2571 {
2572     ModuleSP module_sp(GetModule());
2573     if (!module_sp)
2574         return NULL;
2575 
2576     // We always want to use the main object file so we (hopefully) only have one cached copy
2577     // of our symtab, dynamic sections, etc.
2578     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2579     if (module_obj_file && module_obj_file != this)
2580         return module_obj_file->GetSymtab();
2581 
2582     if (m_symtab_ap.get() == NULL)
2583     {
2584         SectionList *section_list = module_sp->GetSectionList();
2585         if (!section_list)
2586             return NULL;
2587 
2588         uint64_t symbol_id = 0;
2589         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2590 
2591         // Sharable objects and dynamic executables usually have 2 distinct symbol
2592         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2593         // version of the symtab that only contains global symbols. The information found
2594         // in the dynsym is therefore also found in the symtab, while the reverse is not
2595         // necessarily true.
2596         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2597         if (!symtab)
2598         {
2599             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2600             // then use the dynsym section which should always be there.
2601             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2602         }
2603         if (symtab)
2604         {
2605             m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2606             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2607         }
2608 
2609         // DT_JMPREL
2610         //      If present, this entry's d_ptr member holds the address of relocation
2611         //      entries associated solely with the procedure linkage table. Separating
2612         //      these relocation entries lets the dynamic linker ignore them during
2613         //      process initialization, if lazy binding is enabled. If this entry is
2614         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2615         //      also be present.
2616         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2617         if (symbol)
2618         {
2619             // Synthesize trampoline symbols to help navigate the PLT.
2620             addr_t addr = symbol->d_ptr;
2621             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2622             if (reloc_section)
2623             {
2624                 user_id_t reloc_id = reloc_section->GetID();
2625                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2626                 assert(reloc_header);
2627 
2628                 if (m_symtab_ap == nullptr)
2629                     m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2630 
2631                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2632             }
2633         }
2634 
2635         // If we still don't have any symtab then create an empty instance to avoid do the section
2636         // lookup next time.
2637         if (m_symtab_ap == nullptr)
2638             m_symtab_ap.reset(new Symtab(this));
2639 
2640         m_symtab_ap->CalculateSymbolSizes();
2641     }
2642 
2643     for (SectionHeaderCollIter I = m_section_headers.begin();
2644          I != m_section_headers.end(); ++I)
2645     {
2646         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2647         {
2648             if (CalculateType() == eTypeObjectFile)
2649             {
2650                 const char *section_name = I->section_name.AsCString("");
2651                 if (strstr(section_name, ".rela.debug") ||
2652                     strstr(section_name, ".rel.debug"))
2653                 {
2654                     const ELFSectionHeader &reloc_header = *I;
2655                     user_id_t reloc_id = SectionIndex(I);
2656                     RelocateDebugSections(&reloc_header, reloc_id);
2657                 }
2658             }
2659         }
2660     }
2661     return m_symtab_ap.get();
2662 }
2663 
2664 Symbol *
2665 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2666 {
2667     if (!m_symtab_ap.get())
2668         return nullptr; // GetSymtab() should be called first.
2669 
2670     const SectionList *section_list = GetSectionList();
2671     if (!section_list)
2672         return nullptr;
2673 
2674     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2675     {
2676         AddressRange range;
2677         if (eh_frame->GetAddressRange (so_addr, range))
2678         {
2679             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2680             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2681             if (symbol)
2682                 return symbol;
2683 
2684             // Note that a (stripped) symbol won't be found by GetSymtab()...
2685             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2686             if (eh_sym_section_sp.get())
2687             {
2688                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2689                 addr_t offset = file_addr - section_base;
2690                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2691 
2692                 Symbol eh_symbol(
2693                         symbol_id,            // Symbol table index.
2694                         "???",                // Symbol name.
2695                         false,                // Is the symbol name mangled?
2696                         eSymbolTypeCode,      // Type of this symbol.
2697                         true,                 // Is this globally visible?
2698                         false,                // Is this symbol debug info?
2699                         false,                // Is this symbol a trampoline?
2700                         true,                 // Is this symbol artificial?
2701                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2702                         offset,               // Offset in section or symbol value.
2703                         range.GetByteSize(),  // Size in bytes of this symbol.
2704                         true,                 // Size is valid.
2705                         false,                // Contains linker annotations?
2706                         0);                   // Symbol flags.
2707                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2708                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2709             }
2710         }
2711     }
2712     return nullptr;
2713 }
2714 
2715 
2716 bool
2717 ObjectFileELF::IsStripped ()
2718 {
2719     // TODO: determine this for ELF
2720     return false;
2721 }
2722 
2723 //===----------------------------------------------------------------------===//
2724 // Dump
2725 //
2726 // Dump the specifics of the runtime file container (such as any headers
2727 // segments, sections, etc).
2728 //----------------------------------------------------------------------
2729 void
2730 ObjectFileELF::Dump(Stream *s)
2731 {
2732     DumpELFHeader(s, m_header);
2733     s->EOL();
2734     DumpELFProgramHeaders(s);
2735     s->EOL();
2736     DumpELFSectionHeaders(s);
2737     s->EOL();
2738     SectionList *section_list = GetSectionList();
2739     if (section_list)
2740         section_list->Dump(s, NULL, true, UINT32_MAX);
2741     Symtab *symtab = GetSymtab();
2742     if (symtab)
2743         symtab->Dump(s, NULL, eSortOrderNone);
2744     s->EOL();
2745     DumpDependentModules(s);
2746     s->EOL();
2747 }
2748 
2749 //----------------------------------------------------------------------
2750 // DumpELFHeader
2751 //
2752 // Dump the ELF header to the specified output stream
2753 //----------------------------------------------------------------------
2754 void
2755 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2756 {
2757     s->PutCString("ELF Header\n");
2758     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2759     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2760               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2761     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2762               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2763     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2764               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2765 
2766     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2767     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2768     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2769     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2770     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2771 
2772     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2773     DumpELFHeader_e_type(s, header.e_type);
2774     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2775     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2776     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2777     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2778     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2779     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2780     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2781     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2782     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2783     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2784     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2785     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2786 }
2787 
2788 //----------------------------------------------------------------------
2789 // DumpELFHeader_e_type
2790 //
2791 // Dump an token value for the ELF header member e_type
2792 //----------------------------------------------------------------------
2793 void
2794 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2795 {
2796     switch (e_type)
2797     {
2798     case ET_NONE:   *s << "ET_NONE"; break;
2799     case ET_REL:    *s << "ET_REL"; break;
2800     case ET_EXEC:   *s << "ET_EXEC"; break;
2801     case ET_DYN:    *s << "ET_DYN"; break;
2802     case ET_CORE:   *s << "ET_CORE"; break;
2803     default:
2804         break;
2805     }
2806 }
2807 
2808 //----------------------------------------------------------------------
2809 // DumpELFHeader_e_ident_EI_DATA
2810 //
2811 // Dump an token value for the ELF header member e_ident[EI_DATA]
2812 //----------------------------------------------------------------------
2813 void
2814 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2815 {
2816     switch (ei_data)
2817     {
2818     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2819     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2820     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2821     default:
2822         break;
2823     }
2824 }
2825 
2826 
2827 //----------------------------------------------------------------------
2828 // DumpELFProgramHeader
2829 //
2830 // Dump a single ELF program header to the specified output stream
2831 //----------------------------------------------------------------------
2832 void
2833 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2834 {
2835     DumpELFProgramHeader_p_type(s, ph.p_type);
2836     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2837     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2838 
2839     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2840     s->Printf(") %8.8" PRIx64, ph.p_align);
2841 }
2842 
2843 //----------------------------------------------------------------------
2844 // DumpELFProgramHeader_p_type
2845 //
2846 // Dump an token value for the ELF program header member p_type which
2847 // describes the type of the program header
2848 // ----------------------------------------------------------------------
2849 void
2850 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2851 {
2852     const int kStrWidth = 15;
2853     switch (p_type)
2854     {
2855     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2856     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2857     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2858     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2859     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2860     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2861     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2862     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2863     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2864     default:
2865         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2866         break;
2867     }
2868 }
2869 
2870 
2871 //----------------------------------------------------------------------
2872 // DumpELFProgramHeader_p_flags
2873 //
2874 // Dump an token value for the ELF program header member p_flags
2875 //----------------------------------------------------------------------
2876 void
2877 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2878 {
2879     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2880         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2881         << ((p_flags & PF_W) ? "PF_W" : "    ")
2882         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2883         << ((p_flags & PF_R) ? "PF_R" : "    ");
2884 }
2885 
2886 //----------------------------------------------------------------------
2887 // DumpELFProgramHeaders
2888 //
2889 // Dump all of the ELF program header to the specified output stream
2890 //----------------------------------------------------------------------
2891 void
2892 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2893 {
2894     if (!ParseProgramHeaders())
2895         return;
2896 
2897     s->PutCString("Program Headers\n");
2898     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2899                   "p_filesz p_memsz  p_flags                   p_align\n");
2900     s->PutCString("==== --------------- -------- -------- -------- "
2901                   "-------- -------- ------------------------- --------\n");
2902 
2903     uint32_t idx = 0;
2904     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2905          I != m_program_headers.end(); ++I, ++idx)
2906     {
2907         s->Printf("[%2u] ", idx);
2908         ObjectFileELF::DumpELFProgramHeader(s, *I);
2909         s->EOL();
2910     }
2911 }
2912 
2913 //----------------------------------------------------------------------
2914 // DumpELFSectionHeader
2915 //
2916 // Dump a single ELF section header to the specified output stream
2917 //----------------------------------------------------------------------
2918 void
2919 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2920 {
2921     s->Printf("%8.8x ", sh.sh_name);
2922     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2923     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2924     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2925     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2926     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2927     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2928 }
2929 
2930 //----------------------------------------------------------------------
2931 // DumpELFSectionHeader_sh_type
2932 //
2933 // Dump an token value for the ELF section header member sh_type which
2934 // describes the type of the section
2935 //----------------------------------------------------------------------
2936 void
2937 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2938 {
2939     const int kStrWidth = 12;
2940     switch (sh_type)
2941     {
2942     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2943     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2944     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2945     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2946     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2947     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2948     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2949     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2950     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2951     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2952     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2953     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2954     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2955     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2956     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2957     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2958     default:
2959         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2960         break;
2961     }
2962 }
2963 
2964 //----------------------------------------------------------------------
2965 // DumpELFSectionHeader_sh_flags
2966 //
2967 // Dump an token value for the ELF section header member sh_flags
2968 //----------------------------------------------------------------------
2969 void
2970 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2971 {
2972     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2973         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2974         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2975         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2976         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2977 }
2978 
2979 //----------------------------------------------------------------------
2980 // DumpELFSectionHeaders
2981 //
2982 // Dump all of the ELF section header to the specified output stream
2983 //----------------------------------------------------------------------
2984 void
2985 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2986 {
2987     if (!ParseSectionHeaders())
2988         return;
2989 
2990     s->PutCString("Section Headers\n");
2991     s->PutCString("IDX  name     type         flags                            "
2992                   "addr     offset   size     link     info     addralgn "
2993                   "entsize  Name\n");
2994     s->PutCString("==== -------- ------------ -------------------------------- "
2995                   "-------- -------- -------- -------- -------- -------- "
2996                   "-------- ====================\n");
2997 
2998     uint32_t idx = 0;
2999     for (SectionHeaderCollConstIter I = m_section_headers.begin();
3000          I != m_section_headers.end(); ++I, ++idx)
3001     {
3002         s->Printf("[%2u] ", idx);
3003         ObjectFileELF::DumpELFSectionHeader(s, *I);
3004         const char* section_name = I->section_name.AsCString("");
3005         if (section_name)
3006             *s << ' ' << section_name << "\n";
3007     }
3008 }
3009 
3010 void
3011 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
3012 {
3013     size_t num_modules = ParseDependentModules();
3014 
3015     if (num_modules > 0)
3016     {
3017         s->PutCString("Dependent Modules:\n");
3018         for (unsigned i = 0; i < num_modules; ++i)
3019         {
3020             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3021             s->Printf("   %s\n", spec.GetFilename().GetCString());
3022         }
3023     }
3024 }
3025 
3026 bool
3027 ObjectFileELF::GetArchitecture (ArchSpec &arch)
3028 {
3029     if (!ParseHeader())
3030         return false;
3031 
3032     if (m_section_headers.empty())
3033     {
3034         // Allow elf notes to be parsed which may affect the detected architecture.
3035         ParseSectionHeaders();
3036     }
3037 
3038     arch = m_arch_spec;
3039     return true;
3040 }
3041 
3042 ObjectFile::Type
3043 ObjectFileELF::CalculateType()
3044 {
3045     switch (m_header.e_type)
3046     {
3047         case llvm::ELF::ET_NONE:
3048             // 0 - No file type
3049             return eTypeUnknown;
3050 
3051         case llvm::ELF::ET_REL:
3052             // 1 - Relocatable file
3053             return eTypeObjectFile;
3054 
3055         case llvm::ELF::ET_EXEC:
3056             // 2 - Executable file
3057             return eTypeExecutable;
3058 
3059         case llvm::ELF::ET_DYN:
3060             // 3 - Shared object file
3061             return eTypeSharedLibrary;
3062 
3063         case ET_CORE:
3064             // 4 - Core file
3065             return eTypeCoreFile;
3066 
3067         default:
3068             break;
3069     }
3070     return eTypeUnknown;
3071 }
3072 
3073 ObjectFile::Strata
3074 ObjectFileELF::CalculateStrata()
3075 {
3076     switch (m_header.e_type)
3077     {
3078         case llvm::ELF::ET_NONE:
3079             // 0 - No file type
3080             return eStrataUnknown;
3081 
3082         case llvm::ELF::ET_REL:
3083             // 1 - Relocatable file
3084             return eStrataUnknown;
3085 
3086         case llvm::ELF::ET_EXEC:
3087             // 2 - Executable file
3088             // TODO: is there any way to detect that an executable is a kernel
3089             // related executable by inspecting the program headers, section
3090             // headers, symbols, or any other flag bits???
3091             return eStrataUser;
3092 
3093         case llvm::ELF::ET_DYN:
3094             // 3 - Shared object file
3095             // TODO: is there any way to detect that an shared library is a kernel
3096             // related executable by inspecting the program headers, section
3097             // headers, symbols, or any other flag bits???
3098             return eStrataUnknown;
3099 
3100         case ET_CORE:
3101             // 4 - Core file
3102             // TODO: is there any way to detect that an core file is a kernel
3103             // related executable by inspecting the program headers, section
3104             // headers, symbols, or any other flag bits???
3105             return eStrataUnknown;
3106 
3107         default:
3108             break;
3109     }
3110     return eStrataUnknown;
3111 }
3112 
3113