1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 // 601 // WARNING : This function is being deprecated 602 // It's functionality has moved to ArchSpec::SetArchitecture 603 // This function is only being kept to validate the move. 604 // 605 // TODO : Remove this function 606 static bool 607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 608 { 609 switch (osabi_byte) 610 { 611 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 612 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 613 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 614 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 615 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 616 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 617 default: 618 ostype = llvm::Triple::OSType::UnknownOS; 619 } 620 return ostype != llvm::Triple::OSType::UnknownOS; 621 } 622 623 size_t 624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 625 lldb::DataBufferSP& data_sp, 626 lldb::offset_t data_offset, 627 lldb::offset_t file_offset, 628 lldb::offset_t length, 629 lldb_private::ModuleSpecList &specs) 630 { 631 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 632 633 const size_t initial_count = specs.GetSize(); 634 635 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 636 { 637 DataExtractor data; 638 data.SetData(data_sp); 639 elf::ELFHeader header; 640 if (header.Parse(data, &data_offset)) 641 { 642 if (data_sp) 643 { 644 ModuleSpec spec (file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 648 header.e_machine, 649 sub_type, 650 header.e_ident[EI_OSABI]); 651 652 if (spec.GetArchitecture().IsValid()) 653 { 654 llvm::Triple::OSType ostype; 655 llvm::Triple::VendorType vendor; 656 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 657 658 if (log) 659 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 665 // 666 // Validate it is ok to remove GetOsFromOSABI 667 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 668 assert(spec_ostype == ostype); 669 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 670 { 671 if (log) 672 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 673 } 674 675 // Try to get the UUID from the section list. Usually that's at the end, so 676 // map the file in if we don't have it already. 677 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 678 if (section_header_end > data_sp->GetByteSize()) 679 { 680 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 681 data.SetData(data_sp); 682 } 683 684 uint32_t gnu_debuglink_crc = 0; 685 std::string gnu_debuglink_file; 686 SectionHeaderColl section_headers; 687 lldb_private::UUID &uuid = spec.GetUUID(); 688 689 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 690 691 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 692 693 if (log) 694 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 695 696 if (!uuid.IsValid()) 697 { 698 uint32_t core_notes_crc = 0; 699 700 if (!gnu_debuglink_crc) 701 { 702 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 703 "Calculating module crc32 %s with size %" PRIu64 " KiB", 704 file.GetLastPathComponent().AsCString(), 705 (file.GetByteSize()-file_offset)/1024); 706 707 // For core files - which usually don't happen to have a gnu_debuglink, 708 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 709 // Thus we will need to fallback to something simpler. 710 if (header.e_type == llvm::ELF::ET_CORE) 711 { 712 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 713 if (program_headers_end > data_sp->GetByteSize()) 714 { 715 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 716 data.SetData(data_sp); 717 } 718 ProgramHeaderColl program_headers; 719 GetProgramHeaderInfo(program_headers, data, header); 720 721 size_t segment_data_end = 0; 722 for (ProgramHeaderCollConstIter I = program_headers.begin(); 723 I != program_headers.end(); ++I) 724 { 725 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 726 } 727 728 if (segment_data_end > data_sp->GetByteSize()) 729 { 730 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 731 data.SetData(data_sp); 732 } 733 734 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 735 } 736 else 737 { 738 // Need to map entire file into memory to calculate the crc. 739 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 740 data.SetData(data_sp); 741 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 742 } 743 } 744 if (gnu_debuglink_crc) 745 { 746 // Use 4 bytes of crc from the .gnu_debuglink section. 747 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 748 uuid.SetBytes (uuidt, sizeof(uuidt)); 749 } 750 else if (core_notes_crc) 751 { 752 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 753 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 754 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 755 uuid.SetBytes (uuidt, sizeof(uuidt)); 756 } 757 } 758 759 specs.Append(spec); 760 } 761 } 762 } 763 } 764 765 return specs.GetSize() - initial_count; 766 } 767 768 //------------------------------------------------------------------ 769 // PluginInterface protocol 770 //------------------------------------------------------------------ 771 lldb_private::ConstString 772 ObjectFileELF::GetPluginName() 773 { 774 return GetPluginNameStatic(); 775 } 776 777 uint32_t 778 ObjectFileELF::GetPluginVersion() 779 { 780 return m_plugin_version; 781 } 782 //------------------------------------------------------------------ 783 // ObjectFile protocol 784 //------------------------------------------------------------------ 785 786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 787 DataBufferSP& data_sp, 788 lldb::offset_t data_offset, 789 const FileSpec* file, 790 lldb::offset_t file_offset, 791 lldb::offset_t length) : 792 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 793 m_header(), 794 m_uuid(), 795 m_gnu_debuglink_file(), 796 m_gnu_debuglink_crc(0), 797 m_program_headers(), 798 m_section_headers(), 799 m_dynamic_symbols(), 800 m_filespec_ap(), 801 m_entry_point_address(), 802 m_arch_spec() 803 { 804 if (file) 805 m_file = *file; 806 ::memset(&m_header, 0, sizeof(m_header)); 807 } 808 809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 810 DataBufferSP& header_data_sp, 811 const lldb::ProcessSP &process_sp, 812 addr_t header_addr) : 813 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 814 m_header(), 815 m_uuid(), 816 m_gnu_debuglink_file(), 817 m_gnu_debuglink_crc(0), 818 m_program_headers(), 819 m_section_headers(), 820 m_dynamic_symbols(), 821 m_filespec_ap(), 822 m_entry_point_address(), 823 m_arch_spec() 824 { 825 ::memset(&m_header, 0, sizeof(m_header)); 826 } 827 828 ObjectFileELF::~ObjectFileELF() 829 { 830 } 831 832 bool 833 ObjectFileELF::IsExecutable() const 834 { 835 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 836 } 837 838 bool 839 ObjectFileELF::SetLoadAddress (Target &target, 840 lldb::addr_t value, 841 bool value_is_offset) 842 { 843 ModuleSP module_sp = GetModule(); 844 if (module_sp) 845 { 846 size_t num_loaded_sections = 0; 847 SectionList *section_list = GetSectionList (); 848 if (section_list) 849 { 850 if (!value_is_offset) 851 { 852 bool found_offset = false; 853 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 854 { 855 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 856 if (header == nullptr) 857 continue; 858 859 if (header->p_type != PT_LOAD || header->p_offset != 0) 860 continue; 861 862 value = value - header->p_vaddr; 863 found_offset = true; 864 break; 865 } 866 if (!found_offset) 867 return false; 868 } 869 870 const size_t num_sections = section_list->GetSize(); 871 size_t sect_idx = 0; 872 873 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 874 { 875 // Iterate through the object file sections to find all 876 // of the sections that have SHF_ALLOC in their flag bits. 877 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 878 // if (section_sp && !section_sp->IsThreadSpecific()) 879 if (section_sp && section_sp->Test(SHF_ALLOC)) 880 { 881 lldb::addr_t load_addr = section_sp->GetFileAddress() + value; 882 883 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 884 // the bytes are the overflow from the addition. 885 if (GetAddressByteSize() == 4) 886 load_addr &= 0xFFFFFFFF; 887 888 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 889 ++num_loaded_sections; 890 } 891 } 892 return num_loaded_sections > 0; 893 } 894 } 895 return false; 896 } 897 898 ByteOrder 899 ObjectFileELF::GetByteOrder() const 900 { 901 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 902 return eByteOrderBig; 903 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 904 return eByteOrderLittle; 905 return eByteOrderInvalid; 906 } 907 908 uint32_t 909 ObjectFileELF::GetAddressByteSize() const 910 { 911 return m_data.GetAddressByteSize(); 912 } 913 914 // Top 16 bits of the `Symbol` flags are available. 915 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 916 917 AddressClass 918 ObjectFileELF::GetAddressClass (addr_t file_addr) 919 { 920 Symtab* symtab = GetSymtab(); 921 if (!symtab) 922 return eAddressClassUnknown; 923 924 // The address class is determined based on the symtab. Ask it from the object file what 925 // contains the symtab information. 926 ObjectFile* symtab_objfile = symtab->GetObjectFile(); 927 if (symtab_objfile != nullptr && symtab_objfile != this) 928 return symtab_objfile->GetAddressClass(file_addr); 929 930 auto res = ObjectFile::GetAddressClass (file_addr); 931 if (res != eAddressClassCode) 932 return res; 933 934 auto ub = m_address_class_map.upper_bound(file_addr); 935 if (ub == m_address_class_map.begin()) 936 { 937 // No entry in the address class map before the address. Return 938 // default address class for an address in a code section. 939 return eAddressClassCode; 940 } 941 942 // Move iterator to the address class entry preceding address 943 --ub; 944 945 return ub->second; 946 } 947 948 size_t 949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 950 { 951 return std::distance(m_section_headers.begin(), I) + 1u; 952 } 953 954 size_t 955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 956 { 957 return std::distance(m_section_headers.begin(), I) + 1u; 958 } 959 960 bool 961 ObjectFileELF::ParseHeader() 962 { 963 lldb::offset_t offset = 0; 964 if (!m_header.Parse(m_data, &offset)) 965 return false; 966 967 if (!IsInMemory()) 968 return true; 969 970 // For in memory object files m_data might not contain the full object file. Try to load it 971 // until the end of the "Section header table" what is at the end of the ELF file. 972 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 973 if (m_data.GetByteSize() < file_size) 974 { 975 ProcessSP process_sp (m_process_wp.lock()); 976 if (!process_sp) 977 return false; 978 979 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 980 if (!data_sp) 981 return false; 982 m_data.SetData(data_sp, 0, file_size); 983 } 984 985 return true; 986 } 987 988 bool 989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 990 { 991 // Need to parse the section list to get the UUIDs, so make sure that's been done. 992 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 993 return false; 994 995 if (m_uuid.IsValid()) 996 { 997 // We have the full build id uuid. 998 *uuid = m_uuid; 999 return true; 1000 } 1001 else if (GetType() == ObjectFile::eTypeCoreFile) 1002 { 1003 uint32_t core_notes_crc = 0; 1004 1005 if (!ParseProgramHeaders()) 1006 return false; 1007 1008 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 1009 1010 if (core_notes_crc) 1011 { 1012 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 1013 // look different form .gnu_debuglink crc - followed by 4 bytes of note 1014 // segments crc. 1015 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 1016 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1017 } 1018 } 1019 else 1020 { 1021 if (!m_gnu_debuglink_crc) 1022 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1023 if (m_gnu_debuglink_crc) 1024 { 1025 // Use 4 bytes of crc from the .gnu_debuglink section. 1026 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1027 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1028 } 1029 } 1030 1031 if (m_uuid.IsValid()) 1032 { 1033 *uuid = m_uuid; 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 lldb_private::FileSpecList 1041 ObjectFileELF::GetDebugSymbolFilePaths() 1042 { 1043 FileSpecList file_spec_list; 1044 1045 if (!m_gnu_debuglink_file.empty()) 1046 { 1047 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1048 file_spec_list.Append (file_spec); 1049 } 1050 return file_spec_list; 1051 } 1052 1053 uint32_t 1054 ObjectFileELF::GetDependentModules(FileSpecList &files) 1055 { 1056 size_t num_modules = ParseDependentModules(); 1057 uint32_t num_specs = 0; 1058 1059 for (unsigned i = 0; i < num_modules; ++i) 1060 { 1061 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1062 num_specs++; 1063 } 1064 1065 return num_specs; 1066 } 1067 1068 Address 1069 ObjectFileELF::GetImageInfoAddress(Target *target) 1070 { 1071 if (!ParseDynamicSymbols()) 1072 return Address(); 1073 1074 SectionList *section_list = GetSectionList(); 1075 if (!section_list) 1076 return Address(); 1077 1078 // Find the SHT_DYNAMIC (.dynamic) section. 1079 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1080 if (!dynsym_section_sp) 1081 return Address(); 1082 assert (dynsym_section_sp->GetObjectFile() == this); 1083 1084 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1085 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1086 if (!dynsym_hdr) 1087 return Address(); 1088 1089 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1090 { 1091 ELFDynamic &symbol = m_dynamic_symbols[i]; 1092 1093 if (symbol.d_tag == DT_DEBUG) 1094 { 1095 // Compute the offset as the number of previous entries plus the 1096 // size of d_tag. 1097 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1098 return Address(dynsym_section_sp, offset); 1099 } 1100 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1101 { 1102 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1103 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1104 if (dyn_base == LLDB_INVALID_ADDRESS) 1105 return Address(); 1106 Address addr; 1107 Error error; 1108 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1109 return addr; 1110 } 1111 } 1112 1113 return Address(); 1114 } 1115 1116 lldb_private::Address 1117 ObjectFileELF::GetEntryPointAddress () 1118 { 1119 if (m_entry_point_address.IsValid()) 1120 return m_entry_point_address; 1121 1122 if (!ParseHeader() || !IsExecutable()) 1123 return m_entry_point_address; 1124 1125 SectionList *section_list = GetSectionList(); 1126 addr_t offset = m_header.e_entry; 1127 1128 if (!section_list) 1129 m_entry_point_address.SetOffset(offset); 1130 else 1131 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1132 return m_entry_point_address; 1133 } 1134 1135 //---------------------------------------------------------------------- 1136 // ParseDependentModules 1137 //---------------------------------------------------------------------- 1138 size_t 1139 ObjectFileELF::ParseDependentModules() 1140 { 1141 if (m_filespec_ap.get()) 1142 return m_filespec_ap->GetSize(); 1143 1144 m_filespec_ap.reset(new FileSpecList()); 1145 1146 if (!ParseSectionHeaders()) 1147 return 0; 1148 1149 SectionList *section_list = GetSectionList(); 1150 if (!section_list) 1151 return 0; 1152 1153 // Find the SHT_DYNAMIC section. 1154 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1155 if (!dynsym) 1156 return 0; 1157 assert (dynsym->GetObjectFile() == this); 1158 1159 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1160 if (!header) 1161 return 0; 1162 // sh_link: section header index of string table used by entries in the section. 1163 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1164 if (!dynstr) 1165 return 0; 1166 1167 DataExtractor dynsym_data; 1168 DataExtractor dynstr_data; 1169 if (ReadSectionData(dynsym, dynsym_data) && 1170 ReadSectionData(dynstr, dynstr_data)) 1171 { 1172 ELFDynamic symbol; 1173 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1174 lldb::offset_t offset = 0; 1175 1176 // The only type of entries we are concerned with are tagged DT_NEEDED, 1177 // yielding the name of a required library. 1178 while (offset < section_size) 1179 { 1180 if (!symbol.Parse(dynsym_data, &offset)) 1181 break; 1182 1183 if (symbol.d_tag != DT_NEEDED) 1184 continue; 1185 1186 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1187 const char *lib_name = dynstr_data.PeekCStr(str_index); 1188 m_filespec_ap->Append(FileSpec(lib_name, true)); 1189 } 1190 } 1191 1192 return m_filespec_ap->GetSize(); 1193 } 1194 1195 //---------------------------------------------------------------------- 1196 // GetProgramHeaderInfo 1197 //---------------------------------------------------------------------- 1198 size_t 1199 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1200 DataExtractor &object_data, 1201 const ELFHeader &header) 1202 { 1203 // We have already parsed the program headers 1204 if (!program_headers.empty()) 1205 return program_headers.size(); 1206 1207 // If there are no program headers to read we are done. 1208 if (header.e_phnum == 0) 1209 return 0; 1210 1211 program_headers.resize(header.e_phnum); 1212 if (program_headers.size() != header.e_phnum) 1213 return 0; 1214 1215 const size_t ph_size = header.e_phnum * header.e_phentsize; 1216 const elf_off ph_offset = header.e_phoff; 1217 DataExtractor data; 1218 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1219 return 0; 1220 1221 uint32_t idx; 1222 lldb::offset_t offset; 1223 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1224 { 1225 if (program_headers[idx].Parse(data, &offset) == false) 1226 break; 1227 } 1228 1229 if (idx < program_headers.size()) 1230 program_headers.resize(idx); 1231 1232 return program_headers.size(); 1233 1234 } 1235 1236 //---------------------------------------------------------------------- 1237 // ParseProgramHeaders 1238 //---------------------------------------------------------------------- 1239 size_t 1240 ObjectFileELF::ParseProgramHeaders() 1241 { 1242 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1243 } 1244 1245 lldb_private::Error 1246 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1247 { 1248 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1249 Error error; 1250 1251 lldb::offset_t offset = 0; 1252 1253 while (true) 1254 { 1255 // Parse the note header. If this fails, bail out. 1256 ELFNote note = ELFNote(); 1257 if (!note.Parse(data, &offset)) 1258 { 1259 // We're done. 1260 return error; 1261 } 1262 1263 // If a tag processor handles the tag, it should set processed to true, and 1264 // the loop will assume the tag processing has moved entirely past the note's payload. 1265 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1266 bool processed = false; 1267 1268 if (log) 1269 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1270 1271 // Process FreeBSD ELF notes. 1272 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1273 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1274 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1275 { 1276 // We'll consume the payload below. 1277 processed = true; 1278 1279 // Pull out the min version info. 1280 uint32_t version_info; 1281 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1282 { 1283 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1284 return error; 1285 } 1286 1287 // Convert the version info into a major/minor number. 1288 const uint32_t version_major = version_info / 100000; 1289 const uint32_t version_minor = (version_info / 1000) % 100; 1290 1291 char os_name[32]; 1292 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1293 1294 // Set the elf OS version to FreeBSD. Also clear the vendor. 1295 arch_spec.GetTriple ().setOSName (os_name); 1296 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1297 1298 if (log) 1299 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1300 } 1301 // Process GNU ELF notes. 1302 else if (note.n_name == LLDB_NT_OWNER_GNU) 1303 { 1304 switch (note.n_type) 1305 { 1306 case LLDB_NT_GNU_ABI_TAG: 1307 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1308 { 1309 // We'll consume the payload below. 1310 processed = true; 1311 1312 // Pull out the min OS version supporting the ABI. 1313 uint32_t version_info[4]; 1314 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1315 { 1316 error.SetErrorString ("failed to read GNU ABI note payload"); 1317 return error; 1318 } 1319 1320 // Set the OS per the OS field. 1321 switch (version_info[0]) 1322 { 1323 case LLDB_NT_GNU_ABI_OS_LINUX: 1324 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1325 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1326 if (log) 1327 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1328 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1329 break; 1330 case LLDB_NT_GNU_ABI_OS_HURD: 1331 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1332 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1333 if (log) 1334 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1335 break; 1336 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1337 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1338 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1339 if (log) 1340 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1341 break; 1342 default: 1343 if (log) 1344 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1345 break; 1346 } 1347 } 1348 break; 1349 1350 case LLDB_NT_GNU_BUILD_ID_TAG: 1351 // Only bother processing this if we don't already have the uuid set. 1352 if (!uuid.IsValid()) 1353 { 1354 // We'll consume the payload below. 1355 processed = true; 1356 1357 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1358 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1359 { 1360 uint8_t uuidbuf[20]; 1361 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1362 { 1363 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1364 return error; 1365 } 1366 1367 // Save the build id as the UUID for the module. 1368 uuid.SetBytes (uuidbuf, note.n_descsz); 1369 } 1370 } 1371 break; 1372 } 1373 } 1374 // Process NetBSD ELF notes. 1375 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1376 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1377 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1378 { 1379 1380 // We'll consume the payload below. 1381 processed = true; 1382 1383 // Pull out the min version info. 1384 uint32_t version_info; 1385 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1386 { 1387 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1388 return error; 1389 } 1390 1391 // Set the elf OS version to NetBSD. Also clear the vendor. 1392 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1393 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1394 1395 if (log) 1396 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1397 } 1398 // Process CSR kalimba notes 1399 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1400 (note.n_name == LLDB_NT_OWNER_CSR)) 1401 { 1402 // We'll consume the payload below. 1403 processed = true; 1404 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1405 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1406 1407 // TODO At some point the description string could be processed. 1408 // It could provide a steer towards the kalimba variant which 1409 // this ELF targets. 1410 if(note.n_descsz) 1411 { 1412 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1413 (void)cstr; 1414 } 1415 } 1416 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1417 { 1418 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1419 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1420 } 1421 1422 if (!processed) 1423 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1424 } 1425 1426 return error; 1427 } 1428 1429 1430 //---------------------------------------------------------------------- 1431 // GetSectionHeaderInfo 1432 //---------------------------------------------------------------------- 1433 size_t 1434 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1435 lldb_private::DataExtractor &object_data, 1436 const elf::ELFHeader &header, 1437 lldb_private::UUID &uuid, 1438 std::string &gnu_debuglink_file, 1439 uint32_t &gnu_debuglink_crc, 1440 ArchSpec &arch_spec) 1441 { 1442 // Don't reparse the section headers if we already did that. 1443 if (!section_headers.empty()) 1444 return section_headers.size(); 1445 1446 // Only initialize the arch_spec to okay defaults if they're not already set. 1447 // We'll refine this with note data as we parse the notes. 1448 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1449 { 1450 llvm::Triple::OSType ostype; 1451 llvm::Triple::OSType spec_ostype; 1452 const uint32_t sub_type = subTypeFromElfHeader(header); 1453 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1454 // 1455 // Validate if it is ok to remove GetOsFromOSABI 1456 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1457 spec_ostype = arch_spec.GetTriple ().getOS (); 1458 assert(spec_ostype == ostype); 1459 } 1460 1461 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1462 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1463 { 1464 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1465 { 1466 case llvm::ELF::EF_MIPS_MICROMIPS: 1467 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1468 break; 1469 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1470 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1471 break; 1472 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1473 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1474 break; 1475 default: 1476 break; 1477 } 1478 } 1479 1480 // If there are no section headers we are done. 1481 if (header.e_shnum == 0) 1482 return 0; 1483 1484 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1485 1486 section_headers.resize(header.e_shnum); 1487 if (section_headers.size() != header.e_shnum) 1488 return 0; 1489 1490 const size_t sh_size = header.e_shnum * header.e_shentsize; 1491 const elf_off sh_offset = header.e_shoff; 1492 DataExtractor sh_data; 1493 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1494 return 0; 1495 1496 uint32_t idx; 1497 lldb::offset_t offset; 1498 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1499 { 1500 if (section_headers[idx].Parse(sh_data, &offset) == false) 1501 break; 1502 } 1503 if (idx < section_headers.size()) 1504 section_headers.resize(idx); 1505 1506 const unsigned strtab_idx = header.e_shstrndx; 1507 if (strtab_idx && strtab_idx < section_headers.size()) 1508 { 1509 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1510 const size_t byte_size = sheader.sh_size; 1511 const Elf64_Off offset = sheader.sh_offset; 1512 lldb_private::DataExtractor shstr_data; 1513 1514 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1515 { 1516 for (SectionHeaderCollIter I = section_headers.begin(); 1517 I != section_headers.end(); ++I) 1518 { 1519 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1520 const ELFSectionHeaderInfo &header = *I; 1521 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1522 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1523 1524 I->section_name = name; 1525 1526 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1527 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1528 { 1529 if (header.sh_type == SHT_MIPS_ABIFLAGS) 1530 { 1531 DataExtractor data; 1532 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1533 { 1534 lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0 1535 uint32_t arch_flags = arch_spec.GetFlags (); 1536 arch_flags |= data.GetU32 (&ase_offset); 1537 arch_spec.SetFlags (arch_flags); 1538 } 1539 } 1540 } 1541 1542 if (name == g_sect_name_gnu_debuglink) 1543 { 1544 DataExtractor data; 1545 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1546 { 1547 lldb::offset_t gnu_debuglink_offset = 0; 1548 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1549 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1550 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1551 } 1552 } 1553 1554 // Process ELF note section entries. 1555 bool is_note_header = (header.sh_type == SHT_NOTE); 1556 1557 // The section header ".note.android.ident" is stored as a 1558 // PROGBITS type header but it is actually a note header. 1559 static ConstString g_sect_name_android_ident (".note.android.ident"); 1560 if (!is_note_header && name == g_sect_name_android_ident) 1561 is_note_header = true; 1562 1563 if (is_note_header) 1564 { 1565 // Allow notes to refine module info. 1566 DataExtractor data; 1567 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1568 { 1569 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1570 if (error.Fail ()) 1571 { 1572 if (log) 1573 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1574 } 1575 } 1576 } 1577 } 1578 1579 return section_headers.size(); 1580 } 1581 } 1582 1583 section_headers.clear(); 1584 return 0; 1585 } 1586 1587 size_t 1588 ObjectFileELF::GetProgramHeaderCount() 1589 { 1590 return ParseProgramHeaders(); 1591 } 1592 1593 const elf::ELFProgramHeader * 1594 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1595 { 1596 if (!id || !ParseProgramHeaders()) 1597 return NULL; 1598 1599 if (--id < m_program_headers.size()) 1600 return &m_program_headers[id]; 1601 1602 return NULL; 1603 } 1604 1605 DataExtractor 1606 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1607 { 1608 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1609 if (segment_header == NULL) 1610 return DataExtractor(); 1611 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1612 } 1613 1614 std::string 1615 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1616 { 1617 size_t pos = symbol_name.find('@'); 1618 return symbol_name.substr(0, pos).str(); 1619 } 1620 1621 //---------------------------------------------------------------------- 1622 // ParseSectionHeaders 1623 //---------------------------------------------------------------------- 1624 size_t 1625 ObjectFileELF::ParseSectionHeaders() 1626 { 1627 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1628 } 1629 1630 const ObjectFileELF::ELFSectionHeaderInfo * 1631 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1632 { 1633 if (!id || !ParseSectionHeaders()) 1634 return NULL; 1635 1636 if (--id < m_section_headers.size()) 1637 return &m_section_headers[id]; 1638 1639 return NULL; 1640 } 1641 1642 lldb::user_id_t 1643 ObjectFileELF::GetSectionIndexByName(const char* name) 1644 { 1645 if (!name || !name[0] || !ParseSectionHeaders()) 1646 return 0; 1647 for (size_t i = 1; i < m_section_headers.size(); ++i) 1648 if (m_section_headers[i].section_name == ConstString(name)) 1649 return i; 1650 return 0; 1651 } 1652 1653 void 1654 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1655 { 1656 if (!m_sections_ap.get() && ParseSectionHeaders()) 1657 { 1658 m_sections_ap.reset(new SectionList()); 1659 1660 for (SectionHeaderCollIter I = m_section_headers.begin(); 1661 I != m_section_headers.end(); ++I) 1662 { 1663 const ELFSectionHeaderInfo &header = *I; 1664 1665 ConstString& name = I->section_name; 1666 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1667 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1668 1669 static ConstString g_sect_name_text (".text"); 1670 static ConstString g_sect_name_data (".data"); 1671 static ConstString g_sect_name_bss (".bss"); 1672 static ConstString g_sect_name_tdata (".tdata"); 1673 static ConstString g_sect_name_tbss (".tbss"); 1674 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1675 static ConstString g_sect_name_dwarf_debug_addr (".debug_addr"); 1676 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1677 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1678 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1679 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1680 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1681 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1682 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1683 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1684 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1685 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1686 static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets"); 1687 static ConstString g_sect_name_eh_frame (".eh_frame"); 1688 1689 SectionType sect_type = eSectionTypeOther; 1690 1691 bool is_thread_specific = false; 1692 1693 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1694 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1695 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1696 else if (name == g_sect_name_tdata) 1697 { 1698 sect_type = eSectionTypeData; 1699 is_thread_specific = true; 1700 } 1701 else if (name == g_sect_name_tbss) 1702 { 1703 sect_type = eSectionTypeZeroFill; 1704 is_thread_specific = true; 1705 } 1706 // .debug_abbrev – Abbreviations used in the .debug_info section 1707 // .debug_aranges – Lookup table for mapping addresses to compilation units 1708 // .debug_frame – Call frame information 1709 // .debug_info – The core DWARF information section 1710 // .debug_line – Line number information 1711 // .debug_loc – Location lists used in DW_AT_location attributes 1712 // .debug_macinfo – Macro information 1713 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1714 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1715 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1716 // .debug_str – String table used in .debug_info 1717 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1718 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1719 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1720 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1721 else if (name == g_sect_name_dwarf_debug_addr) sect_type = eSectionTypeDWARFDebugAddr; 1722 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1723 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1724 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1725 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1726 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1727 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1728 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1729 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1730 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1731 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1732 else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets; 1733 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1734 1735 switch (header.sh_type) 1736 { 1737 case SHT_SYMTAB: 1738 assert (sect_type == eSectionTypeOther); 1739 sect_type = eSectionTypeELFSymbolTable; 1740 break; 1741 case SHT_DYNSYM: 1742 assert (sect_type == eSectionTypeOther); 1743 sect_type = eSectionTypeELFDynamicSymbols; 1744 break; 1745 case SHT_RELA: 1746 case SHT_REL: 1747 assert (sect_type == eSectionTypeOther); 1748 sect_type = eSectionTypeELFRelocationEntries; 1749 break; 1750 case SHT_DYNAMIC: 1751 assert (sect_type == eSectionTypeOther); 1752 sect_type = eSectionTypeELFDynamicLinkInfo; 1753 break; 1754 } 1755 1756 if (eSectionTypeOther == sect_type) 1757 { 1758 // the kalimba toolchain assumes that ELF section names are free-form. It does 1759 // support linkscripts which (can) give rise to various arbitrarily named 1760 // sections being "Code" or "Data". 1761 sect_type = kalimbaSectionType(m_header, header); 1762 } 1763 1764 const uint32_t target_bytes_size = 1765 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1766 m_arch_spec.GetDataByteSize() : 1767 eSectionTypeCode == sect_type ? 1768 m_arch_spec.GetCodeByteSize() : 1; 1769 1770 elf::elf_xword log2align = (header.sh_addralign==0) 1771 ? 0 1772 : llvm::Log2_64(header.sh_addralign); 1773 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1774 this, // ObjectFile to which this section belongs and should read section data from. 1775 SectionIndex(I), // Section ID. 1776 name, // Section name. 1777 sect_type, // Section type. 1778 header.sh_addr, // VM address. 1779 vm_size, // VM size in bytes of this section. 1780 header.sh_offset, // Offset of this section in the file. 1781 file_size, // Size of the section as found in the file. 1782 log2align, // Alignment of the section 1783 header.sh_flags, // Flags for this section. 1784 target_bytes_size));// Number of host bytes per target byte 1785 1786 if (is_thread_specific) 1787 section_sp->SetIsThreadSpecific (is_thread_specific); 1788 m_sections_ap->AddSection(section_sp); 1789 } 1790 } 1791 1792 if (m_sections_ap.get()) 1793 { 1794 if (GetType() == eTypeDebugInfo) 1795 { 1796 static const SectionType g_sections[] = 1797 { 1798 eSectionTypeDWARFDebugAbbrev, 1799 eSectionTypeDWARFDebugAddr, 1800 eSectionTypeDWARFDebugAranges, 1801 eSectionTypeDWARFDebugFrame, 1802 eSectionTypeDWARFDebugInfo, 1803 eSectionTypeDWARFDebugLine, 1804 eSectionTypeDWARFDebugLoc, 1805 eSectionTypeDWARFDebugMacInfo, 1806 eSectionTypeDWARFDebugPubNames, 1807 eSectionTypeDWARFDebugPubTypes, 1808 eSectionTypeDWARFDebugRanges, 1809 eSectionTypeDWARFDebugStr, 1810 eSectionTypeDWARFDebugStrOffsets, 1811 eSectionTypeELFSymbolTable, 1812 }; 1813 SectionList *elf_section_list = m_sections_ap.get(); 1814 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1815 { 1816 SectionType section_type = g_sections[idx]; 1817 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1818 if (section_sp) 1819 { 1820 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1821 if (module_section_sp) 1822 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1823 else 1824 unified_section_list.AddSection (section_sp); 1825 } 1826 } 1827 } 1828 else 1829 { 1830 unified_section_list = *m_sections_ap; 1831 } 1832 } 1833 } 1834 1835 // private 1836 unsigned 1837 ObjectFileELF::ParseSymbols (Symtab *symtab, 1838 user_id_t start_id, 1839 SectionList *section_list, 1840 const size_t num_symbols, 1841 const DataExtractor &symtab_data, 1842 const DataExtractor &strtab_data) 1843 { 1844 ELFSymbol symbol; 1845 lldb::offset_t offset = 0; 1846 1847 static ConstString text_section_name(".text"); 1848 static ConstString init_section_name(".init"); 1849 static ConstString fini_section_name(".fini"); 1850 static ConstString ctors_section_name(".ctors"); 1851 static ConstString dtors_section_name(".dtors"); 1852 1853 static ConstString data_section_name(".data"); 1854 static ConstString rodata_section_name(".rodata"); 1855 static ConstString rodata1_section_name(".rodata1"); 1856 static ConstString data2_section_name(".data1"); 1857 static ConstString bss_section_name(".bss"); 1858 static ConstString opd_section_name(".opd"); // For ppc64 1859 1860 // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full 1861 // .text section what causes issues with displaying unusable symbol name to the user and very 1862 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 1863 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 1864 // use for the debugger and they are causing a lot of trouble. 1865 // Filtering can't be restricted to Android because this special object file don't contain the 1866 // note section specifying the environment to Android but the custom extension and file name 1867 // makes it highly unlikely that this will collide with anything else. 1868 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat"); 1869 1870 unsigned i; 1871 for (i = 0; i < num_symbols; ++i) 1872 { 1873 if (symbol.Parse(symtab_data, &offset) == false) 1874 break; 1875 1876 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1877 1878 // No need to add non-section symbols that have no names 1879 if (symbol.getType() != STT_SECTION && 1880 (symbol_name == NULL || symbol_name[0] == '\0')) 1881 continue; 1882 1883 // Skipping oatdata and oatexec sections if it is requested. See details above the 1884 // definition of skip_oatdata_oatexec for the reasons. 1885 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 1886 continue; 1887 1888 SectionSP symbol_section_sp; 1889 SymbolType symbol_type = eSymbolTypeInvalid; 1890 Elf64_Half symbol_idx = symbol.st_shndx; 1891 1892 switch (symbol_idx) 1893 { 1894 case SHN_ABS: 1895 symbol_type = eSymbolTypeAbsolute; 1896 break; 1897 case SHN_UNDEF: 1898 symbol_type = eSymbolTypeUndefined; 1899 break; 1900 default: 1901 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1902 break; 1903 } 1904 1905 // If a symbol is undefined do not process it further even if it has a STT type 1906 if (symbol_type != eSymbolTypeUndefined) 1907 { 1908 switch (symbol.getType()) 1909 { 1910 default: 1911 case STT_NOTYPE: 1912 // The symbol's type is not specified. 1913 break; 1914 1915 case STT_OBJECT: 1916 // The symbol is associated with a data object, such as a variable, 1917 // an array, etc. 1918 symbol_type = eSymbolTypeData; 1919 break; 1920 1921 case STT_FUNC: 1922 // The symbol is associated with a function or other executable code. 1923 symbol_type = eSymbolTypeCode; 1924 break; 1925 1926 case STT_SECTION: 1927 // The symbol is associated with a section. Symbol table entries of 1928 // this type exist primarily for relocation and normally have 1929 // STB_LOCAL binding. 1930 break; 1931 1932 case STT_FILE: 1933 // Conventionally, the symbol's name gives the name of the source 1934 // file associated with the object file. A file symbol has STB_LOCAL 1935 // binding, its section index is SHN_ABS, and it precedes the other 1936 // STB_LOCAL symbols for the file, if it is present. 1937 symbol_type = eSymbolTypeSourceFile; 1938 break; 1939 1940 case STT_GNU_IFUNC: 1941 // The symbol is associated with an indirect function. The actual 1942 // function will be resolved if it is referenced. 1943 symbol_type = eSymbolTypeResolver; 1944 break; 1945 } 1946 } 1947 1948 if (symbol_type == eSymbolTypeInvalid) 1949 { 1950 if (symbol_section_sp) 1951 { 1952 const ConstString §_name = symbol_section_sp->GetName(); 1953 if (sect_name == text_section_name || 1954 sect_name == init_section_name || 1955 sect_name == fini_section_name || 1956 sect_name == ctors_section_name || 1957 sect_name == dtors_section_name) 1958 { 1959 symbol_type = eSymbolTypeCode; 1960 } 1961 else if (sect_name == data_section_name || 1962 sect_name == data2_section_name || 1963 sect_name == rodata_section_name || 1964 sect_name == rodata1_section_name || 1965 sect_name == bss_section_name) 1966 { 1967 symbol_type = eSymbolTypeData; 1968 } 1969 } 1970 } 1971 1972 int64_t symbol_value_offset = 0; 1973 uint32_t additional_flags = 0; 1974 1975 ArchSpec arch; 1976 if (GetArchitecture(arch)) 1977 { 1978 if (arch.GetMachine() == llvm::Triple::arm) 1979 { 1980 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1981 { 1982 // These are reserved for the specification (e.g.: mapping 1983 // symbols). We don't want to add them to the symbol table. 1984 1985 if (symbol_type == eSymbolTypeCode) 1986 { 1987 llvm::StringRef symbol_name_ref(symbol_name); 1988 if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a.")) 1989 { 1990 // $a[.<any>]* - marks an ARM instruction sequence 1991 m_address_class_map[symbol.st_value] = eAddressClassCode; 1992 } 1993 else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") || 1994 symbol_name_ref == "$t" || symbol_name_ref.startswith("$t.")) 1995 { 1996 // $b[.<any>]* - marks a THUMB BL instruction sequence 1997 // $t[.<any>]* - marks a THUMB instruction sequence 1998 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 1999 } 2000 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 2001 { 2002 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2003 m_address_class_map[symbol.st_value] = eAddressClassData; 2004 } 2005 } 2006 continue; 2007 } 2008 } 2009 else if (arch.GetMachine() == llvm::Triple::aarch64) 2010 { 2011 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 2012 { 2013 // These are reserved for the specification (e.g.: mapping 2014 // symbols). We don't want to add them to the symbol table. 2015 2016 if (symbol_type == eSymbolTypeCode) 2017 { 2018 llvm::StringRef symbol_name_ref(symbol_name); 2019 if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x.")) 2020 { 2021 // $x[.<any>]* - marks an A64 instruction sequence 2022 m_address_class_map[symbol.st_value] = eAddressClassCode; 2023 } 2024 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 2025 { 2026 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2027 m_address_class_map[symbol.st_value] = eAddressClassData; 2028 } 2029 } 2030 2031 continue; 2032 } 2033 } 2034 2035 if (arch.GetMachine() == llvm::Triple::arm) 2036 { 2037 if (symbol_type == eSymbolTypeCode) 2038 { 2039 if (symbol.st_value & 1) 2040 { 2041 // Subtracting 1 from the address effectively unsets 2042 // the low order bit, which results in the address 2043 // actually pointing to the beginning of the symbol. 2044 // This delta will be used below in conjunction with 2045 // symbol.st_value to produce the final symbol_value 2046 // that we store in the symtab. 2047 symbol_value_offset = -1; 2048 additional_flags = ARM_ELF_SYM_IS_THUMB; 2049 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2050 } 2051 else 2052 { 2053 // This address is ARM 2054 m_address_class_map[symbol.st_value] = eAddressClassCode; 2055 } 2056 } 2057 } 2058 } 2059 2060 // symbol_value_offset may contain 0 for ARM symbols or -1 for 2061 // THUMB symbols. See above for more details. 2062 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2063 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2064 symbol_value -= symbol_section_sp->GetFileAddress(); 2065 2066 if (symbol_section_sp) 2067 { 2068 ModuleSP module_sp(GetModule()); 2069 if (module_sp) 2070 { 2071 SectionList *module_section_list = module_sp->GetSectionList(); 2072 if (module_section_list && module_section_list != section_list) 2073 { 2074 const ConstString §_name = symbol_section_sp->GetName(); 2075 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 2076 if (section_sp && section_sp->GetFileSize()) 2077 { 2078 symbol_section_sp = section_sp; 2079 } 2080 } 2081 } 2082 } 2083 2084 bool is_global = symbol.getBinding() == STB_GLOBAL; 2085 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2086 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2087 2088 llvm::StringRef symbol_ref(symbol_name); 2089 2090 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2091 size_t version_pos = symbol_ref.find('@'); 2092 bool has_suffix = version_pos != llvm::StringRef::npos; 2093 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2094 Mangled mangled(ConstString(symbol_bare), is_mangled); 2095 2096 // Now append the suffix back to mangled and unmangled names. Only do it if the 2097 // demangling was successful (string is not empty). 2098 if (has_suffix) 2099 { 2100 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2101 2102 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2103 if (! mangled_name.empty()) 2104 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2105 2106 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2107 llvm::StringRef demangled_name = demangled.GetStringRef(); 2108 if (!demangled_name.empty()) 2109 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2110 } 2111 2112 Symbol dc_symbol( 2113 i + start_id, // ID is the original symbol table index. 2114 mangled, 2115 symbol_type, // Type of this symbol 2116 is_global, // Is this globally visible? 2117 false, // Is this symbol debug info? 2118 false, // Is this symbol a trampoline? 2119 false, // Is this symbol artificial? 2120 AddressRange( 2121 symbol_section_sp, // Section in which this symbol is defined or null. 2122 symbol_value, // Offset in section or symbol value. 2123 symbol.st_size), // Size in bytes of this symbol. 2124 symbol.st_size != 0, // Size is valid if it is not 0 2125 has_suffix, // Contains linker annotations? 2126 flags); // Symbol flags. 2127 symtab->AddSymbol(dc_symbol); 2128 } 2129 return i; 2130 } 2131 2132 unsigned 2133 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 2134 { 2135 if (symtab->GetObjectFile() != this) 2136 { 2137 // If the symbol table section is owned by a different object file, have it do the 2138 // parsing. 2139 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2140 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2141 } 2142 2143 // Get section list for this object file. 2144 SectionList *section_list = m_sections_ap.get(); 2145 if (!section_list) 2146 return 0; 2147 2148 user_id_t symtab_id = symtab->GetID(); 2149 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2150 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2151 symtab_hdr->sh_type == SHT_DYNSYM); 2152 2153 // sh_link: section header index of associated string table. 2154 // Section ID's are ones based. 2155 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2156 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2157 2158 if (symtab && strtab) 2159 { 2160 assert (symtab->GetObjectFile() == this); 2161 assert (strtab->GetObjectFile() == this); 2162 2163 DataExtractor symtab_data; 2164 DataExtractor strtab_data; 2165 if (ReadSectionData(symtab, symtab_data) && 2166 ReadSectionData(strtab, strtab_data)) 2167 { 2168 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2169 2170 return ParseSymbols(symbol_table, start_id, section_list, 2171 num_symbols, symtab_data, strtab_data); 2172 } 2173 } 2174 2175 return 0; 2176 } 2177 2178 size_t 2179 ObjectFileELF::ParseDynamicSymbols() 2180 { 2181 if (m_dynamic_symbols.size()) 2182 return m_dynamic_symbols.size(); 2183 2184 SectionList *section_list = GetSectionList(); 2185 if (!section_list) 2186 return 0; 2187 2188 // Find the SHT_DYNAMIC section. 2189 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2190 if (!dynsym) 2191 return 0; 2192 assert (dynsym->GetObjectFile() == this); 2193 2194 ELFDynamic symbol; 2195 DataExtractor dynsym_data; 2196 if (ReadSectionData(dynsym, dynsym_data)) 2197 { 2198 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2199 lldb::offset_t cursor = 0; 2200 2201 while (cursor < section_size) 2202 { 2203 if (!symbol.Parse(dynsym_data, &cursor)) 2204 break; 2205 2206 m_dynamic_symbols.push_back(symbol); 2207 } 2208 } 2209 2210 return m_dynamic_symbols.size(); 2211 } 2212 2213 const ELFDynamic * 2214 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2215 { 2216 if (!ParseDynamicSymbols()) 2217 return NULL; 2218 2219 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2220 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2221 for ( ; I != E; ++I) 2222 { 2223 ELFDynamic *symbol = &*I; 2224 2225 if (symbol->d_tag == tag) 2226 return symbol; 2227 } 2228 2229 return NULL; 2230 } 2231 2232 unsigned 2233 ObjectFileELF::PLTRelocationType() 2234 { 2235 // DT_PLTREL 2236 // This member specifies the type of relocation entry to which the 2237 // procedure linkage table refers. The d_val member holds DT_REL or 2238 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2239 // must use the same relocation. 2240 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2241 2242 if (symbol) 2243 return symbol->d_val; 2244 2245 return 0; 2246 } 2247 2248 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2249 // 0th entry in the plt table is usually a resolution entry which have different size in some 2250 // architectures then the rest of the plt entries. 2251 static std::pair<uint64_t, uint64_t> 2252 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2253 { 2254 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2255 2256 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2257 // So round the entsize up by the alignment if addralign is set. 2258 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2259 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2260 2261 if (plt_entsize == 0) 2262 { 2263 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2264 // entries based on the number of entries and the size of the plt section with the 2265 // assumption that the size of the 0th entry is at least as big as the size of the normal 2266 // entries and it isn't much bigger then that. 2267 if (plt_hdr->sh_addralign) 2268 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2269 else 2270 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2271 } 2272 2273 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2274 2275 return std::make_pair(plt_entsize, plt_offset); 2276 } 2277 2278 static unsigned 2279 ParsePLTRelocations(Symtab *symbol_table, 2280 user_id_t start_id, 2281 unsigned rel_type, 2282 const ELFHeader *hdr, 2283 const ELFSectionHeader *rel_hdr, 2284 const ELFSectionHeader *plt_hdr, 2285 const ELFSectionHeader *sym_hdr, 2286 const lldb::SectionSP &plt_section_sp, 2287 DataExtractor &rel_data, 2288 DataExtractor &symtab_data, 2289 DataExtractor &strtab_data) 2290 { 2291 ELFRelocation rel(rel_type); 2292 ELFSymbol symbol; 2293 lldb::offset_t offset = 0; 2294 2295 uint64_t plt_offset, plt_entsize; 2296 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2297 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2298 2299 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2300 reloc_info_fn reloc_type; 2301 reloc_info_fn reloc_symbol; 2302 2303 if (hdr->Is32Bit()) 2304 { 2305 reloc_type = ELFRelocation::RelocType32; 2306 reloc_symbol = ELFRelocation::RelocSymbol32; 2307 } 2308 else 2309 { 2310 reloc_type = ELFRelocation::RelocType64; 2311 reloc_symbol = ELFRelocation::RelocSymbol64; 2312 } 2313 2314 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2315 unsigned i; 2316 for (i = 0; i < num_relocations; ++i) 2317 { 2318 if (rel.Parse(rel_data, &offset) == false) 2319 break; 2320 2321 if (reloc_type(rel) != slot_type) 2322 continue; 2323 2324 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2325 if (!symbol.Parse(symtab_data, &symbol_offset)) 2326 break; 2327 2328 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2329 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2330 uint64_t plt_index = plt_offset + i * plt_entsize; 2331 2332 Symbol jump_symbol( 2333 i + start_id, // Symbol table index 2334 symbol_name, // symbol name. 2335 is_mangled, // is the symbol name mangled? 2336 eSymbolTypeTrampoline, // Type of this symbol 2337 false, // Is this globally visible? 2338 false, // Is this symbol debug info? 2339 true, // Is this symbol a trampoline? 2340 true, // Is this symbol artificial? 2341 plt_section_sp, // Section in which this symbol is defined or null. 2342 plt_index, // Offset in section or symbol value. 2343 plt_entsize, // Size in bytes of this symbol. 2344 true, // Size is valid 2345 false, // Contains linker annotations? 2346 0); // Symbol flags. 2347 2348 symbol_table->AddSymbol(jump_symbol); 2349 } 2350 2351 return i; 2352 } 2353 2354 unsigned 2355 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2356 user_id_t start_id, 2357 const ELFSectionHeaderInfo *rel_hdr, 2358 user_id_t rel_id) 2359 { 2360 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2361 2362 // The link field points to the associated symbol table. The info field 2363 // points to the section holding the plt. 2364 user_id_t symtab_id = rel_hdr->sh_link; 2365 user_id_t plt_id = rel_hdr->sh_info; 2366 2367 // If the link field doesn't point to the appropriate symbol name table then 2368 // try to find it by name as some compiler don't fill in the link fields. 2369 if (!symtab_id) 2370 symtab_id = GetSectionIndexByName(".dynsym"); 2371 if (!plt_id) 2372 plt_id = GetSectionIndexByName(".plt"); 2373 2374 if (!symtab_id || !plt_id) 2375 return 0; 2376 2377 // Section ID's are ones based; 2378 symtab_id++; 2379 plt_id++; 2380 2381 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2382 if (!plt_hdr) 2383 return 0; 2384 2385 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2386 if (!sym_hdr) 2387 return 0; 2388 2389 SectionList *section_list = m_sections_ap.get(); 2390 if (!section_list) 2391 return 0; 2392 2393 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2394 if (!rel_section) 2395 return 0; 2396 2397 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2398 if (!plt_section_sp) 2399 return 0; 2400 2401 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2402 if (!symtab) 2403 return 0; 2404 2405 // sh_link points to associated string table. 2406 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2407 if (!strtab) 2408 return 0; 2409 2410 DataExtractor rel_data; 2411 if (!ReadSectionData(rel_section, rel_data)) 2412 return 0; 2413 2414 DataExtractor symtab_data; 2415 if (!ReadSectionData(symtab, symtab_data)) 2416 return 0; 2417 2418 DataExtractor strtab_data; 2419 if (!ReadSectionData(strtab, strtab_data)) 2420 return 0; 2421 2422 unsigned rel_type = PLTRelocationType(); 2423 if (!rel_type) 2424 return 0; 2425 2426 return ParsePLTRelocations (symbol_table, 2427 start_id, 2428 rel_type, 2429 &m_header, 2430 rel_hdr, 2431 plt_hdr, 2432 sym_hdr, 2433 plt_section_sp, 2434 rel_data, 2435 symtab_data, 2436 strtab_data); 2437 } 2438 2439 unsigned 2440 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2441 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2442 DataExtractor &rel_data, DataExtractor &symtab_data, 2443 DataExtractor &debug_data, Section* rel_section) 2444 { 2445 ELFRelocation rel(rel_hdr->sh_type); 2446 lldb::addr_t offset = 0; 2447 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2448 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2449 reloc_info_fn reloc_type; 2450 reloc_info_fn reloc_symbol; 2451 2452 if (hdr->Is32Bit()) 2453 { 2454 reloc_type = ELFRelocation::RelocType32; 2455 reloc_symbol = ELFRelocation::RelocSymbol32; 2456 } 2457 else 2458 { 2459 reloc_type = ELFRelocation::RelocType64; 2460 reloc_symbol = ELFRelocation::RelocSymbol64; 2461 } 2462 2463 for (unsigned i = 0; i < num_relocations; ++i) 2464 { 2465 if (rel.Parse(rel_data, &offset) == false) 2466 break; 2467 2468 Symbol* symbol = NULL; 2469 2470 if (hdr->Is32Bit()) 2471 { 2472 switch (reloc_type(rel)) { 2473 case R_386_32: 2474 case R_386_PC32: 2475 default: 2476 assert(false && "unexpected relocation type"); 2477 } 2478 } else { 2479 switch (reloc_type(rel)) { 2480 case R_X86_64_64: 2481 { 2482 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2483 if (symbol) 2484 { 2485 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2486 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2487 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2488 *dst = value + ELFRelocation::RelocAddend64(rel); 2489 } 2490 break; 2491 } 2492 case R_X86_64_32: 2493 case R_X86_64_32S: 2494 { 2495 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2496 if (symbol) 2497 { 2498 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2499 value += ELFRelocation::RelocAddend32(rel); 2500 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2501 (reloc_type(rel) == R_X86_64_32S && 2502 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2503 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2504 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2505 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2506 *dst = truncated_addr; 2507 } 2508 break; 2509 } 2510 case R_X86_64_PC32: 2511 default: 2512 assert(false && "unexpected relocation type"); 2513 } 2514 } 2515 } 2516 2517 return 0; 2518 } 2519 2520 unsigned 2521 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2522 { 2523 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2524 2525 // Parse in the section list if needed. 2526 SectionList *section_list = GetSectionList(); 2527 if (!section_list) 2528 return 0; 2529 2530 // Section ID's are ones based. 2531 user_id_t symtab_id = rel_hdr->sh_link + 1; 2532 user_id_t debug_id = rel_hdr->sh_info + 1; 2533 2534 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2535 if (!symtab_hdr) 2536 return 0; 2537 2538 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2539 if (!debug_hdr) 2540 return 0; 2541 2542 Section *rel = section_list->FindSectionByID(rel_id).get(); 2543 if (!rel) 2544 return 0; 2545 2546 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2547 if (!symtab) 2548 return 0; 2549 2550 Section *debug = section_list->FindSectionByID(debug_id).get(); 2551 if (!debug) 2552 return 0; 2553 2554 DataExtractor rel_data; 2555 DataExtractor symtab_data; 2556 DataExtractor debug_data; 2557 2558 if (ReadSectionData(rel, rel_data) && 2559 ReadSectionData(symtab, symtab_data) && 2560 ReadSectionData(debug, debug_data)) 2561 { 2562 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2563 rel_data, symtab_data, debug_data, debug); 2564 } 2565 2566 return 0; 2567 } 2568 2569 Symtab * 2570 ObjectFileELF::GetSymtab() 2571 { 2572 ModuleSP module_sp(GetModule()); 2573 if (!module_sp) 2574 return NULL; 2575 2576 // We always want to use the main object file so we (hopefully) only have one cached copy 2577 // of our symtab, dynamic sections, etc. 2578 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2579 if (module_obj_file && module_obj_file != this) 2580 return module_obj_file->GetSymtab(); 2581 2582 if (m_symtab_ap.get() == NULL) 2583 { 2584 SectionList *section_list = module_sp->GetSectionList(); 2585 if (!section_list) 2586 return NULL; 2587 2588 uint64_t symbol_id = 0; 2589 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2590 2591 // Sharable objects and dynamic executables usually have 2 distinct symbol 2592 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2593 // version of the symtab that only contains global symbols. The information found 2594 // in the dynsym is therefore also found in the symtab, while the reverse is not 2595 // necessarily true. 2596 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2597 if (!symtab) 2598 { 2599 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2600 // then use the dynsym section which should always be there. 2601 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2602 } 2603 if (symtab) 2604 { 2605 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2606 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2607 } 2608 2609 // DT_JMPREL 2610 // If present, this entry's d_ptr member holds the address of relocation 2611 // entries associated solely with the procedure linkage table. Separating 2612 // these relocation entries lets the dynamic linker ignore them during 2613 // process initialization, if lazy binding is enabled. If this entry is 2614 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2615 // also be present. 2616 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2617 if (symbol) 2618 { 2619 // Synthesize trampoline symbols to help navigate the PLT. 2620 addr_t addr = symbol->d_ptr; 2621 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2622 if (reloc_section) 2623 { 2624 user_id_t reloc_id = reloc_section->GetID(); 2625 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2626 assert(reloc_header); 2627 2628 if (m_symtab_ap == nullptr) 2629 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2630 2631 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2632 } 2633 } 2634 2635 // If we still don't have any symtab then create an empty instance to avoid do the section 2636 // lookup next time. 2637 if (m_symtab_ap == nullptr) 2638 m_symtab_ap.reset(new Symtab(this)); 2639 2640 m_symtab_ap->CalculateSymbolSizes(); 2641 } 2642 2643 for (SectionHeaderCollIter I = m_section_headers.begin(); 2644 I != m_section_headers.end(); ++I) 2645 { 2646 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2647 { 2648 if (CalculateType() == eTypeObjectFile) 2649 { 2650 const char *section_name = I->section_name.AsCString(""); 2651 if (strstr(section_name, ".rela.debug") || 2652 strstr(section_name, ".rel.debug")) 2653 { 2654 const ELFSectionHeader &reloc_header = *I; 2655 user_id_t reloc_id = SectionIndex(I); 2656 RelocateDebugSections(&reloc_header, reloc_id); 2657 } 2658 } 2659 } 2660 } 2661 return m_symtab_ap.get(); 2662 } 2663 2664 Symbol * 2665 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2666 { 2667 if (!m_symtab_ap.get()) 2668 return nullptr; // GetSymtab() should be called first. 2669 2670 const SectionList *section_list = GetSectionList(); 2671 if (!section_list) 2672 return nullptr; 2673 2674 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2675 { 2676 AddressRange range; 2677 if (eh_frame->GetAddressRange (so_addr, range)) 2678 { 2679 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2680 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2681 if (symbol) 2682 return symbol; 2683 2684 // Note that a (stripped) symbol won't be found by GetSymtab()... 2685 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2686 if (eh_sym_section_sp.get()) 2687 { 2688 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2689 addr_t offset = file_addr - section_base; 2690 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2691 2692 Symbol eh_symbol( 2693 symbol_id, // Symbol table index. 2694 "???", // Symbol name. 2695 false, // Is the symbol name mangled? 2696 eSymbolTypeCode, // Type of this symbol. 2697 true, // Is this globally visible? 2698 false, // Is this symbol debug info? 2699 false, // Is this symbol a trampoline? 2700 true, // Is this symbol artificial? 2701 eh_sym_section_sp, // Section in which this symbol is defined or null. 2702 offset, // Offset in section or symbol value. 2703 range.GetByteSize(), // Size in bytes of this symbol. 2704 true, // Size is valid. 2705 false, // Contains linker annotations? 2706 0); // Symbol flags. 2707 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2708 return m_symtab_ap->SymbolAtIndex(symbol_id); 2709 } 2710 } 2711 } 2712 return nullptr; 2713 } 2714 2715 2716 bool 2717 ObjectFileELF::IsStripped () 2718 { 2719 // TODO: determine this for ELF 2720 return false; 2721 } 2722 2723 //===----------------------------------------------------------------------===// 2724 // Dump 2725 // 2726 // Dump the specifics of the runtime file container (such as any headers 2727 // segments, sections, etc). 2728 //---------------------------------------------------------------------- 2729 void 2730 ObjectFileELF::Dump(Stream *s) 2731 { 2732 DumpELFHeader(s, m_header); 2733 s->EOL(); 2734 DumpELFProgramHeaders(s); 2735 s->EOL(); 2736 DumpELFSectionHeaders(s); 2737 s->EOL(); 2738 SectionList *section_list = GetSectionList(); 2739 if (section_list) 2740 section_list->Dump(s, NULL, true, UINT32_MAX); 2741 Symtab *symtab = GetSymtab(); 2742 if (symtab) 2743 symtab->Dump(s, NULL, eSortOrderNone); 2744 s->EOL(); 2745 DumpDependentModules(s); 2746 s->EOL(); 2747 } 2748 2749 //---------------------------------------------------------------------- 2750 // DumpELFHeader 2751 // 2752 // Dump the ELF header to the specified output stream 2753 //---------------------------------------------------------------------- 2754 void 2755 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2756 { 2757 s->PutCString("ELF Header\n"); 2758 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2759 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2760 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2761 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2762 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2763 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2764 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2765 2766 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2767 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2768 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2769 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2770 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2771 2772 s->Printf("e_type = 0x%4.4x ", header.e_type); 2773 DumpELFHeader_e_type(s, header.e_type); 2774 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2775 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2776 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2777 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2778 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2779 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2780 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2781 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2782 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2783 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2784 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2785 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2786 } 2787 2788 //---------------------------------------------------------------------- 2789 // DumpELFHeader_e_type 2790 // 2791 // Dump an token value for the ELF header member e_type 2792 //---------------------------------------------------------------------- 2793 void 2794 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2795 { 2796 switch (e_type) 2797 { 2798 case ET_NONE: *s << "ET_NONE"; break; 2799 case ET_REL: *s << "ET_REL"; break; 2800 case ET_EXEC: *s << "ET_EXEC"; break; 2801 case ET_DYN: *s << "ET_DYN"; break; 2802 case ET_CORE: *s << "ET_CORE"; break; 2803 default: 2804 break; 2805 } 2806 } 2807 2808 //---------------------------------------------------------------------- 2809 // DumpELFHeader_e_ident_EI_DATA 2810 // 2811 // Dump an token value for the ELF header member e_ident[EI_DATA] 2812 //---------------------------------------------------------------------- 2813 void 2814 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2815 { 2816 switch (ei_data) 2817 { 2818 case ELFDATANONE: *s << "ELFDATANONE"; break; 2819 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2820 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2821 default: 2822 break; 2823 } 2824 } 2825 2826 2827 //---------------------------------------------------------------------- 2828 // DumpELFProgramHeader 2829 // 2830 // Dump a single ELF program header to the specified output stream 2831 //---------------------------------------------------------------------- 2832 void 2833 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2834 { 2835 DumpELFProgramHeader_p_type(s, ph.p_type); 2836 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2837 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2838 2839 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2840 s->Printf(") %8.8" PRIx64, ph.p_align); 2841 } 2842 2843 //---------------------------------------------------------------------- 2844 // DumpELFProgramHeader_p_type 2845 // 2846 // Dump an token value for the ELF program header member p_type which 2847 // describes the type of the program header 2848 // ---------------------------------------------------------------------- 2849 void 2850 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2851 { 2852 const int kStrWidth = 15; 2853 switch (p_type) 2854 { 2855 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2856 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2857 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2858 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2859 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2860 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2861 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2862 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2863 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2864 default: 2865 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2866 break; 2867 } 2868 } 2869 2870 2871 //---------------------------------------------------------------------- 2872 // DumpELFProgramHeader_p_flags 2873 // 2874 // Dump an token value for the ELF program header member p_flags 2875 //---------------------------------------------------------------------- 2876 void 2877 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2878 { 2879 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2880 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2881 << ((p_flags & PF_W) ? "PF_W" : " ") 2882 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2883 << ((p_flags & PF_R) ? "PF_R" : " "); 2884 } 2885 2886 //---------------------------------------------------------------------- 2887 // DumpELFProgramHeaders 2888 // 2889 // Dump all of the ELF program header to the specified output stream 2890 //---------------------------------------------------------------------- 2891 void 2892 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2893 { 2894 if (!ParseProgramHeaders()) 2895 return; 2896 2897 s->PutCString("Program Headers\n"); 2898 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2899 "p_filesz p_memsz p_flags p_align\n"); 2900 s->PutCString("==== --------------- -------- -------- -------- " 2901 "-------- -------- ------------------------- --------\n"); 2902 2903 uint32_t idx = 0; 2904 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2905 I != m_program_headers.end(); ++I, ++idx) 2906 { 2907 s->Printf("[%2u] ", idx); 2908 ObjectFileELF::DumpELFProgramHeader(s, *I); 2909 s->EOL(); 2910 } 2911 } 2912 2913 //---------------------------------------------------------------------- 2914 // DumpELFSectionHeader 2915 // 2916 // Dump a single ELF section header to the specified output stream 2917 //---------------------------------------------------------------------- 2918 void 2919 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2920 { 2921 s->Printf("%8.8x ", sh.sh_name); 2922 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2923 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2924 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2925 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2926 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2927 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2928 } 2929 2930 //---------------------------------------------------------------------- 2931 // DumpELFSectionHeader_sh_type 2932 // 2933 // Dump an token value for the ELF section header member sh_type which 2934 // describes the type of the section 2935 //---------------------------------------------------------------------- 2936 void 2937 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2938 { 2939 const int kStrWidth = 12; 2940 switch (sh_type) 2941 { 2942 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2943 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2944 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2945 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2946 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2947 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2948 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2949 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2950 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2951 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2952 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2953 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2954 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2955 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2956 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2957 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2958 default: 2959 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2960 break; 2961 } 2962 } 2963 2964 //---------------------------------------------------------------------- 2965 // DumpELFSectionHeader_sh_flags 2966 // 2967 // Dump an token value for the ELF section header member sh_flags 2968 //---------------------------------------------------------------------- 2969 void 2970 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2971 { 2972 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2973 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2974 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2975 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2976 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2977 } 2978 2979 //---------------------------------------------------------------------- 2980 // DumpELFSectionHeaders 2981 // 2982 // Dump all of the ELF section header to the specified output stream 2983 //---------------------------------------------------------------------- 2984 void 2985 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2986 { 2987 if (!ParseSectionHeaders()) 2988 return; 2989 2990 s->PutCString("Section Headers\n"); 2991 s->PutCString("IDX name type flags " 2992 "addr offset size link info addralgn " 2993 "entsize Name\n"); 2994 s->PutCString("==== -------- ------------ -------------------------------- " 2995 "-------- -------- -------- -------- -------- -------- " 2996 "-------- ====================\n"); 2997 2998 uint32_t idx = 0; 2999 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3000 I != m_section_headers.end(); ++I, ++idx) 3001 { 3002 s->Printf("[%2u] ", idx); 3003 ObjectFileELF::DumpELFSectionHeader(s, *I); 3004 const char* section_name = I->section_name.AsCString(""); 3005 if (section_name) 3006 *s << ' ' << section_name << "\n"; 3007 } 3008 } 3009 3010 void 3011 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 3012 { 3013 size_t num_modules = ParseDependentModules(); 3014 3015 if (num_modules > 0) 3016 { 3017 s->PutCString("Dependent Modules:\n"); 3018 for (unsigned i = 0; i < num_modules; ++i) 3019 { 3020 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3021 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3022 } 3023 } 3024 } 3025 3026 bool 3027 ObjectFileELF::GetArchitecture (ArchSpec &arch) 3028 { 3029 if (!ParseHeader()) 3030 return false; 3031 3032 if (m_section_headers.empty()) 3033 { 3034 // Allow elf notes to be parsed which may affect the detected architecture. 3035 ParseSectionHeaders(); 3036 } 3037 3038 arch = m_arch_spec; 3039 return true; 3040 } 3041 3042 ObjectFile::Type 3043 ObjectFileELF::CalculateType() 3044 { 3045 switch (m_header.e_type) 3046 { 3047 case llvm::ELF::ET_NONE: 3048 // 0 - No file type 3049 return eTypeUnknown; 3050 3051 case llvm::ELF::ET_REL: 3052 // 1 - Relocatable file 3053 return eTypeObjectFile; 3054 3055 case llvm::ELF::ET_EXEC: 3056 // 2 - Executable file 3057 return eTypeExecutable; 3058 3059 case llvm::ELF::ET_DYN: 3060 // 3 - Shared object file 3061 return eTypeSharedLibrary; 3062 3063 case ET_CORE: 3064 // 4 - Core file 3065 return eTypeCoreFile; 3066 3067 default: 3068 break; 3069 } 3070 return eTypeUnknown; 3071 } 3072 3073 ObjectFile::Strata 3074 ObjectFileELF::CalculateStrata() 3075 { 3076 switch (m_header.e_type) 3077 { 3078 case llvm::ELF::ET_NONE: 3079 // 0 - No file type 3080 return eStrataUnknown; 3081 3082 case llvm::ELF::ET_REL: 3083 // 1 - Relocatable file 3084 return eStrataUnknown; 3085 3086 case llvm::ELF::ET_EXEC: 3087 // 2 - Executable file 3088 // TODO: is there any way to detect that an executable is a kernel 3089 // related executable by inspecting the program headers, section 3090 // headers, symbols, or any other flag bits??? 3091 return eStrataUser; 3092 3093 case llvm::ELF::ET_DYN: 3094 // 3 - Shared object file 3095 // TODO: is there any way to detect that an shared library is a kernel 3096 // related executable by inspecting the program headers, section 3097 // headers, symbols, or any other flag bits??? 3098 return eStrataUnknown; 3099 3100 case ET_CORE: 3101 // 4 - Core file 3102 // TODO: is there any way to detect that an core file is a kernel 3103 // related executable by inspecting the program headers, section 3104 // headers, symbols, or any other flag bits??? 3105 return eStrataUnknown; 3106 3107 default: 3108 break; 3109 } 3110 return eStrataUnknown; 3111 } 3112 3113