xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision a6682a413d893bc1ed6190dfadcee806155da66e)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <algorithm>
13 #include <cassert>
14 #include <unordered_map>
15 
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Host/FileSystem.h"
22 #include "lldb/Symbol/DWARFCallFrameInfo.h"
23 #include "lldb/Symbol/SymbolContext.h"
24 #include "lldb/Target/SectionLoadList.h"
25 #include "lldb/Target/Target.h"
26 #include "lldb/Utility/ArchSpec.h"
27 #include "lldb/Utility/DataBufferHeap.h"
28 #include "lldb/Utility/Log.h"
29 #include "lldb/Utility/Status.h"
30 #include "lldb/Utility/Stream.h"
31 #include "lldb/Utility/Timer.h"
32 
33 #include "llvm/ADT/PointerUnion.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Object/Decompressor.h"
36 #include "llvm/Support/ARMBuildAttributes.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/MemoryBuffer.h"
39 #include "llvm/Support/MipsABIFlags.h"
40 
41 #define CASE_AND_STREAM(s, def, width)                                         \
42   case def:                                                                    \
43     s->Printf("%-*s", width, #def);                                            \
44     break;
45 
46 using namespace lldb;
47 using namespace lldb_private;
48 using namespace elf;
49 using namespace llvm::ELF;
50 
51 namespace {
52 
53 // ELF note owner definitions
54 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
55 const char *const LLDB_NT_OWNER_GNU = "GNU";
56 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
57 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
58 const char *const LLDB_NT_OWNER_CSR = "csr";
59 const char *const LLDB_NT_OWNER_ANDROID = "Android";
60 const char *const LLDB_NT_OWNER_CORE = "CORE";
61 const char *const LLDB_NT_OWNER_LINUX = "LINUX";
62 
63 // ELF note type definitions
64 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
65 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
66 
67 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
68 const elf_word LLDB_NT_GNU_ABI_SIZE = 16;
69 
70 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
71 
72 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01;
73 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4;
74 
75 // GNU ABI note OS constants
76 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
77 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
78 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
79 
80 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants
81 #define NT_PRSTATUS 1
82 #define NT_PRFPREG 2
83 #define NT_PRPSINFO 3
84 #define NT_TASKSTRUCT 4
85 #define NT_AUXV 6
86 #define NT_SIGINFO 0x53494749
87 #define NT_FILE 0x46494c45
88 #define NT_PRXFPREG 0x46e62b7f
89 #define NT_PPC_VMX 0x100
90 #define NT_PPC_SPE 0x101
91 #define NT_PPC_VSX 0x102
92 #define NT_386_TLS 0x200
93 #define NT_386_IOPERM 0x201
94 #define NT_X86_XSTATE 0x202
95 #define NT_S390_HIGH_GPRS 0x300
96 #define NT_S390_TIMER 0x301
97 #define NT_S390_TODCMP 0x302
98 #define NT_S390_TODPREG 0x303
99 #define NT_S390_CTRS 0x304
100 #define NT_S390_PREFIX 0x305
101 #define NT_S390_LAST_BREAK 0x306
102 #define NT_S390_SYSTEM_CALL 0x307
103 #define NT_S390_TDB 0x308
104 #define NT_S390_VXRS_LOW 0x309
105 #define NT_S390_VXRS_HIGH 0x30a
106 #define NT_ARM_VFP 0x400
107 #define NT_ARM_TLS 0x401
108 #define NT_ARM_HW_BREAK 0x402
109 #define NT_ARM_HW_WATCH 0x403
110 #define NT_ARM_SYSTEM_CALL 0x404
111 #define NT_METAG_CBUF 0x500
112 #define NT_METAG_RPIPE 0x501
113 #define NT_METAG_TLS 0x502
114 
115 //===----------------------------------------------------------------------===//
116 /// @class ELFRelocation
117 /// Generic wrapper for ELFRel and ELFRela.
118 ///
119 /// This helper class allows us to parse both ELFRel and ELFRela relocation
120 /// entries in a generic manner.
121 class ELFRelocation {
122 public:
123   /// Constructs an ELFRelocation entry with a personality as given by @p
124   /// type.
125   ///
126   /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
127   ELFRelocation(unsigned type);
128 
129   ~ELFRelocation();
130 
131   bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
132 
133   static unsigned RelocType32(const ELFRelocation &rel);
134 
135   static unsigned RelocType64(const ELFRelocation &rel);
136 
137   static unsigned RelocSymbol32(const ELFRelocation &rel);
138 
139   static unsigned RelocSymbol64(const ELFRelocation &rel);
140 
141   static unsigned RelocOffset32(const ELFRelocation &rel);
142 
143   static unsigned RelocOffset64(const ELFRelocation &rel);
144 
145   static unsigned RelocAddend32(const ELFRelocation &rel);
146 
147   static unsigned RelocAddend64(const ELFRelocation &rel);
148 
149 private:
150   typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
151 
152   RelocUnion reloc;
153 };
154 
155 ELFRelocation::ELFRelocation(unsigned type) {
156   if (type == DT_REL || type == SHT_REL)
157     reloc = new ELFRel();
158   else if (type == DT_RELA || type == SHT_RELA)
159     reloc = new ELFRela();
160   else {
161     assert(false && "unexpected relocation type");
162     reloc = static_cast<ELFRel *>(NULL);
163   }
164 }
165 
166 ELFRelocation::~ELFRelocation() {
167   if (reloc.is<ELFRel *>())
168     delete reloc.get<ELFRel *>();
169   else
170     delete reloc.get<ELFRela *>();
171 }
172 
173 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
174                           lldb::offset_t *offset) {
175   if (reloc.is<ELFRel *>())
176     return reloc.get<ELFRel *>()->Parse(data, offset);
177   else
178     return reloc.get<ELFRela *>()->Parse(data, offset);
179 }
180 
181 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
182   if (rel.reloc.is<ELFRel *>())
183     return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>());
184   else
185     return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>());
186 }
187 
188 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
189   if (rel.reloc.is<ELFRel *>())
190     return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>());
191   else
192     return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>());
193 }
194 
195 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
196   if (rel.reloc.is<ELFRel *>())
197     return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>());
198   else
199     return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>());
200 }
201 
202 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
203   if (rel.reloc.is<ELFRel *>())
204     return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>());
205   else
206     return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>());
207 }
208 
209 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
210   if (rel.reloc.is<ELFRel *>())
211     return rel.reloc.get<ELFRel *>()->r_offset;
212   else
213     return rel.reloc.get<ELFRela *>()->r_offset;
214 }
215 
216 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
217   if (rel.reloc.is<ELFRel *>())
218     return rel.reloc.get<ELFRel *>()->r_offset;
219   else
220     return rel.reloc.get<ELFRela *>()->r_offset;
221 }
222 
223 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
224   if (rel.reloc.is<ELFRel *>())
225     return 0;
226   else
227     return rel.reloc.get<ELFRela *>()->r_addend;
228 }
229 
230 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
231   if (rel.reloc.is<ELFRel *>())
232     return 0;
233   else
234     return rel.reloc.get<ELFRela *>()->r_addend;
235 }
236 
237 } // end anonymous namespace
238 
239 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
240   // Read all fields.
241   if (data.GetU32(offset, &n_namesz, 3) == NULL)
242     return false;
243 
244   // The name field is required to be nul-terminated, and n_namesz includes the
245   // terminating nul in observed implementations (contrary to the ELF-64 spec).
246   // A special case is needed for cores generated by some older Linux versions,
247   // which write a note named "CORE" without a nul terminator and n_namesz = 4.
248   if (n_namesz == 4) {
249     char buf[4];
250     if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4)
251       return false;
252     if (strncmp(buf, "CORE", 4) == 0) {
253       n_name = "CORE";
254       *offset += 4;
255       return true;
256     }
257   }
258 
259   const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4));
260   if (cstr == NULL) {
261     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
262     if (log)
263       log->Printf("Failed to parse note name lacking nul terminator");
264 
265     return false;
266   }
267   n_name = cstr;
268   return true;
269 }
270 
271 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) {
272   const uint32_t dsp_rev = e_flags & 0xFF;
273   uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
274   switch (dsp_rev) {
275   // TODO(mg11) Support more variants
276   case 10:
277     kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
278     break;
279   case 14:
280     kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
281     break;
282   case 17:
283   case 20:
284     kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
285     break;
286   default:
287     break;
288   }
289   return kal_arch_variant;
290 }
291 
292 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
293   const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
294   uint32_t endian = header.e_ident[EI_DATA];
295   uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
296   uint32_t fileclass = header.e_ident[EI_CLASS];
297 
298   // If there aren't any elf flags available (e.g core elf file) then return
299   // default
300   // 32 or 64 bit arch (without any architecture revision) based on object file's class.
301   if (header.e_type == ET_CORE) {
302     switch (fileclass) {
303     case llvm::ELF::ELFCLASS32:
304       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
305                                      : ArchSpec::eMIPSSubType_mips32;
306     case llvm::ELF::ELFCLASS64:
307       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
308                                      : ArchSpec::eMIPSSubType_mips64;
309     default:
310       return arch_variant;
311     }
312   }
313 
314   switch (mips_arch) {
315   case llvm::ELF::EF_MIPS_ARCH_1:
316   case llvm::ELF::EF_MIPS_ARCH_2:
317   case llvm::ELF::EF_MIPS_ARCH_32:
318     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
319                                    : ArchSpec::eMIPSSubType_mips32;
320   case llvm::ELF::EF_MIPS_ARCH_32R2:
321     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
322                                    : ArchSpec::eMIPSSubType_mips32r2;
323   case llvm::ELF::EF_MIPS_ARCH_32R6:
324     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
325                                    : ArchSpec::eMIPSSubType_mips32r6;
326   case llvm::ELF::EF_MIPS_ARCH_3:
327   case llvm::ELF::EF_MIPS_ARCH_4:
328   case llvm::ELF::EF_MIPS_ARCH_5:
329   case llvm::ELF::EF_MIPS_ARCH_64:
330     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
331                                    : ArchSpec::eMIPSSubType_mips64;
332   case llvm::ELF::EF_MIPS_ARCH_64R2:
333     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
334                                    : ArchSpec::eMIPSSubType_mips64r2;
335   case llvm::ELF::EF_MIPS_ARCH_64R6:
336     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
337                                    : ArchSpec::eMIPSSubType_mips64r6;
338   default:
339     break;
340   }
341 
342   return arch_variant;
343 }
344 
345 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
346   if (header.e_machine == llvm::ELF::EM_MIPS)
347     return mipsVariantFromElfFlags(header);
348 
349   return llvm::ELF::EM_CSR_KALIMBA == header.e_machine
350              ? kalimbaVariantFromElfFlags(header.e_flags)
351              : LLDB_INVALID_CPUTYPE;
352 }
353 
354 //! The kalimba toolchain identifies a code section as being
355 //! one with the SHT_PROGBITS set in the section sh_type and the top
356 //! bit in the 32-bit address field set.
357 static lldb::SectionType
358 kalimbaSectionType(const elf::ELFHeader &header,
359                    const elf::ELFSectionHeader &sect_hdr) {
360   if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) {
361     return eSectionTypeOther;
362   }
363 
364   if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) {
365     return eSectionTypeZeroFill;
366   }
367 
368   if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) {
369     const lldb::addr_t KAL_CODE_BIT = 1 << 31;
370     return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode
371                                            : eSectionTypeData;
372   }
373 
374   return eSectionTypeOther;
375 }
376 
377 // Arbitrary constant used as UUID prefix for core files.
378 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
379 
380 //------------------------------------------------------------------
381 // Static methods.
382 //------------------------------------------------------------------
383 void ObjectFileELF::Initialize() {
384   PluginManager::RegisterPlugin(GetPluginNameStatic(),
385                                 GetPluginDescriptionStatic(), CreateInstance,
386                                 CreateMemoryInstance, GetModuleSpecifications);
387 }
388 
389 void ObjectFileELF::Terminate() {
390   PluginManager::UnregisterPlugin(CreateInstance);
391 }
392 
393 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() {
394   static ConstString g_name("elf");
395   return g_name;
396 }
397 
398 const char *ObjectFileELF::GetPluginDescriptionStatic() {
399   return "ELF object file reader.";
400 }
401 
402 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
403                                           DataBufferSP &data_sp,
404                                           lldb::offset_t data_offset,
405                                           const lldb_private::FileSpec *file,
406                                           lldb::offset_t file_offset,
407                                           lldb::offset_t length) {
408   if (!data_sp) {
409     data_sp = MapFileData(*file, length, file_offset);
410     if (!data_sp)
411       return nullptr;
412     data_offset = 0;
413   }
414 
415   assert(data_sp);
416 
417   if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
418     return nullptr;
419 
420   const uint8_t *magic = data_sp->GetBytes() + data_offset;
421   if (!ELFHeader::MagicBytesMatch(magic))
422     return nullptr;
423 
424   // Update the data to contain the entire file if it doesn't already
425   if (data_sp->GetByteSize() < length) {
426     data_sp = MapFileData(*file, length, file_offset);
427     if (!data_sp)
428       return nullptr;
429     data_offset = 0;
430     magic = data_sp->GetBytes();
431   }
432 
433   unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
434   if (address_size == 4 || address_size == 8) {
435     std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(
436         module_sp, data_sp, data_offset, file, file_offset, length));
437     ArchSpec spec;
438     if (objfile_ap->GetArchitecture(spec) &&
439         objfile_ap->SetModulesArchitecture(spec))
440       return objfile_ap.release();
441   }
442 
443   return NULL;
444 }
445 
446 ObjectFile *ObjectFileELF::CreateMemoryInstance(
447     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
448     const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
449   if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) {
450     const uint8_t *magic = data_sp->GetBytes();
451     if (ELFHeader::MagicBytesMatch(magic)) {
452       unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
453       if (address_size == 4 || address_size == 8) {
454         std::unique_ptr<ObjectFileELF> objfile_ap(
455             new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
456         ArchSpec spec;
457         if (objfile_ap->GetArchitecture(spec) &&
458             objfile_ap->SetModulesArchitecture(spec))
459           return objfile_ap.release();
460       }
461     }
462   }
463   return NULL;
464 }
465 
466 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
467                                     lldb::addr_t data_offset,
468                                     lldb::addr_t data_length) {
469   if (data_sp &&
470       data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
471     const uint8_t *magic = data_sp->GetBytes() + data_offset;
472     return ELFHeader::MagicBytesMatch(magic);
473   }
474   return false;
475 }
476 
477 /*
478  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
479  *
480  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
481  *   code or tables extracted from it, as desired without restriction.
482  */
483 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) {
484   static const uint32_t g_crc32_tab[] = {
485       0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
486       0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
487       0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
488       0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
489       0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
490       0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
491       0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
492       0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
493       0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
494       0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
495       0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
496       0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
497       0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
498       0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
499       0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
500       0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
501       0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
502       0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
503       0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
504       0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
505       0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
506       0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
507       0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
508       0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
509       0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
510       0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
511       0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
512       0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
513       0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
514       0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
515       0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
516       0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
517       0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
518       0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
519       0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
520       0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
521       0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
522       0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
523       0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
524       0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
525       0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
526       0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
527       0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};
528   const uint8_t *p = (const uint8_t *)buf;
529 
530   crc = crc ^ ~0U;
531   while (size--)
532     crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
533   return crc ^ ~0U;
534 }
535 
536 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) {
537   return calc_crc32(0U, buf, size);
538 }
539 
540 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
541     const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
542 
543   uint32_t core_notes_crc = 0;
544 
545   for (const ELFProgramHeader &H : program_headers) {
546     if (H.p_type == llvm::ELF::PT_NOTE) {
547       const elf_off ph_offset = H.p_offset;
548       const size_t ph_size = H.p_filesz;
549 
550       DataExtractor segment_data;
551       if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) {
552         // The ELF program header contained incorrect data, probably corefile
553         // is incomplete or corrupted.
554         break;
555       }
556 
557       core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(),
558                                   segment_data.GetByteSize());
559     }
560   }
561 
562   return core_notes_crc;
563 }
564 
565 static const char *OSABIAsCString(unsigned char osabi_byte) {
566 #define _MAKE_OSABI_CASE(x)                                                    \
567   case x:                                                                      \
568     return #x
569   switch (osabi_byte) {
570     _MAKE_OSABI_CASE(ELFOSABI_NONE);
571     _MAKE_OSABI_CASE(ELFOSABI_HPUX);
572     _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
573     _MAKE_OSABI_CASE(ELFOSABI_GNU);
574     _MAKE_OSABI_CASE(ELFOSABI_HURD);
575     _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
576     _MAKE_OSABI_CASE(ELFOSABI_AIX);
577     _MAKE_OSABI_CASE(ELFOSABI_IRIX);
578     _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
579     _MAKE_OSABI_CASE(ELFOSABI_TRU64);
580     _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
581     _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
582     _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
583     _MAKE_OSABI_CASE(ELFOSABI_NSK);
584     _MAKE_OSABI_CASE(ELFOSABI_AROS);
585     _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
586     _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
587     _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
588     _MAKE_OSABI_CASE(ELFOSABI_ARM);
589     _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
590   default:
591     return "<unknown-osabi>";
592   }
593 #undef _MAKE_OSABI_CASE
594 }
595 
596 //
597 // WARNING : This function is being deprecated
598 // It's functionality has moved to ArchSpec::SetArchitecture This function is
599 // only being kept to validate the move.
600 //
601 // TODO : Remove this function
602 static bool GetOsFromOSABI(unsigned char osabi_byte,
603                            llvm::Triple::OSType &ostype) {
604   switch (osabi_byte) {
605   case ELFOSABI_AIX:
606     ostype = llvm::Triple::OSType::AIX;
607     break;
608   case ELFOSABI_FREEBSD:
609     ostype = llvm::Triple::OSType::FreeBSD;
610     break;
611   case ELFOSABI_GNU:
612     ostype = llvm::Triple::OSType::Linux;
613     break;
614   case ELFOSABI_NETBSD:
615     ostype = llvm::Triple::OSType::NetBSD;
616     break;
617   case ELFOSABI_OPENBSD:
618     ostype = llvm::Triple::OSType::OpenBSD;
619     break;
620   case ELFOSABI_SOLARIS:
621     ostype = llvm::Triple::OSType::Solaris;
622     break;
623   default:
624     ostype = llvm::Triple::OSType::UnknownOS;
625   }
626   return ostype != llvm::Triple::OSType::UnknownOS;
627 }
628 
629 size_t ObjectFileELF::GetModuleSpecifications(
630     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
631     lldb::offset_t data_offset, lldb::offset_t file_offset,
632     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
634 
635   const size_t initial_count = specs.GetSize();
636 
637   if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
638     DataExtractor data;
639     data.SetData(data_sp);
640     elf::ELFHeader header;
641     lldb::offset_t header_offset = data_offset;
642     if (header.Parse(data, &header_offset)) {
643       if (data_sp) {
644         ModuleSpec spec(file);
645 
646         const uint32_t sub_type = subTypeFromElfHeader(header);
647         spec.GetArchitecture().SetArchitecture(
648             eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
649 
650         if (spec.GetArchitecture().IsValid()) {
651           llvm::Triple::OSType ostype;
652           llvm::Triple::VendorType vendor;
653           llvm::Triple::OSType spec_ostype =
654               spec.GetArchitecture().GetTriple().getOS();
655 
656           if (log)
657             log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s",
658                         __FUNCTION__, file.GetPath().c_str(),
659                         OSABIAsCString(header.e_ident[EI_OSABI]));
660 
661           // SetArchitecture should have set the vendor to unknown
662           vendor = spec.GetArchitecture().GetTriple().getVendor();
663           assert(vendor == llvm::Triple::UnknownVendor);
664           UNUSED_IF_ASSERT_DISABLED(vendor);
665 
666           //
667           // Validate it is ok to remove GetOsFromOSABI
668           GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
669           assert(spec_ostype == ostype);
670           if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
671             if (log)
672               log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type "
673                           "from ELF header OSABI.",
674                           __FUNCTION__, file.GetPath().c_str());
675           }
676 
677           data_sp = MapFileData(file, -1, file_offset);
678           if (data_sp)
679             data.SetData(data_sp);
680           // In case there is header extension in the section #0, the header we
681           // parsed above could have sentinel values for e_phnum, e_shnum, and
682           // e_shstrndx.  In this case we need to reparse the header with a
683           // bigger data source to get the actual values.
684           if (header.HasHeaderExtension()) {
685             lldb::offset_t header_offset = data_offset;
686             header.Parse(data, &header_offset);
687           }
688 
689           uint32_t gnu_debuglink_crc = 0;
690           std::string gnu_debuglink_file;
691           SectionHeaderColl section_headers;
692           lldb_private::UUID &uuid = spec.GetUUID();
693 
694           GetSectionHeaderInfo(section_headers, data, header, uuid,
695                                gnu_debuglink_file, gnu_debuglink_crc,
696                                spec.GetArchitecture());
697 
698           llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
699 
700           if (log)
701             log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s "
702                         "(architecture %s)",
703                         __FUNCTION__, file.GetPath().c_str(),
704                         spec_triple.getTriple().c_str(),
705                         spec.GetArchitecture().GetArchitectureName());
706 
707           if (!uuid.IsValid()) {
708             uint32_t core_notes_crc = 0;
709 
710             if (!gnu_debuglink_crc) {
711               static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
712               lldb_private::Timer scoped_timer(
713                   func_cat,
714                   "Calculating module crc32 %s with size %" PRIu64 " KiB",
715                   file.GetLastPathComponent().AsCString(),
716                   (FileSystem::Instance().GetByteSize(file) - file_offset) /
717                       1024);
718 
719               // For core files - which usually don't happen to have a
720               // gnu_debuglink, and are pretty bulky - calculating whole
721               // contents crc32 would be too much of luxury.  Thus we will need
722               // to fallback to something simpler.
723               if (header.e_type == llvm::ELF::ET_CORE) {
724                 ProgramHeaderColl program_headers;
725                 GetProgramHeaderInfo(program_headers, data, header);
726 
727                 core_notes_crc =
728                     CalculateELFNotesSegmentsCRC32(program_headers, data);
729               } else {
730                 gnu_debuglink_crc = calc_gnu_debuglink_crc32(
731                     data.GetDataStart(), data.GetByteSize());
732               }
733             }
734             using u32le = llvm::support::ulittle32_t;
735             if (gnu_debuglink_crc) {
736               // Use 4 bytes of crc from the .gnu_debuglink section.
737               u32le data(gnu_debuglink_crc);
738               uuid = UUID::fromData(&data, sizeof(data));
739             } else if (core_notes_crc) {
740               // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
741               // it look different form .gnu_debuglink crc followed by 4 bytes
742               // of note segments crc.
743               u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
744               uuid = UUID::fromData(data, sizeof(data));
745             }
746           }
747 
748           specs.Append(spec);
749         }
750       }
751     }
752   }
753 
754   return specs.GetSize() - initial_count;
755 }
756 
757 //------------------------------------------------------------------
758 // PluginInterface protocol
759 //------------------------------------------------------------------
760 lldb_private::ConstString ObjectFileELF::GetPluginName() {
761   return GetPluginNameStatic();
762 }
763 
764 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; }
765 //------------------------------------------------------------------
766 // ObjectFile protocol
767 //------------------------------------------------------------------
768 
769 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
770                              DataBufferSP &data_sp, lldb::offset_t data_offset,
771                              const FileSpec *file, lldb::offset_t file_offset,
772                              lldb::offset_t length)
773     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
774       m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0),
775       m_program_headers(), m_section_headers(), m_dynamic_symbols(),
776       m_filespec_ap(), m_entry_point_address(), m_arch_spec() {
777   if (file)
778     m_file = *file;
779   ::memset(&m_header, 0, sizeof(m_header));
780 }
781 
782 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
783                              DataBufferSP &header_data_sp,
784                              const lldb::ProcessSP &process_sp,
785                              addr_t header_addr)
786     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
787       m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0),
788       m_program_headers(), m_section_headers(), m_dynamic_symbols(),
789       m_filespec_ap(), m_entry_point_address(), m_arch_spec() {
790   ::memset(&m_header, 0, sizeof(m_header));
791 }
792 
793 ObjectFileELF::~ObjectFileELF() {}
794 
795 bool ObjectFileELF::IsExecutable() const {
796   return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
797 }
798 
799 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
800                                    bool value_is_offset) {
801   ModuleSP module_sp = GetModule();
802   if (module_sp) {
803     size_t num_loaded_sections = 0;
804     SectionList *section_list = GetSectionList();
805     if (section_list) {
806       if (!value_is_offset) {
807         bool found_offset = false;
808         for (const ELFProgramHeader &H : ProgramHeaders()) {
809           if (H.p_type != PT_LOAD || H.p_offset != 0)
810             continue;
811 
812           value = value - H.p_vaddr;
813           found_offset = true;
814           break;
815         }
816         if (!found_offset)
817           return false;
818       }
819 
820       const size_t num_sections = section_list->GetSize();
821       size_t sect_idx = 0;
822 
823       for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
824         // Iterate through the object file sections to find all of the sections
825         // that have SHF_ALLOC in their flag bits.
826         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
827         if (section_sp && section_sp->Test(SHF_ALLOC)) {
828           lldb::addr_t load_addr = section_sp->GetFileAddress();
829           // We don't want to update the load address of a section with type
830           // eSectionTypeAbsoluteAddress as they already have the absolute load
831           // address already specified
832           if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
833             load_addr += value;
834 
835           // On 32-bit systems the load address have to fit into 4 bytes. The
836           // rest of the bytes are the overflow from the addition.
837           if (GetAddressByteSize() == 4)
838             load_addr &= 0xFFFFFFFF;
839 
840           if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp,
841                                                                 load_addr))
842             ++num_loaded_sections;
843         }
844       }
845       return num_loaded_sections > 0;
846     }
847   }
848   return false;
849 }
850 
851 ByteOrder ObjectFileELF::GetByteOrder() const {
852   if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
853     return eByteOrderBig;
854   if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
855     return eByteOrderLittle;
856   return eByteOrderInvalid;
857 }
858 
859 uint32_t ObjectFileELF::GetAddressByteSize() const {
860   return m_data.GetAddressByteSize();
861 }
862 
863 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
864   Symtab *symtab = GetSymtab();
865   if (!symtab)
866     return AddressClass::eUnknown;
867 
868   // The address class is determined based on the symtab. Ask it from the
869   // object file what contains the symtab information.
870   ObjectFile *symtab_objfile = symtab->GetObjectFile();
871   if (symtab_objfile != nullptr && symtab_objfile != this)
872     return symtab_objfile->GetAddressClass(file_addr);
873 
874   auto res = ObjectFile::GetAddressClass(file_addr);
875   if (res != AddressClass::eCode)
876     return res;
877 
878   auto ub = m_address_class_map.upper_bound(file_addr);
879   if (ub == m_address_class_map.begin()) {
880     // No entry in the address class map before the address. Return default
881     // address class for an address in a code section.
882     return AddressClass::eCode;
883   }
884 
885   // Move iterator to the address class entry preceding address
886   --ub;
887 
888   return ub->second;
889 }
890 
891 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
892   return std::distance(m_section_headers.begin(), I) + 1u;
893 }
894 
895 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
896   return std::distance(m_section_headers.begin(), I) + 1u;
897 }
898 
899 bool ObjectFileELF::ParseHeader() {
900   lldb::offset_t offset = 0;
901   return m_header.Parse(m_data, &offset);
902 }
903 
904 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) {
905   // Need to parse the section list to get the UUIDs, so make sure that's been
906   // done.
907   if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
908     return false;
909 
910   using u32le = llvm::support::ulittle32_t;
911   if (m_uuid.IsValid()) {
912     // We have the full build id uuid.
913     *uuid = m_uuid;
914     return true;
915   } else if (GetType() == ObjectFile::eTypeCoreFile) {
916     uint32_t core_notes_crc = 0;
917 
918     if (!ParseProgramHeaders())
919       return false;
920 
921     core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
922 
923     if (core_notes_crc) {
924       // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look
925       // different form .gnu_debuglink crc - followed by 4 bytes of note
926       // segments crc.
927       u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
928       m_uuid = UUID::fromData(data, sizeof(data));
929     }
930   } else {
931     if (!m_gnu_debuglink_crc)
932       m_gnu_debuglink_crc =
933           calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize());
934     if (m_gnu_debuglink_crc) {
935       // Use 4 bytes of crc from the .gnu_debuglink section.
936       u32le data(m_gnu_debuglink_crc);
937       m_uuid = UUID::fromData(&data, sizeof(data));
938     }
939   }
940 
941   if (m_uuid.IsValid()) {
942     *uuid = m_uuid;
943     return true;
944   }
945 
946   return false;
947 }
948 
949 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() {
950   FileSpecList file_spec_list;
951 
952   if (!m_gnu_debuglink_file.empty()) {
953     FileSpec file_spec(m_gnu_debuglink_file);
954     file_spec_list.Append(file_spec);
955   }
956   return file_spec_list;
957 }
958 
959 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
960   size_t num_modules = ParseDependentModules();
961   uint32_t num_specs = 0;
962 
963   for (unsigned i = 0; i < num_modules; ++i) {
964     if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
965       num_specs++;
966   }
967 
968   return num_specs;
969 }
970 
971 Address ObjectFileELF::GetImageInfoAddress(Target *target) {
972   if (!ParseDynamicSymbols())
973     return Address();
974 
975   SectionList *section_list = GetSectionList();
976   if (!section_list)
977     return Address();
978 
979   // Find the SHT_DYNAMIC (.dynamic) section.
980   SectionSP dynsym_section_sp(
981       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true));
982   if (!dynsym_section_sp)
983     return Address();
984   assert(dynsym_section_sp->GetObjectFile() == this);
985 
986   user_id_t dynsym_id = dynsym_section_sp->GetID();
987   const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
988   if (!dynsym_hdr)
989     return Address();
990 
991   for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
992     ELFDynamic &symbol = m_dynamic_symbols[i];
993 
994     if (symbol.d_tag == DT_DEBUG) {
995       // Compute the offset as the number of previous entries plus the size of
996       // d_tag.
997       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
998       return Address(dynsym_section_sp, offset);
999     }
1000     // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
1001     // exists in non-PIE.
1002     else if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
1003               symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
1004              target) {
1005       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1006       addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1007       if (dyn_base == LLDB_INVALID_ADDRESS)
1008         return Address();
1009 
1010       Status error;
1011       if (symbol.d_tag == DT_MIPS_RLD_MAP) {
1012         // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
1013         Address addr;
1014         if (target->ReadPointerFromMemory(dyn_base + offset, false, error,
1015                                           addr))
1016           return addr;
1017       }
1018       if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
1019         // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
1020         // relative to the address of the tag.
1021         uint64_t rel_offset;
1022         rel_offset = target->ReadUnsignedIntegerFromMemory(
1023             dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
1024         if (error.Success() && rel_offset != UINT64_MAX) {
1025           Address addr;
1026           addr_t debug_ptr_address =
1027               dyn_base + (offset - GetAddressByteSize()) + rel_offset;
1028           addr.SetOffset(debug_ptr_address);
1029           return addr;
1030         }
1031       }
1032     }
1033   }
1034 
1035   return Address();
1036 }
1037 
1038 lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
1039   if (m_entry_point_address.IsValid())
1040     return m_entry_point_address;
1041 
1042   if (!ParseHeader() || !IsExecutable())
1043     return m_entry_point_address;
1044 
1045   SectionList *section_list = GetSectionList();
1046   addr_t offset = m_header.e_entry;
1047 
1048   if (!section_list)
1049     m_entry_point_address.SetOffset(offset);
1050   else
1051     m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1052   return m_entry_point_address;
1053 }
1054 
1055 //----------------------------------------------------------------------
1056 // ParseDependentModules
1057 //----------------------------------------------------------------------
1058 size_t ObjectFileELF::ParseDependentModules() {
1059   if (m_filespec_ap.get())
1060     return m_filespec_ap->GetSize();
1061 
1062   m_filespec_ap.reset(new FileSpecList());
1063 
1064   if (!ParseSectionHeaders())
1065     return 0;
1066 
1067   SectionList *section_list = GetSectionList();
1068   if (!section_list)
1069     return 0;
1070 
1071   // Find the SHT_DYNAMIC section.
1072   Section *dynsym =
1073       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
1074           .get();
1075   if (!dynsym)
1076     return 0;
1077   assert(dynsym->GetObjectFile() == this);
1078 
1079   const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID());
1080   if (!header)
1081     return 0;
1082   // sh_link: section header index of string table used by entries in the
1083   // section.
1084   Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get();
1085   if (!dynstr)
1086     return 0;
1087 
1088   DataExtractor dynsym_data;
1089   DataExtractor dynstr_data;
1090   if (ReadSectionData(dynsym, dynsym_data) &&
1091       ReadSectionData(dynstr, dynstr_data)) {
1092     ELFDynamic symbol;
1093     const lldb::offset_t section_size = dynsym_data.GetByteSize();
1094     lldb::offset_t offset = 0;
1095 
1096     // The only type of entries we are concerned with are tagged DT_NEEDED,
1097     // yielding the name of a required library.
1098     while (offset < section_size) {
1099       if (!symbol.Parse(dynsym_data, &offset))
1100         break;
1101 
1102       if (symbol.d_tag != DT_NEEDED)
1103         continue;
1104 
1105       uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1106       const char *lib_name = dynstr_data.PeekCStr(str_index);
1107       FileSpec file_spec(lib_name);
1108       FileSystem::Instance().Resolve(file_spec);
1109       m_filespec_ap->Append(file_spec);
1110     }
1111   }
1112 
1113   return m_filespec_ap->GetSize();
1114 }
1115 
1116 //----------------------------------------------------------------------
1117 // GetProgramHeaderInfo
1118 //----------------------------------------------------------------------
1119 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1120                                            DataExtractor &object_data,
1121                                            const ELFHeader &header) {
1122   // We have already parsed the program headers
1123   if (!program_headers.empty())
1124     return program_headers.size();
1125 
1126   // If there are no program headers to read we are done.
1127   if (header.e_phnum == 0)
1128     return 0;
1129 
1130   program_headers.resize(header.e_phnum);
1131   if (program_headers.size() != header.e_phnum)
1132     return 0;
1133 
1134   const size_t ph_size = header.e_phnum * header.e_phentsize;
1135   const elf_off ph_offset = header.e_phoff;
1136   DataExtractor data;
1137   if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1138     return 0;
1139 
1140   uint32_t idx;
1141   lldb::offset_t offset;
1142   for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
1143     if (!program_headers[idx].Parse(data, &offset))
1144       break;
1145   }
1146 
1147   if (idx < program_headers.size())
1148     program_headers.resize(idx);
1149 
1150   return program_headers.size();
1151 }
1152 
1153 //----------------------------------------------------------------------
1154 // ParseProgramHeaders
1155 //----------------------------------------------------------------------
1156 bool ObjectFileELF::ParseProgramHeaders() {
1157   return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0;
1158 }
1159 
1160 lldb_private::Status
1161 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
1162                                            lldb_private::ArchSpec &arch_spec,
1163                                            lldb_private::UUID &uuid) {
1164   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1165   Status error;
1166 
1167   lldb::offset_t offset = 0;
1168 
1169   while (true) {
1170     // Parse the note header.  If this fails, bail out.
1171     const lldb::offset_t note_offset = offset;
1172     ELFNote note = ELFNote();
1173     if (!note.Parse(data, &offset)) {
1174       // We're done.
1175       return error;
1176     }
1177 
1178     if (log)
1179       log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1180                   __FUNCTION__, note.n_name.c_str(), note.n_type);
1181 
1182     // Process FreeBSD ELF notes.
1183     if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1184         (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1185         (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1186       // Pull out the min version info.
1187       uint32_t version_info;
1188       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1189         error.SetErrorString("failed to read FreeBSD ABI note payload");
1190         return error;
1191       }
1192 
1193       // Convert the version info into a major/minor number.
1194       const uint32_t version_major = version_info / 100000;
1195       const uint32_t version_minor = (version_info / 1000) % 100;
1196 
1197       char os_name[32];
1198       snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32,
1199                version_major, version_minor);
1200 
1201       // Set the elf OS version to FreeBSD.  Also clear the vendor.
1202       arch_spec.GetTriple().setOSName(os_name);
1203       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1204 
1205       if (log)
1206         log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1207                     ".%" PRIu32,
1208                     __FUNCTION__, version_major, version_minor,
1209                     static_cast<uint32_t>(version_info % 1000));
1210     }
1211     // Process GNU ELF notes.
1212     else if (note.n_name == LLDB_NT_OWNER_GNU) {
1213       switch (note.n_type) {
1214       case LLDB_NT_GNU_ABI_TAG:
1215         if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1216           // Pull out the min OS version supporting the ABI.
1217           uint32_t version_info[4];
1218           if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) ==
1219               nullptr) {
1220             error.SetErrorString("failed to read GNU ABI note payload");
1221             return error;
1222           }
1223 
1224           // Set the OS per the OS field.
1225           switch (version_info[0]) {
1226           case LLDB_NT_GNU_ABI_OS_LINUX:
1227             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1228             arch_spec.GetTriple().setVendor(
1229                 llvm::Triple::VendorType::UnknownVendor);
1230             if (log)
1231               log->Printf(
1232                   "ObjectFileELF::%s detected Linux, min version %" PRIu32
1233                   ".%" PRIu32 ".%" PRIu32,
1234                   __FUNCTION__, version_info[1], version_info[2],
1235                   version_info[3]);
1236             // FIXME we have the minimal version number, we could be propagating
1237             // that.  version_info[1] = OS Major, version_info[2] = OS Minor,
1238             // version_info[3] = Revision.
1239             break;
1240           case LLDB_NT_GNU_ABI_OS_HURD:
1241             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1242             arch_spec.GetTriple().setVendor(
1243                 llvm::Triple::VendorType::UnknownVendor);
1244             if (log)
1245               log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min "
1246                           "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1247                           __FUNCTION__, version_info[1], version_info[2],
1248                           version_info[3]);
1249             break;
1250           case LLDB_NT_GNU_ABI_OS_SOLARIS:
1251             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1252             arch_spec.GetTriple().setVendor(
1253                 llvm::Triple::VendorType::UnknownVendor);
1254             if (log)
1255               log->Printf(
1256                   "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1257                   ".%" PRIu32 ".%" PRIu32,
1258                   __FUNCTION__, version_info[1], version_info[2],
1259                   version_info[3]);
1260             break;
1261           default:
1262             if (log)
1263               log->Printf(
1264                   "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1265                   ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1266                   __FUNCTION__, version_info[0], version_info[1],
1267                   version_info[2], version_info[3]);
1268             break;
1269           }
1270         }
1271         break;
1272 
1273       case LLDB_NT_GNU_BUILD_ID_TAG:
1274         // Only bother processing this if we don't already have the uuid set.
1275         if (!uuid.IsValid()) {
1276           // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1277           // build-id of a different length. Accept it as long as it's at least
1278           // 4 bytes as it will be better than our own crc32.
1279           if (note.n_descsz >= 4) {
1280             if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) {
1281               // Save the build id as the UUID for the module.
1282               uuid = UUID::fromData(buf, note.n_descsz);
1283             } else {
1284               error.SetErrorString("failed to read GNU_BUILD_ID note payload");
1285               return error;
1286             }
1287           }
1288         }
1289         break;
1290       }
1291       if (arch_spec.IsMIPS() &&
1292           arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1293         // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1294         arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1295     }
1296     // Process NetBSD ELF notes.
1297     else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1298              (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1299              (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) {
1300       // Pull out the min version info.
1301       uint32_t version_info;
1302       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1303         error.SetErrorString("failed to read NetBSD ABI note payload");
1304         return error;
1305       }
1306 
1307       // Set the elf OS version to NetBSD.  Also clear the vendor.
1308       arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1309       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1310 
1311       if (log)
1312         log->Printf(
1313             "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32,
1314             __FUNCTION__, version_info);
1315     }
1316     // Process OpenBSD ELF notes.
1317     else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1318       // Set the elf OS version to OpenBSD.  Also clear the vendor.
1319       arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1320       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1321     }
1322     // Process CSR kalimba notes
1323     else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1324              (note.n_name == LLDB_NT_OWNER_CSR)) {
1325       arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1326       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1327 
1328       // TODO At some point the description string could be processed.
1329       // It could provide a steer towards the kalimba variant which this ELF
1330       // targets.
1331       if (note.n_descsz) {
1332         const char *cstr =
1333             data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4));
1334         (void)cstr;
1335       }
1336     } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1337       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1338       arch_spec.GetTriple().setEnvironment(
1339           llvm::Triple::EnvironmentType::Android);
1340     } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1341       // This is sometimes found in core files and usually contains extended
1342       // register info
1343       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1344     } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1345       // Parse the NT_FILE to look for stuff in paths to shared libraries As
1346       // the contents look like this in a 64 bit ELF core file: count     =
1347       // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index
1348       // start              end                file_ofs           path =====
1349       // ------------------ ------------------ ------------------
1350       // ------------------------------------- [  0] 0x0000000000400000
1351       // 0x0000000000401000 0x0000000000000000 /tmp/a.out [  1]
1352       // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [
1353       // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1354       // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000
1355       // /lib/x86_64-linux-gnu/libc-2.19.so [  4] 0x00007fa79cba8000
1356       // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-
1357       // gnu/libc-2.19.so [  5] 0x00007fa79cda7000 0x00007fa79cdab000
1358       // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [  6]
1359       // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64
1360       // -linux-gnu/libc-2.19.so [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000
1361       // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [  8]
1362       // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64
1363       // -linux-gnu/ld-2.19.so [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000
1364       // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs
1365       // the count, page_size, start, end, file_ofs are uint32_t For reference:
1366       // see readelf source code (in binutils).
1367       if (note.n_type == NT_FILE) {
1368         uint64_t count = data.GetAddress(&offset);
1369         const char *cstr;
1370         data.GetAddress(&offset); // Skip page size
1371         offset += count * 3 *
1372                   data.GetAddressByteSize(); // Skip all start/end/file_ofs
1373         for (size_t i = 0; i < count; ++i) {
1374           cstr = data.GetCStr(&offset);
1375           if (cstr == nullptr) {
1376             error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read "
1377                                            "at an offset after the end "
1378                                            "(GetCStr returned nullptr)",
1379                                            __FUNCTION__);
1380             return error;
1381           }
1382           llvm::StringRef path(cstr);
1383           if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) {
1384             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1385             break;
1386           }
1387         }
1388         if (arch_spec.IsMIPS() &&
1389             arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1390           // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1391           // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1392           arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1393       }
1394     }
1395 
1396     // Calculate the offset of the next note just in case "offset" has been
1397     // used to poke at the contents of the note data
1398     offset = note_offset + note.GetByteSize();
1399   }
1400 
1401   return error;
1402 }
1403 
1404 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
1405                                        ArchSpec &arch_spec) {
1406   lldb::offset_t Offset = 0;
1407 
1408   uint8_t FormatVersion = data.GetU8(&Offset);
1409   if (FormatVersion != llvm::ARMBuildAttrs::Format_Version)
1410     return;
1411 
1412   Offset = Offset + sizeof(uint32_t); // Section Length
1413   llvm::StringRef VendorName = data.GetCStr(&Offset);
1414 
1415   if (VendorName != "aeabi")
1416     return;
1417 
1418   if (arch_spec.GetTriple().getEnvironment() ==
1419       llvm::Triple::UnknownEnvironment)
1420     arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1421 
1422   while (Offset < length) {
1423     uint8_t Tag = data.GetU8(&Offset);
1424     uint32_t Size = data.GetU32(&Offset);
1425 
1426     if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1427       continue;
1428 
1429     while (Offset < length) {
1430       uint64_t Tag = data.GetULEB128(&Offset);
1431       switch (Tag) {
1432       default:
1433         if (Tag < 32)
1434           data.GetULEB128(&Offset);
1435         else if (Tag % 2 == 0)
1436           data.GetULEB128(&Offset);
1437         else
1438           data.GetCStr(&Offset);
1439 
1440         break;
1441 
1442       case llvm::ARMBuildAttrs::CPU_raw_name:
1443       case llvm::ARMBuildAttrs::CPU_name:
1444         data.GetCStr(&Offset);
1445 
1446         break;
1447 
1448       case llvm::ARMBuildAttrs::ABI_VFP_args: {
1449         uint64_t VFPArgs = data.GetULEB128(&Offset);
1450 
1451         if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1452           if (arch_spec.GetTriple().getEnvironment() ==
1453                   llvm::Triple::UnknownEnvironment ||
1454               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1455             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1456 
1457           arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1458         } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1459           if (arch_spec.GetTriple().getEnvironment() ==
1460                   llvm::Triple::UnknownEnvironment ||
1461               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1462             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1463 
1464           arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1465         }
1466 
1467         break;
1468       }
1469       }
1470     }
1471   }
1472 }
1473 
1474 //----------------------------------------------------------------------
1475 // GetSectionHeaderInfo
1476 //----------------------------------------------------------------------
1477 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1478                                            DataExtractor &object_data,
1479                                            const elf::ELFHeader &header,
1480                                            lldb_private::UUID &uuid,
1481                                            std::string &gnu_debuglink_file,
1482                                            uint32_t &gnu_debuglink_crc,
1483                                            ArchSpec &arch_spec) {
1484   // Don't reparse the section headers if we already did that.
1485   if (!section_headers.empty())
1486     return section_headers.size();
1487 
1488   // Only initialize the arch_spec to okay defaults if they're not already set.
1489   // We'll refine this with note data as we parse the notes.
1490   if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1491     llvm::Triple::OSType ostype;
1492     llvm::Triple::OSType spec_ostype;
1493     const uint32_t sub_type = subTypeFromElfHeader(header);
1494     arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type,
1495                               header.e_ident[EI_OSABI]);
1496 
1497     // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1498     // determined based on EI_OSABI flag and the info extracted from ELF notes
1499     // (see RefineModuleDetailsFromNote). However in some cases that still
1500     // might be not enough: for example a shared library might not have any
1501     // notes at all and have EI_OSABI flag set to System V, as result the OS
1502     // will be set to UnknownOS.
1503     GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
1504     spec_ostype = arch_spec.GetTriple().getOS();
1505     assert(spec_ostype == ostype);
1506     UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1507   }
1508 
1509   if (arch_spec.GetMachine() == llvm::Triple::mips ||
1510       arch_spec.GetMachine() == llvm::Triple::mipsel ||
1511       arch_spec.GetMachine() == llvm::Triple::mips64 ||
1512       arch_spec.GetMachine() == llvm::Triple::mips64el) {
1513     switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1514     case llvm::ELF::EF_MIPS_MICROMIPS:
1515       arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
1516       break;
1517     case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1518       arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
1519       break;
1520     case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1521       arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
1522       break;
1523     default:
1524       break;
1525     }
1526   }
1527 
1528   if (arch_spec.GetMachine() == llvm::Triple::arm ||
1529       arch_spec.GetMachine() == llvm::Triple::thumb) {
1530     if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1531       arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1532     else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1533       arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1534   }
1535 
1536   // If there are no section headers we are done.
1537   if (header.e_shnum == 0)
1538     return 0;
1539 
1540   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1541 
1542   section_headers.resize(header.e_shnum);
1543   if (section_headers.size() != header.e_shnum)
1544     return 0;
1545 
1546   const size_t sh_size = header.e_shnum * header.e_shentsize;
1547   const elf_off sh_offset = header.e_shoff;
1548   DataExtractor sh_data;
1549   if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size)
1550     return 0;
1551 
1552   uint32_t idx;
1553   lldb::offset_t offset;
1554   for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1555     if (!section_headers[idx].Parse(sh_data, &offset))
1556       break;
1557   }
1558   if (idx < section_headers.size())
1559     section_headers.resize(idx);
1560 
1561   const unsigned strtab_idx = header.e_shstrndx;
1562   if (strtab_idx && strtab_idx < section_headers.size()) {
1563     const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1564     const size_t byte_size = sheader.sh_size;
1565     const Elf64_Off offset = sheader.sh_offset;
1566     lldb_private::DataExtractor shstr_data;
1567 
1568     if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) {
1569       for (SectionHeaderCollIter I = section_headers.begin();
1570            I != section_headers.end(); ++I) {
1571         static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1572         const ELFSectionHeaderInfo &sheader = *I;
1573         const uint64_t section_size =
1574             sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1575         ConstString name(shstr_data.PeekCStr(I->sh_name));
1576 
1577         I->section_name = name;
1578 
1579         if (arch_spec.IsMIPS()) {
1580           uint32_t arch_flags = arch_spec.GetFlags();
1581           DataExtractor data;
1582           if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1583 
1584             if (section_size && (data.SetData(object_data, sheader.sh_offset,
1585                                               section_size) == section_size)) {
1586               // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1587               lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1588               arch_flags |= data.GetU32(&offset);
1589 
1590               // The floating point ABI is at offset 7
1591               offset = 7;
1592               switch (data.GetU8(&offset)) {
1593               case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1594                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
1595                 break;
1596               case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1597                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
1598                 break;
1599               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1600                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
1601                 break;
1602               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1603                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
1604                 break;
1605               case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1606                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
1607                 break;
1608               case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1609                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
1610                 break;
1611               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1612                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
1613                 break;
1614               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1615                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
1616                 break;
1617               }
1618             }
1619           }
1620           // Settings appropriate ArchSpec ABI Flags
1621           switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1622           case llvm::ELF::EF_MIPS_ABI_O32:
1623             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1624             break;
1625           case EF_MIPS_ABI_O64:
1626             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
1627             break;
1628           case EF_MIPS_ABI_EABI32:
1629             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
1630             break;
1631           case EF_MIPS_ABI_EABI64:
1632             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
1633             break;
1634           default:
1635             // ABI Mask doesn't cover N32 and N64 ABI.
1636             if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1637               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
1638             else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1639               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1640             break;
1641           }
1642           arch_spec.SetFlags(arch_flags);
1643         }
1644 
1645         if (arch_spec.GetMachine() == llvm::Triple::arm ||
1646             arch_spec.GetMachine() == llvm::Triple::thumb) {
1647           DataExtractor data;
1648 
1649           if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1650               data.SetData(object_data, sheader.sh_offset, section_size) == section_size)
1651             ParseARMAttributes(data, section_size, arch_spec);
1652         }
1653 
1654         if (name == g_sect_name_gnu_debuglink) {
1655           DataExtractor data;
1656           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1657                                             section_size) == section_size)) {
1658             lldb::offset_t gnu_debuglink_offset = 0;
1659             gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset);
1660             gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4);
1661             data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1662           }
1663         }
1664 
1665         // Process ELF note section entries.
1666         bool is_note_header = (sheader.sh_type == SHT_NOTE);
1667 
1668         // The section header ".note.android.ident" is stored as a
1669         // PROGBITS type header but it is actually a note header.
1670         static ConstString g_sect_name_android_ident(".note.android.ident");
1671         if (!is_note_header && name == g_sect_name_android_ident)
1672           is_note_header = true;
1673 
1674         if (is_note_header) {
1675           // Allow notes to refine module info.
1676           DataExtractor data;
1677           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1678                                             section_size) == section_size)) {
1679             Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1680             if (error.Fail()) {
1681               if (log)
1682                 log->Printf("ObjectFileELF::%s ELF note processing failed: %s",
1683                             __FUNCTION__, error.AsCString());
1684             }
1685           }
1686         }
1687       }
1688 
1689       // Make any unknown triple components to be unspecified unknowns.
1690       if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1691         arch_spec.GetTriple().setVendorName(llvm::StringRef());
1692       if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1693         arch_spec.GetTriple().setOSName(llvm::StringRef());
1694 
1695       return section_headers.size();
1696     }
1697   }
1698 
1699   section_headers.clear();
1700   return 0;
1701 }
1702 
1703 llvm::StringRef
1704 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1705   size_t pos = symbol_name.find('@');
1706   return symbol_name.substr(0, pos);
1707 }
1708 
1709 //----------------------------------------------------------------------
1710 // ParseSectionHeaders
1711 //----------------------------------------------------------------------
1712 size_t ObjectFileELF::ParseSectionHeaders() {
1713   return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid,
1714                               m_gnu_debuglink_file, m_gnu_debuglink_crc,
1715                               m_arch_spec);
1716 }
1717 
1718 const ObjectFileELF::ELFSectionHeaderInfo *
1719 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
1720   if (!id || !ParseSectionHeaders())
1721     return NULL;
1722 
1723   if (--id < m_section_headers.size())
1724     return &m_section_headers[id];
1725 
1726   return NULL;
1727 }
1728 
1729 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
1730   if (!name || !name[0] || !ParseSectionHeaders())
1731     return 0;
1732   for (size_t i = 1; i < m_section_headers.size(); ++i)
1733     if (m_section_headers[i].section_name == ConstString(name))
1734       return i;
1735   return 0;
1736 }
1737 
1738 static SectionType getSectionType(llvm::StringRef Name) {
1739   return llvm::StringSwitch<SectionType>(Name)
1740       .Case(".ARM.exidx", eSectionTypeARMexidx)
1741       .Case(".ARM.extab", eSectionTypeARMextab)
1742       .Cases(".bss", ".tbss", eSectionTypeZeroFill)
1743       .Cases(".data", ".tdata", eSectionTypeData)
1744       .Case(".debug_abbrev", eSectionTypeDWARFDebugAbbrev)
1745       .Case(".debug_abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo)
1746       .Case(".debug_addr", eSectionTypeDWARFDebugAddr)
1747       .Case(".debug_aranges", eSectionTypeDWARFDebugAranges)
1748       .Case(".debug_cu_index", eSectionTypeDWARFDebugCuIndex)
1749       .Case(".debug_frame", eSectionTypeDWARFDebugFrame)
1750       .Case(".debug_info", eSectionTypeDWARFDebugInfo)
1751       .Case(".debug_info.dwo", eSectionTypeDWARFDebugInfoDwo)
1752       .Cases(".debug_line", ".debug_line.dwo", eSectionTypeDWARFDebugLine)
1753       .Cases(".debug_line_str", ".debug_line_str.dwo",
1754              eSectionTypeDWARFDebugLineStr)
1755       .Cases(".debug_loc", ".debug_loc.dwo", eSectionTypeDWARFDebugLoc)
1756       .Cases(".debug_loclists", ".debug_loclists.dwo",
1757              eSectionTypeDWARFDebugLocLists)
1758       .Case(".debug_macinfo", eSectionTypeDWARFDebugMacInfo)
1759       .Cases(".debug_macro", ".debug_macro.dwo", eSectionTypeDWARFDebugMacro)
1760       .Case(".debug_names", eSectionTypeDWARFDebugNames)
1761       .Case(".debug_pubnames", eSectionTypeDWARFDebugPubNames)
1762       .Case(".debug_pubtypes", eSectionTypeDWARFDebugPubTypes)
1763       .Case(".debug_ranges", eSectionTypeDWARFDebugRanges)
1764       .Case(".debug_rnglists", eSectionTypeDWARFDebugRngLists)
1765       .Case(".debug_str", eSectionTypeDWARFDebugStr)
1766       .Case(".debug_str.dwo", eSectionTypeDWARFDebugStrDwo)
1767       .Case(".debug_str_offsets", eSectionTypeDWARFDebugStrOffsets)
1768       .Case(".debug_str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo)
1769       .Case(".debug_types", eSectionTypeDWARFDebugTypes)
1770       .Case(".eh_frame", eSectionTypeEHFrame)
1771       .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink)
1772       .Case(".gosymtab", eSectionTypeGoSymtab)
1773       .Case(".text", eSectionTypeCode)
1774       .Default(eSectionTypeOther);
1775 }
1776 
1777 void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1778   if (!m_sections_ap.get() && ParseSectionHeaders()) {
1779     m_sections_ap.reset(new SectionList());
1780 
1781     // Object files frequently have 0 for every section address, meaning we
1782     // need to compute synthetic addresses in order for "file addresses" from
1783     // different sections to not overlap
1784     bool synthaddrs = (CalculateType() == ObjectFile::Type::eTypeObjectFile);
1785     uint64_t nextaddr = 0;
1786 
1787     for (SectionHeaderCollIter I = m_section_headers.begin();
1788          I != m_section_headers.end(); ++I) {
1789       const ELFSectionHeaderInfo &header = *I;
1790 
1791       ConstString &name = I->section_name;
1792       const uint64_t file_size =
1793           header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1794       const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1795 
1796       SectionType sect_type = getSectionType(name.GetStringRef());
1797 
1798       bool is_thread_specific = header.sh_flags & SHF_TLS;
1799       const uint32_t permissions =
1800           ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0u) |
1801           ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0u) |
1802           ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0u);
1803       switch (header.sh_type) {
1804       case SHT_SYMTAB:
1805         assert(sect_type == eSectionTypeOther);
1806         sect_type = eSectionTypeELFSymbolTable;
1807         break;
1808       case SHT_DYNSYM:
1809         assert(sect_type == eSectionTypeOther);
1810         sect_type = eSectionTypeELFDynamicSymbols;
1811         break;
1812       case SHT_RELA:
1813       case SHT_REL:
1814         assert(sect_type == eSectionTypeOther);
1815         sect_type = eSectionTypeELFRelocationEntries;
1816         break;
1817       case SHT_DYNAMIC:
1818         assert(sect_type == eSectionTypeOther);
1819         sect_type = eSectionTypeELFDynamicLinkInfo;
1820         break;
1821       }
1822 
1823       if (eSectionTypeOther == sect_type) {
1824         // the kalimba toolchain assumes that ELF section names are free-form.
1825         // It does support linkscripts which (can) give rise to various
1826         // arbitrarily named sections being "Code" or "Data".
1827         sect_type = kalimbaSectionType(m_header, header);
1828       }
1829 
1830       // In common case ELF code section can have arbitrary name (for example,
1831       // we can specify it using section attribute for particular function) so
1832       // assume that section is a code section if it has SHF_EXECINSTR flag set
1833       // and has SHT_PROGBITS type.
1834       if (eSectionTypeOther == sect_type &&
1835           llvm::ELF::SHT_PROGBITS == header.sh_type &&
1836           (header.sh_flags & SHF_EXECINSTR)) {
1837         sect_type = eSectionTypeCode;
1838       }
1839 
1840       const uint32_t target_bytes_size =
1841           (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type)
1842               ? m_arch_spec.GetDataByteSize()
1843               : eSectionTypeCode == sect_type ? m_arch_spec.GetCodeByteSize()
1844                                               : 1;
1845       elf::elf_xword log2align =
1846           (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign);
1847 
1848       uint64_t addr = header.sh_addr;
1849 
1850       if ((header.sh_flags & SHF_ALLOC) && synthaddrs) {
1851           nextaddr =
1852               (nextaddr + header.sh_addralign - 1) & ~(header.sh_addralign - 1);
1853           addr = nextaddr;
1854           nextaddr += vm_size;
1855       }
1856 
1857       SectionSP section_sp(new Section(
1858           GetModule(), // Module to which this section belongs.
1859           this, // ObjectFile to which this section belongs and should read
1860                 // section data from.
1861           SectionIndex(I),     // Section ID.
1862           name,                // Section name.
1863           sect_type,           // Section type.
1864           addr,                // VM address.
1865           vm_size,             // VM size in bytes of this section.
1866           header.sh_offset,    // Offset of this section in the file.
1867           file_size,           // Size of the section as found in the file.
1868           log2align,           // Alignment of the section
1869           header.sh_flags,     // Flags for this section.
1870           target_bytes_size)); // Number of host bytes per target byte
1871 
1872       section_sp->SetPermissions(permissions);
1873       if (is_thread_specific)
1874         section_sp->SetIsThreadSpecific(is_thread_specific);
1875       m_sections_ap->AddSection(section_sp);
1876     }
1877   }
1878 
1879   // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1880   // unified section list.
1881   if (GetType() != eTypeDebugInfo)
1882     unified_section_list = *m_sections_ap;
1883 }
1884 
1885 // Find the arm/aarch64 mapping symbol character in the given symbol name.
1886 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
1887 // recognize cases when the mapping symbol prefixed by an arbitrary string
1888 // because if a symbol prefix added to each symbol in the object file with
1889 // objcopy then the mapping symbols are also prefixed.
1890 static char FindArmAarch64MappingSymbol(const char *symbol_name) {
1891   if (!symbol_name)
1892     return '\0';
1893 
1894   const char *dollar_pos = ::strchr(symbol_name, '$');
1895   if (!dollar_pos || dollar_pos[1] == '\0')
1896     return '\0';
1897 
1898   if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
1899     return dollar_pos[1];
1900   return '\0';
1901 }
1902 
1903 #define STO_MIPS_ISA (3 << 6)
1904 #define STO_MICROMIPS (2 << 6)
1905 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
1906 
1907 // private
1908 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
1909                                      SectionList *section_list,
1910                                      const size_t num_symbols,
1911                                      const DataExtractor &symtab_data,
1912                                      const DataExtractor &strtab_data) {
1913   ELFSymbol symbol;
1914   lldb::offset_t offset = 0;
1915 
1916   static ConstString text_section_name(".text");
1917   static ConstString init_section_name(".init");
1918   static ConstString fini_section_name(".fini");
1919   static ConstString ctors_section_name(".ctors");
1920   static ConstString dtors_section_name(".dtors");
1921 
1922   static ConstString data_section_name(".data");
1923   static ConstString rodata_section_name(".rodata");
1924   static ConstString rodata1_section_name(".rodata1");
1925   static ConstString data2_section_name(".data1");
1926   static ConstString bss_section_name(".bss");
1927   static ConstString opd_section_name(".opd"); // For ppc64
1928 
1929   // On Android the oatdata and the oatexec symbols in the oat and odex files
1930   // covers the full .text section what causes issues with displaying unusable
1931   // symbol name to the user and very slow unwinding speed because the
1932   // instruction emulation based unwind plans try to emulate all instructions
1933   // in these symbols. Don't add these symbols to the symbol list as they have
1934   // no use for the debugger and they are causing a lot of trouble. Filtering
1935   // can't be restricted to Android because this special object file don't
1936   // contain the note section specifying the environment to Android but the
1937   // custom extension and file name makes it highly unlikely that this will
1938   // collide with anything else.
1939   ConstString file_extension = m_file.GetFileNameExtension();
1940   bool skip_oatdata_oatexec = file_extension == ConstString(".oat") ||
1941                               file_extension == ConstString(".odex");
1942 
1943   ArchSpec arch;
1944   GetArchitecture(arch);
1945   ModuleSP module_sp(GetModule());
1946   SectionList *module_section_list =
1947       module_sp ? module_sp->GetSectionList() : nullptr;
1948 
1949   // Local cache to avoid doing a FindSectionByName for each symbol. The "const
1950   // char*" key must came from a ConstString object so they can be compared by
1951   // pointer
1952   std::unordered_map<const char *, lldb::SectionSP> section_name_to_section;
1953 
1954   unsigned i;
1955   for (i = 0; i < num_symbols; ++i) {
1956     if (!symbol.Parse(symtab_data, &offset))
1957       break;
1958 
1959     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1960     if (!symbol_name)
1961       symbol_name = "";
1962 
1963     // No need to add non-section symbols that have no names
1964     if (symbol.getType() != STT_SECTION &&
1965         (symbol_name == nullptr || symbol_name[0] == '\0'))
1966       continue;
1967 
1968     // Skipping oatdata and oatexec sections if it is requested. See details
1969     // above the definition of skip_oatdata_oatexec for the reasons.
1970     if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 ||
1971                                  ::strcmp(symbol_name, "oatexec") == 0))
1972       continue;
1973 
1974     SectionSP symbol_section_sp;
1975     SymbolType symbol_type = eSymbolTypeInvalid;
1976     Elf64_Half section_idx = symbol.st_shndx;
1977 
1978     switch (section_idx) {
1979     case SHN_ABS:
1980       symbol_type = eSymbolTypeAbsolute;
1981       break;
1982     case SHN_UNDEF:
1983       symbol_type = eSymbolTypeUndefined;
1984       break;
1985     default:
1986       symbol_section_sp = section_list->GetSectionAtIndex(section_idx);
1987       break;
1988     }
1989 
1990     // If a symbol is undefined do not process it further even if it has a STT
1991     // type
1992     if (symbol_type != eSymbolTypeUndefined) {
1993       switch (symbol.getType()) {
1994       default:
1995       case STT_NOTYPE:
1996         // The symbol's type is not specified.
1997         break;
1998 
1999       case STT_OBJECT:
2000         // The symbol is associated with a data object, such as a variable, an
2001         // array, etc.
2002         symbol_type = eSymbolTypeData;
2003         break;
2004 
2005       case STT_FUNC:
2006         // The symbol is associated with a function or other executable code.
2007         symbol_type = eSymbolTypeCode;
2008         break;
2009 
2010       case STT_SECTION:
2011         // The symbol is associated with a section. Symbol table entries of
2012         // this type exist primarily for relocation and normally have STB_LOCAL
2013         // binding.
2014         break;
2015 
2016       case STT_FILE:
2017         // Conventionally, the symbol's name gives the name of the source file
2018         // associated with the object file. A file symbol has STB_LOCAL
2019         // binding, its section index is SHN_ABS, and it precedes the other
2020         // STB_LOCAL symbols for the file, if it is present.
2021         symbol_type = eSymbolTypeSourceFile;
2022         break;
2023 
2024       case STT_GNU_IFUNC:
2025         // The symbol is associated with an indirect function. The actual
2026         // function will be resolved if it is referenced.
2027         symbol_type = eSymbolTypeResolver;
2028         break;
2029       }
2030     }
2031 
2032     if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2033       if (symbol_section_sp) {
2034         const ConstString &sect_name = symbol_section_sp->GetName();
2035         if (sect_name == text_section_name || sect_name == init_section_name ||
2036             sect_name == fini_section_name || sect_name == ctors_section_name ||
2037             sect_name == dtors_section_name) {
2038           symbol_type = eSymbolTypeCode;
2039         } else if (sect_name == data_section_name ||
2040                    sect_name == data2_section_name ||
2041                    sect_name == rodata_section_name ||
2042                    sect_name == rodata1_section_name ||
2043                    sect_name == bss_section_name) {
2044           symbol_type = eSymbolTypeData;
2045         }
2046       }
2047     }
2048 
2049     int64_t symbol_value_offset = 0;
2050     uint32_t additional_flags = 0;
2051 
2052     if (arch.IsValid()) {
2053       if (arch.GetMachine() == llvm::Triple::arm) {
2054         if (symbol.getBinding() == STB_LOCAL) {
2055           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2056           if (symbol_type == eSymbolTypeCode) {
2057             switch (mapping_symbol) {
2058             case 'a':
2059               // $a[.<any>]* - marks an ARM instruction sequence
2060               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2061               break;
2062             case 'b':
2063             case 't':
2064               // $b[.<any>]* - marks a THUMB BL instruction sequence
2065               // $t[.<any>]* - marks a THUMB instruction sequence
2066               m_address_class_map[symbol.st_value] =
2067                   AddressClass::eCodeAlternateISA;
2068               break;
2069             case 'd':
2070               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2071               m_address_class_map[symbol.st_value] = AddressClass::eData;
2072               break;
2073             }
2074           }
2075           if (mapping_symbol)
2076             continue;
2077         }
2078       } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2079         if (symbol.getBinding() == STB_LOCAL) {
2080           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2081           if (symbol_type == eSymbolTypeCode) {
2082             switch (mapping_symbol) {
2083             case 'x':
2084               // $x[.<any>]* - marks an A64 instruction sequence
2085               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2086               break;
2087             case 'd':
2088               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2089               m_address_class_map[symbol.st_value] = AddressClass::eData;
2090               break;
2091             }
2092           }
2093           if (mapping_symbol)
2094             continue;
2095         }
2096       }
2097 
2098       if (arch.GetMachine() == llvm::Triple::arm) {
2099         if (symbol_type == eSymbolTypeCode) {
2100           if (symbol.st_value & 1) {
2101             // Subtracting 1 from the address effectively unsets the low order
2102             // bit, which results in the address actually pointing to the
2103             // beginning of the symbol. This delta will be used below in
2104             // conjunction with symbol.st_value to produce the final
2105             // symbol_value that we store in the symtab.
2106             symbol_value_offset = -1;
2107             m_address_class_map[symbol.st_value ^ 1] =
2108                 AddressClass::eCodeAlternateISA;
2109           } else {
2110             // This address is ARM
2111             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2112           }
2113         }
2114       }
2115 
2116       /*
2117        * MIPS:
2118        * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2119        * MIPS).
2120        * This allows processor to switch between microMIPS and MIPS without any
2121        * need
2122        * for special mode-control register. However, apart from .debug_line,
2123        * none of
2124        * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2125        * st_other
2126        * flag to check whether the symbol is microMIPS and then set the address
2127        * class
2128        * accordingly.
2129       */
2130       const llvm::Triple::ArchType llvm_arch = arch.GetMachine();
2131       if (llvm_arch == llvm::Triple::mips ||
2132           llvm_arch == llvm::Triple::mipsel ||
2133           llvm_arch == llvm::Triple::mips64 ||
2134           llvm_arch == llvm::Triple::mips64el) {
2135         if (IS_MICROMIPS(symbol.st_other))
2136           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2137         else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2138           symbol.st_value = symbol.st_value & (~1ull);
2139           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2140         } else {
2141           if (symbol_type == eSymbolTypeCode)
2142             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2143           else if (symbol_type == eSymbolTypeData)
2144             m_address_class_map[symbol.st_value] = AddressClass::eData;
2145           else
2146             m_address_class_map[symbol.st_value] = AddressClass::eUnknown;
2147         }
2148       }
2149     }
2150 
2151     // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2152     // symbols. See above for more details.
2153     uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2154 
2155     if (symbol_section_sp == nullptr && section_idx == SHN_ABS &&
2156         symbol.st_size != 0) {
2157       // We don't have a section for a symbol with non-zero size. Create a new
2158       // section for it so the address range covered by the symbol is also
2159       // covered by the module (represented through the section list). It is
2160       // needed so module lookup for the addresses covered by this symbol will
2161       // be successfull. This case happens for absolute symbols.
2162       ConstString fake_section_name(std::string(".absolute.") + symbol_name);
2163       symbol_section_sp =
2164           std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name,
2165                                     eSectionTypeAbsoluteAddress, symbol_value,
2166                                     symbol.st_size, 0, 0, 0, SHF_ALLOC);
2167 
2168       module_section_list->AddSection(symbol_section_sp);
2169       section_list->AddSection(symbol_section_sp);
2170     }
2171 
2172     if (symbol_section_sp &&
2173         CalculateType() != ObjectFile::Type::eTypeObjectFile)
2174       symbol_value -= symbol_section_sp->GetFileAddress();
2175 
2176     if (symbol_section_sp && module_section_list &&
2177         module_section_list != section_list) {
2178       const ConstString &sect_name = symbol_section_sp->GetName();
2179       auto section_it = section_name_to_section.find(sect_name.GetCString());
2180       if (section_it == section_name_to_section.end())
2181         section_it =
2182             section_name_to_section
2183                 .emplace(sect_name.GetCString(),
2184                          module_section_list->FindSectionByName(sect_name))
2185                 .first;
2186       if (section_it->second)
2187         symbol_section_sp = section_it->second;
2188     }
2189 
2190     bool is_global = symbol.getBinding() == STB_GLOBAL;
2191     uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2192     bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z');
2193 
2194     llvm::StringRef symbol_ref(symbol_name);
2195 
2196     // Symbol names may contain @VERSION suffixes. Find those and strip them
2197     // temporarily.
2198     size_t version_pos = symbol_ref.find('@');
2199     bool has_suffix = version_pos != llvm::StringRef::npos;
2200     llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2201     Mangled mangled(ConstString(symbol_bare), is_mangled);
2202 
2203     // Now append the suffix back to mangled and unmangled names. Only do it if
2204     // the demangling was successful (string is not empty).
2205     if (has_suffix) {
2206       llvm::StringRef suffix = symbol_ref.substr(version_pos);
2207 
2208       llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2209       if (!mangled_name.empty())
2210         mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2211 
2212       ConstString demangled =
2213           mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2214       llvm::StringRef demangled_name = demangled.GetStringRef();
2215       if (!demangled_name.empty())
2216         mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2217     }
2218 
2219     // In ELF all symbol should have a valid size but it is not true for some
2220     // function symbols coming from hand written assembly. As none of the
2221     // function symbol should have 0 size we try to calculate the size for
2222     // these symbols in the symtab with saying that their original size is not
2223     // valid.
2224     bool symbol_size_valid =
2225         symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2226 
2227     Symbol dc_symbol(
2228         i + start_id, // ID is the original symbol table index.
2229         mangled,
2230         symbol_type,                    // Type of this symbol
2231         is_global,                      // Is this globally visible?
2232         false,                          // Is this symbol debug info?
2233         false,                          // Is this symbol a trampoline?
2234         false,                          // Is this symbol artificial?
2235         AddressRange(symbol_section_sp, // Section in which this symbol is
2236                                         // defined or null.
2237                      symbol_value,      // Offset in section or symbol value.
2238                      symbol.st_size),   // Size in bytes of this symbol.
2239         symbol_size_valid,              // Symbol size is valid
2240         has_suffix,                     // Contains linker annotations?
2241         flags);                         // Symbol flags.
2242     symtab->AddSymbol(dc_symbol);
2243   }
2244   return i;
2245 }
2246 
2247 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
2248                                          user_id_t start_id,
2249                                          lldb_private::Section *symtab) {
2250   if (symtab->GetObjectFile() != this) {
2251     // If the symbol table section is owned by a different object file, have it
2252     // do the parsing.
2253     ObjectFileELF *obj_file_elf =
2254         static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2255     return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2256   }
2257 
2258   // Get section list for this object file.
2259   SectionList *section_list = m_sections_ap.get();
2260   if (!section_list)
2261     return 0;
2262 
2263   user_id_t symtab_id = symtab->GetID();
2264   const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2265   assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2266          symtab_hdr->sh_type == SHT_DYNSYM);
2267 
2268   // sh_link: section header index of associated string table. Section ID's are
2269   // ones based.
2270   user_id_t strtab_id = symtab_hdr->sh_link + 1;
2271   Section *strtab = section_list->FindSectionByID(strtab_id).get();
2272 
2273   if (symtab && strtab) {
2274     assert(symtab->GetObjectFile() == this);
2275     assert(strtab->GetObjectFile() == this);
2276 
2277     DataExtractor symtab_data;
2278     DataExtractor strtab_data;
2279     if (ReadSectionData(symtab, symtab_data) &&
2280         ReadSectionData(strtab, strtab_data)) {
2281       size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2282 
2283       return ParseSymbols(symbol_table, start_id, section_list, num_symbols,
2284                           symtab_data, strtab_data);
2285     }
2286   }
2287 
2288   return 0;
2289 }
2290 
2291 size_t ObjectFileELF::ParseDynamicSymbols() {
2292   if (m_dynamic_symbols.size())
2293     return m_dynamic_symbols.size();
2294 
2295   SectionList *section_list = GetSectionList();
2296   if (!section_list)
2297     return 0;
2298 
2299   // Find the SHT_DYNAMIC section.
2300   Section *dynsym =
2301       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
2302           .get();
2303   if (!dynsym)
2304     return 0;
2305   assert(dynsym->GetObjectFile() == this);
2306 
2307   ELFDynamic symbol;
2308   DataExtractor dynsym_data;
2309   if (ReadSectionData(dynsym, dynsym_data)) {
2310     const lldb::offset_t section_size = dynsym_data.GetByteSize();
2311     lldb::offset_t cursor = 0;
2312 
2313     while (cursor < section_size) {
2314       if (!symbol.Parse(dynsym_data, &cursor))
2315         break;
2316 
2317       m_dynamic_symbols.push_back(symbol);
2318     }
2319   }
2320 
2321   return m_dynamic_symbols.size();
2322 }
2323 
2324 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
2325   if (!ParseDynamicSymbols())
2326     return NULL;
2327 
2328   DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2329   DynamicSymbolCollIter E = m_dynamic_symbols.end();
2330   for (; I != E; ++I) {
2331     ELFDynamic *symbol = &*I;
2332 
2333     if (symbol->d_tag == tag)
2334       return symbol;
2335   }
2336 
2337   return NULL;
2338 }
2339 
2340 unsigned ObjectFileELF::PLTRelocationType() {
2341   // DT_PLTREL
2342   //  This member specifies the type of relocation entry to which the
2343   //  procedure linkage table refers. The d_val member holds DT_REL or
2344   //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2345   //  must use the same relocation.
2346   const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2347 
2348   if (symbol)
2349     return symbol->d_val;
2350 
2351   return 0;
2352 }
2353 
2354 // Returns the size of the normal plt entries and the offset of the first
2355 // normal plt entry. The 0th entry in the plt table is usually a resolution
2356 // entry which have different size in some architectures then the rest of the
2357 // plt entries.
2358 static std::pair<uint64_t, uint64_t>
2359 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
2360                          const ELFSectionHeader *plt_hdr) {
2361   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2362 
2363   // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2364   // 16 bytes. So round the entsize up by the alignment if addralign is set.
2365   elf_xword plt_entsize =
2366       plt_hdr->sh_addralign
2367           ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign)
2368           : plt_hdr->sh_entsize;
2369 
2370   // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2371   // PLT entries relocation code in general requires multiple instruction and
2372   // should be greater than 4 bytes in most cases. Try to guess correct size
2373   // just in case.
2374   if (plt_entsize <= 4) {
2375     // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2376     // size of the plt entries based on the number of entries and the size of
2377     // the plt section with the assumption that the size of the 0th entry is at
2378     // least as big as the size of the normal entries and it isn't much bigger
2379     // then that.
2380     if (plt_hdr->sh_addralign)
2381       plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2382                     (num_relocations + 1) * plt_hdr->sh_addralign;
2383     else
2384       plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2385   }
2386 
2387   elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2388 
2389   return std::make_pair(plt_entsize, plt_offset);
2390 }
2391 
2392 static unsigned ParsePLTRelocations(
2393     Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2394     const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2395     const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2396     const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2397     DataExtractor &symtab_data, DataExtractor &strtab_data) {
2398   ELFRelocation rel(rel_type);
2399   ELFSymbol symbol;
2400   lldb::offset_t offset = 0;
2401 
2402   uint64_t plt_offset, plt_entsize;
2403   std::tie(plt_entsize, plt_offset) =
2404       GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2405   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2406 
2407   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2408   reloc_info_fn reloc_type;
2409   reloc_info_fn reloc_symbol;
2410 
2411   if (hdr->Is32Bit()) {
2412     reloc_type = ELFRelocation::RelocType32;
2413     reloc_symbol = ELFRelocation::RelocSymbol32;
2414   } else {
2415     reloc_type = ELFRelocation::RelocType64;
2416     reloc_symbol = ELFRelocation::RelocSymbol64;
2417   }
2418 
2419   unsigned slot_type = hdr->GetRelocationJumpSlotType();
2420   unsigned i;
2421   for (i = 0; i < num_relocations; ++i) {
2422     if (!rel.Parse(rel_data, &offset))
2423       break;
2424 
2425     if (reloc_type(rel) != slot_type)
2426       continue;
2427 
2428     lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2429     if (!symbol.Parse(symtab_data, &symbol_offset))
2430       break;
2431 
2432     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2433     bool is_mangled =
2434         symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2435     uint64_t plt_index = plt_offset + i * plt_entsize;
2436 
2437     Symbol jump_symbol(
2438         i + start_id,          // Symbol table index
2439         symbol_name,           // symbol name.
2440         is_mangled,            // is the symbol name mangled?
2441         eSymbolTypeTrampoline, // Type of this symbol
2442         false,                 // Is this globally visible?
2443         false,                 // Is this symbol debug info?
2444         true,                  // Is this symbol a trampoline?
2445         true,                  // Is this symbol artificial?
2446         plt_section_sp, // Section in which this symbol is defined or null.
2447         plt_index,      // Offset in section or symbol value.
2448         plt_entsize,    // Size in bytes of this symbol.
2449         true,           // Size is valid
2450         false,          // Contains linker annotations?
2451         0);             // Symbol flags.
2452 
2453     symbol_table->AddSymbol(jump_symbol);
2454   }
2455 
2456   return i;
2457 }
2458 
2459 unsigned
2460 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
2461                                       const ELFSectionHeaderInfo *rel_hdr,
2462                                       user_id_t rel_id) {
2463   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2464 
2465   // The link field points to the associated symbol table.
2466   user_id_t symtab_id = rel_hdr->sh_link;
2467 
2468   // If the link field doesn't point to the appropriate symbol name table then
2469   // try to find it by name as some compiler don't fill in the link fields.
2470   if (!symtab_id)
2471     symtab_id = GetSectionIndexByName(".dynsym");
2472 
2473   // Get PLT section.  We cannot use rel_hdr->sh_info, since current linkers
2474   // point that to the .got.plt or .got section instead of .plt.
2475   user_id_t plt_id = GetSectionIndexByName(".plt");
2476 
2477   if (!symtab_id || !plt_id)
2478     return 0;
2479 
2480   // Section ID's are ones based;
2481   symtab_id++;
2482   plt_id++;
2483 
2484   const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2485   if (!plt_hdr)
2486     return 0;
2487 
2488   const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2489   if (!sym_hdr)
2490     return 0;
2491 
2492   SectionList *section_list = m_sections_ap.get();
2493   if (!section_list)
2494     return 0;
2495 
2496   Section *rel_section = section_list->FindSectionByID(rel_id).get();
2497   if (!rel_section)
2498     return 0;
2499 
2500   SectionSP plt_section_sp(section_list->FindSectionByID(plt_id));
2501   if (!plt_section_sp)
2502     return 0;
2503 
2504   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2505   if (!symtab)
2506     return 0;
2507 
2508   // sh_link points to associated string table.
2509   Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2510   if (!strtab)
2511     return 0;
2512 
2513   DataExtractor rel_data;
2514   if (!ReadSectionData(rel_section, rel_data))
2515     return 0;
2516 
2517   DataExtractor symtab_data;
2518   if (!ReadSectionData(symtab, symtab_data))
2519     return 0;
2520 
2521   DataExtractor strtab_data;
2522   if (!ReadSectionData(strtab, strtab_data))
2523     return 0;
2524 
2525   unsigned rel_type = PLTRelocationType();
2526   if (!rel_type)
2527     return 0;
2528 
2529   return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header,
2530                              rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2531                              rel_data, symtab_data, strtab_data);
2532 }
2533 
2534 unsigned ObjectFileELF::ApplyRelocations(
2535     Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2536     const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2537     DataExtractor &rel_data, DataExtractor &symtab_data,
2538     DataExtractor &debug_data, Section *rel_section) {
2539   ELFRelocation rel(rel_hdr->sh_type);
2540   lldb::addr_t offset = 0;
2541   const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2542   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2543   reloc_info_fn reloc_type;
2544   reloc_info_fn reloc_symbol;
2545 
2546   if (hdr->Is32Bit()) {
2547     reloc_type = ELFRelocation::RelocType32;
2548     reloc_symbol = ELFRelocation::RelocSymbol32;
2549   } else {
2550     reloc_type = ELFRelocation::RelocType64;
2551     reloc_symbol = ELFRelocation::RelocSymbol64;
2552   }
2553 
2554   for (unsigned i = 0; i < num_relocations; ++i) {
2555     if (!rel.Parse(rel_data, &offset))
2556       break;
2557 
2558     Symbol *symbol = NULL;
2559 
2560     if (hdr->Is32Bit()) {
2561       switch (reloc_type(rel)) {
2562       case R_386_32:
2563       case R_386_PC32:
2564       default:
2565         // FIXME: This asserts with this input:
2566         //
2567         // foo.cpp
2568         // int main(int argc, char **argv) { return 0; }
2569         //
2570         // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o
2571         //
2572         // and running this on the foo.o module.
2573         assert(false && "unexpected relocation type");
2574       }
2575     } else {
2576       switch (reloc_type(rel)) {
2577       case R_AARCH64_ABS64:
2578       case R_X86_64_64: {
2579         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2580         if (symbol) {
2581           addr_t value = symbol->GetAddressRef().GetFileAddress();
2582           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2583           uint64_t *dst = reinterpret_cast<uint64_t *>(
2584               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2585               ELFRelocation::RelocOffset64(rel));
2586           uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
2587           memcpy(dst, &val_offset, sizeof(uint64_t));
2588         }
2589         break;
2590       }
2591       case R_X86_64_32:
2592       case R_X86_64_32S:
2593       case R_AARCH64_ABS32: {
2594         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2595         if (symbol) {
2596           addr_t value = symbol->GetAddressRef().GetFileAddress();
2597           value += ELFRelocation::RelocAddend32(rel);
2598           if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) ||
2599               (reloc_type(rel) == R_X86_64_32S &&
2600                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) ||
2601               (reloc_type(rel) == R_AARCH64_ABS32 &&
2602                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) {
2603             Log *log =
2604                 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
2605             log->Printf("Failed to apply debug info relocations");
2606             break;
2607           }
2608           uint32_t truncated_addr = (value & 0xFFFFFFFF);
2609           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2610           uint32_t *dst = reinterpret_cast<uint32_t *>(
2611               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2612               ELFRelocation::RelocOffset32(rel));
2613           memcpy(dst, &truncated_addr, sizeof(uint32_t));
2614         }
2615         break;
2616       }
2617       case R_X86_64_PC32:
2618       default:
2619         assert(false && "unexpected relocation type");
2620       }
2621     }
2622   }
2623 
2624   return 0;
2625 }
2626 
2627 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
2628                                               user_id_t rel_id,
2629                                               lldb_private::Symtab *thetab) {
2630   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2631 
2632   // Parse in the section list if needed.
2633   SectionList *section_list = GetSectionList();
2634   if (!section_list)
2635     return 0;
2636 
2637   // Section ID's are ones based.
2638   user_id_t symtab_id = rel_hdr->sh_link + 1;
2639   user_id_t debug_id = rel_hdr->sh_info + 1;
2640 
2641   const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2642   if (!symtab_hdr)
2643     return 0;
2644 
2645   const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2646   if (!debug_hdr)
2647     return 0;
2648 
2649   Section *rel = section_list->FindSectionByID(rel_id).get();
2650   if (!rel)
2651     return 0;
2652 
2653   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2654   if (!symtab)
2655     return 0;
2656 
2657   Section *debug = section_list->FindSectionByID(debug_id).get();
2658   if (!debug)
2659     return 0;
2660 
2661   DataExtractor rel_data;
2662   DataExtractor symtab_data;
2663   DataExtractor debug_data;
2664 
2665   if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) &&
2666       GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) &&
2667       GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) {
2668     ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr,
2669                      rel_data, symtab_data, debug_data, debug);
2670   }
2671 
2672   return 0;
2673 }
2674 
2675 Symtab *ObjectFileELF::GetSymtab() {
2676   ModuleSP module_sp(GetModule());
2677   if (!module_sp)
2678     return NULL;
2679 
2680   // We always want to use the main object file so we (hopefully) only have one
2681   // cached copy of our symtab, dynamic sections, etc.
2682   ObjectFile *module_obj_file = module_sp->GetObjectFile();
2683   if (module_obj_file && module_obj_file != this)
2684     return module_obj_file->GetSymtab();
2685 
2686   if (m_symtab_ap.get() == NULL) {
2687     SectionList *section_list = module_sp->GetSectionList();
2688     if (!section_list)
2689       return NULL;
2690 
2691     uint64_t symbol_id = 0;
2692     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2693 
2694     // Sharable objects and dynamic executables usually have 2 distinct symbol
2695     // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
2696     // smaller version of the symtab that only contains global symbols. The
2697     // information found in the dynsym is therefore also found in the symtab,
2698     // while the reverse is not necessarily true.
2699     Section *symtab =
2700         section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get();
2701     if (!symtab) {
2702       // The symtab section is non-allocable and can be stripped, so if it
2703       // doesn't exist then use the dynsym section which should always be
2704       // there.
2705       symtab =
2706           section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true)
2707               .get();
2708     }
2709     if (symtab) {
2710       m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2711       symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab);
2712     }
2713 
2714     // DT_JMPREL
2715     //      If present, this entry's d_ptr member holds the address of
2716     //      relocation
2717     //      entries associated solely with the procedure linkage table.
2718     //      Separating
2719     //      these relocation entries lets the dynamic linker ignore them during
2720     //      process initialization, if lazy binding is enabled. If this entry is
2721     //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2722     //      also be present.
2723     const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2724     if (symbol) {
2725       // Synthesize trampoline symbols to help navigate the PLT.
2726       addr_t addr = symbol->d_ptr;
2727       Section *reloc_section =
2728           section_list->FindSectionContainingFileAddress(addr).get();
2729       if (reloc_section) {
2730         user_id_t reloc_id = reloc_section->GetID();
2731         const ELFSectionHeaderInfo *reloc_header =
2732             GetSectionHeaderByIndex(reloc_id);
2733         assert(reloc_header);
2734 
2735         if (m_symtab_ap == nullptr)
2736           m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2737 
2738         ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header,
2739                                reloc_id);
2740       }
2741     }
2742 
2743     DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo();
2744     if (eh_frame) {
2745       if (m_symtab_ap == nullptr)
2746         m_symtab_ap.reset(new Symtab(this));
2747       ParseUnwindSymbols(m_symtab_ap.get(), eh_frame);
2748     }
2749 
2750     // If we still don't have any symtab then create an empty instance to avoid
2751     // do the section lookup next time.
2752     if (m_symtab_ap == nullptr)
2753       m_symtab_ap.reset(new Symtab(this));
2754 
2755     m_symtab_ap->CalculateSymbolSizes();
2756   }
2757 
2758   return m_symtab_ap.get();
2759 }
2760 
2761 void ObjectFileELF::RelocateSection(lldb_private::Section *section)
2762 {
2763   static const char *debug_prefix = ".debug";
2764 
2765   // Set relocated bit so we stop getting called, regardless of whether we
2766   // actually relocate.
2767   section->SetIsRelocated(true);
2768 
2769   // We only relocate in ELF relocatable files
2770   if (CalculateType() != eTypeObjectFile)
2771     return;
2772 
2773   const char *section_name = section->GetName().GetCString();
2774   // Can't relocate that which can't be named
2775   if (section_name == nullptr)
2776     return;
2777 
2778   // We don't relocate non-debug sections at the moment
2779   if (strncmp(section_name, debug_prefix, strlen(debug_prefix)))
2780     return;
2781 
2782   // Relocation section names to look for
2783   std::string needle = std::string(".rel") + section_name;
2784   std::string needlea = std::string(".rela") + section_name;
2785 
2786   for (SectionHeaderCollIter I = m_section_headers.begin();
2787        I != m_section_headers.end(); ++I) {
2788     if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
2789       const char *hay_name = I->section_name.GetCString();
2790       if (hay_name == nullptr)
2791         continue;
2792       if (needle == hay_name || needlea == hay_name) {
2793         const ELFSectionHeader &reloc_header = *I;
2794         user_id_t reloc_id = SectionIndex(I);
2795         RelocateDebugSections(&reloc_header, reloc_id, GetSymtab());
2796         break;
2797       }
2798     }
2799   }
2800 }
2801 
2802 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
2803                                        DWARFCallFrameInfo *eh_frame) {
2804   SectionList *section_list = GetSectionList();
2805   if (!section_list)
2806     return;
2807 
2808   // First we save the new symbols into a separate list and add them to the
2809   // symbol table after we colleced all symbols we want to add. This is
2810   // neccessary because adding a new symbol invalidates the internal index of
2811   // the symtab what causing the next lookup to be slow because it have to
2812   // recalculate the index first.
2813   std::vector<Symbol> new_symbols;
2814 
2815   eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols](
2816       lldb::addr_t file_addr, uint32_t size, dw_offset_t) {
2817     Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
2818     if (symbol) {
2819       if (!symbol->GetByteSizeIsValid()) {
2820         symbol->SetByteSize(size);
2821         symbol->SetSizeIsSynthesized(true);
2822       }
2823     } else {
2824       SectionSP section_sp =
2825           section_list->FindSectionContainingFileAddress(file_addr);
2826       if (section_sp) {
2827         addr_t offset = file_addr - section_sp->GetFileAddress();
2828         const char *symbol_name = GetNextSyntheticSymbolName().GetCString();
2829         uint64_t symbol_id = symbol_table->GetNumSymbols();
2830         Symbol eh_symbol(
2831             symbol_id,       // Symbol table index.
2832             symbol_name,     // Symbol name.
2833             false,           // Is the symbol name mangled?
2834             eSymbolTypeCode, // Type of this symbol.
2835             true,            // Is this globally visible?
2836             false,           // Is this symbol debug info?
2837             false,           // Is this symbol a trampoline?
2838             true,            // Is this symbol artificial?
2839             section_sp,      // Section in which this symbol is defined or null.
2840             offset,          // Offset in section or symbol value.
2841             0,     // Size:          Don't specify the size as an FDE can
2842             false, // Size is valid: cover multiple symbols.
2843             false, // Contains linker annotations?
2844             0);    // Symbol flags.
2845         new_symbols.push_back(eh_symbol);
2846       }
2847     }
2848     return true;
2849   });
2850 
2851   for (const Symbol &s : new_symbols)
2852     symbol_table->AddSymbol(s);
2853 }
2854 
2855 bool ObjectFileELF::IsStripped() {
2856   // TODO: determine this for ELF
2857   return false;
2858 }
2859 
2860 //===----------------------------------------------------------------------===//
2861 // Dump
2862 //
2863 // Dump the specifics of the runtime file container (such as any headers
2864 // segments, sections, etc).
2865 //----------------------------------------------------------------------
2866 void ObjectFileELF::Dump(Stream *s) {
2867   ModuleSP module_sp(GetModule());
2868   if (!module_sp) {
2869     return;
2870   }
2871 
2872   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2873   s->Printf("%p: ", static_cast<void *>(this));
2874   s->Indent();
2875   s->PutCString("ObjectFileELF");
2876 
2877   ArchSpec header_arch;
2878   GetArchitecture(header_arch);
2879 
2880   *s << ", file = '" << m_file
2881      << "', arch = " << header_arch.GetArchitectureName() << "\n";
2882 
2883   DumpELFHeader(s, m_header);
2884   s->EOL();
2885   DumpELFProgramHeaders(s);
2886   s->EOL();
2887   DumpELFSectionHeaders(s);
2888   s->EOL();
2889   SectionList *section_list = GetSectionList();
2890   if (section_list)
2891     section_list->Dump(s, NULL, true, UINT32_MAX);
2892   Symtab *symtab = GetSymtab();
2893   if (symtab)
2894     symtab->Dump(s, NULL, eSortOrderNone);
2895   s->EOL();
2896   DumpDependentModules(s);
2897   s->EOL();
2898 }
2899 
2900 //----------------------------------------------------------------------
2901 // DumpELFHeader
2902 //
2903 // Dump the ELF header to the specified output stream
2904 //----------------------------------------------------------------------
2905 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
2906   s->PutCString("ELF Header\n");
2907   s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2908   s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
2909             header.e_ident[EI_MAG1]);
2910   s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
2911             header.e_ident[EI_MAG2]);
2912   s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
2913             header.e_ident[EI_MAG3]);
2914 
2915   s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2916   s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2917   DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2918   s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2919   s->Printf("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2920 
2921   s->Printf("e_type      = 0x%4.4x ", header.e_type);
2922   DumpELFHeader_e_type(s, header.e_type);
2923   s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2924   s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2925   s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2926   s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2927   s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2928   s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2929   s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2930   s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2931   s->Printf("e_phnum     = 0x%8.8x\n", header.e_phnum);
2932   s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2933   s->Printf("e_shnum     = 0x%8.8x\n", header.e_shnum);
2934   s->Printf("e_shstrndx  = 0x%8.8x\n", header.e_shstrndx);
2935 }
2936 
2937 //----------------------------------------------------------------------
2938 // DumpELFHeader_e_type
2939 //
2940 // Dump an token value for the ELF header member e_type
2941 //----------------------------------------------------------------------
2942 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
2943   switch (e_type) {
2944   case ET_NONE:
2945     *s << "ET_NONE";
2946     break;
2947   case ET_REL:
2948     *s << "ET_REL";
2949     break;
2950   case ET_EXEC:
2951     *s << "ET_EXEC";
2952     break;
2953   case ET_DYN:
2954     *s << "ET_DYN";
2955     break;
2956   case ET_CORE:
2957     *s << "ET_CORE";
2958     break;
2959   default:
2960     break;
2961   }
2962 }
2963 
2964 //----------------------------------------------------------------------
2965 // DumpELFHeader_e_ident_EI_DATA
2966 //
2967 // Dump an token value for the ELF header member e_ident[EI_DATA]
2968 //----------------------------------------------------------------------
2969 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
2970                                                   unsigned char ei_data) {
2971   switch (ei_data) {
2972   case ELFDATANONE:
2973     *s << "ELFDATANONE";
2974     break;
2975   case ELFDATA2LSB:
2976     *s << "ELFDATA2LSB - Little Endian";
2977     break;
2978   case ELFDATA2MSB:
2979     *s << "ELFDATA2MSB - Big Endian";
2980     break;
2981   default:
2982     break;
2983   }
2984 }
2985 
2986 //----------------------------------------------------------------------
2987 // DumpELFProgramHeader
2988 //
2989 // Dump a single ELF program header to the specified output stream
2990 //----------------------------------------------------------------------
2991 void ObjectFileELF::DumpELFProgramHeader(Stream *s,
2992                                          const ELFProgramHeader &ph) {
2993   DumpELFProgramHeader_p_type(s, ph.p_type);
2994   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
2995             ph.p_vaddr, ph.p_paddr);
2996   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
2997             ph.p_flags);
2998 
2999   DumpELFProgramHeader_p_flags(s, ph.p_flags);
3000   s->Printf(") %8.8" PRIx64, ph.p_align);
3001 }
3002 
3003 //----------------------------------------------------------------------
3004 // DumpELFProgramHeader_p_type
3005 //
3006 // Dump an token value for the ELF program header member p_type which describes
3007 // the type of the program header
3008 // ----------------------------------------------------------------------
3009 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
3010   const int kStrWidth = 15;
3011   switch (p_type) {
3012     CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3013     CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3014     CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3015     CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3016     CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3017     CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3018     CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3019     CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3020     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3021   default:
3022     s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3023     break;
3024   }
3025 }
3026 
3027 //----------------------------------------------------------------------
3028 // DumpELFProgramHeader_p_flags
3029 //
3030 // Dump an token value for the ELF program header member p_flags
3031 //----------------------------------------------------------------------
3032 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
3033   *s << ((p_flags & PF_X) ? "PF_X" : "    ")
3034      << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3035      << ((p_flags & PF_W) ? "PF_W" : "    ")
3036      << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3037      << ((p_flags & PF_R) ? "PF_R" : "    ");
3038 }
3039 
3040 //----------------------------------------------------------------------
3041 // DumpELFProgramHeaders
3042 //
3043 // Dump all of the ELF program header to the specified output stream
3044 //----------------------------------------------------------------------
3045 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
3046   if (!ParseProgramHeaders())
3047     return;
3048 
3049   s->PutCString("Program Headers\n");
3050   s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3051                 "p_filesz p_memsz  p_flags                   p_align\n");
3052   s->PutCString("==== --------------- -------- -------- -------- "
3053                 "-------- -------- ------------------------- --------\n");
3054 
3055   for (const auto &H : llvm::enumerate(m_program_headers)) {
3056     s->Format("[{0,2}] ", H.index());
3057     ObjectFileELF::DumpELFProgramHeader(s, H.value());
3058     s->EOL();
3059   }
3060 }
3061 
3062 //----------------------------------------------------------------------
3063 // DumpELFSectionHeader
3064 //
3065 // Dump a single ELF section header to the specified output stream
3066 //----------------------------------------------------------------------
3067 void ObjectFileELF::DumpELFSectionHeader(Stream *s,
3068                                          const ELFSectionHeaderInfo &sh) {
3069   s->Printf("%8.8x ", sh.sh_name);
3070   DumpELFSectionHeader_sh_type(s, sh.sh_type);
3071   s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3072   DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3073   s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3074             sh.sh_offset, sh.sh_size);
3075   s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3076   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3077 }
3078 
3079 //----------------------------------------------------------------------
3080 // DumpELFSectionHeader_sh_type
3081 //
3082 // Dump an token value for the ELF section header member sh_type which
3083 // describes the type of the section
3084 //----------------------------------------------------------------------
3085 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
3086   const int kStrWidth = 12;
3087   switch (sh_type) {
3088     CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3089     CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3090     CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3091     CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3092     CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3093     CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3094     CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3095     CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3096     CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3097     CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3098     CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3099     CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3100     CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3101     CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3102     CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3103     CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3104   default:
3105     s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3106     break;
3107   }
3108 }
3109 
3110 //----------------------------------------------------------------------
3111 // DumpELFSectionHeader_sh_flags
3112 //
3113 // Dump an token value for the ELF section header member sh_flags
3114 //----------------------------------------------------------------------
3115 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
3116                                                   elf_xword sh_flags) {
3117   *s << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3118      << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3119      << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3120      << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3121      << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3122 }
3123 
3124 //----------------------------------------------------------------------
3125 // DumpELFSectionHeaders
3126 //
3127 // Dump all of the ELF section header to the specified output stream
3128 //----------------------------------------------------------------------
3129 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
3130   if (!ParseSectionHeaders())
3131     return;
3132 
3133   s->PutCString("Section Headers\n");
3134   s->PutCString("IDX  name     type         flags                            "
3135                 "addr     offset   size     link     info     addralgn "
3136                 "entsize  Name\n");
3137   s->PutCString("==== -------- ------------ -------------------------------- "
3138                 "-------- -------- -------- -------- -------- -------- "
3139                 "-------- ====================\n");
3140 
3141   uint32_t idx = 0;
3142   for (SectionHeaderCollConstIter I = m_section_headers.begin();
3143        I != m_section_headers.end(); ++I, ++idx) {
3144     s->Printf("[%2u] ", idx);
3145     ObjectFileELF::DumpELFSectionHeader(s, *I);
3146     const char *section_name = I->section_name.AsCString("");
3147     if (section_name)
3148       *s << ' ' << section_name << "\n";
3149   }
3150 }
3151 
3152 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
3153   size_t num_modules = ParseDependentModules();
3154 
3155   if (num_modules > 0) {
3156     s->PutCString("Dependent Modules:\n");
3157     for (unsigned i = 0; i < num_modules; ++i) {
3158       const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3159       s->Printf("   %s\n", spec.GetFilename().GetCString());
3160     }
3161   }
3162 }
3163 
3164 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) {
3165   if (!ParseHeader())
3166     return false;
3167 
3168   if (m_section_headers.empty()) {
3169     // Allow elf notes to be parsed which may affect the detected architecture.
3170     ParseSectionHeaders();
3171   }
3172 
3173   if (CalculateType() == eTypeCoreFile &&
3174       m_arch_spec.TripleOSIsUnspecifiedUnknown()) {
3175     // Core files don't have section headers yet they have PT_NOTE program
3176     // headers that might shed more light on the architecture
3177     for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
3178       if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
3179         continue;
3180       DataExtractor data;
3181       if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) {
3182         UUID uuid;
3183         RefineModuleDetailsFromNote(data, m_arch_spec, uuid);
3184       }
3185     }
3186   }
3187   arch = m_arch_spec;
3188   return true;
3189 }
3190 
3191 ObjectFile::Type ObjectFileELF::CalculateType() {
3192   switch (m_header.e_type) {
3193   case llvm::ELF::ET_NONE:
3194     // 0 - No file type
3195     return eTypeUnknown;
3196 
3197   case llvm::ELF::ET_REL:
3198     // 1 - Relocatable file
3199     return eTypeObjectFile;
3200 
3201   case llvm::ELF::ET_EXEC:
3202     // 2 - Executable file
3203     return eTypeExecutable;
3204 
3205   case llvm::ELF::ET_DYN:
3206     // 3 - Shared object file
3207     return eTypeSharedLibrary;
3208 
3209   case ET_CORE:
3210     // 4 - Core file
3211     return eTypeCoreFile;
3212 
3213   default:
3214     break;
3215   }
3216   return eTypeUnknown;
3217 }
3218 
3219 ObjectFile::Strata ObjectFileELF::CalculateStrata() {
3220   switch (m_header.e_type) {
3221   case llvm::ELF::ET_NONE:
3222     // 0 - No file type
3223     return eStrataUnknown;
3224 
3225   case llvm::ELF::ET_REL:
3226     // 1 - Relocatable file
3227     return eStrataUnknown;
3228 
3229   case llvm::ELF::ET_EXEC:
3230     // 2 - Executable file
3231     // TODO: is there any way to detect that an executable is a kernel
3232     // related executable by inspecting the program headers, section headers,
3233     // symbols, or any other flag bits???
3234     return eStrataUser;
3235 
3236   case llvm::ELF::ET_DYN:
3237     // 3 - Shared object file
3238     // TODO: is there any way to detect that an shared library is a kernel
3239     // related executable by inspecting the program headers, section headers,
3240     // symbols, or any other flag bits???
3241     return eStrataUnknown;
3242 
3243   case ET_CORE:
3244     // 4 - Core file
3245     // TODO: is there any way to detect that an core file is a kernel
3246     // related executable by inspecting the program headers, section headers,
3247     // symbols, or any other flag bits???
3248     return eStrataUnknown;
3249 
3250   default:
3251     break;
3252   }
3253   return eStrataUnknown;
3254 }
3255 
3256 size_t ObjectFileELF::ReadSectionData(Section *section,
3257                        lldb::offset_t section_offset, void *dst,
3258                        size_t dst_len) {
3259   // If some other objectfile owns this data, pass this to them.
3260   if (section->GetObjectFile() != this)
3261     return section->GetObjectFile()->ReadSectionData(section, section_offset,
3262                                                      dst, dst_len);
3263 
3264   if (!section->Test(SHF_COMPRESSED))
3265     return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3266 
3267   // For compressed sections we need to read to full data to be able to
3268   // decompress.
3269   DataExtractor data;
3270   ReadSectionData(section, data);
3271   return data.CopyData(section_offset, dst_len, dst);
3272 }
3273 
3274 size_t ObjectFileELF::ReadSectionData(Section *section,
3275                                       DataExtractor &section_data) {
3276   // If some other objectfile owns this data, pass this to them.
3277   if (section->GetObjectFile() != this)
3278     return section->GetObjectFile()->ReadSectionData(section, section_data);
3279 
3280   size_t result = ObjectFile::ReadSectionData(section, section_data);
3281   if (result == 0 || !section->Test(SHF_COMPRESSED))
3282     return result;
3283 
3284   auto Decompressor = llvm::object::Decompressor::create(
3285       section->GetName().GetStringRef(),
3286       {reinterpret_cast<const char *>(section_data.GetDataStart()),
3287        size_t(section_data.GetByteSize())},
3288       GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8);
3289   if (!Decompressor) {
3290     GetModule()->ReportWarning(
3291         "Unable to initialize decompressor for section '%s': %s",
3292         section->GetName().GetCString(),
3293         llvm::toString(Decompressor.takeError()).c_str());
3294     section_data.Clear();
3295     return 0;
3296   }
3297 
3298   auto buffer_sp =
3299       std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0);
3300   if (auto error = Decompressor->decompress(
3301           {reinterpret_cast<char *>(buffer_sp->GetBytes()),
3302            size_t(buffer_sp->GetByteSize())})) {
3303     GetModule()->ReportWarning(
3304         "Decompression of section '%s' failed: %s",
3305         section->GetName().GetCString(),
3306         llvm::toString(std::move(error)).c_str());
3307     section_data.Clear();
3308     return 0;
3309   }
3310 
3311   section_data.SetData(buffer_sp);
3312   return buffer_sp->GetByteSize();
3313 }
3314 
3315 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
3316   ParseProgramHeaders();
3317   return m_program_headers;
3318 }
3319 
3320 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) {
3321   return DataExtractor(m_data, H.p_offset, H.p_filesz);
3322 }
3323 
3324 bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
3325   for (const ELFProgramHeader &H : ProgramHeaders()) {
3326     if (H.p_paddr != 0)
3327       return true;
3328   }
3329   return false;
3330 }
3331 
3332 std::vector<ObjectFile::LoadableData>
3333 ObjectFileELF::GetLoadableData(Target &target) {
3334   // Create a list of loadable data from loadable segments, using physical
3335   // addresses if they aren't all null
3336   std::vector<LoadableData> loadables;
3337   bool should_use_paddr = AnySegmentHasPhysicalAddress();
3338   for (const ELFProgramHeader &H : ProgramHeaders()) {
3339     LoadableData loadable;
3340     if (H.p_type != llvm::ELF::PT_LOAD)
3341       continue;
3342     loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
3343     if (loadable.Dest == LLDB_INVALID_ADDRESS)
3344       continue;
3345     if (H.p_filesz == 0)
3346       continue;
3347     auto segment_data = GetSegmentData(H);
3348     loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3349                                                 segment_data.GetByteSize());
3350     loadables.push_back(loadable);
3351   }
3352   return loadables;
3353 }
3354