1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <algorithm> 13 #include <cassert> 14 #include <unordered_map> 15 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Host/FileSystem.h" 22 #include "lldb/Symbol/DWARFCallFrameInfo.h" 23 #include "lldb/Symbol/SymbolContext.h" 24 #include "lldb/Target/SectionLoadList.h" 25 #include "lldb/Target/Target.h" 26 #include "lldb/Utility/ArchSpec.h" 27 #include "lldb/Utility/DataBufferHeap.h" 28 #include "lldb/Utility/Log.h" 29 #include "lldb/Utility/Status.h" 30 #include "lldb/Utility/Stream.h" 31 #include "lldb/Utility/Timer.h" 32 33 #include "llvm/ADT/PointerUnion.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/Object/Decompressor.h" 36 #include "llvm/Support/ARMBuildAttributes.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/MemoryBuffer.h" 39 #include "llvm/Support/MipsABIFlags.h" 40 41 #define CASE_AND_STREAM(s, def, width) \ 42 case def: \ 43 s->Printf("%-*s", width, #def); \ 44 break; 45 46 using namespace lldb; 47 using namespace lldb_private; 48 using namespace elf; 49 using namespace llvm::ELF; 50 51 namespace { 52 53 // ELF note owner definitions 54 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 55 const char *const LLDB_NT_OWNER_GNU = "GNU"; 56 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 57 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD"; 58 const char *const LLDB_NT_OWNER_CSR = "csr"; 59 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 60 const char *const LLDB_NT_OWNER_CORE = "CORE"; 61 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 62 63 // ELF note type definitions 64 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 65 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 66 67 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 68 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 69 70 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 71 72 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 73 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 74 75 // GNU ABI note OS constants 76 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 77 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 78 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 79 80 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 81 #define NT_PRSTATUS 1 82 #define NT_PRFPREG 2 83 #define NT_PRPSINFO 3 84 #define NT_TASKSTRUCT 4 85 #define NT_AUXV 6 86 #define NT_SIGINFO 0x53494749 87 #define NT_FILE 0x46494c45 88 #define NT_PRXFPREG 0x46e62b7f 89 #define NT_PPC_VMX 0x100 90 #define NT_PPC_SPE 0x101 91 #define NT_PPC_VSX 0x102 92 #define NT_386_TLS 0x200 93 #define NT_386_IOPERM 0x201 94 #define NT_X86_XSTATE 0x202 95 #define NT_S390_HIGH_GPRS 0x300 96 #define NT_S390_TIMER 0x301 97 #define NT_S390_TODCMP 0x302 98 #define NT_S390_TODPREG 0x303 99 #define NT_S390_CTRS 0x304 100 #define NT_S390_PREFIX 0x305 101 #define NT_S390_LAST_BREAK 0x306 102 #define NT_S390_SYSTEM_CALL 0x307 103 #define NT_S390_TDB 0x308 104 #define NT_S390_VXRS_LOW 0x309 105 #define NT_S390_VXRS_HIGH 0x30a 106 #define NT_ARM_VFP 0x400 107 #define NT_ARM_TLS 0x401 108 #define NT_ARM_HW_BREAK 0x402 109 #define NT_ARM_HW_WATCH 0x403 110 #define NT_ARM_SYSTEM_CALL 0x404 111 #define NT_METAG_CBUF 0x500 112 #define NT_METAG_RPIPE 0x501 113 #define NT_METAG_TLS 0x502 114 115 //===----------------------------------------------------------------------===// 116 /// @class ELFRelocation 117 /// Generic wrapper for ELFRel and ELFRela. 118 /// 119 /// This helper class allows us to parse both ELFRel and ELFRela relocation 120 /// entries in a generic manner. 121 class ELFRelocation { 122 public: 123 /// Constructs an ELFRelocation entry with a personality as given by @p 124 /// type. 125 /// 126 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 127 ELFRelocation(unsigned type); 128 129 ~ELFRelocation(); 130 131 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 132 133 static unsigned RelocType32(const ELFRelocation &rel); 134 135 static unsigned RelocType64(const ELFRelocation &rel); 136 137 static unsigned RelocSymbol32(const ELFRelocation &rel); 138 139 static unsigned RelocSymbol64(const ELFRelocation &rel); 140 141 static unsigned RelocOffset32(const ELFRelocation &rel); 142 143 static unsigned RelocOffset64(const ELFRelocation &rel); 144 145 static unsigned RelocAddend32(const ELFRelocation &rel); 146 147 static unsigned RelocAddend64(const ELFRelocation &rel); 148 149 private: 150 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion; 151 152 RelocUnion reloc; 153 }; 154 155 ELFRelocation::ELFRelocation(unsigned type) { 156 if (type == DT_REL || type == SHT_REL) 157 reloc = new ELFRel(); 158 else if (type == DT_RELA || type == SHT_RELA) 159 reloc = new ELFRela(); 160 else { 161 assert(false && "unexpected relocation type"); 162 reloc = static_cast<ELFRel *>(NULL); 163 } 164 } 165 166 ELFRelocation::~ELFRelocation() { 167 if (reloc.is<ELFRel *>()) 168 delete reloc.get<ELFRel *>(); 169 else 170 delete reloc.get<ELFRela *>(); 171 } 172 173 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, 174 lldb::offset_t *offset) { 175 if (reloc.is<ELFRel *>()) 176 return reloc.get<ELFRel *>()->Parse(data, offset); 177 else 178 return reloc.get<ELFRela *>()->Parse(data, offset); 179 } 180 181 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { 182 if (rel.reloc.is<ELFRel *>()) 183 return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>()); 184 else 185 return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>()); 186 } 187 188 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { 189 if (rel.reloc.is<ELFRel *>()) 190 return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>()); 191 else 192 return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>()); 193 } 194 195 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { 196 if (rel.reloc.is<ELFRel *>()) 197 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>()); 198 else 199 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>()); 200 } 201 202 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { 203 if (rel.reloc.is<ELFRel *>()) 204 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>()); 205 else 206 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>()); 207 } 208 209 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) { 210 if (rel.reloc.is<ELFRel *>()) 211 return rel.reloc.get<ELFRel *>()->r_offset; 212 else 213 return rel.reloc.get<ELFRela *>()->r_offset; 214 } 215 216 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) { 217 if (rel.reloc.is<ELFRel *>()) 218 return rel.reloc.get<ELFRel *>()->r_offset; 219 else 220 return rel.reloc.get<ELFRela *>()->r_offset; 221 } 222 223 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) { 224 if (rel.reloc.is<ELFRel *>()) 225 return 0; 226 else 227 return rel.reloc.get<ELFRela *>()->r_addend; 228 } 229 230 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) { 231 if (rel.reloc.is<ELFRel *>()) 232 return 0; 233 else 234 return rel.reloc.get<ELFRela *>()->r_addend; 235 } 236 237 } // end anonymous namespace 238 239 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { 240 // Read all fields. 241 if (data.GetU32(offset, &n_namesz, 3) == NULL) 242 return false; 243 244 // The name field is required to be nul-terminated, and n_namesz includes the 245 // terminating nul in observed implementations (contrary to the ELF-64 spec). 246 // A special case is needed for cores generated by some older Linux versions, 247 // which write a note named "CORE" without a nul terminator and n_namesz = 4. 248 if (n_namesz == 4) { 249 char buf[4]; 250 if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) 251 return false; 252 if (strncmp(buf, "CORE", 4) == 0) { 253 n_name = "CORE"; 254 *offset += 4; 255 return true; 256 } 257 } 258 259 const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); 260 if (cstr == NULL) { 261 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 262 if (log) 263 log->Printf("Failed to parse note name lacking nul terminator"); 264 265 return false; 266 } 267 n_name = cstr; 268 return true; 269 } 270 271 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) { 272 const uint32_t dsp_rev = e_flags & 0xFF; 273 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 274 switch (dsp_rev) { 275 // TODO(mg11) Support more variants 276 case 10: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 278 break; 279 case 14: 280 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 281 break; 282 case 17: 283 case 20: 284 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 285 break; 286 default: 287 break; 288 } 289 return kal_arch_variant; 290 } 291 292 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) { 293 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH; 294 uint32_t endian = header.e_ident[EI_DATA]; 295 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 296 uint32_t fileclass = header.e_ident[EI_CLASS]; 297 298 // If there aren't any elf flags available (e.g core elf file) then return 299 // default 300 // 32 or 64 bit arch (without any architecture revision) based on object file's class. 301 if (header.e_type == ET_CORE) { 302 switch (fileclass) { 303 case llvm::ELF::ELFCLASS32: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 305 : ArchSpec::eMIPSSubType_mips32; 306 case llvm::ELF::ELFCLASS64: 307 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 308 : ArchSpec::eMIPSSubType_mips64; 309 default: 310 return arch_variant; 311 } 312 } 313 314 switch (mips_arch) { 315 case llvm::ELF::EF_MIPS_ARCH_1: 316 case llvm::ELF::EF_MIPS_ARCH_2: 317 case llvm::ELF::EF_MIPS_ARCH_32: 318 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 319 : ArchSpec::eMIPSSubType_mips32; 320 case llvm::ELF::EF_MIPS_ARCH_32R2: 321 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el 322 : ArchSpec::eMIPSSubType_mips32r2; 323 case llvm::ELF::EF_MIPS_ARCH_32R6: 324 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el 325 : ArchSpec::eMIPSSubType_mips32r6; 326 case llvm::ELF::EF_MIPS_ARCH_3: 327 case llvm::ELF::EF_MIPS_ARCH_4: 328 case llvm::ELF::EF_MIPS_ARCH_5: 329 case llvm::ELF::EF_MIPS_ARCH_64: 330 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 331 : ArchSpec::eMIPSSubType_mips64; 332 case llvm::ELF::EF_MIPS_ARCH_64R2: 333 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el 334 : ArchSpec::eMIPSSubType_mips64r2; 335 case llvm::ELF::EF_MIPS_ARCH_64R6: 336 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el 337 : ArchSpec::eMIPSSubType_mips64r6; 338 default: 339 break; 340 } 341 342 return arch_variant; 343 } 344 345 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { 346 if (header.e_machine == llvm::ELF::EM_MIPS) 347 return mipsVariantFromElfFlags(header); 348 349 return llvm::ELF::EM_CSR_KALIMBA == header.e_machine 350 ? kalimbaVariantFromElfFlags(header.e_flags) 351 : LLDB_INVALID_CPUTYPE; 352 } 353 354 //! The kalimba toolchain identifies a code section as being 355 //! one with the SHT_PROGBITS set in the section sh_type and the top 356 //! bit in the 32-bit address field set. 357 static lldb::SectionType 358 kalimbaSectionType(const elf::ELFHeader &header, 359 const elf::ELFSectionHeader §_hdr) { 360 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) { 361 return eSectionTypeOther; 362 } 363 364 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) { 365 return eSectionTypeZeroFill; 366 } 367 368 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) { 369 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 370 return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode 371 : eSectionTypeData; 372 } 373 374 return eSectionTypeOther; 375 } 376 377 // Arbitrary constant used as UUID prefix for core files. 378 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); 379 380 //------------------------------------------------------------------ 381 // Static methods. 382 //------------------------------------------------------------------ 383 void ObjectFileELF::Initialize() { 384 PluginManager::RegisterPlugin(GetPluginNameStatic(), 385 GetPluginDescriptionStatic(), CreateInstance, 386 CreateMemoryInstance, GetModuleSpecifications); 387 } 388 389 void ObjectFileELF::Terminate() { 390 PluginManager::UnregisterPlugin(CreateInstance); 391 } 392 393 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { 394 static ConstString g_name("elf"); 395 return g_name; 396 } 397 398 const char *ObjectFileELF::GetPluginDescriptionStatic() { 399 return "ELF object file reader."; 400 } 401 402 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, 403 DataBufferSP &data_sp, 404 lldb::offset_t data_offset, 405 const lldb_private::FileSpec *file, 406 lldb::offset_t file_offset, 407 lldb::offset_t length) { 408 if (!data_sp) { 409 data_sp = MapFileData(*file, length, file_offset); 410 if (!data_sp) 411 return nullptr; 412 data_offset = 0; 413 } 414 415 assert(data_sp); 416 417 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset)) 418 return nullptr; 419 420 const uint8_t *magic = data_sp->GetBytes() + data_offset; 421 if (!ELFHeader::MagicBytesMatch(magic)) 422 return nullptr; 423 424 // Update the data to contain the entire file if it doesn't already 425 if (data_sp->GetByteSize() < length) { 426 data_sp = MapFileData(*file, length, file_offset); 427 if (!data_sp) 428 return nullptr; 429 data_offset = 0; 430 magic = data_sp->GetBytes(); 431 } 432 433 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 434 if (address_size == 4 || address_size == 8) { 435 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF( 436 module_sp, data_sp, data_offset, file, file_offset, length)); 437 ArchSpec spec; 438 if (objfile_ap->GetArchitecture(spec) && 439 objfile_ap->SetModulesArchitecture(spec)) 440 return objfile_ap.release(); 441 } 442 443 return NULL; 444 } 445 446 ObjectFile *ObjectFileELF::CreateMemoryInstance( 447 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 448 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { 449 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { 450 const uint8_t *magic = data_sp->GetBytes(); 451 if (ELFHeader::MagicBytesMatch(magic)) { 452 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 453 if (address_size == 4 || address_size == 8) { 454 std::unique_ptr<ObjectFileELF> objfile_ap( 455 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 456 ArchSpec spec; 457 if (objfile_ap->GetArchitecture(spec) && 458 objfile_ap->SetModulesArchitecture(spec)) 459 return objfile_ap.release(); 460 } 461 } 462 } 463 return NULL; 464 } 465 466 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, 467 lldb::addr_t data_offset, 468 lldb::addr_t data_length) { 469 if (data_sp && 470 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { 471 const uint8_t *magic = data_sp->GetBytes() + data_offset; 472 return ELFHeader::MagicBytesMatch(magic); 473 } 474 return false; 475 } 476 477 /* 478 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 479 * 480 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 481 * code or tables extracted from it, as desired without restriction. 482 */ 483 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) { 484 static const uint32_t g_crc32_tab[] = { 485 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 486 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 487 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 488 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 489 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 490 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 491 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 492 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 493 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 494 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 495 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 496 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 497 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 498 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 499 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 500 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 501 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 502 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 503 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 504 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 505 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 506 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 507 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 508 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 509 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 510 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 511 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 512 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 513 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 514 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 515 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 516 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 517 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 518 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 519 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 520 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 521 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 522 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 523 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 524 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 525 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 526 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 527 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; 528 const uint8_t *p = (const uint8_t *)buf; 529 530 crc = crc ^ ~0U; 531 while (size--) 532 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 533 return crc ^ ~0U; 534 } 535 536 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) { 537 return calc_crc32(0U, buf, size); 538 } 539 540 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( 541 const ProgramHeaderColl &program_headers, DataExtractor &object_data) { 542 543 uint32_t core_notes_crc = 0; 544 545 for (const ELFProgramHeader &H : program_headers) { 546 if (H.p_type == llvm::ELF::PT_NOTE) { 547 const elf_off ph_offset = H.p_offset; 548 const size_t ph_size = H.p_filesz; 549 550 DataExtractor segment_data; 551 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { 552 // The ELF program header contained incorrect data, probably corefile 553 // is incomplete or corrupted. 554 break; 555 } 556 557 core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(), 558 segment_data.GetByteSize()); 559 } 560 } 561 562 return core_notes_crc; 563 } 564 565 static const char *OSABIAsCString(unsigned char osabi_byte) { 566 #define _MAKE_OSABI_CASE(x) \ 567 case x: \ 568 return #x 569 switch (osabi_byte) { 570 _MAKE_OSABI_CASE(ELFOSABI_NONE); 571 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 572 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 573 _MAKE_OSABI_CASE(ELFOSABI_GNU); 574 _MAKE_OSABI_CASE(ELFOSABI_HURD); 575 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 576 _MAKE_OSABI_CASE(ELFOSABI_AIX); 577 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 578 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 579 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 580 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 581 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 582 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 583 _MAKE_OSABI_CASE(ELFOSABI_NSK); 584 _MAKE_OSABI_CASE(ELFOSABI_AROS); 585 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 586 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 587 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 588 _MAKE_OSABI_CASE(ELFOSABI_ARM); 589 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 590 default: 591 return "<unknown-osabi>"; 592 } 593 #undef _MAKE_OSABI_CASE 594 } 595 596 // 597 // WARNING : This function is being deprecated 598 // It's functionality has moved to ArchSpec::SetArchitecture This function is 599 // only being kept to validate the move. 600 // 601 // TODO : Remove this function 602 static bool GetOsFromOSABI(unsigned char osabi_byte, 603 llvm::Triple::OSType &ostype) { 604 switch (osabi_byte) { 605 case ELFOSABI_AIX: 606 ostype = llvm::Triple::OSType::AIX; 607 break; 608 case ELFOSABI_FREEBSD: 609 ostype = llvm::Triple::OSType::FreeBSD; 610 break; 611 case ELFOSABI_GNU: 612 ostype = llvm::Triple::OSType::Linux; 613 break; 614 case ELFOSABI_NETBSD: 615 ostype = llvm::Triple::OSType::NetBSD; 616 break; 617 case ELFOSABI_OPENBSD: 618 ostype = llvm::Triple::OSType::OpenBSD; 619 break; 620 case ELFOSABI_SOLARIS: 621 ostype = llvm::Triple::OSType::Solaris; 622 break; 623 default: 624 ostype = llvm::Triple::OSType::UnknownOS; 625 } 626 return ostype != llvm::Triple::OSType::UnknownOS; 627 } 628 629 size_t ObjectFileELF::GetModuleSpecifications( 630 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 631 lldb::offset_t data_offset, lldb::offset_t file_offset, 632 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 633 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 634 635 const size_t initial_count = specs.GetSize(); 636 637 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 638 DataExtractor data; 639 data.SetData(data_sp); 640 elf::ELFHeader header; 641 lldb::offset_t header_offset = data_offset; 642 if (header.Parse(data, &header_offset)) { 643 if (data_sp) { 644 ModuleSpec spec(file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture( 648 eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 649 650 if (spec.GetArchitecture().IsValid()) { 651 llvm::Triple::OSType ostype; 652 llvm::Triple::VendorType vendor; 653 llvm::Triple::OSType spec_ostype = 654 spec.GetArchitecture().GetTriple().getOS(); 655 656 if (log) 657 log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s", 658 __FUNCTION__, file.GetPath().c_str(), 659 OSABIAsCString(header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture().GetTriple().getVendor(); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 UNUSED_IF_ASSERT_DISABLED(vendor); 665 666 // 667 // Validate it is ok to remove GetOsFromOSABI 668 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 669 assert(spec_ostype == ostype); 670 if (spec_ostype != llvm::Triple::OSType::UnknownOS) { 671 if (log) 672 log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type " 673 "from ELF header OSABI.", 674 __FUNCTION__, file.GetPath().c_str()); 675 } 676 677 data_sp = MapFileData(file, -1, file_offset); 678 if (data_sp) 679 data.SetData(data_sp); 680 // In case there is header extension in the section #0, the header we 681 // parsed above could have sentinel values for e_phnum, e_shnum, and 682 // e_shstrndx. In this case we need to reparse the header with a 683 // bigger data source to get the actual values. 684 if (header.HasHeaderExtension()) { 685 lldb::offset_t header_offset = data_offset; 686 header.Parse(data, &header_offset); 687 } 688 689 uint32_t gnu_debuglink_crc = 0; 690 std::string gnu_debuglink_file; 691 SectionHeaderColl section_headers; 692 lldb_private::UUID &uuid = spec.GetUUID(); 693 694 GetSectionHeaderInfo(section_headers, data, header, uuid, 695 gnu_debuglink_file, gnu_debuglink_crc, 696 spec.GetArchitecture()); 697 698 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); 699 700 if (log) 701 log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s " 702 "(architecture %s)", 703 __FUNCTION__, file.GetPath().c_str(), 704 spec_triple.getTriple().c_str(), 705 spec.GetArchitecture().GetArchitectureName()); 706 707 if (!uuid.IsValid()) { 708 uint32_t core_notes_crc = 0; 709 710 if (!gnu_debuglink_crc) { 711 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 712 lldb_private::Timer scoped_timer( 713 func_cat, 714 "Calculating module crc32 %s with size %" PRIu64 " KiB", 715 file.GetLastPathComponent().AsCString(), 716 (FileSystem::Instance().GetByteSize(file) - file_offset) / 717 1024); 718 719 // For core files - which usually don't happen to have a 720 // gnu_debuglink, and are pretty bulky - calculating whole 721 // contents crc32 would be too much of luxury. Thus we will need 722 // to fallback to something simpler. 723 if (header.e_type == llvm::ELF::ET_CORE) { 724 ProgramHeaderColl program_headers; 725 GetProgramHeaderInfo(program_headers, data, header); 726 727 core_notes_crc = 728 CalculateELFNotesSegmentsCRC32(program_headers, data); 729 } else { 730 gnu_debuglink_crc = calc_gnu_debuglink_crc32( 731 data.GetDataStart(), data.GetByteSize()); 732 } 733 } 734 using u32le = llvm::support::ulittle32_t; 735 if (gnu_debuglink_crc) { 736 // Use 4 bytes of crc from the .gnu_debuglink section. 737 u32le data(gnu_debuglink_crc); 738 uuid = UUID::fromData(&data, sizeof(data)); 739 } else if (core_notes_crc) { 740 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make 741 // it look different form .gnu_debuglink crc followed by 4 bytes 742 // of note segments crc. 743 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 744 uuid = UUID::fromData(data, sizeof(data)); 745 } 746 } 747 748 specs.Append(spec); 749 } 750 } 751 } 752 } 753 754 return specs.GetSize() - initial_count; 755 } 756 757 //------------------------------------------------------------------ 758 // PluginInterface protocol 759 //------------------------------------------------------------------ 760 lldb_private::ConstString ObjectFileELF::GetPluginName() { 761 return GetPluginNameStatic(); 762 } 763 764 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } 765 //------------------------------------------------------------------ 766 // ObjectFile protocol 767 //------------------------------------------------------------------ 768 769 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 770 DataBufferSP &data_sp, lldb::offset_t data_offset, 771 const FileSpec *file, lldb::offset_t file_offset, 772 lldb::offset_t length) 773 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 774 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 775 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 776 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 777 if (file) 778 m_file = *file; 779 ::memset(&m_header, 0, sizeof(m_header)); 780 } 781 782 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 783 DataBufferSP &header_data_sp, 784 const lldb::ProcessSP &process_sp, 785 addr_t header_addr) 786 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 787 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 788 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 789 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 790 ::memset(&m_header, 0, sizeof(m_header)); 791 } 792 793 ObjectFileELF::~ObjectFileELF() {} 794 795 bool ObjectFileELF::IsExecutable() const { 796 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 797 } 798 799 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, 800 bool value_is_offset) { 801 ModuleSP module_sp = GetModule(); 802 if (module_sp) { 803 size_t num_loaded_sections = 0; 804 SectionList *section_list = GetSectionList(); 805 if (section_list) { 806 if (!value_is_offset) { 807 bool found_offset = false; 808 for (const ELFProgramHeader &H : ProgramHeaders()) { 809 if (H.p_type != PT_LOAD || H.p_offset != 0) 810 continue; 811 812 value = value - H.p_vaddr; 813 found_offset = true; 814 break; 815 } 816 if (!found_offset) 817 return false; 818 } 819 820 const size_t num_sections = section_list->GetSize(); 821 size_t sect_idx = 0; 822 823 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 824 // Iterate through the object file sections to find all of the sections 825 // that have SHF_ALLOC in their flag bits. 826 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 827 if (section_sp && section_sp->Test(SHF_ALLOC)) { 828 lldb::addr_t load_addr = section_sp->GetFileAddress(); 829 // We don't want to update the load address of a section with type 830 // eSectionTypeAbsoluteAddress as they already have the absolute load 831 // address already specified 832 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 833 load_addr += value; 834 835 // On 32-bit systems the load address have to fit into 4 bytes. The 836 // rest of the bytes are the overflow from the addition. 837 if (GetAddressByteSize() == 4) 838 load_addr &= 0xFFFFFFFF; 839 840 if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, 841 load_addr)) 842 ++num_loaded_sections; 843 } 844 } 845 return num_loaded_sections > 0; 846 } 847 } 848 return false; 849 } 850 851 ByteOrder ObjectFileELF::GetByteOrder() const { 852 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 853 return eByteOrderBig; 854 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 855 return eByteOrderLittle; 856 return eByteOrderInvalid; 857 } 858 859 uint32_t ObjectFileELF::GetAddressByteSize() const { 860 return m_data.GetAddressByteSize(); 861 } 862 863 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { 864 Symtab *symtab = GetSymtab(); 865 if (!symtab) 866 return AddressClass::eUnknown; 867 868 // The address class is determined based on the symtab. Ask it from the 869 // object file what contains the symtab information. 870 ObjectFile *symtab_objfile = symtab->GetObjectFile(); 871 if (symtab_objfile != nullptr && symtab_objfile != this) 872 return symtab_objfile->GetAddressClass(file_addr); 873 874 auto res = ObjectFile::GetAddressClass(file_addr); 875 if (res != AddressClass::eCode) 876 return res; 877 878 auto ub = m_address_class_map.upper_bound(file_addr); 879 if (ub == m_address_class_map.begin()) { 880 // No entry in the address class map before the address. Return default 881 // address class for an address in a code section. 882 return AddressClass::eCode; 883 } 884 885 // Move iterator to the address class entry preceding address 886 --ub; 887 888 return ub->second; 889 } 890 891 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { 892 return std::distance(m_section_headers.begin(), I) + 1u; 893 } 894 895 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { 896 return std::distance(m_section_headers.begin(), I) + 1u; 897 } 898 899 bool ObjectFileELF::ParseHeader() { 900 lldb::offset_t offset = 0; 901 return m_header.Parse(m_data, &offset); 902 } 903 904 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) { 905 // Need to parse the section list to get the UUIDs, so make sure that's been 906 // done. 907 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 908 return false; 909 910 using u32le = llvm::support::ulittle32_t; 911 if (m_uuid.IsValid()) { 912 // We have the full build id uuid. 913 *uuid = m_uuid; 914 return true; 915 } else if (GetType() == ObjectFile::eTypeCoreFile) { 916 uint32_t core_notes_crc = 0; 917 918 if (!ParseProgramHeaders()) 919 return false; 920 921 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 922 923 if (core_notes_crc) { 924 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look 925 // different form .gnu_debuglink crc - followed by 4 bytes of note 926 // segments crc. 927 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 928 m_uuid = UUID::fromData(data, sizeof(data)); 929 } 930 } else { 931 if (!m_gnu_debuglink_crc) 932 m_gnu_debuglink_crc = 933 calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize()); 934 if (m_gnu_debuglink_crc) { 935 // Use 4 bytes of crc from the .gnu_debuglink section. 936 u32le data(m_gnu_debuglink_crc); 937 m_uuid = UUID::fromData(&data, sizeof(data)); 938 } 939 } 940 941 if (m_uuid.IsValid()) { 942 *uuid = m_uuid; 943 return true; 944 } 945 946 return false; 947 } 948 949 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() { 950 FileSpecList file_spec_list; 951 952 if (!m_gnu_debuglink_file.empty()) { 953 FileSpec file_spec(m_gnu_debuglink_file); 954 file_spec_list.Append(file_spec); 955 } 956 return file_spec_list; 957 } 958 959 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { 960 size_t num_modules = ParseDependentModules(); 961 uint32_t num_specs = 0; 962 963 for (unsigned i = 0; i < num_modules; ++i) { 964 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 965 num_specs++; 966 } 967 968 return num_specs; 969 } 970 971 Address ObjectFileELF::GetImageInfoAddress(Target *target) { 972 if (!ParseDynamicSymbols()) 973 return Address(); 974 975 SectionList *section_list = GetSectionList(); 976 if (!section_list) 977 return Address(); 978 979 // Find the SHT_DYNAMIC (.dynamic) section. 980 SectionSP dynsym_section_sp( 981 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); 982 if (!dynsym_section_sp) 983 return Address(); 984 assert(dynsym_section_sp->GetObjectFile() == this); 985 986 user_id_t dynsym_id = dynsym_section_sp->GetID(); 987 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 988 if (!dynsym_hdr) 989 return Address(); 990 991 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { 992 ELFDynamic &symbol = m_dynamic_symbols[i]; 993 994 if (symbol.d_tag == DT_DEBUG) { 995 // Compute the offset as the number of previous entries plus the size of 996 // d_tag. 997 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 998 return Address(dynsym_section_sp, offset); 999 } 1000 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP 1001 // exists in non-PIE. 1002 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || 1003 symbol.d_tag == DT_MIPS_RLD_MAP_REL) && 1004 target) { 1005 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1006 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1007 if (dyn_base == LLDB_INVALID_ADDRESS) 1008 return Address(); 1009 1010 Status error; 1011 if (symbol.d_tag == DT_MIPS_RLD_MAP) { 1012 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1013 Address addr; 1014 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, 1015 addr)) 1016 return addr; 1017 } 1018 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { 1019 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, 1020 // relative to the address of the tag. 1021 uint64_t rel_offset; 1022 rel_offset = target->ReadUnsignedIntegerFromMemory( 1023 dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1024 if (error.Success() && rel_offset != UINT64_MAX) { 1025 Address addr; 1026 addr_t debug_ptr_address = 1027 dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1028 addr.SetOffset(debug_ptr_address); 1029 return addr; 1030 } 1031 } 1032 } 1033 } 1034 1035 return Address(); 1036 } 1037 1038 lldb_private::Address ObjectFileELF::GetEntryPointAddress() { 1039 if (m_entry_point_address.IsValid()) 1040 return m_entry_point_address; 1041 1042 if (!ParseHeader() || !IsExecutable()) 1043 return m_entry_point_address; 1044 1045 SectionList *section_list = GetSectionList(); 1046 addr_t offset = m_header.e_entry; 1047 1048 if (!section_list) 1049 m_entry_point_address.SetOffset(offset); 1050 else 1051 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1052 return m_entry_point_address; 1053 } 1054 1055 //---------------------------------------------------------------------- 1056 // ParseDependentModules 1057 //---------------------------------------------------------------------- 1058 size_t ObjectFileELF::ParseDependentModules() { 1059 if (m_filespec_ap.get()) 1060 return m_filespec_ap->GetSize(); 1061 1062 m_filespec_ap.reset(new FileSpecList()); 1063 1064 if (!ParseSectionHeaders()) 1065 return 0; 1066 1067 SectionList *section_list = GetSectionList(); 1068 if (!section_list) 1069 return 0; 1070 1071 // Find the SHT_DYNAMIC section. 1072 Section *dynsym = 1073 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 1074 .get(); 1075 if (!dynsym) 1076 return 0; 1077 assert(dynsym->GetObjectFile() == this); 1078 1079 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); 1080 if (!header) 1081 return 0; 1082 // sh_link: section header index of string table used by entries in the 1083 // section. 1084 Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get(); 1085 if (!dynstr) 1086 return 0; 1087 1088 DataExtractor dynsym_data; 1089 DataExtractor dynstr_data; 1090 if (ReadSectionData(dynsym, dynsym_data) && 1091 ReadSectionData(dynstr, dynstr_data)) { 1092 ELFDynamic symbol; 1093 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1094 lldb::offset_t offset = 0; 1095 1096 // The only type of entries we are concerned with are tagged DT_NEEDED, 1097 // yielding the name of a required library. 1098 while (offset < section_size) { 1099 if (!symbol.Parse(dynsym_data, &offset)) 1100 break; 1101 1102 if (symbol.d_tag != DT_NEEDED) 1103 continue; 1104 1105 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1106 const char *lib_name = dynstr_data.PeekCStr(str_index); 1107 FileSpec file_spec(lib_name); 1108 FileSystem::Instance().Resolve(file_spec); 1109 m_filespec_ap->Append(file_spec); 1110 } 1111 } 1112 1113 return m_filespec_ap->GetSize(); 1114 } 1115 1116 //---------------------------------------------------------------------- 1117 // GetProgramHeaderInfo 1118 //---------------------------------------------------------------------- 1119 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1120 DataExtractor &object_data, 1121 const ELFHeader &header) { 1122 // We have already parsed the program headers 1123 if (!program_headers.empty()) 1124 return program_headers.size(); 1125 1126 // If there are no program headers to read we are done. 1127 if (header.e_phnum == 0) 1128 return 0; 1129 1130 program_headers.resize(header.e_phnum); 1131 if (program_headers.size() != header.e_phnum) 1132 return 0; 1133 1134 const size_t ph_size = header.e_phnum * header.e_phentsize; 1135 const elf_off ph_offset = header.e_phoff; 1136 DataExtractor data; 1137 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1138 return 0; 1139 1140 uint32_t idx; 1141 lldb::offset_t offset; 1142 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { 1143 if (!program_headers[idx].Parse(data, &offset)) 1144 break; 1145 } 1146 1147 if (idx < program_headers.size()) 1148 program_headers.resize(idx); 1149 1150 return program_headers.size(); 1151 } 1152 1153 //---------------------------------------------------------------------- 1154 // ParseProgramHeaders 1155 //---------------------------------------------------------------------- 1156 bool ObjectFileELF::ParseProgramHeaders() { 1157 return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0; 1158 } 1159 1160 lldb_private::Status 1161 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, 1162 lldb_private::ArchSpec &arch_spec, 1163 lldb_private::UUID &uuid) { 1164 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1165 Status error; 1166 1167 lldb::offset_t offset = 0; 1168 1169 while (true) { 1170 // Parse the note header. If this fails, bail out. 1171 const lldb::offset_t note_offset = offset; 1172 ELFNote note = ELFNote(); 1173 if (!note.Parse(data, &offset)) { 1174 // We're done. 1175 return error; 1176 } 1177 1178 if (log) 1179 log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, 1180 __FUNCTION__, note.n_name.c_str(), note.n_type); 1181 1182 // Process FreeBSD ELF notes. 1183 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1184 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1185 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { 1186 // Pull out the min version info. 1187 uint32_t version_info; 1188 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1189 error.SetErrorString("failed to read FreeBSD ABI note payload"); 1190 return error; 1191 } 1192 1193 // Convert the version info into a major/minor number. 1194 const uint32_t version_major = version_info / 100000; 1195 const uint32_t version_minor = (version_info / 1000) % 100; 1196 1197 char os_name[32]; 1198 snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, 1199 version_major, version_minor); 1200 1201 // Set the elf OS version to FreeBSD. Also clear the vendor. 1202 arch_spec.GetTriple().setOSName(os_name); 1203 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1204 1205 if (log) 1206 log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 1207 ".%" PRIu32, 1208 __FUNCTION__, version_major, version_minor, 1209 static_cast<uint32_t>(version_info % 1000)); 1210 } 1211 // Process GNU ELF notes. 1212 else if (note.n_name == LLDB_NT_OWNER_GNU) { 1213 switch (note.n_type) { 1214 case LLDB_NT_GNU_ABI_TAG: 1215 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { 1216 // Pull out the min OS version supporting the ABI. 1217 uint32_t version_info[4]; 1218 if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == 1219 nullptr) { 1220 error.SetErrorString("failed to read GNU ABI note payload"); 1221 return error; 1222 } 1223 1224 // Set the OS per the OS field. 1225 switch (version_info[0]) { 1226 case LLDB_NT_GNU_ABI_OS_LINUX: 1227 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1228 arch_spec.GetTriple().setVendor( 1229 llvm::Triple::VendorType::UnknownVendor); 1230 if (log) 1231 log->Printf( 1232 "ObjectFileELF::%s detected Linux, min version %" PRIu32 1233 ".%" PRIu32 ".%" PRIu32, 1234 __FUNCTION__, version_info[1], version_info[2], 1235 version_info[3]); 1236 // FIXME we have the minimal version number, we could be propagating 1237 // that. version_info[1] = OS Major, version_info[2] = OS Minor, 1238 // version_info[3] = Revision. 1239 break; 1240 case LLDB_NT_GNU_ABI_OS_HURD: 1241 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1242 arch_spec.GetTriple().setVendor( 1243 llvm::Triple::VendorType::UnknownVendor); 1244 if (log) 1245 log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min " 1246 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1247 __FUNCTION__, version_info[1], version_info[2], 1248 version_info[3]); 1249 break; 1250 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1251 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); 1252 arch_spec.GetTriple().setVendor( 1253 llvm::Triple::VendorType::UnknownVendor); 1254 if (log) 1255 log->Printf( 1256 "ObjectFileELF::%s detected Solaris, min version %" PRIu32 1257 ".%" PRIu32 ".%" PRIu32, 1258 __FUNCTION__, version_info[1], version_info[2], 1259 version_info[3]); 1260 break; 1261 default: 1262 if (log) 1263 log->Printf( 1264 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 1265 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1266 __FUNCTION__, version_info[0], version_info[1], 1267 version_info[2], version_info[3]); 1268 break; 1269 } 1270 } 1271 break; 1272 1273 case LLDB_NT_GNU_BUILD_ID_TAG: 1274 // Only bother processing this if we don't already have the uuid set. 1275 if (!uuid.IsValid()) { 1276 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a 1277 // build-id of a different length. Accept it as long as it's at least 1278 // 4 bytes as it will be better than our own crc32. 1279 if (note.n_descsz >= 4) { 1280 if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) { 1281 // Save the build id as the UUID for the module. 1282 uuid = UUID::fromData(buf, note.n_descsz); 1283 } else { 1284 error.SetErrorString("failed to read GNU_BUILD_ID note payload"); 1285 return error; 1286 } 1287 } 1288 } 1289 break; 1290 } 1291 if (arch_spec.IsMIPS() && 1292 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1293 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform 1294 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1295 } 1296 // Process NetBSD ELF notes. 1297 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1298 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1299 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) { 1300 // Pull out the min version info. 1301 uint32_t version_info; 1302 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1303 error.SetErrorString("failed to read NetBSD ABI note payload"); 1304 return error; 1305 } 1306 1307 // Set the elf OS version to NetBSD. Also clear the vendor. 1308 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); 1309 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1310 1311 if (log) 1312 log->Printf( 1313 "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, 1314 __FUNCTION__, version_info); 1315 } 1316 // Process OpenBSD ELF notes. 1317 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) { 1318 // Set the elf OS version to OpenBSD. Also clear the vendor. 1319 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD); 1320 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1321 } 1322 // Process CSR kalimba notes 1323 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1324 (note.n_name == LLDB_NT_OWNER_CSR)) { 1325 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1326 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1327 1328 // TODO At some point the description string could be processed. 1329 // It could provide a steer towards the kalimba variant which this ELF 1330 // targets. 1331 if (note.n_descsz) { 1332 const char *cstr = 1333 data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4)); 1334 (void)cstr; 1335 } 1336 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { 1337 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1338 arch_spec.GetTriple().setEnvironment( 1339 llvm::Triple::EnvironmentType::Android); 1340 } else if (note.n_name == LLDB_NT_OWNER_LINUX) { 1341 // This is sometimes found in core files and usually contains extended 1342 // register info 1343 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1344 } else if (note.n_name == LLDB_NT_OWNER_CORE) { 1345 // Parse the NT_FILE to look for stuff in paths to shared libraries As 1346 // the contents look like this in a 64 bit ELF core file: count = 1347 // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index 1348 // start end file_ofs path ===== 1349 // ------------------ ------------------ ------------------ 1350 // ------------------------------------- [ 0] 0x0000000000400000 1351 // 0x0000000000401000 0x0000000000000000 /tmp/a.out [ 1] 1352 // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [ 1353 // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1354 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 1355 // /lib/x86_64-linux-gnu/libc-2.19.so [ 4] 0x00007fa79cba8000 1356 // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux- 1357 // gnu/libc-2.19.so [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 1358 // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [ 6] 1359 // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64 1360 // -linux-gnu/libc-2.19.so [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 1361 // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [ 8] 1362 // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64 1363 // -linux-gnu/ld-2.19.so [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 1364 // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs 1365 // the count, page_size, start, end, file_ofs are uint32_t For reference: 1366 // see readelf source code (in binutils). 1367 if (note.n_type == NT_FILE) { 1368 uint64_t count = data.GetAddress(&offset); 1369 const char *cstr; 1370 data.GetAddress(&offset); // Skip page size 1371 offset += count * 3 * 1372 data.GetAddressByteSize(); // Skip all start/end/file_ofs 1373 for (size_t i = 0; i < count; ++i) { 1374 cstr = data.GetCStr(&offset); 1375 if (cstr == nullptr) { 1376 error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " 1377 "at an offset after the end " 1378 "(GetCStr returned nullptr)", 1379 __FUNCTION__); 1380 return error; 1381 } 1382 llvm::StringRef path(cstr); 1383 if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { 1384 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1385 break; 1386 } 1387 } 1388 if (arch_spec.IsMIPS() && 1389 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1390 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some 1391 // cases (e.g. compile with -nostdlib) Hence set OS to Linux 1392 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1393 } 1394 } 1395 1396 // Calculate the offset of the next note just in case "offset" has been 1397 // used to poke at the contents of the note data 1398 offset = note_offset + note.GetByteSize(); 1399 } 1400 1401 return error; 1402 } 1403 1404 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, 1405 ArchSpec &arch_spec) { 1406 lldb::offset_t Offset = 0; 1407 1408 uint8_t FormatVersion = data.GetU8(&Offset); 1409 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1410 return; 1411 1412 Offset = Offset + sizeof(uint32_t); // Section Length 1413 llvm::StringRef VendorName = data.GetCStr(&Offset); 1414 1415 if (VendorName != "aeabi") 1416 return; 1417 1418 if (arch_spec.GetTriple().getEnvironment() == 1419 llvm::Triple::UnknownEnvironment) 1420 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1421 1422 while (Offset < length) { 1423 uint8_t Tag = data.GetU8(&Offset); 1424 uint32_t Size = data.GetU32(&Offset); 1425 1426 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1427 continue; 1428 1429 while (Offset < length) { 1430 uint64_t Tag = data.GetULEB128(&Offset); 1431 switch (Tag) { 1432 default: 1433 if (Tag < 32) 1434 data.GetULEB128(&Offset); 1435 else if (Tag % 2 == 0) 1436 data.GetULEB128(&Offset); 1437 else 1438 data.GetCStr(&Offset); 1439 1440 break; 1441 1442 case llvm::ARMBuildAttrs::CPU_raw_name: 1443 case llvm::ARMBuildAttrs::CPU_name: 1444 data.GetCStr(&Offset); 1445 1446 break; 1447 1448 case llvm::ARMBuildAttrs::ABI_VFP_args: { 1449 uint64_t VFPArgs = data.GetULEB128(&Offset); 1450 1451 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { 1452 if (arch_spec.GetTriple().getEnvironment() == 1453 llvm::Triple::UnknownEnvironment || 1454 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1455 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1456 1457 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1458 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { 1459 if (arch_spec.GetTriple().getEnvironment() == 1460 llvm::Triple::UnknownEnvironment || 1461 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1462 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1463 1464 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1465 } 1466 1467 break; 1468 } 1469 } 1470 } 1471 } 1472 } 1473 1474 //---------------------------------------------------------------------- 1475 // GetSectionHeaderInfo 1476 //---------------------------------------------------------------------- 1477 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1478 DataExtractor &object_data, 1479 const elf::ELFHeader &header, 1480 lldb_private::UUID &uuid, 1481 std::string &gnu_debuglink_file, 1482 uint32_t &gnu_debuglink_crc, 1483 ArchSpec &arch_spec) { 1484 // Don't reparse the section headers if we already did that. 1485 if (!section_headers.empty()) 1486 return section_headers.size(); 1487 1488 // Only initialize the arch_spec to okay defaults if they're not already set. 1489 // We'll refine this with note data as we parse the notes. 1490 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { 1491 llvm::Triple::OSType ostype; 1492 llvm::Triple::OSType spec_ostype; 1493 const uint32_t sub_type = subTypeFromElfHeader(header); 1494 arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, 1495 header.e_ident[EI_OSABI]); 1496 1497 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is 1498 // determined based on EI_OSABI flag and the info extracted from ELF notes 1499 // (see RefineModuleDetailsFromNote). However in some cases that still 1500 // might be not enough: for example a shared library might not have any 1501 // notes at all and have EI_OSABI flag set to System V, as result the OS 1502 // will be set to UnknownOS. 1503 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 1504 spec_ostype = arch_spec.GetTriple().getOS(); 1505 assert(spec_ostype == ostype); 1506 UNUSED_IF_ASSERT_DISABLED(spec_ostype); 1507 } 1508 1509 if (arch_spec.GetMachine() == llvm::Triple::mips || 1510 arch_spec.GetMachine() == llvm::Triple::mipsel || 1511 arch_spec.GetMachine() == llvm::Triple::mips64 || 1512 arch_spec.GetMachine() == llvm::Triple::mips64el) { 1513 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { 1514 case llvm::ELF::EF_MIPS_MICROMIPS: 1515 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); 1516 break; 1517 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1518 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); 1519 break; 1520 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1521 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); 1522 break; 1523 default: 1524 break; 1525 } 1526 } 1527 1528 if (arch_spec.GetMachine() == llvm::Triple::arm || 1529 arch_spec.GetMachine() == llvm::Triple::thumb) { 1530 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1531 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1532 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1533 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1534 } 1535 1536 // If there are no section headers we are done. 1537 if (header.e_shnum == 0) 1538 return 0; 1539 1540 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1541 1542 section_headers.resize(header.e_shnum); 1543 if (section_headers.size() != header.e_shnum) 1544 return 0; 1545 1546 const size_t sh_size = header.e_shnum * header.e_shentsize; 1547 const elf_off sh_offset = header.e_shoff; 1548 DataExtractor sh_data; 1549 if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size) 1550 return 0; 1551 1552 uint32_t idx; 1553 lldb::offset_t offset; 1554 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { 1555 if (!section_headers[idx].Parse(sh_data, &offset)) 1556 break; 1557 } 1558 if (idx < section_headers.size()) 1559 section_headers.resize(idx); 1560 1561 const unsigned strtab_idx = header.e_shstrndx; 1562 if (strtab_idx && strtab_idx < section_headers.size()) { 1563 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1564 const size_t byte_size = sheader.sh_size; 1565 const Elf64_Off offset = sheader.sh_offset; 1566 lldb_private::DataExtractor shstr_data; 1567 1568 if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) { 1569 for (SectionHeaderCollIter I = section_headers.begin(); 1570 I != section_headers.end(); ++I) { 1571 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); 1572 const ELFSectionHeaderInfo &sheader = *I; 1573 const uint64_t section_size = 1574 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1575 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1576 1577 I->section_name = name; 1578 1579 if (arch_spec.IsMIPS()) { 1580 uint32_t arch_flags = arch_spec.GetFlags(); 1581 DataExtractor data; 1582 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { 1583 1584 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1585 section_size) == section_size)) { 1586 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1587 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1588 arch_flags |= data.GetU32(&offset); 1589 1590 // The floating point ABI is at offset 7 1591 offset = 7; 1592 switch (data.GetU8(&offset)) { 1593 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: 1594 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1595 break; 1596 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: 1597 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1598 break; 1599 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: 1600 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1601 break; 1602 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: 1603 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1604 break; 1605 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: 1606 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1607 break; 1608 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: 1609 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1610 break; 1611 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: 1612 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1613 break; 1614 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: 1615 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1616 break; 1617 } 1618 } 1619 } 1620 // Settings appropriate ArchSpec ABI Flags 1621 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { 1622 case llvm::ELF::EF_MIPS_ABI_O32: 1623 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1624 break; 1625 case EF_MIPS_ABI_O64: 1626 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1627 break; 1628 case EF_MIPS_ABI_EABI32: 1629 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1630 break; 1631 case EF_MIPS_ABI_EABI64: 1632 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1633 break; 1634 default: 1635 // ABI Mask doesn't cover N32 and N64 ABI. 1636 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1637 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1638 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1639 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1640 break; 1641 } 1642 arch_spec.SetFlags(arch_flags); 1643 } 1644 1645 if (arch_spec.GetMachine() == llvm::Triple::arm || 1646 arch_spec.GetMachine() == llvm::Triple::thumb) { 1647 DataExtractor data; 1648 1649 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1650 data.SetData(object_data, sheader.sh_offset, section_size) == section_size) 1651 ParseARMAttributes(data, section_size, arch_spec); 1652 } 1653 1654 if (name == g_sect_name_gnu_debuglink) { 1655 DataExtractor data; 1656 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1657 section_size) == section_size)) { 1658 lldb::offset_t gnu_debuglink_offset = 0; 1659 gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); 1660 gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); 1661 data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1662 } 1663 } 1664 1665 // Process ELF note section entries. 1666 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1667 1668 // The section header ".note.android.ident" is stored as a 1669 // PROGBITS type header but it is actually a note header. 1670 static ConstString g_sect_name_android_ident(".note.android.ident"); 1671 if (!is_note_header && name == g_sect_name_android_ident) 1672 is_note_header = true; 1673 1674 if (is_note_header) { 1675 // Allow notes to refine module info. 1676 DataExtractor data; 1677 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1678 section_size) == section_size)) { 1679 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid); 1680 if (error.Fail()) { 1681 if (log) 1682 log->Printf("ObjectFileELF::%s ELF note processing failed: %s", 1683 __FUNCTION__, error.AsCString()); 1684 } 1685 } 1686 } 1687 } 1688 1689 // Make any unknown triple components to be unspecified unknowns. 1690 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1691 arch_spec.GetTriple().setVendorName(llvm::StringRef()); 1692 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1693 arch_spec.GetTriple().setOSName(llvm::StringRef()); 1694 1695 return section_headers.size(); 1696 } 1697 } 1698 1699 section_headers.clear(); 1700 return 0; 1701 } 1702 1703 llvm::StringRef 1704 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { 1705 size_t pos = symbol_name.find('@'); 1706 return symbol_name.substr(0, pos); 1707 } 1708 1709 //---------------------------------------------------------------------- 1710 // ParseSectionHeaders 1711 //---------------------------------------------------------------------- 1712 size_t ObjectFileELF::ParseSectionHeaders() { 1713 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, 1714 m_gnu_debuglink_file, m_gnu_debuglink_crc, 1715 m_arch_spec); 1716 } 1717 1718 const ObjectFileELF::ELFSectionHeaderInfo * 1719 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { 1720 if (!id || !ParseSectionHeaders()) 1721 return NULL; 1722 1723 if (--id < m_section_headers.size()) 1724 return &m_section_headers[id]; 1725 1726 return NULL; 1727 } 1728 1729 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { 1730 if (!name || !name[0] || !ParseSectionHeaders()) 1731 return 0; 1732 for (size_t i = 1; i < m_section_headers.size(); ++i) 1733 if (m_section_headers[i].section_name == ConstString(name)) 1734 return i; 1735 return 0; 1736 } 1737 1738 static SectionType getSectionType(llvm::StringRef Name) { 1739 return llvm::StringSwitch<SectionType>(Name) 1740 .Case(".ARM.exidx", eSectionTypeARMexidx) 1741 .Case(".ARM.extab", eSectionTypeARMextab) 1742 .Cases(".bss", ".tbss", eSectionTypeZeroFill) 1743 .Cases(".data", ".tdata", eSectionTypeData) 1744 .Case(".debug_abbrev", eSectionTypeDWARFDebugAbbrev) 1745 .Case(".debug_abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo) 1746 .Case(".debug_addr", eSectionTypeDWARFDebugAddr) 1747 .Case(".debug_aranges", eSectionTypeDWARFDebugAranges) 1748 .Case(".debug_cu_index", eSectionTypeDWARFDebugCuIndex) 1749 .Case(".debug_frame", eSectionTypeDWARFDebugFrame) 1750 .Case(".debug_info", eSectionTypeDWARFDebugInfo) 1751 .Case(".debug_info.dwo", eSectionTypeDWARFDebugInfoDwo) 1752 .Cases(".debug_line", ".debug_line.dwo", eSectionTypeDWARFDebugLine) 1753 .Cases(".debug_line_str", ".debug_line_str.dwo", 1754 eSectionTypeDWARFDebugLineStr) 1755 .Cases(".debug_loc", ".debug_loc.dwo", eSectionTypeDWARFDebugLoc) 1756 .Cases(".debug_loclists", ".debug_loclists.dwo", 1757 eSectionTypeDWARFDebugLocLists) 1758 .Case(".debug_macinfo", eSectionTypeDWARFDebugMacInfo) 1759 .Cases(".debug_macro", ".debug_macro.dwo", eSectionTypeDWARFDebugMacro) 1760 .Case(".debug_names", eSectionTypeDWARFDebugNames) 1761 .Case(".debug_pubnames", eSectionTypeDWARFDebugPubNames) 1762 .Case(".debug_pubtypes", eSectionTypeDWARFDebugPubTypes) 1763 .Case(".debug_ranges", eSectionTypeDWARFDebugRanges) 1764 .Case(".debug_rnglists", eSectionTypeDWARFDebugRngLists) 1765 .Case(".debug_str", eSectionTypeDWARFDebugStr) 1766 .Case(".debug_str.dwo", eSectionTypeDWARFDebugStrDwo) 1767 .Case(".debug_str_offsets", eSectionTypeDWARFDebugStrOffsets) 1768 .Case(".debug_str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo) 1769 .Case(".debug_types", eSectionTypeDWARFDebugTypes) 1770 .Case(".eh_frame", eSectionTypeEHFrame) 1771 .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink) 1772 .Case(".gosymtab", eSectionTypeGoSymtab) 1773 .Case(".text", eSectionTypeCode) 1774 .Default(eSectionTypeOther); 1775 } 1776 1777 void ObjectFileELF::CreateSections(SectionList &unified_section_list) { 1778 if (!m_sections_ap.get() && ParseSectionHeaders()) { 1779 m_sections_ap.reset(new SectionList()); 1780 1781 // Object files frequently have 0 for every section address, meaning we 1782 // need to compute synthetic addresses in order for "file addresses" from 1783 // different sections to not overlap 1784 bool synthaddrs = (CalculateType() == ObjectFile::Type::eTypeObjectFile); 1785 uint64_t nextaddr = 0; 1786 1787 for (SectionHeaderCollIter I = m_section_headers.begin(); 1788 I != m_section_headers.end(); ++I) { 1789 const ELFSectionHeaderInfo &header = *I; 1790 1791 ConstString &name = I->section_name; 1792 const uint64_t file_size = 1793 header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1794 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1795 1796 SectionType sect_type = getSectionType(name.GetStringRef()); 1797 1798 bool is_thread_specific = header.sh_flags & SHF_TLS; 1799 const uint32_t permissions = 1800 ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0u) | 1801 ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0u) | 1802 ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0u); 1803 switch (header.sh_type) { 1804 case SHT_SYMTAB: 1805 assert(sect_type == eSectionTypeOther); 1806 sect_type = eSectionTypeELFSymbolTable; 1807 break; 1808 case SHT_DYNSYM: 1809 assert(sect_type == eSectionTypeOther); 1810 sect_type = eSectionTypeELFDynamicSymbols; 1811 break; 1812 case SHT_RELA: 1813 case SHT_REL: 1814 assert(sect_type == eSectionTypeOther); 1815 sect_type = eSectionTypeELFRelocationEntries; 1816 break; 1817 case SHT_DYNAMIC: 1818 assert(sect_type == eSectionTypeOther); 1819 sect_type = eSectionTypeELFDynamicLinkInfo; 1820 break; 1821 } 1822 1823 if (eSectionTypeOther == sect_type) { 1824 // the kalimba toolchain assumes that ELF section names are free-form. 1825 // It does support linkscripts which (can) give rise to various 1826 // arbitrarily named sections being "Code" or "Data". 1827 sect_type = kalimbaSectionType(m_header, header); 1828 } 1829 1830 // In common case ELF code section can have arbitrary name (for example, 1831 // we can specify it using section attribute for particular function) so 1832 // assume that section is a code section if it has SHF_EXECINSTR flag set 1833 // and has SHT_PROGBITS type. 1834 if (eSectionTypeOther == sect_type && 1835 llvm::ELF::SHT_PROGBITS == header.sh_type && 1836 (header.sh_flags & SHF_EXECINSTR)) { 1837 sect_type = eSectionTypeCode; 1838 } 1839 1840 const uint32_t target_bytes_size = 1841 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) 1842 ? m_arch_spec.GetDataByteSize() 1843 : eSectionTypeCode == sect_type ? m_arch_spec.GetCodeByteSize() 1844 : 1; 1845 elf::elf_xword log2align = 1846 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); 1847 1848 uint64_t addr = header.sh_addr; 1849 1850 if ((header.sh_flags & SHF_ALLOC) && synthaddrs) { 1851 nextaddr = 1852 (nextaddr + header.sh_addralign - 1) & ~(header.sh_addralign - 1); 1853 addr = nextaddr; 1854 nextaddr += vm_size; 1855 } 1856 1857 SectionSP section_sp(new Section( 1858 GetModule(), // Module to which this section belongs. 1859 this, // ObjectFile to which this section belongs and should read 1860 // section data from. 1861 SectionIndex(I), // Section ID. 1862 name, // Section name. 1863 sect_type, // Section type. 1864 addr, // VM address. 1865 vm_size, // VM size in bytes of this section. 1866 header.sh_offset, // Offset of this section in the file. 1867 file_size, // Size of the section as found in the file. 1868 log2align, // Alignment of the section 1869 header.sh_flags, // Flags for this section. 1870 target_bytes_size)); // Number of host bytes per target byte 1871 1872 section_sp->SetPermissions(permissions); 1873 if (is_thread_specific) 1874 section_sp->SetIsThreadSpecific(is_thread_specific); 1875 m_sections_ap->AddSection(section_sp); 1876 } 1877 } 1878 1879 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the 1880 // unified section list. 1881 if (GetType() != eTypeDebugInfo) 1882 unified_section_list = *m_sections_ap; 1883 } 1884 1885 // Find the arm/aarch64 mapping symbol character in the given symbol name. 1886 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we 1887 // recognize cases when the mapping symbol prefixed by an arbitrary string 1888 // because if a symbol prefix added to each symbol in the object file with 1889 // objcopy then the mapping symbols are also prefixed. 1890 static char FindArmAarch64MappingSymbol(const char *symbol_name) { 1891 if (!symbol_name) 1892 return '\0'; 1893 1894 const char *dollar_pos = ::strchr(symbol_name, '$'); 1895 if (!dollar_pos || dollar_pos[1] == '\0') 1896 return '\0'; 1897 1898 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 1899 return dollar_pos[1]; 1900 return '\0'; 1901 } 1902 1903 #define STO_MIPS_ISA (3 << 6) 1904 #define STO_MICROMIPS (2 << 6) 1905 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) 1906 1907 // private 1908 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, 1909 SectionList *section_list, 1910 const size_t num_symbols, 1911 const DataExtractor &symtab_data, 1912 const DataExtractor &strtab_data) { 1913 ELFSymbol symbol; 1914 lldb::offset_t offset = 0; 1915 1916 static ConstString text_section_name(".text"); 1917 static ConstString init_section_name(".init"); 1918 static ConstString fini_section_name(".fini"); 1919 static ConstString ctors_section_name(".ctors"); 1920 static ConstString dtors_section_name(".dtors"); 1921 1922 static ConstString data_section_name(".data"); 1923 static ConstString rodata_section_name(".rodata"); 1924 static ConstString rodata1_section_name(".rodata1"); 1925 static ConstString data2_section_name(".data1"); 1926 static ConstString bss_section_name(".bss"); 1927 static ConstString opd_section_name(".opd"); // For ppc64 1928 1929 // On Android the oatdata and the oatexec symbols in the oat and odex files 1930 // covers the full .text section what causes issues with displaying unusable 1931 // symbol name to the user and very slow unwinding speed because the 1932 // instruction emulation based unwind plans try to emulate all instructions 1933 // in these symbols. Don't add these symbols to the symbol list as they have 1934 // no use for the debugger and they are causing a lot of trouble. Filtering 1935 // can't be restricted to Android because this special object file don't 1936 // contain the note section specifying the environment to Android but the 1937 // custom extension and file name makes it highly unlikely that this will 1938 // collide with anything else. 1939 ConstString file_extension = m_file.GetFileNameExtension(); 1940 bool skip_oatdata_oatexec = file_extension == ConstString(".oat") || 1941 file_extension == ConstString(".odex"); 1942 1943 ArchSpec arch; 1944 GetArchitecture(arch); 1945 ModuleSP module_sp(GetModule()); 1946 SectionList *module_section_list = 1947 module_sp ? module_sp->GetSectionList() : nullptr; 1948 1949 // Local cache to avoid doing a FindSectionByName for each symbol. The "const 1950 // char*" key must came from a ConstString object so they can be compared by 1951 // pointer 1952 std::unordered_map<const char *, lldb::SectionSP> section_name_to_section; 1953 1954 unsigned i; 1955 for (i = 0; i < num_symbols; ++i) { 1956 if (!symbol.Parse(symtab_data, &offset)) 1957 break; 1958 1959 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1960 if (!symbol_name) 1961 symbol_name = ""; 1962 1963 // No need to add non-section symbols that have no names 1964 if (symbol.getType() != STT_SECTION && 1965 (symbol_name == nullptr || symbol_name[0] == '\0')) 1966 continue; 1967 1968 // Skipping oatdata and oatexec sections if it is requested. See details 1969 // above the definition of skip_oatdata_oatexec for the reasons. 1970 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || 1971 ::strcmp(symbol_name, "oatexec") == 0)) 1972 continue; 1973 1974 SectionSP symbol_section_sp; 1975 SymbolType symbol_type = eSymbolTypeInvalid; 1976 Elf64_Half section_idx = symbol.st_shndx; 1977 1978 switch (section_idx) { 1979 case SHN_ABS: 1980 symbol_type = eSymbolTypeAbsolute; 1981 break; 1982 case SHN_UNDEF: 1983 symbol_type = eSymbolTypeUndefined; 1984 break; 1985 default: 1986 symbol_section_sp = section_list->GetSectionAtIndex(section_idx); 1987 break; 1988 } 1989 1990 // If a symbol is undefined do not process it further even if it has a STT 1991 // type 1992 if (symbol_type != eSymbolTypeUndefined) { 1993 switch (symbol.getType()) { 1994 default: 1995 case STT_NOTYPE: 1996 // The symbol's type is not specified. 1997 break; 1998 1999 case STT_OBJECT: 2000 // The symbol is associated with a data object, such as a variable, an 2001 // array, etc. 2002 symbol_type = eSymbolTypeData; 2003 break; 2004 2005 case STT_FUNC: 2006 // The symbol is associated with a function or other executable code. 2007 symbol_type = eSymbolTypeCode; 2008 break; 2009 2010 case STT_SECTION: 2011 // The symbol is associated with a section. Symbol table entries of 2012 // this type exist primarily for relocation and normally have STB_LOCAL 2013 // binding. 2014 break; 2015 2016 case STT_FILE: 2017 // Conventionally, the symbol's name gives the name of the source file 2018 // associated with the object file. A file symbol has STB_LOCAL 2019 // binding, its section index is SHN_ABS, and it precedes the other 2020 // STB_LOCAL symbols for the file, if it is present. 2021 symbol_type = eSymbolTypeSourceFile; 2022 break; 2023 2024 case STT_GNU_IFUNC: 2025 // The symbol is associated with an indirect function. The actual 2026 // function will be resolved if it is referenced. 2027 symbol_type = eSymbolTypeResolver; 2028 break; 2029 } 2030 } 2031 2032 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { 2033 if (symbol_section_sp) { 2034 const ConstString §_name = symbol_section_sp->GetName(); 2035 if (sect_name == text_section_name || sect_name == init_section_name || 2036 sect_name == fini_section_name || sect_name == ctors_section_name || 2037 sect_name == dtors_section_name) { 2038 symbol_type = eSymbolTypeCode; 2039 } else if (sect_name == data_section_name || 2040 sect_name == data2_section_name || 2041 sect_name == rodata_section_name || 2042 sect_name == rodata1_section_name || 2043 sect_name == bss_section_name) { 2044 symbol_type = eSymbolTypeData; 2045 } 2046 } 2047 } 2048 2049 int64_t symbol_value_offset = 0; 2050 uint32_t additional_flags = 0; 2051 2052 if (arch.IsValid()) { 2053 if (arch.GetMachine() == llvm::Triple::arm) { 2054 if (symbol.getBinding() == STB_LOCAL) { 2055 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2056 if (symbol_type == eSymbolTypeCode) { 2057 switch (mapping_symbol) { 2058 case 'a': 2059 // $a[.<any>]* - marks an ARM instruction sequence 2060 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2061 break; 2062 case 'b': 2063 case 't': 2064 // $b[.<any>]* - marks a THUMB BL instruction sequence 2065 // $t[.<any>]* - marks a THUMB instruction sequence 2066 m_address_class_map[symbol.st_value] = 2067 AddressClass::eCodeAlternateISA; 2068 break; 2069 case 'd': 2070 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2071 m_address_class_map[symbol.st_value] = AddressClass::eData; 2072 break; 2073 } 2074 } 2075 if (mapping_symbol) 2076 continue; 2077 } 2078 } else if (arch.GetMachine() == llvm::Triple::aarch64) { 2079 if (symbol.getBinding() == STB_LOCAL) { 2080 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2081 if (symbol_type == eSymbolTypeCode) { 2082 switch (mapping_symbol) { 2083 case 'x': 2084 // $x[.<any>]* - marks an A64 instruction sequence 2085 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2086 break; 2087 case 'd': 2088 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2089 m_address_class_map[symbol.st_value] = AddressClass::eData; 2090 break; 2091 } 2092 } 2093 if (mapping_symbol) 2094 continue; 2095 } 2096 } 2097 2098 if (arch.GetMachine() == llvm::Triple::arm) { 2099 if (symbol_type == eSymbolTypeCode) { 2100 if (symbol.st_value & 1) { 2101 // Subtracting 1 from the address effectively unsets the low order 2102 // bit, which results in the address actually pointing to the 2103 // beginning of the symbol. This delta will be used below in 2104 // conjunction with symbol.st_value to produce the final 2105 // symbol_value that we store in the symtab. 2106 symbol_value_offset = -1; 2107 m_address_class_map[symbol.st_value ^ 1] = 2108 AddressClass::eCodeAlternateISA; 2109 } else { 2110 // This address is ARM 2111 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2112 } 2113 } 2114 } 2115 2116 /* 2117 * MIPS: 2118 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for 2119 * MIPS). 2120 * This allows processor to switch between microMIPS and MIPS without any 2121 * need 2122 * for special mode-control register. However, apart from .debug_line, 2123 * none of 2124 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use 2125 * st_other 2126 * flag to check whether the symbol is microMIPS and then set the address 2127 * class 2128 * accordingly. 2129 */ 2130 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2131 if (llvm_arch == llvm::Triple::mips || 2132 llvm_arch == llvm::Triple::mipsel || 2133 llvm_arch == llvm::Triple::mips64 || 2134 llvm_arch == llvm::Triple::mips64el) { 2135 if (IS_MICROMIPS(symbol.st_other)) 2136 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2137 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { 2138 symbol.st_value = symbol.st_value & (~1ull); 2139 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2140 } else { 2141 if (symbol_type == eSymbolTypeCode) 2142 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2143 else if (symbol_type == eSymbolTypeData) 2144 m_address_class_map[symbol.st_value] = AddressClass::eData; 2145 else 2146 m_address_class_map[symbol.st_value] = AddressClass::eUnknown; 2147 } 2148 } 2149 } 2150 2151 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB 2152 // symbols. See above for more details. 2153 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2154 2155 if (symbol_section_sp == nullptr && section_idx == SHN_ABS && 2156 symbol.st_size != 0) { 2157 // We don't have a section for a symbol with non-zero size. Create a new 2158 // section for it so the address range covered by the symbol is also 2159 // covered by the module (represented through the section list). It is 2160 // needed so module lookup for the addresses covered by this symbol will 2161 // be successfull. This case happens for absolute symbols. 2162 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2163 symbol_section_sp = 2164 std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name, 2165 eSectionTypeAbsoluteAddress, symbol_value, 2166 symbol.st_size, 0, 0, 0, SHF_ALLOC); 2167 2168 module_section_list->AddSection(symbol_section_sp); 2169 section_list->AddSection(symbol_section_sp); 2170 } 2171 2172 if (symbol_section_sp && 2173 CalculateType() != ObjectFile::Type::eTypeObjectFile) 2174 symbol_value -= symbol_section_sp->GetFileAddress(); 2175 2176 if (symbol_section_sp && module_section_list && 2177 module_section_list != section_list) { 2178 const ConstString §_name = symbol_section_sp->GetName(); 2179 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2180 if (section_it == section_name_to_section.end()) 2181 section_it = 2182 section_name_to_section 2183 .emplace(sect_name.GetCString(), 2184 module_section_list->FindSectionByName(sect_name)) 2185 .first; 2186 if (section_it->second) 2187 symbol_section_sp = section_it->second; 2188 } 2189 2190 bool is_global = symbol.getBinding() == STB_GLOBAL; 2191 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2192 bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z'); 2193 2194 llvm::StringRef symbol_ref(symbol_name); 2195 2196 // Symbol names may contain @VERSION suffixes. Find those and strip them 2197 // temporarily. 2198 size_t version_pos = symbol_ref.find('@'); 2199 bool has_suffix = version_pos != llvm::StringRef::npos; 2200 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2201 Mangled mangled(ConstString(symbol_bare), is_mangled); 2202 2203 // Now append the suffix back to mangled and unmangled names. Only do it if 2204 // the demangling was successful (string is not empty). 2205 if (has_suffix) { 2206 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2207 2208 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2209 if (!mangled_name.empty()) 2210 mangled.SetMangledName(ConstString((mangled_name + suffix).str())); 2211 2212 ConstString demangled = 2213 mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2214 llvm::StringRef demangled_name = demangled.GetStringRef(); 2215 if (!demangled_name.empty()) 2216 mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); 2217 } 2218 2219 // In ELF all symbol should have a valid size but it is not true for some 2220 // function symbols coming from hand written assembly. As none of the 2221 // function symbol should have 0 size we try to calculate the size for 2222 // these symbols in the symtab with saying that their original size is not 2223 // valid. 2224 bool symbol_size_valid = 2225 symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2226 2227 Symbol dc_symbol( 2228 i + start_id, // ID is the original symbol table index. 2229 mangled, 2230 symbol_type, // Type of this symbol 2231 is_global, // Is this globally visible? 2232 false, // Is this symbol debug info? 2233 false, // Is this symbol a trampoline? 2234 false, // Is this symbol artificial? 2235 AddressRange(symbol_section_sp, // Section in which this symbol is 2236 // defined or null. 2237 symbol_value, // Offset in section or symbol value. 2238 symbol.st_size), // Size in bytes of this symbol. 2239 symbol_size_valid, // Symbol size is valid 2240 has_suffix, // Contains linker annotations? 2241 flags); // Symbol flags. 2242 symtab->AddSymbol(dc_symbol); 2243 } 2244 return i; 2245 } 2246 2247 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2248 user_id_t start_id, 2249 lldb_private::Section *symtab) { 2250 if (symtab->GetObjectFile() != this) { 2251 // If the symbol table section is owned by a different object file, have it 2252 // do the parsing. 2253 ObjectFileELF *obj_file_elf = 2254 static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2255 return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); 2256 } 2257 2258 // Get section list for this object file. 2259 SectionList *section_list = m_sections_ap.get(); 2260 if (!section_list) 2261 return 0; 2262 2263 user_id_t symtab_id = symtab->GetID(); 2264 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2265 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2266 symtab_hdr->sh_type == SHT_DYNSYM); 2267 2268 // sh_link: section header index of associated string table. Section ID's are 2269 // ones based. 2270 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2271 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2272 2273 if (symtab && strtab) { 2274 assert(symtab->GetObjectFile() == this); 2275 assert(strtab->GetObjectFile() == this); 2276 2277 DataExtractor symtab_data; 2278 DataExtractor strtab_data; 2279 if (ReadSectionData(symtab, symtab_data) && 2280 ReadSectionData(strtab, strtab_data)) { 2281 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2282 2283 return ParseSymbols(symbol_table, start_id, section_list, num_symbols, 2284 symtab_data, strtab_data); 2285 } 2286 } 2287 2288 return 0; 2289 } 2290 2291 size_t ObjectFileELF::ParseDynamicSymbols() { 2292 if (m_dynamic_symbols.size()) 2293 return m_dynamic_symbols.size(); 2294 2295 SectionList *section_list = GetSectionList(); 2296 if (!section_list) 2297 return 0; 2298 2299 // Find the SHT_DYNAMIC section. 2300 Section *dynsym = 2301 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 2302 .get(); 2303 if (!dynsym) 2304 return 0; 2305 assert(dynsym->GetObjectFile() == this); 2306 2307 ELFDynamic symbol; 2308 DataExtractor dynsym_data; 2309 if (ReadSectionData(dynsym, dynsym_data)) { 2310 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2311 lldb::offset_t cursor = 0; 2312 2313 while (cursor < section_size) { 2314 if (!symbol.Parse(dynsym_data, &cursor)) 2315 break; 2316 2317 m_dynamic_symbols.push_back(symbol); 2318 } 2319 } 2320 2321 return m_dynamic_symbols.size(); 2322 } 2323 2324 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { 2325 if (!ParseDynamicSymbols()) 2326 return NULL; 2327 2328 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2329 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2330 for (; I != E; ++I) { 2331 ELFDynamic *symbol = &*I; 2332 2333 if (symbol->d_tag == tag) 2334 return symbol; 2335 } 2336 2337 return NULL; 2338 } 2339 2340 unsigned ObjectFileELF::PLTRelocationType() { 2341 // DT_PLTREL 2342 // This member specifies the type of relocation entry to which the 2343 // procedure linkage table refers. The d_val member holds DT_REL or 2344 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2345 // must use the same relocation. 2346 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2347 2348 if (symbol) 2349 return symbol->d_val; 2350 2351 return 0; 2352 } 2353 2354 // Returns the size of the normal plt entries and the offset of the first 2355 // normal plt entry. The 0th entry in the plt table is usually a resolution 2356 // entry which have different size in some architectures then the rest of the 2357 // plt entries. 2358 static std::pair<uint64_t, uint64_t> 2359 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, 2360 const ELFSectionHeader *plt_hdr) { 2361 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2362 2363 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 2364 // 16 bytes. So round the entsize up by the alignment if addralign is set. 2365 elf_xword plt_entsize = 2366 plt_hdr->sh_addralign 2367 ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) 2368 : plt_hdr->sh_entsize; 2369 2370 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2371 // PLT entries relocation code in general requires multiple instruction and 2372 // should be greater than 4 bytes in most cases. Try to guess correct size 2373 // just in case. 2374 if (plt_entsize <= 4) { 2375 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the 2376 // size of the plt entries based on the number of entries and the size of 2377 // the plt section with the assumption that the size of the 0th entry is at 2378 // least as big as the size of the normal entries and it isn't much bigger 2379 // then that. 2380 if (plt_hdr->sh_addralign) 2381 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / 2382 (num_relocations + 1) * plt_hdr->sh_addralign; 2383 else 2384 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2385 } 2386 2387 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2388 2389 return std::make_pair(plt_entsize, plt_offset); 2390 } 2391 2392 static unsigned ParsePLTRelocations( 2393 Symtab *symbol_table, user_id_t start_id, unsigned rel_type, 2394 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2395 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, 2396 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, 2397 DataExtractor &symtab_data, DataExtractor &strtab_data) { 2398 ELFRelocation rel(rel_type); 2399 ELFSymbol symbol; 2400 lldb::offset_t offset = 0; 2401 2402 uint64_t plt_offset, plt_entsize; 2403 std::tie(plt_entsize, plt_offset) = 2404 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2405 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2406 2407 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2408 reloc_info_fn reloc_type; 2409 reloc_info_fn reloc_symbol; 2410 2411 if (hdr->Is32Bit()) { 2412 reloc_type = ELFRelocation::RelocType32; 2413 reloc_symbol = ELFRelocation::RelocSymbol32; 2414 } else { 2415 reloc_type = ELFRelocation::RelocType64; 2416 reloc_symbol = ELFRelocation::RelocSymbol64; 2417 } 2418 2419 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2420 unsigned i; 2421 for (i = 0; i < num_relocations; ++i) { 2422 if (!rel.Parse(rel_data, &offset)) 2423 break; 2424 2425 if (reloc_type(rel) != slot_type) 2426 continue; 2427 2428 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2429 if (!symbol.Parse(symtab_data, &symbol_offset)) 2430 break; 2431 2432 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2433 bool is_mangled = 2434 symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2435 uint64_t plt_index = plt_offset + i * plt_entsize; 2436 2437 Symbol jump_symbol( 2438 i + start_id, // Symbol table index 2439 symbol_name, // symbol name. 2440 is_mangled, // is the symbol name mangled? 2441 eSymbolTypeTrampoline, // Type of this symbol 2442 false, // Is this globally visible? 2443 false, // Is this symbol debug info? 2444 true, // Is this symbol a trampoline? 2445 true, // Is this symbol artificial? 2446 plt_section_sp, // Section in which this symbol is defined or null. 2447 plt_index, // Offset in section or symbol value. 2448 plt_entsize, // Size in bytes of this symbol. 2449 true, // Size is valid 2450 false, // Contains linker annotations? 2451 0); // Symbol flags. 2452 2453 symbol_table->AddSymbol(jump_symbol); 2454 } 2455 2456 return i; 2457 } 2458 2459 unsigned 2460 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, 2461 const ELFSectionHeaderInfo *rel_hdr, 2462 user_id_t rel_id) { 2463 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2464 2465 // The link field points to the associated symbol table. 2466 user_id_t symtab_id = rel_hdr->sh_link; 2467 2468 // If the link field doesn't point to the appropriate symbol name table then 2469 // try to find it by name as some compiler don't fill in the link fields. 2470 if (!symtab_id) 2471 symtab_id = GetSectionIndexByName(".dynsym"); 2472 2473 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2474 // point that to the .got.plt or .got section instead of .plt. 2475 user_id_t plt_id = GetSectionIndexByName(".plt"); 2476 2477 if (!symtab_id || !plt_id) 2478 return 0; 2479 2480 // Section ID's are ones based; 2481 symtab_id++; 2482 plt_id++; 2483 2484 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2485 if (!plt_hdr) 2486 return 0; 2487 2488 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2489 if (!sym_hdr) 2490 return 0; 2491 2492 SectionList *section_list = m_sections_ap.get(); 2493 if (!section_list) 2494 return 0; 2495 2496 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2497 if (!rel_section) 2498 return 0; 2499 2500 SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); 2501 if (!plt_section_sp) 2502 return 0; 2503 2504 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2505 if (!symtab) 2506 return 0; 2507 2508 // sh_link points to associated string table. 2509 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2510 if (!strtab) 2511 return 0; 2512 2513 DataExtractor rel_data; 2514 if (!ReadSectionData(rel_section, rel_data)) 2515 return 0; 2516 2517 DataExtractor symtab_data; 2518 if (!ReadSectionData(symtab, symtab_data)) 2519 return 0; 2520 2521 DataExtractor strtab_data; 2522 if (!ReadSectionData(strtab, strtab_data)) 2523 return 0; 2524 2525 unsigned rel_type = PLTRelocationType(); 2526 if (!rel_type) 2527 return 0; 2528 2529 return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, 2530 rel_hdr, plt_hdr, sym_hdr, plt_section_sp, 2531 rel_data, symtab_data, strtab_data); 2532 } 2533 2534 unsigned ObjectFileELF::ApplyRelocations( 2535 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2536 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2537 DataExtractor &rel_data, DataExtractor &symtab_data, 2538 DataExtractor &debug_data, Section *rel_section) { 2539 ELFRelocation rel(rel_hdr->sh_type); 2540 lldb::addr_t offset = 0; 2541 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2542 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2543 reloc_info_fn reloc_type; 2544 reloc_info_fn reloc_symbol; 2545 2546 if (hdr->Is32Bit()) { 2547 reloc_type = ELFRelocation::RelocType32; 2548 reloc_symbol = ELFRelocation::RelocSymbol32; 2549 } else { 2550 reloc_type = ELFRelocation::RelocType64; 2551 reloc_symbol = ELFRelocation::RelocSymbol64; 2552 } 2553 2554 for (unsigned i = 0; i < num_relocations; ++i) { 2555 if (!rel.Parse(rel_data, &offset)) 2556 break; 2557 2558 Symbol *symbol = NULL; 2559 2560 if (hdr->Is32Bit()) { 2561 switch (reloc_type(rel)) { 2562 case R_386_32: 2563 case R_386_PC32: 2564 default: 2565 // FIXME: This asserts with this input: 2566 // 2567 // foo.cpp 2568 // int main(int argc, char **argv) { return 0; } 2569 // 2570 // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o 2571 // 2572 // and running this on the foo.o module. 2573 assert(false && "unexpected relocation type"); 2574 } 2575 } else { 2576 switch (reloc_type(rel)) { 2577 case R_AARCH64_ABS64: 2578 case R_X86_64_64: { 2579 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2580 if (symbol) { 2581 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2582 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2583 uint64_t *dst = reinterpret_cast<uint64_t *>( 2584 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2585 ELFRelocation::RelocOffset64(rel)); 2586 uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel); 2587 memcpy(dst, &val_offset, sizeof(uint64_t)); 2588 } 2589 break; 2590 } 2591 case R_X86_64_32: 2592 case R_X86_64_32S: 2593 case R_AARCH64_ABS32: { 2594 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2595 if (symbol) { 2596 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2597 value += ELFRelocation::RelocAddend32(rel); 2598 if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) || 2599 (reloc_type(rel) == R_X86_64_32S && 2600 ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) || 2601 (reloc_type(rel) == R_AARCH64_ABS32 && 2602 ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) { 2603 Log *log = 2604 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 2605 log->Printf("Failed to apply debug info relocations"); 2606 break; 2607 } 2608 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2609 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2610 uint32_t *dst = reinterpret_cast<uint32_t *>( 2611 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2612 ELFRelocation::RelocOffset32(rel)); 2613 memcpy(dst, &truncated_addr, sizeof(uint32_t)); 2614 } 2615 break; 2616 } 2617 case R_X86_64_PC32: 2618 default: 2619 assert(false && "unexpected relocation type"); 2620 } 2621 } 2622 } 2623 2624 return 0; 2625 } 2626 2627 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, 2628 user_id_t rel_id, 2629 lldb_private::Symtab *thetab) { 2630 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2631 2632 // Parse in the section list if needed. 2633 SectionList *section_list = GetSectionList(); 2634 if (!section_list) 2635 return 0; 2636 2637 // Section ID's are ones based. 2638 user_id_t symtab_id = rel_hdr->sh_link + 1; 2639 user_id_t debug_id = rel_hdr->sh_info + 1; 2640 2641 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2642 if (!symtab_hdr) 2643 return 0; 2644 2645 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2646 if (!debug_hdr) 2647 return 0; 2648 2649 Section *rel = section_list->FindSectionByID(rel_id).get(); 2650 if (!rel) 2651 return 0; 2652 2653 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2654 if (!symtab) 2655 return 0; 2656 2657 Section *debug = section_list->FindSectionByID(debug_id).get(); 2658 if (!debug) 2659 return 0; 2660 2661 DataExtractor rel_data; 2662 DataExtractor symtab_data; 2663 DataExtractor debug_data; 2664 2665 if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) && 2666 GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) && 2667 GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) { 2668 ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr, 2669 rel_data, symtab_data, debug_data, debug); 2670 } 2671 2672 return 0; 2673 } 2674 2675 Symtab *ObjectFileELF::GetSymtab() { 2676 ModuleSP module_sp(GetModule()); 2677 if (!module_sp) 2678 return NULL; 2679 2680 // We always want to use the main object file so we (hopefully) only have one 2681 // cached copy of our symtab, dynamic sections, etc. 2682 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2683 if (module_obj_file && module_obj_file != this) 2684 return module_obj_file->GetSymtab(); 2685 2686 if (m_symtab_ap.get() == NULL) { 2687 SectionList *section_list = module_sp->GetSectionList(); 2688 if (!section_list) 2689 return NULL; 2690 2691 uint64_t symbol_id = 0; 2692 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2693 2694 // Sharable objects and dynamic executables usually have 2 distinct symbol 2695 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a 2696 // smaller version of the symtab that only contains global symbols. The 2697 // information found in the dynsym is therefore also found in the symtab, 2698 // while the reverse is not necessarily true. 2699 Section *symtab = 2700 section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); 2701 if (!symtab) { 2702 // The symtab section is non-allocable and can be stripped, so if it 2703 // doesn't exist then use the dynsym section which should always be 2704 // there. 2705 symtab = 2706 section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) 2707 .get(); 2708 } 2709 if (symtab) { 2710 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2711 symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab); 2712 } 2713 2714 // DT_JMPREL 2715 // If present, this entry's d_ptr member holds the address of 2716 // relocation 2717 // entries associated solely with the procedure linkage table. 2718 // Separating 2719 // these relocation entries lets the dynamic linker ignore them during 2720 // process initialization, if lazy binding is enabled. If this entry is 2721 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2722 // also be present. 2723 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2724 if (symbol) { 2725 // Synthesize trampoline symbols to help navigate the PLT. 2726 addr_t addr = symbol->d_ptr; 2727 Section *reloc_section = 2728 section_list->FindSectionContainingFileAddress(addr).get(); 2729 if (reloc_section) { 2730 user_id_t reloc_id = reloc_section->GetID(); 2731 const ELFSectionHeaderInfo *reloc_header = 2732 GetSectionHeaderByIndex(reloc_id); 2733 assert(reloc_header); 2734 2735 if (m_symtab_ap == nullptr) 2736 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2737 2738 ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header, 2739 reloc_id); 2740 } 2741 } 2742 2743 DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo(); 2744 if (eh_frame) { 2745 if (m_symtab_ap == nullptr) 2746 m_symtab_ap.reset(new Symtab(this)); 2747 ParseUnwindSymbols(m_symtab_ap.get(), eh_frame); 2748 } 2749 2750 // If we still don't have any symtab then create an empty instance to avoid 2751 // do the section lookup next time. 2752 if (m_symtab_ap == nullptr) 2753 m_symtab_ap.reset(new Symtab(this)); 2754 2755 m_symtab_ap->CalculateSymbolSizes(); 2756 } 2757 2758 return m_symtab_ap.get(); 2759 } 2760 2761 void ObjectFileELF::RelocateSection(lldb_private::Section *section) 2762 { 2763 static const char *debug_prefix = ".debug"; 2764 2765 // Set relocated bit so we stop getting called, regardless of whether we 2766 // actually relocate. 2767 section->SetIsRelocated(true); 2768 2769 // We only relocate in ELF relocatable files 2770 if (CalculateType() != eTypeObjectFile) 2771 return; 2772 2773 const char *section_name = section->GetName().GetCString(); 2774 // Can't relocate that which can't be named 2775 if (section_name == nullptr) 2776 return; 2777 2778 // We don't relocate non-debug sections at the moment 2779 if (strncmp(section_name, debug_prefix, strlen(debug_prefix))) 2780 return; 2781 2782 // Relocation section names to look for 2783 std::string needle = std::string(".rel") + section_name; 2784 std::string needlea = std::string(".rela") + section_name; 2785 2786 for (SectionHeaderCollIter I = m_section_headers.begin(); 2787 I != m_section_headers.end(); ++I) { 2788 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { 2789 const char *hay_name = I->section_name.GetCString(); 2790 if (hay_name == nullptr) 2791 continue; 2792 if (needle == hay_name || needlea == hay_name) { 2793 const ELFSectionHeader &reloc_header = *I; 2794 user_id_t reloc_id = SectionIndex(I); 2795 RelocateDebugSections(&reloc_header, reloc_id, GetSymtab()); 2796 break; 2797 } 2798 } 2799 } 2800 } 2801 2802 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, 2803 DWARFCallFrameInfo *eh_frame) { 2804 SectionList *section_list = GetSectionList(); 2805 if (!section_list) 2806 return; 2807 2808 // First we save the new symbols into a separate list and add them to the 2809 // symbol table after we colleced all symbols we want to add. This is 2810 // neccessary because adding a new symbol invalidates the internal index of 2811 // the symtab what causing the next lookup to be slow because it have to 2812 // recalculate the index first. 2813 std::vector<Symbol> new_symbols; 2814 2815 eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols]( 2816 lldb::addr_t file_addr, uint32_t size, dw_offset_t) { 2817 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 2818 if (symbol) { 2819 if (!symbol->GetByteSizeIsValid()) { 2820 symbol->SetByteSize(size); 2821 symbol->SetSizeIsSynthesized(true); 2822 } 2823 } else { 2824 SectionSP section_sp = 2825 section_list->FindSectionContainingFileAddress(file_addr); 2826 if (section_sp) { 2827 addr_t offset = file_addr - section_sp->GetFileAddress(); 2828 const char *symbol_name = GetNextSyntheticSymbolName().GetCString(); 2829 uint64_t symbol_id = symbol_table->GetNumSymbols(); 2830 Symbol eh_symbol( 2831 symbol_id, // Symbol table index. 2832 symbol_name, // Symbol name. 2833 false, // Is the symbol name mangled? 2834 eSymbolTypeCode, // Type of this symbol. 2835 true, // Is this globally visible? 2836 false, // Is this symbol debug info? 2837 false, // Is this symbol a trampoline? 2838 true, // Is this symbol artificial? 2839 section_sp, // Section in which this symbol is defined or null. 2840 offset, // Offset in section or symbol value. 2841 0, // Size: Don't specify the size as an FDE can 2842 false, // Size is valid: cover multiple symbols. 2843 false, // Contains linker annotations? 2844 0); // Symbol flags. 2845 new_symbols.push_back(eh_symbol); 2846 } 2847 } 2848 return true; 2849 }); 2850 2851 for (const Symbol &s : new_symbols) 2852 symbol_table->AddSymbol(s); 2853 } 2854 2855 bool ObjectFileELF::IsStripped() { 2856 // TODO: determine this for ELF 2857 return false; 2858 } 2859 2860 //===----------------------------------------------------------------------===// 2861 // Dump 2862 // 2863 // Dump the specifics of the runtime file container (such as any headers 2864 // segments, sections, etc). 2865 //---------------------------------------------------------------------- 2866 void ObjectFileELF::Dump(Stream *s) { 2867 ModuleSP module_sp(GetModule()); 2868 if (!module_sp) { 2869 return; 2870 } 2871 2872 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2873 s->Printf("%p: ", static_cast<void *>(this)); 2874 s->Indent(); 2875 s->PutCString("ObjectFileELF"); 2876 2877 ArchSpec header_arch; 2878 GetArchitecture(header_arch); 2879 2880 *s << ", file = '" << m_file 2881 << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2882 2883 DumpELFHeader(s, m_header); 2884 s->EOL(); 2885 DumpELFProgramHeaders(s); 2886 s->EOL(); 2887 DumpELFSectionHeaders(s); 2888 s->EOL(); 2889 SectionList *section_list = GetSectionList(); 2890 if (section_list) 2891 section_list->Dump(s, NULL, true, UINT32_MAX); 2892 Symtab *symtab = GetSymtab(); 2893 if (symtab) 2894 symtab->Dump(s, NULL, eSortOrderNone); 2895 s->EOL(); 2896 DumpDependentModules(s); 2897 s->EOL(); 2898 } 2899 2900 //---------------------------------------------------------------------- 2901 // DumpELFHeader 2902 // 2903 // Dump the ELF header to the specified output stream 2904 //---------------------------------------------------------------------- 2905 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { 2906 s->PutCString("ELF Header\n"); 2907 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2908 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], 2909 header.e_ident[EI_MAG1]); 2910 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], 2911 header.e_ident[EI_MAG2]); 2912 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], 2913 header.e_ident[EI_MAG3]); 2914 2915 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2916 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2917 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2918 s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2919 s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2920 2921 s->Printf("e_type = 0x%4.4x ", header.e_type); 2922 DumpELFHeader_e_type(s, header.e_type); 2923 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2924 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2925 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2926 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2927 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2928 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2929 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2930 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2931 s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum); 2932 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2933 s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum); 2934 s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx); 2935 } 2936 2937 //---------------------------------------------------------------------- 2938 // DumpELFHeader_e_type 2939 // 2940 // Dump an token value for the ELF header member e_type 2941 //---------------------------------------------------------------------- 2942 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { 2943 switch (e_type) { 2944 case ET_NONE: 2945 *s << "ET_NONE"; 2946 break; 2947 case ET_REL: 2948 *s << "ET_REL"; 2949 break; 2950 case ET_EXEC: 2951 *s << "ET_EXEC"; 2952 break; 2953 case ET_DYN: 2954 *s << "ET_DYN"; 2955 break; 2956 case ET_CORE: 2957 *s << "ET_CORE"; 2958 break; 2959 default: 2960 break; 2961 } 2962 } 2963 2964 //---------------------------------------------------------------------- 2965 // DumpELFHeader_e_ident_EI_DATA 2966 // 2967 // Dump an token value for the ELF header member e_ident[EI_DATA] 2968 //---------------------------------------------------------------------- 2969 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, 2970 unsigned char ei_data) { 2971 switch (ei_data) { 2972 case ELFDATANONE: 2973 *s << "ELFDATANONE"; 2974 break; 2975 case ELFDATA2LSB: 2976 *s << "ELFDATA2LSB - Little Endian"; 2977 break; 2978 case ELFDATA2MSB: 2979 *s << "ELFDATA2MSB - Big Endian"; 2980 break; 2981 default: 2982 break; 2983 } 2984 } 2985 2986 //---------------------------------------------------------------------- 2987 // DumpELFProgramHeader 2988 // 2989 // Dump a single ELF program header to the specified output stream 2990 //---------------------------------------------------------------------- 2991 void ObjectFileELF::DumpELFProgramHeader(Stream *s, 2992 const ELFProgramHeader &ph) { 2993 DumpELFProgramHeader_p_type(s, ph.p_type); 2994 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, 2995 ph.p_vaddr, ph.p_paddr); 2996 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, 2997 ph.p_flags); 2998 2999 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3000 s->Printf(") %8.8" PRIx64, ph.p_align); 3001 } 3002 3003 //---------------------------------------------------------------------- 3004 // DumpELFProgramHeader_p_type 3005 // 3006 // Dump an token value for the ELF program header member p_type which describes 3007 // the type of the program header 3008 // ---------------------------------------------------------------------- 3009 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { 3010 const int kStrWidth = 15; 3011 switch (p_type) { 3012 CASE_AND_STREAM(s, PT_NULL, kStrWidth); 3013 CASE_AND_STREAM(s, PT_LOAD, kStrWidth); 3014 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); 3015 CASE_AND_STREAM(s, PT_INTERP, kStrWidth); 3016 CASE_AND_STREAM(s, PT_NOTE, kStrWidth); 3017 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); 3018 CASE_AND_STREAM(s, PT_PHDR, kStrWidth); 3019 CASE_AND_STREAM(s, PT_TLS, kStrWidth); 3020 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3021 default: 3022 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3023 break; 3024 } 3025 } 3026 3027 //---------------------------------------------------------------------- 3028 // DumpELFProgramHeader_p_flags 3029 // 3030 // Dump an token value for the ELF program header member p_flags 3031 //---------------------------------------------------------------------- 3032 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { 3033 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3034 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3035 << ((p_flags & PF_W) ? "PF_W" : " ") 3036 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3037 << ((p_flags & PF_R) ? "PF_R" : " "); 3038 } 3039 3040 //---------------------------------------------------------------------- 3041 // DumpELFProgramHeaders 3042 // 3043 // Dump all of the ELF program header to the specified output stream 3044 //---------------------------------------------------------------------- 3045 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { 3046 if (!ParseProgramHeaders()) 3047 return; 3048 3049 s->PutCString("Program Headers\n"); 3050 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3051 "p_filesz p_memsz p_flags p_align\n"); 3052 s->PutCString("==== --------------- -------- -------- -------- " 3053 "-------- -------- ------------------------- --------\n"); 3054 3055 for (const auto &H : llvm::enumerate(m_program_headers)) { 3056 s->Format("[{0,2}] ", H.index()); 3057 ObjectFileELF::DumpELFProgramHeader(s, H.value()); 3058 s->EOL(); 3059 } 3060 } 3061 3062 //---------------------------------------------------------------------- 3063 // DumpELFSectionHeader 3064 // 3065 // Dump a single ELF section header to the specified output stream 3066 //---------------------------------------------------------------------- 3067 void ObjectFileELF::DumpELFSectionHeader(Stream *s, 3068 const ELFSectionHeaderInfo &sh) { 3069 s->Printf("%8.8x ", sh.sh_name); 3070 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3071 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3072 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3073 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, 3074 sh.sh_offset, sh.sh_size); 3075 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3076 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3077 } 3078 3079 //---------------------------------------------------------------------- 3080 // DumpELFSectionHeader_sh_type 3081 // 3082 // Dump an token value for the ELF section header member sh_type which 3083 // describes the type of the section 3084 //---------------------------------------------------------------------- 3085 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { 3086 const int kStrWidth = 12; 3087 switch (sh_type) { 3088 CASE_AND_STREAM(s, SHT_NULL, kStrWidth); 3089 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); 3090 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); 3091 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); 3092 CASE_AND_STREAM(s, SHT_RELA, kStrWidth); 3093 CASE_AND_STREAM(s, SHT_HASH, kStrWidth); 3094 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); 3095 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); 3096 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); 3097 CASE_AND_STREAM(s, SHT_REL, kStrWidth); 3098 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); 3099 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); 3100 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); 3101 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); 3102 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); 3103 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); 3104 default: 3105 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3106 break; 3107 } 3108 } 3109 3110 //---------------------------------------------------------------------- 3111 // DumpELFSectionHeader_sh_flags 3112 // 3113 // Dump an token value for the ELF section header member sh_flags 3114 //---------------------------------------------------------------------- 3115 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, 3116 elf_xword sh_flags) { 3117 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3118 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3119 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3120 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3121 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3122 } 3123 3124 //---------------------------------------------------------------------- 3125 // DumpELFSectionHeaders 3126 // 3127 // Dump all of the ELF section header to the specified output stream 3128 //---------------------------------------------------------------------- 3129 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { 3130 if (!ParseSectionHeaders()) 3131 return; 3132 3133 s->PutCString("Section Headers\n"); 3134 s->PutCString("IDX name type flags " 3135 "addr offset size link info addralgn " 3136 "entsize Name\n"); 3137 s->PutCString("==== -------- ------------ -------------------------------- " 3138 "-------- -------- -------- -------- -------- -------- " 3139 "-------- ====================\n"); 3140 3141 uint32_t idx = 0; 3142 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3143 I != m_section_headers.end(); ++I, ++idx) { 3144 s->Printf("[%2u] ", idx); 3145 ObjectFileELF::DumpELFSectionHeader(s, *I); 3146 const char *section_name = I->section_name.AsCString(""); 3147 if (section_name) 3148 *s << ' ' << section_name << "\n"; 3149 } 3150 } 3151 3152 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { 3153 size_t num_modules = ParseDependentModules(); 3154 3155 if (num_modules > 0) { 3156 s->PutCString("Dependent Modules:\n"); 3157 for (unsigned i = 0; i < num_modules; ++i) { 3158 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3159 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3160 } 3161 } 3162 } 3163 3164 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) { 3165 if (!ParseHeader()) 3166 return false; 3167 3168 if (m_section_headers.empty()) { 3169 // Allow elf notes to be parsed which may affect the detected architecture. 3170 ParseSectionHeaders(); 3171 } 3172 3173 if (CalculateType() == eTypeCoreFile && 3174 m_arch_spec.TripleOSIsUnspecifiedUnknown()) { 3175 // Core files don't have section headers yet they have PT_NOTE program 3176 // headers that might shed more light on the architecture 3177 for (const elf::ELFProgramHeader &H : ProgramHeaders()) { 3178 if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0) 3179 continue; 3180 DataExtractor data; 3181 if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) { 3182 UUID uuid; 3183 RefineModuleDetailsFromNote(data, m_arch_spec, uuid); 3184 } 3185 } 3186 } 3187 arch = m_arch_spec; 3188 return true; 3189 } 3190 3191 ObjectFile::Type ObjectFileELF::CalculateType() { 3192 switch (m_header.e_type) { 3193 case llvm::ELF::ET_NONE: 3194 // 0 - No file type 3195 return eTypeUnknown; 3196 3197 case llvm::ELF::ET_REL: 3198 // 1 - Relocatable file 3199 return eTypeObjectFile; 3200 3201 case llvm::ELF::ET_EXEC: 3202 // 2 - Executable file 3203 return eTypeExecutable; 3204 3205 case llvm::ELF::ET_DYN: 3206 // 3 - Shared object file 3207 return eTypeSharedLibrary; 3208 3209 case ET_CORE: 3210 // 4 - Core file 3211 return eTypeCoreFile; 3212 3213 default: 3214 break; 3215 } 3216 return eTypeUnknown; 3217 } 3218 3219 ObjectFile::Strata ObjectFileELF::CalculateStrata() { 3220 switch (m_header.e_type) { 3221 case llvm::ELF::ET_NONE: 3222 // 0 - No file type 3223 return eStrataUnknown; 3224 3225 case llvm::ELF::ET_REL: 3226 // 1 - Relocatable file 3227 return eStrataUnknown; 3228 3229 case llvm::ELF::ET_EXEC: 3230 // 2 - Executable file 3231 // TODO: is there any way to detect that an executable is a kernel 3232 // related executable by inspecting the program headers, section headers, 3233 // symbols, or any other flag bits??? 3234 return eStrataUser; 3235 3236 case llvm::ELF::ET_DYN: 3237 // 3 - Shared object file 3238 // TODO: is there any way to detect that an shared library is a kernel 3239 // related executable by inspecting the program headers, section headers, 3240 // symbols, or any other flag bits??? 3241 return eStrataUnknown; 3242 3243 case ET_CORE: 3244 // 4 - Core file 3245 // TODO: is there any way to detect that an core file is a kernel 3246 // related executable by inspecting the program headers, section headers, 3247 // symbols, or any other flag bits??? 3248 return eStrataUnknown; 3249 3250 default: 3251 break; 3252 } 3253 return eStrataUnknown; 3254 } 3255 3256 size_t ObjectFileELF::ReadSectionData(Section *section, 3257 lldb::offset_t section_offset, void *dst, 3258 size_t dst_len) { 3259 // If some other objectfile owns this data, pass this to them. 3260 if (section->GetObjectFile() != this) 3261 return section->GetObjectFile()->ReadSectionData(section, section_offset, 3262 dst, dst_len); 3263 3264 if (!section->Test(SHF_COMPRESSED)) 3265 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len); 3266 3267 // For compressed sections we need to read to full data to be able to 3268 // decompress. 3269 DataExtractor data; 3270 ReadSectionData(section, data); 3271 return data.CopyData(section_offset, dst_len, dst); 3272 } 3273 3274 size_t ObjectFileELF::ReadSectionData(Section *section, 3275 DataExtractor §ion_data) { 3276 // If some other objectfile owns this data, pass this to them. 3277 if (section->GetObjectFile() != this) 3278 return section->GetObjectFile()->ReadSectionData(section, section_data); 3279 3280 size_t result = ObjectFile::ReadSectionData(section, section_data); 3281 if (result == 0 || !section->Test(SHF_COMPRESSED)) 3282 return result; 3283 3284 auto Decompressor = llvm::object::Decompressor::create( 3285 section->GetName().GetStringRef(), 3286 {reinterpret_cast<const char *>(section_data.GetDataStart()), 3287 size_t(section_data.GetByteSize())}, 3288 GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8); 3289 if (!Decompressor) { 3290 GetModule()->ReportWarning( 3291 "Unable to initialize decompressor for section '%s': %s", 3292 section->GetName().GetCString(), 3293 llvm::toString(Decompressor.takeError()).c_str()); 3294 section_data.Clear(); 3295 return 0; 3296 } 3297 3298 auto buffer_sp = 3299 std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0); 3300 if (auto error = Decompressor->decompress( 3301 {reinterpret_cast<char *>(buffer_sp->GetBytes()), 3302 size_t(buffer_sp->GetByteSize())})) { 3303 GetModule()->ReportWarning( 3304 "Decompression of section '%s' failed: %s", 3305 section->GetName().GetCString(), 3306 llvm::toString(std::move(error)).c_str()); 3307 section_data.Clear(); 3308 return 0; 3309 } 3310 3311 section_data.SetData(buffer_sp); 3312 return buffer_sp->GetByteSize(); 3313 } 3314 3315 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() { 3316 ParseProgramHeaders(); 3317 return m_program_headers; 3318 } 3319 3320 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) { 3321 return DataExtractor(m_data, H.p_offset, H.p_filesz); 3322 } 3323 3324 bool ObjectFileELF::AnySegmentHasPhysicalAddress() { 3325 for (const ELFProgramHeader &H : ProgramHeaders()) { 3326 if (H.p_paddr != 0) 3327 return true; 3328 } 3329 return false; 3330 } 3331 3332 std::vector<ObjectFile::LoadableData> 3333 ObjectFileELF::GetLoadableData(Target &target) { 3334 // Create a list of loadable data from loadable segments, using physical 3335 // addresses if they aren't all null 3336 std::vector<LoadableData> loadables; 3337 bool should_use_paddr = AnySegmentHasPhysicalAddress(); 3338 for (const ELFProgramHeader &H : ProgramHeaders()) { 3339 LoadableData loadable; 3340 if (H.p_type != llvm::ELF::PT_LOAD) 3341 continue; 3342 loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr; 3343 if (loadable.Dest == LLDB_INVALID_ADDRESS) 3344 continue; 3345 if (H.p_filesz == 0) 3346 continue; 3347 auto segment_data = GetSegmentData(H); 3348 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(), 3349 segment_data.GetByteSize()); 3350 loadables.push_back(loadable); 3351 } 3352 return loadables; 3353 } 3354