1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <algorithm> 13 #include <cassert> 14 #include <unordered_map> 15 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Symbol/DWARFCallFrameInfo.h" 22 #include "lldb/Symbol/SymbolContext.h" 23 #include "lldb/Target/SectionLoadList.h" 24 #include "lldb/Target/Target.h" 25 #include "lldb/Utility/ArchSpec.h" 26 #include "lldb/Utility/DataBufferHeap.h" 27 #include "lldb/Utility/Log.h" 28 #include "lldb/Utility/Status.h" 29 #include "lldb/Utility/Stream.h" 30 #include "lldb/Utility/Timer.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Object/Decompressor.h" 35 #include "llvm/Support/ARMBuildAttributes.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/MipsABIFlags.h" 39 40 #define CASE_AND_STREAM(s, def, width) \ 41 case def: \ 42 s->Printf("%-*s", width, #def); \ 43 break; 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace elf; 48 using namespace llvm::ELF; 49 50 namespace { 51 52 // ELF note owner definitions 53 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 54 const char *const LLDB_NT_OWNER_GNU = "GNU"; 55 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 56 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD"; 57 const char *const LLDB_NT_OWNER_CSR = "csr"; 58 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 59 const char *const LLDB_NT_OWNER_CORE = "CORE"; 60 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 61 62 // ELF note type definitions 63 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 64 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 65 66 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 68 69 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 70 71 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 72 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 73 74 // GNU ABI note OS constants 75 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 76 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 77 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 78 79 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 80 #define NT_PRSTATUS 1 81 #define NT_PRFPREG 2 82 #define NT_PRPSINFO 3 83 #define NT_TASKSTRUCT 4 84 #define NT_AUXV 6 85 #define NT_SIGINFO 0x53494749 86 #define NT_FILE 0x46494c45 87 #define NT_PRXFPREG 0x46e62b7f 88 #define NT_PPC_VMX 0x100 89 #define NT_PPC_SPE 0x101 90 #define NT_PPC_VSX 0x102 91 #define NT_386_TLS 0x200 92 #define NT_386_IOPERM 0x201 93 #define NT_X86_XSTATE 0x202 94 #define NT_S390_HIGH_GPRS 0x300 95 #define NT_S390_TIMER 0x301 96 #define NT_S390_TODCMP 0x302 97 #define NT_S390_TODPREG 0x303 98 #define NT_S390_CTRS 0x304 99 #define NT_S390_PREFIX 0x305 100 #define NT_S390_LAST_BREAK 0x306 101 #define NT_S390_SYSTEM_CALL 0x307 102 #define NT_S390_TDB 0x308 103 #define NT_S390_VXRS_LOW 0x309 104 #define NT_S390_VXRS_HIGH 0x30a 105 #define NT_ARM_VFP 0x400 106 #define NT_ARM_TLS 0x401 107 #define NT_ARM_HW_BREAK 0x402 108 #define NT_ARM_HW_WATCH 0x403 109 #define NT_ARM_SYSTEM_CALL 0x404 110 #define NT_METAG_CBUF 0x500 111 #define NT_METAG_RPIPE 0x501 112 #define NT_METAG_TLS 0x502 113 114 //===----------------------------------------------------------------------===// 115 /// @class ELFRelocation 116 /// Generic wrapper for ELFRel and ELFRela. 117 /// 118 /// This helper class allows us to parse both ELFRel and ELFRela relocation 119 /// entries in a generic manner. 120 class ELFRelocation { 121 public: 122 /// Constructs an ELFRelocation entry with a personality as given by @p 123 /// type. 124 /// 125 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 126 ELFRelocation(unsigned type); 127 128 ~ELFRelocation(); 129 130 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 131 132 static unsigned RelocType32(const ELFRelocation &rel); 133 134 static unsigned RelocType64(const ELFRelocation &rel); 135 136 static unsigned RelocSymbol32(const ELFRelocation &rel); 137 138 static unsigned RelocSymbol64(const ELFRelocation &rel); 139 140 static unsigned RelocOffset32(const ELFRelocation &rel); 141 142 static unsigned RelocOffset64(const ELFRelocation &rel); 143 144 static unsigned RelocAddend32(const ELFRelocation &rel); 145 146 static unsigned RelocAddend64(const ELFRelocation &rel); 147 148 private: 149 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion; 150 151 RelocUnion reloc; 152 }; 153 154 ELFRelocation::ELFRelocation(unsigned type) { 155 if (type == DT_REL || type == SHT_REL) 156 reloc = new ELFRel(); 157 else if (type == DT_RELA || type == SHT_RELA) 158 reloc = new ELFRela(); 159 else { 160 assert(false && "unexpected relocation type"); 161 reloc = static_cast<ELFRel *>(NULL); 162 } 163 } 164 165 ELFRelocation::~ELFRelocation() { 166 if (reloc.is<ELFRel *>()) 167 delete reloc.get<ELFRel *>(); 168 else 169 delete reloc.get<ELFRela *>(); 170 } 171 172 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, 173 lldb::offset_t *offset) { 174 if (reloc.is<ELFRel *>()) 175 return reloc.get<ELFRel *>()->Parse(data, offset); 176 else 177 return reloc.get<ELFRela *>()->Parse(data, offset); 178 } 179 180 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { 181 if (rel.reloc.is<ELFRel *>()) 182 return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>()); 183 else 184 return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>()); 185 } 186 187 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { 188 if (rel.reloc.is<ELFRel *>()) 189 return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>()); 190 else 191 return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>()); 192 } 193 194 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { 195 if (rel.reloc.is<ELFRel *>()) 196 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>()); 197 else 198 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>()); 199 } 200 201 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { 202 if (rel.reloc.is<ELFRel *>()) 203 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>()); 204 else 205 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>()); 206 } 207 208 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) { 209 if (rel.reloc.is<ELFRel *>()) 210 return rel.reloc.get<ELFRel *>()->r_offset; 211 else 212 return rel.reloc.get<ELFRela *>()->r_offset; 213 } 214 215 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) { 216 if (rel.reloc.is<ELFRel *>()) 217 return rel.reloc.get<ELFRel *>()->r_offset; 218 else 219 return rel.reloc.get<ELFRela *>()->r_offset; 220 } 221 222 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) { 223 if (rel.reloc.is<ELFRel *>()) 224 return 0; 225 else 226 return rel.reloc.get<ELFRela *>()->r_addend; 227 } 228 229 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) { 230 if (rel.reloc.is<ELFRel *>()) 231 return 0; 232 else 233 return rel.reloc.get<ELFRela *>()->r_addend; 234 } 235 236 } // end anonymous namespace 237 238 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { 239 // Read all fields. 240 if (data.GetU32(offset, &n_namesz, 3) == NULL) 241 return false; 242 243 // The name field is required to be nul-terminated, and n_namesz includes the 244 // terminating nul in observed implementations (contrary to the ELF-64 spec). 245 // A special case is needed for cores generated by some older Linux versions, 246 // which write a note named "CORE" without a nul terminator and n_namesz = 4. 247 if (n_namesz == 4) { 248 char buf[4]; 249 if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) 250 return false; 251 if (strncmp(buf, "CORE", 4) == 0) { 252 n_name = "CORE"; 253 *offset += 4; 254 return true; 255 } 256 } 257 258 const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); 259 if (cstr == NULL) { 260 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 261 if (log) 262 log->Printf("Failed to parse note name lacking nul terminator"); 263 264 return false; 265 } 266 n_name = cstr; 267 return true; 268 } 269 270 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) { 271 const uint32_t dsp_rev = e_flags & 0xFF; 272 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 273 switch (dsp_rev) { 274 // TODO(mg11) Support more variants 275 case 10: 276 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 277 break; 278 case 14: 279 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 280 break; 281 case 17: 282 case 20: 283 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 284 break; 285 default: 286 break; 287 } 288 return kal_arch_variant; 289 } 290 291 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) { 292 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH; 293 uint32_t endian = header.e_ident[EI_DATA]; 294 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 295 uint32_t fileclass = header.e_ident[EI_CLASS]; 296 297 // If there aren't any elf flags available (e.g core elf file) then return 298 // default 299 // 32 or 64 bit arch (without any architecture revision) based on object file's class. 300 if (header.e_type == ET_CORE) { 301 switch (fileclass) { 302 case llvm::ELF::ELFCLASS32: 303 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 304 : ArchSpec::eMIPSSubType_mips32; 305 case llvm::ELF::ELFCLASS64: 306 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 307 : ArchSpec::eMIPSSubType_mips64; 308 default: 309 return arch_variant; 310 } 311 } 312 313 switch (mips_arch) { 314 case llvm::ELF::EF_MIPS_ARCH_1: 315 case llvm::ELF::EF_MIPS_ARCH_2: 316 case llvm::ELF::EF_MIPS_ARCH_32: 317 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 318 : ArchSpec::eMIPSSubType_mips32; 319 case llvm::ELF::EF_MIPS_ARCH_32R2: 320 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el 321 : ArchSpec::eMIPSSubType_mips32r2; 322 case llvm::ELF::EF_MIPS_ARCH_32R6: 323 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el 324 : ArchSpec::eMIPSSubType_mips32r6; 325 case llvm::ELF::EF_MIPS_ARCH_3: 326 case llvm::ELF::EF_MIPS_ARCH_4: 327 case llvm::ELF::EF_MIPS_ARCH_5: 328 case llvm::ELF::EF_MIPS_ARCH_64: 329 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 330 : ArchSpec::eMIPSSubType_mips64; 331 case llvm::ELF::EF_MIPS_ARCH_64R2: 332 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el 333 : ArchSpec::eMIPSSubType_mips64r2; 334 case llvm::ELF::EF_MIPS_ARCH_64R6: 335 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el 336 : ArchSpec::eMIPSSubType_mips64r6; 337 default: 338 break; 339 } 340 341 return arch_variant; 342 } 343 344 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { 345 if (header.e_machine == llvm::ELF::EM_MIPS) 346 return mipsVariantFromElfFlags(header); 347 348 return llvm::ELF::EM_CSR_KALIMBA == header.e_machine 349 ? kalimbaVariantFromElfFlags(header.e_flags) 350 : LLDB_INVALID_CPUTYPE; 351 } 352 353 //! The kalimba toolchain identifies a code section as being 354 //! one with the SHT_PROGBITS set in the section sh_type and the top 355 //! bit in the 32-bit address field set. 356 static lldb::SectionType 357 kalimbaSectionType(const elf::ELFHeader &header, 358 const elf::ELFSectionHeader §_hdr) { 359 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) { 360 return eSectionTypeOther; 361 } 362 363 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) { 364 return eSectionTypeZeroFill; 365 } 366 367 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) { 368 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 369 return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode 370 : eSectionTypeData; 371 } 372 373 return eSectionTypeOther; 374 } 375 376 // Arbitrary constant used as UUID prefix for core files. 377 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); 378 379 //------------------------------------------------------------------ 380 // Static methods. 381 //------------------------------------------------------------------ 382 void ObjectFileELF::Initialize() { 383 PluginManager::RegisterPlugin(GetPluginNameStatic(), 384 GetPluginDescriptionStatic(), CreateInstance, 385 CreateMemoryInstance, GetModuleSpecifications); 386 } 387 388 void ObjectFileELF::Terminate() { 389 PluginManager::UnregisterPlugin(CreateInstance); 390 } 391 392 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { 393 static ConstString g_name("elf"); 394 return g_name; 395 } 396 397 const char *ObjectFileELF::GetPluginDescriptionStatic() { 398 return "ELF object file reader."; 399 } 400 401 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, 402 DataBufferSP &data_sp, 403 lldb::offset_t data_offset, 404 const lldb_private::FileSpec *file, 405 lldb::offset_t file_offset, 406 lldb::offset_t length) { 407 if (!data_sp) { 408 data_sp = MapFileData(*file, length, file_offset); 409 if (!data_sp) 410 return nullptr; 411 data_offset = 0; 412 } 413 414 assert(data_sp); 415 416 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset)) 417 return nullptr; 418 419 const uint8_t *magic = data_sp->GetBytes() + data_offset; 420 if (!ELFHeader::MagicBytesMatch(magic)) 421 return nullptr; 422 423 // Update the data to contain the entire file if it doesn't already 424 if (data_sp->GetByteSize() < length) { 425 data_sp = MapFileData(*file, length, file_offset); 426 if (!data_sp) 427 return nullptr; 428 data_offset = 0; 429 magic = data_sp->GetBytes(); 430 } 431 432 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 433 if (address_size == 4 || address_size == 8) { 434 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF( 435 module_sp, data_sp, data_offset, file, file_offset, length)); 436 ArchSpec spec; 437 if (objfile_ap->GetArchitecture(spec) && 438 objfile_ap->SetModulesArchitecture(spec)) 439 return objfile_ap.release(); 440 } 441 442 return NULL; 443 } 444 445 ObjectFile *ObjectFileELF::CreateMemoryInstance( 446 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 447 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { 448 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { 449 const uint8_t *magic = data_sp->GetBytes(); 450 if (ELFHeader::MagicBytesMatch(magic)) { 451 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 452 if (address_size == 4 || address_size == 8) { 453 std::unique_ptr<ObjectFileELF> objfile_ap( 454 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 455 ArchSpec spec; 456 if (objfile_ap->GetArchitecture(spec) && 457 objfile_ap->SetModulesArchitecture(spec)) 458 return objfile_ap.release(); 459 } 460 } 461 } 462 return NULL; 463 } 464 465 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, 466 lldb::addr_t data_offset, 467 lldb::addr_t data_length) { 468 if (data_sp && 469 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { 470 const uint8_t *magic = data_sp->GetBytes() + data_offset; 471 return ELFHeader::MagicBytesMatch(magic); 472 } 473 return false; 474 } 475 476 /* 477 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 478 * 479 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 480 * code or tables extracted from it, as desired without restriction. 481 */ 482 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) { 483 static const uint32_t g_crc32_tab[] = { 484 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 485 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 486 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 487 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 488 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 489 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 490 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 491 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 492 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 493 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 494 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 495 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 496 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 497 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 498 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 499 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 500 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 501 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 502 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 503 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 504 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 505 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 506 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 507 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 508 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 509 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 510 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 511 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 512 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 513 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 514 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 515 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 516 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 517 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 518 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 519 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 520 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 521 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 522 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 523 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 524 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 525 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 526 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; 527 const uint8_t *p = (const uint8_t *)buf; 528 529 crc = crc ^ ~0U; 530 while (size--) 531 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 532 return crc ^ ~0U; 533 } 534 535 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) { 536 return calc_crc32(0U, buf, size); 537 } 538 539 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( 540 const ProgramHeaderColl &program_headers, DataExtractor &object_data) { 541 typedef ProgramHeaderCollConstIter Iter; 542 543 uint32_t core_notes_crc = 0; 544 545 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) { 546 if (I->p_type == llvm::ELF::PT_NOTE) { 547 const elf_off ph_offset = I->p_offset; 548 const size_t ph_size = I->p_filesz; 549 550 DataExtractor segment_data; 551 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { 552 // The ELF program header contained incorrect data, probably corefile 553 // is incomplete or corrupted. 554 break; 555 } 556 557 core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(), 558 segment_data.GetByteSize()); 559 } 560 } 561 562 return core_notes_crc; 563 } 564 565 static const char *OSABIAsCString(unsigned char osabi_byte) { 566 #define _MAKE_OSABI_CASE(x) \ 567 case x: \ 568 return #x 569 switch (osabi_byte) { 570 _MAKE_OSABI_CASE(ELFOSABI_NONE); 571 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 572 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 573 _MAKE_OSABI_CASE(ELFOSABI_GNU); 574 _MAKE_OSABI_CASE(ELFOSABI_HURD); 575 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 576 _MAKE_OSABI_CASE(ELFOSABI_AIX); 577 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 578 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 579 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 580 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 581 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 582 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 583 _MAKE_OSABI_CASE(ELFOSABI_NSK); 584 _MAKE_OSABI_CASE(ELFOSABI_AROS); 585 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 586 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 587 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 588 _MAKE_OSABI_CASE(ELFOSABI_ARM); 589 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 590 default: 591 return "<unknown-osabi>"; 592 } 593 #undef _MAKE_OSABI_CASE 594 } 595 596 // 597 // WARNING : This function is being deprecated 598 // It's functionality has moved to ArchSpec::SetArchitecture This function is 599 // only being kept to validate the move. 600 // 601 // TODO : Remove this function 602 static bool GetOsFromOSABI(unsigned char osabi_byte, 603 llvm::Triple::OSType &ostype) { 604 switch (osabi_byte) { 605 case ELFOSABI_AIX: 606 ostype = llvm::Triple::OSType::AIX; 607 break; 608 case ELFOSABI_FREEBSD: 609 ostype = llvm::Triple::OSType::FreeBSD; 610 break; 611 case ELFOSABI_GNU: 612 ostype = llvm::Triple::OSType::Linux; 613 break; 614 case ELFOSABI_NETBSD: 615 ostype = llvm::Triple::OSType::NetBSD; 616 break; 617 case ELFOSABI_OPENBSD: 618 ostype = llvm::Triple::OSType::OpenBSD; 619 break; 620 case ELFOSABI_SOLARIS: 621 ostype = llvm::Triple::OSType::Solaris; 622 break; 623 default: 624 ostype = llvm::Triple::OSType::UnknownOS; 625 } 626 return ostype != llvm::Triple::OSType::UnknownOS; 627 } 628 629 size_t ObjectFileELF::GetModuleSpecifications( 630 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 631 lldb::offset_t data_offset, lldb::offset_t file_offset, 632 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 633 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 634 635 const size_t initial_count = specs.GetSize(); 636 637 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 638 DataExtractor data; 639 data.SetData(data_sp); 640 elf::ELFHeader header; 641 lldb::offset_t header_offset = data_offset; 642 if (header.Parse(data, &header_offset)) { 643 if (data_sp) { 644 ModuleSpec spec(file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture( 648 eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 649 650 if (spec.GetArchitecture().IsValid()) { 651 llvm::Triple::OSType ostype; 652 llvm::Triple::VendorType vendor; 653 llvm::Triple::OSType spec_ostype = 654 spec.GetArchitecture().GetTriple().getOS(); 655 656 if (log) 657 log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s", 658 __FUNCTION__, file.GetPath().c_str(), 659 OSABIAsCString(header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture().GetTriple().getVendor(); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 UNUSED_IF_ASSERT_DISABLED(vendor); 665 666 // 667 // Validate it is ok to remove GetOsFromOSABI 668 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 669 assert(spec_ostype == ostype); 670 if (spec_ostype != llvm::Triple::OSType::UnknownOS) { 671 if (log) 672 log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type " 673 "from ELF header OSABI.", 674 __FUNCTION__, file.GetPath().c_str()); 675 } 676 677 data_sp = MapFileData(file, -1, file_offset); 678 if (data_sp) 679 data.SetData(data_sp); 680 // In case there is header extension in the section #0, the header we 681 // parsed above could have sentinel values for e_phnum, e_shnum, and 682 // e_shstrndx. In this case we need to reparse the header with a 683 // bigger data source to get the actual values. 684 if (header.HasHeaderExtension()) { 685 lldb::offset_t header_offset = data_offset; 686 header.Parse(data, &header_offset); 687 } 688 689 uint32_t gnu_debuglink_crc = 0; 690 std::string gnu_debuglink_file; 691 SectionHeaderColl section_headers; 692 lldb_private::UUID &uuid = spec.GetUUID(); 693 694 GetSectionHeaderInfo(section_headers, data, header, uuid, 695 gnu_debuglink_file, gnu_debuglink_crc, 696 spec.GetArchitecture()); 697 698 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); 699 700 if (log) 701 log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s " 702 "(architecture %s)", 703 __FUNCTION__, file.GetPath().c_str(), 704 spec_triple.getTriple().c_str(), 705 spec.GetArchitecture().GetArchitectureName()); 706 707 if (!uuid.IsValid()) { 708 uint32_t core_notes_crc = 0; 709 710 if (!gnu_debuglink_crc) { 711 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 712 lldb_private::Timer scoped_timer( 713 func_cat, 714 "Calculating module crc32 %s with size %" PRIu64 " KiB", 715 file.GetLastPathComponent().AsCString(), 716 (file.GetByteSize() - file_offset) / 1024); 717 718 // For core files - which usually don't happen to have a 719 // gnu_debuglink, and are pretty bulky - calculating whole 720 // contents crc32 would be too much of luxury. Thus we will need 721 // to fallback to something simpler. 722 if (header.e_type == llvm::ELF::ET_CORE) { 723 ProgramHeaderColl program_headers; 724 GetProgramHeaderInfo(program_headers, data, header); 725 726 core_notes_crc = 727 CalculateELFNotesSegmentsCRC32(program_headers, data); 728 } else { 729 gnu_debuglink_crc = calc_gnu_debuglink_crc32( 730 data.GetDataStart(), data.GetByteSize()); 731 } 732 } 733 using u32le = llvm::support::ulittle32_t; 734 if (gnu_debuglink_crc) { 735 // Use 4 bytes of crc from the .gnu_debuglink section. 736 u32le data(gnu_debuglink_crc); 737 uuid = UUID::fromData(&data, sizeof(data)); 738 } else if (core_notes_crc) { 739 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make 740 // it look different form .gnu_debuglink crc followed by 4 bytes 741 // of note segments crc. 742 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 743 uuid = UUID::fromData(data, sizeof(data)); 744 } 745 } 746 747 specs.Append(spec); 748 } 749 } 750 } 751 } 752 753 return specs.GetSize() - initial_count; 754 } 755 756 //------------------------------------------------------------------ 757 // PluginInterface protocol 758 //------------------------------------------------------------------ 759 lldb_private::ConstString ObjectFileELF::GetPluginName() { 760 return GetPluginNameStatic(); 761 } 762 763 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } 764 //------------------------------------------------------------------ 765 // ObjectFile protocol 766 //------------------------------------------------------------------ 767 768 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 769 DataBufferSP &data_sp, lldb::offset_t data_offset, 770 const FileSpec *file, lldb::offset_t file_offset, 771 lldb::offset_t length) 772 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 773 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 774 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 775 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 776 if (file) 777 m_file = *file; 778 ::memset(&m_header, 0, sizeof(m_header)); 779 } 780 781 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 782 DataBufferSP &header_data_sp, 783 const lldb::ProcessSP &process_sp, 784 addr_t header_addr) 785 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 786 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 787 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 788 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 789 ::memset(&m_header, 0, sizeof(m_header)); 790 } 791 792 ObjectFileELF::~ObjectFileELF() {} 793 794 bool ObjectFileELF::IsExecutable() const { 795 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 796 } 797 798 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, 799 bool value_is_offset) { 800 ModuleSP module_sp = GetModule(); 801 if (module_sp) { 802 size_t num_loaded_sections = 0; 803 SectionList *section_list = GetSectionList(); 804 if (section_list) { 805 if (!value_is_offset) { 806 bool found_offset = false; 807 for (size_t i = 1, count = GetProgramHeaderCount(); i <= count; ++i) { 808 const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i); 809 if (header == nullptr) 810 continue; 811 812 if (header->p_type != PT_LOAD || header->p_offset != 0) 813 continue; 814 815 value = value - header->p_vaddr; 816 found_offset = true; 817 break; 818 } 819 if (!found_offset) 820 return false; 821 } 822 823 const size_t num_sections = section_list->GetSize(); 824 size_t sect_idx = 0; 825 826 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 827 // Iterate through the object file sections to find all of the sections 828 // that have SHF_ALLOC in their flag bits. 829 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 830 if (section_sp && section_sp->Test(SHF_ALLOC)) { 831 lldb::addr_t load_addr = section_sp->GetFileAddress(); 832 // We don't want to update the load address of a section with type 833 // eSectionTypeAbsoluteAddress as they already have the absolute load 834 // address already specified 835 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 836 load_addr += value; 837 838 // On 32-bit systems the load address have to fit into 4 bytes. The 839 // rest of the bytes are the overflow from the addition. 840 if (GetAddressByteSize() == 4) 841 load_addr &= 0xFFFFFFFF; 842 843 if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, 844 load_addr)) 845 ++num_loaded_sections; 846 } 847 } 848 return num_loaded_sections > 0; 849 } 850 } 851 return false; 852 } 853 854 ByteOrder ObjectFileELF::GetByteOrder() const { 855 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 856 return eByteOrderBig; 857 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 858 return eByteOrderLittle; 859 return eByteOrderInvalid; 860 } 861 862 uint32_t ObjectFileELF::GetAddressByteSize() const { 863 return m_data.GetAddressByteSize(); 864 } 865 866 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { 867 Symtab *symtab = GetSymtab(); 868 if (!symtab) 869 return AddressClass::eUnknown; 870 871 // The address class is determined based on the symtab. Ask it from the 872 // object file what contains the symtab information. 873 ObjectFile *symtab_objfile = symtab->GetObjectFile(); 874 if (symtab_objfile != nullptr && symtab_objfile != this) 875 return symtab_objfile->GetAddressClass(file_addr); 876 877 auto res = ObjectFile::GetAddressClass(file_addr); 878 if (res != AddressClass::eCode) 879 return res; 880 881 auto ub = m_address_class_map.upper_bound(file_addr); 882 if (ub == m_address_class_map.begin()) { 883 // No entry in the address class map before the address. Return default 884 // address class for an address in a code section. 885 return AddressClass::eCode; 886 } 887 888 // Move iterator to the address class entry preceding address 889 --ub; 890 891 return ub->second; 892 } 893 894 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { 895 return std::distance(m_section_headers.begin(), I) + 1u; 896 } 897 898 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { 899 return std::distance(m_section_headers.begin(), I) + 1u; 900 } 901 902 bool ObjectFileELF::ParseHeader() { 903 lldb::offset_t offset = 0; 904 return m_header.Parse(m_data, &offset); 905 } 906 907 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) { 908 // Need to parse the section list to get the UUIDs, so make sure that's been 909 // done. 910 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 911 return false; 912 913 using u32le = llvm::support::ulittle32_t; 914 if (m_uuid.IsValid()) { 915 // We have the full build id uuid. 916 *uuid = m_uuid; 917 return true; 918 } else if (GetType() == ObjectFile::eTypeCoreFile) { 919 uint32_t core_notes_crc = 0; 920 921 if (!ParseProgramHeaders()) 922 return false; 923 924 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 925 926 if (core_notes_crc) { 927 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look 928 // different form .gnu_debuglink crc - followed by 4 bytes of note 929 // segments crc. 930 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 931 m_uuid = UUID::fromData(data, sizeof(data)); 932 } 933 } else { 934 if (!m_gnu_debuglink_crc) 935 m_gnu_debuglink_crc = 936 calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize()); 937 if (m_gnu_debuglink_crc) { 938 // Use 4 bytes of crc from the .gnu_debuglink section. 939 u32le data(m_gnu_debuglink_crc); 940 m_uuid = UUID::fromData(&data, sizeof(data)); 941 } 942 } 943 944 if (m_uuid.IsValid()) { 945 *uuid = m_uuid; 946 return true; 947 } 948 949 return false; 950 } 951 952 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() { 953 FileSpecList file_spec_list; 954 955 if (!m_gnu_debuglink_file.empty()) { 956 FileSpec file_spec(m_gnu_debuglink_file, false); 957 file_spec_list.Append(file_spec); 958 } 959 return file_spec_list; 960 } 961 962 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { 963 size_t num_modules = ParseDependentModules(); 964 uint32_t num_specs = 0; 965 966 for (unsigned i = 0; i < num_modules; ++i) { 967 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 968 num_specs++; 969 } 970 971 return num_specs; 972 } 973 974 Address ObjectFileELF::GetImageInfoAddress(Target *target) { 975 if (!ParseDynamicSymbols()) 976 return Address(); 977 978 SectionList *section_list = GetSectionList(); 979 if (!section_list) 980 return Address(); 981 982 // Find the SHT_DYNAMIC (.dynamic) section. 983 SectionSP dynsym_section_sp( 984 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); 985 if (!dynsym_section_sp) 986 return Address(); 987 assert(dynsym_section_sp->GetObjectFile() == this); 988 989 user_id_t dynsym_id = dynsym_section_sp->GetID(); 990 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 991 if (!dynsym_hdr) 992 return Address(); 993 994 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { 995 ELFDynamic &symbol = m_dynamic_symbols[i]; 996 997 if (symbol.d_tag == DT_DEBUG) { 998 // Compute the offset as the number of previous entries plus the size of 999 // d_tag. 1000 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1001 return Address(dynsym_section_sp, offset); 1002 } 1003 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP 1004 // exists in non-PIE. 1005 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || 1006 symbol.d_tag == DT_MIPS_RLD_MAP_REL) && 1007 target) { 1008 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1009 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1010 if (dyn_base == LLDB_INVALID_ADDRESS) 1011 return Address(); 1012 1013 Status error; 1014 if (symbol.d_tag == DT_MIPS_RLD_MAP) { 1015 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1016 Address addr; 1017 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, 1018 addr)) 1019 return addr; 1020 } 1021 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { 1022 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, 1023 // relative to the address of the tag. 1024 uint64_t rel_offset; 1025 rel_offset = target->ReadUnsignedIntegerFromMemory( 1026 dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1027 if (error.Success() && rel_offset != UINT64_MAX) { 1028 Address addr; 1029 addr_t debug_ptr_address = 1030 dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1031 addr.SetOffset(debug_ptr_address); 1032 return addr; 1033 } 1034 } 1035 } 1036 } 1037 1038 return Address(); 1039 } 1040 1041 lldb_private::Address ObjectFileELF::GetEntryPointAddress() { 1042 if (m_entry_point_address.IsValid()) 1043 return m_entry_point_address; 1044 1045 if (!ParseHeader() || !IsExecutable()) 1046 return m_entry_point_address; 1047 1048 SectionList *section_list = GetSectionList(); 1049 addr_t offset = m_header.e_entry; 1050 1051 if (!section_list) 1052 m_entry_point_address.SetOffset(offset); 1053 else 1054 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1055 return m_entry_point_address; 1056 } 1057 1058 //---------------------------------------------------------------------- 1059 // ParseDependentModules 1060 //---------------------------------------------------------------------- 1061 size_t ObjectFileELF::ParseDependentModules() { 1062 if (m_filespec_ap.get()) 1063 return m_filespec_ap->GetSize(); 1064 1065 m_filespec_ap.reset(new FileSpecList()); 1066 1067 if (!ParseSectionHeaders()) 1068 return 0; 1069 1070 SectionList *section_list = GetSectionList(); 1071 if (!section_list) 1072 return 0; 1073 1074 // Find the SHT_DYNAMIC section. 1075 Section *dynsym = 1076 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 1077 .get(); 1078 if (!dynsym) 1079 return 0; 1080 assert(dynsym->GetObjectFile() == this); 1081 1082 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); 1083 if (!header) 1084 return 0; 1085 // sh_link: section header index of string table used by entries in the 1086 // section. 1087 Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get(); 1088 if (!dynstr) 1089 return 0; 1090 1091 DataExtractor dynsym_data; 1092 DataExtractor dynstr_data; 1093 if (ReadSectionData(dynsym, dynsym_data) && 1094 ReadSectionData(dynstr, dynstr_data)) { 1095 ELFDynamic symbol; 1096 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1097 lldb::offset_t offset = 0; 1098 1099 // The only type of entries we are concerned with are tagged DT_NEEDED, 1100 // yielding the name of a required library. 1101 while (offset < section_size) { 1102 if (!symbol.Parse(dynsym_data, &offset)) 1103 break; 1104 1105 if (symbol.d_tag != DT_NEEDED) 1106 continue; 1107 1108 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1109 const char *lib_name = dynstr_data.PeekCStr(str_index); 1110 m_filespec_ap->Append(FileSpec(lib_name, true)); 1111 } 1112 } 1113 1114 return m_filespec_ap->GetSize(); 1115 } 1116 1117 //---------------------------------------------------------------------- 1118 // GetProgramHeaderInfo 1119 //---------------------------------------------------------------------- 1120 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1121 DataExtractor &object_data, 1122 const ELFHeader &header) { 1123 // We have already parsed the program headers 1124 if (!program_headers.empty()) 1125 return program_headers.size(); 1126 1127 // If there are no program headers to read we are done. 1128 if (header.e_phnum == 0) 1129 return 0; 1130 1131 program_headers.resize(header.e_phnum); 1132 if (program_headers.size() != header.e_phnum) 1133 return 0; 1134 1135 const size_t ph_size = header.e_phnum * header.e_phentsize; 1136 const elf_off ph_offset = header.e_phoff; 1137 DataExtractor data; 1138 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1139 return 0; 1140 1141 uint32_t idx; 1142 lldb::offset_t offset; 1143 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { 1144 if (program_headers[idx].Parse(data, &offset) == false) 1145 break; 1146 } 1147 1148 if (idx < program_headers.size()) 1149 program_headers.resize(idx); 1150 1151 return program_headers.size(); 1152 } 1153 1154 //---------------------------------------------------------------------- 1155 // ParseProgramHeaders 1156 //---------------------------------------------------------------------- 1157 size_t ObjectFileELF::ParseProgramHeaders() { 1158 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1159 } 1160 1161 lldb_private::Status 1162 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, 1163 lldb_private::ArchSpec &arch_spec, 1164 lldb_private::UUID &uuid) { 1165 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1166 Status error; 1167 1168 lldb::offset_t offset = 0; 1169 1170 while (true) { 1171 // Parse the note header. If this fails, bail out. 1172 const lldb::offset_t note_offset = offset; 1173 ELFNote note = ELFNote(); 1174 if (!note.Parse(data, &offset)) { 1175 // We're done. 1176 return error; 1177 } 1178 1179 if (log) 1180 log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, 1181 __FUNCTION__, note.n_name.c_str(), note.n_type); 1182 1183 // Process FreeBSD ELF notes. 1184 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1185 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1186 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { 1187 // Pull out the min version info. 1188 uint32_t version_info; 1189 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1190 error.SetErrorString("failed to read FreeBSD ABI note payload"); 1191 return error; 1192 } 1193 1194 // Convert the version info into a major/minor number. 1195 const uint32_t version_major = version_info / 100000; 1196 const uint32_t version_minor = (version_info / 1000) % 100; 1197 1198 char os_name[32]; 1199 snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, 1200 version_major, version_minor); 1201 1202 // Set the elf OS version to FreeBSD. Also clear the vendor. 1203 arch_spec.GetTriple().setOSName(os_name); 1204 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1205 1206 if (log) 1207 log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 1208 ".%" PRIu32, 1209 __FUNCTION__, version_major, version_minor, 1210 static_cast<uint32_t>(version_info % 1000)); 1211 } 1212 // Process GNU ELF notes. 1213 else if (note.n_name == LLDB_NT_OWNER_GNU) { 1214 switch (note.n_type) { 1215 case LLDB_NT_GNU_ABI_TAG: 1216 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { 1217 // Pull out the min OS version supporting the ABI. 1218 uint32_t version_info[4]; 1219 if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == 1220 nullptr) { 1221 error.SetErrorString("failed to read GNU ABI note payload"); 1222 return error; 1223 } 1224 1225 // Set the OS per the OS field. 1226 switch (version_info[0]) { 1227 case LLDB_NT_GNU_ABI_OS_LINUX: 1228 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1229 arch_spec.GetTriple().setVendor( 1230 llvm::Triple::VendorType::UnknownVendor); 1231 if (log) 1232 log->Printf( 1233 "ObjectFileELF::%s detected Linux, min version %" PRIu32 1234 ".%" PRIu32 ".%" PRIu32, 1235 __FUNCTION__, version_info[1], version_info[2], 1236 version_info[3]); 1237 // FIXME we have the minimal version number, we could be propagating 1238 // that. version_info[1] = OS Major, version_info[2] = OS Minor, 1239 // version_info[3] = Revision. 1240 break; 1241 case LLDB_NT_GNU_ABI_OS_HURD: 1242 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1243 arch_spec.GetTriple().setVendor( 1244 llvm::Triple::VendorType::UnknownVendor); 1245 if (log) 1246 log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min " 1247 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1248 __FUNCTION__, version_info[1], version_info[2], 1249 version_info[3]); 1250 break; 1251 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1252 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); 1253 arch_spec.GetTriple().setVendor( 1254 llvm::Triple::VendorType::UnknownVendor); 1255 if (log) 1256 log->Printf( 1257 "ObjectFileELF::%s detected Solaris, min version %" PRIu32 1258 ".%" PRIu32 ".%" PRIu32, 1259 __FUNCTION__, version_info[1], version_info[2], 1260 version_info[3]); 1261 break; 1262 default: 1263 if (log) 1264 log->Printf( 1265 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 1266 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1267 __FUNCTION__, version_info[0], version_info[1], 1268 version_info[2], version_info[3]); 1269 break; 1270 } 1271 } 1272 break; 1273 1274 case LLDB_NT_GNU_BUILD_ID_TAG: 1275 // Only bother processing this if we don't already have the uuid set. 1276 if (!uuid.IsValid()) { 1277 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a 1278 // build-id of a different length. Accept it as long as it's at least 1279 // 4 bytes as it will be better than our own crc32. 1280 if (note.n_descsz >= 4) { 1281 if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) { 1282 // Save the build id as the UUID for the module. 1283 uuid = UUID::fromData(buf, note.n_descsz); 1284 } else { 1285 error.SetErrorString("failed to read GNU_BUILD_ID note payload"); 1286 return error; 1287 } 1288 } 1289 } 1290 break; 1291 } 1292 if (arch_spec.IsMIPS() && 1293 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1294 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform 1295 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1296 } 1297 // Process NetBSD ELF notes. 1298 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1299 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1300 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) { 1301 // Pull out the min version info. 1302 uint32_t version_info; 1303 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1304 error.SetErrorString("failed to read NetBSD ABI note payload"); 1305 return error; 1306 } 1307 1308 // Set the elf OS version to NetBSD. Also clear the vendor. 1309 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); 1310 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1311 1312 if (log) 1313 log->Printf( 1314 "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, 1315 __FUNCTION__, version_info); 1316 } 1317 // Process OpenBSD ELF notes. 1318 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) { 1319 // Set the elf OS version to OpenBSD. Also clear the vendor. 1320 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD); 1321 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1322 } 1323 // Process CSR kalimba notes 1324 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1325 (note.n_name == LLDB_NT_OWNER_CSR)) { 1326 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1327 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1328 1329 // TODO At some point the description string could be processed. 1330 // It could provide a steer towards the kalimba variant which this ELF 1331 // targets. 1332 if (note.n_descsz) { 1333 const char *cstr = 1334 data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4)); 1335 (void)cstr; 1336 } 1337 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { 1338 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1339 arch_spec.GetTriple().setEnvironment( 1340 llvm::Triple::EnvironmentType::Android); 1341 } else if (note.n_name == LLDB_NT_OWNER_LINUX) { 1342 // This is sometimes found in core files and usually contains extended 1343 // register info 1344 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1345 } else if (note.n_name == LLDB_NT_OWNER_CORE) { 1346 // Parse the NT_FILE to look for stuff in paths to shared libraries As 1347 // the contents look like this in a 64 bit ELF core file: count = 1348 // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index 1349 // start end file_ofs path ===== 1350 // ------------------ ------------------ ------------------ 1351 // ------------------------------------- [ 0] 0x0000000000400000 1352 // 0x0000000000401000 0x0000000000000000 /tmp/a.out [ 1] 1353 // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [ 1354 // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1355 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 1356 // /lib/x86_64-linux-gnu/libc-2.19.so [ 4] 0x00007fa79cba8000 1357 // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux- 1358 // gnu/libc-2.19.so [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 1359 // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [ 6] 1360 // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64 1361 // -linux-gnu/libc-2.19.so [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 1362 // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [ 8] 1363 // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64 1364 // -linux-gnu/ld-2.19.so [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 1365 // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs 1366 // the count, page_size, start, end, file_ofs are uint32_t For reference: 1367 // see readelf source code (in binutils). 1368 if (note.n_type == NT_FILE) { 1369 uint64_t count = data.GetAddress(&offset); 1370 const char *cstr; 1371 data.GetAddress(&offset); // Skip page size 1372 offset += count * 3 * 1373 data.GetAddressByteSize(); // Skip all start/end/file_ofs 1374 for (size_t i = 0; i < count; ++i) { 1375 cstr = data.GetCStr(&offset); 1376 if (cstr == nullptr) { 1377 error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " 1378 "at an offset after the end " 1379 "(GetCStr returned nullptr)", 1380 __FUNCTION__); 1381 return error; 1382 } 1383 llvm::StringRef path(cstr); 1384 if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { 1385 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1386 break; 1387 } 1388 } 1389 if (arch_spec.IsMIPS() && 1390 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1391 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some 1392 // cases (e.g. compile with -nostdlib) Hence set OS to Linux 1393 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1394 } 1395 } 1396 1397 // Calculate the offset of the next note just in case "offset" has been 1398 // used to poke at the contents of the note data 1399 offset = note_offset + note.GetByteSize(); 1400 } 1401 1402 return error; 1403 } 1404 1405 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, 1406 ArchSpec &arch_spec) { 1407 lldb::offset_t Offset = 0; 1408 1409 uint8_t FormatVersion = data.GetU8(&Offset); 1410 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1411 return; 1412 1413 Offset = Offset + sizeof(uint32_t); // Section Length 1414 llvm::StringRef VendorName = data.GetCStr(&Offset); 1415 1416 if (VendorName != "aeabi") 1417 return; 1418 1419 if (arch_spec.GetTriple().getEnvironment() == 1420 llvm::Triple::UnknownEnvironment) 1421 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1422 1423 while (Offset < length) { 1424 uint8_t Tag = data.GetU8(&Offset); 1425 uint32_t Size = data.GetU32(&Offset); 1426 1427 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1428 continue; 1429 1430 while (Offset < length) { 1431 uint64_t Tag = data.GetULEB128(&Offset); 1432 switch (Tag) { 1433 default: 1434 if (Tag < 32) 1435 data.GetULEB128(&Offset); 1436 else if (Tag % 2 == 0) 1437 data.GetULEB128(&Offset); 1438 else 1439 data.GetCStr(&Offset); 1440 1441 break; 1442 1443 case llvm::ARMBuildAttrs::CPU_raw_name: 1444 case llvm::ARMBuildAttrs::CPU_name: 1445 data.GetCStr(&Offset); 1446 1447 break; 1448 1449 case llvm::ARMBuildAttrs::ABI_VFP_args: { 1450 uint64_t VFPArgs = data.GetULEB128(&Offset); 1451 1452 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { 1453 if (arch_spec.GetTriple().getEnvironment() == 1454 llvm::Triple::UnknownEnvironment || 1455 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1456 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1457 1458 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1459 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { 1460 if (arch_spec.GetTriple().getEnvironment() == 1461 llvm::Triple::UnknownEnvironment || 1462 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1463 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1464 1465 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1466 } 1467 1468 break; 1469 } 1470 } 1471 } 1472 } 1473 } 1474 1475 //---------------------------------------------------------------------- 1476 // GetSectionHeaderInfo 1477 //---------------------------------------------------------------------- 1478 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1479 DataExtractor &object_data, 1480 const elf::ELFHeader &header, 1481 lldb_private::UUID &uuid, 1482 std::string &gnu_debuglink_file, 1483 uint32_t &gnu_debuglink_crc, 1484 ArchSpec &arch_spec) { 1485 // Don't reparse the section headers if we already did that. 1486 if (!section_headers.empty()) 1487 return section_headers.size(); 1488 1489 // Only initialize the arch_spec to okay defaults if they're not already set. 1490 // We'll refine this with note data as we parse the notes. 1491 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { 1492 llvm::Triple::OSType ostype; 1493 llvm::Triple::OSType spec_ostype; 1494 const uint32_t sub_type = subTypeFromElfHeader(header); 1495 arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, 1496 header.e_ident[EI_OSABI]); 1497 1498 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is 1499 // determined based on EI_OSABI flag and the info extracted from ELF notes 1500 // (see RefineModuleDetailsFromNote). However in some cases that still 1501 // might be not enough: for example a shared library might not have any 1502 // notes at all and have EI_OSABI flag set to System V, as result the OS 1503 // will be set to UnknownOS. 1504 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 1505 spec_ostype = arch_spec.GetTriple().getOS(); 1506 assert(spec_ostype == ostype); 1507 UNUSED_IF_ASSERT_DISABLED(spec_ostype); 1508 } 1509 1510 if (arch_spec.GetMachine() == llvm::Triple::mips || 1511 arch_spec.GetMachine() == llvm::Triple::mipsel || 1512 arch_spec.GetMachine() == llvm::Triple::mips64 || 1513 arch_spec.GetMachine() == llvm::Triple::mips64el) { 1514 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { 1515 case llvm::ELF::EF_MIPS_MICROMIPS: 1516 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); 1517 break; 1518 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1519 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); 1520 break; 1521 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1522 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); 1523 break; 1524 default: 1525 break; 1526 } 1527 } 1528 1529 if (arch_spec.GetMachine() == llvm::Triple::arm || 1530 arch_spec.GetMachine() == llvm::Triple::thumb) { 1531 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1532 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1533 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1534 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1535 } 1536 1537 // If there are no section headers we are done. 1538 if (header.e_shnum == 0) 1539 return 0; 1540 1541 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1542 1543 section_headers.resize(header.e_shnum); 1544 if (section_headers.size() != header.e_shnum) 1545 return 0; 1546 1547 const size_t sh_size = header.e_shnum * header.e_shentsize; 1548 const elf_off sh_offset = header.e_shoff; 1549 DataExtractor sh_data; 1550 if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size) 1551 return 0; 1552 1553 uint32_t idx; 1554 lldb::offset_t offset; 1555 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { 1556 if (section_headers[idx].Parse(sh_data, &offset) == false) 1557 break; 1558 } 1559 if (idx < section_headers.size()) 1560 section_headers.resize(idx); 1561 1562 const unsigned strtab_idx = header.e_shstrndx; 1563 if (strtab_idx && strtab_idx < section_headers.size()) { 1564 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1565 const size_t byte_size = sheader.sh_size; 1566 const Elf64_Off offset = sheader.sh_offset; 1567 lldb_private::DataExtractor shstr_data; 1568 1569 if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) { 1570 for (SectionHeaderCollIter I = section_headers.begin(); 1571 I != section_headers.end(); ++I) { 1572 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); 1573 const ELFSectionHeaderInfo &sheader = *I; 1574 const uint64_t section_size = 1575 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1576 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1577 1578 I->section_name = name; 1579 1580 if (arch_spec.IsMIPS()) { 1581 uint32_t arch_flags = arch_spec.GetFlags(); 1582 DataExtractor data; 1583 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { 1584 1585 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1586 section_size) == section_size)) { 1587 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1588 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1589 arch_flags |= data.GetU32(&offset); 1590 1591 // The floating point ABI is at offset 7 1592 offset = 7; 1593 switch (data.GetU8(&offset)) { 1594 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: 1595 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1596 break; 1597 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: 1598 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1599 break; 1600 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: 1601 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1602 break; 1603 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: 1604 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1605 break; 1606 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: 1607 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1608 break; 1609 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: 1610 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1611 break; 1612 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: 1613 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1614 break; 1615 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: 1616 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1617 break; 1618 } 1619 } 1620 } 1621 // Settings appropriate ArchSpec ABI Flags 1622 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { 1623 case llvm::ELF::EF_MIPS_ABI_O32: 1624 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1625 break; 1626 case EF_MIPS_ABI_O64: 1627 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1628 break; 1629 case EF_MIPS_ABI_EABI32: 1630 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1631 break; 1632 case EF_MIPS_ABI_EABI64: 1633 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1634 break; 1635 default: 1636 // ABI Mask doesn't cover N32 and N64 ABI. 1637 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1638 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1639 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1640 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1641 break; 1642 } 1643 arch_spec.SetFlags(arch_flags); 1644 } 1645 1646 if (arch_spec.GetMachine() == llvm::Triple::arm || 1647 arch_spec.GetMachine() == llvm::Triple::thumb) { 1648 DataExtractor data; 1649 1650 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1651 data.SetData(object_data, sheader.sh_offset, section_size) == section_size) 1652 ParseARMAttributes(data, section_size, arch_spec); 1653 } 1654 1655 if (name == g_sect_name_gnu_debuglink) { 1656 DataExtractor data; 1657 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1658 section_size) == section_size)) { 1659 lldb::offset_t gnu_debuglink_offset = 0; 1660 gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); 1661 gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); 1662 data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1663 } 1664 } 1665 1666 // Process ELF note section entries. 1667 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1668 1669 // The section header ".note.android.ident" is stored as a 1670 // PROGBITS type header but it is actually a note header. 1671 static ConstString g_sect_name_android_ident(".note.android.ident"); 1672 if (!is_note_header && name == g_sect_name_android_ident) 1673 is_note_header = true; 1674 1675 if (is_note_header) { 1676 // Allow notes to refine module info. 1677 DataExtractor data; 1678 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1679 section_size) == section_size)) { 1680 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid); 1681 if (error.Fail()) { 1682 if (log) 1683 log->Printf("ObjectFileELF::%s ELF note processing failed: %s", 1684 __FUNCTION__, error.AsCString()); 1685 } 1686 } 1687 } 1688 } 1689 1690 // Make any unknown triple components to be unspecified unknowns. 1691 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1692 arch_spec.GetTriple().setVendorName(llvm::StringRef()); 1693 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1694 arch_spec.GetTriple().setOSName(llvm::StringRef()); 1695 1696 return section_headers.size(); 1697 } 1698 } 1699 1700 section_headers.clear(); 1701 return 0; 1702 } 1703 1704 size_t ObjectFileELF::GetProgramHeaderCount() { return ParseProgramHeaders(); } 1705 1706 const elf::ELFProgramHeader * 1707 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) { 1708 if (!id || !ParseProgramHeaders()) 1709 return NULL; 1710 1711 if (--id < m_program_headers.size()) 1712 return &m_program_headers[id]; 1713 1714 return NULL; 1715 } 1716 1717 DataExtractor ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) { 1718 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1719 if (segment_header == NULL) 1720 return DataExtractor(); 1721 return DataExtractor(m_data, segment_header->p_offset, 1722 segment_header->p_filesz); 1723 } 1724 1725 llvm::StringRef 1726 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { 1727 size_t pos = symbol_name.find('@'); 1728 return symbol_name.substr(0, pos); 1729 } 1730 1731 //---------------------------------------------------------------------- 1732 // ParseSectionHeaders 1733 //---------------------------------------------------------------------- 1734 size_t ObjectFileELF::ParseSectionHeaders() { 1735 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, 1736 m_gnu_debuglink_file, m_gnu_debuglink_crc, 1737 m_arch_spec); 1738 } 1739 1740 const ObjectFileELF::ELFSectionHeaderInfo * 1741 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { 1742 if (!id || !ParseSectionHeaders()) 1743 return NULL; 1744 1745 if (--id < m_section_headers.size()) 1746 return &m_section_headers[id]; 1747 1748 return NULL; 1749 } 1750 1751 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { 1752 if (!name || !name[0] || !ParseSectionHeaders()) 1753 return 0; 1754 for (size_t i = 1; i < m_section_headers.size(); ++i) 1755 if (m_section_headers[i].section_name == ConstString(name)) 1756 return i; 1757 return 0; 1758 } 1759 1760 void ObjectFileELF::CreateSections(SectionList &unified_section_list) { 1761 if (!m_sections_ap.get() && ParseSectionHeaders()) { 1762 m_sections_ap.reset(new SectionList()); 1763 1764 // Object files frequently have 0 for every section address, meaning we 1765 // need to compute synthetic addresses in order for "file addresses" from 1766 // different sections to not overlap 1767 bool synthaddrs = (CalculateType() == ObjectFile::Type::eTypeObjectFile); 1768 uint64_t nextaddr = 0; 1769 1770 for (SectionHeaderCollIter I = m_section_headers.begin(); 1771 I != m_section_headers.end(); ++I) { 1772 const ELFSectionHeaderInfo &header = *I; 1773 1774 ConstString &name = I->section_name; 1775 const uint64_t file_size = 1776 header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1777 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1778 1779 static ConstString g_sect_name_text(".text"); 1780 static ConstString g_sect_name_data(".data"); 1781 static ConstString g_sect_name_bss(".bss"); 1782 static ConstString g_sect_name_tdata(".tdata"); 1783 static ConstString g_sect_name_tbss(".tbss"); 1784 static ConstString g_sect_name_dwarf_debug_abbrev(".debug_abbrev"); 1785 static ConstString g_sect_name_dwarf_debug_addr(".debug_addr"); 1786 static ConstString g_sect_name_dwarf_debug_aranges(".debug_aranges"); 1787 static ConstString g_sect_name_dwarf_debug_cu_index(".debug_cu_index"); 1788 static ConstString g_sect_name_dwarf_debug_frame(".debug_frame"); 1789 static ConstString g_sect_name_dwarf_debug_info(".debug_info"); 1790 static ConstString g_sect_name_dwarf_debug_line(".debug_line"); 1791 static ConstString g_sect_name_dwarf_debug_loc(".debug_loc"); 1792 static ConstString g_sect_name_dwarf_debug_macinfo(".debug_macinfo"); 1793 static ConstString g_sect_name_dwarf_debug_macro(".debug_macro"); 1794 static ConstString g_sect_name_dwarf_debug_names(".debug_names"); 1795 static ConstString g_sect_name_dwarf_debug_pubnames(".debug_pubnames"); 1796 static ConstString g_sect_name_dwarf_debug_pubtypes(".debug_pubtypes"); 1797 static ConstString g_sect_name_dwarf_debug_ranges(".debug_ranges"); 1798 static ConstString g_sect_name_dwarf_debug_str(".debug_str"); 1799 static ConstString g_sect_name_dwarf_debug_str_offsets( 1800 ".debug_str_offsets"); 1801 static ConstString g_sect_name_dwarf_debug_abbrev_dwo( 1802 ".debug_abbrev.dwo"); 1803 static ConstString g_sect_name_dwarf_debug_info_dwo(".debug_info.dwo"); 1804 static ConstString g_sect_name_dwarf_debug_line_dwo(".debug_line.dwo"); 1805 static ConstString g_sect_name_dwarf_debug_macro_dwo(".debug_macro.dwo"); 1806 static ConstString g_sect_name_dwarf_debug_loc_dwo(".debug_loc.dwo"); 1807 static ConstString g_sect_name_dwarf_debug_str_dwo(".debug_str.dwo"); 1808 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo( 1809 ".debug_str_offsets.dwo"); 1810 static ConstString g_sect_name_dwarf_debug_types(".debug_types"); 1811 static ConstString g_sect_name_eh_frame(".eh_frame"); 1812 static ConstString g_sect_name_arm_exidx(".ARM.exidx"); 1813 static ConstString g_sect_name_arm_extab(".ARM.extab"); 1814 static ConstString g_sect_name_go_symtab(".gosymtab"); 1815 static ConstString g_sect_name_dwarf_gnu_debugaltlink(".gnu_debugaltlink"); 1816 1817 SectionType sect_type = eSectionTypeOther; 1818 1819 bool is_thread_specific = false; 1820 1821 if (name == g_sect_name_text) 1822 sect_type = eSectionTypeCode; 1823 else if (name == g_sect_name_data) 1824 sect_type = eSectionTypeData; 1825 else if (name == g_sect_name_bss) 1826 sect_type = eSectionTypeZeroFill; 1827 else if (name == g_sect_name_tdata) { 1828 sect_type = eSectionTypeData; 1829 is_thread_specific = true; 1830 } else if (name == g_sect_name_tbss) { 1831 sect_type = eSectionTypeZeroFill; 1832 is_thread_specific = true; 1833 } 1834 // .debug_abbrev – Abbreviations used in the .debug_info section 1835 // .debug_aranges – Lookup table for mapping addresses to compilation 1836 // units .debug_frame – Call frame information .debug_info – The core 1837 // DWARF information section .debug_line – Line number information 1838 // .debug_loc – Location lists used in DW_AT_location attributes 1839 // .debug_macinfo – Macro information .debug_pubnames – Lookup table 1840 // for mapping object and function names to compilation units 1841 // .debug_pubtypes – Lookup table for mapping type names to compilation 1842 // units .debug_ranges – Address ranges used in DW_AT_ranges attributes 1843 // .debug_str – String table used in .debug_info MISSING? 1844 // .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, 1845 // http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html MISSING? 1846 // .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build 1847 // /gdb-add-index?pathrev=144644 MISSING? .debug_types - Type 1848 // descriptions from DWARF 4? See 1849 // http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1850 else if (name == g_sect_name_dwarf_debug_abbrev) 1851 sect_type = eSectionTypeDWARFDebugAbbrev; 1852 else if (name == g_sect_name_dwarf_debug_addr) 1853 sect_type = eSectionTypeDWARFDebugAddr; 1854 else if (name == g_sect_name_dwarf_debug_aranges) 1855 sect_type = eSectionTypeDWARFDebugAranges; 1856 else if (name == g_sect_name_dwarf_debug_cu_index) 1857 sect_type = eSectionTypeDWARFDebugCuIndex; 1858 else if (name == g_sect_name_dwarf_debug_frame) 1859 sect_type = eSectionTypeDWARFDebugFrame; 1860 else if (name == g_sect_name_dwarf_debug_info) 1861 sect_type = eSectionTypeDWARFDebugInfo; 1862 else if (name == g_sect_name_dwarf_debug_line) 1863 sect_type = eSectionTypeDWARFDebugLine; 1864 else if (name == g_sect_name_dwarf_debug_loc) 1865 sect_type = eSectionTypeDWARFDebugLoc; 1866 else if (name == g_sect_name_dwarf_debug_macinfo) 1867 sect_type = eSectionTypeDWARFDebugMacInfo; 1868 else if (name == g_sect_name_dwarf_debug_macro) 1869 sect_type = eSectionTypeDWARFDebugMacro; 1870 else if (name == g_sect_name_dwarf_debug_names) 1871 sect_type = eSectionTypeDWARFDebugNames; 1872 else if (name == g_sect_name_dwarf_debug_pubnames) 1873 sect_type = eSectionTypeDWARFDebugPubNames; 1874 else if (name == g_sect_name_dwarf_debug_pubtypes) 1875 sect_type = eSectionTypeDWARFDebugPubTypes; 1876 else if (name == g_sect_name_dwarf_debug_ranges) 1877 sect_type = eSectionTypeDWARFDebugRanges; 1878 else if (name == g_sect_name_dwarf_debug_str) 1879 sect_type = eSectionTypeDWARFDebugStr; 1880 else if (name == g_sect_name_dwarf_debug_types) 1881 sect_type = eSectionTypeDWARFDebugTypes; 1882 else if (name == g_sect_name_dwarf_debug_str_offsets) 1883 sect_type = eSectionTypeDWARFDebugStrOffsets; 1884 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) 1885 sect_type = eSectionTypeDWARFDebugAbbrev; 1886 else if (name == g_sect_name_dwarf_debug_info_dwo) 1887 sect_type = eSectionTypeDWARFDebugInfo; 1888 else if (name == g_sect_name_dwarf_debug_line_dwo) 1889 sect_type = eSectionTypeDWARFDebugLine; 1890 else if (name == g_sect_name_dwarf_debug_macro_dwo) 1891 sect_type = eSectionTypeDWARFDebugMacro; 1892 else if (name == g_sect_name_dwarf_debug_loc_dwo) 1893 sect_type = eSectionTypeDWARFDebugLoc; 1894 else if (name == g_sect_name_dwarf_debug_str_dwo) 1895 sect_type = eSectionTypeDWARFDebugStr; 1896 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) 1897 sect_type = eSectionTypeDWARFDebugStrOffsets; 1898 else if (name == g_sect_name_eh_frame) 1899 sect_type = eSectionTypeEHFrame; 1900 else if (name == g_sect_name_arm_exidx) 1901 sect_type = eSectionTypeARMexidx; 1902 else if (name == g_sect_name_arm_extab) 1903 sect_type = eSectionTypeARMextab; 1904 else if (name == g_sect_name_go_symtab) 1905 sect_type = eSectionTypeGoSymtab; 1906 else if (name == g_sect_name_dwarf_gnu_debugaltlink) 1907 sect_type = eSectionTypeDWARFGNUDebugAltLink; 1908 1909 const uint32_t permissions = 1910 ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0u) | 1911 ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0u) | 1912 ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0u); 1913 switch (header.sh_type) { 1914 case SHT_SYMTAB: 1915 assert(sect_type == eSectionTypeOther); 1916 sect_type = eSectionTypeELFSymbolTable; 1917 break; 1918 case SHT_DYNSYM: 1919 assert(sect_type == eSectionTypeOther); 1920 sect_type = eSectionTypeELFDynamicSymbols; 1921 break; 1922 case SHT_RELA: 1923 case SHT_REL: 1924 assert(sect_type == eSectionTypeOther); 1925 sect_type = eSectionTypeELFRelocationEntries; 1926 break; 1927 case SHT_DYNAMIC: 1928 assert(sect_type == eSectionTypeOther); 1929 sect_type = eSectionTypeELFDynamicLinkInfo; 1930 break; 1931 } 1932 1933 if (eSectionTypeOther == sect_type) { 1934 // the kalimba toolchain assumes that ELF section names are free-form. 1935 // It does support linkscripts which (can) give rise to various 1936 // arbitrarily named sections being "Code" or "Data". 1937 sect_type = kalimbaSectionType(m_header, header); 1938 } 1939 1940 // In common case ELF code section can have arbitrary name (for example, 1941 // we can specify it using section attribute for particular function) so 1942 // assume that section is a code section if it has SHF_EXECINSTR flag set 1943 // and has SHT_PROGBITS type. 1944 if (eSectionTypeOther == sect_type && 1945 llvm::ELF::SHT_PROGBITS == header.sh_type && 1946 (header.sh_flags & SHF_EXECINSTR)) { 1947 sect_type = eSectionTypeCode; 1948 } 1949 1950 const uint32_t target_bytes_size = 1951 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) 1952 ? m_arch_spec.GetDataByteSize() 1953 : eSectionTypeCode == sect_type ? m_arch_spec.GetCodeByteSize() 1954 : 1; 1955 elf::elf_xword log2align = 1956 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); 1957 1958 uint64_t addr = header.sh_addr; 1959 1960 if ((header.sh_flags & SHF_ALLOC) && synthaddrs) { 1961 nextaddr = 1962 (nextaddr + header.sh_addralign - 1) & ~(header.sh_addralign - 1); 1963 addr = nextaddr; 1964 nextaddr += vm_size; 1965 } 1966 1967 SectionSP section_sp(new Section( 1968 GetModule(), // Module to which this section belongs. 1969 this, // ObjectFile to which this section belongs and should read 1970 // section data from. 1971 SectionIndex(I), // Section ID. 1972 name, // Section name. 1973 sect_type, // Section type. 1974 addr, // VM address. 1975 vm_size, // VM size in bytes of this section. 1976 header.sh_offset, // Offset of this section in the file. 1977 file_size, // Size of the section as found in the file. 1978 log2align, // Alignment of the section 1979 header.sh_flags, // Flags for this section. 1980 target_bytes_size)); // Number of host bytes per target byte 1981 1982 section_sp->SetPermissions(permissions); 1983 if (is_thread_specific) 1984 section_sp->SetIsThreadSpecific(is_thread_specific); 1985 m_sections_ap->AddSection(section_sp); 1986 } 1987 } 1988 1989 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the 1990 // unified section list. 1991 if (GetType() != eTypeDebugInfo) 1992 unified_section_list = *m_sections_ap; 1993 } 1994 1995 // Find the arm/aarch64 mapping symbol character in the given symbol name. 1996 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we 1997 // recognize cases when the mapping symbol prefixed by an arbitrary string 1998 // because if a symbol prefix added to each symbol in the object file with 1999 // objcopy then the mapping symbols are also prefixed. 2000 static char FindArmAarch64MappingSymbol(const char *symbol_name) { 2001 if (!symbol_name) 2002 return '\0'; 2003 2004 const char *dollar_pos = ::strchr(symbol_name, '$'); 2005 if (!dollar_pos || dollar_pos[1] == '\0') 2006 return '\0'; 2007 2008 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 2009 return dollar_pos[1]; 2010 return '\0'; 2011 } 2012 2013 #define STO_MIPS_ISA (3 << 6) 2014 #define STO_MICROMIPS (2 << 6) 2015 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) 2016 2017 // private 2018 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, 2019 SectionList *section_list, 2020 const size_t num_symbols, 2021 const DataExtractor &symtab_data, 2022 const DataExtractor &strtab_data) { 2023 ELFSymbol symbol; 2024 lldb::offset_t offset = 0; 2025 2026 static ConstString text_section_name(".text"); 2027 static ConstString init_section_name(".init"); 2028 static ConstString fini_section_name(".fini"); 2029 static ConstString ctors_section_name(".ctors"); 2030 static ConstString dtors_section_name(".dtors"); 2031 2032 static ConstString data_section_name(".data"); 2033 static ConstString rodata_section_name(".rodata"); 2034 static ConstString rodata1_section_name(".rodata1"); 2035 static ConstString data2_section_name(".data1"); 2036 static ConstString bss_section_name(".bss"); 2037 static ConstString opd_section_name(".opd"); // For ppc64 2038 2039 // On Android the oatdata and the oatexec symbols in the oat and odex files 2040 // covers the full .text section what causes issues with displaying unusable 2041 // symbol name to the user and very slow unwinding speed because the 2042 // instruction emulation based unwind plans try to emulate all instructions 2043 // in these symbols. Don't add these symbols to the symbol list as they have 2044 // no use for the debugger and they are causing a lot of trouble. Filtering 2045 // can't be restricted to Android because this special object file don't 2046 // contain the note section specifying the environment to Android but the 2047 // custom extension and file name makes it highly unlikely that this will 2048 // collide with anything else. 2049 ConstString file_extension = m_file.GetFileNameExtension(); 2050 bool skip_oatdata_oatexec = file_extension == ConstString(".oat") || 2051 file_extension == ConstString(".odex"); 2052 2053 ArchSpec arch; 2054 GetArchitecture(arch); 2055 ModuleSP module_sp(GetModule()); 2056 SectionList *module_section_list = 2057 module_sp ? module_sp->GetSectionList() : nullptr; 2058 2059 // Local cache to avoid doing a FindSectionByName for each symbol. The "const 2060 // char*" key must came from a ConstString object so they can be compared by 2061 // pointer 2062 std::unordered_map<const char *, lldb::SectionSP> section_name_to_section; 2063 2064 unsigned i; 2065 for (i = 0; i < num_symbols; ++i) { 2066 if (symbol.Parse(symtab_data, &offset) == false) 2067 break; 2068 2069 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2070 if (!symbol_name) 2071 symbol_name = ""; 2072 2073 // No need to add non-section symbols that have no names 2074 if (symbol.getType() != STT_SECTION && 2075 (symbol_name == nullptr || symbol_name[0] == '\0')) 2076 continue; 2077 2078 // Skipping oatdata and oatexec sections if it is requested. See details 2079 // above the definition of skip_oatdata_oatexec for the reasons. 2080 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || 2081 ::strcmp(symbol_name, "oatexec") == 0)) 2082 continue; 2083 2084 SectionSP symbol_section_sp; 2085 SymbolType symbol_type = eSymbolTypeInvalid; 2086 Elf64_Half section_idx = symbol.st_shndx; 2087 2088 switch (section_idx) { 2089 case SHN_ABS: 2090 symbol_type = eSymbolTypeAbsolute; 2091 break; 2092 case SHN_UNDEF: 2093 symbol_type = eSymbolTypeUndefined; 2094 break; 2095 default: 2096 symbol_section_sp = section_list->GetSectionAtIndex(section_idx); 2097 break; 2098 } 2099 2100 // If a symbol is undefined do not process it further even if it has a STT 2101 // type 2102 if (symbol_type != eSymbolTypeUndefined) { 2103 switch (symbol.getType()) { 2104 default: 2105 case STT_NOTYPE: 2106 // The symbol's type is not specified. 2107 break; 2108 2109 case STT_OBJECT: 2110 // The symbol is associated with a data object, such as a variable, an 2111 // array, etc. 2112 symbol_type = eSymbolTypeData; 2113 break; 2114 2115 case STT_FUNC: 2116 // The symbol is associated with a function or other executable code. 2117 symbol_type = eSymbolTypeCode; 2118 break; 2119 2120 case STT_SECTION: 2121 // The symbol is associated with a section. Symbol table entries of 2122 // this type exist primarily for relocation and normally have STB_LOCAL 2123 // binding. 2124 break; 2125 2126 case STT_FILE: 2127 // Conventionally, the symbol's name gives the name of the source file 2128 // associated with the object file. A file symbol has STB_LOCAL 2129 // binding, its section index is SHN_ABS, and it precedes the other 2130 // STB_LOCAL symbols for the file, if it is present. 2131 symbol_type = eSymbolTypeSourceFile; 2132 break; 2133 2134 case STT_GNU_IFUNC: 2135 // The symbol is associated with an indirect function. The actual 2136 // function will be resolved if it is referenced. 2137 symbol_type = eSymbolTypeResolver; 2138 break; 2139 } 2140 } 2141 2142 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { 2143 if (symbol_section_sp) { 2144 const ConstString §_name = symbol_section_sp->GetName(); 2145 if (sect_name == text_section_name || sect_name == init_section_name || 2146 sect_name == fini_section_name || sect_name == ctors_section_name || 2147 sect_name == dtors_section_name) { 2148 symbol_type = eSymbolTypeCode; 2149 } else if (sect_name == data_section_name || 2150 sect_name == data2_section_name || 2151 sect_name == rodata_section_name || 2152 sect_name == rodata1_section_name || 2153 sect_name == bss_section_name) { 2154 symbol_type = eSymbolTypeData; 2155 } 2156 } 2157 } 2158 2159 int64_t symbol_value_offset = 0; 2160 uint32_t additional_flags = 0; 2161 2162 if (arch.IsValid()) { 2163 if (arch.GetMachine() == llvm::Triple::arm) { 2164 if (symbol.getBinding() == STB_LOCAL) { 2165 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2166 if (symbol_type == eSymbolTypeCode) { 2167 switch (mapping_symbol) { 2168 case 'a': 2169 // $a[.<any>]* - marks an ARM instruction sequence 2170 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2171 break; 2172 case 'b': 2173 case 't': 2174 // $b[.<any>]* - marks a THUMB BL instruction sequence 2175 // $t[.<any>]* - marks a THUMB instruction sequence 2176 m_address_class_map[symbol.st_value] = 2177 AddressClass::eCodeAlternateISA; 2178 break; 2179 case 'd': 2180 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2181 m_address_class_map[symbol.st_value] = AddressClass::eData; 2182 break; 2183 } 2184 } 2185 if (mapping_symbol) 2186 continue; 2187 } 2188 } else if (arch.GetMachine() == llvm::Triple::aarch64) { 2189 if (symbol.getBinding() == STB_LOCAL) { 2190 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2191 if (symbol_type == eSymbolTypeCode) { 2192 switch (mapping_symbol) { 2193 case 'x': 2194 // $x[.<any>]* - marks an A64 instruction sequence 2195 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2196 break; 2197 case 'd': 2198 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2199 m_address_class_map[symbol.st_value] = AddressClass::eData; 2200 break; 2201 } 2202 } 2203 if (mapping_symbol) 2204 continue; 2205 } 2206 } 2207 2208 if (arch.GetMachine() == llvm::Triple::arm) { 2209 if (symbol_type == eSymbolTypeCode) { 2210 if (symbol.st_value & 1) { 2211 // Subtracting 1 from the address effectively unsets the low order 2212 // bit, which results in the address actually pointing to the 2213 // beginning of the symbol. This delta will be used below in 2214 // conjunction with symbol.st_value to produce the final 2215 // symbol_value that we store in the symtab. 2216 symbol_value_offset = -1; 2217 m_address_class_map[symbol.st_value ^ 1] = 2218 AddressClass::eCodeAlternateISA; 2219 } else { 2220 // This address is ARM 2221 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2222 } 2223 } 2224 } 2225 2226 /* 2227 * MIPS: 2228 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for 2229 * MIPS). 2230 * This allows processor to switch between microMIPS and MIPS without any 2231 * need 2232 * for special mode-control register. However, apart from .debug_line, 2233 * none of 2234 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use 2235 * st_other 2236 * flag to check whether the symbol is microMIPS and then set the address 2237 * class 2238 * accordingly. 2239 */ 2240 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2241 if (llvm_arch == llvm::Triple::mips || 2242 llvm_arch == llvm::Triple::mipsel || 2243 llvm_arch == llvm::Triple::mips64 || 2244 llvm_arch == llvm::Triple::mips64el) { 2245 if (IS_MICROMIPS(symbol.st_other)) 2246 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2247 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { 2248 symbol.st_value = symbol.st_value & (~1ull); 2249 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2250 } else { 2251 if (symbol_type == eSymbolTypeCode) 2252 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2253 else if (symbol_type == eSymbolTypeData) 2254 m_address_class_map[symbol.st_value] = AddressClass::eData; 2255 else 2256 m_address_class_map[symbol.st_value] = AddressClass::eUnknown; 2257 } 2258 } 2259 } 2260 2261 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB 2262 // symbols. See above for more details. 2263 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2264 2265 if (symbol_section_sp == nullptr && section_idx == SHN_ABS && 2266 symbol.st_size != 0) { 2267 // We don't have a section for a symbol with non-zero size. Create a new 2268 // section for it so the address range covered by the symbol is also 2269 // covered by the module (represented through the section list). It is 2270 // needed so module lookup for the addresses covered by this symbol will 2271 // be successfull. This case happens for absolute symbols. 2272 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2273 symbol_section_sp = 2274 std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name, 2275 eSectionTypeAbsoluteAddress, symbol_value, 2276 symbol.st_size, 0, 0, 0, SHF_ALLOC); 2277 2278 module_section_list->AddSection(symbol_section_sp); 2279 section_list->AddSection(symbol_section_sp); 2280 } 2281 2282 if (symbol_section_sp && 2283 CalculateType() != ObjectFile::Type::eTypeObjectFile) 2284 symbol_value -= symbol_section_sp->GetFileAddress(); 2285 2286 if (symbol_section_sp && module_section_list && 2287 module_section_list != section_list) { 2288 const ConstString §_name = symbol_section_sp->GetName(); 2289 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2290 if (section_it == section_name_to_section.end()) 2291 section_it = 2292 section_name_to_section 2293 .emplace(sect_name.GetCString(), 2294 module_section_list->FindSectionByName(sect_name)) 2295 .first; 2296 if (section_it->second) 2297 symbol_section_sp = section_it->second; 2298 } 2299 2300 bool is_global = symbol.getBinding() == STB_GLOBAL; 2301 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2302 bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z'); 2303 2304 llvm::StringRef symbol_ref(symbol_name); 2305 2306 // Symbol names may contain @VERSION suffixes. Find those and strip them 2307 // temporarily. 2308 size_t version_pos = symbol_ref.find('@'); 2309 bool has_suffix = version_pos != llvm::StringRef::npos; 2310 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2311 Mangled mangled(ConstString(symbol_bare), is_mangled); 2312 2313 // Now append the suffix back to mangled and unmangled names. Only do it if 2314 // the demangling was successful (string is not empty). 2315 if (has_suffix) { 2316 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2317 2318 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2319 if (!mangled_name.empty()) 2320 mangled.SetMangledName(ConstString((mangled_name + suffix).str())); 2321 2322 ConstString demangled = 2323 mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2324 llvm::StringRef demangled_name = demangled.GetStringRef(); 2325 if (!demangled_name.empty()) 2326 mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); 2327 } 2328 2329 // In ELF all symbol should have a valid size but it is not true for some 2330 // function symbols coming from hand written assembly. As none of the 2331 // function symbol should have 0 size we try to calculate the size for 2332 // these symbols in the symtab with saying that their original size is not 2333 // valid. 2334 bool symbol_size_valid = 2335 symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2336 2337 Symbol dc_symbol( 2338 i + start_id, // ID is the original symbol table index. 2339 mangled, 2340 symbol_type, // Type of this symbol 2341 is_global, // Is this globally visible? 2342 false, // Is this symbol debug info? 2343 false, // Is this symbol a trampoline? 2344 false, // Is this symbol artificial? 2345 AddressRange(symbol_section_sp, // Section in which this symbol is 2346 // defined or null. 2347 symbol_value, // Offset in section or symbol value. 2348 symbol.st_size), // Size in bytes of this symbol. 2349 symbol_size_valid, // Symbol size is valid 2350 has_suffix, // Contains linker annotations? 2351 flags); // Symbol flags. 2352 symtab->AddSymbol(dc_symbol); 2353 } 2354 return i; 2355 } 2356 2357 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2358 user_id_t start_id, 2359 lldb_private::Section *symtab) { 2360 if (symtab->GetObjectFile() != this) { 2361 // If the symbol table section is owned by a different object file, have it 2362 // do the parsing. 2363 ObjectFileELF *obj_file_elf = 2364 static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2365 return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); 2366 } 2367 2368 // Get section list for this object file. 2369 SectionList *section_list = m_sections_ap.get(); 2370 if (!section_list) 2371 return 0; 2372 2373 user_id_t symtab_id = symtab->GetID(); 2374 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2375 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2376 symtab_hdr->sh_type == SHT_DYNSYM); 2377 2378 // sh_link: section header index of associated string table. Section ID's are 2379 // ones based. 2380 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2381 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2382 2383 if (symtab && strtab) { 2384 assert(symtab->GetObjectFile() == this); 2385 assert(strtab->GetObjectFile() == this); 2386 2387 DataExtractor symtab_data; 2388 DataExtractor strtab_data; 2389 if (ReadSectionData(symtab, symtab_data) && 2390 ReadSectionData(strtab, strtab_data)) { 2391 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2392 2393 return ParseSymbols(symbol_table, start_id, section_list, num_symbols, 2394 symtab_data, strtab_data); 2395 } 2396 } 2397 2398 return 0; 2399 } 2400 2401 size_t ObjectFileELF::ParseDynamicSymbols() { 2402 if (m_dynamic_symbols.size()) 2403 return m_dynamic_symbols.size(); 2404 2405 SectionList *section_list = GetSectionList(); 2406 if (!section_list) 2407 return 0; 2408 2409 // Find the SHT_DYNAMIC section. 2410 Section *dynsym = 2411 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 2412 .get(); 2413 if (!dynsym) 2414 return 0; 2415 assert(dynsym->GetObjectFile() == this); 2416 2417 ELFDynamic symbol; 2418 DataExtractor dynsym_data; 2419 if (ReadSectionData(dynsym, dynsym_data)) { 2420 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2421 lldb::offset_t cursor = 0; 2422 2423 while (cursor < section_size) { 2424 if (!symbol.Parse(dynsym_data, &cursor)) 2425 break; 2426 2427 m_dynamic_symbols.push_back(symbol); 2428 } 2429 } 2430 2431 return m_dynamic_symbols.size(); 2432 } 2433 2434 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { 2435 if (!ParseDynamicSymbols()) 2436 return NULL; 2437 2438 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2439 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2440 for (; I != E; ++I) { 2441 ELFDynamic *symbol = &*I; 2442 2443 if (symbol->d_tag == tag) 2444 return symbol; 2445 } 2446 2447 return NULL; 2448 } 2449 2450 unsigned ObjectFileELF::PLTRelocationType() { 2451 // DT_PLTREL 2452 // This member specifies the type of relocation entry to which the 2453 // procedure linkage table refers. The d_val member holds DT_REL or 2454 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2455 // must use the same relocation. 2456 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2457 2458 if (symbol) 2459 return symbol->d_val; 2460 2461 return 0; 2462 } 2463 2464 // Returns the size of the normal plt entries and the offset of the first 2465 // normal plt entry. The 0th entry in the plt table is usually a resolution 2466 // entry which have different size in some architectures then the rest of the 2467 // plt entries. 2468 static std::pair<uint64_t, uint64_t> 2469 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, 2470 const ELFSectionHeader *plt_hdr) { 2471 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2472 2473 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 2474 // 16 bytes. So round the entsize up by the alignment if addralign is set. 2475 elf_xword plt_entsize = 2476 plt_hdr->sh_addralign 2477 ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) 2478 : plt_hdr->sh_entsize; 2479 2480 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2481 // PLT entries relocation code in general requires multiple instruction and 2482 // should be greater than 4 bytes in most cases. Try to guess correct size 2483 // just in case. 2484 if (plt_entsize <= 4) { 2485 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the 2486 // size of the plt entries based on the number of entries and the size of 2487 // the plt section with the assumption that the size of the 0th entry is at 2488 // least as big as the size of the normal entries and it isn't much bigger 2489 // then that. 2490 if (plt_hdr->sh_addralign) 2491 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / 2492 (num_relocations + 1) * plt_hdr->sh_addralign; 2493 else 2494 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2495 } 2496 2497 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2498 2499 return std::make_pair(plt_entsize, plt_offset); 2500 } 2501 2502 static unsigned ParsePLTRelocations( 2503 Symtab *symbol_table, user_id_t start_id, unsigned rel_type, 2504 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2505 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, 2506 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, 2507 DataExtractor &symtab_data, DataExtractor &strtab_data) { 2508 ELFRelocation rel(rel_type); 2509 ELFSymbol symbol; 2510 lldb::offset_t offset = 0; 2511 2512 uint64_t plt_offset, plt_entsize; 2513 std::tie(plt_entsize, plt_offset) = 2514 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2515 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2516 2517 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2518 reloc_info_fn reloc_type; 2519 reloc_info_fn reloc_symbol; 2520 2521 if (hdr->Is32Bit()) { 2522 reloc_type = ELFRelocation::RelocType32; 2523 reloc_symbol = ELFRelocation::RelocSymbol32; 2524 } else { 2525 reloc_type = ELFRelocation::RelocType64; 2526 reloc_symbol = ELFRelocation::RelocSymbol64; 2527 } 2528 2529 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2530 unsigned i; 2531 for (i = 0; i < num_relocations; ++i) { 2532 if (rel.Parse(rel_data, &offset) == false) 2533 break; 2534 2535 if (reloc_type(rel) != slot_type) 2536 continue; 2537 2538 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2539 if (!symbol.Parse(symtab_data, &symbol_offset)) 2540 break; 2541 2542 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2543 bool is_mangled = 2544 symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2545 uint64_t plt_index = plt_offset + i * plt_entsize; 2546 2547 Symbol jump_symbol( 2548 i + start_id, // Symbol table index 2549 symbol_name, // symbol name. 2550 is_mangled, // is the symbol name mangled? 2551 eSymbolTypeTrampoline, // Type of this symbol 2552 false, // Is this globally visible? 2553 false, // Is this symbol debug info? 2554 true, // Is this symbol a trampoline? 2555 true, // Is this symbol artificial? 2556 plt_section_sp, // Section in which this symbol is defined or null. 2557 plt_index, // Offset in section or symbol value. 2558 plt_entsize, // Size in bytes of this symbol. 2559 true, // Size is valid 2560 false, // Contains linker annotations? 2561 0); // Symbol flags. 2562 2563 symbol_table->AddSymbol(jump_symbol); 2564 } 2565 2566 return i; 2567 } 2568 2569 unsigned 2570 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, 2571 const ELFSectionHeaderInfo *rel_hdr, 2572 user_id_t rel_id) { 2573 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2574 2575 // The link field points to the associated symbol table. 2576 user_id_t symtab_id = rel_hdr->sh_link; 2577 2578 // If the link field doesn't point to the appropriate symbol name table then 2579 // try to find it by name as some compiler don't fill in the link fields. 2580 if (!symtab_id) 2581 symtab_id = GetSectionIndexByName(".dynsym"); 2582 2583 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2584 // point that to the .got.plt or .got section instead of .plt. 2585 user_id_t plt_id = GetSectionIndexByName(".plt"); 2586 2587 if (!symtab_id || !plt_id) 2588 return 0; 2589 2590 // Section ID's are ones based; 2591 symtab_id++; 2592 plt_id++; 2593 2594 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2595 if (!plt_hdr) 2596 return 0; 2597 2598 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2599 if (!sym_hdr) 2600 return 0; 2601 2602 SectionList *section_list = m_sections_ap.get(); 2603 if (!section_list) 2604 return 0; 2605 2606 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2607 if (!rel_section) 2608 return 0; 2609 2610 SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); 2611 if (!plt_section_sp) 2612 return 0; 2613 2614 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2615 if (!symtab) 2616 return 0; 2617 2618 // sh_link points to associated string table. 2619 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2620 if (!strtab) 2621 return 0; 2622 2623 DataExtractor rel_data; 2624 if (!ReadSectionData(rel_section, rel_data)) 2625 return 0; 2626 2627 DataExtractor symtab_data; 2628 if (!ReadSectionData(symtab, symtab_data)) 2629 return 0; 2630 2631 DataExtractor strtab_data; 2632 if (!ReadSectionData(strtab, strtab_data)) 2633 return 0; 2634 2635 unsigned rel_type = PLTRelocationType(); 2636 if (!rel_type) 2637 return 0; 2638 2639 return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, 2640 rel_hdr, plt_hdr, sym_hdr, plt_section_sp, 2641 rel_data, symtab_data, strtab_data); 2642 } 2643 2644 unsigned ObjectFileELF::ApplyRelocations( 2645 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2646 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2647 DataExtractor &rel_data, DataExtractor &symtab_data, 2648 DataExtractor &debug_data, Section *rel_section) { 2649 ELFRelocation rel(rel_hdr->sh_type); 2650 lldb::addr_t offset = 0; 2651 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2652 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2653 reloc_info_fn reloc_type; 2654 reloc_info_fn reloc_symbol; 2655 2656 if (hdr->Is32Bit()) { 2657 reloc_type = ELFRelocation::RelocType32; 2658 reloc_symbol = ELFRelocation::RelocSymbol32; 2659 } else { 2660 reloc_type = ELFRelocation::RelocType64; 2661 reloc_symbol = ELFRelocation::RelocSymbol64; 2662 } 2663 2664 for (unsigned i = 0; i < num_relocations; ++i) { 2665 if (rel.Parse(rel_data, &offset) == false) 2666 break; 2667 2668 Symbol *symbol = NULL; 2669 2670 if (hdr->Is32Bit()) { 2671 switch (reloc_type(rel)) { 2672 case R_386_32: 2673 case R_386_PC32: 2674 default: 2675 // FIXME: This asserts with this input: 2676 // 2677 // foo.cpp 2678 // int main(int argc, char **argv) { return 0; } 2679 // 2680 // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o 2681 // 2682 // and running this on the foo.o module. 2683 assert(false && "unexpected relocation type"); 2684 } 2685 } else { 2686 switch (reloc_type(rel)) { 2687 case R_X86_64_64: { 2688 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2689 if (symbol) { 2690 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2691 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2692 uint64_t *dst = reinterpret_cast<uint64_t *>( 2693 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2694 ELFRelocation::RelocOffset64(rel)); 2695 *dst = value + ELFRelocation::RelocAddend64(rel); 2696 } 2697 break; 2698 } 2699 case R_X86_64_32: 2700 case R_X86_64_32S: 2701 case R_AARCH64_ABS32: { 2702 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2703 if (symbol) { 2704 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2705 value += ELFRelocation::RelocAddend32(rel); 2706 if ((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2707 (reloc_type(rel) == R_X86_64_32S && 2708 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)) || 2709 (reloc_type(rel) == R_AARCH64_ABS32 && (value <= UINT32_MAX))) { 2710 Log *log = 2711 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 2712 log->Printf("Failed to apply debug info relocations"); 2713 } 2714 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2715 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2716 uint32_t *dst = reinterpret_cast<uint32_t *>( 2717 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2718 ELFRelocation::RelocOffset32(rel)); 2719 *dst = truncated_addr; 2720 } 2721 break; 2722 } 2723 case R_X86_64_PC32: 2724 default: 2725 assert(false && "unexpected relocation type"); 2726 } 2727 } 2728 } 2729 2730 return 0; 2731 } 2732 2733 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, 2734 user_id_t rel_id, 2735 lldb_private::Symtab *thetab) { 2736 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2737 2738 // Parse in the section list if needed. 2739 SectionList *section_list = GetSectionList(); 2740 if (!section_list) 2741 return 0; 2742 2743 // Section ID's are ones based. 2744 user_id_t symtab_id = rel_hdr->sh_link + 1; 2745 user_id_t debug_id = rel_hdr->sh_info + 1; 2746 2747 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2748 if (!symtab_hdr) 2749 return 0; 2750 2751 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2752 if (!debug_hdr) 2753 return 0; 2754 2755 Section *rel = section_list->FindSectionByID(rel_id).get(); 2756 if (!rel) 2757 return 0; 2758 2759 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2760 if (!symtab) 2761 return 0; 2762 2763 Section *debug = section_list->FindSectionByID(debug_id).get(); 2764 if (!debug) 2765 return 0; 2766 2767 DataExtractor rel_data; 2768 DataExtractor symtab_data; 2769 DataExtractor debug_data; 2770 2771 if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) && 2772 GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) && 2773 GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) { 2774 ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr, 2775 rel_data, symtab_data, debug_data, debug); 2776 } 2777 2778 return 0; 2779 } 2780 2781 Symtab *ObjectFileELF::GetSymtab() { 2782 ModuleSP module_sp(GetModule()); 2783 if (!module_sp) 2784 return NULL; 2785 2786 // We always want to use the main object file so we (hopefully) only have one 2787 // cached copy of our symtab, dynamic sections, etc. 2788 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2789 if (module_obj_file && module_obj_file != this) 2790 return module_obj_file->GetSymtab(); 2791 2792 if (m_symtab_ap.get() == NULL) { 2793 SectionList *section_list = module_sp->GetSectionList(); 2794 if (!section_list) 2795 return NULL; 2796 2797 uint64_t symbol_id = 0; 2798 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2799 2800 // Sharable objects and dynamic executables usually have 2 distinct symbol 2801 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a 2802 // smaller version of the symtab that only contains global symbols. The 2803 // information found in the dynsym is therefore also found in the symtab, 2804 // while the reverse is not necessarily true. 2805 Section *symtab = 2806 section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); 2807 if (!symtab) { 2808 // The symtab section is non-allocable and can be stripped, so if it 2809 // doesn't exist then use the dynsym section which should always be 2810 // there. 2811 symtab = 2812 section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) 2813 .get(); 2814 } 2815 if (symtab) { 2816 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2817 symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab); 2818 } 2819 2820 // DT_JMPREL 2821 // If present, this entry's d_ptr member holds the address of 2822 // relocation 2823 // entries associated solely with the procedure linkage table. 2824 // Separating 2825 // these relocation entries lets the dynamic linker ignore them during 2826 // process initialization, if lazy binding is enabled. If this entry is 2827 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2828 // also be present. 2829 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2830 if (symbol) { 2831 // Synthesize trampoline symbols to help navigate the PLT. 2832 addr_t addr = symbol->d_ptr; 2833 Section *reloc_section = 2834 section_list->FindSectionContainingFileAddress(addr).get(); 2835 if (reloc_section) { 2836 user_id_t reloc_id = reloc_section->GetID(); 2837 const ELFSectionHeaderInfo *reloc_header = 2838 GetSectionHeaderByIndex(reloc_id); 2839 assert(reloc_header); 2840 2841 if (m_symtab_ap == nullptr) 2842 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2843 2844 ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header, 2845 reloc_id); 2846 } 2847 } 2848 2849 DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo(); 2850 if (eh_frame) { 2851 if (m_symtab_ap == nullptr) 2852 m_symtab_ap.reset(new Symtab(this)); 2853 ParseUnwindSymbols(m_symtab_ap.get(), eh_frame); 2854 } 2855 2856 // If we still don't have any symtab then create an empty instance to avoid 2857 // do the section lookup next time. 2858 if (m_symtab_ap == nullptr) 2859 m_symtab_ap.reset(new Symtab(this)); 2860 2861 m_symtab_ap->CalculateSymbolSizes(); 2862 } 2863 2864 return m_symtab_ap.get(); 2865 } 2866 2867 void ObjectFileELF::RelocateSection(lldb_private::Section *section) 2868 { 2869 static const char *debug_prefix = ".debug"; 2870 2871 // Set relocated bit so we stop getting called, regardless of whether we 2872 // actually relocate. 2873 section->SetIsRelocated(true); 2874 2875 // We only relocate in ELF relocatable files 2876 if (CalculateType() != eTypeObjectFile) 2877 return; 2878 2879 const char *section_name = section->GetName().GetCString(); 2880 // Can't relocate that which can't be named 2881 if (section_name == nullptr) 2882 return; 2883 2884 // We don't relocate non-debug sections at the moment 2885 if (strncmp(section_name, debug_prefix, strlen(debug_prefix))) 2886 return; 2887 2888 // Relocation section names to look for 2889 std::string needle = std::string(".rel") + section_name; 2890 std::string needlea = std::string(".rela") + section_name; 2891 2892 for (SectionHeaderCollIter I = m_section_headers.begin(); 2893 I != m_section_headers.end(); ++I) { 2894 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { 2895 const char *hay_name = I->section_name.GetCString(); 2896 if (hay_name == nullptr) 2897 continue; 2898 if (needle == hay_name || needlea == hay_name) { 2899 const ELFSectionHeader &reloc_header = *I; 2900 user_id_t reloc_id = SectionIndex(I); 2901 RelocateDebugSections(&reloc_header, reloc_id, GetSymtab()); 2902 break; 2903 } 2904 } 2905 } 2906 } 2907 2908 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, 2909 DWARFCallFrameInfo *eh_frame) { 2910 SectionList *section_list = GetSectionList(); 2911 if (!section_list) 2912 return; 2913 2914 // First we save the new symbols into a separate list and add them to the 2915 // symbol table after we colleced all symbols we want to add. This is 2916 // neccessary because adding a new symbol invalidates the internal index of 2917 // the symtab what causing the next lookup to be slow because it have to 2918 // recalculate the index first. 2919 std::vector<Symbol> new_symbols; 2920 2921 eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols]( 2922 lldb::addr_t file_addr, uint32_t size, dw_offset_t) { 2923 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 2924 if (symbol) { 2925 if (!symbol->GetByteSizeIsValid()) { 2926 symbol->SetByteSize(size); 2927 symbol->SetSizeIsSynthesized(true); 2928 } 2929 } else { 2930 SectionSP section_sp = 2931 section_list->FindSectionContainingFileAddress(file_addr); 2932 if (section_sp) { 2933 addr_t offset = file_addr - section_sp->GetFileAddress(); 2934 const char *symbol_name = GetNextSyntheticSymbolName().GetCString(); 2935 uint64_t symbol_id = symbol_table->GetNumSymbols(); 2936 Symbol eh_symbol( 2937 symbol_id, // Symbol table index. 2938 symbol_name, // Symbol name. 2939 false, // Is the symbol name mangled? 2940 eSymbolTypeCode, // Type of this symbol. 2941 true, // Is this globally visible? 2942 false, // Is this symbol debug info? 2943 false, // Is this symbol a trampoline? 2944 true, // Is this symbol artificial? 2945 section_sp, // Section in which this symbol is defined or null. 2946 offset, // Offset in section or symbol value. 2947 0, // Size: Don't specify the size as an FDE can 2948 false, // Size is valid: cover multiple symbols. 2949 false, // Contains linker annotations? 2950 0); // Symbol flags. 2951 new_symbols.push_back(eh_symbol); 2952 } 2953 } 2954 return true; 2955 }); 2956 2957 for (const Symbol &s : new_symbols) 2958 symbol_table->AddSymbol(s); 2959 } 2960 2961 bool ObjectFileELF::IsStripped() { 2962 // TODO: determine this for ELF 2963 return false; 2964 } 2965 2966 //===----------------------------------------------------------------------===// 2967 // Dump 2968 // 2969 // Dump the specifics of the runtime file container (such as any headers 2970 // segments, sections, etc). 2971 //---------------------------------------------------------------------- 2972 void ObjectFileELF::Dump(Stream *s) { 2973 ModuleSP module_sp(GetModule()); 2974 if (!module_sp) { 2975 return; 2976 } 2977 2978 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2979 s->Printf("%p: ", static_cast<void *>(this)); 2980 s->Indent(); 2981 s->PutCString("ObjectFileELF"); 2982 2983 ArchSpec header_arch; 2984 GetArchitecture(header_arch); 2985 2986 *s << ", file = '" << m_file 2987 << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2988 2989 DumpELFHeader(s, m_header); 2990 s->EOL(); 2991 DumpELFProgramHeaders(s); 2992 s->EOL(); 2993 DumpELFSectionHeaders(s); 2994 s->EOL(); 2995 SectionList *section_list = GetSectionList(); 2996 if (section_list) 2997 section_list->Dump(s, NULL, true, UINT32_MAX); 2998 Symtab *symtab = GetSymtab(); 2999 if (symtab) 3000 symtab->Dump(s, NULL, eSortOrderNone); 3001 s->EOL(); 3002 DumpDependentModules(s); 3003 s->EOL(); 3004 } 3005 3006 //---------------------------------------------------------------------- 3007 // DumpELFHeader 3008 // 3009 // Dump the ELF header to the specified output stream 3010 //---------------------------------------------------------------------- 3011 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { 3012 s->PutCString("ELF Header\n"); 3013 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 3014 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], 3015 header.e_ident[EI_MAG1]); 3016 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], 3017 header.e_ident[EI_MAG2]); 3018 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], 3019 header.e_ident[EI_MAG3]); 3020 3021 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 3022 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 3023 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 3024 s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 3025 s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 3026 3027 s->Printf("e_type = 0x%4.4x ", header.e_type); 3028 DumpELFHeader_e_type(s, header.e_type); 3029 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 3030 s->Printf("e_version = 0x%8.8x\n", header.e_version); 3031 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 3032 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 3033 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 3034 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 3035 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 3036 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 3037 s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum); 3038 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 3039 s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum); 3040 s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx); 3041 } 3042 3043 //---------------------------------------------------------------------- 3044 // DumpELFHeader_e_type 3045 // 3046 // Dump an token value for the ELF header member e_type 3047 //---------------------------------------------------------------------- 3048 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { 3049 switch (e_type) { 3050 case ET_NONE: 3051 *s << "ET_NONE"; 3052 break; 3053 case ET_REL: 3054 *s << "ET_REL"; 3055 break; 3056 case ET_EXEC: 3057 *s << "ET_EXEC"; 3058 break; 3059 case ET_DYN: 3060 *s << "ET_DYN"; 3061 break; 3062 case ET_CORE: 3063 *s << "ET_CORE"; 3064 break; 3065 default: 3066 break; 3067 } 3068 } 3069 3070 //---------------------------------------------------------------------- 3071 // DumpELFHeader_e_ident_EI_DATA 3072 // 3073 // Dump an token value for the ELF header member e_ident[EI_DATA] 3074 //---------------------------------------------------------------------- 3075 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, 3076 unsigned char ei_data) { 3077 switch (ei_data) { 3078 case ELFDATANONE: 3079 *s << "ELFDATANONE"; 3080 break; 3081 case ELFDATA2LSB: 3082 *s << "ELFDATA2LSB - Little Endian"; 3083 break; 3084 case ELFDATA2MSB: 3085 *s << "ELFDATA2MSB - Big Endian"; 3086 break; 3087 default: 3088 break; 3089 } 3090 } 3091 3092 //---------------------------------------------------------------------- 3093 // DumpELFProgramHeader 3094 // 3095 // Dump a single ELF program header to the specified output stream 3096 //---------------------------------------------------------------------- 3097 void ObjectFileELF::DumpELFProgramHeader(Stream *s, 3098 const ELFProgramHeader &ph) { 3099 DumpELFProgramHeader_p_type(s, ph.p_type); 3100 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, 3101 ph.p_vaddr, ph.p_paddr); 3102 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, 3103 ph.p_flags); 3104 3105 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3106 s->Printf(") %8.8" PRIx64, ph.p_align); 3107 } 3108 3109 //---------------------------------------------------------------------- 3110 // DumpELFProgramHeader_p_type 3111 // 3112 // Dump an token value for the ELF program header member p_type which describes 3113 // the type of the program header 3114 // ---------------------------------------------------------------------- 3115 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { 3116 const int kStrWidth = 15; 3117 switch (p_type) { 3118 CASE_AND_STREAM(s, PT_NULL, kStrWidth); 3119 CASE_AND_STREAM(s, PT_LOAD, kStrWidth); 3120 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); 3121 CASE_AND_STREAM(s, PT_INTERP, kStrWidth); 3122 CASE_AND_STREAM(s, PT_NOTE, kStrWidth); 3123 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); 3124 CASE_AND_STREAM(s, PT_PHDR, kStrWidth); 3125 CASE_AND_STREAM(s, PT_TLS, kStrWidth); 3126 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3127 default: 3128 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3129 break; 3130 } 3131 } 3132 3133 //---------------------------------------------------------------------- 3134 // DumpELFProgramHeader_p_flags 3135 // 3136 // Dump an token value for the ELF program header member p_flags 3137 //---------------------------------------------------------------------- 3138 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { 3139 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3140 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3141 << ((p_flags & PF_W) ? "PF_W" : " ") 3142 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3143 << ((p_flags & PF_R) ? "PF_R" : " "); 3144 } 3145 3146 //---------------------------------------------------------------------- 3147 // DumpELFProgramHeaders 3148 // 3149 // Dump all of the ELF program header to the specified output stream 3150 //---------------------------------------------------------------------- 3151 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { 3152 if (!ParseProgramHeaders()) 3153 return; 3154 3155 s->PutCString("Program Headers\n"); 3156 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3157 "p_filesz p_memsz p_flags p_align\n"); 3158 s->PutCString("==== --------------- -------- -------- -------- " 3159 "-------- -------- ------------------------- --------\n"); 3160 3161 uint32_t idx = 0; 3162 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 3163 I != m_program_headers.end(); ++I, ++idx) { 3164 s->Printf("[%2u] ", idx); 3165 ObjectFileELF::DumpELFProgramHeader(s, *I); 3166 s->EOL(); 3167 } 3168 } 3169 3170 //---------------------------------------------------------------------- 3171 // DumpELFSectionHeader 3172 // 3173 // Dump a single ELF section header to the specified output stream 3174 //---------------------------------------------------------------------- 3175 void ObjectFileELF::DumpELFSectionHeader(Stream *s, 3176 const ELFSectionHeaderInfo &sh) { 3177 s->Printf("%8.8x ", sh.sh_name); 3178 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3179 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3180 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3181 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, 3182 sh.sh_offset, sh.sh_size); 3183 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3184 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3185 } 3186 3187 //---------------------------------------------------------------------- 3188 // DumpELFSectionHeader_sh_type 3189 // 3190 // Dump an token value for the ELF section header member sh_type which 3191 // describes the type of the section 3192 //---------------------------------------------------------------------- 3193 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { 3194 const int kStrWidth = 12; 3195 switch (sh_type) { 3196 CASE_AND_STREAM(s, SHT_NULL, kStrWidth); 3197 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); 3198 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); 3199 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); 3200 CASE_AND_STREAM(s, SHT_RELA, kStrWidth); 3201 CASE_AND_STREAM(s, SHT_HASH, kStrWidth); 3202 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); 3203 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); 3204 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); 3205 CASE_AND_STREAM(s, SHT_REL, kStrWidth); 3206 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); 3207 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); 3208 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); 3209 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); 3210 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); 3211 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); 3212 default: 3213 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3214 break; 3215 } 3216 } 3217 3218 //---------------------------------------------------------------------- 3219 // DumpELFSectionHeader_sh_flags 3220 // 3221 // Dump an token value for the ELF section header member sh_flags 3222 //---------------------------------------------------------------------- 3223 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, 3224 elf_xword sh_flags) { 3225 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3226 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3227 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3228 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3229 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3230 } 3231 3232 //---------------------------------------------------------------------- 3233 // DumpELFSectionHeaders 3234 // 3235 // Dump all of the ELF section header to the specified output stream 3236 //---------------------------------------------------------------------- 3237 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { 3238 if (!ParseSectionHeaders()) 3239 return; 3240 3241 s->PutCString("Section Headers\n"); 3242 s->PutCString("IDX name type flags " 3243 "addr offset size link info addralgn " 3244 "entsize Name\n"); 3245 s->PutCString("==== -------- ------------ -------------------------------- " 3246 "-------- -------- -------- -------- -------- -------- " 3247 "-------- ====================\n"); 3248 3249 uint32_t idx = 0; 3250 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3251 I != m_section_headers.end(); ++I, ++idx) { 3252 s->Printf("[%2u] ", idx); 3253 ObjectFileELF::DumpELFSectionHeader(s, *I); 3254 const char *section_name = I->section_name.AsCString(""); 3255 if (section_name) 3256 *s << ' ' << section_name << "\n"; 3257 } 3258 } 3259 3260 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { 3261 size_t num_modules = ParseDependentModules(); 3262 3263 if (num_modules > 0) { 3264 s->PutCString("Dependent Modules:\n"); 3265 for (unsigned i = 0; i < num_modules; ++i) { 3266 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3267 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3268 } 3269 } 3270 } 3271 3272 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) { 3273 if (!ParseHeader()) 3274 return false; 3275 3276 if (m_section_headers.empty()) { 3277 // Allow elf notes to be parsed which may affect the detected architecture. 3278 ParseSectionHeaders(); 3279 } 3280 3281 if (CalculateType() == eTypeCoreFile && 3282 m_arch_spec.TripleOSIsUnspecifiedUnknown()) { 3283 // Core files don't have section headers yet they have PT_NOTE program 3284 // headers that might shed more light on the architecture 3285 if (ParseProgramHeaders()) { 3286 for (size_t i = 1, count = GetProgramHeaderCount(); i <= count; ++i) { 3287 const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i); 3288 if (header && header->p_type == PT_NOTE && header->p_offset != 0 && 3289 header->p_filesz > 0) { 3290 DataExtractor data; 3291 if (data.SetData(m_data, header->p_offset, header->p_filesz) == 3292 header->p_filesz) { 3293 lldb_private::UUID uuid; 3294 RefineModuleDetailsFromNote(data, m_arch_spec, uuid); 3295 } 3296 } 3297 } 3298 } 3299 } 3300 arch = m_arch_spec; 3301 return true; 3302 } 3303 3304 ObjectFile::Type ObjectFileELF::CalculateType() { 3305 switch (m_header.e_type) { 3306 case llvm::ELF::ET_NONE: 3307 // 0 - No file type 3308 return eTypeUnknown; 3309 3310 case llvm::ELF::ET_REL: 3311 // 1 - Relocatable file 3312 return eTypeObjectFile; 3313 3314 case llvm::ELF::ET_EXEC: 3315 // 2 - Executable file 3316 return eTypeExecutable; 3317 3318 case llvm::ELF::ET_DYN: 3319 // 3 - Shared object file 3320 return eTypeSharedLibrary; 3321 3322 case ET_CORE: 3323 // 4 - Core file 3324 return eTypeCoreFile; 3325 3326 default: 3327 break; 3328 } 3329 return eTypeUnknown; 3330 } 3331 3332 ObjectFile::Strata ObjectFileELF::CalculateStrata() { 3333 switch (m_header.e_type) { 3334 case llvm::ELF::ET_NONE: 3335 // 0 - No file type 3336 return eStrataUnknown; 3337 3338 case llvm::ELF::ET_REL: 3339 // 1 - Relocatable file 3340 return eStrataUnknown; 3341 3342 case llvm::ELF::ET_EXEC: 3343 // 2 - Executable file 3344 // TODO: is there any way to detect that an executable is a kernel 3345 // related executable by inspecting the program headers, section headers, 3346 // symbols, or any other flag bits??? 3347 return eStrataUser; 3348 3349 case llvm::ELF::ET_DYN: 3350 // 3 - Shared object file 3351 // TODO: is there any way to detect that an shared library is a kernel 3352 // related executable by inspecting the program headers, section headers, 3353 // symbols, or any other flag bits??? 3354 return eStrataUnknown; 3355 3356 case ET_CORE: 3357 // 4 - Core file 3358 // TODO: is there any way to detect that an core file is a kernel 3359 // related executable by inspecting the program headers, section headers, 3360 // symbols, or any other flag bits??? 3361 return eStrataUnknown; 3362 3363 default: 3364 break; 3365 } 3366 return eStrataUnknown; 3367 } 3368 3369 size_t ObjectFileELF::ReadSectionData(Section *section, 3370 lldb::offset_t section_offset, void *dst, 3371 size_t dst_len) { 3372 // If some other objectfile owns this data, pass this to them. 3373 if (section->GetObjectFile() != this) 3374 return section->GetObjectFile()->ReadSectionData(section, section_offset, 3375 dst, dst_len); 3376 3377 if (!section->Test(SHF_COMPRESSED)) 3378 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len); 3379 3380 // For compressed sections we need to read to full data to be able to 3381 // decompress. 3382 DataExtractor data; 3383 ReadSectionData(section, data); 3384 return data.CopyData(section_offset, dst_len, dst); 3385 } 3386 3387 size_t ObjectFileELF::ReadSectionData(Section *section, 3388 DataExtractor §ion_data) { 3389 // If some other objectfile owns this data, pass this to them. 3390 if (section->GetObjectFile() != this) 3391 return section->GetObjectFile()->ReadSectionData(section, section_data); 3392 3393 size_t result = ObjectFile::ReadSectionData(section, section_data); 3394 if (result == 0 || !section->Test(SHF_COMPRESSED)) 3395 return result; 3396 3397 auto Decompressor = llvm::object::Decompressor::create( 3398 section->GetName().GetStringRef(), 3399 {reinterpret_cast<const char *>(section_data.GetDataStart()), 3400 size_t(section_data.GetByteSize())}, 3401 GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8); 3402 if (!Decompressor) { 3403 GetModule()->ReportWarning( 3404 "Unable to initialize decompressor for section '%s': %s", 3405 section->GetName().GetCString(), 3406 llvm::toString(Decompressor.takeError()).c_str()); 3407 section_data.Clear(); 3408 return 0; 3409 } 3410 3411 auto buffer_sp = 3412 std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0); 3413 if (auto error = Decompressor->decompress( 3414 {reinterpret_cast<char *>(buffer_sp->GetBytes()), 3415 size_t(buffer_sp->GetByteSize())})) { 3416 GetModule()->ReportWarning( 3417 "Decompression of section '%s' failed: %s", 3418 section->GetName().GetCString(), 3419 llvm::toString(std::move(error)).c_str()); 3420 section_data.Clear(); 3421 return 0; 3422 } 3423 3424 section_data.SetData(buffer_sp); 3425 return buffer_sp->GetByteSize(); 3426 } 3427 3428 bool ObjectFileELF::AnySegmentHasPhysicalAddress() { 3429 size_t header_count = ParseProgramHeaders(); 3430 for (size_t i = 1; i <= header_count; ++i) { 3431 auto header = GetProgramHeaderByIndex(i); 3432 if (header->p_paddr != 0) 3433 return true; 3434 } 3435 return false; 3436 } 3437 3438 std::vector<ObjectFile::LoadableData> 3439 ObjectFileELF::GetLoadableData(Target &target) { 3440 // Create a list of loadable data from loadable segments, using physical 3441 // addresses if they aren't all null 3442 std::vector<LoadableData> loadables; 3443 size_t header_count = ParseProgramHeaders(); 3444 bool should_use_paddr = AnySegmentHasPhysicalAddress(); 3445 for (size_t i = 1; i <= header_count; ++i) { 3446 LoadableData loadable; 3447 auto header = GetProgramHeaderByIndex(i); 3448 if (header->p_type != llvm::ELF::PT_LOAD) 3449 continue; 3450 loadable.Dest = should_use_paddr ? header->p_paddr : header->p_vaddr; 3451 if (loadable.Dest == LLDB_INVALID_ADDRESS) 3452 continue; 3453 if (header->p_filesz == 0) 3454 continue; 3455 auto segment_data = GetSegmentDataByIndex(i); 3456 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(), 3457 segment_data.GetByteSize()); 3458 loadables.push_back(loadable); 3459 } 3460 return loadables; 3461 } 3462