1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ObjectFileELF.h" 10 11 #include <algorithm> 12 #include <cassert> 13 #include <unordered_map> 14 15 #include "lldb/Core/FileSpecList.h" 16 #include "lldb/Core/Module.h" 17 #include "lldb/Core/ModuleSpec.h" 18 #include "lldb/Core/PluginManager.h" 19 #include "lldb/Core/Section.h" 20 #include "lldb/Host/FileSystem.h" 21 #include "lldb/Symbol/DWARFCallFrameInfo.h" 22 #include "lldb/Symbol/SymbolContext.h" 23 #include "lldb/Target/SectionLoadList.h" 24 #include "lldb/Target/Target.h" 25 #include "lldb/Utility/ArchSpec.h" 26 #include "lldb/Utility/DataBufferHeap.h" 27 #include "lldb/Utility/Log.h" 28 #include "lldb/Utility/RangeMap.h" 29 #include "lldb/Utility/Status.h" 30 #include "lldb/Utility/Stream.h" 31 #include "lldb/Utility/Timer.h" 32 33 #include "llvm/ADT/IntervalMap.h" 34 #include "llvm/ADT/PointerUnion.h" 35 #include "llvm/ADT/StringRef.h" 36 #include "llvm/Object/Decompressor.h" 37 #include "llvm/Support/ARMBuildAttributes.h" 38 #include "llvm/Support/MathExtras.h" 39 #include "llvm/Support/MemoryBuffer.h" 40 #include "llvm/Support/MipsABIFlags.h" 41 42 #define CASE_AND_STREAM(s, def, width) \ 43 case def: \ 44 s->Printf("%-*s", width, #def); \ 45 break; 46 47 using namespace lldb; 48 using namespace lldb_private; 49 using namespace elf; 50 using namespace llvm::ELF; 51 52 namespace { 53 54 // ELF note owner definitions 55 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 56 const char *const LLDB_NT_OWNER_GNU = "GNU"; 57 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 58 const char *const LLDB_NT_OWNER_NETBSDCORE = "NetBSD-CORE"; 59 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD"; 60 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 61 const char *const LLDB_NT_OWNER_CORE = "CORE"; 62 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 63 64 // ELF note type definitions 65 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 66 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 67 68 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 69 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 70 71 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 72 73 const elf_word LLDB_NT_NETBSD_IDENT_TAG = 1; 74 const elf_word LLDB_NT_NETBSD_IDENT_DESCSZ = 4; 75 const elf_word LLDB_NT_NETBSD_IDENT_NAMESZ = 7; 76 const elf_word LLDB_NT_NETBSD_PROCINFO = 1; 77 78 // GNU ABI note OS constants 79 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 80 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 81 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 82 83 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 84 #define NT_PRSTATUS 1 85 #define NT_PRFPREG 2 86 #define NT_PRPSINFO 3 87 #define NT_TASKSTRUCT 4 88 #define NT_AUXV 6 89 #define NT_SIGINFO 0x53494749 90 #define NT_FILE 0x46494c45 91 #define NT_PRXFPREG 0x46e62b7f 92 #define NT_PPC_VMX 0x100 93 #define NT_PPC_SPE 0x101 94 #define NT_PPC_VSX 0x102 95 #define NT_386_TLS 0x200 96 #define NT_386_IOPERM 0x201 97 #define NT_X86_XSTATE 0x202 98 #define NT_S390_HIGH_GPRS 0x300 99 #define NT_S390_TIMER 0x301 100 #define NT_S390_TODCMP 0x302 101 #define NT_S390_TODPREG 0x303 102 #define NT_S390_CTRS 0x304 103 #define NT_S390_PREFIX 0x305 104 #define NT_S390_LAST_BREAK 0x306 105 #define NT_S390_SYSTEM_CALL 0x307 106 #define NT_S390_TDB 0x308 107 #define NT_S390_VXRS_LOW 0x309 108 #define NT_S390_VXRS_HIGH 0x30a 109 #define NT_ARM_VFP 0x400 110 #define NT_ARM_TLS 0x401 111 #define NT_ARM_HW_BREAK 0x402 112 #define NT_ARM_HW_WATCH 0x403 113 #define NT_ARM_SYSTEM_CALL 0x404 114 #define NT_METAG_CBUF 0x500 115 #define NT_METAG_RPIPE 0x501 116 #define NT_METAG_TLS 0x502 117 118 //===----------------------------------------------------------------------===// 119 /// \class ELFRelocation 120 /// Generic wrapper for ELFRel and ELFRela. 121 /// 122 /// This helper class allows us to parse both ELFRel and ELFRela relocation 123 /// entries in a generic manner. 124 class ELFRelocation { 125 public: 126 /// Constructs an ELFRelocation entry with a personality as given by @p 127 /// type. 128 /// 129 /// \param type Either DT_REL or DT_RELA. Any other value is invalid. 130 ELFRelocation(unsigned type); 131 132 ~ELFRelocation(); 133 134 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 135 136 static unsigned RelocType32(const ELFRelocation &rel); 137 138 static unsigned RelocType64(const ELFRelocation &rel); 139 140 static unsigned RelocSymbol32(const ELFRelocation &rel); 141 142 static unsigned RelocSymbol64(const ELFRelocation &rel); 143 144 static unsigned RelocOffset32(const ELFRelocation &rel); 145 146 static unsigned RelocOffset64(const ELFRelocation &rel); 147 148 static unsigned RelocAddend32(const ELFRelocation &rel); 149 150 static unsigned RelocAddend64(const ELFRelocation &rel); 151 152 private: 153 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion; 154 155 RelocUnion reloc; 156 }; 157 158 ELFRelocation::ELFRelocation(unsigned type) { 159 if (type == DT_REL || type == SHT_REL) 160 reloc = new ELFRel(); 161 else if (type == DT_RELA || type == SHT_RELA) 162 reloc = new ELFRela(); 163 else { 164 assert(false && "unexpected relocation type"); 165 reloc = static_cast<ELFRel *>(NULL); 166 } 167 } 168 169 ELFRelocation::~ELFRelocation() { 170 if (reloc.is<ELFRel *>()) 171 delete reloc.get<ELFRel *>(); 172 else 173 delete reloc.get<ELFRela *>(); 174 } 175 176 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, 177 lldb::offset_t *offset) { 178 if (reloc.is<ELFRel *>()) 179 return reloc.get<ELFRel *>()->Parse(data, offset); 180 else 181 return reloc.get<ELFRela *>()->Parse(data, offset); 182 } 183 184 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { 185 if (rel.reloc.is<ELFRel *>()) 186 return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>()); 187 else 188 return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>()); 189 } 190 191 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { 192 if (rel.reloc.is<ELFRel *>()) 193 return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>()); 194 else 195 return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>()); 196 } 197 198 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { 199 if (rel.reloc.is<ELFRel *>()) 200 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>()); 201 else 202 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>()); 203 } 204 205 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { 206 if (rel.reloc.is<ELFRel *>()) 207 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>()); 208 else 209 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>()); 210 } 211 212 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) { 213 if (rel.reloc.is<ELFRel *>()) 214 return rel.reloc.get<ELFRel *>()->r_offset; 215 else 216 return rel.reloc.get<ELFRela *>()->r_offset; 217 } 218 219 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) { 220 if (rel.reloc.is<ELFRel *>()) 221 return rel.reloc.get<ELFRel *>()->r_offset; 222 else 223 return rel.reloc.get<ELFRela *>()->r_offset; 224 } 225 226 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) { 227 if (rel.reloc.is<ELFRel *>()) 228 return 0; 229 else 230 return rel.reloc.get<ELFRela *>()->r_addend; 231 } 232 233 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) { 234 if (rel.reloc.is<ELFRel *>()) 235 return 0; 236 else 237 return rel.reloc.get<ELFRela *>()->r_addend; 238 } 239 240 } // end anonymous namespace 241 242 static user_id_t SegmentID(size_t PHdrIndex) { return ~PHdrIndex; } 243 244 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { 245 // Read all fields. 246 if (data.GetU32(offset, &n_namesz, 3) == NULL) 247 return false; 248 249 // The name field is required to be nul-terminated, and n_namesz includes the 250 // terminating nul in observed implementations (contrary to the ELF-64 spec). 251 // A special case is needed for cores generated by some older Linux versions, 252 // which write a note named "CORE" without a nul terminator and n_namesz = 4. 253 if (n_namesz == 4) { 254 char buf[4]; 255 if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) 256 return false; 257 if (strncmp(buf, "CORE", 4) == 0) { 258 n_name = "CORE"; 259 *offset += 4; 260 return true; 261 } 262 } 263 264 const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); 265 if (cstr == NULL) { 266 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 267 if (log) 268 log->Printf("Failed to parse note name lacking nul terminator"); 269 270 return false; 271 } 272 n_name = cstr; 273 return true; 274 } 275 276 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) { 277 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH; 278 uint32_t endian = header.e_ident[EI_DATA]; 279 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 280 uint32_t fileclass = header.e_ident[EI_CLASS]; 281 282 // If there aren't any elf flags available (e.g core elf file) then return 283 // default 284 // 32 or 64 bit arch (without any architecture revision) based on object file's class. 285 if (header.e_type == ET_CORE) { 286 switch (fileclass) { 287 case llvm::ELF::ELFCLASS32: 288 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 289 : ArchSpec::eMIPSSubType_mips32; 290 case llvm::ELF::ELFCLASS64: 291 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 292 : ArchSpec::eMIPSSubType_mips64; 293 default: 294 return arch_variant; 295 } 296 } 297 298 switch (mips_arch) { 299 case llvm::ELF::EF_MIPS_ARCH_1: 300 case llvm::ELF::EF_MIPS_ARCH_2: 301 case llvm::ELF::EF_MIPS_ARCH_32: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 303 : ArchSpec::eMIPSSubType_mips32; 304 case llvm::ELF::EF_MIPS_ARCH_32R2: 305 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el 306 : ArchSpec::eMIPSSubType_mips32r2; 307 case llvm::ELF::EF_MIPS_ARCH_32R6: 308 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el 309 : ArchSpec::eMIPSSubType_mips32r6; 310 case llvm::ELF::EF_MIPS_ARCH_3: 311 case llvm::ELF::EF_MIPS_ARCH_4: 312 case llvm::ELF::EF_MIPS_ARCH_5: 313 case llvm::ELF::EF_MIPS_ARCH_64: 314 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 315 : ArchSpec::eMIPSSubType_mips64; 316 case llvm::ELF::EF_MIPS_ARCH_64R2: 317 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el 318 : ArchSpec::eMIPSSubType_mips64r2; 319 case llvm::ELF::EF_MIPS_ARCH_64R6: 320 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el 321 : ArchSpec::eMIPSSubType_mips64r6; 322 default: 323 break; 324 } 325 326 return arch_variant; 327 } 328 329 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { 330 if (header.e_machine == llvm::ELF::EM_MIPS) 331 return mipsVariantFromElfFlags(header); 332 333 return LLDB_INVALID_CPUTYPE; 334 } 335 336 // Arbitrary constant used as UUID prefix for core files. 337 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); 338 339 // Static methods. 340 void ObjectFileELF::Initialize() { 341 PluginManager::RegisterPlugin(GetPluginNameStatic(), 342 GetPluginDescriptionStatic(), CreateInstance, 343 CreateMemoryInstance, GetModuleSpecifications); 344 } 345 346 void ObjectFileELF::Terminate() { 347 PluginManager::UnregisterPlugin(CreateInstance); 348 } 349 350 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { 351 static ConstString g_name("elf"); 352 return g_name; 353 } 354 355 const char *ObjectFileELF::GetPluginDescriptionStatic() { 356 return "ELF object file reader."; 357 } 358 359 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, 360 DataBufferSP &data_sp, 361 lldb::offset_t data_offset, 362 const lldb_private::FileSpec *file, 363 lldb::offset_t file_offset, 364 lldb::offset_t length) { 365 if (!data_sp) { 366 data_sp = MapFileData(*file, length, file_offset); 367 if (!data_sp) 368 return nullptr; 369 data_offset = 0; 370 } 371 372 assert(data_sp); 373 374 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset)) 375 return nullptr; 376 377 const uint8_t *magic = data_sp->GetBytes() + data_offset; 378 if (!ELFHeader::MagicBytesMatch(magic)) 379 return nullptr; 380 381 // Update the data to contain the entire file if it doesn't already 382 if (data_sp->GetByteSize() < length) { 383 data_sp = MapFileData(*file, length, file_offset); 384 if (!data_sp) 385 return nullptr; 386 data_offset = 0; 387 magic = data_sp->GetBytes(); 388 } 389 390 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 391 if (address_size == 4 || address_size == 8) { 392 std::unique_ptr<ObjectFileELF> objfile_up(new ObjectFileELF( 393 module_sp, data_sp, data_offset, file, file_offset, length)); 394 ArchSpec spec = objfile_up->GetArchitecture(); 395 if (spec && objfile_up->SetModulesArchitecture(spec)) 396 return objfile_up.release(); 397 } 398 399 return NULL; 400 } 401 402 ObjectFile *ObjectFileELF::CreateMemoryInstance( 403 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 404 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { 405 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { 406 const uint8_t *magic = data_sp->GetBytes(); 407 if (ELFHeader::MagicBytesMatch(magic)) { 408 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 409 if (address_size == 4 || address_size == 8) { 410 std::unique_ptr<ObjectFileELF> objfile_up( 411 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 412 ArchSpec spec = objfile_up->GetArchitecture(); 413 if (spec && objfile_up->SetModulesArchitecture(spec)) 414 return objfile_up.release(); 415 } 416 } 417 } 418 return NULL; 419 } 420 421 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, 422 lldb::addr_t data_offset, 423 lldb::addr_t data_length) { 424 if (data_sp && 425 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { 426 const uint8_t *magic = data_sp->GetBytes() + data_offset; 427 return ELFHeader::MagicBytesMatch(magic); 428 } 429 return false; 430 } 431 432 /* 433 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 434 * 435 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 436 * code or tables extracted from it, as desired without restriction. 437 */ 438 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) { 439 static const uint32_t g_crc32_tab[] = { 440 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 441 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 442 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 443 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 444 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 445 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 446 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 447 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 448 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 449 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 450 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 451 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 452 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 453 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 454 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 455 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 456 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 457 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 458 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 459 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 460 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 461 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 462 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 463 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 464 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 465 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 466 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 467 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 468 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 469 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 470 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 471 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 472 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 473 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 474 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 475 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 476 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 477 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 478 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 479 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 480 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 481 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 482 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; 483 const uint8_t *p = (const uint8_t *)buf; 484 485 crc = crc ^ ~0U; 486 while (size--) 487 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 488 return crc ^ ~0U; 489 } 490 491 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) { 492 return calc_crc32(0U, buf, size); 493 } 494 495 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( 496 const ProgramHeaderColl &program_headers, DataExtractor &object_data) { 497 498 uint32_t core_notes_crc = 0; 499 500 for (const ELFProgramHeader &H : program_headers) { 501 if (H.p_type == llvm::ELF::PT_NOTE) { 502 const elf_off ph_offset = H.p_offset; 503 const size_t ph_size = H.p_filesz; 504 505 DataExtractor segment_data; 506 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { 507 // The ELF program header contained incorrect data, probably corefile 508 // is incomplete or corrupted. 509 break; 510 } 511 512 core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(), 513 segment_data.GetByteSize()); 514 } 515 } 516 517 return core_notes_crc; 518 } 519 520 static const char *OSABIAsCString(unsigned char osabi_byte) { 521 #define _MAKE_OSABI_CASE(x) \ 522 case x: \ 523 return #x 524 switch (osabi_byte) { 525 _MAKE_OSABI_CASE(ELFOSABI_NONE); 526 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 527 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 528 _MAKE_OSABI_CASE(ELFOSABI_GNU); 529 _MAKE_OSABI_CASE(ELFOSABI_HURD); 530 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 531 _MAKE_OSABI_CASE(ELFOSABI_AIX); 532 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 533 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 534 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 535 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 536 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 537 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 538 _MAKE_OSABI_CASE(ELFOSABI_NSK); 539 _MAKE_OSABI_CASE(ELFOSABI_AROS); 540 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 541 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 542 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 543 _MAKE_OSABI_CASE(ELFOSABI_ARM); 544 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 545 default: 546 return "<unknown-osabi>"; 547 } 548 #undef _MAKE_OSABI_CASE 549 } 550 551 // 552 // WARNING : This function is being deprecated 553 // It's functionality has moved to ArchSpec::SetArchitecture This function is 554 // only being kept to validate the move. 555 // 556 // TODO : Remove this function 557 static bool GetOsFromOSABI(unsigned char osabi_byte, 558 llvm::Triple::OSType &ostype) { 559 switch (osabi_byte) { 560 case ELFOSABI_AIX: 561 ostype = llvm::Triple::OSType::AIX; 562 break; 563 case ELFOSABI_FREEBSD: 564 ostype = llvm::Triple::OSType::FreeBSD; 565 break; 566 case ELFOSABI_GNU: 567 ostype = llvm::Triple::OSType::Linux; 568 break; 569 case ELFOSABI_NETBSD: 570 ostype = llvm::Triple::OSType::NetBSD; 571 break; 572 case ELFOSABI_OPENBSD: 573 ostype = llvm::Triple::OSType::OpenBSD; 574 break; 575 case ELFOSABI_SOLARIS: 576 ostype = llvm::Triple::OSType::Solaris; 577 break; 578 default: 579 ostype = llvm::Triple::OSType::UnknownOS; 580 } 581 return ostype != llvm::Triple::OSType::UnknownOS; 582 } 583 584 size_t ObjectFileELF::GetModuleSpecifications( 585 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 586 lldb::offset_t data_offset, lldb::offset_t file_offset, 587 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 588 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 589 590 const size_t initial_count = specs.GetSize(); 591 592 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 593 DataExtractor data; 594 data.SetData(data_sp); 595 elf::ELFHeader header; 596 lldb::offset_t header_offset = data_offset; 597 if (header.Parse(data, &header_offset)) { 598 if (data_sp) { 599 ModuleSpec spec(file); 600 601 const uint32_t sub_type = subTypeFromElfHeader(header); 602 spec.GetArchitecture().SetArchitecture( 603 eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 604 605 if (spec.GetArchitecture().IsValid()) { 606 llvm::Triple::OSType ostype; 607 llvm::Triple::VendorType vendor; 608 llvm::Triple::OSType spec_ostype = 609 spec.GetArchitecture().GetTriple().getOS(); 610 611 if (log) 612 log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s", 613 __FUNCTION__, file.GetPath().c_str(), 614 OSABIAsCString(header.e_ident[EI_OSABI])); 615 616 // SetArchitecture should have set the vendor to unknown 617 vendor = spec.GetArchitecture().GetTriple().getVendor(); 618 assert(vendor == llvm::Triple::UnknownVendor); 619 UNUSED_IF_ASSERT_DISABLED(vendor); 620 621 // 622 // Validate it is ok to remove GetOsFromOSABI 623 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 624 assert(spec_ostype == ostype); 625 if (spec_ostype != llvm::Triple::OSType::UnknownOS) { 626 if (log) 627 log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type " 628 "from ELF header OSABI.", 629 __FUNCTION__, file.GetPath().c_str()); 630 } 631 632 data_sp = MapFileData(file, -1, file_offset); 633 if (data_sp) 634 data.SetData(data_sp); 635 // In case there is header extension in the section #0, the header we 636 // parsed above could have sentinel values for e_phnum, e_shnum, and 637 // e_shstrndx. In this case we need to reparse the header with a 638 // bigger data source to get the actual values. 639 if (header.HasHeaderExtension()) { 640 lldb::offset_t header_offset = data_offset; 641 header.Parse(data, &header_offset); 642 } 643 644 uint32_t gnu_debuglink_crc = 0; 645 std::string gnu_debuglink_file; 646 SectionHeaderColl section_headers; 647 lldb_private::UUID &uuid = spec.GetUUID(); 648 649 GetSectionHeaderInfo(section_headers, data, header, uuid, 650 gnu_debuglink_file, gnu_debuglink_crc, 651 spec.GetArchitecture()); 652 653 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); 654 655 if (log) 656 log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s " 657 "(architecture %s)", 658 __FUNCTION__, file.GetPath().c_str(), 659 spec_triple.getTriple().c_str(), 660 spec.GetArchitecture().GetArchitectureName()); 661 662 if (!uuid.IsValid()) { 663 uint32_t core_notes_crc = 0; 664 665 if (!gnu_debuglink_crc) { 666 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 667 lldb_private::Timer scoped_timer( 668 func_cat, 669 "Calculating module crc32 %s with size %" PRIu64 " KiB", 670 file.GetLastPathComponent().AsCString(), 671 (FileSystem::Instance().GetByteSize(file) - file_offset) / 672 1024); 673 674 // For core files - which usually don't happen to have a 675 // gnu_debuglink, and are pretty bulky - calculating whole 676 // contents crc32 would be too much of luxury. Thus we will need 677 // to fallback to something simpler. 678 if (header.e_type == llvm::ELF::ET_CORE) { 679 ProgramHeaderColl program_headers; 680 GetProgramHeaderInfo(program_headers, data, header); 681 682 core_notes_crc = 683 CalculateELFNotesSegmentsCRC32(program_headers, data); 684 } else { 685 gnu_debuglink_crc = calc_gnu_debuglink_crc32( 686 data.GetDataStart(), data.GetByteSize()); 687 } 688 } 689 using u32le = llvm::support::ulittle32_t; 690 if (gnu_debuglink_crc) { 691 // Use 4 bytes of crc from the .gnu_debuglink section. 692 u32le data(gnu_debuglink_crc); 693 uuid = UUID::fromData(&data, sizeof(data)); 694 } else if (core_notes_crc) { 695 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make 696 // it look different form .gnu_debuglink crc followed by 4 bytes 697 // of note segments crc. 698 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 699 uuid = UUID::fromData(data, sizeof(data)); 700 } 701 } 702 703 specs.Append(spec); 704 } 705 } 706 } 707 } 708 709 return specs.GetSize() - initial_count; 710 } 711 712 // PluginInterface protocol 713 lldb_private::ConstString ObjectFileELF::GetPluginName() { 714 return GetPluginNameStatic(); 715 } 716 717 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } 718 // ObjectFile protocol 719 720 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 721 DataBufferSP &data_sp, lldb::offset_t data_offset, 722 const FileSpec *file, lldb::offset_t file_offset, 723 lldb::offset_t length) 724 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 725 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 726 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 727 m_filespec_up(), m_entry_point_address(), m_arch_spec() { 728 if (file) 729 m_file = *file; 730 ::memset(&m_header, 0, sizeof(m_header)); 731 } 732 733 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 734 DataBufferSP &header_data_sp, 735 const lldb::ProcessSP &process_sp, 736 addr_t header_addr) 737 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 738 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 739 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 740 m_filespec_up(), m_entry_point_address(), m_arch_spec() { 741 ::memset(&m_header, 0, sizeof(m_header)); 742 } 743 744 ObjectFileELF::~ObjectFileELF() {} 745 746 bool ObjectFileELF::IsExecutable() const { 747 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 748 } 749 750 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, 751 bool value_is_offset) { 752 ModuleSP module_sp = GetModule(); 753 if (module_sp) { 754 size_t num_loaded_sections = 0; 755 SectionList *section_list = GetSectionList(); 756 if (section_list) { 757 if (!value_is_offset) { 758 addr_t base = GetBaseAddress().GetFileAddress(); 759 if (base == LLDB_INVALID_ADDRESS) 760 return false; 761 value -= base; 762 } 763 764 const size_t num_sections = section_list->GetSize(); 765 size_t sect_idx = 0; 766 767 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 768 // Iterate through the object file sections to find all of the sections 769 // that have SHF_ALLOC in their flag bits. 770 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 771 if (section_sp->Test(SHF_ALLOC) || 772 section_sp->GetType() == eSectionTypeContainer) { 773 lldb::addr_t load_addr = section_sp->GetFileAddress(); 774 // We don't want to update the load address of a section with type 775 // eSectionTypeAbsoluteAddress as they already have the absolute load 776 // address already specified 777 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 778 load_addr += value; 779 780 // On 32-bit systems the load address have to fit into 4 bytes. The 781 // rest of the bytes are the overflow from the addition. 782 if (GetAddressByteSize() == 4) 783 load_addr &= 0xFFFFFFFF; 784 785 if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, 786 load_addr)) 787 ++num_loaded_sections; 788 } 789 } 790 return num_loaded_sections > 0; 791 } 792 } 793 return false; 794 } 795 796 ByteOrder ObjectFileELF::GetByteOrder() const { 797 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 798 return eByteOrderBig; 799 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 800 return eByteOrderLittle; 801 return eByteOrderInvalid; 802 } 803 804 uint32_t ObjectFileELF::GetAddressByteSize() const { 805 return m_data.GetAddressByteSize(); 806 } 807 808 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { 809 Symtab *symtab = GetSymtab(); 810 if (!symtab) 811 return AddressClass::eUnknown; 812 813 // The address class is determined based on the symtab. Ask it from the 814 // object file what contains the symtab information. 815 ObjectFile *symtab_objfile = symtab->GetObjectFile(); 816 if (symtab_objfile != nullptr && symtab_objfile != this) 817 return symtab_objfile->GetAddressClass(file_addr); 818 819 auto res = ObjectFile::GetAddressClass(file_addr); 820 if (res != AddressClass::eCode) 821 return res; 822 823 auto ub = m_address_class_map.upper_bound(file_addr); 824 if (ub == m_address_class_map.begin()) { 825 // No entry in the address class map before the address. Return default 826 // address class for an address in a code section. 827 return AddressClass::eCode; 828 } 829 830 // Move iterator to the address class entry preceding address 831 --ub; 832 833 return ub->second; 834 } 835 836 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { 837 return std::distance(m_section_headers.begin(), I); 838 } 839 840 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { 841 return std::distance(m_section_headers.begin(), I); 842 } 843 844 bool ObjectFileELF::ParseHeader() { 845 lldb::offset_t offset = 0; 846 return m_header.Parse(m_data, &offset); 847 } 848 849 UUID ObjectFileELF::GetUUID() { 850 // Need to parse the section list to get the UUIDs, so make sure that's been 851 // done. 852 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 853 return UUID(); 854 855 if (!m_uuid) { 856 using u32le = llvm::support::ulittle32_t; 857 if (GetType() == ObjectFile::eTypeCoreFile) { 858 uint32_t core_notes_crc = 0; 859 860 if (!ParseProgramHeaders()) 861 return UUID(); 862 863 core_notes_crc = 864 CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 865 866 if (core_notes_crc) { 867 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 868 // look different form .gnu_debuglink crc - followed by 4 bytes of note 869 // segments crc. 870 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 871 m_uuid = UUID::fromData(data, sizeof(data)); 872 } 873 } else { 874 if (!m_gnu_debuglink_crc) 875 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32(m_data.GetDataStart(), 876 m_data.GetByteSize()); 877 if (m_gnu_debuglink_crc) { 878 // Use 4 bytes of crc from the .gnu_debuglink section. 879 u32le data(m_gnu_debuglink_crc); 880 m_uuid = UUID::fromData(&data, sizeof(data)); 881 } 882 } 883 } 884 885 return m_uuid; 886 } 887 888 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() { 889 FileSpecList file_spec_list; 890 891 if (!m_gnu_debuglink_file.empty()) { 892 FileSpec file_spec(m_gnu_debuglink_file); 893 file_spec_list.Append(file_spec); 894 } 895 return file_spec_list; 896 } 897 898 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { 899 size_t num_modules = ParseDependentModules(); 900 uint32_t num_specs = 0; 901 902 for (unsigned i = 0; i < num_modules; ++i) { 903 if (files.AppendIfUnique(m_filespec_up->GetFileSpecAtIndex(i))) 904 num_specs++; 905 } 906 907 return num_specs; 908 } 909 910 Address ObjectFileELF::GetImageInfoAddress(Target *target) { 911 if (!ParseDynamicSymbols()) 912 return Address(); 913 914 SectionList *section_list = GetSectionList(); 915 if (!section_list) 916 return Address(); 917 918 // Find the SHT_DYNAMIC (.dynamic) section. 919 SectionSP dynsym_section_sp( 920 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); 921 if (!dynsym_section_sp) 922 return Address(); 923 assert(dynsym_section_sp->GetObjectFile() == this); 924 925 user_id_t dynsym_id = dynsym_section_sp->GetID(); 926 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 927 if (!dynsym_hdr) 928 return Address(); 929 930 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { 931 ELFDynamic &symbol = m_dynamic_symbols[i]; 932 933 if (symbol.d_tag == DT_DEBUG) { 934 // Compute the offset as the number of previous entries plus the size of 935 // d_tag. 936 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 937 return Address(dynsym_section_sp, offset); 938 } 939 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP 940 // exists in non-PIE. 941 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || 942 symbol.d_tag == DT_MIPS_RLD_MAP_REL) && 943 target) { 944 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 945 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 946 if (dyn_base == LLDB_INVALID_ADDRESS) 947 return Address(); 948 949 Status error; 950 if (symbol.d_tag == DT_MIPS_RLD_MAP) { 951 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 952 Address addr; 953 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, 954 addr)) 955 return addr; 956 } 957 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { 958 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, 959 // relative to the address of the tag. 960 uint64_t rel_offset; 961 rel_offset = target->ReadUnsignedIntegerFromMemory( 962 dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 963 if (error.Success() && rel_offset != UINT64_MAX) { 964 Address addr; 965 addr_t debug_ptr_address = 966 dyn_base + (offset - GetAddressByteSize()) + rel_offset; 967 addr.SetOffset(debug_ptr_address); 968 return addr; 969 } 970 } 971 } 972 } 973 974 return Address(); 975 } 976 977 lldb_private::Address ObjectFileELF::GetEntryPointAddress() { 978 if (m_entry_point_address.IsValid()) 979 return m_entry_point_address; 980 981 if (!ParseHeader() || !IsExecutable()) 982 return m_entry_point_address; 983 984 SectionList *section_list = GetSectionList(); 985 addr_t offset = m_header.e_entry; 986 987 if (!section_list) 988 m_entry_point_address.SetOffset(offset); 989 else 990 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 991 return m_entry_point_address; 992 } 993 994 Address ObjectFileELF::GetBaseAddress() { 995 for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) { 996 const ELFProgramHeader &H = EnumPHdr.value(); 997 if (H.p_type != PT_LOAD) 998 continue; 999 1000 return Address( 1001 GetSectionList()->FindSectionByID(SegmentID(EnumPHdr.index())), 0); 1002 } 1003 return LLDB_INVALID_ADDRESS; 1004 } 1005 1006 // ParseDependentModules 1007 size_t ObjectFileELF::ParseDependentModules() { 1008 if (m_filespec_up) 1009 return m_filespec_up->GetSize(); 1010 1011 m_filespec_up.reset(new FileSpecList()); 1012 1013 if (!ParseSectionHeaders()) 1014 return 0; 1015 1016 SectionList *section_list = GetSectionList(); 1017 if (!section_list) 1018 return 0; 1019 1020 // Find the SHT_DYNAMIC section. 1021 Section *dynsym = 1022 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 1023 .get(); 1024 if (!dynsym) 1025 return 0; 1026 assert(dynsym->GetObjectFile() == this); 1027 1028 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); 1029 if (!header) 1030 return 0; 1031 // sh_link: section header index of string table used by entries in the 1032 // section. 1033 Section *dynstr = section_list->FindSectionByID(header->sh_link).get(); 1034 if (!dynstr) 1035 return 0; 1036 1037 DataExtractor dynsym_data; 1038 DataExtractor dynstr_data; 1039 if (ReadSectionData(dynsym, dynsym_data) && 1040 ReadSectionData(dynstr, dynstr_data)) { 1041 ELFDynamic symbol; 1042 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1043 lldb::offset_t offset = 0; 1044 1045 // The only type of entries we are concerned with are tagged DT_NEEDED, 1046 // yielding the name of a required library. 1047 while (offset < section_size) { 1048 if (!symbol.Parse(dynsym_data, &offset)) 1049 break; 1050 1051 if (symbol.d_tag != DT_NEEDED) 1052 continue; 1053 1054 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1055 const char *lib_name = dynstr_data.PeekCStr(str_index); 1056 FileSpec file_spec(lib_name); 1057 FileSystem::Instance().Resolve(file_spec); 1058 m_filespec_up->Append(file_spec); 1059 } 1060 } 1061 1062 return m_filespec_up->GetSize(); 1063 } 1064 1065 // GetProgramHeaderInfo 1066 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1067 DataExtractor &object_data, 1068 const ELFHeader &header) { 1069 // We have already parsed the program headers 1070 if (!program_headers.empty()) 1071 return program_headers.size(); 1072 1073 // If there are no program headers to read we are done. 1074 if (header.e_phnum == 0) 1075 return 0; 1076 1077 program_headers.resize(header.e_phnum); 1078 if (program_headers.size() != header.e_phnum) 1079 return 0; 1080 1081 const size_t ph_size = header.e_phnum * header.e_phentsize; 1082 const elf_off ph_offset = header.e_phoff; 1083 DataExtractor data; 1084 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1085 return 0; 1086 1087 uint32_t idx; 1088 lldb::offset_t offset; 1089 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { 1090 if (!program_headers[idx].Parse(data, &offset)) 1091 break; 1092 } 1093 1094 if (idx < program_headers.size()) 1095 program_headers.resize(idx); 1096 1097 return program_headers.size(); 1098 } 1099 1100 // ParseProgramHeaders 1101 bool ObjectFileELF::ParseProgramHeaders() { 1102 return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0; 1103 } 1104 1105 lldb_private::Status 1106 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, 1107 lldb_private::ArchSpec &arch_spec, 1108 lldb_private::UUID &uuid) { 1109 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1110 Status error; 1111 1112 lldb::offset_t offset = 0; 1113 1114 while (true) { 1115 // Parse the note header. If this fails, bail out. 1116 const lldb::offset_t note_offset = offset; 1117 ELFNote note = ELFNote(); 1118 if (!note.Parse(data, &offset)) { 1119 // We're done. 1120 return error; 1121 } 1122 1123 if (log) 1124 log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, 1125 __FUNCTION__, note.n_name.c_str(), note.n_type); 1126 1127 // Process FreeBSD ELF notes. 1128 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1129 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1130 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { 1131 // Pull out the min version info. 1132 uint32_t version_info; 1133 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1134 error.SetErrorString("failed to read FreeBSD ABI note payload"); 1135 return error; 1136 } 1137 1138 // Convert the version info into a major/minor number. 1139 const uint32_t version_major = version_info / 100000; 1140 const uint32_t version_minor = (version_info / 1000) % 100; 1141 1142 char os_name[32]; 1143 snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, 1144 version_major, version_minor); 1145 1146 // Set the elf OS version to FreeBSD. Also clear the vendor. 1147 arch_spec.GetTriple().setOSName(os_name); 1148 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1149 1150 if (log) 1151 log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 1152 ".%" PRIu32, 1153 __FUNCTION__, version_major, version_minor, 1154 static_cast<uint32_t>(version_info % 1000)); 1155 } 1156 // Process GNU ELF notes. 1157 else if (note.n_name == LLDB_NT_OWNER_GNU) { 1158 switch (note.n_type) { 1159 case LLDB_NT_GNU_ABI_TAG: 1160 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { 1161 // Pull out the min OS version supporting the ABI. 1162 uint32_t version_info[4]; 1163 if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == 1164 nullptr) { 1165 error.SetErrorString("failed to read GNU ABI note payload"); 1166 return error; 1167 } 1168 1169 // Set the OS per the OS field. 1170 switch (version_info[0]) { 1171 case LLDB_NT_GNU_ABI_OS_LINUX: 1172 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1173 arch_spec.GetTriple().setVendor( 1174 llvm::Triple::VendorType::UnknownVendor); 1175 if (log) 1176 log->Printf( 1177 "ObjectFileELF::%s detected Linux, min version %" PRIu32 1178 ".%" PRIu32 ".%" PRIu32, 1179 __FUNCTION__, version_info[1], version_info[2], 1180 version_info[3]); 1181 // FIXME we have the minimal version number, we could be propagating 1182 // that. version_info[1] = OS Major, version_info[2] = OS Minor, 1183 // version_info[3] = Revision. 1184 break; 1185 case LLDB_NT_GNU_ABI_OS_HURD: 1186 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1187 arch_spec.GetTriple().setVendor( 1188 llvm::Triple::VendorType::UnknownVendor); 1189 if (log) 1190 log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min " 1191 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1192 __FUNCTION__, version_info[1], version_info[2], 1193 version_info[3]); 1194 break; 1195 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1196 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); 1197 arch_spec.GetTriple().setVendor( 1198 llvm::Triple::VendorType::UnknownVendor); 1199 if (log) 1200 log->Printf( 1201 "ObjectFileELF::%s detected Solaris, min version %" PRIu32 1202 ".%" PRIu32 ".%" PRIu32, 1203 __FUNCTION__, version_info[1], version_info[2], 1204 version_info[3]); 1205 break; 1206 default: 1207 if (log) 1208 log->Printf( 1209 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 1210 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1211 __FUNCTION__, version_info[0], version_info[1], 1212 version_info[2], version_info[3]); 1213 break; 1214 } 1215 } 1216 break; 1217 1218 case LLDB_NT_GNU_BUILD_ID_TAG: 1219 // Only bother processing this if we don't already have the uuid set. 1220 if (!uuid.IsValid()) { 1221 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a 1222 // build-id of a different length. Accept it as long as it's at least 1223 // 4 bytes as it will be better than our own crc32. 1224 if (note.n_descsz >= 4) { 1225 if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) { 1226 // Save the build id as the UUID for the module. 1227 uuid = UUID::fromData(buf, note.n_descsz); 1228 } else { 1229 error.SetErrorString("failed to read GNU_BUILD_ID note payload"); 1230 return error; 1231 } 1232 } 1233 } 1234 break; 1235 } 1236 if (arch_spec.IsMIPS() && 1237 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1238 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform 1239 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1240 } 1241 // Process NetBSD ELF executables and shared libraries 1242 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1243 (note.n_type == LLDB_NT_NETBSD_IDENT_TAG) && 1244 (note.n_descsz == LLDB_NT_NETBSD_IDENT_DESCSZ) && 1245 (note.n_namesz == LLDB_NT_NETBSD_IDENT_NAMESZ)) { 1246 // Pull out the version info. 1247 uint32_t version_info; 1248 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1249 error.SetErrorString("failed to read NetBSD ABI note payload"); 1250 return error; 1251 } 1252 // Convert the version info into a major/minor/patch number. 1253 // #define __NetBSD_Version__ MMmmrrpp00 1254 // 1255 // M = major version 1256 // m = minor version; a minor number of 99 indicates current. 1257 // r = 0 (since NetBSD 3.0 not used) 1258 // p = patchlevel 1259 const uint32_t version_major = version_info / 100000000; 1260 const uint32_t version_minor = (version_info % 100000000) / 1000000; 1261 const uint32_t version_patch = (version_info % 10000) / 100; 1262 // Set the elf OS version to NetBSD. Also clear the vendor. 1263 arch_spec.GetTriple().setOSName( 1264 llvm::formatv("netbsd{0}.{1}.{2}", version_major, version_minor, 1265 version_patch).str()); 1266 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1267 } 1268 // Process NetBSD ELF core(5) notes 1269 else if ((note.n_name == LLDB_NT_OWNER_NETBSDCORE) && 1270 (note.n_type == LLDB_NT_NETBSD_PROCINFO)) { 1271 // Set the elf OS version to NetBSD. Also clear the vendor. 1272 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); 1273 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1274 } 1275 // Process OpenBSD ELF notes. 1276 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) { 1277 // Set the elf OS version to OpenBSD. Also clear the vendor. 1278 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD); 1279 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1280 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { 1281 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1282 arch_spec.GetTriple().setEnvironment( 1283 llvm::Triple::EnvironmentType::Android); 1284 } else if (note.n_name == LLDB_NT_OWNER_LINUX) { 1285 // This is sometimes found in core files and usually contains extended 1286 // register info 1287 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1288 } else if (note.n_name == LLDB_NT_OWNER_CORE) { 1289 // Parse the NT_FILE to look for stuff in paths to shared libraries As 1290 // the contents look like this in a 64 bit ELF core file: count = 1291 // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index 1292 // start end file_ofs path ===== 1293 // 0x0000000000401000 0x0000000000000000 /tmp/a.out [ 1] 1294 // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [ 1295 // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1296 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 1297 // /lib/x86_64-linux-gnu/libc-2.19.so [ 4] 0x00007fa79cba8000 1298 // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux- 1299 // gnu/libc-2.19.so [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 1300 // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [ 6] 1301 // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64 1302 // -linux-gnu/libc-2.19.so [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 1303 // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [ 8] 1304 // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64 1305 // -linux-gnu/ld-2.19.so [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 1306 // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs 1307 // the count, page_size, start, end, file_ofs are uint32_t For reference: 1308 // see readelf source code (in binutils). 1309 if (note.n_type == NT_FILE) { 1310 uint64_t count = data.GetAddress(&offset); 1311 const char *cstr; 1312 data.GetAddress(&offset); // Skip page size 1313 offset += count * 3 * 1314 data.GetAddressByteSize(); // Skip all start/end/file_ofs 1315 for (size_t i = 0; i < count; ++i) { 1316 cstr = data.GetCStr(&offset); 1317 if (cstr == nullptr) { 1318 error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " 1319 "at an offset after the end " 1320 "(GetCStr returned nullptr)", 1321 __FUNCTION__); 1322 return error; 1323 } 1324 llvm::StringRef path(cstr); 1325 if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { 1326 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1327 break; 1328 } 1329 } 1330 if (arch_spec.IsMIPS() && 1331 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1332 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some 1333 // cases (e.g. compile with -nostdlib) Hence set OS to Linux 1334 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1335 } 1336 } 1337 1338 // Calculate the offset of the next note just in case "offset" has been 1339 // used to poke at the contents of the note data 1340 offset = note_offset + note.GetByteSize(); 1341 } 1342 1343 return error; 1344 } 1345 1346 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, 1347 ArchSpec &arch_spec) { 1348 lldb::offset_t Offset = 0; 1349 1350 uint8_t FormatVersion = data.GetU8(&Offset); 1351 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1352 return; 1353 1354 Offset = Offset + sizeof(uint32_t); // Section Length 1355 llvm::StringRef VendorName = data.GetCStr(&Offset); 1356 1357 if (VendorName != "aeabi") 1358 return; 1359 1360 if (arch_spec.GetTriple().getEnvironment() == 1361 llvm::Triple::UnknownEnvironment) 1362 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1363 1364 while (Offset < length) { 1365 uint8_t Tag = data.GetU8(&Offset); 1366 uint32_t Size = data.GetU32(&Offset); 1367 1368 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1369 continue; 1370 1371 while (Offset < length) { 1372 uint64_t Tag = data.GetULEB128(&Offset); 1373 switch (Tag) { 1374 default: 1375 if (Tag < 32) 1376 data.GetULEB128(&Offset); 1377 else if (Tag % 2 == 0) 1378 data.GetULEB128(&Offset); 1379 else 1380 data.GetCStr(&Offset); 1381 1382 break; 1383 1384 case llvm::ARMBuildAttrs::CPU_raw_name: 1385 case llvm::ARMBuildAttrs::CPU_name: 1386 data.GetCStr(&Offset); 1387 1388 break; 1389 1390 case llvm::ARMBuildAttrs::ABI_VFP_args: { 1391 uint64_t VFPArgs = data.GetULEB128(&Offset); 1392 1393 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { 1394 if (arch_spec.GetTriple().getEnvironment() == 1395 llvm::Triple::UnknownEnvironment || 1396 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1397 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1398 1399 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1400 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { 1401 if (arch_spec.GetTriple().getEnvironment() == 1402 llvm::Triple::UnknownEnvironment || 1403 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1404 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1405 1406 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1407 } 1408 1409 break; 1410 } 1411 } 1412 } 1413 } 1414 } 1415 1416 // GetSectionHeaderInfo 1417 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1418 DataExtractor &object_data, 1419 const elf::ELFHeader &header, 1420 lldb_private::UUID &uuid, 1421 std::string &gnu_debuglink_file, 1422 uint32_t &gnu_debuglink_crc, 1423 ArchSpec &arch_spec) { 1424 // Don't reparse the section headers if we already did that. 1425 if (!section_headers.empty()) 1426 return section_headers.size(); 1427 1428 // Only initialize the arch_spec to okay defaults if they're not already set. 1429 // We'll refine this with note data as we parse the notes. 1430 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { 1431 llvm::Triple::OSType ostype; 1432 llvm::Triple::OSType spec_ostype; 1433 const uint32_t sub_type = subTypeFromElfHeader(header); 1434 arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, 1435 header.e_ident[EI_OSABI]); 1436 1437 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is 1438 // determined based on EI_OSABI flag and the info extracted from ELF notes 1439 // (see RefineModuleDetailsFromNote). However in some cases that still 1440 // might be not enough: for example a shared library might not have any 1441 // notes at all and have EI_OSABI flag set to System V, as result the OS 1442 // will be set to UnknownOS. 1443 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 1444 spec_ostype = arch_spec.GetTriple().getOS(); 1445 assert(spec_ostype == ostype); 1446 UNUSED_IF_ASSERT_DISABLED(spec_ostype); 1447 } 1448 1449 if (arch_spec.GetMachine() == llvm::Triple::mips || 1450 arch_spec.GetMachine() == llvm::Triple::mipsel || 1451 arch_spec.GetMachine() == llvm::Triple::mips64 || 1452 arch_spec.GetMachine() == llvm::Triple::mips64el) { 1453 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { 1454 case llvm::ELF::EF_MIPS_MICROMIPS: 1455 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); 1456 break; 1457 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1458 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); 1459 break; 1460 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1461 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); 1462 break; 1463 default: 1464 break; 1465 } 1466 } 1467 1468 if (arch_spec.GetMachine() == llvm::Triple::arm || 1469 arch_spec.GetMachine() == llvm::Triple::thumb) { 1470 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1471 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1472 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1473 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1474 } 1475 1476 // If there are no section headers we are done. 1477 if (header.e_shnum == 0) 1478 return 0; 1479 1480 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1481 1482 section_headers.resize(header.e_shnum); 1483 if (section_headers.size() != header.e_shnum) 1484 return 0; 1485 1486 const size_t sh_size = header.e_shnum * header.e_shentsize; 1487 const elf_off sh_offset = header.e_shoff; 1488 DataExtractor sh_data; 1489 if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size) 1490 return 0; 1491 1492 uint32_t idx; 1493 lldb::offset_t offset; 1494 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { 1495 if (!section_headers[idx].Parse(sh_data, &offset)) 1496 break; 1497 } 1498 if (idx < section_headers.size()) 1499 section_headers.resize(idx); 1500 1501 const unsigned strtab_idx = header.e_shstrndx; 1502 if (strtab_idx && strtab_idx < section_headers.size()) { 1503 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1504 const size_t byte_size = sheader.sh_size; 1505 const Elf64_Off offset = sheader.sh_offset; 1506 lldb_private::DataExtractor shstr_data; 1507 1508 if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) { 1509 for (SectionHeaderCollIter I = section_headers.begin(); 1510 I != section_headers.end(); ++I) { 1511 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); 1512 const ELFSectionHeaderInfo &sheader = *I; 1513 const uint64_t section_size = 1514 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1515 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1516 1517 I->section_name = name; 1518 1519 if (arch_spec.IsMIPS()) { 1520 uint32_t arch_flags = arch_spec.GetFlags(); 1521 DataExtractor data; 1522 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { 1523 1524 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1525 section_size) == section_size)) { 1526 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1527 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1528 arch_flags |= data.GetU32(&offset); 1529 1530 // The floating point ABI is at offset 7 1531 offset = 7; 1532 switch (data.GetU8(&offset)) { 1533 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: 1534 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1535 break; 1536 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: 1537 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1538 break; 1539 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: 1540 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1541 break; 1542 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: 1543 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1544 break; 1545 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: 1546 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1547 break; 1548 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: 1549 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1550 break; 1551 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: 1552 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1553 break; 1554 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: 1555 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1556 break; 1557 } 1558 } 1559 } 1560 // Settings appropriate ArchSpec ABI Flags 1561 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { 1562 case llvm::ELF::EF_MIPS_ABI_O32: 1563 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1564 break; 1565 case EF_MIPS_ABI_O64: 1566 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1567 break; 1568 case EF_MIPS_ABI_EABI32: 1569 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1570 break; 1571 case EF_MIPS_ABI_EABI64: 1572 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1573 break; 1574 default: 1575 // ABI Mask doesn't cover N32 and N64 ABI. 1576 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1577 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1578 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1579 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1580 break; 1581 } 1582 arch_spec.SetFlags(arch_flags); 1583 } 1584 1585 if (arch_spec.GetMachine() == llvm::Triple::arm || 1586 arch_spec.GetMachine() == llvm::Triple::thumb) { 1587 DataExtractor data; 1588 1589 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1590 data.SetData(object_data, sheader.sh_offset, section_size) == section_size) 1591 ParseARMAttributes(data, section_size, arch_spec); 1592 } 1593 1594 if (name == g_sect_name_gnu_debuglink) { 1595 DataExtractor data; 1596 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1597 section_size) == section_size)) { 1598 lldb::offset_t gnu_debuglink_offset = 0; 1599 gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); 1600 gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); 1601 data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1602 } 1603 } 1604 1605 // Process ELF note section entries. 1606 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1607 1608 // The section header ".note.android.ident" is stored as a 1609 // PROGBITS type header but it is actually a note header. 1610 static ConstString g_sect_name_android_ident(".note.android.ident"); 1611 if (!is_note_header && name == g_sect_name_android_ident) 1612 is_note_header = true; 1613 1614 if (is_note_header) { 1615 // Allow notes to refine module info. 1616 DataExtractor data; 1617 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1618 section_size) == section_size)) { 1619 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid); 1620 if (error.Fail()) { 1621 if (log) 1622 log->Printf("ObjectFileELF::%s ELF note processing failed: %s", 1623 __FUNCTION__, error.AsCString()); 1624 } 1625 } 1626 } 1627 } 1628 1629 // Make any unknown triple components to be unspecified unknowns. 1630 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1631 arch_spec.GetTriple().setVendorName(llvm::StringRef()); 1632 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1633 arch_spec.GetTriple().setOSName(llvm::StringRef()); 1634 1635 return section_headers.size(); 1636 } 1637 } 1638 1639 section_headers.clear(); 1640 return 0; 1641 } 1642 1643 llvm::StringRef 1644 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { 1645 size_t pos = symbol_name.find('@'); 1646 return symbol_name.substr(0, pos); 1647 } 1648 1649 // ParseSectionHeaders 1650 size_t ObjectFileELF::ParseSectionHeaders() { 1651 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, 1652 m_gnu_debuglink_file, m_gnu_debuglink_crc, 1653 m_arch_spec); 1654 } 1655 1656 const ObjectFileELF::ELFSectionHeaderInfo * 1657 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { 1658 if (!ParseSectionHeaders()) 1659 return NULL; 1660 1661 if (id < m_section_headers.size()) 1662 return &m_section_headers[id]; 1663 1664 return NULL; 1665 } 1666 1667 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { 1668 if (!name || !name[0] || !ParseSectionHeaders()) 1669 return 0; 1670 for (size_t i = 1; i < m_section_headers.size(); ++i) 1671 if (m_section_headers[i].section_name == ConstString(name)) 1672 return i; 1673 return 0; 1674 } 1675 1676 static SectionType GetSectionTypeFromName(llvm::StringRef Name) { 1677 return llvm::StringSwitch<SectionType>(Name) 1678 .Case(".ARM.exidx", eSectionTypeARMexidx) 1679 .Case(".ARM.extab", eSectionTypeARMextab) 1680 .Cases(".bss", ".tbss", eSectionTypeZeroFill) 1681 .Cases(".data", ".tdata", eSectionTypeData) 1682 .Case(".debug_abbrev", eSectionTypeDWARFDebugAbbrev) 1683 .Case(".debug_abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo) 1684 .Case(".debug_addr", eSectionTypeDWARFDebugAddr) 1685 .Case(".debug_aranges", eSectionTypeDWARFDebugAranges) 1686 .Case(".debug_cu_index", eSectionTypeDWARFDebugCuIndex) 1687 .Case(".debug_frame", eSectionTypeDWARFDebugFrame) 1688 .Case(".debug_info", eSectionTypeDWARFDebugInfo) 1689 .Case(".debug_info.dwo", eSectionTypeDWARFDebugInfoDwo) 1690 .Cases(".debug_line", ".debug_line.dwo", eSectionTypeDWARFDebugLine) 1691 .Cases(".debug_line_str", ".debug_line_str.dwo", 1692 eSectionTypeDWARFDebugLineStr) 1693 .Cases(".debug_loc", ".debug_loc.dwo", eSectionTypeDWARFDebugLoc) 1694 .Cases(".debug_loclists", ".debug_loclists.dwo", 1695 eSectionTypeDWARFDebugLocLists) 1696 .Case(".debug_macinfo", eSectionTypeDWARFDebugMacInfo) 1697 .Cases(".debug_macro", ".debug_macro.dwo", eSectionTypeDWARFDebugMacro) 1698 .Case(".debug_names", eSectionTypeDWARFDebugNames) 1699 .Case(".debug_pubnames", eSectionTypeDWARFDebugPubNames) 1700 .Case(".debug_pubtypes", eSectionTypeDWARFDebugPubTypes) 1701 .Case(".debug_ranges", eSectionTypeDWARFDebugRanges) 1702 .Case(".debug_rnglists", eSectionTypeDWARFDebugRngLists) 1703 .Case(".debug_str", eSectionTypeDWARFDebugStr) 1704 .Case(".debug_str.dwo", eSectionTypeDWARFDebugStrDwo) 1705 .Case(".debug_str_offsets", eSectionTypeDWARFDebugStrOffsets) 1706 .Case(".debug_str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo) 1707 .Case(".debug_types", eSectionTypeDWARFDebugTypes) 1708 .Case(".eh_frame", eSectionTypeEHFrame) 1709 .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink) 1710 .Case(".gosymtab", eSectionTypeGoSymtab) 1711 .Case(".text", eSectionTypeCode) 1712 .Default(eSectionTypeOther); 1713 } 1714 1715 SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const { 1716 switch (H.sh_type) { 1717 case SHT_PROGBITS: 1718 if (H.sh_flags & SHF_EXECINSTR) 1719 return eSectionTypeCode; 1720 break; 1721 case SHT_SYMTAB: 1722 return eSectionTypeELFSymbolTable; 1723 case SHT_DYNSYM: 1724 return eSectionTypeELFDynamicSymbols; 1725 case SHT_RELA: 1726 case SHT_REL: 1727 return eSectionTypeELFRelocationEntries; 1728 case SHT_DYNAMIC: 1729 return eSectionTypeELFDynamicLinkInfo; 1730 } 1731 return GetSectionTypeFromName(H.section_name.GetStringRef()); 1732 } 1733 1734 static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) { 1735 switch (Type) { 1736 case eSectionTypeData: 1737 case eSectionTypeZeroFill: 1738 return arch.GetDataByteSize(); 1739 case eSectionTypeCode: 1740 return arch.GetCodeByteSize(); 1741 default: 1742 return 1; 1743 } 1744 } 1745 1746 static Permissions GetPermissions(const ELFSectionHeader &H) { 1747 Permissions Perm = Permissions(0); 1748 if (H.sh_flags & SHF_ALLOC) 1749 Perm |= ePermissionsReadable; 1750 if (H.sh_flags & SHF_WRITE) 1751 Perm |= ePermissionsWritable; 1752 if (H.sh_flags & SHF_EXECINSTR) 1753 Perm |= ePermissionsExecutable; 1754 return Perm; 1755 } 1756 1757 static Permissions GetPermissions(const ELFProgramHeader &H) { 1758 Permissions Perm = Permissions(0); 1759 if (H.p_flags & PF_R) 1760 Perm |= ePermissionsReadable; 1761 if (H.p_flags & PF_W) 1762 Perm |= ePermissionsWritable; 1763 if (H.p_flags & PF_X) 1764 Perm |= ePermissionsExecutable; 1765 return Perm; 1766 } 1767 1768 namespace { 1769 1770 using VMRange = lldb_private::Range<addr_t, addr_t>; 1771 1772 struct SectionAddressInfo { 1773 SectionSP Segment; 1774 VMRange Range; 1775 }; 1776 1777 // (Unlinked) ELF object files usually have 0 for every section address, meaning 1778 // we need to compute synthetic addresses in order for "file addresses" from 1779 // different sections to not overlap. This class handles that logic. 1780 class VMAddressProvider { 1781 using VMMap = llvm::IntervalMap<addr_t, SectionSP, 4, 1782 llvm::IntervalMapHalfOpenInfo<addr_t>>; 1783 1784 ObjectFile::Type ObjectType; 1785 addr_t NextVMAddress = 0; 1786 VMMap::Allocator Alloc; 1787 VMMap Segments = VMMap(Alloc); 1788 VMMap Sections = VMMap(Alloc); 1789 lldb_private::Log *Log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 1790 1791 VMRange GetVMRange(const ELFSectionHeader &H) { 1792 addr_t Address = H.sh_addr; 1793 addr_t Size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0; 1794 if (ObjectType == ObjectFile::Type::eTypeObjectFile && Segments.empty() && (H.sh_flags & SHF_ALLOC)) { 1795 NextVMAddress = 1796 llvm::alignTo(NextVMAddress, std::max<addr_t>(H.sh_addralign, 1)); 1797 Address = NextVMAddress; 1798 NextVMAddress += Size; 1799 } 1800 return VMRange(Address, Size); 1801 } 1802 1803 public: 1804 VMAddressProvider(ObjectFile::Type Type) : ObjectType(Type) {} 1805 1806 llvm::Optional<VMRange> GetAddressInfo(const ELFProgramHeader &H) { 1807 if (H.p_memsz == 0) { 1808 LLDB_LOG(Log, 1809 "Ignoring zero-sized PT_LOAD segment. Corrupt object file?"); 1810 return llvm::None; 1811 } 1812 1813 if (Segments.overlaps(H.p_vaddr, H.p_vaddr + H.p_memsz)) { 1814 LLDB_LOG(Log, 1815 "Ignoring overlapping PT_LOAD segment. Corrupt object file?"); 1816 return llvm::None; 1817 } 1818 return VMRange(H.p_vaddr, H.p_memsz); 1819 } 1820 1821 llvm::Optional<SectionAddressInfo> GetAddressInfo(const ELFSectionHeader &H) { 1822 VMRange Range = GetVMRange(H); 1823 SectionSP Segment; 1824 auto It = Segments.find(Range.GetRangeBase()); 1825 if ((H.sh_flags & SHF_ALLOC) && It.valid()) { 1826 addr_t MaxSize; 1827 if (It.start() <= Range.GetRangeBase()) { 1828 MaxSize = It.stop() - Range.GetRangeBase(); 1829 Segment = *It; 1830 } else 1831 MaxSize = It.start() - Range.GetRangeBase(); 1832 if (Range.GetByteSize() > MaxSize) { 1833 LLDB_LOG(Log, "Shortening section crossing segment boundaries. " 1834 "Corrupt object file?"); 1835 Range.SetByteSize(MaxSize); 1836 } 1837 } 1838 if (Range.GetByteSize() > 0 && 1839 Sections.overlaps(Range.GetRangeBase(), Range.GetRangeEnd())) { 1840 LLDB_LOG(Log, "Ignoring overlapping section. Corrupt object file?"); 1841 return llvm::None; 1842 } 1843 if (Segment) 1844 Range.Slide(-Segment->GetFileAddress()); 1845 return SectionAddressInfo{Segment, Range}; 1846 } 1847 1848 void AddSegment(const VMRange &Range, SectionSP Seg) { 1849 Segments.insert(Range.GetRangeBase(), Range.GetRangeEnd(), std::move(Seg)); 1850 } 1851 1852 void AddSection(SectionAddressInfo Info, SectionSP Sect) { 1853 if (Info.Range.GetByteSize() == 0) 1854 return; 1855 if (Info.Segment) 1856 Info.Range.Slide(Info.Segment->GetFileAddress()); 1857 Sections.insert(Info.Range.GetRangeBase(), Info.Range.GetRangeEnd(), 1858 std::move(Sect)); 1859 } 1860 }; 1861 } 1862 1863 void ObjectFileELF::CreateSections(SectionList &unified_section_list) { 1864 if (m_sections_up) 1865 return; 1866 1867 m_sections_up = llvm::make_unique<SectionList>(); 1868 VMAddressProvider address_provider(CalculateType()); 1869 1870 size_t LoadID = 0; 1871 for (const auto &EnumPHdr : llvm::enumerate(ProgramHeaders())) { 1872 const ELFProgramHeader &PHdr = EnumPHdr.value(); 1873 if (PHdr.p_type != PT_LOAD) 1874 continue; 1875 1876 auto InfoOr = address_provider.GetAddressInfo(PHdr); 1877 if (!InfoOr) 1878 continue; 1879 1880 ConstString Name(("PT_LOAD[" + llvm::Twine(LoadID++) + "]").str()); 1881 uint32_t Log2Align = llvm::Log2_64(std::max<elf_xword>(PHdr.p_align, 1)); 1882 SectionSP Segment = std::make_shared<Section>( 1883 GetModule(), this, SegmentID(EnumPHdr.index()), Name, 1884 eSectionTypeContainer, InfoOr->GetRangeBase(), InfoOr->GetByteSize(), 1885 PHdr.p_offset, PHdr.p_filesz, Log2Align, /*flags*/ 0); 1886 Segment->SetPermissions(GetPermissions(PHdr)); 1887 m_sections_up->AddSection(Segment); 1888 1889 address_provider.AddSegment(*InfoOr, std::move(Segment)); 1890 } 1891 1892 ParseSectionHeaders(); 1893 if (m_section_headers.empty()) 1894 return; 1895 1896 for (SectionHeaderCollIter I = std::next(m_section_headers.begin()); 1897 I != m_section_headers.end(); ++I) { 1898 const ELFSectionHeaderInfo &header = *I; 1899 1900 ConstString &name = I->section_name; 1901 const uint64_t file_size = 1902 header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1903 1904 auto InfoOr = address_provider.GetAddressInfo(header); 1905 if (!InfoOr) 1906 continue; 1907 1908 SectionType sect_type = GetSectionType(header); 1909 1910 const uint32_t target_bytes_size = 1911 GetTargetByteSize(sect_type, m_arch_spec); 1912 1913 elf::elf_xword log2align = 1914 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); 1915 1916 SectionSP section_sp(new Section( 1917 InfoOr->Segment, GetModule(), // Module to which this section belongs. 1918 this, // ObjectFile to which this section belongs and should 1919 // read section data from. 1920 SectionIndex(I), // Section ID. 1921 name, // Section name. 1922 sect_type, // Section type. 1923 InfoOr->Range.GetRangeBase(), // VM address. 1924 InfoOr->Range.GetByteSize(), // VM size in bytes of this section. 1925 header.sh_offset, // Offset of this section in the file. 1926 file_size, // Size of the section as found in the file. 1927 log2align, // Alignment of the section 1928 header.sh_flags, // Flags for this section. 1929 target_bytes_size)); // Number of host bytes per target byte 1930 1931 section_sp->SetPermissions(GetPermissions(header)); 1932 section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS); 1933 (InfoOr->Segment ? InfoOr->Segment->GetChildren() : *m_sections_up) 1934 .AddSection(section_sp); 1935 address_provider.AddSection(std::move(*InfoOr), std::move(section_sp)); 1936 } 1937 1938 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the 1939 // unified section list. 1940 if (GetType() != eTypeDebugInfo) 1941 unified_section_list = *m_sections_up; 1942 } 1943 1944 // Find the arm/aarch64 mapping symbol character in the given symbol name. 1945 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we 1946 // recognize cases when the mapping symbol prefixed by an arbitrary string 1947 // because if a symbol prefix added to each symbol in the object file with 1948 // objcopy then the mapping symbols are also prefixed. 1949 static char FindArmAarch64MappingSymbol(const char *symbol_name) { 1950 if (!symbol_name) 1951 return '\0'; 1952 1953 const char *dollar_pos = ::strchr(symbol_name, '$'); 1954 if (!dollar_pos || dollar_pos[1] == '\0') 1955 return '\0'; 1956 1957 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 1958 return dollar_pos[1]; 1959 return '\0'; 1960 } 1961 1962 #define STO_MIPS_ISA (3 << 6) 1963 #define STO_MICROMIPS (2 << 6) 1964 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) 1965 1966 // private 1967 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, 1968 SectionList *section_list, 1969 const size_t num_symbols, 1970 const DataExtractor &symtab_data, 1971 const DataExtractor &strtab_data) { 1972 ELFSymbol symbol; 1973 lldb::offset_t offset = 0; 1974 1975 static ConstString text_section_name(".text"); 1976 static ConstString init_section_name(".init"); 1977 static ConstString fini_section_name(".fini"); 1978 static ConstString ctors_section_name(".ctors"); 1979 static ConstString dtors_section_name(".dtors"); 1980 1981 static ConstString data_section_name(".data"); 1982 static ConstString rodata_section_name(".rodata"); 1983 static ConstString rodata1_section_name(".rodata1"); 1984 static ConstString data2_section_name(".data1"); 1985 static ConstString bss_section_name(".bss"); 1986 static ConstString opd_section_name(".opd"); // For ppc64 1987 1988 // On Android the oatdata and the oatexec symbols in the oat and odex files 1989 // covers the full .text section what causes issues with displaying unusable 1990 // symbol name to the user and very slow unwinding speed because the 1991 // instruction emulation based unwind plans try to emulate all instructions 1992 // in these symbols. Don't add these symbols to the symbol list as they have 1993 // no use for the debugger and they are causing a lot of trouble. Filtering 1994 // can't be restricted to Android because this special object file don't 1995 // contain the note section specifying the environment to Android but the 1996 // custom extension and file name makes it highly unlikely that this will 1997 // collide with anything else. 1998 ConstString file_extension = m_file.GetFileNameExtension(); 1999 bool skip_oatdata_oatexec = file_extension == ConstString(".oat") || 2000 file_extension == ConstString(".odex"); 2001 2002 ArchSpec arch = GetArchitecture(); 2003 ModuleSP module_sp(GetModule()); 2004 SectionList *module_section_list = 2005 module_sp ? module_sp->GetSectionList() : nullptr; 2006 2007 // Local cache to avoid doing a FindSectionByName for each symbol. The "const 2008 // char*" key must came from a ConstString object so they can be compared by 2009 // pointer 2010 std::unordered_map<const char *, lldb::SectionSP> section_name_to_section; 2011 2012 unsigned i; 2013 for (i = 0; i < num_symbols; ++i) { 2014 if (!symbol.Parse(symtab_data, &offset)) 2015 break; 2016 2017 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2018 if (!symbol_name) 2019 symbol_name = ""; 2020 2021 // No need to add non-section symbols that have no names 2022 if (symbol.getType() != STT_SECTION && 2023 (symbol_name == nullptr || symbol_name[0] == '\0')) 2024 continue; 2025 2026 // Skipping oatdata and oatexec sections if it is requested. See details 2027 // above the definition of skip_oatdata_oatexec for the reasons. 2028 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || 2029 ::strcmp(symbol_name, "oatexec") == 0)) 2030 continue; 2031 2032 SectionSP symbol_section_sp; 2033 SymbolType symbol_type = eSymbolTypeInvalid; 2034 Elf64_Half shndx = symbol.st_shndx; 2035 2036 switch (shndx) { 2037 case SHN_ABS: 2038 symbol_type = eSymbolTypeAbsolute; 2039 break; 2040 case SHN_UNDEF: 2041 symbol_type = eSymbolTypeUndefined; 2042 break; 2043 default: 2044 symbol_section_sp = section_list->FindSectionByID(shndx); 2045 break; 2046 } 2047 2048 // If a symbol is undefined do not process it further even if it has a STT 2049 // type 2050 if (symbol_type != eSymbolTypeUndefined) { 2051 switch (symbol.getType()) { 2052 default: 2053 case STT_NOTYPE: 2054 // The symbol's type is not specified. 2055 break; 2056 2057 case STT_OBJECT: 2058 // The symbol is associated with a data object, such as a variable, an 2059 // array, etc. 2060 symbol_type = eSymbolTypeData; 2061 break; 2062 2063 case STT_FUNC: 2064 // The symbol is associated with a function or other executable code. 2065 symbol_type = eSymbolTypeCode; 2066 break; 2067 2068 case STT_SECTION: 2069 // The symbol is associated with a section. Symbol table entries of 2070 // this type exist primarily for relocation and normally have STB_LOCAL 2071 // binding. 2072 break; 2073 2074 case STT_FILE: 2075 // Conventionally, the symbol's name gives the name of the source file 2076 // associated with the object file. A file symbol has STB_LOCAL 2077 // binding, its section index is SHN_ABS, and it precedes the other 2078 // STB_LOCAL symbols for the file, if it is present. 2079 symbol_type = eSymbolTypeSourceFile; 2080 break; 2081 2082 case STT_GNU_IFUNC: 2083 // The symbol is associated with an indirect function. The actual 2084 // function will be resolved if it is referenced. 2085 symbol_type = eSymbolTypeResolver; 2086 break; 2087 } 2088 } 2089 2090 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { 2091 if (symbol_section_sp) { 2092 ConstString sect_name = symbol_section_sp->GetName(); 2093 if (sect_name == text_section_name || sect_name == init_section_name || 2094 sect_name == fini_section_name || sect_name == ctors_section_name || 2095 sect_name == dtors_section_name) { 2096 symbol_type = eSymbolTypeCode; 2097 } else if (sect_name == data_section_name || 2098 sect_name == data2_section_name || 2099 sect_name == rodata_section_name || 2100 sect_name == rodata1_section_name || 2101 sect_name == bss_section_name) { 2102 symbol_type = eSymbolTypeData; 2103 } 2104 } 2105 } 2106 2107 int64_t symbol_value_offset = 0; 2108 uint32_t additional_flags = 0; 2109 2110 if (arch.IsValid()) { 2111 if (arch.GetMachine() == llvm::Triple::arm) { 2112 if (symbol.getBinding() == STB_LOCAL) { 2113 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2114 if (symbol_type == eSymbolTypeCode) { 2115 switch (mapping_symbol) { 2116 case 'a': 2117 // $a[.<any>]* - marks an ARM instruction sequence 2118 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2119 break; 2120 case 'b': 2121 case 't': 2122 // $b[.<any>]* - marks a THUMB BL instruction sequence 2123 // $t[.<any>]* - marks a THUMB instruction sequence 2124 m_address_class_map[symbol.st_value] = 2125 AddressClass::eCodeAlternateISA; 2126 break; 2127 case 'd': 2128 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2129 m_address_class_map[symbol.st_value] = AddressClass::eData; 2130 break; 2131 } 2132 } 2133 if (mapping_symbol) 2134 continue; 2135 } 2136 } else if (arch.GetMachine() == llvm::Triple::aarch64) { 2137 if (symbol.getBinding() == STB_LOCAL) { 2138 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2139 if (symbol_type == eSymbolTypeCode) { 2140 switch (mapping_symbol) { 2141 case 'x': 2142 // $x[.<any>]* - marks an A64 instruction sequence 2143 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2144 break; 2145 case 'd': 2146 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2147 m_address_class_map[symbol.st_value] = AddressClass::eData; 2148 break; 2149 } 2150 } 2151 if (mapping_symbol) 2152 continue; 2153 } 2154 } 2155 2156 if (arch.GetMachine() == llvm::Triple::arm) { 2157 if (symbol_type == eSymbolTypeCode) { 2158 if (symbol.st_value & 1) { 2159 // Subtracting 1 from the address effectively unsets the low order 2160 // bit, which results in the address actually pointing to the 2161 // beginning of the symbol. This delta will be used below in 2162 // conjunction with symbol.st_value to produce the final 2163 // symbol_value that we store in the symtab. 2164 symbol_value_offset = -1; 2165 m_address_class_map[symbol.st_value ^ 1] = 2166 AddressClass::eCodeAlternateISA; 2167 } else { 2168 // This address is ARM 2169 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2170 } 2171 } 2172 } 2173 2174 /* 2175 * MIPS: 2176 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for 2177 * MIPS). 2178 * This allows processor to switch between microMIPS and MIPS without any 2179 * need 2180 * for special mode-control register. However, apart from .debug_line, 2181 * none of 2182 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use 2183 * st_other 2184 * flag to check whether the symbol is microMIPS and then set the address 2185 * class 2186 * accordingly. 2187 */ 2188 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2189 if (llvm_arch == llvm::Triple::mips || 2190 llvm_arch == llvm::Triple::mipsel || 2191 llvm_arch == llvm::Triple::mips64 || 2192 llvm_arch == llvm::Triple::mips64el) { 2193 if (IS_MICROMIPS(symbol.st_other)) 2194 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2195 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { 2196 symbol.st_value = symbol.st_value & (~1ull); 2197 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2198 } else { 2199 if (symbol_type == eSymbolTypeCode) 2200 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2201 else if (symbol_type == eSymbolTypeData) 2202 m_address_class_map[symbol.st_value] = AddressClass::eData; 2203 else 2204 m_address_class_map[symbol.st_value] = AddressClass::eUnknown; 2205 } 2206 } 2207 } 2208 2209 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB 2210 // symbols. See above for more details. 2211 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2212 2213 if (symbol_section_sp == nullptr && shndx == SHN_ABS && 2214 symbol.st_size != 0) { 2215 // We don't have a section for a symbol with non-zero size. Create a new 2216 // section for it so the address range covered by the symbol is also 2217 // covered by the module (represented through the section list). It is 2218 // needed so module lookup for the addresses covered by this symbol will 2219 // be successfull. This case happens for absolute symbols. 2220 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2221 symbol_section_sp = 2222 std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name, 2223 eSectionTypeAbsoluteAddress, symbol_value, 2224 symbol.st_size, 0, 0, 0, SHF_ALLOC); 2225 2226 module_section_list->AddSection(symbol_section_sp); 2227 section_list->AddSection(symbol_section_sp); 2228 } 2229 2230 if (symbol_section_sp && 2231 CalculateType() != ObjectFile::Type::eTypeObjectFile) 2232 symbol_value -= symbol_section_sp->GetFileAddress(); 2233 2234 if (symbol_section_sp && module_section_list && 2235 module_section_list != section_list) { 2236 ConstString sect_name = symbol_section_sp->GetName(); 2237 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2238 if (section_it == section_name_to_section.end()) 2239 section_it = 2240 section_name_to_section 2241 .emplace(sect_name.GetCString(), 2242 module_section_list->FindSectionByName(sect_name)) 2243 .first; 2244 if (section_it->second) 2245 symbol_section_sp = section_it->second; 2246 } 2247 2248 bool is_global = symbol.getBinding() == STB_GLOBAL; 2249 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2250 bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z'); 2251 2252 llvm::StringRef symbol_ref(symbol_name); 2253 2254 // Symbol names may contain @VERSION suffixes. Find those and strip them 2255 // temporarily. 2256 size_t version_pos = symbol_ref.find('@'); 2257 bool has_suffix = version_pos != llvm::StringRef::npos; 2258 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2259 Mangled mangled(ConstString(symbol_bare), is_mangled); 2260 2261 // Now append the suffix back to mangled and unmangled names. Only do it if 2262 // the demangling was successful (string is not empty). 2263 if (has_suffix) { 2264 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2265 2266 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2267 if (!mangled_name.empty()) 2268 mangled.SetMangledName(ConstString((mangled_name + suffix).str())); 2269 2270 ConstString demangled = 2271 mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2272 llvm::StringRef demangled_name = demangled.GetStringRef(); 2273 if (!demangled_name.empty()) 2274 mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); 2275 } 2276 2277 // In ELF all symbol should have a valid size but it is not true for some 2278 // function symbols coming from hand written assembly. As none of the 2279 // function symbol should have 0 size we try to calculate the size for 2280 // these symbols in the symtab with saying that their original size is not 2281 // valid. 2282 bool symbol_size_valid = 2283 symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2284 2285 Symbol dc_symbol( 2286 i + start_id, // ID is the original symbol table index. 2287 mangled, 2288 symbol_type, // Type of this symbol 2289 is_global, // Is this globally visible? 2290 false, // Is this symbol debug info? 2291 false, // Is this symbol a trampoline? 2292 false, // Is this symbol artificial? 2293 AddressRange(symbol_section_sp, // Section in which this symbol is 2294 // defined or null. 2295 symbol_value, // Offset in section or symbol value. 2296 symbol.st_size), // Size in bytes of this symbol. 2297 symbol_size_valid, // Symbol size is valid 2298 has_suffix, // Contains linker annotations? 2299 flags); // Symbol flags. 2300 symtab->AddSymbol(dc_symbol); 2301 } 2302 return i; 2303 } 2304 2305 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2306 user_id_t start_id, 2307 lldb_private::Section *symtab) { 2308 if (symtab->GetObjectFile() != this) { 2309 // If the symbol table section is owned by a different object file, have it 2310 // do the parsing. 2311 ObjectFileELF *obj_file_elf = 2312 static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2313 return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); 2314 } 2315 2316 // Get section list for this object file. 2317 SectionList *section_list = m_sections_up.get(); 2318 if (!section_list) 2319 return 0; 2320 2321 user_id_t symtab_id = symtab->GetID(); 2322 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2323 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2324 symtab_hdr->sh_type == SHT_DYNSYM); 2325 2326 // sh_link: section header index of associated string table. 2327 user_id_t strtab_id = symtab_hdr->sh_link; 2328 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2329 2330 if (symtab && strtab) { 2331 assert(symtab->GetObjectFile() == this); 2332 assert(strtab->GetObjectFile() == this); 2333 2334 DataExtractor symtab_data; 2335 DataExtractor strtab_data; 2336 if (ReadSectionData(symtab, symtab_data) && 2337 ReadSectionData(strtab, strtab_data)) { 2338 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2339 2340 return ParseSymbols(symbol_table, start_id, section_list, num_symbols, 2341 symtab_data, strtab_data); 2342 } 2343 } 2344 2345 return 0; 2346 } 2347 2348 size_t ObjectFileELF::ParseDynamicSymbols() { 2349 if (m_dynamic_symbols.size()) 2350 return m_dynamic_symbols.size(); 2351 2352 SectionList *section_list = GetSectionList(); 2353 if (!section_list) 2354 return 0; 2355 2356 // Find the SHT_DYNAMIC section. 2357 Section *dynsym = 2358 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 2359 .get(); 2360 if (!dynsym) 2361 return 0; 2362 assert(dynsym->GetObjectFile() == this); 2363 2364 ELFDynamic symbol; 2365 DataExtractor dynsym_data; 2366 if (ReadSectionData(dynsym, dynsym_data)) { 2367 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2368 lldb::offset_t cursor = 0; 2369 2370 while (cursor < section_size) { 2371 if (!symbol.Parse(dynsym_data, &cursor)) 2372 break; 2373 2374 m_dynamic_symbols.push_back(symbol); 2375 } 2376 } 2377 2378 return m_dynamic_symbols.size(); 2379 } 2380 2381 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { 2382 if (!ParseDynamicSymbols()) 2383 return NULL; 2384 2385 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2386 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2387 for (; I != E; ++I) { 2388 ELFDynamic *symbol = &*I; 2389 2390 if (symbol->d_tag == tag) 2391 return symbol; 2392 } 2393 2394 return NULL; 2395 } 2396 2397 unsigned ObjectFileELF::PLTRelocationType() { 2398 // DT_PLTREL 2399 // This member specifies the type of relocation entry to which the 2400 // procedure linkage table refers. The d_val member holds DT_REL or 2401 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2402 // must use the same relocation. 2403 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2404 2405 if (symbol) 2406 return symbol->d_val; 2407 2408 return 0; 2409 } 2410 2411 // Returns the size of the normal plt entries and the offset of the first 2412 // normal plt entry. The 0th entry in the plt table is usually a resolution 2413 // entry which have different size in some architectures then the rest of the 2414 // plt entries. 2415 static std::pair<uint64_t, uint64_t> 2416 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, 2417 const ELFSectionHeader *plt_hdr) { 2418 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2419 2420 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 2421 // 16 bytes. So round the entsize up by the alignment if addralign is set. 2422 elf_xword plt_entsize = 2423 plt_hdr->sh_addralign 2424 ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) 2425 : plt_hdr->sh_entsize; 2426 2427 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2428 // PLT entries relocation code in general requires multiple instruction and 2429 // should be greater than 4 bytes in most cases. Try to guess correct size 2430 // just in case. 2431 if (plt_entsize <= 4) { 2432 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the 2433 // size of the plt entries based on the number of entries and the size of 2434 // the plt section with the assumption that the size of the 0th entry is at 2435 // least as big as the size of the normal entries and it isn't much bigger 2436 // then that. 2437 if (plt_hdr->sh_addralign) 2438 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / 2439 (num_relocations + 1) * plt_hdr->sh_addralign; 2440 else 2441 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2442 } 2443 2444 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2445 2446 return std::make_pair(plt_entsize, plt_offset); 2447 } 2448 2449 static unsigned ParsePLTRelocations( 2450 Symtab *symbol_table, user_id_t start_id, unsigned rel_type, 2451 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2452 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, 2453 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, 2454 DataExtractor &symtab_data, DataExtractor &strtab_data) { 2455 ELFRelocation rel(rel_type); 2456 ELFSymbol symbol; 2457 lldb::offset_t offset = 0; 2458 2459 uint64_t plt_offset, plt_entsize; 2460 std::tie(plt_entsize, plt_offset) = 2461 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2462 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2463 2464 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2465 reloc_info_fn reloc_type; 2466 reloc_info_fn reloc_symbol; 2467 2468 if (hdr->Is32Bit()) { 2469 reloc_type = ELFRelocation::RelocType32; 2470 reloc_symbol = ELFRelocation::RelocSymbol32; 2471 } else { 2472 reloc_type = ELFRelocation::RelocType64; 2473 reloc_symbol = ELFRelocation::RelocSymbol64; 2474 } 2475 2476 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2477 unsigned i; 2478 for (i = 0; i < num_relocations; ++i) { 2479 if (!rel.Parse(rel_data, &offset)) 2480 break; 2481 2482 if (reloc_type(rel) != slot_type) 2483 continue; 2484 2485 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2486 if (!symbol.Parse(symtab_data, &symbol_offset)) 2487 break; 2488 2489 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2490 bool is_mangled = 2491 symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2492 uint64_t plt_index = plt_offset + i * plt_entsize; 2493 2494 Symbol jump_symbol( 2495 i + start_id, // Symbol table index 2496 symbol_name, // symbol name. 2497 is_mangled, // is the symbol name mangled? 2498 eSymbolTypeTrampoline, // Type of this symbol 2499 false, // Is this globally visible? 2500 false, // Is this symbol debug info? 2501 true, // Is this symbol a trampoline? 2502 true, // Is this symbol artificial? 2503 plt_section_sp, // Section in which this symbol is defined or null. 2504 plt_index, // Offset in section or symbol value. 2505 plt_entsize, // Size in bytes of this symbol. 2506 true, // Size is valid 2507 false, // Contains linker annotations? 2508 0); // Symbol flags. 2509 2510 symbol_table->AddSymbol(jump_symbol); 2511 } 2512 2513 return i; 2514 } 2515 2516 unsigned 2517 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, 2518 const ELFSectionHeaderInfo *rel_hdr, 2519 user_id_t rel_id) { 2520 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2521 2522 // The link field points to the associated symbol table. 2523 user_id_t symtab_id = rel_hdr->sh_link; 2524 2525 // If the link field doesn't point to the appropriate symbol name table then 2526 // try to find it by name as some compiler don't fill in the link fields. 2527 if (!symtab_id) 2528 symtab_id = GetSectionIndexByName(".dynsym"); 2529 2530 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2531 // point that to the .got.plt or .got section instead of .plt. 2532 user_id_t plt_id = GetSectionIndexByName(".plt"); 2533 2534 if (!symtab_id || !plt_id) 2535 return 0; 2536 2537 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2538 if (!plt_hdr) 2539 return 0; 2540 2541 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2542 if (!sym_hdr) 2543 return 0; 2544 2545 SectionList *section_list = m_sections_up.get(); 2546 if (!section_list) 2547 return 0; 2548 2549 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2550 if (!rel_section) 2551 return 0; 2552 2553 SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); 2554 if (!plt_section_sp) 2555 return 0; 2556 2557 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2558 if (!symtab) 2559 return 0; 2560 2561 // sh_link points to associated string table. 2562 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link).get(); 2563 if (!strtab) 2564 return 0; 2565 2566 DataExtractor rel_data; 2567 if (!ReadSectionData(rel_section, rel_data)) 2568 return 0; 2569 2570 DataExtractor symtab_data; 2571 if (!ReadSectionData(symtab, symtab_data)) 2572 return 0; 2573 2574 DataExtractor strtab_data; 2575 if (!ReadSectionData(strtab, strtab_data)) 2576 return 0; 2577 2578 unsigned rel_type = PLTRelocationType(); 2579 if (!rel_type) 2580 return 0; 2581 2582 return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, 2583 rel_hdr, plt_hdr, sym_hdr, plt_section_sp, 2584 rel_data, symtab_data, strtab_data); 2585 } 2586 2587 unsigned ObjectFileELF::ApplyRelocations( 2588 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2589 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2590 DataExtractor &rel_data, DataExtractor &symtab_data, 2591 DataExtractor &debug_data, Section *rel_section) { 2592 ELFRelocation rel(rel_hdr->sh_type); 2593 lldb::addr_t offset = 0; 2594 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2595 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2596 reloc_info_fn reloc_type; 2597 reloc_info_fn reloc_symbol; 2598 2599 if (hdr->Is32Bit()) { 2600 reloc_type = ELFRelocation::RelocType32; 2601 reloc_symbol = ELFRelocation::RelocSymbol32; 2602 } else { 2603 reloc_type = ELFRelocation::RelocType64; 2604 reloc_symbol = ELFRelocation::RelocSymbol64; 2605 } 2606 2607 for (unsigned i = 0; i < num_relocations; ++i) { 2608 if (!rel.Parse(rel_data, &offset)) 2609 break; 2610 2611 Symbol *symbol = NULL; 2612 2613 if (hdr->Is32Bit()) { 2614 switch (reloc_type(rel)) { 2615 case R_386_32: 2616 case R_386_PC32: 2617 default: 2618 // FIXME: This asserts with this input: 2619 // 2620 // foo.cpp 2621 // int main(int argc, char **argv) { return 0; } 2622 // 2623 // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o 2624 // 2625 // and running this on the foo.o module. 2626 assert(false && "unexpected relocation type"); 2627 } 2628 } else { 2629 switch (reloc_type(rel)) { 2630 case R_AARCH64_ABS64: 2631 case R_X86_64_64: { 2632 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2633 if (symbol) { 2634 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2635 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2636 uint64_t *dst = reinterpret_cast<uint64_t *>( 2637 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2638 ELFRelocation::RelocOffset64(rel)); 2639 uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel); 2640 memcpy(dst, &val_offset, sizeof(uint64_t)); 2641 } 2642 break; 2643 } 2644 case R_X86_64_32: 2645 case R_X86_64_32S: 2646 case R_AARCH64_ABS32: { 2647 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2648 if (symbol) { 2649 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2650 value += ELFRelocation::RelocAddend32(rel); 2651 if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) || 2652 (reloc_type(rel) == R_X86_64_32S && 2653 ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) || 2654 (reloc_type(rel) == R_AARCH64_ABS32 && 2655 ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) { 2656 Log *log = 2657 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 2658 log->Printf("Failed to apply debug info relocations"); 2659 break; 2660 } 2661 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2662 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2663 uint32_t *dst = reinterpret_cast<uint32_t *>( 2664 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2665 ELFRelocation::RelocOffset32(rel)); 2666 memcpy(dst, &truncated_addr, sizeof(uint32_t)); 2667 } 2668 break; 2669 } 2670 case R_X86_64_PC32: 2671 default: 2672 assert(false && "unexpected relocation type"); 2673 } 2674 } 2675 } 2676 2677 return 0; 2678 } 2679 2680 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, 2681 user_id_t rel_id, 2682 lldb_private::Symtab *thetab) { 2683 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2684 2685 // Parse in the section list if needed. 2686 SectionList *section_list = GetSectionList(); 2687 if (!section_list) 2688 return 0; 2689 2690 user_id_t symtab_id = rel_hdr->sh_link; 2691 user_id_t debug_id = rel_hdr->sh_info; 2692 2693 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2694 if (!symtab_hdr) 2695 return 0; 2696 2697 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2698 if (!debug_hdr) 2699 return 0; 2700 2701 Section *rel = section_list->FindSectionByID(rel_id).get(); 2702 if (!rel) 2703 return 0; 2704 2705 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2706 if (!symtab) 2707 return 0; 2708 2709 Section *debug = section_list->FindSectionByID(debug_id).get(); 2710 if (!debug) 2711 return 0; 2712 2713 DataExtractor rel_data; 2714 DataExtractor symtab_data; 2715 DataExtractor debug_data; 2716 2717 if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) && 2718 GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) && 2719 GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) { 2720 ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr, 2721 rel_data, symtab_data, debug_data, debug); 2722 } 2723 2724 return 0; 2725 } 2726 2727 Symtab *ObjectFileELF::GetSymtab() { 2728 ModuleSP module_sp(GetModule()); 2729 if (!module_sp) 2730 return NULL; 2731 2732 // We always want to use the main object file so we (hopefully) only have one 2733 // cached copy of our symtab, dynamic sections, etc. 2734 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2735 if (module_obj_file && module_obj_file != this) 2736 return module_obj_file->GetSymtab(); 2737 2738 if (m_symtab_up == NULL) { 2739 SectionList *section_list = module_sp->GetSectionList(); 2740 if (!section_list) 2741 return NULL; 2742 2743 uint64_t symbol_id = 0; 2744 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2745 2746 // Sharable objects and dynamic executables usually have 2 distinct symbol 2747 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a 2748 // smaller version of the symtab that only contains global symbols. The 2749 // information found in the dynsym is therefore also found in the symtab, 2750 // while the reverse is not necessarily true. 2751 Section *symtab = 2752 section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); 2753 if (!symtab) { 2754 // The symtab section is non-allocable and can be stripped, so if it 2755 // doesn't exist then use the dynsym section which should always be 2756 // there. 2757 symtab = 2758 section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) 2759 .get(); 2760 } 2761 if (symtab) { 2762 m_symtab_up.reset(new Symtab(symtab->GetObjectFile())); 2763 symbol_id += ParseSymbolTable(m_symtab_up.get(), symbol_id, symtab); 2764 } 2765 2766 // DT_JMPREL 2767 // If present, this entry's d_ptr member holds the address of 2768 // relocation 2769 // entries associated solely with the procedure linkage table. 2770 // Separating 2771 // these relocation entries lets the dynamic linker ignore them during 2772 // process initialization, if lazy binding is enabled. If this entry is 2773 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2774 // also be present. 2775 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2776 if (symbol) { 2777 // Synthesize trampoline symbols to help navigate the PLT. 2778 addr_t addr = symbol->d_ptr; 2779 Section *reloc_section = 2780 section_list->FindSectionContainingFileAddress(addr).get(); 2781 if (reloc_section) { 2782 user_id_t reloc_id = reloc_section->GetID(); 2783 const ELFSectionHeaderInfo *reloc_header = 2784 GetSectionHeaderByIndex(reloc_id); 2785 assert(reloc_header); 2786 2787 if (m_symtab_up == nullptr) 2788 m_symtab_up.reset(new Symtab(reloc_section->GetObjectFile())); 2789 2790 ParseTrampolineSymbols(m_symtab_up.get(), symbol_id, reloc_header, 2791 reloc_id); 2792 } 2793 } 2794 2795 if (DWARFCallFrameInfo *eh_frame = 2796 GetModule()->GetUnwindTable().GetEHFrameInfo()) { 2797 if (m_symtab_up == nullptr) 2798 m_symtab_up.reset(new Symtab(this)); 2799 ParseUnwindSymbols(m_symtab_up.get(), eh_frame); 2800 } 2801 2802 // If we still don't have any symtab then create an empty instance to avoid 2803 // do the section lookup next time. 2804 if (m_symtab_up == nullptr) 2805 m_symtab_up.reset(new Symtab(this)); 2806 2807 m_symtab_up->CalculateSymbolSizes(); 2808 } 2809 2810 return m_symtab_up.get(); 2811 } 2812 2813 void ObjectFileELF::RelocateSection(lldb_private::Section *section) 2814 { 2815 static const char *debug_prefix = ".debug"; 2816 2817 // Set relocated bit so we stop getting called, regardless of whether we 2818 // actually relocate. 2819 section->SetIsRelocated(true); 2820 2821 // We only relocate in ELF relocatable files 2822 if (CalculateType() != eTypeObjectFile) 2823 return; 2824 2825 const char *section_name = section->GetName().GetCString(); 2826 // Can't relocate that which can't be named 2827 if (section_name == nullptr) 2828 return; 2829 2830 // We don't relocate non-debug sections at the moment 2831 if (strncmp(section_name, debug_prefix, strlen(debug_prefix))) 2832 return; 2833 2834 // Relocation section names to look for 2835 std::string needle = std::string(".rel") + section_name; 2836 std::string needlea = std::string(".rela") + section_name; 2837 2838 for (SectionHeaderCollIter I = m_section_headers.begin(); 2839 I != m_section_headers.end(); ++I) { 2840 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { 2841 const char *hay_name = I->section_name.GetCString(); 2842 if (hay_name == nullptr) 2843 continue; 2844 if (needle == hay_name || needlea == hay_name) { 2845 const ELFSectionHeader &reloc_header = *I; 2846 user_id_t reloc_id = SectionIndex(I); 2847 RelocateDebugSections(&reloc_header, reloc_id, GetSymtab()); 2848 break; 2849 } 2850 } 2851 } 2852 } 2853 2854 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, 2855 DWARFCallFrameInfo *eh_frame) { 2856 SectionList *section_list = GetSectionList(); 2857 if (!section_list) 2858 return; 2859 2860 // First we save the new symbols into a separate list and add them to the 2861 // symbol table after we colleced all symbols we want to add. This is 2862 // neccessary because adding a new symbol invalidates the internal index of 2863 // the symtab what causing the next lookup to be slow because it have to 2864 // recalculate the index first. 2865 std::vector<Symbol> new_symbols; 2866 2867 eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols]( 2868 lldb::addr_t file_addr, uint32_t size, dw_offset_t) { 2869 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 2870 if (symbol) { 2871 if (!symbol->GetByteSizeIsValid()) { 2872 symbol->SetByteSize(size); 2873 symbol->SetSizeIsSynthesized(true); 2874 } 2875 } else { 2876 SectionSP section_sp = 2877 section_list->FindSectionContainingFileAddress(file_addr); 2878 if (section_sp) { 2879 addr_t offset = file_addr - section_sp->GetFileAddress(); 2880 const char *symbol_name = GetNextSyntheticSymbolName().GetCString(); 2881 uint64_t symbol_id = symbol_table->GetNumSymbols(); 2882 Symbol eh_symbol( 2883 symbol_id, // Symbol table index. 2884 symbol_name, // Symbol name. 2885 false, // Is the symbol name mangled? 2886 eSymbolTypeCode, // Type of this symbol. 2887 true, // Is this globally visible? 2888 false, // Is this symbol debug info? 2889 false, // Is this symbol a trampoline? 2890 true, // Is this symbol artificial? 2891 section_sp, // Section in which this symbol is defined or null. 2892 offset, // Offset in section or symbol value. 2893 0, // Size: Don't specify the size as an FDE can 2894 false, // Size is valid: cover multiple symbols. 2895 false, // Contains linker annotations? 2896 0); // Symbol flags. 2897 new_symbols.push_back(eh_symbol); 2898 } 2899 } 2900 return true; 2901 }); 2902 2903 for (const Symbol &s : new_symbols) 2904 symbol_table->AddSymbol(s); 2905 } 2906 2907 bool ObjectFileELF::IsStripped() { 2908 // TODO: determine this for ELF 2909 return false; 2910 } 2911 2912 //===----------------------------------------------------------------------===// 2913 // Dump 2914 // 2915 // Dump the specifics of the runtime file container (such as any headers 2916 // segments, sections, etc). 2917 void ObjectFileELF::Dump(Stream *s) { 2918 ModuleSP module_sp(GetModule()); 2919 if (!module_sp) { 2920 return; 2921 } 2922 2923 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2924 s->Printf("%p: ", static_cast<void *>(this)); 2925 s->Indent(); 2926 s->PutCString("ObjectFileELF"); 2927 2928 ArchSpec header_arch = GetArchitecture(); 2929 2930 *s << ", file = '" << m_file 2931 << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2932 2933 DumpELFHeader(s, m_header); 2934 s->EOL(); 2935 DumpELFProgramHeaders(s); 2936 s->EOL(); 2937 DumpELFSectionHeaders(s); 2938 s->EOL(); 2939 SectionList *section_list = GetSectionList(); 2940 if (section_list) 2941 section_list->Dump(s, NULL, true, UINT32_MAX); 2942 Symtab *symtab = GetSymtab(); 2943 if (symtab) 2944 symtab->Dump(s, NULL, eSortOrderNone); 2945 s->EOL(); 2946 DumpDependentModules(s); 2947 s->EOL(); 2948 } 2949 2950 // DumpELFHeader 2951 // 2952 // Dump the ELF header to the specified output stream 2953 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { 2954 s->PutCString("ELF Header\n"); 2955 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2956 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], 2957 header.e_ident[EI_MAG1]); 2958 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], 2959 header.e_ident[EI_MAG2]); 2960 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], 2961 header.e_ident[EI_MAG3]); 2962 2963 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2964 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2965 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2966 s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2967 s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2968 2969 s->Printf("e_type = 0x%4.4x ", header.e_type); 2970 DumpELFHeader_e_type(s, header.e_type); 2971 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2972 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2973 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2974 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2975 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2976 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2977 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2978 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2979 s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum); 2980 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2981 s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum); 2982 s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx); 2983 } 2984 2985 // DumpELFHeader_e_type 2986 // 2987 // Dump an token value for the ELF header member e_type 2988 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { 2989 switch (e_type) { 2990 case ET_NONE: 2991 *s << "ET_NONE"; 2992 break; 2993 case ET_REL: 2994 *s << "ET_REL"; 2995 break; 2996 case ET_EXEC: 2997 *s << "ET_EXEC"; 2998 break; 2999 case ET_DYN: 3000 *s << "ET_DYN"; 3001 break; 3002 case ET_CORE: 3003 *s << "ET_CORE"; 3004 break; 3005 default: 3006 break; 3007 } 3008 } 3009 3010 // DumpELFHeader_e_ident_EI_DATA 3011 // 3012 // Dump an token value for the ELF header member e_ident[EI_DATA] 3013 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, 3014 unsigned char ei_data) { 3015 switch (ei_data) { 3016 case ELFDATANONE: 3017 *s << "ELFDATANONE"; 3018 break; 3019 case ELFDATA2LSB: 3020 *s << "ELFDATA2LSB - Little Endian"; 3021 break; 3022 case ELFDATA2MSB: 3023 *s << "ELFDATA2MSB - Big Endian"; 3024 break; 3025 default: 3026 break; 3027 } 3028 } 3029 3030 // DumpELFProgramHeader 3031 // 3032 // Dump a single ELF program header to the specified output stream 3033 void ObjectFileELF::DumpELFProgramHeader(Stream *s, 3034 const ELFProgramHeader &ph) { 3035 DumpELFProgramHeader_p_type(s, ph.p_type); 3036 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, 3037 ph.p_vaddr, ph.p_paddr); 3038 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, 3039 ph.p_flags); 3040 3041 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3042 s->Printf(") %8.8" PRIx64, ph.p_align); 3043 } 3044 3045 // DumpELFProgramHeader_p_type 3046 // 3047 // Dump an token value for the ELF program header member p_type which describes 3048 // the type of the program header 3049 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { 3050 const int kStrWidth = 15; 3051 switch (p_type) { 3052 CASE_AND_STREAM(s, PT_NULL, kStrWidth); 3053 CASE_AND_STREAM(s, PT_LOAD, kStrWidth); 3054 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); 3055 CASE_AND_STREAM(s, PT_INTERP, kStrWidth); 3056 CASE_AND_STREAM(s, PT_NOTE, kStrWidth); 3057 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); 3058 CASE_AND_STREAM(s, PT_PHDR, kStrWidth); 3059 CASE_AND_STREAM(s, PT_TLS, kStrWidth); 3060 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3061 default: 3062 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3063 break; 3064 } 3065 } 3066 3067 // DumpELFProgramHeader_p_flags 3068 // 3069 // Dump an token value for the ELF program header member p_flags 3070 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { 3071 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3072 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3073 << ((p_flags & PF_W) ? "PF_W" : " ") 3074 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3075 << ((p_flags & PF_R) ? "PF_R" : " "); 3076 } 3077 3078 // DumpELFProgramHeaders 3079 // 3080 // Dump all of the ELF program header to the specified output stream 3081 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { 3082 if (!ParseProgramHeaders()) 3083 return; 3084 3085 s->PutCString("Program Headers\n"); 3086 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3087 "p_filesz p_memsz p_flags p_align\n"); 3088 s->PutCString("==== --------------- -------- -------- -------- " 3089 "-------- -------- ------------------------- --------\n"); 3090 3091 for (const auto &H : llvm::enumerate(m_program_headers)) { 3092 s->Format("[{0,2}] ", H.index()); 3093 ObjectFileELF::DumpELFProgramHeader(s, H.value()); 3094 s->EOL(); 3095 } 3096 } 3097 3098 // DumpELFSectionHeader 3099 // 3100 // Dump a single ELF section header to the specified output stream 3101 void ObjectFileELF::DumpELFSectionHeader(Stream *s, 3102 const ELFSectionHeaderInfo &sh) { 3103 s->Printf("%8.8x ", sh.sh_name); 3104 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3105 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3106 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3107 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, 3108 sh.sh_offset, sh.sh_size); 3109 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3110 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3111 } 3112 3113 // DumpELFSectionHeader_sh_type 3114 // 3115 // Dump an token value for the ELF section header member sh_type which 3116 // describes the type of the section 3117 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { 3118 const int kStrWidth = 12; 3119 switch (sh_type) { 3120 CASE_AND_STREAM(s, SHT_NULL, kStrWidth); 3121 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); 3122 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); 3123 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); 3124 CASE_AND_STREAM(s, SHT_RELA, kStrWidth); 3125 CASE_AND_STREAM(s, SHT_HASH, kStrWidth); 3126 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); 3127 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); 3128 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); 3129 CASE_AND_STREAM(s, SHT_REL, kStrWidth); 3130 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); 3131 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); 3132 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); 3133 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); 3134 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); 3135 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); 3136 default: 3137 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3138 break; 3139 } 3140 } 3141 3142 // DumpELFSectionHeader_sh_flags 3143 // 3144 // Dump an token value for the ELF section header member sh_flags 3145 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, 3146 elf_xword sh_flags) { 3147 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3148 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3149 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3150 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3151 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3152 } 3153 3154 // DumpELFSectionHeaders 3155 // 3156 // Dump all of the ELF section header to the specified output stream 3157 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { 3158 if (!ParseSectionHeaders()) 3159 return; 3160 3161 s->PutCString("Section Headers\n"); 3162 s->PutCString("IDX name type flags " 3163 "addr offset size link info addralgn " 3164 "entsize Name\n"); 3165 s->PutCString("==== -------- ------------ -------------------------------- " 3166 "-------- -------- -------- -------- -------- -------- " 3167 "-------- ====================\n"); 3168 3169 uint32_t idx = 0; 3170 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3171 I != m_section_headers.end(); ++I, ++idx) { 3172 s->Printf("[%2u] ", idx); 3173 ObjectFileELF::DumpELFSectionHeader(s, *I); 3174 const char *section_name = I->section_name.AsCString(""); 3175 if (section_name) 3176 *s << ' ' << section_name << "\n"; 3177 } 3178 } 3179 3180 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { 3181 size_t num_modules = ParseDependentModules(); 3182 3183 if (num_modules > 0) { 3184 s->PutCString("Dependent Modules:\n"); 3185 for (unsigned i = 0; i < num_modules; ++i) { 3186 const FileSpec &spec = m_filespec_up->GetFileSpecAtIndex(i); 3187 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3188 } 3189 } 3190 } 3191 3192 ArchSpec ObjectFileELF::GetArchitecture() { 3193 if (!ParseHeader()) 3194 return ArchSpec(); 3195 3196 if (m_section_headers.empty()) { 3197 // Allow elf notes to be parsed which may affect the detected architecture. 3198 ParseSectionHeaders(); 3199 } 3200 3201 if (CalculateType() == eTypeCoreFile && 3202 !m_arch_spec.TripleOSWasSpecified()) { 3203 // Core files don't have section headers yet they have PT_NOTE program 3204 // headers that might shed more light on the architecture 3205 for (const elf::ELFProgramHeader &H : ProgramHeaders()) { 3206 if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0) 3207 continue; 3208 DataExtractor data; 3209 if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) { 3210 UUID uuid; 3211 RefineModuleDetailsFromNote(data, m_arch_spec, uuid); 3212 } 3213 } 3214 } 3215 return m_arch_spec; 3216 } 3217 3218 ObjectFile::Type ObjectFileELF::CalculateType() { 3219 switch (m_header.e_type) { 3220 case llvm::ELF::ET_NONE: 3221 // 0 - No file type 3222 return eTypeUnknown; 3223 3224 case llvm::ELF::ET_REL: 3225 // 1 - Relocatable file 3226 return eTypeObjectFile; 3227 3228 case llvm::ELF::ET_EXEC: 3229 // 2 - Executable file 3230 return eTypeExecutable; 3231 3232 case llvm::ELF::ET_DYN: 3233 // 3 - Shared object file 3234 return eTypeSharedLibrary; 3235 3236 case ET_CORE: 3237 // 4 - Core file 3238 return eTypeCoreFile; 3239 3240 default: 3241 break; 3242 } 3243 return eTypeUnknown; 3244 } 3245 3246 ObjectFile::Strata ObjectFileELF::CalculateStrata() { 3247 switch (m_header.e_type) { 3248 case llvm::ELF::ET_NONE: 3249 // 0 - No file type 3250 return eStrataUnknown; 3251 3252 case llvm::ELF::ET_REL: 3253 // 1 - Relocatable file 3254 return eStrataUnknown; 3255 3256 case llvm::ELF::ET_EXEC: 3257 // 2 - Executable file 3258 // TODO: is there any way to detect that an executable is a kernel 3259 // related executable by inspecting the program headers, section headers, 3260 // symbols, or any other flag bits??? 3261 return eStrataUser; 3262 3263 case llvm::ELF::ET_DYN: 3264 // 3 - Shared object file 3265 // TODO: is there any way to detect that an shared library is a kernel 3266 // related executable by inspecting the program headers, section headers, 3267 // symbols, or any other flag bits??? 3268 return eStrataUnknown; 3269 3270 case ET_CORE: 3271 // 4 - Core file 3272 // TODO: is there any way to detect that an core file is a kernel 3273 // related executable by inspecting the program headers, section headers, 3274 // symbols, or any other flag bits??? 3275 return eStrataUnknown; 3276 3277 default: 3278 break; 3279 } 3280 return eStrataUnknown; 3281 } 3282 3283 size_t ObjectFileELF::ReadSectionData(Section *section, 3284 lldb::offset_t section_offset, void *dst, 3285 size_t dst_len) { 3286 // If some other objectfile owns this data, pass this to them. 3287 if (section->GetObjectFile() != this) 3288 return section->GetObjectFile()->ReadSectionData(section, section_offset, 3289 dst, dst_len); 3290 3291 if (!section->Test(SHF_COMPRESSED)) 3292 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len); 3293 3294 // For compressed sections we need to read to full data to be able to 3295 // decompress. 3296 DataExtractor data; 3297 ReadSectionData(section, data); 3298 return data.CopyData(section_offset, dst_len, dst); 3299 } 3300 3301 size_t ObjectFileELF::ReadSectionData(Section *section, 3302 DataExtractor §ion_data) { 3303 // If some other objectfile owns this data, pass this to them. 3304 if (section->GetObjectFile() != this) 3305 return section->GetObjectFile()->ReadSectionData(section, section_data); 3306 3307 size_t result = ObjectFile::ReadSectionData(section, section_data); 3308 if (result == 0 || !section->Test(SHF_COMPRESSED)) 3309 return result; 3310 3311 auto Decompressor = llvm::object::Decompressor::create( 3312 section->GetName().GetStringRef(), 3313 {reinterpret_cast<const char *>(section_data.GetDataStart()), 3314 size_t(section_data.GetByteSize())}, 3315 GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8); 3316 if (!Decompressor) { 3317 GetModule()->ReportWarning( 3318 "Unable to initialize decompressor for section '%s': %s", 3319 section->GetName().GetCString(), 3320 llvm::toString(Decompressor.takeError()).c_str()); 3321 section_data.Clear(); 3322 return 0; 3323 } 3324 3325 auto buffer_sp = 3326 std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0); 3327 if (auto error = Decompressor->decompress( 3328 {reinterpret_cast<char *>(buffer_sp->GetBytes()), 3329 size_t(buffer_sp->GetByteSize())})) { 3330 GetModule()->ReportWarning( 3331 "Decompression of section '%s' failed: %s", 3332 section->GetName().GetCString(), 3333 llvm::toString(std::move(error)).c_str()); 3334 section_data.Clear(); 3335 return 0; 3336 } 3337 3338 section_data.SetData(buffer_sp); 3339 return buffer_sp->GetByteSize(); 3340 } 3341 3342 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() { 3343 ParseProgramHeaders(); 3344 return m_program_headers; 3345 } 3346 3347 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) { 3348 return DataExtractor(m_data, H.p_offset, H.p_filesz); 3349 } 3350 3351 bool ObjectFileELF::AnySegmentHasPhysicalAddress() { 3352 for (const ELFProgramHeader &H : ProgramHeaders()) { 3353 if (H.p_paddr != 0) 3354 return true; 3355 } 3356 return false; 3357 } 3358 3359 std::vector<ObjectFile::LoadableData> 3360 ObjectFileELF::GetLoadableData(Target &target) { 3361 // Create a list of loadable data from loadable segments, using physical 3362 // addresses if they aren't all null 3363 std::vector<LoadableData> loadables; 3364 bool should_use_paddr = AnySegmentHasPhysicalAddress(); 3365 for (const ELFProgramHeader &H : ProgramHeaders()) { 3366 LoadableData loadable; 3367 if (H.p_type != llvm::ELF::PT_LOAD) 3368 continue; 3369 loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr; 3370 if (loadable.Dest == LLDB_INVALID_ADDRESS) 3371 continue; 3372 if (H.p_filesz == 0) 3373 continue; 3374 auto segment_data = GetSegmentData(H); 3375 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(), 3376 segment_data.GetByteSize()); 3377 loadables.push_back(loadable); 3378 } 3379 return loadables; 3380 } 3381