xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 7df337f85c78e64c3fb2d36c859212e8d06f7725)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (!value_is_offset)
851             {
852                 bool found_offset = false;
853                 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
854                 {
855                     const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
856                     if (header == nullptr)
857                         continue;
858 
859                     if (header->p_type != PT_LOAD || header->p_offset != 0)
860                         continue;
861 
862                     value = value - header->p_vaddr;
863                     found_offset = true;
864                     break;
865                 }
866                 if (!found_offset)
867                     return false;
868             }
869 
870             const size_t num_sections = section_list->GetSize();
871             size_t sect_idx = 0;
872 
873             for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
874             {
875                 // Iterate through the object file sections to find all
876                 // of the sections that have SHF_ALLOC in their flag bits.
877                 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
878                 // if (section_sp && !section_sp->IsThreadSpecific())
879                 if (section_sp && section_sp->Test(SHF_ALLOC))
880                 {
881                     lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
882 
883                     // On 32-bit systems the load address have to fit into 4 bytes. The rest of
884                     // the bytes are the overflow from the addition.
885                     if (GetAddressByteSize() == 4)
886                         load_addr &= 0xFFFFFFFF;
887 
888                     if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
889                         ++num_loaded_sections;
890                 }
891             }
892             return num_loaded_sections > 0;
893         }
894     }
895     return false;
896 }
897 
898 ByteOrder
899 ObjectFileELF::GetByteOrder() const
900 {
901     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
902         return eByteOrderBig;
903     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
904         return eByteOrderLittle;
905     return eByteOrderInvalid;
906 }
907 
908 uint32_t
909 ObjectFileELF::GetAddressByteSize() const
910 {
911     return m_data.GetAddressByteSize();
912 }
913 
914 // Top 16 bits of the `Symbol` flags are available.
915 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
916 
917 AddressClass
918 ObjectFileELF::GetAddressClass (addr_t file_addr)
919 {
920     Symtab* symtab = GetSymtab();
921     if (!symtab)
922         return eAddressClassUnknown;
923 
924     // The address class is determined based on the symtab. Ask it from the object file what
925     // contains the symtab information.
926     ObjectFile* symtab_objfile = symtab->GetObjectFile();
927     if (symtab_objfile != nullptr && symtab_objfile != this)
928         return symtab_objfile->GetAddressClass(file_addr);
929 
930     auto res = ObjectFile::GetAddressClass (file_addr);
931     if (res != eAddressClassCode)
932         return res;
933 
934     auto ub = m_address_class_map.upper_bound(file_addr);
935     if (ub == m_address_class_map.begin())
936     {
937         // No entry in the address class map before the address. Return
938         // default address class for an address in a code section.
939         return eAddressClassCode;
940     }
941 
942     // Move iterator to the address class entry preceding address
943     --ub;
944 
945     return ub->second;
946 }
947 
948 size_t
949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
950 {
951     return std::distance(m_section_headers.begin(), I) + 1u;
952 }
953 
954 size_t
955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
956 {
957     return std::distance(m_section_headers.begin(), I) + 1u;
958 }
959 
960 bool
961 ObjectFileELF::ParseHeader()
962 {
963     lldb::offset_t offset = 0;
964     if (!m_header.Parse(m_data, &offset))
965         return false;
966 
967     if (!IsInMemory())
968         return true;
969 
970     // For in memory object files m_data might not contain the full object file. Try to load it
971     // until the end of the "Section header table" what is at the end of the ELF file.
972     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
973     if (m_data.GetByteSize() < file_size)
974     {
975         ProcessSP process_sp (m_process_wp.lock());
976         if (!process_sp)
977             return false;
978 
979         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
980         if (!data_sp)
981             return false;
982         m_data.SetData(data_sp, 0, file_size);
983     }
984 
985     return true;
986 }
987 
988 bool
989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
990 {
991     // Need to parse the section list to get the UUIDs, so make sure that's been done.
992     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
993         return false;
994 
995     if (m_uuid.IsValid())
996     {
997         // We have the full build id uuid.
998         *uuid = m_uuid;
999         return true;
1000     }
1001     else if (GetType() == ObjectFile::eTypeCoreFile)
1002     {
1003         uint32_t core_notes_crc = 0;
1004 
1005         if (!ParseProgramHeaders())
1006             return false;
1007 
1008         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
1009 
1010         if (core_notes_crc)
1011         {
1012             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
1013             // look different form .gnu_debuglink crc - followed by 4 bytes of note
1014             // segments crc.
1015             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
1016             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1017         }
1018     }
1019     else
1020     {
1021         if (!m_gnu_debuglink_crc)
1022             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1023         if (m_gnu_debuglink_crc)
1024         {
1025             // Use 4 bytes of crc from the .gnu_debuglink section.
1026             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1027             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1028         }
1029     }
1030 
1031     if (m_uuid.IsValid())
1032     {
1033         *uuid = m_uuid;
1034         return true;
1035     }
1036 
1037     return false;
1038 }
1039 
1040 lldb_private::FileSpecList
1041 ObjectFileELF::GetDebugSymbolFilePaths()
1042 {
1043     FileSpecList file_spec_list;
1044 
1045     if (!m_gnu_debuglink_file.empty())
1046     {
1047         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1048         file_spec_list.Append (file_spec);
1049     }
1050     return file_spec_list;
1051 }
1052 
1053 uint32_t
1054 ObjectFileELF::GetDependentModules(FileSpecList &files)
1055 {
1056     size_t num_modules = ParseDependentModules();
1057     uint32_t num_specs = 0;
1058 
1059     for (unsigned i = 0; i < num_modules; ++i)
1060     {
1061         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1062             num_specs++;
1063     }
1064 
1065     return num_specs;
1066 }
1067 
1068 Address
1069 ObjectFileELF::GetImageInfoAddress(Target *target)
1070 {
1071     if (!ParseDynamicSymbols())
1072         return Address();
1073 
1074     SectionList *section_list = GetSectionList();
1075     if (!section_list)
1076         return Address();
1077 
1078     // Find the SHT_DYNAMIC (.dynamic) section.
1079     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1080     if (!dynsym_section_sp)
1081         return Address();
1082     assert (dynsym_section_sp->GetObjectFile() == this);
1083 
1084     user_id_t dynsym_id = dynsym_section_sp->GetID();
1085     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1086     if (!dynsym_hdr)
1087         return Address();
1088 
1089     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1090     {
1091         ELFDynamic &symbol = m_dynamic_symbols[i];
1092 
1093         if (symbol.d_tag == DT_DEBUG)
1094         {
1095             // Compute the offset as the number of previous entries plus the
1096             // size of d_tag.
1097             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1098             return Address(dynsym_section_sp, offset);
1099         }
1100         // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE.
1101         else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target)
1102         {
1103             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1104             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1105             if (dyn_base == LLDB_INVALID_ADDRESS)
1106                 return Address();
1107 
1108             Error error;
1109             if (symbol.d_tag == DT_MIPS_RLD_MAP)
1110             {
1111                 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
1112                 Address addr;
1113                 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1114                     return addr;
1115             }
1116             if (symbol.d_tag == DT_MIPS_RLD_MAP_REL)
1117             {
1118                 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag.
1119                 uint64_t rel_offset;
1120                 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
1121                 if (error.Success() && rel_offset != UINT64_MAX)
1122                 {
1123                     Address addr;
1124                     addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset;
1125                     addr.SetOffset (debug_ptr_address);
1126                     return addr;
1127                 }
1128             }
1129         }
1130     }
1131 
1132     return Address();
1133 }
1134 
1135 lldb_private::Address
1136 ObjectFileELF::GetEntryPointAddress ()
1137 {
1138     if (m_entry_point_address.IsValid())
1139         return m_entry_point_address;
1140 
1141     if (!ParseHeader() || !IsExecutable())
1142         return m_entry_point_address;
1143 
1144     SectionList *section_list = GetSectionList();
1145     addr_t offset = m_header.e_entry;
1146 
1147     if (!section_list)
1148         m_entry_point_address.SetOffset(offset);
1149     else
1150         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1151     return m_entry_point_address;
1152 }
1153 
1154 //----------------------------------------------------------------------
1155 // ParseDependentModules
1156 //----------------------------------------------------------------------
1157 size_t
1158 ObjectFileELF::ParseDependentModules()
1159 {
1160     if (m_filespec_ap.get())
1161         return m_filespec_ap->GetSize();
1162 
1163     m_filespec_ap.reset(new FileSpecList());
1164 
1165     if (!ParseSectionHeaders())
1166         return 0;
1167 
1168     SectionList *section_list = GetSectionList();
1169     if (!section_list)
1170         return 0;
1171 
1172     // Find the SHT_DYNAMIC section.
1173     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1174     if (!dynsym)
1175         return 0;
1176     assert (dynsym->GetObjectFile() == this);
1177 
1178     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1179     if (!header)
1180         return 0;
1181     // sh_link: section header index of string table used by entries in the section.
1182     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1183     if (!dynstr)
1184         return 0;
1185 
1186     DataExtractor dynsym_data;
1187     DataExtractor dynstr_data;
1188     if (ReadSectionData(dynsym, dynsym_data) &&
1189         ReadSectionData(dynstr, dynstr_data))
1190     {
1191         ELFDynamic symbol;
1192         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1193         lldb::offset_t offset = 0;
1194 
1195         // The only type of entries we are concerned with are tagged DT_NEEDED,
1196         // yielding the name of a required library.
1197         while (offset < section_size)
1198         {
1199             if (!symbol.Parse(dynsym_data, &offset))
1200                 break;
1201 
1202             if (symbol.d_tag != DT_NEEDED)
1203                 continue;
1204 
1205             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1206             const char *lib_name = dynstr_data.PeekCStr(str_index);
1207             m_filespec_ap->Append(FileSpec(lib_name, true));
1208         }
1209     }
1210 
1211     return m_filespec_ap->GetSize();
1212 }
1213 
1214 //----------------------------------------------------------------------
1215 // GetProgramHeaderInfo
1216 //----------------------------------------------------------------------
1217 size_t
1218 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1219                                     DataExtractor &object_data,
1220                                     const ELFHeader &header)
1221 {
1222     // We have already parsed the program headers
1223     if (!program_headers.empty())
1224         return program_headers.size();
1225 
1226     // If there are no program headers to read we are done.
1227     if (header.e_phnum == 0)
1228         return 0;
1229 
1230     program_headers.resize(header.e_phnum);
1231     if (program_headers.size() != header.e_phnum)
1232         return 0;
1233 
1234     const size_t ph_size = header.e_phnum * header.e_phentsize;
1235     const elf_off ph_offset = header.e_phoff;
1236     DataExtractor data;
1237     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1238         return 0;
1239 
1240     uint32_t idx;
1241     lldb::offset_t offset;
1242     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1243     {
1244         if (program_headers[idx].Parse(data, &offset) == false)
1245             break;
1246     }
1247 
1248     if (idx < program_headers.size())
1249         program_headers.resize(idx);
1250 
1251     return program_headers.size();
1252 
1253 }
1254 
1255 //----------------------------------------------------------------------
1256 // ParseProgramHeaders
1257 //----------------------------------------------------------------------
1258 size_t
1259 ObjectFileELF::ParseProgramHeaders()
1260 {
1261     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1262 }
1263 
1264 lldb_private::Error
1265 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1266 {
1267     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1268     Error error;
1269 
1270     lldb::offset_t offset = 0;
1271 
1272     while (true)
1273     {
1274         // Parse the note header.  If this fails, bail out.
1275         ELFNote note = ELFNote();
1276         if (!note.Parse(data, &offset))
1277         {
1278             // We're done.
1279             return error;
1280         }
1281 
1282         // If a tag processor handles the tag, it should set processed to true, and
1283         // the loop will assume the tag processing has moved entirely past the note's payload.
1284         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1285         bool processed = false;
1286 
1287         if (log)
1288             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1289 
1290         // Process FreeBSD ELF notes.
1291         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1292             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1293             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1294         {
1295             // We'll consume the payload below.
1296             processed = true;
1297 
1298             // Pull out the min version info.
1299             uint32_t version_info;
1300             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1301             {
1302                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1303                 return error;
1304             }
1305 
1306             // Convert the version info into a major/minor number.
1307             const uint32_t version_major = version_info / 100000;
1308             const uint32_t version_minor = (version_info / 1000) % 100;
1309 
1310             char os_name[32];
1311             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1312 
1313             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1314             arch_spec.GetTriple ().setOSName (os_name);
1315             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1316 
1317             if (log)
1318                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1319         }
1320         // Process GNU ELF notes.
1321         else if (note.n_name == LLDB_NT_OWNER_GNU)
1322         {
1323             switch (note.n_type)
1324             {
1325                 case LLDB_NT_GNU_ABI_TAG:
1326                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1327                     {
1328                         // We'll consume the payload below.
1329                         processed = true;
1330 
1331                         // Pull out the min OS version supporting the ABI.
1332                         uint32_t version_info[4];
1333                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1334                         {
1335                             error.SetErrorString ("failed to read GNU ABI note payload");
1336                             return error;
1337                         }
1338 
1339                         // Set the OS per the OS field.
1340                         switch (version_info[0])
1341                         {
1342                             case LLDB_NT_GNU_ABI_OS_LINUX:
1343                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1344                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1345                                 if (log)
1346                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1347                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1348                                 break;
1349                             case LLDB_NT_GNU_ABI_OS_HURD:
1350                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1351                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1352                                 if (log)
1353                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1354                                 break;
1355                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1356                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1357                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1358                                 if (log)
1359                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1360                                 break;
1361                             default:
1362                                 if (log)
1363                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1364                                 break;
1365                         }
1366                     }
1367                     break;
1368 
1369                 case LLDB_NT_GNU_BUILD_ID_TAG:
1370                     // Only bother processing this if we don't already have the uuid set.
1371                     if (!uuid.IsValid())
1372                     {
1373                         // We'll consume the payload below.
1374                         processed = true;
1375 
1376                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1377                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1378                         {
1379                             uint8_t uuidbuf[20];
1380                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1381                             {
1382                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1383                                 return error;
1384                             }
1385 
1386                             // Save the build id as the UUID for the module.
1387                             uuid.SetBytes (uuidbuf, note.n_descsz);
1388                         }
1389                     }
1390                     break;
1391             }
1392         }
1393         // Process NetBSD ELF notes.
1394         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1395                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1396                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1397         {
1398 
1399             // We'll consume the payload below.
1400             processed = true;
1401 
1402             // Pull out the min version info.
1403             uint32_t version_info;
1404             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1405             {
1406                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1407                 return error;
1408             }
1409 
1410             // Set the elf OS version to NetBSD.  Also clear the vendor.
1411             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1412             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1413 
1414             if (log)
1415                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1416         }
1417         // Process CSR kalimba notes
1418         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1419                 (note.n_name == LLDB_NT_OWNER_CSR))
1420         {
1421             // We'll consume the payload below.
1422             processed = true;
1423             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1424             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1425 
1426             // TODO At some point the description string could be processed.
1427             // It could provide a steer towards the kalimba variant which
1428             // this ELF targets.
1429             if(note.n_descsz)
1430             {
1431                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1432                 (void)cstr;
1433             }
1434         }
1435         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1436         {
1437             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1438             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1439         }
1440 
1441         if (!processed)
1442             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1443     }
1444 
1445     return error;
1446 }
1447 
1448 
1449 //----------------------------------------------------------------------
1450 // GetSectionHeaderInfo
1451 //----------------------------------------------------------------------
1452 size_t
1453 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1454                                     lldb_private::DataExtractor &object_data,
1455                                     const elf::ELFHeader &header,
1456                                     lldb_private::UUID &uuid,
1457                                     std::string &gnu_debuglink_file,
1458                                     uint32_t &gnu_debuglink_crc,
1459                                     ArchSpec &arch_spec)
1460 {
1461     // Don't reparse the section headers if we already did that.
1462     if (!section_headers.empty())
1463         return section_headers.size();
1464 
1465     // Only initialize the arch_spec to okay defaults if they're not already set.
1466     // We'll refine this with note data as we parse the notes.
1467     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1468     {
1469         llvm::Triple::OSType ostype;
1470         llvm::Triple::OSType spec_ostype;
1471         const uint32_t sub_type = subTypeFromElfHeader(header);
1472         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1473         //
1474         // Validate if it is ok to remove GetOsFromOSABI
1475         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1476         spec_ostype = arch_spec.GetTriple ().getOS ();
1477         assert(spec_ostype == ostype);
1478     }
1479 
1480     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1481         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1482     {
1483         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1484         {
1485             case llvm::ELF::EF_MIPS_MICROMIPS:
1486                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1487                 break;
1488             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1489                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1490                 break;
1491             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1492                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1493                 break;
1494             default:
1495                 break;
1496         }
1497     }
1498 
1499     // If there are no section headers we are done.
1500     if (header.e_shnum == 0)
1501         return 0;
1502 
1503     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1504 
1505     section_headers.resize(header.e_shnum);
1506     if (section_headers.size() != header.e_shnum)
1507         return 0;
1508 
1509     const size_t sh_size = header.e_shnum * header.e_shentsize;
1510     const elf_off sh_offset = header.e_shoff;
1511     DataExtractor sh_data;
1512     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1513         return 0;
1514 
1515     uint32_t idx;
1516     lldb::offset_t offset;
1517     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1518     {
1519         if (section_headers[idx].Parse(sh_data, &offset) == false)
1520             break;
1521     }
1522     if (idx < section_headers.size())
1523         section_headers.resize(idx);
1524 
1525     const unsigned strtab_idx = header.e_shstrndx;
1526     if (strtab_idx && strtab_idx < section_headers.size())
1527     {
1528         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1529         const size_t byte_size = sheader.sh_size;
1530         const Elf64_Off offset = sheader.sh_offset;
1531         lldb_private::DataExtractor shstr_data;
1532 
1533         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1534         {
1535             for (SectionHeaderCollIter I = section_headers.begin();
1536                  I != section_headers.end(); ++I)
1537             {
1538                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1539                 const ELFSectionHeaderInfo &sheader = *I;
1540                 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1541                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1542 
1543                 I->section_name = name;
1544 
1545                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1546                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1547                 {
1548                     uint32_t arch_flags = arch_spec.GetFlags ();
1549                     DataExtractor data;
1550                     if (sheader.sh_type == SHT_MIPS_ABIFLAGS)
1551                     {
1552 
1553                         if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1554                         {
1555                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1556                             arch_flags |= data.GetU32 (&ase_offset);
1557                         }
1558                     }
1559                     // Settings appropriate ArchSpec ABI Flags
1560                     if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1561                     {
1562                         arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1563                     }
1564                     else if (header.e_flags & llvm::ELF::EF_MIPS_ABI_O32)
1565                     {
1566                          arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1567                     }
1568                     arch_spec.SetFlags (arch_flags);
1569                 }
1570 
1571                 if (name == g_sect_name_gnu_debuglink)
1572                 {
1573                     DataExtractor data;
1574                     if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1575                     {
1576                         lldb::offset_t gnu_debuglink_offset = 0;
1577                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1578                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1579                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1580                     }
1581                 }
1582 
1583                 // Process ELF note section entries.
1584                 bool is_note_header = (sheader.sh_type == SHT_NOTE);
1585 
1586                 // The section header ".note.android.ident" is stored as a
1587                 // PROGBITS type header but it is actually a note header.
1588                 static ConstString g_sect_name_android_ident (".note.android.ident");
1589                 if (!is_note_header && name == g_sect_name_android_ident)
1590                     is_note_header = true;
1591 
1592                 if (is_note_header)
1593                 {
1594                     // Allow notes to refine module info.
1595                     DataExtractor data;
1596                     if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size))
1597                     {
1598                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1599                         if (error.Fail ())
1600                         {
1601                             if (log)
1602                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1603                         }
1604                     }
1605                 }
1606             }
1607 
1608             // Make any unknown triple components to be unspecified unknowns.
1609             if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1610                 arch_spec.GetTriple().setVendorName (llvm::StringRef());
1611             if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1612                 arch_spec.GetTriple().setOSName (llvm::StringRef());
1613 
1614             return section_headers.size();
1615         }
1616     }
1617 
1618     section_headers.clear();
1619     return 0;
1620 }
1621 
1622 size_t
1623 ObjectFileELF::GetProgramHeaderCount()
1624 {
1625     return ParseProgramHeaders();
1626 }
1627 
1628 const elf::ELFProgramHeader *
1629 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1630 {
1631     if (!id || !ParseProgramHeaders())
1632         return NULL;
1633 
1634     if (--id < m_program_headers.size())
1635         return &m_program_headers[id];
1636 
1637     return NULL;
1638 }
1639 
1640 DataExtractor
1641 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1642 {
1643     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1644     if (segment_header == NULL)
1645         return DataExtractor();
1646     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1647 }
1648 
1649 std::string
1650 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1651 {
1652     size_t pos = symbol_name.find('@');
1653     return symbol_name.substr(0, pos).str();
1654 }
1655 
1656 //----------------------------------------------------------------------
1657 // ParseSectionHeaders
1658 //----------------------------------------------------------------------
1659 size_t
1660 ObjectFileELF::ParseSectionHeaders()
1661 {
1662     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1663 }
1664 
1665 const ObjectFileELF::ELFSectionHeaderInfo *
1666 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1667 {
1668     if (!id || !ParseSectionHeaders())
1669         return NULL;
1670 
1671     if (--id < m_section_headers.size())
1672         return &m_section_headers[id];
1673 
1674     return NULL;
1675 }
1676 
1677 lldb::user_id_t
1678 ObjectFileELF::GetSectionIndexByName(const char* name)
1679 {
1680     if (!name || !name[0] || !ParseSectionHeaders())
1681         return 0;
1682     for (size_t i = 1; i < m_section_headers.size(); ++i)
1683         if (m_section_headers[i].section_name == ConstString(name))
1684             return i;
1685     return 0;
1686 }
1687 
1688 void
1689 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1690 {
1691     if (!m_sections_ap.get() && ParseSectionHeaders())
1692     {
1693         m_sections_ap.reset(new SectionList());
1694 
1695         for (SectionHeaderCollIter I = m_section_headers.begin();
1696              I != m_section_headers.end(); ++I)
1697         {
1698             const ELFSectionHeaderInfo &header = *I;
1699 
1700             ConstString& name = I->section_name;
1701             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1702             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1703 
1704             static ConstString g_sect_name_text (".text");
1705             static ConstString g_sect_name_data (".data");
1706             static ConstString g_sect_name_bss (".bss");
1707             static ConstString g_sect_name_tdata (".tdata");
1708             static ConstString g_sect_name_tbss (".tbss");
1709             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1710             static ConstString g_sect_name_dwarf_debug_addr (".debug_addr");
1711             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1712             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1713             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1714             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1715             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1716             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1717             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1718             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1719             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1720             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1721             static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets");
1722             static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo");
1723             static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo");
1724             static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo");
1725             static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo");
1726             static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo");
1727             static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo");
1728             static ConstString g_sect_name_eh_frame (".eh_frame");
1729             static ConstString g_sect_name_arm_exidx (".ARM.exidx");
1730             static ConstString g_sect_name_arm_extab (".ARM.extab");
1731             static ConstString g_sect_name_go_symtab (".gosymtab");
1732 
1733             SectionType sect_type = eSectionTypeOther;
1734 
1735             bool is_thread_specific = false;
1736 
1737             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1738             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1739             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1740             else if (name == g_sect_name_tdata)
1741             {
1742                 sect_type = eSectionTypeData;
1743                 is_thread_specific = true;
1744             }
1745             else if (name == g_sect_name_tbss)
1746             {
1747                 sect_type = eSectionTypeZeroFill;
1748                 is_thread_specific = true;
1749             }
1750             // .debug_abbrev – Abbreviations used in the .debug_info section
1751             // .debug_aranges – Lookup table for mapping addresses to compilation units
1752             // .debug_frame – Call frame information
1753             // .debug_info – The core DWARF information section
1754             // .debug_line – Line number information
1755             // .debug_loc – Location lists used in DW_AT_location attributes
1756             // .debug_macinfo – Macro information
1757             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1758             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1759             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1760             // .debug_str – String table used in .debug_info
1761             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1762             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1763             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1764             else if (name == g_sect_name_dwarf_debug_abbrev)          sect_type = eSectionTypeDWARFDebugAbbrev;
1765             else if (name == g_sect_name_dwarf_debug_addr)            sect_type = eSectionTypeDWARFDebugAddr;
1766             else if (name == g_sect_name_dwarf_debug_aranges)         sect_type = eSectionTypeDWARFDebugAranges;
1767             else if (name == g_sect_name_dwarf_debug_frame)           sect_type = eSectionTypeDWARFDebugFrame;
1768             else if (name == g_sect_name_dwarf_debug_info)            sect_type = eSectionTypeDWARFDebugInfo;
1769             else if (name == g_sect_name_dwarf_debug_line)            sect_type = eSectionTypeDWARFDebugLine;
1770             else if (name == g_sect_name_dwarf_debug_loc)             sect_type = eSectionTypeDWARFDebugLoc;
1771             else if (name == g_sect_name_dwarf_debug_macinfo)         sect_type = eSectionTypeDWARFDebugMacInfo;
1772             else if (name == g_sect_name_dwarf_debug_pubnames)        sect_type = eSectionTypeDWARFDebugPubNames;
1773             else if (name == g_sect_name_dwarf_debug_pubtypes)        sect_type = eSectionTypeDWARFDebugPubTypes;
1774             else if (name == g_sect_name_dwarf_debug_ranges)          sect_type = eSectionTypeDWARFDebugRanges;
1775             else if (name == g_sect_name_dwarf_debug_str)             sect_type = eSectionTypeDWARFDebugStr;
1776             else if (name == g_sect_name_dwarf_debug_str_offsets)     sect_type = eSectionTypeDWARFDebugStrOffsets;
1777             else if (name == g_sect_name_dwarf_debug_abbrev_dwo)      sect_type = eSectionTypeDWARFDebugAbbrev;
1778             else if (name == g_sect_name_dwarf_debug_info_dwo)        sect_type = eSectionTypeDWARFDebugInfo;
1779             else if (name == g_sect_name_dwarf_debug_line_dwo)        sect_type = eSectionTypeDWARFDebugLine;
1780             else if (name == g_sect_name_dwarf_debug_loc_dwo)         sect_type = eSectionTypeDWARFDebugLoc;
1781             else if (name == g_sect_name_dwarf_debug_str_dwo)         sect_type = eSectionTypeDWARFDebugStr;
1782             else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets;
1783             else if (name == g_sect_name_eh_frame)                    sect_type = eSectionTypeEHFrame;
1784             else if (name == g_sect_name_arm_exidx)                   sect_type = eSectionTypeARMexidx;
1785             else if (name == g_sect_name_arm_extab)                   sect_type = eSectionTypeARMextab;
1786             else if (name == g_sect_name_go_symtab)                   sect_type = eSectionTypeGoSymtab;
1787 
1788             switch (header.sh_type)
1789             {
1790                 case SHT_SYMTAB:
1791                     assert (sect_type == eSectionTypeOther);
1792                     sect_type = eSectionTypeELFSymbolTable;
1793                     break;
1794                 case SHT_DYNSYM:
1795                     assert (sect_type == eSectionTypeOther);
1796                     sect_type = eSectionTypeELFDynamicSymbols;
1797                     break;
1798                 case SHT_RELA:
1799                 case SHT_REL:
1800                     assert (sect_type == eSectionTypeOther);
1801                     sect_type = eSectionTypeELFRelocationEntries;
1802                     break;
1803                 case SHT_DYNAMIC:
1804                     assert (sect_type == eSectionTypeOther);
1805                     sect_type = eSectionTypeELFDynamicLinkInfo;
1806                     break;
1807             }
1808 
1809             if (eSectionTypeOther == sect_type)
1810             {
1811                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1812                 // support linkscripts which (can) give rise to various arbitrarily named
1813                 // sections being "Code" or "Data".
1814                 sect_type = kalimbaSectionType(m_header, header);
1815             }
1816 
1817             const uint32_t target_bytes_size =
1818                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1819                 m_arch_spec.GetDataByteSize() :
1820                     eSectionTypeCode == sect_type ?
1821                     m_arch_spec.GetCodeByteSize() : 1;
1822 
1823             elf::elf_xword log2align = (header.sh_addralign==0)
1824                                         ? 0
1825                                         : llvm::Log2_64(header.sh_addralign);
1826             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1827                                               this,               // ObjectFile to which this section belongs and should read section data from.
1828                                               SectionIndex(I),    // Section ID.
1829                                               name,               // Section name.
1830                                               sect_type,          // Section type.
1831                                               header.sh_addr,     // VM address.
1832                                               vm_size,            // VM size in bytes of this section.
1833                                               header.sh_offset,   // Offset of this section in the file.
1834                                               file_size,          // Size of the section as found in the file.
1835                                               log2align,          // Alignment of the section
1836                                               header.sh_flags,    // Flags for this section.
1837                                               target_bytes_size));// Number of host bytes per target byte
1838 
1839             if (is_thread_specific)
1840                 section_sp->SetIsThreadSpecific (is_thread_specific);
1841             m_sections_ap->AddSection(section_sp);
1842         }
1843     }
1844 
1845     if (m_sections_ap.get())
1846     {
1847         if (GetType() == eTypeDebugInfo)
1848         {
1849             static const SectionType g_sections[] =
1850             {
1851                 eSectionTypeDWARFDebugAbbrev,
1852                 eSectionTypeDWARFDebugAddr,
1853                 eSectionTypeDWARFDebugAranges,
1854                 eSectionTypeDWARFDebugFrame,
1855                 eSectionTypeDWARFDebugInfo,
1856                 eSectionTypeDWARFDebugLine,
1857                 eSectionTypeDWARFDebugLoc,
1858                 eSectionTypeDWARFDebugMacInfo,
1859                 eSectionTypeDWARFDebugPubNames,
1860                 eSectionTypeDWARFDebugPubTypes,
1861                 eSectionTypeDWARFDebugRanges,
1862                 eSectionTypeDWARFDebugStr,
1863                 eSectionTypeDWARFDebugStrOffsets,
1864                 eSectionTypeELFSymbolTable,
1865             };
1866             SectionList *elf_section_list = m_sections_ap.get();
1867             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1868             {
1869                 SectionType section_type = g_sections[idx];
1870                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1871                 if (section_sp)
1872                 {
1873                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1874                     if (module_section_sp)
1875                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1876                     else
1877                         unified_section_list.AddSection (section_sp);
1878                 }
1879             }
1880         }
1881         else
1882         {
1883             unified_section_list = *m_sections_ap;
1884         }
1885     }
1886 }
1887 
1888 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the
1889 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by
1890 // an arbitrary string because if a symbol prefix added to each symbol in the object file with
1891 // objcopy then the mapping symbols are also prefixed.
1892 static char
1893 FindArmAarch64MappingSymbol(const char* symbol_name)
1894 {
1895     if (!symbol_name)
1896         return '\0';
1897 
1898     const char* dollar_pos = ::strchr(symbol_name, '$');
1899     if (!dollar_pos || dollar_pos[1] == '\0')
1900         return '\0';
1901 
1902     if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
1903         return dollar_pos[1];
1904     return '\0';
1905 }
1906 
1907 #define STO_MIPS_ISA            (3 << 6)
1908 #define STO_MICROMIPS           (2 << 6)
1909 #define IS_MICROMIPS(ST_OTHER)  (((ST_OTHER) & STO_MIPS_ISA) == STO_MICROMIPS)
1910 
1911 // private
1912 unsigned
1913 ObjectFileELF::ParseSymbols (Symtab *symtab,
1914                              user_id_t start_id,
1915                              SectionList *section_list,
1916                              const size_t num_symbols,
1917                              const DataExtractor &symtab_data,
1918                              const DataExtractor &strtab_data)
1919 {
1920     ELFSymbol symbol;
1921     lldb::offset_t offset = 0;
1922 
1923     static ConstString text_section_name(".text");
1924     static ConstString init_section_name(".init");
1925     static ConstString fini_section_name(".fini");
1926     static ConstString ctors_section_name(".ctors");
1927     static ConstString dtors_section_name(".dtors");
1928 
1929     static ConstString data_section_name(".data");
1930     static ConstString rodata_section_name(".rodata");
1931     static ConstString rodata1_section_name(".rodata1");
1932     static ConstString data2_section_name(".data1");
1933     static ConstString bss_section_name(".bss");
1934     static ConstString opd_section_name(".opd");    // For ppc64
1935 
1936     // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full
1937     // .text section what causes issues with displaying unusable symbol name to the user and very
1938     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1939     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1940     // use for the debugger and they are causing a lot of trouble.
1941     // Filtering can't be restricted to Android because this special object file don't contain the
1942     // note section specifying the environment to Android but the custom extension and file name
1943     // makes it highly unlikely that this will collide with anything else.
1944     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat");
1945 
1946     unsigned i;
1947     for (i = 0; i < num_symbols; ++i)
1948     {
1949         if (symbol.Parse(symtab_data, &offset) == false)
1950             break;
1951 
1952         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1953 
1954         // No need to add non-section symbols that have no names
1955         if (symbol.getType() != STT_SECTION &&
1956             (symbol_name == NULL || symbol_name[0] == '\0'))
1957             continue;
1958 
1959         // Skipping oatdata and oatexec sections if it is requested. See details above the
1960         // definition of skip_oatdata_oatexec for the reasons.
1961         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1962             continue;
1963 
1964         SectionSP symbol_section_sp;
1965         SymbolType symbol_type = eSymbolTypeInvalid;
1966         Elf64_Half symbol_idx = symbol.st_shndx;
1967 
1968         switch (symbol_idx)
1969         {
1970         case SHN_ABS:
1971             symbol_type = eSymbolTypeAbsolute;
1972             break;
1973         case SHN_UNDEF:
1974             symbol_type = eSymbolTypeUndefined;
1975             break;
1976         default:
1977             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1978             break;
1979         }
1980 
1981         // If a symbol is undefined do not process it further even if it has a STT type
1982         if (symbol_type != eSymbolTypeUndefined)
1983         {
1984             switch (symbol.getType())
1985             {
1986             default:
1987             case STT_NOTYPE:
1988                 // The symbol's type is not specified.
1989                 break;
1990 
1991             case STT_OBJECT:
1992                 // The symbol is associated with a data object, such as a variable,
1993                 // an array, etc.
1994                 symbol_type = eSymbolTypeData;
1995                 break;
1996 
1997             case STT_FUNC:
1998                 // The symbol is associated with a function or other executable code.
1999                 symbol_type = eSymbolTypeCode;
2000                 break;
2001 
2002             case STT_SECTION:
2003                 // The symbol is associated with a section. Symbol table entries of
2004                 // this type exist primarily for relocation and normally have
2005                 // STB_LOCAL binding.
2006                 break;
2007 
2008             case STT_FILE:
2009                 // Conventionally, the symbol's name gives the name of the source
2010                 // file associated with the object file. A file symbol has STB_LOCAL
2011                 // binding, its section index is SHN_ABS, and it precedes the other
2012                 // STB_LOCAL symbols for the file, if it is present.
2013                 symbol_type = eSymbolTypeSourceFile;
2014                 break;
2015 
2016             case STT_GNU_IFUNC:
2017                 // The symbol is associated with an indirect function. The actual
2018                 // function will be resolved if it is referenced.
2019                 symbol_type = eSymbolTypeResolver;
2020                 break;
2021             }
2022         }
2023 
2024         if (symbol_type == eSymbolTypeInvalid)
2025         {
2026             if (symbol_section_sp)
2027             {
2028                 const ConstString &sect_name = symbol_section_sp->GetName();
2029                 if (sect_name == text_section_name ||
2030                     sect_name == init_section_name ||
2031                     sect_name == fini_section_name ||
2032                     sect_name == ctors_section_name ||
2033                     sect_name == dtors_section_name)
2034                 {
2035                     symbol_type = eSymbolTypeCode;
2036                 }
2037                 else if (sect_name == data_section_name ||
2038                          sect_name == data2_section_name ||
2039                          sect_name == rodata_section_name ||
2040                          sect_name == rodata1_section_name ||
2041                          sect_name == bss_section_name)
2042                 {
2043                     symbol_type = eSymbolTypeData;
2044                 }
2045             }
2046         }
2047 
2048         int64_t symbol_value_offset = 0;
2049         uint32_t additional_flags = 0;
2050 
2051         ArchSpec arch;
2052         if (GetArchitecture(arch))
2053         {
2054             if (arch.GetMachine() == llvm::Triple::arm)
2055             {
2056                 if (symbol.getBinding() == STB_LOCAL)
2057                 {
2058                     char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2059                     if (symbol_type == eSymbolTypeCode)
2060                     {
2061                         switch (mapping_symbol)
2062                         {
2063                             case 'a':
2064                                 // $a[.<any>]* - marks an ARM instruction sequence
2065                                 m_address_class_map[symbol.st_value] = eAddressClassCode;
2066                                 break;
2067                             case 'b':
2068                             case 't':
2069                                 // $b[.<any>]* - marks a THUMB BL instruction sequence
2070                                 // $t[.<any>]* - marks a THUMB instruction sequence
2071                                 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2072                                 break;
2073                             case 'd':
2074                                 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2075                                 m_address_class_map[symbol.st_value] = eAddressClassData;
2076                                 break;
2077                         }
2078                     }
2079                     if (mapping_symbol)
2080                         continue;
2081                 }
2082             }
2083             else if (arch.GetMachine() == llvm::Triple::aarch64)
2084             {
2085                 if (symbol.getBinding() == STB_LOCAL)
2086                 {
2087                     char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2088                     if (symbol_type == eSymbolTypeCode)
2089                     {
2090                         switch (mapping_symbol)
2091                         {
2092                             case 'x':
2093                                 // $x[.<any>]* - marks an A64 instruction sequence
2094                                 m_address_class_map[symbol.st_value] = eAddressClassCode;
2095                                 break;
2096                             case 'd':
2097                                 // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2098                                 m_address_class_map[symbol.st_value] = eAddressClassData;
2099                                 break;
2100                         }
2101                     }
2102                     if (mapping_symbol)
2103                         continue;
2104                 }
2105             }
2106 
2107             if (arch.GetMachine() == llvm::Triple::arm)
2108             {
2109                 if (symbol_type == eSymbolTypeCode)
2110                 {
2111                     if (symbol.st_value & 1)
2112                     {
2113                         // Subtracting 1 from the address effectively unsets
2114                         // the low order bit, which results in the address
2115                         // actually pointing to the beginning of the symbol.
2116                         // This delta will be used below in conjunction with
2117                         // symbol.st_value to produce the final symbol_value
2118                         // that we store in the symtab.
2119                         symbol_value_offset = -1;
2120                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2121                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2122                     }
2123                     else
2124                     {
2125                         // This address is ARM
2126                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2127                     }
2128                 }
2129             }
2130 
2131             /*
2132              * MIPS:
2133              * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for MIPS).
2134              * This allows processer to switch between microMIPS and MIPS without any need
2135              * for special mode-control register. However, apart from .debug_line, none of
2136              * the ELF/DWARF sections set the ISA bit (for symbol or section). Use st_other
2137              * flag to check whether the symbol is microMIPS and then set the address class
2138              * accordingly.
2139             */
2140             const llvm::Triple::ArchType llvm_arch = arch.GetMachine();
2141             if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel
2142                 || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el)
2143             {
2144                 if (IS_MICROMIPS(symbol.st_other))
2145                     m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2146                 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode))
2147                 {
2148                     symbol.st_value = symbol.st_value & (~1ull);
2149                     m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2150                 }
2151                 else
2152                 {
2153                     if (symbol_type == eSymbolTypeCode)
2154                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2155                     else if (symbol_type == eSymbolTypeData)
2156                         m_address_class_map[symbol.st_value] = eAddressClassData;
2157                     else
2158                         m_address_class_map[symbol.st_value] = eAddressClassUnknown;
2159                 }
2160             }
2161         }
2162 
2163         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2164         // THUMB symbols. See above for more details.
2165         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2166         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2167             symbol_value -= symbol_section_sp->GetFileAddress();
2168 
2169         if (symbol_section_sp)
2170         {
2171             ModuleSP module_sp(GetModule());
2172             if (module_sp)
2173             {
2174                 SectionList *module_section_list = module_sp->GetSectionList();
2175                 if (module_section_list && module_section_list != section_list)
2176                 {
2177                     const ConstString &sect_name = symbol_section_sp->GetName();
2178                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2179                     if (section_sp && section_sp->GetFileSize())
2180                     {
2181                         symbol_section_sp = section_sp;
2182                     }
2183                 }
2184             }
2185         }
2186 
2187         bool is_global = symbol.getBinding() == STB_GLOBAL;
2188         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2189         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2190 
2191         llvm::StringRef symbol_ref(symbol_name);
2192 
2193         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2194         size_t version_pos = symbol_ref.find('@');
2195         bool has_suffix = version_pos != llvm::StringRef::npos;
2196         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2197         Mangled mangled(ConstString(symbol_bare), is_mangled);
2198 
2199         // Now append the suffix back to mangled and unmangled names. Only do it if the
2200         // demangling was successful (string is not empty).
2201         if (has_suffix)
2202         {
2203             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2204 
2205             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2206             if (! mangled_name.empty())
2207                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2208 
2209             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2210             llvm::StringRef demangled_name = demangled.GetStringRef();
2211             if (!demangled_name.empty())
2212                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2213         }
2214 
2215         Symbol dc_symbol(
2216             i + start_id,       // ID is the original symbol table index.
2217             mangled,
2218             symbol_type,        // Type of this symbol
2219             is_global,          // Is this globally visible?
2220             false,              // Is this symbol debug info?
2221             false,              // Is this symbol a trampoline?
2222             false,              // Is this symbol artificial?
2223             AddressRange(
2224                 symbol_section_sp,  // Section in which this symbol is defined or null.
2225                 symbol_value,       // Offset in section or symbol value.
2226                 symbol.st_size),    // Size in bytes of this symbol.
2227             symbol.st_size != 0,    // Size is valid if it is not 0
2228             has_suffix,             // Contains linker annotations?
2229             flags);                 // Symbol flags.
2230         symtab->AddSymbol(dc_symbol);
2231     }
2232     return i;
2233 }
2234 
2235 unsigned
2236 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2237 {
2238     if (symtab->GetObjectFile() != this)
2239     {
2240         // If the symbol table section is owned by a different object file, have it do the
2241         // parsing.
2242         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2243         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2244     }
2245 
2246     // Get section list for this object file.
2247     SectionList *section_list = m_sections_ap.get();
2248     if (!section_list)
2249         return 0;
2250 
2251     user_id_t symtab_id = symtab->GetID();
2252     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2253     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2254            symtab_hdr->sh_type == SHT_DYNSYM);
2255 
2256     // sh_link: section header index of associated string table.
2257     // Section ID's are ones based.
2258     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2259     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2260 
2261     if (symtab && strtab)
2262     {
2263         assert (symtab->GetObjectFile() == this);
2264         assert (strtab->GetObjectFile() == this);
2265 
2266         DataExtractor symtab_data;
2267         DataExtractor strtab_data;
2268         if (ReadSectionData(symtab, symtab_data) &&
2269             ReadSectionData(strtab, strtab_data))
2270         {
2271             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2272 
2273             return ParseSymbols(symbol_table, start_id, section_list,
2274                                 num_symbols, symtab_data, strtab_data);
2275         }
2276     }
2277 
2278     return 0;
2279 }
2280 
2281 size_t
2282 ObjectFileELF::ParseDynamicSymbols()
2283 {
2284     if (m_dynamic_symbols.size())
2285         return m_dynamic_symbols.size();
2286 
2287     SectionList *section_list = GetSectionList();
2288     if (!section_list)
2289         return 0;
2290 
2291     // Find the SHT_DYNAMIC section.
2292     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2293     if (!dynsym)
2294         return 0;
2295     assert (dynsym->GetObjectFile() == this);
2296 
2297     ELFDynamic symbol;
2298     DataExtractor dynsym_data;
2299     if (ReadSectionData(dynsym, dynsym_data))
2300     {
2301         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2302         lldb::offset_t cursor = 0;
2303 
2304         while (cursor < section_size)
2305         {
2306             if (!symbol.Parse(dynsym_data, &cursor))
2307                 break;
2308 
2309             m_dynamic_symbols.push_back(symbol);
2310         }
2311     }
2312 
2313     return m_dynamic_symbols.size();
2314 }
2315 
2316 const ELFDynamic *
2317 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2318 {
2319     if (!ParseDynamicSymbols())
2320         return NULL;
2321 
2322     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2323     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2324     for ( ; I != E; ++I)
2325     {
2326         ELFDynamic *symbol = &*I;
2327 
2328         if (symbol->d_tag == tag)
2329             return symbol;
2330     }
2331 
2332     return NULL;
2333 }
2334 
2335 unsigned
2336 ObjectFileELF::PLTRelocationType()
2337 {
2338     // DT_PLTREL
2339     //  This member specifies the type of relocation entry to which the
2340     //  procedure linkage table refers. The d_val member holds DT_REL or
2341     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2342     //  must use the same relocation.
2343     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2344 
2345     if (symbol)
2346         return symbol->d_val;
2347 
2348     return 0;
2349 }
2350 
2351 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2352 // 0th entry in the plt table is usually a resolution entry which have different size in some
2353 // architectures then the rest of the plt entries.
2354 static std::pair<uint64_t, uint64_t>
2355 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2356 {
2357     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2358 
2359     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2360     // So round the entsize up by the alignment if addralign is set.
2361     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2362         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2363 
2364     if (plt_entsize == 0)
2365     {
2366         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2367         // entries based on the number of entries and the size of the plt section with the
2368         // assumption that the size of the 0th entry is at least as big as the size of the normal
2369         // entries and it isn't much bigger then that.
2370         if (plt_hdr->sh_addralign)
2371             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2372         else
2373             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2374     }
2375 
2376     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2377 
2378     return std::make_pair(plt_entsize, plt_offset);
2379 }
2380 
2381 static unsigned
2382 ParsePLTRelocations(Symtab *symbol_table,
2383                     user_id_t start_id,
2384                     unsigned rel_type,
2385                     const ELFHeader *hdr,
2386                     const ELFSectionHeader *rel_hdr,
2387                     const ELFSectionHeader *plt_hdr,
2388                     const ELFSectionHeader *sym_hdr,
2389                     const lldb::SectionSP &plt_section_sp,
2390                     DataExtractor &rel_data,
2391                     DataExtractor &symtab_data,
2392                     DataExtractor &strtab_data)
2393 {
2394     ELFRelocation rel(rel_type);
2395     ELFSymbol symbol;
2396     lldb::offset_t offset = 0;
2397 
2398     uint64_t plt_offset, plt_entsize;
2399     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2400     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2401 
2402     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2403     reloc_info_fn reloc_type;
2404     reloc_info_fn reloc_symbol;
2405 
2406     if (hdr->Is32Bit())
2407     {
2408         reloc_type = ELFRelocation::RelocType32;
2409         reloc_symbol = ELFRelocation::RelocSymbol32;
2410     }
2411     else
2412     {
2413         reloc_type = ELFRelocation::RelocType64;
2414         reloc_symbol = ELFRelocation::RelocSymbol64;
2415     }
2416 
2417     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2418     unsigned i;
2419     for (i = 0; i < num_relocations; ++i)
2420     {
2421         if (rel.Parse(rel_data, &offset) == false)
2422             break;
2423 
2424         if (reloc_type(rel) != slot_type)
2425             continue;
2426 
2427         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2428         if (!symbol.Parse(symtab_data, &symbol_offset))
2429             break;
2430 
2431         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2432         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2433         uint64_t plt_index = plt_offset + i * plt_entsize;
2434 
2435         Symbol jump_symbol(
2436             i + start_id,    // Symbol table index
2437             symbol_name,     // symbol name.
2438             is_mangled,      // is the symbol name mangled?
2439             eSymbolTypeTrampoline, // Type of this symbol
2440             false,           // Is this globally visible?
2441             false,           // Is this symbol debug info?
2442             true,            // Is this symbol a trampoline?
2443             true,            // Is this symbol artificial?
2444             plt_section_sp,  // Section in which this symbol is defined or null.
2445             plt_index,       // Offset in section or symbol value.
2446             plt_entsize,     // Size in bytes of this symbol.
2447             true,            // Size is valid
2448             false,           // Contains linker annotations?
2449             0);              // Symbol flags.
2450 
2451         symbol_table->AddSymbol(jump_symbol);
2452     }
2453 
2454     return i;
2455 }
2456 
2457 unsigned
2458 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2459                                       user_id_t start_id,
2460                                       const ELFSectionHeaderInfo *rel_hdr,
2461                                       user_id_t rel_id)
2462 {
2463     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2464 
2465     // The link field points to the associated symbol table. The info field
2466     // points to the section holding the plt.
2467     user_id_t symtab_id = rel_hdr->sh_link;
2468     user_id_t plt_id = rel_hdr->sh_info;
2469 
2470     // If the link field doesn't point to the appropriate symbol name table then
2471     // try to find it by name as some compiler don't fill in the link fields.
2472     if (!symtab_id)
2473         symtab_id = GetSectionIndexByName(".dynsym");
2474     if (!plt_id)
2475         plt_id = GetSectionIndexByName(".plt");
2476 
2477     if (!symtab_id || !plt_id)
2478         return 0;
2479 
2480     // Section ID's are ones based;
2481     symtab_id++;
2482     plt_id++;
2483 
2484     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2485     if (!plt_hdr)
2486         return 0;
2487 
2488     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2489     if (!sym_hdr)
2490         return 0;
2491 
2492     SectionList *section_list = m_sections_ap.get();
2493     if (!section_list)
2494         return 0;
2495 
2496     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2497     if (!rel_section)
2498         return 0;
2499 
2500     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2501     if (!plt_section_sp)
2502         return 0;
2503 
2504     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2505     if (!symtab)
2506         return 0;
2507 
2508     // sh_link points to associated string table.
2509     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2510     if (!strtab)
2511         return 0;
2512 
2513     DataExtractor rel_data;
2514     if (!ReadSectionData(rel_section, rel_data))
2515         return 0;
2516 
2517     DataExtractor symtab_data;
2518     if (!ReadSectionData(symtab, symtab_data))
2519         return 0;
2520 
2521     DataExtractor strtab_data;
2522     if (!ReadSectionData(strtab, strtab_data))
2523         return 0;
2524 
2525     unsigned rel_type = PLTRelocationType();
2526     if (!rel_type)
2527         return 0;
2528 
2529     return ParsePLTRelocations (symbol_table,
2530                                 start_id,
2531                                 rel_type,
2532                                 &m_header,
2533                                 rel_hdr,
2534                                 plt_hdr,
2535                                 sym_hdr,
2536                                 plt_section_sp,
2537                                 rel_data,
2538                                 symtab_data,
2539                                 strtab_data);
2540 }
2541 
2542 unsigned
2543 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2544                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2545                 DataExtractor &rel_data, DataExtractor &symtab_data,
2546                 DataExtractor &debug_data, Section* rel_section)
2547 {
2548     ELFRelocation rel(rel_hdr->sh_type);
2549     lldb::addr_t offset = 0;
2550     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2551     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2552     reloc_info_fn reloc_type;
2553     reloc_info_fn reloc_symbol;
2554 
2555     if (hdr->Is32Bit())
2556     {
2557         reloc_type = ELFRelocation::RelocType32;
2558         reloc_symbol = ELFRelocation::RelocSymbol32;
2559     }
2560     else
2561     {
2562         reloc_type = ELFRelocation::RelocType64;
2563         reloc_symbol = ELFRelocation::RelocSymbol64;
2564     }
2565 
2566     for (unsigned i = 0; i < num_relocations; ++i)
2567     {
2568         if (rel.Parse(rel_data, &offset) == false)
2569             break;
2570 
2571         Symbol* symbol = NULL;
2572 
2573         if (hdr->Is32Bit())
2574         {
2575             switch (reloc_type(rel)) {
2576             case R_386_32:
2577             case R_386_PC32:
2578             default:
2579                 assert(false && "unexpected relocation type");
2580             }
2581         } else {
2582             switch (reloc_type(rel)) {
2583             case R_X86_64_64:
2584             {
2585                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2586                 if (symbol)
2587                 {
2588                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2589                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2590                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2591                     *dst = value + ELFRelocation::RelocAddend64(rel);
2592                 }
2593                 break;
2594             }
2595             case R_X86_64_32:
2596             case R_X86_64_32S:
2597             {
2598                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2599                 if (symbol)
2600                 {
2601                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2602                     value += ELFRelocation::RelocAddend32(rel);
2603                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2604                            (reloc_type(rel) == R_X86_64_32S &&
2605                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2606                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2607                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2608                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2609                     *dst = truncated_addr;
2610                 }
2611                 break;
2612             }
2613             case R_X86_64_PC32:
2614             default:
2615                 assert(false && "unexpected relocation type");
2616             }
2617         }
2618     }
2619 
2620     return 0;
2621 }
2622 
2623 unsigned
2624 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2625 {
2626     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2627 
2628     // Parse in the section list if needed.
2629     SectionList *section_list = GetSectionList();
2630     if (!section_list)
2631         return 0;
2632 
2633     // Section ID's are ones based.
2634     user_id_t symtab_id = rel_hdr->sh_link + 1;
2635     user_id_t debug_id = rel_hdr->sh_info + 1;
2636 
2637     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2638     if (!symtab_hdr)
2639         return 0;
2640 
2641     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2642     if (!debug_hdr)
2643         return 0;
2644 
2645     Section *rel = section_list->FindSectionByID(rel_id).get();
2646     if (!rel)
2647         return 0;
2648 
2649     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2650     if (!symtab)
2651         return 0;
2652 
2653     Section *debug = section_list->FindSectionByID(debug_id).get();
2654     if (!debug)
2655         return 0;
2656 
2657     DataExtractor rel_data;
2658     DataExtractor symtab_data;
2659     DataExtractor debug_data;
2660 
2661     if (ReadSectionData(rel, rel_data) &&
2662         ReadSectionData(symtab, symtab_data) &&
2663         ReadSectionData(debug, debug_data))
2664     {
2665         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2666                         rel_data, symtab_data, debug_data, debug);
2667     }
2668 
2669     return 0;
2670 }
2671 
2672 Symtab *
2673 ObjectFileELF::GetSymtab()
2674 {
2675     ModuleSP module_sp(GetModule());
2676     if (!module_sp)
2677         return NULL;
2678 
2679     // We always want to use the main object file so we (hopefully) only have one cached copy
2680     // of our symtab, dynamic sections, etc.
2681     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2682     if (module_obj_file && module_obj_file != this)
2683         return module_obj_file->GetSymtab();
2684 
2685     if (m_symtab_ap.get() == NULL)
2686     {
2687         SectionList *section_list = module_sp->GetSectionList();
2688         if (!section_list)
2689             return NULL;
2690 
2691         uint64_t symbol_id = 0;
2692         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2693 
2694         // Sharable objects and dynamic executables usually have 2 distinct symbol
2695         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2696         // version of the symtab that only contains global symbols. The information found
2697         // in the dynsym is therefore also found in the symtab, while the reverse is not
2698         // necessarily true.
2699         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2700         if (!symtab)
2701         {
2702             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2703             // then use the dynsym section which should always be there.
2704             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2705         }
2706         if (symtab)
2707         {
2708             m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2709             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2710         }
2711 
2712         // DT_JMPREL
2713         //      If present, this entry's d_ptr member holds the address of relocation
2714         //      entries associated solely with the procedure linkage table. Separating
2715         //      these relocation entries lets the dynamic linker ignore them during
2716         //      process initialization, if lazy binding is enabled. If this entry is
2717         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2718         //      also be present.
2719         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2720         if (symbol)
2721         {
2722             // Synthesize trampoline symbols to help navigate the PLT.
2723             addr_t addr = symbol->d_ptr;
2724             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2725             if (reloc_section)
2726             {
2727                 user_id_t reloc_id = reloc_section->GetID();
2728                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2729                 assert(reloc_header);
2730 
2731                 if (m_symtab_ap == nullptr)
2732                     m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2733 
2734                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2735             }
2736         }
2737 
2738         // If we still don't have any symtab then create an empty instance to avoid do the section
2739         // lookup next time.
2740         if (m_symtab_ap == nullptr)
2741             m_symtab_ap.reset(new Symtab(this));
2742 
2743         m_symtab_ap->CalculateSymbolSizes();
2744     }
2745 
2746     for (SectionHeaderCollIter I = m_section_headers.begin();
2747          I != m_section_headers.end(); ++I)
2748     {
2749         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2750         {
2751             if (CalculateType() == eTypeObjectFile)
2752             {
2753                 const char *section_name = I->section_name.AsCString("");
2754                 if (strstr(section_name, ".rela.debug") ||
2755                     strstr(section_name, ".rel.debug"))
2756                 {
2757                     const ELFSectionHeader &reloc_header = *I;
2758                     user_id_t reloc_id = SectionIndex(I);
2759                     RelocateDebugSections(&reloc_header, reloc_id);
2760                 }
2761             }
2762         }
2763     }
2764     return m_symtab_ap.get();
2765 }
2766 
2767 Symbol *
2768 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2769 {
2770     if (!m_symtab_ap.get())
2771         return nullptr; // GetSymtab() should be called first.
2772 
2773     const SectionList *section_list = GetSectionList();
2774     if (!section_list)
2775         return nullptr;
2776 
2777     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2778     {
2779         AddressRange range;
2780         if (eh_frame->GetAddressRange (so_addr, range))
2781         {
2782             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2783             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2784             if (symbol)
2785                 return symbol;
2786 
2787             // Note that a (stripped) symbol won't be found by GetSymtab()...
2788             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2789             if (eh_sym_section_sp.get())
2790             {
2791                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2792                 addr_t offset = file_addr - section_base;
2793                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2794 
2795                 Symbol eh_symbol(
2796                         symbol_id,            // Symbol table index.
2797                         "???",                // Symbol name.
2798                         false,                // Is the symbol name mangled?
2799                         eSymbolTypeCode,      // Type of this symbol.
2800                         true,                 // Is this globally visible?
2801                         false,                // Is this symbol debug info?
2802                         false,                // Is this symbol a trampoline?
2803                         true,                 // Is this symbol artificial?
2804                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2805                         offset,               // Offset in section or symbol value.
2806                         range.GetByteSize(),  // Size in bytes of this symbol.
2807                         true,                 // Size is valid.
2808                         false,                // Contains linker annotations?
2809                         0);                   // Symbol flags.
2810                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2811                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2812             }
2813         }
2814     }
2815     return nullptr;
2816 }
2817 
2818 
2819 bool
2820 ObjectFileELF::IsStripped ()
2821 {
2822     // TODO: determine this for ELF
2823     return false;
2824 }
2825 
2826 //===----------------------------------------------------------------------===//
2827 // Dump
2828 //
2829 // Dump the specifics of the runtime file container (such as any headers
2830 // segments, sections, etc).
2831 //----------------------------------------------------------------------
2832 void
2833 ObjectFileELF::Dump(Stream *s)
2834 {
2835     DumpELFHeader(s, m_header);
2836     s->EOL();
2837     DumpELFProgramHeaders(s);
2838     s->EOL();
2839     DumpELFSectionHeaders(s);
2840     s->EOL();
2841     SectionList *section_list = GetSectionList();
2842     if (section_list)
2843         section_list->Dump(s, NULL, true, UINT32_MAX);
2844     Symtab *symtab = GetSymtab();
2845     if (symtab)
2846         symtab->Dump(s, NULL, eSortOrderNone);
2847     s->EOL();
2848     DumpDependentModules(s);
2849     s->EOL();
2850 }
2851 
2852 //----------------------------------------------------------------------
2853 // DumpELFHeader
2854 //
2855 // Dump the ELF header to the specified output stream
2856 //----------------------------------------------------------------------
2857 void
2858 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2859 {
2860     s->PutCString("ELF Header\n");
2861     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2862     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2863               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2864     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2865               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2866     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2867               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2868 
2869     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2870     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2871     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2872     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2873     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2874 
2875     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2876     DumpELFHeader_e_type(s, header.e_type);
2877     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2878     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2879     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2880     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2881     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2882     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2883     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2884     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2885     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2886     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2887     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2888     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2889 }
2890 
2891 //----------------------------------------------------------------------
2892 // DumpELFHeader_e_type
2893 //
2894 // Dump an token value for the ELF header member e_type
2895 //----------------------------------------------------------------------
2896 void
2897 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2898 {
2899     switch (e_type)
2900     {
2901     case ET_NONE:   *s << "ET_NONE"; break;
2902     case ET_REL:    *s << "ET_REL"; break;
2903     case ET_EXEC:   *s << "ET_EXEC"; break;
2904     case ET_DYN:    *s << "ET_DYN"; break;
2905     case ET_CORE:   *s << "ET_CORE"; break;
2906     default:
2907         break;
2908     }
2909 }
2910 
2911 //----------------------------------------------------------------------
2912 // DumpELFHeader_e_ident_EI_DATA
2913 //
2914 // Dump an token value for the ELF header member e_ident[EI_DATA]
2915 //----------------------------------------------------------------------
2916 void
2917 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2918 {
2919     switch (ei_data)
2920     {
2921     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2922     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2923     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2924     default:
2925         break;
2926     }
2927 }
2928 
2929 
2930 //----------------------------------------------------------------------
2931 // DumpELFProgramHeader
2932 //
2933 // Dump a single ELF program header to the specified output stream
2934 //----------------------------------------------------------------------
2935 void
2936 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2937 {
2938     DumpELFProgramHeader_p_type(s, ph.p_type);
2939     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2940     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2941 
2942     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2943     s->Printf(") %8.8" PRIx64, ph.p_align);
2944 }
2945 
2946 //----------------------------------------------------------------------
2947 // DumpELFProgramHeader_p_type
2948 //
2949 // Dump an token value for the ELF program header member p_type which
2950 // describes the type of the program header
2951 // ----------------------------------------------------------------------
2952 void
2953 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2954 {
2955     const int kStrWidth = 15;
2956     switch (p_type)
2957     {
2958     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2959     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2960     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2961     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2962     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2963     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2964     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2965     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2966     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2967     default:
2968         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2969         break;
2970     }
2971 }
2972 
2973 
2974 //----------------------------------------------------------------------
2975 // DumpELFProgramHeader_p_flags
2976 //
2977 // Dump an token value for the ELF program header member p_flags
2978 //----------------------------------------------------------------------
2979 void
2980 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2981 {
2982     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2983         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2984         << ((p_flags & PF_W) ? "PF_W" : "    ")
2985         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2986         << ((p_flags & PF_R) ? "PF_R" : "    ");
2987 }
2988 
2989 //----------------------------------------------------------------------
2990 // DumpELFProgramHeaders
2991 //
2992 // Dump all of the ELF program header to the specified output stream
2993 //----------------------------------------------------------------------
2994 void
2995 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2996 {
2997     if (!ParseProgramHeaders())
2998         return;
2999 
3000     s->PutCString("Program Headers\n");
3001     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3002                   "p_filesz p_memsz  p_flags                   p_align\n");
3003     s->PutCString("==== --------------- -------- -------- -------- "
3004                   "-------- -------- ------------------------- --------\n");
3005 
3006     uint32_t idx = 0;
3007     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
3008          I != m_program_headers.end(); ++I, ++idx)
3009     {
3010         s->Printf("[%2u] ", idx);
3011         ObjectFileELF::DumpELFProgramHeader(s, *I);
3012         s->EOL();
3013     }
3014 }
3015 
3016 //----------------------------------------------------------------------
3017 // DumpELFSectionHeader
3018 //
3019 // Dump a single ELF section header to the specified output stream
3020 //----------------------------------------------------------------------
3021 void
3022 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
3023 {
3024     s->Printf("%8.8x ", sh.sh_name);
3025     DumpELFSectionHeader_sh_type(s, sh.sh_type);
3026     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3027     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3028     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
3029     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3030     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3031 }
3032 
3033 //----------------------------------------------------------------------
3034 // DumpELFSectionHeader_sh_type
3035 //
3036 // Dump an token value for the ELF section header member sh_type which
3037 // describes the type of the section
3038 //----------------------------------------------------------------------
3039 void
3040 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
3041 {
3042     const int kStrWidth = 12;
3043     switch (sh_type)
3044     {
3045     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
3046     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
3047     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
3048     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
3049     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
3050     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
3051     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
3052     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
3053     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
3054     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
3055     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
3056     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
3057     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
3058     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
3059     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
3060     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
3061     default:
3062         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3063         break;
3064     }
3065 }
3066 
3067 //----------------------------------------------------------------------
3068 // DumpELFSectionHeader_sh_flags
3069 //
3070 // Dump an token value for the ELF section header member sh_flags
3071 //----------------------------------------------------------------------
3072 void
3073 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
3074 {
3075     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3076         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3077         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3078         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3079         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3080 }
3081 
3082 //----------------------------------------------------------------------
3083 // DumpELFSectionHeaders
3084 //
3085 // Dump all of the ELF section header to the specified output stream
3086 //----------------------------------------------------------------------
3087 void
3088 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
3089 {
3090     if (!ParseSectionHeaders())
3091         return;
3092 
3093     s->PutCString("Section Headers\n");
3094     s->PutCString("IDX  name     type         flags                            "
3095                   "addr     offset   size     link     info     addralgn "
3096                   "entsize  Name\n");
3097     s->PutCString("==== -------- ------------ -------------------------------- "
3098                   "-------- -------- -------- -------- -------- -------- "
3099                   "-------- ====================\n");
3100 
3101     uint32_t idx = 0;
3102     for (SectionHeaderCollConstIter I = m_section_headers.begin();
3103          I != m_section_headers.end(); ++I, ++idx)
3104     {
3105         s->Printf("[%2u] ", idx);
3106         ObjectFileELF::DumpELFSectionHeader(s, *I);
3107         const char* section_name = I->section_name.AsCString("");
3108         if (section_name)
3109             *s << ' ' << section_name << "\n";
3110     }
3111 }
3112 
3113 void
3114 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
3115 {
3116     size_t num_modules = ParseDependentModules();
3117 
3118     if (num_modules > 0)
3119     {
3120         s->PutCString("Dependent Modules:\n");
3121         for (unsigned i = 0; i < num_modules; ++i)
3122         {
3123             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3124             s->Printf("   %s\n", spec.GetFilename().GetCString());
3125         }
3126     }
3127 }
3128 
3129 bool
3130 ObjectFileELF::GetArchitecture (ArchSpec &arch)
3131 {
3132     if (!ParseHeader())
3133         return false;
3134 
3135     if (m_section_headers.empty())
3136     {
3137         // Allow elf notes to be parsed which may affect the detected architecture.
3138         ParseSectionHeaders();
3139     }
3140 
3141     arch = m_arch_spec;
3142     return true;
3143 }
3144 
3145 ObjectFile::Type
3146 ObjectFileELF::CalculateType()
3147 {
3148     switch (m_header.e_type)
3149     {
3150         case llvm::ELF::ET_NONE:
3151             // 0 - No file type
3152             return eTypeUnknown;
3153 
3154         case llvm::ELF::ET_REL:
3155             // 1 - Relocatable file
3156             return eTypeObjectFile;
3157 
3158         case llvm::ELF::ET_EXEC:
3159             // 2 - Executable file
3160             return eTypeExecutable;
3161 
3162         case llvm::ELF::ET_DYN:
3163             // 3 - Shared object file
3164             return eTypeSharedLibrary;
3165 
3166         case ET_CORE:
3167             // 4 - Core file
3168             return eTypeCoreFile;
3169 
3170         default:
3171             break;
3172     }
3173     return eTypeUnknown;
3174 }
3175 
3176 ObjectFile::Strata
3177 ObjectFileELF::CalculateStrata()
3178 {
3179     switch (m_header.e_type)
3180     {
3181         case llvm::ELF::ET_NONE:
3182             // 0 - No file type
3183             return eStrataUnknown;
3184 
3185         case llvm::ELF::ET_REL:
3186             // 1 - Relocatable file
3187             return eStrataUnknown;
3188 
3189         case llvm::ELF::ET_EXEC:
3190             // 2 - Executable file
3191             // TODO: is there any way to detect that an executable is a kernel
3192             // related executable by inspecting the program headers, section
3193             // headers, symbols, or any other flag bits???
3194             return eStrataUser;
3195 
3196         case llvm::ELF::ET_DYN:
3197             // 3 - Shared object file
3198             // TODO: is there any way to detect that an shared library is a kernel
3199             // related executable by inspecting the program headers, section
3200             // headers, symbols, or any other flag bits???
3201             return eStrataUnknown;
3202 
3203         case ET_CORE:
3204             // 4 - Core file
3205             // TODO: is there any way to detect that an core file is a kernel
3206             // related executable by inspecting the program headers, section
3207             // headers, symbols, or any other flag bits???
3208             return eStrataUnknown;
3209 
3210         default:
3211             break;
3212     }
3213     return eStrataUnknown;
3214 }
3215 
3216