1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 #include "lldb/Host/HostInfo.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Support/MathExtras.h" 35 36 #define CASE_AND_STREAM(s, def, width) \ 37 case def: s->Printf("%-*s", width, #def); break; 38 39 using namespace lldb; 40 using namespace lldb_private; 41 using namespace elf; 42 using namespace llvm::ELF; 43 44 namespace { 45 46 // ELF note owner definitions 47 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 48 const char *const LLDB_NT_OWNER_GNU = "GNU"; 49 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 50 const char *const LLDB_NT_OWNER_CSR = "csr"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 subTypeFromElfHeader(const elf::ELFHeader& header) 287 { 288 return 289 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 290 kalimbaVariantFromElfFlags(header.e_flags) : 291 LLDB_INVALID_CPUTYPE; 292 } 293 294 //! The kalimba toolchain identifies a code section as being 295 //! one with the SHT_PROGBITS set in the section sh_type and the top 296 //! bit in the 32-bit address field set. 297 static lldb::SectionType 298 kalimbaSectionType( 299 const elf::ELFHeader& header, 300 const elf::ELFSectionHeader& sect_hdr) 301 { 302 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 303 { 304 return eSectionTypeOther; 305 } 306 307 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 308 { 309 return eSectionTypeZeroFill; 310 } 311 312 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 313 { 314 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 315 return KAL_CODE_BIT & sect_hdr.sh_addr ? 316 eSectionTypeCode : eSectionTypeData; 317 } 318 319 return eSectionTypeOther; 320 } 321 322 // Arbitrary constant used as UUID prefix for core files. 323 const uint32_t 324 ObjectFileELF::g_core_uuid_magic(0xE210C); 325 326 //------------------------------------------------------------------ 327 // Static methods. 328 //------------------------------------------------------------------ 329 void 330 ObjectFileELF::Initialize() 331 { 332 PluginManager::RegisterPlugin(GetPluginNameStatic(), 333 GetPluginDescriptionStatic(), 334 CreateInstance, 335 CreateMemoryInstance, 336 GetModuleSpecifications); 337 } 338 339 void 340 ObjectFileELF::Terminate() 341 { 342 PluginManager::UnregisterPlugin(CreateInstance); 343 } 344 345 lldb_private::ConstString 346 ObjectFileELF::GetPluginNameStatic() 347 { 348 static ConstString g_name("elf"); 349 return g_name; 350 } 351 352 const char * 353 ObjectFileELF::GetPluginDescriptionStatic() 354 { 355 return "ELF object file reader."; 356 } 357 358 ObjectFile * 359 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 360 DataBufferSP &data_sp, 361 lldb::offset_t data_offset, 362 const lldb_private::FileSpec* file, 363 lldb::offset_t file_offset, 364 lldb::offset_t length) 365 { 366 if (!data_sp) 367 { 368 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 369 data_offset = 0; 370 } 371 372 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 373 { 374 const uint8_t *magic = data_sp->GetBytes() + data_offset; 375 if (ELFHeader::MagicBytesMatch(magic)) 376 { 377 // Update the data to contain the entire file if it doesn't already 378 if (data_sp->GetByteSize() < length) { 379 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 380 data_offset = 0; 381 magic = data_sp->GetBytes(); 382 } 383 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 384 if (address_size == 4 || address_size == 8) 385 { 386 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 387 ArchSpec spec; 388 if (objfile_ap->GetArchitecture(spec) && 389 objfile_ap->SetModulesArchitecture(spec)) 390 return objfile_ap.release(); 391 } 392 } 393 } 394 return NULL; 395 } 396 397 398 ObjectFile* 399 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 400 DataBufferSP& data_sp, 401 const lldb::ProcessSP &process_sp, 402 lldb::addr_t header_addr) 403 { 404 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 405 { 406 const uint8_t *magic = data_sp->GetBytes(); 407 if (ELFHeader::MagicBytesMatch(magic)) 408 { 409 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 410 if (address_size == 4 || address_size == 8) 411 { 412 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 413 ArchSpec spec; 414 if (objfile_ap->GetArchitecture(spec) && 415 objfile_ap->SetModulesArchitecture(spec)) 416 return objfile_ap.release(); 417 } 418 } 419 } 420 return NULL; 421 } 422 423 bool 424 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 425 lldb::addr_t data_offset, 426 lldb::addr_t data_length) 427 { 428 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 429 { 430 const uint8_t *magic = data_sp->GetBytes() + data_offset; 431 return ELFHeader::MagicBytesMatch(magic); 432 } 433 return false; 434 } 435 436 /* 437 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 438 * 439 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 440 * code or tables extracted from it, as desired without restriction. 441 */ 442 static uint32_t 443 calc_crc32(uint32_t crc, const void *buf, size_t size) 444 { 445 static const uint32_t g_crc32_tab[] = 446 { 447 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 448 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 449 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 450 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 451 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 452 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 453 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 454 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 455 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 456 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 457 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 458 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 459 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 460 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 461 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 462 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 463 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 464 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 465 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 466 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 467 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 468 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 469 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 470 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 471 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 472 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 473 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 474 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 475 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 476 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 477 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 478 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 479 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 480 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 481 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 482 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 483 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 484 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 485 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 486 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 487 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 488 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 489 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 490 }; 491 const uint8_t *p = (const uint8_t *)buf; 492 493 crc = crc ^ ~0U; 494 while (size--) 495 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 496 return crc ^ ~0U; 497 } 498 499 static uint32_t 500 calc_gnu_debuglink_crc32(const void *buf, size_t size) 501 { 502 return calc_crc32(0U, buf, size); 503 } 504 505 uint32_t 506 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 507 DataExtractor& object_data) 508 { 509 typedef ProgramHeaderCollConstIter Iter; 510 511 uint32_t core_notes_crc = 0; 512 513 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 514 { 515 if (I->p_type == llvm::ELF::PT_NOTE) 516 { 517 const elf_off ph_offset = I->p_offset; 518 const size_t ph_size = I->p_filesz; 519 520 DataExtractor segment_data; 521 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 522 { 523 // The ELF program header contained incorrect data, 524 // probably corefile is incomplete or corrupted. 525 break; 526 } 527 528 core_notes_crc = calc_crc32(core_notes_crc, 529 segment_data.GetDataStart(), 530 segment_data.GetByteSize()); 531 } 532 } 533 534 return core_notes_crc; 535 } 536 537 static const char* 538 OSABIAsCString (unsigned char osabi_byte) 539 { 540 #define _MAKE_OSABI_CASE(x) case x: return #x 541 switch (osabi_byte) 542 { 543 _MAKE_OSABI_CASE(ELFOSABI_NONE); 544 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 545 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 546 _MAKE_OSABI_CASE(ELFOSABI_GNU); 547 _MAKE_OSABI_CASE(ELFOSABI_HURD); 548 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 549 _MAKE_OSABI_CASE(ELFOSABI_AIX); 550 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 551 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 552 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 553 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 554 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 555 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 556 _MAKE_OSABI_CASE(ELFOSABI_NSK); 557 _MAKE_OSABI_CASE(ELFOSABI_AROS); 558 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 559 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 560 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 561 _MAKE_OSABI_CASE(ELFOSABI_ARM); 562 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 563 default: 564 return "<unknown-osabi>"; 565 } 566 #undef _MAKE_OSABI_CASE 567 } 568 569 static bool 570 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 571 { 572 switch (osabi_byte) 573 { 574 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 575 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 576 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 577 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 578 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 579 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 580 default: 581 ostype = llvm::Triple::OSType::UnknownOS; 582 } 583 return ostype != llvm::Triple::OSType::UnknownOS; 584 } 585 586 size_t 587 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 588 lldb::DataBufferSP& data_sp, 589 lldb::offset_t data_offset, 590 lldb::offset_t file_offset, 591 lldb::offset_t length, 592 lldb_private::ModuleSpecList &specs) 593 { 594 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 595 596 const size_t initial_count = specs.GetSize(); 597 598 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 599 { 600 DataExtractor data; 601 data.SetData(data_sp); 602 elf::ELFHeader header; 603 if (header.Parse(data, &data_offset)) 604 { 605 if (data_sp) 606 { 607 ModuleSpec spec; 608 spec.GetFileSpec() = file; 609 610 const uint32_t sub_type = subTypeFromElfHeader(header); 611 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 612 header.e_machine, 613 sub_type); 614 615 if (spec.GetArchitecture().IsValid()) 616 { 617 llvm::Triple::OSType ostype; 618 // First try to determine the OS type from the OSABI field in the elf header. 619 620 if (log) 621 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 622 if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS) 623 { 624 spec.GetArchitecture ().GetTriple ().setOS (ostype); 625 626 // Also clear the vendor so we don't end up with situations like 627 // x86_64-apple-FreeBSD. 628 spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 629 630 if (log) 631 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 632 } 633 634 // Try to get the UUID from the section list. Usually that's at the end, so 635 // map the file in if we don't have it already. 636 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 637 if (section_header_end > data_sp->GetByteSize()) 638 { 639 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 640 data.SetData(data_sp); 641 } 642 643 uint32_t gnu_debuglink_crc = 0; 644 std::string gnu_debuglink_file; 645 SectionHeaderColl section_headers; 646 lldb_private::UUID &uuid = spec.GetUUID(); 647 648 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 649 650 // If the module vendor is not set and the module OS matches this host OS, set the module vendor to the host vendor. 651 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 652 if (spec_triple.getVendor () == llvm::Triple::VendorType::UnknownVendor) 653 { 654 const llvm::Triple &host_triple = HostInfo::GetArchitecture().GetTriple(); 655 if (spec_triple.getOS () == host_triple.getOS ()) 656 spec_triple.setVendor (host_triple.getVendor ()); 657 } 658 659 if (log) 660 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 661 662 if (!uuid.IsValid()) 663 { 664 uint32_t core_notes_crc = 0; 665 666 if (!gnu_debuglink_crc) 667 { 668 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 669 "Calculating module crc32 %s with size %" PRIu64 " KiB", 670 file.GetLastPathComponent().AsCString(), 671 (file.GetByteSize()-file_offset)/1024); 672 673 // For core files - which usually don't happen to have a gnu_debuglink, 674 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 675 // Thus we will need to fallback to something simpler. 676 if (header.e_type == llvm::ELF::ET_CORE) 677 { 678 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 679 if (program_headers_end > data_sp->GetByteSize()) 680 { 681 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 682 data.SetData(data_sp); 683 } 684 ProgramHeaderColl program_headers; 685 GetProgramHeaderInfo(program_headers, data, header); 686 687 size_t segment_data_end = 0; 688 for (ProgramHeaderCollConstIter I = program_headers.begin(); 689 I != program_headers.end(); ++I) 690 { 691 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 692 } 693 694 if (segment_data_end > data_sp->GetByteSize()) 695 { 696 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 697 data.SetData(data_sp); 698 } 699 700 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 701 } 702 else 703 { 704 // Need to map entire file into memory to calculate the crc. 705 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 706 data.SetData(data_sp); 707 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 708 } 709 } 710 if (gnu_debuglink_crc) 711 { 712 // Use 4 bytes of crc from the .gnu_debuglink section. 713 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 714 uuid.SetBytes (uuidt, sizeof(uuidt)); 715 } 716 else if (core_notes_crc) 717 { 718 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 719 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 720 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 721 uuid.SetBytes (uuidt, sizeof(uuidt)); 722 } 723 } 724 725 specs.Append(spec); 726 } 727 } 728 } 729 } 730 731 return specs.GetSize() - initial_count; 732 } 733 734 //------------------------------------------------------------------ 735 // PluginInterface protocol 736 //------------------------------------------------------------------ 737 lldb_private::ConstString 738 ObjectFileELF::GetPluginName() 739 { 740 return GetPluginNameStatic(); 741 } 742 743 uint32_t 744 ObjectFileELF::GetPluginVersion() 745 { 746 return m_plugin_version; 747 } 748 //------------------------------------------------------------------ 749 // ObjectFile protocol 750 //------------------------------------------------------------------ 751 752 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 753 DataBufferSP& data_sp, 754 lldb::offset_t data_offset, 755 const FileSpec* file, 756 lldb::offset_t file_offset, 757 lldb::offset_t length) : 758 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 759 m_header(), 760 m_uuid(), 761 m_gnu_debuglink_file(), 762 m_gnu_debuglink_crc(0), 763 m_program_headers(), 764 m_section_headers(), 765 m_dynamic_symbols(), 766 m_filespec_ap(), 767 m_entry_point_address(), 768 m_arch_spec() 769 { 770 if (file) 771 m_file = *file; 772 ::memset(&m_header, 0, sizeof(m_header)); 773 } 774 775 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 776 DataBufferSP& data_sp, 777 const lldb::ProcessSP &process_sp, 778 addr_t header_addr) : 779 ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp), 780 m_header(), 781 m_uuid(), 782 m_gnu_debuglink_file(), 783 m_gnu_debuglink_crc(0), 784 m_program_headers(), 785 m_section_headers(), 786 m_dynamic_symbols(), 787 m_filespec_ap(), 788 m_entry_point_address(), 789 m_arch_spec() 790 { 791 ::memset(&m_header, 0, sizeof(m_header)); 792 } 793 794 ObjectFileELF::~ObjectFileELF() 795 { 796 } 797 798 bool 799 ObjectFileELF::IsExecutable() const 800 { 801 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 802 } 803 804 bool 805 ObjectFileELF::SetLoadAddress (Target &target, 806 lldb::addr_t value, 807 bool value_is_offset) 808 { 809 ModuleSP module_sp = GetModule(); 810 if (module_sp) 811 { 812 size_t num_loaded_sections = 0; 813 SectionList *section_list = GetSectionList (); 814 if (section_list) 815 { 816 if (value_is_offset) 817 { 818 const size_t num_sections = section_list->GetSize(); 819 size_t sect_idx = 0; 820 821 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 822 { 823 // Iterate through the object file sections to find all 824 // of the sections that have SHF_ALLOC in their flag bits. 825 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 826 // if (section_sp && !section_sp->IsThreadSpecific()) 827 if (section_sp && section_sp->Test(SHF_ALLOC)) 828 { 829 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 830 ++num_loaded_sections; 831 } 832 } 833 return num_loaded_sections > 0; 834 } 835 else 836 { 837 // Not sure how to slide an ELF file given the base address 838 // of the ELF file in memory 839 } 840 } 841 } 842 return false; // If it changed 843 } 844 845 ByteOrder 846 ObjectFileELF::GetByteOrder() const 847 { 848 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 849 return eByteOrderBig; 850 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 851 return eByteOrderLittle; 852 return eByteOrderInvalid; 853 } 854 855 uint32_t 856 ObjectFileELF::GetAddressByteSize() const 857 { 858 return m_data.GetAddressByteSize(); 859 } 860 861 // Top 16 bits of the `Symbol` flags are available. 862 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 863 864 AddressClass 865 ObjectFileELF::GetAddressClass (addr_t file_addr) 866 { 867 auto res = ObjectFile::GetAddressClass (file_addr); 868 869 if (res != eAddressClassCode) 870 return res; 871 872 ArchSpec arch_spec; 873 GetArchitecture(arch_spec); 874 if (arch_spec.GetMachine() != llvm::Triple::arm) 875 return res; 876 877 auto symtab = GetSymtab(); 878 if (symtab == nullptr) 879 return res; 880 881 auto symbol = symtab->FindSymbolContainingFileAddress(file_addr); 882 if (symbol == nullptr) 883 return res; 884 885 // Thumb symbols have the lower bit set in the flags field so we just check 886 // for that. 887 if (symbol->GetFlags() & ARM_ELF_SYM_IS_THUMB) 888 res = eAddressClassCodeAlternateISA; 889 890 return res; 891 } 892 893 size_t 894 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 895 { 896 return std::distance(m_section_headers.begin(), I) + 1u; 897 } 898 899 size_t 900 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 901 { 902 return std::distance(m_section_headers.begin(), I) + 1u; 903 } 904 905 bool 906 ObjectFileELF::ParseHeader() 907 { 908 lldb::offset_t offset = 0; 909 return m_header.Parse(m_data, &offset); 910 } 911 912 bool 913 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 914 { 915 // Need to parse the section list to get the UUIDs, so make sure that's been done. 916 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 917 return false; 918 919 if (m_uuid.IsValid()) 920 { 921 // We have the full build id uuid. 922 *uuid = m_uuid; 923 return true; 924 } 925 else if (GetType() == ObjectFile::eTypeCoreFile) 926 { 927 uint32_t core_notes_crc = 0; 928 929 if (!ParseProgramHeaders()) 930 return false; 931 932 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 933 934 if (core_notes_crc) 935 { 936 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 937 // look different form .gnu_debuglink crc - followed by 4 bytes of note 938 // segments crc. 939 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 940 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 941 } 942 } 943 else 944 { 945 if (!m_gnu_debuglink_crc) 946 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 947 if (m_gnu_debuglink_crc) 948 { 949 // Use 4 bytes of crc from the .gnu_debuglink section. 950 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 951 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 952 } 953 } 954 955 if (m_uuid.IsValid()) 956 { 957 *uuid = m_uuid; 958 return true; 959 } 960 961 return false; 962 } 963 964 lldb_private::FileSpecList 965 ObjectFileELF::GetDebugSymbolFilePaths() 966 { 967 FileSpecList file_spec_list; 968 969 if (!m_gnu_debuglink_file.empty()) 970 { 971 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 972 file_spec_list.Append (file_spec); 973 } 974 return file_spec_list; 975 } 976 977 uint32_t 978 ObjectFileELF::GetDependentModules(FileSpecList &files) 979 { 980 size_t num_modules = ParseDependentModules(); 981 uint32_t num_specs = 0; 982 983 for (unsigned i = 0; i < num_modules; ++i) 984 { 985 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 986 num_specs++; 987 } 988 989 return num_specs; 990 } 991 992 Address 993 ObjectFileELF::GetImageInfoAddress(Target *target) 994 { 995 if (!ParseDynamicSymbols()) 996 return Address(); 997 998 SectionList *section_list = GetSectionList(); 999 if (!section_list) 1000 return Address(); 1001 1002 // Find the SHT_DYNAMIC (.dynamic) section. 1003 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1004 if (!dynsym_section_sp) 1005 return Address(); 1006 assert (dynsym_section_sp->GetObjectFile() == this); 1007 1008 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1009 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1010 if (!dynsym_hdr) 1011 return Address(); 1012 1013 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1014 { 1015 ELFDynamic &symbol = m_dynamic_symbols[i]; 1016 1017 if (symbol.d_tag == DT_DEBUG) 1018 { 1019 // Compute the offset as the number of previous entries plus the 1020 // size of d_tag. 1021 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1022 return Address(dynsym_section_sp, offset); 1023 } 1024 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1025 { 1026 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1027 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1028 if (dyn_base == LLDB_INVALID_ADDRESS) 1029 return Address(); 1030 Address addr; 1031 Error error; 1032 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1033 return addr; 1034 } 1035 } 1036 1037 return Address(); 1038 } 1039 1040 lldb_private::Address 1041 ObjectFileELF::GetEntryPointAddress () 1042 { 1043 if (m_entry_point_address.IsValid()) 1044 return m_entry_point_address; 1045 1046 if (!ParseHeader() || !IsExecutable()) 1047 return m_entry_point_address; 1048 1049 SectionList *section_list = GetSectionList(); 1050 addr_t offset = m_header.e_entry; 1051 1052 if (!section_list) 1053 m_entry_point_address.SetOffset(offset); 1054 else 1055 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1056 return m_entry_point_address; 1057 } 1058 1059 //---------------------------------------------------------------------- 1060 // ParseDependentModules 1061 //---------------------------------------------------------------------- 1062 size_t 1063 ObjectFileELF::ParseDependentModules() 1064 { 1065 if (m_filespec_ap.get()) 1066 return m_filespec_ap->GetSize(); 1067 1068 m_filespec_ap.reset(new FileSpecList()); 1069 1070 if (!ParseSectionHeaders()) 1071 return 0; 1072 1073 SectionList *section_list = GetSectionList(); 1074 if (!section_list) 1075 return 0; 1076 1077 // Find the SHT_DYNAMIC section. 1078 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1079 if (!dynsym) 1080 return 0; 1081 assert (dynsym->GetObjectFile() == this); 1082 1083 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1084 if (!header) 1085 return 0; 1086 // sh_link: section header index of string table used by entries in the section. 1087 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1088 if (!dynstr) 1089 return 0; 1090 1091 DataExtractor dynsym_data; 1092 DataExtractor dynstr_data; 1093 if (ReadSectionData(dynsym, dynsym_data) && 1094 ReadSectionData(dynstr, dynstr_data)) 1095 { 1096 ELFDynamic symbol; 1097 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1098 lldb::offset_t offset = 0; 1099 1100 // The only type of entries we are concerned with are tagged DT_NEEDED, 1101 // yielding the name of a required library. 1102 while (offset < section_size) 1103 { 1104 if (!symbol.Parse(dynsym_data, &offset)) 1105 break; 1106 1107 if (symbol.d_tag != DT_NEEDED) 1108 continue; 1109 1110 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1111 const char *lib_name = dynstr_data.PeekCStr(str_index); 1112 m_filespec_ap->Append(FileSpec(lib_name, true)); 1113 } 1114 } 1115 1116 return m_filespec_ap->GetSize(); 1117 } 1118 1119 //---------------------------------------------------------------------- 1120 // GetProgramHeaderInfo 1121 //---------------------------------------------------------------------- 1122 size_t 1123 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1124 DataExtractor &object_data, 1125 const ELFHeader &header) 1126 { 1127 // We have already parsed the program headers 1128 if (!program_headers.empty()) 1129 return program_headers.size(); 1130 1131 // If there are no program headers to read we are done. 1132 if (header.e_phnum == 0) 1133 return 0; 1134 1135 program_headers.resize(header.e_phnum); 1136 if (program_headers.size() != header.e_phnum) 1137 return 0; 1138 1139 const size_t ph_size = header.e_phnum * header.e_phentsize; 1140 const elf_off ph_offset = header.e_phoff; 1141 DataExtractor data; 1142 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1143 return 0; 1144 1145 uint32_t idx; 1146 lldb::offset_t offset; 1147 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1148 { 1149 if (program_headers[idx].Parse(data, &offset) == false) 1150 break; 1151 } 1152 1153 if (idx < program_headers.size()) 1154 program_headers.resize(idx); 1155 1156 return program_headers.size(); 1157 1158 } 1159 1160 //---------------------------------------------------------------------- 1161 // ParseProgramHeaders 1162 //---------------------------------------------------------------------- 1163 size_t 1164 ObjectFileELF::ParseProgramHeaders() 1165 { 1166 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1167 } 1168 1169 lldb_private::Error 1170 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1171 { 1172 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1173 Error error; 1174 1175 lldb::offset_t offset = 0; 1176 1177 while (true) 1178 { 1179 // Parse the note header. If this fails, bail out. 1180 ELFNote note = ELFNote(); 1181 if (!note.Parse(data, &offset)) 1182 { 1183 // We're done. 1184 return error; 1185 } 1186 1187 // If a tag processor handles the tag, it should set processed to true, and 1188 // the loop will assume the tag processing has moved entirely past the note's payload. 1189 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1190 bool processed = false; 1191 1192 if (log) 1193 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1194 1195 // Process FreeBSD ELF notes. 1196 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1197 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1198 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1199 { 1200 // We'll consume the payload below. 1201 processed = true; 1202 1203 // Pull out the min version info. 1204 uint32_t version_info; 1205 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1206 { 1207 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1208 return error; 1209 } 1210 1211 // Convert the version info into a major/minor number. 1212 const uint32_t version_major = version_info / 100000; 1213 const uint32_t version_minor = (version_info / 1000) % 100; 1214 1215 char os_name[32]; 1216 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1217 1218 // Set the elf OS version to FreeBSD. Also clear the vendor. 1219 arch_spec.GetTriple ().setOSName (os_name); 1220 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1221 1222 if (log) 1223 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1224 } 1225 // Process GNU ELF notes. 1226 else if (note.n_name == LLDB_NT_OWNER_GNU) 1227 { 1228 switch (note.n_type) 1229 { 1230 case LLDB_NT_GNU_ABI_TAG: 1231 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1232 { 1233 // We'll consume the payload below. 1234 processed = true; 1235 1236 // Pull out the min OS version supporting the ABI. 1237 uint32_t version_info[4]; 1238 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1239 { 1240 error.SetErrorString ("failed to read GNU ABI note payload"); 1241 return error; 1242 } 1243 1244 // Set the OS per the OS field. 1245 switch (version_info[0]) 1246 { 1247 case LLDB_NT_GNU_ABI_OS_LINUX: 1248 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1249 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1250 if (log) 1251 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1252 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1253 break; 1254 case LLDB_NT_GNU_ABI_OS_HURD: 1255 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1256 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1257 if (log) 1258 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1259 break; 1260 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1261 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1262 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1263 if (log) 1264 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1265 break; 1266 default: 1267 if (log) 1268 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1269 break; 1270 } 1271 } 1272 break; 1273 1274 case LLDB_NT_GNU_BUILD_ID_TAG: 1275 // Only bother processing this if we don't already have the uuid set. 1276 if (!uuid.IsValid()) 1277 { 1278 // We'll consume the payload below. 1279 processed = true; 1280 1281 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1282 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1283 { 1284 uint8_t uuidbuf[20]; 1285 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1286 { 1287 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1288 return error; 1289 } 1290 1291 // Save the build id as the UUID for the module. 1292 uuid.SetBytes (uuidbuf, note.n_descsz); 1293 } 1294 } 1295 break; 1296 } 1297 } 1298 // Process NetBSD ELF notes. 1299 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1300 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1301 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1302 { 1303 1304 // We'll consume the payload below. 1305 processed = true; 1306 1307 // Pull out the min version info. 1308 uint32_t version_info; 1309 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1310 { 1311 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1312 return error; 1313 } 1314 1315 // Set the elf OS version to NetBSD. Also clear the vendor. 1316 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1317 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1318 1319 if (log) 1320 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1321 } 1322 // Process CSR kalimba notes 1323 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1324 (note.n_name == LLDB_NT_OWNER_CSR)) 1325 { 1326 // We'll consume the payload below. 1327 processed = true; 1328 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1329 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1330 1331 // TODO At some point the description string could be processed. 1332 // It could provide a steer towards the kalimba variant which 1333 // this ELF targets. 1334 if(note.n_descsz) 1335 { 1336 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1337 (void)cstr; 1338 } 1339 } 1340 1341 if (!processed) 1342 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1343 } 1344 1345 return error; 1346 } 1347 1348 1349 //---------------------------------------------------------------------- 1350 // GetSectionHeaderInfo 1351 //---------------------------------------------------------------------- 1352 size_t 1353 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1354 lldb_private::DataExtractor &object_data, 1355 const elf::ELFHeader &header, 1356 lldb_private::UUID &uuid, 1357 std::string &gnu_debuglink_file, 1358 uint32_t &gnu_debuglink_crc, 1359 ArchSpec &arch_spec) 1360 { 1361 // Don't reparse the section headers if we already did that. 1362 if (!section_headers.empty()) 1363 return section_headers.size(); 1364 1365 // Only initialize the arch_spec to okay defaults if they're not already set. 1366 // We'll refine this with note data as we parse the notes. 1367 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1368 { 1369 const uint32_t sub_type = subTypeFromElfHeader(header); 1370 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type); 1371 1372 switch (arch_spec.GetAddressByteSize()) 1373 { 1374 case 4: 1375 { 1376 const ArchSpec host_arch32 = HostInfo::GetArchitecture(HostInfo::eArchKind32); 1377 if (host_arch32.GetCore() == arch_spec.GetCore()) 1378 { 1379 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1380 arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data()); 1381 } 1382 } 1383 break; 1384 case 8: 1385 { 1386 const ArchSpec host_arch64 = HostInfo::GetArchitecture(HostInfo::eArchKind64); 1387 if (host_arch64.GetCore() == arch_spec.GetCore()) 1388 { 1389 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1390 arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data()); 1391 } 1392 } 1393 break; 1394 } 1395 } 1396 1397 // If there are no section headers we are done. 1398 if (header.e_shnum == 0) 1399 return 0; 1400 1401 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1402 1403 section_headers.resize(header.e_shnum); 1404 if (section_headers.size() != header.e_shnum) 1405 return 0; 1406 1407 const size_t sh_size = header.e_shnum * header.e_shentsize; 1408 const elf_off sh_offset = header.e_shoff; 1409 DataExtractor sh_data; 1410 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1411 return 0; 1412 1413 uint32_t idx; 1414 lldb::offset_t offset; 1415 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1416 { 1417 if (section_headers[idx].Parse(sh_data, &offset) == false) 1418 break; 1419 } 1420 if (idx < section_headers.size()) 1421 section_headers.resize(idx); 1422 1423 const unsigned strtab_idx = header.e_shstrndx; 1424 if (strtab_idx && strtab_idx < section_headers.size()) 1425 { 1426 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1427 const size_t byte_size = sheader.sh_size; 1428 const Elf64_Off offset = sheader.sh_offset; 1429 lldb_private::DataExtractor shstr_data; 1430 1431 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1432 { 1433 for (SectionHeaderCollIter I = section_headers.begin(); 1434 I != section_headers.end(); ++I) 1435 { 1436 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1437 const ELFSectionHeaderInfo &header = *I; 1438 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1439 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1440 1441 I->section_name = name; 1442 1443 if (name == g_sect_name_gnu_debuglink) 1444 { 1445 DataExtractor data; 1446 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1447 { 1448 lldb::offset_t gnu_debuglink_offset = 0; 1449 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1450 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1451 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1452 } 1453 } 1454 1455 // Process ELF note section entries. 1456 if (header.sh_type == SHT_NOTE) 1457 { 1458 // Allow notes to refine module info. 1459 DataExtractor data; 1460 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1461 { 1462 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1463 if (error.Fail ()) 1464 { 1465 if (log) 1466 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1467 } 1468 } 1469 } 1470 } 1471 1472 return section_headers.size(); 1473 } 1474 } 1475 1476 section_headers.clear(); 1477 return 0; 1478 } 1479 1480 size_t 1481 ObjectFileELF::GetProgramHeaderCount() 1482 { 1483 return ParseProgramHeaders(); 1484 } 1485 1486 const elf::ELFProgramHeader * 1487 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1488 { 1489 if (!id || !ParseProgramHeaders()) 1490 return NULL; 1491 1492 if (--id < m_program_headers.size()) 1493 return &m_program_headers[id]; 1494 1495 return NULL; 1496 } 1497 1498 DataExtractor 1499 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1500 { 1501 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1502 if (segment_header == NULL) 1503 return DataExtractor(); 1504 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1505 } 1506 1507 //---------------------------------------------------------------------- 1508 // ParseSectionHeaders 1509 //---------------------------------------------------------------------- 1510 size_t 1511 ObjectFileELF::ParseSectionHeaders() 1512 { 1513 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1514 } 1515 1516 const ObjectFileELF::ELFSectionHeaderInfo * 1517 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1518 { 1519 if (!id || !ParseSectionHeaders()) 1520 return NULL; 1521 1522 if (--id < m_section_headers.size()) 1523 return &m_section_headers[id]; 1524 1525 return NULL; 1526 } 1527 1528 void 1529 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1530 { 1531 if (!m_sections_ap.get() && ParseSectionHeaders()) 1532 { 1533 m_sections_ap.reset(new SectionList()); 1534 1535 for (SectionHeaderCollIter I = m_section_headers.begin(); 1536 I != m_section_headers.end(); ++I) 1537 { 1538 const ELFSectionHeaderInfo &header = *I; 1539 1540 ConstString& name = I->section_name; 1541 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1542 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1543 1544 static ConstString g_sect_name_text (".text"); 1545 static ConstString g_sect_name_data (".data"); 1546 static ConstString g_sect_name_bss (".bss"); 1547 static ConstString g_sect_name_tdata (".tdata"); 1548 static ConstString g_sect_name_tbss (".tbss"); 1549 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1550 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1551 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1552 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1553 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1554 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1555 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1556 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1557 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1558 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1559 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1560 static ConstString g_sect_name_eh_frame (".eh_frame"); 1561 1562 SectionType sect_type = eSectionTypeOther; 1563 1564 bool is_thread_specific = false; 1565 1566 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1567 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1568 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1569 else if (name == g_sect_name_tdata) 1570 { 1571 sect_type = eSectionTypeData; 1572 is_thread_specific = true; 1573 } 1574 else if (name == g_sect_name_tbss) 1575 { 1576 sect_type = eSectionTypeZeroFill; 1577 is_thread_specific = true; 1578 } 1579 // .debug_abbrev – Abbreviations used in the .debug_info section 1580 // .debug_aranges – Lookup table for mapping addresses to compilation units 1581 // .debug_frame – Call frame information 1582 // .debug_info – The core DWARF information section 1583 // .debug_line – Line number information 1584 // .debug_loc – Location lists used in DW_AT_location attributes 1585 // .debug_macinfo – Macro information 1586 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1587 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1588 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1589 // .debug_str – String table used in .debug_info 1590 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1591 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1592 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1593 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1594 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1595 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1596 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1597 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1598 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1599 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1600 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1601 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1602 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1603 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1604 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1605 1606 switch (header.sh_type) 1607 { 1608 case SHT_SYMTAB: 1609 assert (sect_type == eSectionTypeOther); 1610 sect_type = eSectionTypeELFSymbolTable; 1611 break; 1612 case SHT_DYNSYM: 1613 assert (sect_type == eSectionTypeOther); 1614 sect_type = eSectionTypeELFDynamicSymbols; 1615 break; 1616 case SHT_RELA: 1617 case SHT_REL: 1618 assert (sect_type == eSectionTypeOther); 1619 sect_type = eSectionTypeELFRelocationEntries; 1620 break; 1621 case SHT_DYNAMIC: 1622 assert (sect_type == eSectionTypeOther); 1623 sect_type = eSectionTypeELFDynamicLinkInfo; 1624 break; 1625 } 1626 1627 if (eSectionTypeOther == sect_type) 1628 { 1629 // the kalimba toolchain assumes that ELF section names are free-form. It does 1630 // supports linkscripts which (can) give rise to various arbitarily named 1631 // sections being "Code" or "Data". 1632 sect_type = kalimbaSectionType(m_header, header); 1633 } 1634 1635 const uint32_t target_bytes_size = 1636 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1637 m_arch_spec.GetDataByteSize() : 1638 eSectionTypeCode == sect_type ? 1639 m_arch_spec.GetCodeByteSize() : 1; 1640 1641 elf::elf_xword log2align = (header.sh_addralign==0) 1642 ? 0 1643 : llvm::Log2_64(header.sh_addralign); 1644 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1645 this, // ObjectFile to which this section belongs and should read section data from. 1646 SectionIndex(I), // Section ID. 1647 name, // Section name. 1648 sect_type, // Section type. 1649 header.sh_addr, // VM address. 1650 vm_size, // VM size in bytes of this section. 1651 header.sh_offset, // Offset of this section in the file. 1652 file_size, // Size of the section as found in the file. 1653 log2align, // Alignment of the section 1654 header.sh_flags, // Flags for this section. 1655 target_bytes_size));// Number of host bytes per target byte 1656 1657 if (is_thread_specific) 1658 section_sp->SetIsThreadSpecific (is_thread_specific); 1659 m_sections_ap->AddSection(section_sp); 1660 } 1661 } 1662 1663 if (m_sections_ap.get()) 1664 { 1665 if (GetType() == eTypeDebugInfo) 1666 { 1667 static const SectionType g_sections[] = 1668 { 1669 eSectionTypeDWARFDebugAranges, 1670 eSectionTypeDWARFDebugInfo, 1671 eSectionTypeDWARFDebugAbbrev, 1672 eSectionTypeDWARFDebugFrame, 1673 eSectionTypeDWARFDebugLine, 1674 eSectionTypeDWARFDebugStr, 1675 eSectionTypeDWARFDebugLoc, 1676 eSectionTypeDWARFDebugMacInfo, 1677 eSectionTypeDWARFDebugPubNames, 1678 eSectionTypeDWARFDebugPubTypes, 1679 eSectionTypeDWARFDebugRanges, 1680 eSectionTypeELFSymbolTable, 1681 }; 1682 SectionList *elf_section_list = m_sections_ap.get(); 1683 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1684 { 1685 SectionType section_type = g_sections[idx]; 1686 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1687 if (section_sp) 1688 { 1689 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1690 if (module_section_sp) 1691 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1692 else 1693 unified_section_list.AddSection (section_sp); 1694 } 1695 } 1696 } 1697 else 1698 { 1699 unified_section_list = *m_sections_ap; 1700 } 1701 } 1702 } 1703 1704 // private 1705 unsigned 1706 ObjectFileELF::ParseSymbols (Symtab *symtab, 1707 user_id_t start_id, 1708 SectionList *section_list, 1709 const size_t num_symbols, 1710 const DataExtractor &symtab_data, 1711 const DataExtractor &strtab_data) 1712 { 1713 ELFSymbol symbol; 1714 lldb::offset_t offset = 0; 1715 1716 static ConstString text_section_name(".text"); 1717 static ConstString init_section_name(".init"); 1718 static ConstString fini_section_name(".fini"); 1719 static ConstString ctors_section_name(".ctors"); 1720 static ConstString dtors_section_name(".dtors"); 1721 1722 static ConstString data_section_name(".data"); 1723 static ConstString rodata_section_name(".rodata"); 1724 static ConstString rodata1_section_name(".rodata1"); 1725 static ConstString data2_section_name(".data1"); 1726 static ConstString bss_section_name(".bss"); 1727 static ConstString opd_section_name(".opd"); // For ppc64 1728 1729 //StreamFile strm(stdout, false); 1730 unsigned i; 1731 for (i = 0; i < num_symbols; ++i) 1732 { 1733 if (symbol.Parse(symtab_data, &offset) == false) 1734 break; 1735 1736 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1737 1738 // No need to add non-section symbols that have no names 1739 if (symbol.getType() != STT_SECTION && 1740 (symbol_name == NULL || symbol_name[0] == '\0')) 1741 continue; 1742 1743 //symbol.Dump (&strm, i, &strtab_data, section_list); 1744 1745 SectionSP symbol_section_sp; 1746 SymbolType symbol_type = eSymbolTypeInvalid; 1747 Elf64_Half symbol_idx = symbol.st_shndx; 1748 1749 switch (symbol_idx) 1750 { 1751 case SHN_ABS: 1752 symbol_type = eSymbolTypeAbsolute; 1753 break; 1754 case SHN_UNDEF: 1755 symbol_type = eSymbolTypeUndefined; 1756 break; 1757 default: 1758 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1759 break; 1760 } 1761 1762 // If a symbol is undefined do not process it further even if it has a STT type 1763 if (symbol_type != eSymbolTypeUndefined) 1764 { 1765 switch (symbol.getType()) 1766 { 1767 default: 1768 case STT_NOTYPE: 1769 // The symbol's type is not specified. 1770 break; 1771 1772 case STT_OBJECT: 1773 // The symbol is associated with a data object, such as a variable, 1774 // an array, etc. 1775 symbol_type = eSymbolTypeData; 1776 break; 1777 1778 case STT_FUNC: 1779 // The symbol is associated with a function or other executable code. 1780 symbol_type = eSymbolTypeCode; 1781 break; 1782 1783 case STT_SECTION: 1784 // The symbol is associated with a section. Symbol table entries of 1785 // this type exist primarily for relocation and normally have 1786 // STB_LOCAL binding. 1787 break; 1788 1789 case STT_FILE: 1790 // Conventionally, the symbol's name gives the name of the source 1791 // file associated with the object file. A file symbol has STB_LOCAL 1792 // binding, its section index is SHN_ABS, and it precedes the other 1793 // STB_LOCAL symbols for the file, if it is present. 1794 symbol_type = eSymbolTypeSourceFile; 1795 break; 1796 1797 case STT_GNU_IFUNC: 1798 // The symbol is associated with an indirect function. The actual 1799 // function will be resolved if it is referenced. 1800 symbol_type = eSymbolTypeResolver; 1801 break; 1802 } 1803 } 1804 1805 if (symbol_type == eSymbolTypeInvalid) 1806 { 1807 if (symbol_section_sp) 1808 { 1809 const ConstString §_name = symbol_section_sp->GetName(); 1810 if (sect_name == text_section_name || 1811 sect_name == init_section_name || 1812 sect_name == fini_section_name || 1813 sect_name == ctors_section_name || 1814 sect_name == dtors_section_name) 1815 { 1816 symbol_type = eSymbolTypeCode; 1817 } 1818 else if (sect_name == data_section_name || 1819 sect_name == data2_section_name || 1820 sect_name == rodata_section_name || 1821 sect_name == rodata1_section_name || 1822 sect_name == bss_section_name) 1823 { 1824 symbol_type = eSymbolTypeData; 1825 } 1826 } 1827 } 1828 1829 ArchSpec arch; 1830 int64_t symbol_value_offset = 0; 1831 uint32_t additional_flags = 0; 1832 1833 if (GetArchitecture(arch) && 1834 arch.GetMachine() == llvm::Triple::arm) 1835 { 1836 // ELF symbol tables may contain some mapping symbols. They provide 1837 // information about the underlying data. There are three of them 1838 // currently defined: 1839 // $a[.<any>]* - marks an ARM instruction sequence 1840 // $t[.<any>]* - marks a THUMB instruction sequence 1841 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1842 // These symbols interfere with normal debugger operations and we 1843 // don't need them. We can drop them here. 1844 1845 static const llvm::StringRef g_armelf_arm_marker("$a"); 1846 static const llvm::StringRef g_armelf_thumb_marker("$t"); 1847 static const llvm::StringRef g_armelf_data_marker("$d"); 1848 llvm::StringRef symbol_name_ref(symbol_name); 1849 1850 if (symbol_name && 1851 (symbol_name_ref.startswith(g_armelf_arm_marker) || 1852 symbol_name_ref.startswith(g_armelf_thumb_marker) || 1853 symbol_name_ref.startswith(g_armelf_data_marker))) 1854 continue; 1855 1856 // THUMB functions have the lower bit of their address set. Fixup 1857 // the actual address and mark the symbol as THUMB. 1858 if (symbol_type == eSymbolTypeCode && symbol.st_value & 1) 1859 { 1860 // Substracting 1 from the address effectively unsets 1861 // the low order bit, which results in the address 1862 // actually pointing to the beginning of the symbol. 1863 // This delta will be used below in conjuction with 1864 // symbol.st_value to produce the final symbol_value 1865 // that we store in the symtab. 1866 symbol_value_offset = -1; 1867 additional_flags = ARM_ELF_SYM_IS_THUMB; 1868 } 1869 } 1870 1871 // If the symbol section we've found has no data (SHT_NOBITS), then check the module section 1872 // list. This can happen if we're parsing the debug file and it has no .text section, for example. 1873 if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0)) 1874 { 1875 ModuleSP module_sp(GetModule()); 1876 if (module_sp) 1877 { 1878 SectionList *module_section_list = module_sp->GetSectionList(); 1879 if (module_section_list && module_section_list != section_list) 1880 { 1881 const ConstString §_name = symbol_section_sp->GetName(); 1882 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 1883 if (section_sp && section_sp->GetFileSize()) 1884 { 1885 symbol_section_sp = section_sp; 1886 } 1887 } 1888 } 1889 } 1890 1891 // symbol_value_offset may contain 0 for ARM symbols or -1 for 1892 // THUMB symbols. See above for more details. 1893 uint64_t symbol_value = symbol.st_value | symbol_value_offset; 1894 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 1895 symbol_value -= symbol_section_sp->GetFileAddress(); 1896 bool is_global = symbol.getBinding() == STB_GLOBAL; 1897 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 1898 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 1899 1900 Symbol dc_symbol( 1901 i + start_id, // ID is the original symbol table index. 1902 symbol_name, // Symbol name. 1903 is_mangled, // Is the symbol name mangled? 1904 symbol_type, // Type of this symbol 1905 is_global, // Is this globally visible? 1906 false, // Is this symbol debug info? 1907 false, // Is this symbol a trampoline? 1908 false, // Is this symbol artificial? 1909 symbol_section_sp, // Section in which this symbol is defined or null. 1910 symbol_value, // Offset in section or symbol value. 1911 symbol.st_size, // Size in bytes of this symbol. 1912 true, // Size is valid 1913 flags); // Symbol flags. 1914 symtab->AddSymbol(dc_symbol); 1915 } 1916 1917 return i; 1918 } 1919 1920 unsigned 1921 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 1922 { 1923 if (symtab->GetObjectFile() != this) 1924 { 1925 // If the symbol table section is owned by a different object file, have it do the 1926 // parsing. 1927 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 1928 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 1929 } 1930 1931 // Get section list for this object file. 1932 SectionList *section_list = m_sections_ap.get(); 1933 if (!section_list) 1934 return 0; 1935 1936 user_id_t symtab_id = symtab->GetID(); 1937 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 1938 assert(symtab_hdr->sh_type == SHT_SYMTAB || 1939 symtab_hdr->sh_type == SHT_DYNSYM); 1940 1941 // sh_link: section header index of associated string table. 1942 // Section ID's are ones based. 1943 user_id_t strtab_id = symtab_hdr->sh_link + 1; 1944 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 1945 1946 if (symtab && strtab) 1947 { 1948 assert (symtab->GetObjectFile() == this); 1949 assert (strtab->GetObjectFile() == this); 1950 1951 DataExtractor symtab_data; 1952 DataExtractor strtab_data; 1953 if (ReadSectionData(symtab, symtab_data) && 1954 ReadSectionData(strtab, strtab_data)) 1955 { 1956 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 1957 1958 return ParseSymbols(symbol_table, start_id, section_list, 1959 num_symbols, symtab_data, strtab_data); 1960 } 1961 } 1962 1963 return 0; 1964 } 1965 1966 size_t 1967 ObjectFileELF::ParseDynamicSymbols() 1968 { 1969 if (m_dynamic_symbols.size()) 1970 return m_dynamic_symbols.size(); 1971 1972 SectionList *section_list = GetSectionList(); 1973 if (!section_list) 1974 return 0; 1975 1976 // Find the SHT_DYNAMIC section. 1977 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1978 if (!dynsym) 1979 return 0; 1980 assert (dynsym->GetObjectFile() == this); 1981 1982 ELFDynamic symbol; 1983 DataExtractor dynsym_data; 1984 if (ReadSectionData(dynsym, dynsym_data)) 1985 { 1986 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1987 lldb::offset_t cursor = 0; 1988 1989 while (cursor < section_size) 1990 { 1991 if (!symbol.Parse(dynsym_data, &cursor)) 1992 break; 1993 1994 m_dynamic_symbols.push_back(symbol); 1995 } 1996 } 1997 1998 return m_dynamic_symbols.size(); 1999 } 2000 2001 const ELFDynamic * 2002 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2003 { 2004 if (!ParseDynamicSymbols()) 2005 return NULL; 2006 2007 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2008 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2009 for ( ; I != E; ++I) 2010 { 2011 ELFDynamic *symbol = &*I; 2012 2013 if (symbol->d_tag == tag) 2014 return symbol; 2015 } 2016 2017 return NULL; 2018 } 2019 2020 unsigned 2021 ObjectFileELF::PLTRelocationType() 2022 { 2023 // DT_PLTREL 2024 // This member specifies the type of relocation entry to which the 2025 // procedure linkage table refers. The d_val member holds DT_REL or 2026 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2027 // must use the same relocation. 2028 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2029 2030 if (symbol) 2031 return symbol->d_val; 2032 2033 return 0; 2034 } 2035 2036 static unsigned 2037 ParsePLTRelocations(Symtab *symbol_table, 2038 user_id_t start_id, 2039 unsigned rel_type, 2040 const ELFHeader *hdr, 2041 const ELFSectionHeader *rel_hdr, 2042 const ELFSectionHeader *plt_hdr, 2043 const ELFSectionHeader *sym_hdr, 2044 const lldb::SectionSP &plt_section_sp, 2045 DataExtractor &rel_data, 2046 DataExtractor &symtab_data, 2047 DataExtractor &strtab_data) 2048 { 2049 ELFRelocation rel(rel_type); 2050 ELFSymbol symbol; 2051 lldb::offset_t offset = 0; 2052 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2053 // So round the entsize up by the alignment if addralign is set. 2054 const elf_xword plt_entsize = plt_hdr->sh_addralign ? 2055 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2056 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2057 2058 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2059 reloc_info_fn reloc_type; 2060 reloc_info_fn reloc_symbol; 2061 2062 if (hdr->Is32Bit()) 2063 { 2064 reloc_type = ELFRelocation::RelocType32; 2065 reloc_symbol = ELFRelocation::RelocSymbol32; 2066 } 2067 else 2068 { 2069 reloc_type = ELFRelocation::RelocType64; 2070 reloc_symbol = ELFRelocation::RelocSymbol64; 2071 } 2072 2073 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2074 unsigned i; 2075 for (i = 0; i < num_relocations; ++i) 2076 { 2077 if (rel.Parse(rel_data, &offset) == false) 2078 break; 2079 2080 if (reloc_type(rel) != slot_type) 2081 continue; 2082 2083 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2084 uint64_t plt_index = (i + 1) * plt_entsize; 2085 2086 if (!symbol.Parse(symtab_data, &symbol_offset)) 2087 break; 2088 2089 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2090 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2091 2092 Symbol jump_symbol( 2093 i + start_id, // Symbol table index 2094 symbol_name, // symbol name. 2095 is_mangled, // is the symbol name mangled? 2096 eSymbolTypeTrampoline, // Type of this symbol 2097 false, // Is this globally visible? 2098 false, // Is this symbol debug info? 2099 true, // Is this symbol a trampoline? 2100 true, // Is this symbol artificial? 2101 plt_section_sp, // Section in which this symbol is defined or null. 2102 plt_index, // Offset in section or symbol value. 2103 plt_entsize, // Size in bytes of this symbol. 2104 true, // Size is valid 2105 0); // Symbol flags. 2106 2107 symbol_table->AddSymbol(jump_symbol); 2108 } 2109 2110 return i; 2111 } 2112 2113 unsigned 2114 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2115 user_id_t start_id, 2116 const ELFSectionHeaderInfo *rel_hdr, 2117 user_id_t rel_id) 2118 { 2119 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2120 2121 // The link field points to the associated symbol table. The info field 2122 // points to the section holding the plt. 2123 user_id_t symtab_id = rel_hdr->sh_link; 2124 user_id_t plt_id = rel_hdr->sh_info; 2125 2126 if (!symtab_id || !plt_id) 2127 return 0; 2128 2129 // Section ID's are ones based; 2130 symtab_id++; 2131 plt_id++; 2132 2133 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2134 if (!plt_hdr) 2135 return 0; 2136 2137 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2138 if (!sym_hdr) 2139 return 0; 2140 2141 SectionList *section_list = m_sections_ap.get(); 2142 if (!section_list) 2143 return 0; 2144 2145 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2146 if (!rel_section) 2147 return 0; 2148 2149 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2150 if (!plt_section_sp) 2151 return 0; 2152 2153 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2154 if (!symtab) 2155 return 0; 2156 2157 // sh_link points to associated string table. 2158 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2159 if (!strtab) 2160 return 0; 2161 2162 DataExtractor rel_data; 2163 if (!ReadSectionData(rel_section, rel_data)) 2164 return 0; 2165 2166 DataExtractor symtab_data; 2167 if (!ReadSectionData(symtab, symtab_data)) 2168 return 0; 2169 2170 DataExtractor strtab_data; 2171 if (!ReadSectionData(strtab, strtab_data)) 2172 return 0; 2173 2174 unsigned rel_type = PLTRelocationType(); 2175 if (!rel_type) 2176 return 0; 2177 2178 return ParsePLTRelocations (symbol_table, 2179 start_id, 2180 rel_type, 2181 &m_header, 2182 rel_hdr, 2183 plt_hdr, 2184 sym_hdr, 2185 plt_section_sp, 2186 rel_data, 2187 symtab_data, 2188 strtab_data); 2189 } 2190 2191 unsigned 2192 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2193 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2194 DataExtractor &rel_data, DataExtractor &symtab_data, 2195 DataExtractor &debug_data, Section* rel_section) 2196 { 2197 ELFRelocation rel(rel_hdr->sh_type); 2198 lldb::addr_t offset = 0; 2199 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2200 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2201 reloc_info_fn reloc_type; 2202 reloc_info_fn reloc_symbol; 2203 2204 if (hdr->Is32Bit()) 2205 { 2206 reloc_type = ELFRelocation::RelocType32; 2207 reloc_symbol = ELFRelocation::RelocSymbol32; 2208 } 2209 else 2210 { 2211 reloc_type = ELFRelocation::RelocType64; 2212 reloc_symbol = ELFRelocation::RelocSymbol64; 2213 } 2214 2215 for (unsigned i = 0; i < num_relocations; ++i) 2216 { 2217 if (rel.Parse(rel_data, &offset) == false) 2218 break; 2219 2220 Symbol* symbol = NULL; 2221 2222 if (hdr->Is32Bit()) 2223 { 2224 switch (reloc_type(rel)) { 2225 case R_386_32: 2226 case R_386_PC32: 2227 default: 2228 assert(false && "unexpected relocation type"); 2229 } 2230 } else { 2231 switch (reloc_type(rel)) { 2232 case R_X86_64_64: 2233 { 2234 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2235 if (symbol) 2236 { 2237 addr_t value = symbol->GetAddress().GetFileAddress(); 2238 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2239 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2240 *dst = value + ELFRelocation::RelocAddend64(rel); 2241 } 2242 break; 2243 } 2244 case R_X86_64_32: 2245 case R_X86_64_32S: 2246 { 2247 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2248 if (symbol) 2249 { 2250 addr_t value = symbol->GetAddress().GetFileAddress(); 2251 value += ELFRelocation::RelocAddend32(rel); 2252 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2253 (reloc_type(rel) == R_X86_64_32S && 2254 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2255 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2256 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2257 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2258 *dst = truncated_addr; 2259 } 2260 break; 2261 } 2262 case R_X86_64_PC32: 2263 default: 2264 assert(false && "unexpected relocation type"); 2265 } 2266 } 2267 } 2268 2269 return 0; 2270 } 2271 2272 unsigned 2273 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2274 { 2275 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2276 2277 // Parse in the section list if needed. 2278 SectionList *section_list = GetSectionList(); 2279 if (!section_list) 2280 return 0; 2281 2282 // Section ID's are ones based. 2283 user_id_t symtab_id = rel_hdr->sh_link + 1; 2284 user_id_t debug_id = rel_hdr->sh_info + 1; 2285 2286 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2287 if (!symtab_hdr) 2288 return 0; 2289 2290 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2291 if (!debug_hdr) 2292 return 0; 2293 2294 Section *rel = section_list->FindSectionByID(rel_id).get(); 2295 if (!rel) 2296 return 0; 2297 2298 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2299 if (!symtab) 2300 return 0; 2301 2302 Section *debug = section_list->FindSectionByID(debug_id).get(); 2303 if (!debug) 2304 return 0; 2305 2306 DataExtractor rel_data; 2307 DataExtractor symtab_data; 2308 DataExtractor debug_data; 2309 2310 if (ReadSectionData(rel, rel_data) && 2311 ReadSectionData(symtab, symtab_data) && 2312 ReadSectionData(debug, debug_data)) 2313 { 2314 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2315 rel_data, symtab_data, debug_data, debug); 2316 } 2317 2318 return 0; 2319 } 2320 2321 Symtab * 2322 ObjectFileELF::GetSymtab() 2323 { 2324 ModuleSP module_sp(GetModule()); 2325 if (!module_sp) 2326 return NULL; 2327 2328 // We always want to use the main object file so we (hopefully) only have one cached copy 2329 // of our symtab, dynamic sections, etc. 2330 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2331 if (module_obj_file && module_obj_file != this) 2332 return module_obj_file->GetSymtab(); 2333 2334 if (m_symtab_ap.get() == NULL) 2335 { 2336 SectionList *section_list = GetSectionList(); 2337 if (!section_list) 2338 return NULL; 2339 2340 uint64_t symbol_id = 0; 2341 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2342 2343 m_symtab_ap.reset(new Symtab(this)); 2344 2345 // Sharable objects and dynamic executables usually have 2 distinct symbol 2346 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2347 // version of the symtab that only contains global symbols. The information found 2348 // in the dynsym is therefore also found in the symtab, while the reverse is not 2349 // necessarily true. 2350 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2351 if (!symtab) 2352 { 2353 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2354 // then use the dynsym section which should always be there. 2355 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2356 } 2357 if (symtab) 2358 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2359 2360 // DT_JMPREL 2361 // If present, this entry's d_ptr member holds the address of relocation 2362 // entries associated solely with the procedure linkage table. Separating 2363 // these relocation entries lets the dynamic linker ignore them during 2364 // process initialization, if lazy binding is enabled. If this entry is 2365 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2366 // also be present. 2367 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2368 if (symbol) 2369 { 2370 // Synthesize trampoline symbols to help navigate the PLT. 2371 addr_t addr = symbol->d_ptr; 2372 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2373 if (reloc_section) 2374 { 2375 user_id_t reloc_id = reloc_section->GetID(); 2376 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2377 assert(reloc_header); 2378 2379 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2380 } 2381 } 2382 } 2383 2384 for (SectionHeaderCollIter I = m_section_headers.begin(); 2385 I != m_section_headers.end(); ++I) 2386 { 2387 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2388 { 2389 if (CalculateType() == eTypeObjectFile) 2390 { 2391 const char *section_name = I->section_name.AsCString(""); 2392 if (strstr(section_name, ".rela.debug") || 2393 strstr(section_name, ".rel.debug")) 2394 { 2395 const ELFSectionHeader &reloc_header = *I; 2396 user_id_t reloc_id = SectionIndex(I); 2397 RelocateDebugSections(&reloc_header, reloc_id); 2398 } 2399 } 2400 } 2401 } 2402 return m_symtab_ap.get(); 2403 } 2404 2405 Symbol * 2406 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2407 { 2408 if (!m_symtab_ap.get()) 2409 return nullptr; // GetSymtab() should be called first. 2410 2411 const SectionList *section_list = GetSectionList(); 2412 if (!section_list) 2413 return nullptr; 2414 2415 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2416 { 2417 AddressRange range; 2418 if (eh_frame->GetAddressRange (so_addr, range)) 2419 { 2420 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2421 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2422 if (symbol) 2423 return symbol; 2424 2425 // Note that a (stripped) symbol won't be found by GetSymtab()... 2426 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2427 if (eh_sym_section_sp.get()) 2428 { 2429 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2430 addr_t offset = file_addr - section_base; 2431 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2432 2433 Symbol eh_symbol( 2434 symbol_id, // Symbol table index. 2435 "???", // Symbol name. 2436 false, // Is the symbol name mangled? 2437 eSymbolTypeCode, // Type of this symbol. 2438 true, // Is this globally visible? 2439 false, // Is this symbol debug info? 2440 false, // Is this symbol a trampoline? 2441 true, // Is this symbol artificial? 2442 eh_sym_section_sp, // Section in which this symbol is defined or null. 2443 offset, // Offset in section or symbol value. 2444 range.GetByteSize(), // Size in bytes of this symbol. 2445 true, // Size is valid. 2446 0); // Symbol flags. 2447 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2448 return m_symtab_ap->SymbolAtIndex(symbol_id); 2449 } 2450 } 2451 } 2452 return nullptr; 2453 } 2454 2455 2456 bool 2457 ObjectFileELF::IsStripped () 2458 { 2459 // TODO: determine this for ELF 2460 return false; 2461 } 2462 2463 //===----------------------------------------------------------------------===// 2464 // Dump 2465 // 2466 // Dump the specifics of the runtime file container (such as any headers 2467 // segments, sections, etc). 2468 //---------------------------------------------------------------------- 2469 void 2470 ObjectFileELF::Dump(Stream *s) 2471 { 2472 DumpELFHeader(s, m_header); 2473 s->EOL(); 2474 DumpELFProgramHeaders(s); 2475 s->EOL(); 2476 DumpELFSectionHeaders(s); 2477 s->EOL(); 2478 SectionList *section_list = GetSectionList(); 2479 if (section_list) 2480 section_list->Dump(s, NULL, true, UINT32_MAX); 2481 Symtab *symtab = GetSymtab(); 2482 if (symtab) 2483 symtab->Dump(s, NULL, eSortOrderNone); 2484 s->EOL(); 2485 DumpDependentModules(s); 2486 s->EOL(); 2487 } 2488 2489 //---------------------------------------------------------------------- 2490 // DumpELFHeader 2491 // 2492 // Dump the ELF header to the specified output stream 2493 //---------------------------------------------------------------------- 2494 void 2495 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2496 { 2497 s->PutCString("ELF Header\n"); 2498 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2499 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2500 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2501 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2502 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2503 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2504 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2505 2506 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2507 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2508 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2509 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2510 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2511 2512 s->Printf("e_type = 0x%4.4x ", header.e_type); 2513 DumpELFHeader_e_type(s, header.e_type); 2514 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2515 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2516 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2517 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2518 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2519 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2520 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2521 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2522 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2523 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2524 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2525 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2526 } 2527 2528 //---------------------------------------------------------------------- 2529 // DumpELFHeader_e_type 2530 // 2531 // Dump an token value for the ELF header member e_type 2532 //---------------------------------------------------------------------- 2533 void 2534 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2535 { 2536 switch (e_type) 2537 { 2538 case ET_NONE: *s << "ET_NONE"; break; 2539 case ET_REL: *s << "ET_REL"; break; 2540 case ET_EXEC: *s << "ET_EXEC"; break; 2541 case ET_DYN: *s << "ET_DYN"; break; 2542 case ET_CORE: *s << "ET_CORE"; break; 2543 default: 2544 break; 2545 } 2546 } 2547 2548 //---------------------------------------------------------------------- 2549 // DumpELFHeader_e_ident_EI_DATA 2550 // 2551 // Dump an token value for the ELF header member e_ident[EI_DATA] 2552 //---------------------------------------------------------------------- 2553 void 2554 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2555 { 2556 switch (ei_data) 2557 { 2558 case ELFDATANONE: *s << "ELFDATANONE"; break; 2559 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2560 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2561 default: 2562 break; 2563 } 2564 } 2565 2566 2567 //---------------------------------------------------------------------- 2568 // DumpELFProgramHeader 2569 // 2570 // Dump a single ELF program header to the specified output stream 2571 //---------------------------------------------------------------------- 2572 void 2573 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2574 { 2575 DumpELFProgramHeader_p_type(s, ph.p_type); 2576 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2577 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2578 2579 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2580 s->Printf(") %8.8" PRIx64, ph.p_align); 2581 } 2582 2583 //---------------------------------------------------------------------- 2584 // DumpELFProgramHeader_p_type 2585 // 2586 // Dump an token value for the ELF program header member p_type which 2587 // describes the type of the program header 2588 // ---------------------------------------------------------------------- 2589 void 2590 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2591 { 2592 const int kStrWidth = 15; 2593 switch (p_type) 2594 { 2595 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2596 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2597 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2598 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2599 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2600 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2601 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2602 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2603 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2604 default: 2605 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2606 break; 2607 } 2608 } 2609 2610 2611 //---------------------------------------------------------------------- 2612 // DumpELFProgramHeader_p_flags 2613 // 2614 // Dump an token value for the ELF program header member p_flags 2615 //---------------------------------------------------------------------- 2616 void 2617 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2618 { 2619 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2620 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2621 << ((p_flags & PF_W) ? "PF_W" : " ") 2622 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2623 << ((p_flags & PF_R) ? "PF_R" : " "); 2624 } 2625 2626 //---------------------------------------------------------------------- 2627 // DumpELFProgramHeaders 2628 // 2629 // Dump all of the ELF program header to the specified output stream 2630 //---------------------------------------------------------------------- 2631 void 2632 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2633 { 2634 if (!ParseProgramHeaders()) 2635 return; 2636 2637 s->PutCString("Program Headers\n"); 2638 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2639 "p_filesz p_memsz p_flags p_align\n"); 2640 s->PutCString("==== --------------- -------- -------- -------- " 2641 "-------- -------- ------------------------- --------\n"); 2642 2643 uint32_t idx = 0; 2644 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2645 I != m_program_headers.end(); ++I, ++idx) 2646 { 2647 s->Printf("[%2u] ", idx); 2648 ObjectFileELF::DumpELFProgramHeader(s, *I); 2649 s->EOL(); 2650 } 2651 } 2652 2653 //---------------------------------------------------------------------- 2654 // DumpELFSectionHeader 2655 // 2656 // Dump a single ELF section header to the specified output stream 2657 //---------------------------------------------------------------------- 2658 void 2659 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2660 { 2661 s->Printf("%8.8x ", sh.sh_name); 2662 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2663 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2664 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2665 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2666 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2667 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2668 } 2669 2670 //---------------------------------------------------------------------- 2671 // DumpELFSectionHeader_sh_type 2672 // 2673 // Dump an token value for the ELF section header member sh_type which 2674 // describes the type of the section 2675 //---------------------------------------------------------------------- 2676 void 2677 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2678 { 2679 const int kStrWidth = 12; 2680 switch (sh_type) 2681 { 2682 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2683 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2684 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2685 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2686 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2687 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2688 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2689 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2690 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2691 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2692 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2693 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2694 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2695 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2696 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2697 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2698 default: 2699 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2700 break; 2701 } 2702 } 2703 2704 //---------------------------------------------------------------------- 2705 // DumpELFSectionHeader_sh_flags 2706 // 2707 // Dump an token value for the ELF section header member sh_flags 2708 //---------------------------------------------------------------------- 2709 void 2710 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2711 { 2712 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2713 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2714 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2715 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2716 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2717 } 2718 2719 //---------------------------------------------------------------------- 2720 // DumpELFSectionHeaders 2721 // 2722 // Dump all of the ELF section header to the specified output stream 2723 //---------------------------------------------------------------------- 2724 void 2725 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2726 { 2727 if (!ParseSectionHeaders()) 2728 return; 2729 2730 s->PutCString("Section Headers\n"); 2731 s->PutCString("IDX name type flags " 2732 "addr offset size link info addralgn " 2733 "entsize Name\n"); 2734 s->PutCString("==== -------- ------------ -------------------------------- " 2735 "-------- -------- -------- -------- -------- -------- " 2736 "-------- ====================\n"); 2737 2738 uint32_t idx = 0; 2739 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2740 I != m_section_headers.end(); ++I, ++idx) 2741 { 2742 s->Printf("[%2u] ", idx); 2743 ObjectFileELF::DumpELFSectionHeader(s, *I); 2744 const char* section_name = I->section_name.AsCString(""); 2745 if (section_name) 2746 *s << ' ' << section_name << "\n"; 2747 } 2748 } 2749 2750 void 2751 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 2752 { 2753 size_t num_modules = ParseDependentModules(); 2754 2755 if (num_modules > 0) 2756 { 2757 s->PutCString("Dependent Modules:\n"); 2758 for (unsigned i = 0; i < num_modules; ++i) 2759 { 2760 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 2761 s->Printf(" %s\n", spec.GetFilename().GetCString()); 2762 } 2763 } 2764 } 2765 2766 bool 2767 ObjectFileELF::GetArchitecture (ArchSpec &arch) 2768 { 2769 if (!ParseHeader()) 2770 return false; 2771 2772 if (m_section_headers.empty()) 2773 { 2774 // Allow elf notes to be parsed which may affect the detected architecture. 2775 ParseSectionHeaders(); 2776 } 2777 2778 arch = m_arch_spec; 2779 return true; 2780 } 2781 2782 ObjectFile::Type 2783 ObjectFileELF::CalculateType() 2784 { 2785 switch (m_header.e_type) 2786 { 2787 case llvm::ELF::ET_NONE: 2788 // 0 - No file type 2789 return eTypeUnknown; 2790 2791 case llvm::ELF::ET_REL: 2792 // 1 - Relocatable file 2793 return eTypeObjectFile; 2794 2795 case llvm::ELF::ET_EXEC: 2796 // 2 - Executable file 2797 return eTypeExecutable; 2798 2799 case llvm::ELF::ET_DYN: 2800 // 3 - Shared object file 2801 return eTypeSharedLibrary; 2802 2803 case ET_CORE: 2804 // 4 - Core file 2805 return eTypeCoreFile; 2806 2807 default: 2808 break; 2809 } 2810 return eTypeUnknown; 2811 } 2812 2813 ObjectFile::Strata 2814 ObjectFileELF::CalculateStrata() 2815 { 2816 switch (m_header.e_type) 2817 { 2818 case llvm::ELF::ET_NONE: 2819 // 0 - No file type 2820 return eStrataUnknown; 2821 2822 case llvm::ELF::ET_REL: 2823 // 1 - Relocatable file 2824 return eStrataUnknown; 2825 2826 case llvm::ELF::ET_EXEC: 2827 // 2 - Executable file 2828 // TODO: is there any way to detect that an executable is a kernel 2829 // related executable by inspecting the program headers, section 2830 // headers, symbols, or any other flag bits??? 2831 return eStrataUser; 2832 2833 case llvm::ELF::ET_DYN: 2834 // 3 - Shared object file 2835 // TODO: is there any way to detect that an shared library is a kernel 2836 // related executable by inspecting the program headers, section 2837 // headers, symbols, or any other flag bits??? 2838 return eStrataUnknown; 2839 2840 case ET_CORE: 2841 // 4 - Core file 2842 // TODO: is there any way to detect that an core file is a kernel 2843 // related executable by inspecting the program headers, section 2844 // headers, symbols, or any other flag bits??? 2845 return eStrataUnknown; 2846 2847 default: 2848 break; 2849 } 2850 return eStrataUnknown; 2851 } 2852 2853