1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 #include "lldb/Host/HostInfo.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Support/MathExtras.h" 35 36 #define CASE_AND_STREAM(s, def, width) \ 37 case def: s->Printf("%-*s", width, #def); break; 38 39 using namespace lldb; 40 using namespace lldb_private; 41 using namespace elf; 42 using namespace llvm::ELF; 43 44 namespace { 45 46 // ELF note owner definitions 47 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 48 const char *const LLDB_NT_OWNER_GNU = "GNU"; 49 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 50 const char *const LLDB_NT_OWNER_CSR = "csr"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 subTypeFromElfHeader(const elf::ELFHeader& header) 287 { 288 return 289 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 290 kalimbaVariantFromElfFlags(header.e_flags) : 291 LLDB_INVALID_CPUTYPE; 292 } 293 294 //! The kalimba toolchain identifies a code section as being 295 //! one with the SHT_PROGBITS set in the section sh_type and the top 296 //! bit in the 32-bit address field set. 297 static lldb::SectionType 298 kalimbaSectionType( 299 const elf::ELFHeader& header, 300 const elf::ELFSectionHeader& sect_hdr) 301 { 302 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 303 { 304 return eSectionTypeOther; 305 } 306 307 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 308 { 309 return eSectionTypeZeroFill; 310 } 311 312 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 313 { 314 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 315 return KAL_CODE_BIT & sect_hdr.sh_addr ? 316 eSectionTypeCode : eSectionTypeData; 317 } 318 319 return eSectionTypeOther; 320 } 321 322 // Arbitrary constant used as UUID prefix for core files. 323 const uint32_t 324 ObjectFileELF::g_core_uuid_magic(0xE210C); 325 326 //------------------------------------------------------------------ 327 // Static methods. 328 //------------------------------------------------------------------ 329 void 330 ObjectFileELF::Initialize() 331 { 332 PluginManager::RegisterPlugin(GetPluginNameStatic(), 333 GetPluginDescriptionStatic(), 334 CreateInstance, 335 CreateMemoryInstance, 336 GetModuleSpecifications); 337 } 338 339 void 340 ObjectFileELF::Terminate() 341 { 342 PluginManager::UnregisterPlugin(CreateInstance); 343 } 344 345 lldb_private::ConstString 346 ObjectFileELF::GetPluginNameStatic() 347 { 348 static ConstString g_name("elf"); 349 return g_name; 350 } 351 352 const char * 353 ObjectFileELF::GetPluginDescriptionStatic() 354 { 355 return "ELF object file reader."; 356 } 357 358 ObjectFile * 359 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 360 DataBufferSP &data_sp, 361 lldb::offset_t data_offset, 362 const lldb_private::FileSpec* file, 363 lldb::offset_t file_offset, 364 lldb::offset_t length) 365 { 366 if (!data_sp) 367 { 368 data_sp = file->MemoryMapFileContents(file_offset, length); 369 data_offset = 0; 370 } 371 372 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 373 { 374 const uint8_t *magic = data_sp->GetBytes() + data_offset; 375 if (ELFHeader::MagicBytesMatch(magic)) 376 { 377 // Update the data to contain the entire file if it doesn't already 378 if (data_sp->GetByteSize() < length) { 379 data_sp = file->MemoryMapFileContents(file_offset, length); 380 data_offset = 0; 381 magic = data_sp->GetBytes(); 382 } 383 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 384 if (address_size == 4 || address_size == 8) 385 { 386 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 387 ArchSpec spec; 388 if (objfile_ap->GetArchitecture(spec) && 389 objfile_ap->SetModulesArchitecture(spec)) 390 return objfile_ap.release(); 391 } 392 } 393 } 394 return NULL; 395 } 396 397 398 ObjectFile* 399 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 400 DataBufferSP& data_sp, 401 const lldb::ProcessSP &process_sp, 402 lldb::addr_t header_addr) 403 { 404 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 405 { 406 const uint8_t *magic = data_sp->GetBytes(); 407 if (ELFHeader::MagicBytesMatch(magic)) 408 { 409 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 410 if (address_size == 4 || address_size == 8) 411 { 412 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 413 ArchSpec spec; 414 if (objfile_ap->GetArchitecture(spec) && 415 objfile_ap->SetModulesArchitecture(spec)) 416 return objfile_ap.release(); 417 } 418 } 419 } 420 return NULL; 421 } 422 423 bool 424 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 425 lldb::addr_t data_offset, 426 lldb::addr_t data_length) 427 { 428 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 429 { 430 const uint8_t *magic = data_sp->GetBytes() + data_offset; 431 return ELFHeader::MagicBytesMatch(magic); 432 } 433 return false; 434 } 435 436 /* 437 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 438 * 439 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 440 * code or tables extracted from it, as desired without restriction. 441 */ 442 static uint32_t 443 calc_crc32(uint32_t crc, const void *buf, size_t size) 444 { 445 static const uint32_t g_crc32_tab[] = 446 { 447 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 448 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 449 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 450 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 451 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 452 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 453 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 454 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 455 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 456 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 457 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 458 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 459 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 460 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 461 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 462 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 463 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 464 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 465 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 466 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 467 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 468 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 469 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 470 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 471 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 472 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 473 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 474 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 475 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 476 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 477 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 478 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 479 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 480 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 481 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 482 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 483 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 484 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 485 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 486 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 487 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 488 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 489 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 490 }; 491 const uint8_t *p = (const uint8_t *)buf; 492 493 crc = crc ^ ~0U; 494 while (size--) 495 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 496 return crc ^ ~0U; 497 } 498 499 static uint32_t 500 calc_gnu_debuglink_crc32(const void *buf, size_t size) 501 { 502 return calc_crc32(0U, buf, size); 503 } 504 505 uint32_t 506 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 507 DataExtractor& object_data) 508 { 509 typedef ProgramHeaderCollConstIter Iter; 510 511 uint32_t core_notes_crc = 0; 512 513 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 514 { 515 if (I->p_type == llvm::ELF::PT_NOTE) 516 { 517 const elf_off ph_offset = I->p_offset; 518 const size_t ph_size = I->p_filesz; 519 520 DataExtractor segment_data; 521 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 522 { 523 // The ELF program header contained incorrect data, 524 // probably corefile is incomplete or corrupted. 525 break; 526 } 527 528 core_notes_crc = calc_crc32(core_notes_crc, 529 segment_data.GetDataStart(), 530 segment_data.GetByteSize()); 531 } 532 } 533 534 return core_notes_crc; 535 } 536 537 static const char* 538 OSABIAsCString (unsigned char osabi_byte) 539 { 540 #define _MAKE_OSABI_CASE(x) case x: return #x 541 switch (osabi_byte) 542 { 543 _MAKE_OSABI_CASE(ELFOSABI_NONE); 544 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 545 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 546 _MAKE_OSABI_CASE(ELFOSABI_GNU); 547 _MAKE_OSABI_CASE(ELFOSABI_HURD); 548 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 549 _MAKE_OSABI_CASE(ELFOSABI_AIX); 550 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 551 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 552 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 553 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 554 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 555 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 556 _MAKE_OSABI_CASE(ELFOSABI_NSK); 557 _MAKE_OSABI_CASE(ELFOSABI_AROS); 558 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 559 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 560 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 561 _MAKE_OSABI_CASE(ELFOSABI_ARM); 562 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 563 default: 564 return "<unknown-osabi>"; 565 } 566 #undef _MAKE_OSABI_CASE 567 } 568 569 static bool 570 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 571 { 572 switch (osabi_byte) 573 { 574 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 575 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 576 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 577 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 578 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 579 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 580 default: 581 ostype = llvm::Triple::OSType::UnknownOS; 582 } 583 return ostype != llvm::Triple::OSType::UnknownOS; 584 } 585 586 size_t 587 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 588 lldb::DataBufferSP& data_sp, 589 lldb::offset_t data_offset, 590 lldb::offset_t file_offset, 591 lldb::offset_t length, 592 lldb_private::ModuleSpecList &specs) 593 { 594 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 595 596 const size_t initial_count = specs.GetSize(); 597 598 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 599 { 600 DataExtractor data; 601 data.SetData(data_sp); 602 elf::ELFHeader header; 603 if (header.Parse(data, &data_offset)) 604 { 605 if (data_sp) 606 { 607 ModuleSpec spec; 608 spec.GetFileSpec() = file; 609 610 const uint32_t sub_type = subTypeFromElfHeader(header); 611 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 612 header.e_machine, 613 sub_type); 614 615 if (spec.GetArchitecture().IsValid()) 616 { 617 llvm::Triple::OSType ostype; 618 // First try to determine the OS type from the OSABI field in the elf header. 619 620 if (log) 621 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 622 if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS) 623 { 624 spec.GetArchitecture ().GetTriple ().setOS (ostype); 625 626 // Also clear the vendor so we don't end up with situations like 627 // x86_64-apple-FreeBSD. 628 spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 629 630 if (log) 631 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 632 } 633 634 // Try to get the UUID from the section list. Usually that's at the end, so 635 // map the file in if we don't have it already. 636 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 637 if (section_header_end > data_sp->GetByteSize()) 638 { 639 data_sp = file.MemoryMapFileContents (file_offset, section_header_end); 640 data.SetData(data_sp); 641 } 642 643 uint32_t gnu_debuglink_crc = 0; 644 std::string gnu_debuglink_file; 645 SectionHeaderColl section_headers; 646 lldb_private::UUID &uuid = spec.GetUUID(); 647 648 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 649 650 // If the module vendor is not set and the module OS matches this host OS, set the module vendor to the host vendor. 651 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 652 if (spec_triple.getVendor () == llvm::Triple::VendorType::UnknownVendor) 653 { 654 const llvm::Triple &host_triple = HostInfo::GetArchitecture().GetTriple(); 655 if (spec_triple.getOS () == host_triple.getOS ()) 656 spec_triple.setVendor (host_triple.getVendor ()); 657 } 658 659 if (log) 660 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 661 662 if (!uuid.IsValid()) 663 { 664 uint32_t core_notes_crc = 0; 665 666 if (!gnu_debuglink_crc) 667 { 668 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 669 "Calculating module crc32 %s with size %" PRIu64 " KiB", 670 file.GetLastPathComponent().AsCString(), 671 (file.GetByteSize()-file_offset)/1024); 672 673 // For core files - which usually don't happen to have a gnu_debuglink, 674 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 675 // Thus we will need to fallback to something simpler. 676 if (header.e_type == llvm::ELF::ET_CORE) 677 { 678 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 679 if (program_headers_end > data_sp->GetByteSize()) 680 { 681 data_sp = file.MemoryMapFileContents(file_offset, program_headers_end); 682 data.SetData(data_sp); 683 } 684 ProgramHeaderColl program_headers; 685 GetProgramHeaderInfo(program_headers, data, header); 686 687 size_t segment_data_end = 0; 688 for (ProgramHeaderCollConstIter I = program_headers.begin(); 689 I != program_headers.end(); ++I) 690 { 691 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 692 } 693 694 if (segment_data_end > data_sp->GetByteSize()) 695 { 696 data_sp = file.MemoryMapFileContents(file_offset, segment_data_end); 697 data.SetData(data_sp); 698 } 699 700 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 701 } 702 else 703 { 704 // Need to map entire file into memory to calculate the crc. 705 data_sp = file.MemoryMapFileContents (file_offset, SIZE_MAX); 706 data.SetData(data_sp); 707 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 708 } 709 } 710 if (gnu_debuglink_crc) 711 { 712 // Use 4 bytes of crc from the .gnu_debuglink section. 713 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 714 uuid.SetBytes (uuidt, sizeof(uuidt)); 715 } 716 else if (core_notes_crc) 717 { 718 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 719 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 720 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 721 uuid.SetBytes (uuidt, sizeof(uuidt)); 722 } 723 } 724 725 specs.Append(spec); 726 } 727 } 728 } 729 } 730 731 return specs.GetSize() - initial_count; 732 } 733 734 //------------------------------------------------------------------ 735 // PluginInterface protocol 736 //------------------------------------------------------------------ 737 lldb_private::ConstString 738 ObjectFileELF::GetPluginName() 739 { 740 return GetPluginNameStatic(); 741 } 742 743 uint32_t 744 ObjectFileELF::GetPluginVersion() 745 { 746 return m_plugin_version; 747 } 748 //------------------------------------------------------------------ 749 // ObjectFile protocol 750 //------------------------------------------------------------------ 751 752 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 753 DataBufferSP& data_sp, 754 lldb::offset_t data_offset, 755 const FileSpec* file, 756 lldb::offset_t file_offset, 757 lldb::offset_t length) : 758 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 759 m_header(), 760 m_uuid(), 761 m_gnu_debuglink_file(), 762 m_gnu_debuglink_crc(0), 763 m_program_headers(), 764 m_section_headers(), 765 m_dynamic_symbols(), 766 m_filespec_ap(), 767 m_entry_point_address(), 768 m_arch_spec() 769 { 770 if (file) 771 m_file = *file; 772 ::memset(&m_header, 0, sizeof(m_header)); 773 } 774 775 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 776 DataBufferSP& data_sp, 777 const lldb::ProcessSP &process_sp, 778 addr_t header_addr) : 779 ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp), 780 m_header(), 781 m_uuid(), 782 m_gnu_debuglink_file(), 783 m_gnu_debuglink_crc(0), 784 m_program_headers(), 785 m_section_headers(), 786 m_dynamic_symbols(), 787 m_filespec_ap(), 788 m_entry_point_address(), 789 m_arch_spec() 790 { 791 ::memset(&m_header, 0, sizeof(m_header)); 792 } 793 794 ObjectFileELF::~ObjectFileELF() 795 { 796 } 797 798 bool 799 ObjectFileELF::IsExecutable() const 800 { 801 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 802 } 803 804 bool 805 ObjectFileELF::SetLoadAddress (Target &target, 806 lldb::addr_t value, 807 bool value_is_offset) 808 { 809 ModuleSP module_sp = GetModule(); 810 if (module_sp) 811 { 812 size_t num_loaded_sections = 0; 813 SectionList *section_list = GetSectionList (); 814 if (section_list) 815 { 816 if (value_is_offset) 817 { 818 const size_t num_sections = section_list->GetSize(); 819 size_t sect_idx = 0; 820 821 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 822 { 823 // Iterate through the object file sections to find all 824 // of the sections that have SHF_ALLOC in their flag bits. 825 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 826 // if (section_sp && !section_sp->IsThreadSpecific()) 827 if (section_sp && section_sp->Test(SHF_ALLOC)) 828 { 829 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 830 ++num_loaded_sections; 831 } 832 } 833 return num_loaded_sections > 0; 834 } 835 else 836 { 837 // Not sure how to slide an ELF file given the base address 838 // of the ELF file in memory 839 } 840 } 841 } 842 return false; // If it changed 843 } 844 845 ByteOrder 846 ObjectFileELF::GetByteOrder() const 847 { 848 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 849 return eByteOrderBig; 850 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 851 return eByteOrderLittle; 852 return eByteOrderInvalid; 853 } 854 855 uint32_t 856 ObjectFileELF::GetAddressByteSize() const 857 { 858 return m_data.GetAddressByteSize(); 859 } 860 861 // Top 16 bits of the `Symbol` flags are available. 862 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 863 864 AddressClass 865 ObjectFileELF::GetAddressClass (addr_t file_addr) 866 { 867 auto res = ObjectFile::GetAddressClass (file_addr); 868 869 if (res != eAddressClassCode) 870 return res; 871 872 ArchSpec arch_spec; 873 GetArchitecture(arch_spec); 874 if (arch_spec.GetMachine() != llvm::Triple::arm) 875 return res; 876 877 auto symtab = GetSymtab(); 878 if (symtab == nullptr) 879 return res; 880 881 auto symbol = symtab->FindSymbolContainingFileAddress(file_addr); 882 if (symbol == nullptr) 883 return res; 884 885 // Thumb symbols have the lower bit set in the flags field so we just check 886 // for that. 887 if (symbol->GetFlags() & ARM_ELF_SYM_IS_THUMB) 888 res = eAddressClassCodeAlternateISA; 889 890 return res; 891 } 892 893 size_t 894 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 895 { 896 return std::distance(m_section_headers.begin(), I) + 1u; 897 } 898 899 size_t 900 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 901 { 902 return std::distance(m_section_headers.begin(), I) + 1u; 903 } 904 905 bool 906 ObjectFileELF::ParseHeader() 907 { 908 lldb::offset_t offset = 0; 909 return m_header.Parse(m_data, &offset); 910 } 911 912 bool 913 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 914 { 915 // Need to parse the section list to get the UUIDs, so make sure that's been done. 916 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 917 return false; 918 919 if (m_uuid.IsValid()) 920 { 921 // We have the full build id uuid. 922 *uuid = m_uuid; 923 return true; 924 } 925 else if (GetType() == ObjectFile::eTypeCoreFile) 926 { 927 uint32_t core_notes_crc = 0; 928 929 if (!ParseProgramHeaders()) 930 return false; 931 932 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 933 934 if (core_notes_crc) 935 { 936 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 937 // look different form .gnu_debuglink crc - followed by 4 bytes of note 938 // segments crc. 939 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 940 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 941 } 942 } 943 else 944 { 945 if (!m_gnu_debuglink_crc) 946 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 947 if (m_gnu_debuglink_crc) 948 { 949 // Use 4 bytes of crc from the .gnu_debuglink section. 950 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 951 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 952 } 953 } 954 955 if (m_uuid.IsValid()) 956 { 957 *uuid = m_uuid; 958 return true; 959 } 960 961 return false; 962 } 963 964 lldb_private::FileSpecList 965 ObjectFileELF::GetDebugSymbolFilePaths() 966 { 967 FileSpecList file_spec_list; 968 969 if (!m_gnu_debuglink_file.empty()) 970 { 971 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 972 file_spec_list.Append (file_spec); 973 } 974 return file_spec_list; 975 } 976 977 uint32_t 978 ObjectFileELF::GetDependentModules(FileSpecList &files) 979 { 980 size_t num_modules = ParseDependentModules(); 981 uint32_t num_specs = 0; 982 983 for (unsigned i = 0; i < num_modules; ++i) 984 { 985 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 986 num_specs++; 987 } 988 989 return num_specs; 990 } 991 992 Address 993 ObjectFileELF::GetImageInfoAddress(Target *target) 994 { 995 if (!ParseDynamicSymbols()) 996 return Address(); 997 998 SectionList *section_list = GetSectionList(); 999 if (!section_list) 1000 return Address(); 1001 1002 // Find the SHT_DYNAMIC (.dynamic) section. 1003 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1004 if (!dynsym_section_sp) 1005 return Address(); 1006 assert (dynsym_section_sp->GetObjectFile() == this); 1007 1008 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1009 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1010 if (!dynsym_hdr) 1011 return Address(); 1012 1013 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1014 { 1015 ELFDynamic &symbol = m_dynamic_symbols[i]; 1016 1017 if (symbol.d_tag == DT_DEBUG) 1018 { 1019 // Compute the offset as the number of previous entries plus the 1020 // size of d_tag. 1021 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1022 return Address(dynsym_section_sp, offset); 1023 } 1024 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1025 { 1026 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1027 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1028 if (dyn_base == LLDB_INVALID_ADDRESS) 1029 return Address(); 1030 Address addr; 1031 Error error; 1032 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1033 return addr; 1034 } 1035 } 1036 1037 return Address(); 1038 } 1039 1040 lldb_private::Address 1041 ObjectFileELF::GetEntryPointAddress () 1042 { 1043 if (m_entry_point_address.IsValid()) 1044 return m_entry_point_address; 1045 1046 if (!ParseHeader() || !IsExecutable()) 1047 return m_entry_point_address; 1048 1049 SectionList *section_list = GetSectionList(); 1050 addr_t offset = m_header.e_entry; 1051 1052 if (!section_list) 1053 m_entry_point_address.SetOffset(offset); 1054 else 1055 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1056 return m_entry_point_address; 1057 } 1058 1059 //---------------------------------------------------------------------- 1060 // ParseDependentModules 1061 //---------------------------------------------------------------------- 1062 size_t 1063 ObjectFileELF::ParseDependentModules() 1064 { 1065 if (m_filespec_ap.get()) 1066 return m_filespec_ap->GetSize(); 1067 1068 m_filespec_ap.reset(new FileSpecList()); 1069 1070 if (!ParseSectionHeaders()) 1071 return 0; 1072 1073 SectionList *section_list = GetSectionList(); 1074 if (!section_list) 1075 return 0; 1076 1077 // Find the SHT_DYNAMIC section. 1078 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1079 if (!dynsym) 1080 return 0; 1081 assert (dynsym->GetObjectFile() == this); 1082 1083 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1084 if (!header) 1085 return 0; 1086 // sh_link: section header index of string table used by entries in the section. 1087 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1088 if (!dynstr) 1089 return 0; 1090 1091 DataExtractor dynsym_data; 1092 DataExtractor dynstr_data; 1093 if (ReadSectionData(dynsym, dynsym_data) && 1094 ReadSectionData(dynstr, dynstr_data)) 1095 { 1096 ELFDynamic symbol; 1097 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1098 lldb::offset_t offset = 0; 1099 1100 // The only type of entries we are concerned with are tagged DT_NEEDED, 1101 // yielding the name of a required library. 1102 while (offset < section_size) 1103 { 1104 if (!symbol.Parse(dynsym_data, &offset)) 1105 break; 1106 1107 if (symbol.d_tag != DT_NEEDED) 1108 continue; 1109 1110 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1111 const char *lib_name = dynstr_data.PeekCStr(str_index); 1112 m_filespec_ap->Append(FileSpec(lib_name, true)); 1113 } 1114 } 1115 1116 return m_filespec_ap->GetSize(); 1117 } 1118 1119 //---------------------------------------------------------------------- 1120 // GetProgramHeaderInfo 1121 //---------------------------------------------------------------------- 1122 size_t 1123 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1124 DataExtractor &object_data, 1125 const ELFHeader &header) 1126 { 1127 // We have already parsed the program headers 1128 if (!program_headers.empty()) 1129 return program_headers.size(); 1130 1131 // If there are no program headers to read we are done. 1132 if (header.e_phnum == 0) 1133 return 0; 1134 1135 program_headers.resize(header.e_phnum); 1136 if (program_headers.size() != header.e_phnum) 1137 return 0; 1138 1139 const size_t ph_size = header.e_phnum * header.e_phentsize; 1140 const elf_off ph_offset = header.e_phoff; 1141 DataExtractor data; 1142 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1143 return 0; 1144 1145 uint32_t idx; 1146 lldb::offset_t offset; 1147 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1148 { 1149 if (program_headers[idx].Parse(data, &offset) == false) 1150 break; 1151 } 1152 1153 if (idx < program_headers.size()) 1154 program_headers.resize(idx); 1155 1156 return program_headers.size(); 1157 1158 } 1159 1160 //---------------------------------------------------------------------- 1161 // ParseProgramHeaders 1162 //---------------------------------------------------------------------- 1163 size_t 1164 ObjectFileELF::ParseProgramHeaders() 1165 { 1166 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1167 } 1168 1169 lldb_private::Error 1170 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1171 { 1172 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1173 Error error; 1174 1175 lldb::offset_t offset = 0; 1176 1177 while (true) 1178 { 1179 // Parse the note header. If this fails, bail out. 1180 ELFNote note = ELFNote(); 1181 if (!note.Parse(data, &offset)) 1182 { 1183 // We're done. 1184 return error; 1185 } 1186 1187 // If a tag processor handles the tag, it should set processed to true, and 1188 // the loop will assume the tag processing has moved entirely past the note's payload. 1189 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1190 bool processed = false; 1191 1192 if (log) 1193 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1194 1195 // Process FreeBSD ELF notes. 1196 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1197 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1198 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1199 { 1200 // We'll consume the payload below. 1201 processed = true; 1202 1203 // Pull out the min version info. 1204 uint32_t version_info; 1205 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1206 { 1207 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1208 return error; 1209 } 1210 1211 // Convert the version info into a major/minor number. 1212 const uint32_t version_major = version_info / 100000; 1213 const uint32_t version_minor = (version_info / 1000) % 100; 1214 1215 char os_name[32]; 1216 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1217 1218 // Set the elf OS version to FreeBSD. Also clear the vendor. 1219 arch_spec.GetTriple ().setOSName (os_name); 1220 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1221 1222 if (log) 1223 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1224 } 1225 // Process GNU ELF notes. 1226 else if (note.n_name == LLDB_NT_OWNER_GNU) 1227 { 1228 switch (note.n_type) 1229 { 1230 case LLDB_NT_GNU_ABI_TAG: 1231 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1232 { 1233 // We'll consume the payload below. 1234 processed = true; 1235 1236 // Pull out the min OS version supporting the ABI. 1237 uint32_t version_info[4]; 1238 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1239 { 1240 error.SetErrorString ("failed to read GNU ABI note payload"); 1241 return error; 1242 } 1243 1244 // Set the OS per the OS field. 1245 switch (version_info[0]) 1246 { 1247 case LLDB_NT_GNU_ABI_OS_LINUX: 1248 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1249 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1250 if (log) 1251 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1252 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1253 break; 1254 case LLDB_NT_GNU_ABI_OS_HURD: 1255 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1256 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1257 if (log) 1258 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1259 break; 1260 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1261 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1262 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1263 if (log) 1264 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1265 break; 1266 default: 1267 if (log) 1268 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1269 break; 1270 } 1271 } 1272 break; 1273 1274 case LLDB_NT_GNU_BUILD_ID_TAG: 1275 // Only bother processing this if we don't already have the uuid set. 1276 if (!uuid.IsValid()) 1277 { 1278 // We'll consume the payload below. 1279 processed = true; 1280 1281 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1282 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1283 { 1284 uint8_t uuidbuf[20]; 1285 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1286 { 1287 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1288 return error; 1289 } 1290 1291 // Save the build id as the UUID for the module. 1292 uuid.SetBytes (uuidbuf, note.n_descsz); 1293 } 1294 } 1295 break; 1296 } 1297 } 1298 // Process NetBSD ELF notes. 1299 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1300 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1301 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1302 { 1303 1304 // We'll consume the payload below. 1305 processed = true; 1306 1307 // Pull out the min version info. 1308 uint32_t version_info; 1309 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1310 { 1311 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1312 return error; 1313 } 1314 1315 // Set the elf OS version to NetBSD. Also clear the vendor. 1316 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1317 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1318 1319 if (log) 1320 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1321 } 1322 // Process CSR kalimba notes 1323 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1324 (note.n_name == LLDB_NT_OWNER_CSR)) 1325 { 1326 // We'll consume the payload below. 1327 processed = true; 1328 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1329 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1330 1331 // TODO At some point the description string could be processed. 1332 // It could provide a steer towards the kalimba variant which 1333 // this ELF targets. 1334 if(note.n_descsz) 1335 { 1336 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1337 (void)cstr; 1338 } 1339 } 1340 1341 if (!processed) 1342 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1343 } 1344 1345 return error; 1346 } 1347 1348 1349 //---------------------------------------------------------------------- 1350 // GetSectionHeaderInfo 1351 //---------------------------------------------------------------------- 1352 size_t 1353 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1354 lldb_private::DataExtractor &object_data, 1355 const elf::ELFHeader &header, 1356 lldb_private::UUID &uuid, 1357 std::string &gnu_debuglink_file, 1358 uint32_t &gnu_debuglink_crc, 1359 ArchSpec &arch_spec) 1360 { 1361 // Don't reparse the section headers if we already did that. 1362 if (!section_headers.empty()) 1363 return section_headers.size(); 1364 1365 // Only initialize the arch_spec to okay defaults if they're not already set. 1366 // We'll refine this with note data as we parse the notes. 1367 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1368 { 1369 const uint32_t sub_type = subTypeFromElfHeader(header); 1370 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type); 1371 1372 switch (arch_spec.GetAddressByteSize()) 1373 { 1374 case 4: 1375 { 1376 const ArchSpec host_arch32 = HostInfo::GetArchitecture(HostInfo::eArchKind32); 1377 if (host_arch32.GetCore() == arch_spec.GetCore()) 1378 { 1379 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1380 arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data()); 1381 } 1382 } 1383 break; 1384 case 8: 1385 { 1386 const ArchSpec host_arch64 = HostInfo::GetArchitecture(HostInfo::eArchKind64); 1387 if (host_arch64.GetCore() == arch_spec.GetCore()) 1388 { 1389 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1390 arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data()); 1391 } 1392 } 1393 break; 1394 } 1395 } 1396 1397 // If there are no section headers we are done. 1398 if (header.e_shnum == 0) 1399 return 0; 1400 1401 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1402 1403 section_headers.resize(header.e_shnum); 1404 if (section_headers.size() != header.e_shnum) 1405 return 0; 1406 1407 const size_t sh_size = header.e_shnum * header.e_shentsize; 1408 const elf_off sh_offset = header.e_shoff; 1409 DataExtractor sh_data; 1410 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1411 return 0; 1412 1413 uint32_t idx; 1414 lldb::offset_t offset; 1415 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1416 { 1417 if (section_headers[idx].Parse(sh_data, &offset) == false) 1418 break; 1419 } 1420 if (idx < section_headers.size()) 1421 section_headers.resize(idx); 1422 1423 const unsigned strtab_idx = header.e_shstrndx; 1424 if (strtab_idx && strtab_idx < section_headers.size()) 1425 { 1426 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1427 const size_t byte_size = sheader.sh_size; 1428 const Elf64_Off offset = sheader.sh_offset; 1429 lldb_private::DataExtractor shstr_data; 1430 1431 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1432 { 1433 for (SectionHeaderCollIter I = section_headers.begin(); 1434 I != section_headers.end(); ++I) 1435 { 1436 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1437 const ELFSectionHeaderInfo &header = *I; 1438 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1439 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1440 1441 I->section_name = name; 1442 1443 if (name == g_sect_name_gnu_debuglink) 1444 { 1445 DataExtractor data; 1446 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1447 { 1448 lldb::offset_t gnu_debuglink_offset = 0; 1449 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1450 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1451 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1452 } 1453 } 1454 1455 // Process ELF note section entries. 1456 if (header.sh_type == SHT_NOTE) 1457 { 1458 // Allow notes to refine module info. 1459 DataExtractor data; 1460 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1461 { 1462 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1463 if (error.Fail ()) 1464 { 1465 if (log) 1466 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1467 } 1468 } 1469 } 1470 } 1471 1472 return section_headers.size(); 1473 } 1474 } 1475 1476 section_headers.clear(); 1477 return 0; 1478 } 1479 1480 size_t 1481 ObjectFileELF::GetProgramHeaderCount() 1482 { 1483 return ParseProgramHeaders(); 1484 } 1485 1486 const elf::ELFProgramHeader * 1487 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1488 { 1489 if (!id || !ParseProgramHeaders()) 1490 return NULL; 1491 1492 if (--id < m_program_headers.size()) 1493 return &m_program_headers[id]; 1494 1495 return NULL; 1496 } 1497 1498 DataExtractor 1499 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1500 { 1501 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1502 if (segment_header == NULL) 1503 return DataExtractor(); 1504 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1505 } 1506 1507 //---------------------------------------------------------------------- 1508 // ParseSectionHeaders 1509 //---------------------------------------------------------------------- 1510 size_t 1511 ObjectFileELF::ParseSectionHeaders() 1512 { 1513 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1514 } 1515 1516 const ObjectFileELF::ELFSectionHeaderInfo * 1517 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1518 { 1519 if (!id || !ParseSectionHeaders()) 1520 return NULL; 1521 1522 if (--id < m_section_headers.size()) 1523 return &m_section_headers[id]; 1524 1525 return NULL; 1526 } 1527 1528 void 1529 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1530 { 1531 if (!m_sections_ap.get() && ParseSectionHeaders()) 1532 { 1533 m_sections_ap.reset(new SectionList()); 1534 1535 for (SectionHeaderCollIter I = m_section_headers.begin(); 1536 I != m_section_headers.end(); ++I) 1537 { 1538 const ELFSectionHeaderInfo &header = *I; 1539 1540 ConstString& name = I->section_name; 1541 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1542 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1543 1544 static ConstString g_sect_name_text (".text"); 1545 static ConstString g_sect_name_data (".data"); 1546 static ConstString g_sect_name_bss (".bss"); 1547 static ConstString g_sect_name_tdata (".tdata"); 1548 static ConstString g_sect_name_tbss (".tbss"); 1549 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1550 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1551 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1552 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1553 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1554 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1555 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1556 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1557 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1558 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1559 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1560 static ConstString g_sect_name_eh_frame (".eh_frame"); 1561 1562 SectionType sect_type = eSectionTypeOther; 1563 1564 bool is_thread_specific = false; 1565 1566 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1567 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1568 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1569 else if (name == g_sect_name_tdata) 1570 { 1571 sect_type = eSectionTypeData; 1572 is_thread_specific = true; 1573 } 1574 else if (name == g_sect_name_tbss) 1575 { 1576 sect_type = eSectionTypeZeroFill; 1577 is_thread_specific = true; 1578 } 1579 // .debug_abbrev – Abbreviations used in the .debug_info section 1580 // .debug_aranges – Lookup table for mapping addresses to compilation units 1581 // .debug_frame – Call frame information 1582 // .debug_info – The core DWARF information section 1583 // .debug_line – Line number information 1584 // .debug_loc – Location lists used in DW_AT_location attributes 1585 // .debug_macinfo – Macro information 1586 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1587 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1588 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1589 // .debug_str – String table used in .debug_info 1590 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1591 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1592 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1593 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1594 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1595 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1596 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1597 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1598 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1599 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1600 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1601 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1602 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1603 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1604 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1605 1606 switch (header.sh_type) 1607 { 1608 case SHT_SYMTAB: 1609 assert (sect_type == eSectionTypeOther); 1610 sect_type = eSectionTypeELFSymbolTable; 1611 break; 1612 case SHT_DYNSYM: 1613 assert (sect_type == eSectionTypeOther); 1614 sect_type = eSectionTypeELFDynamicSymbols; 1615 break; 1616 case SHT_RELA: 1617 case SHT_REL: 1618 assert (sect_type == eSectionTypeOther); 1619 sect_type = eSectionTypeELFRelocationEntries; 1620 break; 1621 case SHT_DYNAMIC: 1622 assert (sect_type == eSectionTypeOther); 1623 sect_type = eSectionTypeELFDynamicLinkInfo; 1624 break; 1625 } 1626 1627 if (eSectionTypeOther == sect_type) 1628 { 1629 // the kalimba toolchain assumes that ELF section names are free-form. It does 1630 // supports linkscripts which (can) give rise to various arbitarily named 1631 // sections being "Code" or "Data". 1632 sect_type = kalimbaSectionType(m_header, header); 1633 } 1634 1635 const uint32_t target_bytes_size = 1636 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1637 m_arch_spec.GetDataByteSize() : 1638 eSectionTypeCode == sect_type ? 1639 m_arch_spec.GetCodeByteSize() : 1; 1640 1641 elf::elf_xword log2align = (header.sh_addralign==0) 1642 ? 0 1643 : llvm::Log2_64(header.sh_addralign); 1644 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1645 this, // ObjectFile to which this section belongs and should read section data from. 1646 SectionIndex(I), // Section ID. 1647 name, // Section name. 1648 sect_type, // Section type. 1649 header.sh_addr, // VM address. 1650 vm_size, // VM size in bytes of this section. 1651 header.sh_offset, // Offset of this section in the file. 1652 file_size, // Size of the section as found in the file. 1653 log2align, // Alignment of the section 1654 header.sh_flags, // Flags for this section. 1655 target_bytes_size));// Number of host bytes per target byte 1656 1657 if (is_thread_specific) 1658 section_sp->SetIsThreadSpecific (is_thread_specific); 1659 m_sections_ap->AddSection(section_sp); 1660 } 1661 } 1662 1663 if (m_sections_ap.get()) 1664 { 1665 if (GetType() == eTypeDebugInfo) 1666 { 1667 static const SectionType g_sections[] = 1668 { 1669 eSectionTypeDWARFDebugAranges, 1670 eSectionTypeDWARFDebugInfo, 1671 eSectionTypeDWARFDebugAbbrev, 1672 eSectionTypeDWARFDebugFrame, 1673 eSectionTypeDWARFDebugLine, 1674 eSectionTypeDWARFDebugStr, 1675 eSectionTypeDWARFDebugLoc, 1676 eSectionTypeDWARFDebugMacInfo, 1677 eSectionTypeDWARFDebugPubNames, 1678 eSectionTypeDWARFDebugPubTypes, 1679 eSectionTypeDWARFDebugRanges, 1680 eSectionTypeELFSymbolTable, 1681 }; 1682 SectionList *elf_section_list = m_sections_ap.get(); 1683 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1684 { 1685 SectionType section_type = g_sections[idx]; 1686 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1687 if (section_sp) 1688 { 1689 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1690 if (module_section_sp) 1691 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1692 else 1693 unified_section_list.AddSection (section_sp); 1694 } 1695 } 1696 } 1697 else 1698 { 1699 unified_section_list = *m_sections_ap; 1700 } 1701 } 1702 } 1703 1704 // private 1705 unsigned 1706 ObjectFileELF::ParseSymbols (Symtab *symtab, 1707 user_id_t start_id, 1708 SectionList *section_list, 1709 const size_t num_symbols, 1710 const DataExtractor &symtab_data, 1711 const DataExtractor &strtab_data) 1712 { 1713 ELFSymbol symbol; 1714 lldb::offset_t offset = 0; 1715 1716 static ConstString text_section_name(".text"); 1717 static ConstString init_section_name(".init"); 1718 static ConstString fini_section_name(".fini"); 1719 static ConstString ctors_section_name(".ctors"); 1720 static ConstString dtors_section_name(".dtors"); 1721 1722 static ConstString data_section_name(".data"); 1723 static ConstString rodata_section_name(".rodata"); 1724 static ConstString rodata1_section_name(".rodata1"); 1725 static ConstString data2_section_name(".data1"); 1726 static ConstString bss_section_name(".bss"); 1727 1728 //StreamFile strm(stdout, false); 1729 unsigned i; 1730 for (i = 0; i < num_symbols; ++i) 1731 { 1732 if (symbol.Parse(symtab_data, &offset) == false) 1733 break; 1734 1735 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1736 1737 // No need to add non-section symbols that have no names 1738 if (symbol.getType() != STT_SECTION && 1739 (symbol_name == NULL || symbol_name[0] == '\0')) 1740 continue; 1741 1742 //symbol.Dump (&strm, i, &strtab_data, section_list); 1743 1744 SectionSP symbol_section_sp; 1745 SymbolType symbol_type = eSymbolTypeInvalid; 1746 Elf64_Half symbol_idx = symbol.st_shndx; 1747 1748 switch (symbol_idx) 1749 { 1750 case SHN_ABS: 1751 symbol_type = eSymbolTypeAbsolute; 1752 break; 1753 case SHN_UNDEF: 1754 symbol_type = eSymbolTypeUndefined; 1755 break; 1756 default: 1757 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1758 break; 1759 } 1760 1761 // If a symbol is undefined do not process it further even if it has a STT type 1762 if (symbol_type != eSymbolTypeUndefined) 1763 { 1764 switch (symbol.getType()) 1765 { 1766 default: 1767 case STT_NOTYPE: 1768 // The symbol's type is not specified. 1769 break; 1770 1771 case STT_OBJECT: 1772 // The symbol is associated with a data object, such as a variable, 1773 // an array, etc. 1774 symbol_type = eSymbolTypeData; 1775 break; 1776 1777 case STT_FUNC: 1778 // The symbol is associated with a function or other executable code. 1779 symbol_type = eSymbolTypeCode; 1780 break; 1781 1782 case STT_SECTION: 1783 // The symbol is associated with a section. Symbol table entries of 1784 // this type exist primarily for relocation and normally have 1785 // STB_LOCAL binding. 1786 break; 1787 1788 case STT_FILE: 1789 // Conventionally, the symbol's name gives the name of the source 1790 // file associated with the object file. A file symbol has STB_LOCAL 1791 // binding, its section index is SHN_ABS, and it precedes the other 1792 // STB_LOCAL symbols for the file, if it is present. 1793 symbol_type = eSymbolTypeSourceFile; 1794 break; 1795 1796 case STT_GNU_IFUNC: 1797 // The symbol is associated with an indirect function. The actual 1798 // function will be resolved if it is referenced. 1799 symbol_type = eSymbolTypeResolver; 1800 break; 1801 } 1802 } 1803 1804 if (symbol_type == eSymbolTypeInvalid) 1805 { 1806 if (symbol_section_sp) 1807 { 1808 const ConstString §_name = symbol_section_sp->GetName(); 1809 if (sect_name == text_section_name || 1810 sect_name == init_section_name || 1811 sect_name == fini_section_name || 1812 sect_name == ctors_section_name || 1813 sect_name == dtors_section_name) 1814 { 1815 symbol_type = eSymbolTypeCode; 1816 } 1817 else if (sect_name == data_section_name || 1818 sect_name == data2_section_name || 1819 sect_name == rodata_section_name || 1820 sect_name == rodata1_section_name || 1821 sect_name == bss_section_name) 1822 { 1823 symbol_type = eSymbolTypeData; 1824 } 1825 } 1826 } 1827 1828 ArchSpec arch; 1829 int64_t symbol_value_offset = 0; 1830 uint32_t additional_flags = 0; 1831 1832 if (GetArchitecture(arch) && 1833 arch.GetMachine() == llvm::Triple::arm) 1834 { 1835 // ELF symbol tables may contain some mapping symbols. They provide 1836 // information about the underlying data. There are three of them 1837 // currently defined: 1838 // $a[.<any>]* - marks an ARM instruction sequence 1839 // $t[.<any>]* - marks a THUMB instruction sequence 1840 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1841 // These symbols interfere with normal debugger operations and we 1842 // don't need them. We can drop them here. 1843 1844 static const llvm::StringRef g_armelf_arm_marker("$a"); 1845 static const llvm::StringRef g_armelf_thumb_marker("$t"); 1846 static const llvm::StringRef g_armelf_data_marker("$d"); 1847 llvm::StringRef symbol_name_ref(symbol_name); 1848 1849 if (symbol_name && 1850 (symbol_name_ref.startswith(g_armelf_arm_marker) || 1851 symbol_name_ref.startswith(g_armelf_thumb_marker) || 1852 symbol_name_ref.startswith(g_armelf_data_marker))) 1853 continue; 1854 1855 // THUMB functions have the lower bit of their address set. Fixup 1856 // the actual address and mark the symbol as THUMB. 1857 if (symbol_type == eSymbolTypeCode && symbol.st_value & 1) 1858 { 1859 // Substracting 1 from the address effectively unsets 1860 // the low order bit, which results in the address 1861 // actually pointing to the beginning of the symbol. 1862 // This delta will be used below in conjuction with 1863 // symbol.st_value to produce the final symbol_value 1864 // that we store in the symtab. 1865 symbol_value_offset = -1; 1866 additional_flags = ARM_ELF_SYM_IS_THUMB; 1867 } 1868 } 1869 1870 // If the symbol section we've found has no data (SHT_NOBITS), then check the module section 1871 // list. This can happen if we're parsing the debug file and it has no .text section, for example. 1872 if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0)) 1873 { 1874 ModuleSP module_sp(GetModule()); 1875 if (module_sp) 1876 { 1877 SectionList *module_section_list = module_sp->GetSectionList(); 1878 if (module_section_list && module_section_list != section_list) 1879 { 1880 const ConstString §_name = symbol_section_sp->GetName(); 1881 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 1882 if (section_sp && section_sp->GetFileSize()) 1883 { 1884 symbol_section_sp = section_sp; 1885 } 1886 } 1887 } 1888 } 1889 1890 // symbol_value_offset may contain 0 for ARM symbols or -1 for 1891 // THUMB symbols. See above for more details. 1892 uint64_t symbol_value = symbol.st_value | symbol_value_offset; 1893 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 1894 symbol_value -= symbol_section_sp->GetFileAddress(); 1895 bool is_global = symbol.getBinding() == STB_GLOBAL; 1896 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 1897 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 1898 1899 Symbol dc_symbol( 1900 i + start_id, // ID is the original symbol table index. 1901 symbol_name, // Symbol name. 1902 is_mangled, // Is the symbol name mangled? 1903 symbol_type, // Type of this symbol 1904 is_global, // Is this globally visible? 1905 false, // Is this symbol debug info? 1906 false, // Is this symbol a trampoline? 1907 false, // Is this symbol artificial? 1908 symbol_section_sp, // Section in which this symbol is defined or null. 1909 symbol_value, // Offset in section or symbol value. 1910 symbol.st_size, // Size in bytes of this symbol. 1911 true, // Size is valid 1912 flags); // Symbol flags. 1913 symtab->AddSymbol(dc_symbol); 1914 } 1915 1916 return i; 1917 } 1918 1919 unsigned 1920 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 1921 { 1922 if (symtab->GetObjectFile() != this) 1923 { 1924 // If the symbol table section is owned by a different object file, have it do the 1925 // parsing. 1926 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 1927 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 1928 } 1929 1930 // Get section list for this object file. 1931 SectionList *section_list = m_sections_ap.get(); 1932 if (!section_list) 1933 return 0; 1934 1935 user_id_t symtab_id = symtab->GetID(); 1936 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 1937 assert(symtab_hdr->sh_type == SHT_SYMTAB || 1938 symtab_hdr->sh_type == SHT_DYNSYM); 1939 1940 // sh_link: section header index of associated string table. 1941 // Section ID's are ones based. 1942 user_id_t strtab_id = symtab_hdr->sh_link + 1; 1943 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 1944 1945 if (symtab && strtab) 1946 { 1947 assert (symtab->GetObjectFile() == this); 1948 assert (strtab->GetObjectFile() == this); 1949 1950 DataExtractor symtab_data; 1951 DataExtractor strtab_data; 1952 if (ReadSectionData(symtab, symtab_data) && 1953 ReadSectionData(strtab, strtab_data)) 1954 { 1955 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 1956 1957 return ParseSymbols(symbol_table, start_id, section_list, 1958 num_symbols, symtab_data, strtab_data); 1959 } 1960 } 1961 1962 return 0; 1963 } 1964 1965 size_t 1966 ObjectFileELF::ParseDynamicSymbols() 1967 { 1968 if (m_dynamic_symbols.size()) 1969 return m_dynamic_symbols.size(); 1970 1971 SectionList *section_list = GetSectionList(); 1972 if (!section_list) 1973 return 0; 1974 1975 // Find the SHT_DYNAMIC section. 1976 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1977 if (!dynsym) 1978 return 0; 1979 assert (dynsym->GetObjectFile() == this); 1980 1981 ELFDynamic symbol; 1982 DataExtractor dynsym_data; 1983 if (ReadSectionData(dynsym, dynsym_data)) 1984 { 1985 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1986 lldb::offset_t cursor = 0; 1987 1988 while (cursor < section_size) 1989 { 1990 if (!symbol.Parse(dynsym_data, &cursor)) 1991 break; 1992 1993 m_dynamic_symbols.push_back(symbol); 1994 } 1995 } 1996 1997 return m_dynamic_symbols.size(); 1998 } 1999 2000 const ELFDynamic * 2001 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2002 { 2003 if (!ParseDynamicSymbols()) 2004 return NULL; 2005 2006 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2007 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2008 for ( ; I != E; ++I) 2009 { 2010 ELFDynamic *symbol = &*I; 2011 2012 if (symbol->d_tag == tag) 2013 return symbol; 2014 } 2015 2016 return NULL; 2017 } 2018 2019 unsigned 2020 ObjectFileELF::PLTRelocationType() 2021 { 2022 // DT_PLTREL 2023 // This member specifies the type of relocation entry to which the 2024 // procedure linkage table refers. The d_val member holds DT_REL or 2025 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2026 // must use the same relocation. 2027 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2028 2029 if (symbol) 2030 return symbol->d_val; 2031 2032 return 0; 2033 } 2034 2035 static unsigned 2036 ParsePLTRelocations(Symtab *symbol_table, 2037 user_id_t start_id, 2038 unsigned rel_type, 2039 const ELFHeader *hdr, 2040 const ELFSectionHeader *rel_hdr, 2041 const ELFSectionHeader *plt_hdr, 2042 const ELFSectionHeader *sym_hdr, 2043 const lldb::SectionSP &plt_section_sp, 2044 DataExtractor &rel_data, 2045 DataExtractor &symtab_data, 2046 DataExtractor &strtab_data) 2047 { 2048 ELFRelocation rel(rel_type); 2049 ELFSymbol symbol; 2050 lldb::offset_t offset = 0; 2051 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2052 // So round the entsize up by the alignment if addralign is set. 2053 const elf_xword plt_entsize = plt_hdr->sh_addralign ? 2054 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2055 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2056 2057 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2058 reloc_info_fn reloc_type; 2059 reloc_info_fn reloc_symbol; 2060 2061 if (hdr->Is32Bit()) 2062 { 2063 reloc_type = ELFRelocation::RelocType32; 2064 reloc_symbol = ELFRelocation::RelocSymbol32; 2065 } 2066 else 2067 { 2068 reloc_type = ELFRelocation::RelocType64; 2069 reloc_symbol = ELFRelocation::RelocSymbol64; 2070 } 2071 2072 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2073 unsigned i; 2074 for (i = 0; i < num_relocations; ++i) 2075 { 2076 if (rel.Parse(rel_data, &offset) == false) 2077 break; 2078 2079 if (reloc_type(rel) != slot_type) 2080 continue; 2081 2082 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2083 uint64_t plt_index = (i + 1) * plt_entsize; 2084 2085 if (!symbol.Parse(symtab_data, &symbol_offset)) 2086 break; 2087 2088 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2089 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2090 2091 Symbol jump_symbol( 2092 i + start_id, // Symbol table index 2093 symbol_name, // symbol name. 2094 is_mangled, // is the symbol name mangled? 2095 eSymbolTypeTrampoline, // Type of this symbol 2096 false, // Is this globally visible? 2097 false, // Is this symbol debug info? 2098 true, // Is this symbol a trampoline? 2099 true, // Is this symbol artificial? 2100 plt_section_sp, // Section in which this symbol is defined or null. 2101 plt_index, // Offset in section or symbol value. 2102 plt_entsize, // Size in bytes of this symbol. 2103 true, // Size is valid 2104 0); // Symbol flags. 2105 2106 symbol_table->AddSymbol(jump_symbol); 2107 } 2108 2109 return i; 2110 } 2111 2112 unsigned 2113 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2114 user_id_t start_id, 2115 const ELFSectionHeaderInfo *rel_hdr, 2116 user_id_t rel_id) 2117 { 2118 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2119 2120 // The link field points to the associated symbol table. The info field 2121 // points to the section holding the plt. 2122 user_id_t symtab_id = rel_hdr->sh_link; 2123 user_id_t plt_id = rel_hdr->sh_info; 2124 2125 if (!symtab_id || !plt_id) 2126 return 0; 2127 2128 // Section ID's are ones based; 2129 symtab_id++; 2130 plt_id++; 2131 2132 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2133 if (!plt_hdr) 2134 return 0; 2135 2136 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2137 if (!sym_hdr) 2138 return 0; 2139 2140 SectionList *section_list = m_sections_ap.get(); 2141 if (!section_list) 2142 return 0; 2143 2144 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2145 if (!rel_section) 2146 return 0; 2147 2148 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2149 if (!plt_section_sp) 2150 return 0; 2151 2152 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2153 if (!symtab) 2154 return 0; 2155 2156 // sh_link points to associated string table. 2157 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2158 if (!strtab) 2159 return 0; 2160 2161 DataExtractor rel_data; 2162 if (!ReadSectionData(rel_section, rel_data)) 2163 return 0; 2164 2165 DataExtractor symtab_data; 2166 if (!ReadSectionData(symtab, symtab_data)) 2167 return 0; 2168 2169 DataExtractor strtab_data; 2170 if (!ReadSectionData(strtab, strtab_data)) 2171 return 0; 2172 2173 unsigned rel_type = PLTRelocationType(); 2174 if (!rel_type) 2175 return 0; 2176 2177 return ParsePLTRelocations (symbol_table, 2178 start_id, 2179 rel_type, 2180 &m_header, 2181 rel_hdr, 2182 plt_hdr, 2183 sym_hdr, 2184 plt_section_sp, 2185 rel_data, 2186 symtab_data, 2187 strtab_data); 2188 } 2189 2190 unsigned 2191 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2192 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2193 DataExtractor &rel_data, DataExtractor &symtab_data, 2194 DataExtractor &debug_data, Section* rel_section) 2195 { 2196 ELFRelocation rel(rel_hdr->sh_type); 2197 lldb::addr_t offset = 0; 2198 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2199 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2200 reloc_info_fn reloc_type; 2201 reloc_info_fn reloc_symbol; 2202 2203 if (hdr->Is32Bit()) 2204 { 2205 reloc_type = ELFRelocation::RelocType32; 2206 reloc_symbol = ELFRelocation::RelocSymbol32; 2207 } 2208 else 2209 { 2210 reloc_type = ELFRelocation::RelocType64; 2211 reloc_symbol = ELFRelocation::RelocSymbol64; 2212 } 2213 2214 for (unsigned i = 0; i < num_relocations; ++i) 2215 { 2216 if (rel.Parse(rel_data, &offset) == false) 2217 break; 2218 2219 Symbol* symbol = NULL; 2220 2221 if (hdr->Is32Bit()) 2222 { 2223 switch (reloc_type(rel)) { 2224 case R_386_32: 2225 case R_386_PC32: 2226 default: 2227 assert(false && "unexpected relocation type"); 2228 } 2229 } else { 2230 switch (reloc_type(rel)) { 2231 case R_X86_64_64: 2232 { 2233 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2234 if (symbol) 2235 { 2236 addr_t value = symbol->GetAddress().GetFileAddress(); 2237 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2238 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2239 *dst = value + ELFRelocation::RelocAddend64(rel); 2240 } 2241 break; 2242 } 2243 case R_X86_64_32: 2244 case R_X86_64_32S: 2245 { 2246 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2247 if (symbol) 2248 { 2249 addr_t value = symbol->GetAddress().GetFileAddress(); 2250 value += ELFRelocation::RelocAddend32(rel); 2251 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2252 (reloc_type(rel) == R_X86_64_32S && 2253 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2254 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2255 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2256 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2257 *dst = truncated_addr; 2258 } 2259 break; 2260 } 2261 case R_X86_64_PC32: 2262 default: 2263 assert(false && "unexpected relocation type"); 2264 } 2265 } 2266 } 2267 2268 return 0; 2269 } 2270 2271 unsigned 2272 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2273 { 2274 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2275 2276 // Parse in the section list if needed. 2277 SectionList *section_list = GetSectionList(); 2278 if (!section_list) 2279 return 0; 2280 2281 // Section ID's are ones based. 2282 user_id_t symtab_id = rel_hdr->sh_link + 1; 2283 user_id_t debug_id = rel_hdr->sh_info + 1; 2284 2285 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2286 if (!symtab_hdr) 2287 return 0; 2288 2289 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2290 if (!debug_hdr) 2291 return 0; 2292 2293 Section *rel = section_list->FindSectionByID(rel_id).get(); 2294 if (!rel) 2295 return 0; 2296 2297 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2298 if (!symtab) 2299 return 0; 2300 2301 Section *debug = section_list->FindSectionByID(debug_id).get(); 2302 if (!debug) 2303 return 0; 2304 2305 DataExtractor rel_data; 2306 DataExtractor symtab_data; 2307 DataExtractor debug_data; 2308 2309 if (ReadSectionData(rel, rel_data) && 2310 ReadSectionData(symtab, symtab_data) && 2311 ReadSectionData(debug, debug_data)) 2312 { 2313 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2314 rel_data, symtab_data, debug_data, debug); 2315 } 2316 2317 return 0; 2318 } 2319 2320 Symtab * 2321 ObjectFileELF::GetSymtab() 2322 { 2323 ModuleSP module_sp(GetModule()); 2324 if (!module_sp) 2325 return NULL; 2326 2327 // We always want to use the main object file so we (hopefully) only have one cached copy 2328 // of our symtab, dynamic sections, etc. 2329 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2330 if (module_obj_file && module_obj_file != this) 2331 return module_obj_file->GetSymtab(); 2332 2333 if (m_symtab_ap.get() == NULL) 2334 { 2335 SectionList *section_list = GetSectionList(); 2336 if (!section_list) 2337 return NULL; 2338 2339 uint64_t symbol_id = 0; 2340 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2341 2342 m_symtab_ap.reset(new Symtab(this)); 2343 2344 // Sharable objects and dynamic executables usually have 2 distinct symbol 2345 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2346 // version of the symtab that only contains global symbols. The information found 2347 // in the dynsym is therefore also found in the symtab, while the reverse is not 2348 // necessarily true. 2349 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2350 if (!symtab) 2351 { 2352 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2353 // then use the dynsym section which should always be there. 2354 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2355 } 2356 if (symtab) 2357 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2358 2359 // DT_JMPREL 2360 // If present, this entry's d_ptr member holds the address of relocation 2361 // entries associated solely with the procedure linkage table. Separating 2362 // these relocation entries lets the dynamic linker ignore them during 2363 // process initialization, if lazy binding is enabled. If this entry is 2364 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2365 // also be present. 2366 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2367 if (symbol) 2368 { 2369 // Synthesize trampoline symbols to help navigate the PLT. 2370 addr_t addr = symbol->d_ptr; 2371 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2372 if (reloc_section) 2373 { 2374 user_id_t reloc_id = reloc_section->GetID(); 2375 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2376 assert(reloc_header); 2377 2378 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2379 } 2380 } 2381 } 2382 2383 for (SectionHeaderCollIter I = m_section_headers.begin(); 2384 I != m_section_headers.end(); ++I) 2385 { 2386 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2387 { 2388 if (CalculateType() == eTypeObjectFile) 2389 { 2390 const char *section_name = I->section_name.AsCString(""); 2391 if (strstr(section_name, ".rela.debug") || 2392 strstr(section_name, ".rel.debug")) 2393 { 2394 const ELFSectionHeader &reloc_header = *I; 2395 user_id_t reloc_id = SectionIndex(I); 2396 RelocateDebugSections(&reloc_header, reloc_id); 2397 } 2398 } 2399 } 2400 } 2401 return m_symtab_ap.get(); 2402 } 2403 2404 Symbol * 2405 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2406 { 2407 if (!m_symtab_ap.get()) 2408 return nullptr; // GetSymtab() should be called first. 2409 2410 const SectionList *section_list = GetSectionList(); 2411 if (!section_list) 2412 return nullptr; 2413 2414 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2415 { 2416 AddressRange range; 2417 if (eh_frame->GetAddressRange (so_addr, range)) 2418 { 2419 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2420 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2421 if (symbol) 2422 return symbol; 2423 2424 // Note that a (stripped) symbol won't be found by GetSymtab()... 2425 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2426 if (eh_sym_section_sp.get()) 2427 { 2428 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2429 addr_t offset = file_addr - section_base; 2430 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2431 2432 Symbol eh_symbol( 2433 symbol_id, // Symbol table index. 2434 "???", // Symbol name. 2435 false, // Is the symbol name mangled? 2436 eSymbolTypeCode, // Type of this symbol. 2437 true, // Is this globally visible? 2438 false, // Is this symbol debug info? 2439 false, // Is this symbol a trampoline? 2440 true, // Is this symbol artificial? 2441 eh_sym_section_sp, // Section in which this symbol is defined or null. 2442 offset, // Offset in section or symbol value. 2443 range.GetByteSize(), // Size in bytes of this symbol. 2444 true, // Size is valid. 2445 0); // Symbol flags. 2446 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2447 return m_symtab_ap->SymbolAtIndex(symbol_id); 2448 } 2449 } 2450 } 2451 return nullptr; 2452 } 2453 2454 2455 bool 2456 ObjectFileELF::IsStripped () 2457 { 2458 // TODO: determine this for ELF 2459 return false; 2460 } 2461 2462 //===----------------------------------------------------------------------===// 2463 // Dump 2464 // 2465 // Dump the specifics of the runtime file container (such as any headers 2466 // segments, sections, etc). 2467 //---------------------------------------------------------------------- 2468 void 2469 ObjectFileELF::Dump(Stream *s) 2470 { 2471 DumpELFHeader(s, m_header); 2472 s->EOL(); 2473 DumpELFProgramHeaders(s); 2474 s->EOL(); 2475 DumpELFSectionHeaders(s); 2476 s->EOL(); 2477 SectionList *section_list = GetSectionList(); 2478 if (section_list) 2479 section_list->Dump(s, NULL, true, UINT32_MAX); 2480 Symtab *symtab = GetSymtab(); 2481 if (symtab) 2482 symtab->Dump(s, NULL, eSortOrderNone); 2483 s->EOL(); 2484 DumpDependentModules(s); 2485 s->EOL(); 2486 } 2487 2488 //---------------------------------------------------------------------- 2489 // DumpELFHeader 2490 // 2491 // Dump the ELF header to the specified output stream 2492 //---------------------------------------------------------------------- 2493 void 2494 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2495 { 2496 s->PutCString("ELF Header\n"); 2497 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2498 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2499 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2500 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2501 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2502 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2503 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2504 2505 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2506 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2507 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2508 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2509 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2510 2511 s->Printf("e_type = 0x%4.4x ", header.e_type); 2512 DumpELFHeader_e_type(s, header.e_type); 2513 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2514 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2515 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2516 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2517 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2518 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2519 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2520 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2521 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2522 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2523 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2524 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2525 } 2526 2527 //---------------------------------------------------------------------- 2528 // DumpELFHeader_e_type 2529 // 2530 // Dump an token value for the ELF header member e_type 2531 //---------------------------------------------------------------------- 2532 void 2533 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2534 { 2535 switch (e_type) 2536 { 2537 case ET_NONE: *s << "ET_NONE"; break; 2538 case ET_REL: *s << "ET_REL"; break; 2539 case ET_EXEC: *s << "ET_EXEC"; break; 2540 case ET_DYN: *s << "ET_DYN"; break; 2541 case ET_CORE: *s << "ET_CORE"; break; 2542 default: 2543 break; 2544 } 2545 } 2546 2547 //---------------------------------------------------------------------- 2548 // DumpELFHeader_e_ident_EI_DATA 2549 // 2550 // Dump an token value for the ELF header member e_ident[EI_DATA] 2551 //---------------------------------------------------------------------- 2552 void 2553 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2554 { 2555 switch (ei_data) 2556 { 2557 case ELFDATANONE: *s << "ELFDATANONE"; break; 2558 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2559 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2560 default: 2561 break; 2562 } 2563 } 2564 2565 2566 //---------------------------------------------------------------------- 2567 // DumpELFProgramHeader 2568 // 2569 // Dump a single ELF program header to the specified output stream 2570 //---------------------------------------------------------------------- 2571 void 2572 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2573 { 2574 DumpELFProgramHeader_p_type(s, ph.p_type); 2575 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2576 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2577 2578 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2579 s->Printf(") %8.8" PRIx64, ph.p_align); 2580 } 2581 2582 //---------------------------------------------------------------------- 2583 // DumpELFProgramHeader_p_type 2584 // 2585 // Dump an token value for the ELF program header member p_type which 2586 // describes the type of the program header 2587 // ---------------------------------------------------------------------- 2588 void 2589 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2590 { 2591 const int kStrWidth = 15; 2592 switch (p_type) 2593 { 2594 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2595 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2596 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2597 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2598 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2599 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2600 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2601 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2602 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2603 default: 2604 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2605 break; 2606 } 2607 } 2608 2609 2610 //---------------------------------------------------------------------- 2611 // DumpELFProgramHeader_p_flags 2612 // 2613 // Dump an token value for the ELF program header member p_flags 2614 //---------------------------------------------------------------------- 2615 void 2616 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2617 { 2618 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2619 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2620 << ((p_flags & PF_W) ? "PF_W" : " ") 2621 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2622 << ((p_flags & PF_R) ? "PF_R" : " "); 2623 } 2624 2625 //---------------------------------------------------------------------- 2626 // DumpELFProgramHeaders 2627 // 2628 // Dump all of the ELF program header to the specified output stream 2629 //---------------------------------------------------------------------- 2630 void 2631 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2632 { 2633 if (ParseProgramHeaders()) 2634 { 2635 s->PutCString("Program Headers\n"); 2636 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2637 "p_filesz p_memsz p_flags p_align\n"); 2638 s->PutCString("==== --------------- -------- -------- -------- " 2639 "-------- -------- ------------------------- --------\n"); 2640 2641 uint32_t idx = 0; 2642 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2643 I != m_program_headers.end(); ++I, ++idx) 2644 { 2645 s->Printf("[%2u] ", idx); 2646 ObjectFileELF::DumpELFProgramHeader(s, *I); 2647 s->EOL(); 2648 } 2649 } 2650 } 2651 2652 //---------------------------------------------------------------------- 2653 // DumpELFSectionHeader 2654 // 2655 // Dump a single ELF section header to the specified output stream 2656 //---------------------------------------------------------------------- 2657 void 2658 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2659 { 2660 s->Printf("%8.8x ", sh.sh_name); 2661 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2662 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2663 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2664 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2665 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2666 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2667 } 2668 2669 //---------------------------------------------------------------------- 2670 // DumpELFSectionHeader_sh_type 2671 // 2672 // Dump an token value for the ELF section header member sh_type which 2673 // describes the type of the section 2674 //---------------------------------------------------------------------- 2675 void 2676 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2677 { 2678 const int kStrWidth = 12; 2679 switch (sh_type) 2680 { 2681 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2682 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2683 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2684 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2685 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2686 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2687 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2688 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2689 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2690 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2691 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2692 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2693 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2694 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2695 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2696 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2697 default: 2698 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2699 break; 2700 } 2701 } 2702 2703 //---------------------------------------------------------------------- 2704 // DumpELFSectionHeader_sh_flags 2705 // 2706 // Dump an token value for the ELF section header member sh_flags 2707 //---------------------------------------------------------------------- 2708 void 2709 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2710 { 2711 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2712 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2713 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2714 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2715 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2716 } 2717 2718 //---------------------------------------------------------------------- 2719 // DumpELFSectionHeaders 2720 // 2721 // Dump all of the ELF section header to the specified output stream 2722 //---------------------------------------------------------------------- 2723 void 2724 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2725 { 2726 if (!ParseSectionHeaders()) 2727 return; 2728 2729 s->PutCString("Section Headers\n"); 2730 s->PutCString("IDX name type flags " 2731 "addr offset size link info addralgn " 2732 "entsize Name\n"); 2733 s->PutCString("==== -------- ------------ -------------------------------- " 2734 "-------- -------- -------- -------- -------- -------- " 2735 "-------- ====================\n"); 2736 2737 uint32_t idx = 0; 2738 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2739 I != m_section_headers.end(); ++I, ++idx) 2740 { 2741 s->Printf("[%2u] ", idx); 2742 ObjectFileELF::DumpELFSectionHeader(s, *I); 2743 const char* section_name = I->section_name.AsCString(""); 2744 if (section_name) 2745 *s << ' ' << section_name << "\n"; 2746 } 2747 } 2748 2749 void 2750 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 2751 { 2752 size_t num_modules = ParseDependentModules(); 2753 2754 if (num_modules > 0) 2755 { 2756 s->PutCString("Dependent Modules:\n"); 2757 for (unsigned i = 0; i < num_modules; ++i) 2758 { 2759 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 2760 s->Printf(" %s\n", spec.GetFilename().GetCString()); 2761 } 2762 } 2763 } 2764 2765 bool 2766 ObjectFileELF::GetArchitecture (ArchSpec &arch) 2767 { 2768 if (!ParseHeader()) 2769 return false; 2770 2771 if (m_section_headers.empty()) 2772 { 2773 // Allow elf notes to be parsed which may affect the detected architecture. 2774 ParseSectionHeaders(); 2775 } 2776 2777 arch = m_arch_spec; 2778 return true; 2779 } 2780 2781 ObjectFile::Type 2782 ObjectFileELF::CalculateType() 2783 { 2784 switch (m_header.e_type) 2785 { 2786 case llvm::ELF::ET_NONE: 2787 // 0 - No file type 2788 return eTypeUnknown; 2789 2790 case llvm::ELF::ET_REL: 2791 // 1 - Relocatable file 2792 return eTypeObjectFile; 2793 2794 case llvm::ELF::ET_EXEC: 2795 // 2 - Executable file 2796 return eTypeExecutable; 2797 2798 case llvm::ELF::ET_DYN: 2799 // 3 - Shared object file 2800 return eTypeSharedLibrary; 2801 2802 case ET_CORE: 2803 // 4 - Core file 2804 return eTypeCoreFile; 2805 2806 default: 2807 break; 2808 } 2809 return eTypeUnknown; 2810 } 2811 2812 ObjectFile::Strata 2813 ObjectFileELF::CalculateStrata() 2814 { 2815 switch (m_header.e_type) 2816 { 2817 case llvm::ELF::ET_NONE: 2818 // 0 - No file type 2819 return eStrataUnknown; 2820 2821 case llvm::ELF::ET_REL: 2822 // 1 - Relocatable file 2823 return eStrataUnknown; 2824 2825 case llvm::ELF::ET_EXEC: 2826 // 2 - Executable file 2827 // TODO: is there any way to detect that an executable is a kernel 2828 // related executable by inspecting the program headers, section 2829 // headers, symbols, or any other flag bits??? 2830 return eStrataUser; 2831 2832 case llvm::ELF::ET_DYN: 2833 // 3 - Shared object file 2834 // TODO: is there any way to detect that an shared library is a kernel 2835 // related executable by inspecting the program headers, section 2836 // headers, symbols, or any other flag bits??? 2837 return eStrataUnknown; 2838 2839 case ET_CORE: 2840 // 4 - Core file 2841 // TODO: is there any way to detect that an core file is a kernel 2842 // related executable by inspecting the program headers, section 2843 // headers, symbols, or any other flag bits??? 2844 return eStrataUnknown; 2845 2846 default: 2847 break; 2848 } 2849 return eStrataUnknown; 2850 } 2851 2852