xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 62a8254f29d85f28b6bcdf69929986bcc775b9ce)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <algorithm>
13 #include <cassert>
14 #include <unordered_map>
15 
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Host/FileSystem.h"
22 #include "lldb/Symbol/DWARFCallFrameInfo.h"
23 #include "lldb/Symbol/SymbolContext.h"
24 #include "lldb/Target/SectionLoadList.h"
25 #include "lldb/Target/Target.h"
26 #include "lldb/Utility/ArchSpec.h"
27 #include "lldb/Utility/DataBufferHeap.h"
28 #include "lldb/Utility/Log.h"
29 #include "lldb/Utility/Status.h"
30 #include "lldb/Utility/Stream.h"
31 #include "lldb/Utility/Timer.h"
32 
33 #include "llvm/ADT/PointerUnion.h"
34 #include "llvm/ADT/StringRef.h"
35 #include "llvm/Object/Decompressor.h"
36 #include "llvm/Support/ARMBuildAttributes.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/MemoryBuffer.h"
39 #include "llvm/Support/MipsABIFlags.h"
40 
41 #define CASE_AND_STREAM(s, def, width)                                         \
42   case def:                                                                    \
43     s->Printf("%-*s", width, #def);                                            \
44     break;
45 
46 using namespace lldb;
47 using namespace lldb_private;
48 using namespace elf;
49 using namespace llvm::ELF;
50 
51 namespace {
52 
53 // ELF note owner definitions
54 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
55 const char *const LLDB_NT_OWNER_GNU = "GNU";
56 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
57 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
58 const char *const LLDB_NT_OWNER_CSR = "csr";
59 const char *const LLDB_NT_OWNER_ANDROID = "Android";
60 const char *const LLDB_NT_OWNER_CORE = "CORE";
61 const char *const LLDB_NT_OWNER_LINUX = "LINUX";
62 
63 // ELF note type definitions
64 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
65 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
66 
67 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
68 const elf_word LLDB_NT_GNU_ABI_SIZE = 16;
69 
70 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
71 
72 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01;
73 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4;
74 
75 // GNU ABI note OS constants
76 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
77 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
78 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
79 
80 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants
81 #define NT_PRSTATUS 1
82 #define NT_PRFPREG 2
83 #define NT_PRPSINFO 3
84 #define NT_TASKSTRUCT 4
85 #define NT_AUXV 6
86 #define NT_SIGINFO 0x53494749
87 #define NT_FILE 0x46494c45
88 #define NT_PRXFPREG 0x46e62b7f
89 #define NT_PPC_VMX 0x100
90 #define NT_PPC_SPE 0x101
91 #define NT_PPC_VSX 0x102
92 #define NT_386_TLS 0x200
93 #define NT_386_IOPERM 0x201
94 #define NT_X86_XSTATE 0x202
95 #define NT_S390_HIGH_GPRS 0x300
96 #define NT_S390_TIMER 0x301
97 #define NT_S390_TODCMP 0x302
98 #define NT_S390_TODPREG 0x303
99 #define NT_S390_CTRS 0x304
100 #define NT_S390_PREFIX 0x305
101 #define NT_S390_LAST_BREAK 0x306
102 #define NT_S390_SYSTEM_CALL 0x307
103 #define NT_S390_TDB 0x308
104 #define NT_S390_VXRS_LOW 0x309
105 #define NT_S390_VXRS_HIGH 0x30a
106 #define NT_ARM_VFP 0x400
107 #define NT_ARM_TLS 0x401
108 #define NT_ARM_HW_BREAK 0x402
109 #define NT_ARM_HW_WATCH 0x403
110 #define NT_ARM_SYSTEM_CALL 0x404
111 #define NT_METAG_CBUF 0x500
112 #define NT_METAG_RPIPE 0x501
113 #define NT_METAG_TLS 0x502
114 
115 //===----------------------------------------------------------------------===//
116 /// @class ELFRelocation
117 /// Generic wrapper for ELFRel and ELFRela.
118 ///
119 /// This helper class allows us to parse both ELFRel and ELFRela relocation
120 /// entries in a generic manner.
121 class ELFRelocation {
122 public:
123   /// Constructs an ELFRelocation entry with a personality as given by @p
124   /// type.
125   ///
126   /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
127   ELFRelocation(unsigned type);
128 
129   ~ELFRelocation();
130 
131   bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
132 
133   static unsigned RelocType32(const ELFRelocation &rel);
134 
135   static unsigned RelocType64(const ELFRelocation &rel);
136 
137   static unsigned RelocSymbol32(const ELFRelocation &rel);
138 
139   static unsigned RelocSymbol64(const ELFRelocation &rel);
140 
141   static unsigned RelocOffset32(const ELFRelocation &rel);
142 
143   static unsigned RelocOffset64(const ELFRelocation &rel);
144 
145   static unsigned RelocAddend32(const ELFRelocation &rel);
146 
147   static unsigned RelocAddend64(const ELFRelocation &rel);
148 
149 private:
150   typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
151 
152   RelocUnion reloc;
153 };
154 
155 ELFRelocation::ELFRelocation(unsigned type) {
156   if (type == DT_REL || type == SHT_REL)
157     reloc = new ELFRel();
158   else if (type == DT_RELA || type == SHT_RELA)
159     reloc = new ELFRela();
160   else {
161     assert(false && "unexpected relocation type");
162     reloc = static_cast<ELFRel *>(NULL);
163   }
164 }
165 
166 ELFRelocation::~ELFRelocation() {
167   if (reloc.is<ELFRel *>())
168     delete reloc.get<ELFRel *>();
169   else
170     delete reloc.get<ELFRela *>();
171 }
172 
173 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
174                           lldb::offset_t *offset) {
175   if (reloc.is<ELFRel *>())
176     return reloc.get<ELFRel *>()->Parse(data, offset);
177   else
178     return reloc.get<ELFRela *>()->Parse(data, offset);
179 }
180 
181 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
182   if (rel.reloc.is<ELFRel *>())
183     return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>());
184   else
185     return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>());
186 }
187 
188 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
189   if (rel.reloc.is<ELFRel *>())
190     return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>());
191   else
192     return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>());
193 }
194 
195 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
196   if (rel.reloc.is<ELFRel *>())
197     return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>());
198   else
199     return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>());
200 }
201 
202 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
203   if (rel.reloc.is<ELFRel *>())
204     return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>());
205   else
206     return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>());
207 }
208 
209 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
210   if (rel.reloc.is<ELFRel *>())
211     return rel.reloc.get<ELFRel *>()->r_offset;
212   else
213     return rel.reloc.get<ELFRela *>()->r_offset;
214 }
215 
216 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
217   if (rel.reloc.is<ELFRel *>())
218     return rel.reloc.get<ELFRel *>()->r_offset;
219   else
220     return rel.reloc.get<ELFRela *>()->r_offset;
221 }
222 
223 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
224   if (rel.reloc.is<ELFRel *>())
225     return 0;
226   else
227     return rel.reloc.get<ELFRela *>()->r_addend;
228 }
229 
230 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
231   if (rel.reloc.is<ELFRel *>())
232     return 0;
233   else
234     return rel.reloc.get<ELFRela *>()->r_addend;
235 }
236 
237 } // end anonymous namespace
238 
239 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
240   // Read all fields.
241   if (data.GetU32(offset, &n_namesz, 3) == NULL)
242     return false;
243 
244   // The name field is required to be nul-terminated, and n_namesz includes the
245   // terminating nul in observed implementations (contrary to the ELF-64 spec).
246   // A special case is needed for cores generated by some older Linux versions,
247   // which write a note named "CORE" without a nul terminator and n_namesz = 4.
248   if (n_namesz == 4) {
249     char buf[4];
250     if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4)
251       return false;
252     if (strncmp(buf, "CORE", 4) == 0) {
253       n_name = "CORE";
254       *offset += 4;
255       return true;
256     }
257   }
258 
259   const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4));
260   if (cstr == NULL) {
261     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
262     if (log)
263       log->Printf("Failed to parse note name lacking nul terminator");
264 
265     return false;
266   }
267   n_name = cstr;
268   return true;
269 }
270 
271 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) {
272   const uint32_t dsp_rev = e_flags & 0xFF;
273   uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
274   switch (dsp_rev) {
275   // TODO(mg11) Support more variants
276   case 10:
277     kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
278     break;
279   case 14:
280     kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
281     break;
282   case 17:
283   case 20:
284     kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
285     break;
286   default:
287     break;
288   }
289   return kal_arch_variant;
290 }
291 
292 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
293   const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
294   uint32_t endian = header.e_ident[EI_DATA];
295   uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
296   uint32_t fileclass = header.e_ident[EI_CLASS];
297 
298   // If there aren't any elf flags available (e.g core elf file) then return
299   // default
300   // 32 or 64 bit arch (without any architecture revision) based on object file's class.
301   if (header.e_type == ET_CORE) {
302     switch (fileclass) {
303     case llvm::ELF::ELFCLASS32:
304       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
305                                      : ArchSpec::eMIPSSubType_mips32;
306     case llvm::ELF::ELFCLASS64:
307       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
308                                      : ArchSpec::eMIPSSubType_mips64;
309     default:
310       return arch_variant;
311     }
312   }
313 
314   switch (mips_arch) {
315   case llvm::ELF::EF_MIPS_ARCH_1:
316   case llvm::ELF::EF_MIPS_ARCH_2:
317   case llvm::ELF::EF_MIPS_ARCH_32:
318     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
319                                    : ArchSpec::eMIPSSubType_mips32;
320   case llvm::ELF::EF_MIPS_ARCH_32R2:
321     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
322                                    : ArchSpec::eMIPSSubType_mips32r2;
323   case llvm::ELF::EF_MIPS_ARCH_32R6:
324     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
325                                    : ArchSpec::eMIPSSubType_mips32r6;
326   case llvm::ELF::EF_MIPS_ARCH_3:
327   case llvm::ELF::EF_MIPS_ARCH_4:
328   case llvm::ELF::EF_MIPS_ARCH_5:
329   case llvm::ELF::EF_MIPS_ARCH_64:
330     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
331                                    : ArchSpec::eMIPSSubType_mips64;
332   case llvm::ELF::EF_MIPS_ARCH_64R2:
333     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
334                                    : ArchSpec::eMIPSSubType_mips64r2;
335   case llvm::ELF::EF_MIPS_ARCH_64R6:
336     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
337                                    : ArchSpec::eMIPSSubType_mips64r6;
338   default:
339     break;
340   }
341 
342   return arch_variant;
343 }
344 
345 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
346   if (header.e_machine == llvm::ELF::EM_MIPS)
347     return mipsVariantFromElfFlags(header);
348 
349   return llvm::ELF::EM_CSR_KALIMBA == header.e_machine
350              ? kalimbaVariantFromElfFlags(header.e_flags)
351              : LLDB_INVALID_CPUTYPE;
352 }
353 
354 //! The kalimba toolchain identifies a code section as being
355 //! one with the SHT_PROGBITS set in the section sh_type and the top
356 //! bit in the 32-bit address field set.
357 static lldb::SectionType
358 kalimbaSectionType(const elf::ELFHeader &header,
359                    const elf::ELFSectionHeader &sect_hdr) {
360   if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) {
361     return eSectionTypeOther;
362   }
363 
364   if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) {
365     return eSectionTypeZeroFill;
366   }
367 
368   if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) {
369     const lldb::addr_t KAL_CODE_BIT = 1 << 31;
370     return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode
371                                            : eSectionTypeData;
372   }
373 
374   return eSectionTypeOther;
375 }
376 
377 // Arbitrary constant used as UUID prefix for core files.
378 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
379 
380 //------------------------------------------------------------------
381 // Static methods.
382 //------------------------------------------------------------------
383 void ObjectFileELF::Initialize() {
384   PluginManager::RegisterPlugin(GetPluginNameStatic(),
385                                 GetPluginDescriptionStatic(), CreateInstance,
386                                 CreateMemoryInstance, GetModuleSpecifications);
387 }
388 
389 void ObjectFileELF::Terminate() {
390   PluginManager::UnregisterPlugin(CreateInstance);
391 }
392 
393 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() {
394   static ConstString g_name("elf");
395   return g_name;
396 }
397 
398 const char *ObjectFileELF::GetPluginDescriptionStatic() {
399   return "ELF object file reader.";
400 }
401 
402 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
403                                           DataBufferSP &data_sp,
404                                           lldb::offset_t data_offset,
405                                           const lldb_private::FileSpec *file,
406                                           lldb::offset_t file_offset,
407                                           lldb::offset_t length) {
408   if (!data_sp) {
409     data_sp = MapFileData(*file, length, file_offset);
410     if (!data_sp)
411       return nullptr;
412     data_offset = 0;
413   }
414 
415   assert(data_sp);
416 
417   if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
418     return nullptr;
419 
420   const uint8_t *magic = data_sp->GetBytes() + data_offset;
421   if (!ELFHeader::MagicBytesMatch(magic))
422     return nullptr;
423 
424   // Update the data to contain the entire file if it doesn't already
425   if (data_sp->GetByteSize() < length) {
426     data_sp = MapFileData(*file, length, file_offset);
427     if (!data_sp)
428       return nullptr;
429     data_offset = 0;
430     magic = data_sp->GetBytes();
431   }
432 
433   unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
434   if (address_size == 4 || address_size == 8) {
435     std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(
436         module_sp, data_sp, data_offset, file, file_offset, length));
437     ArchSpec spec;
438     if (objfile_ap->GetArchitecture(spec) &&
439         objfile_ap->SetModulesArchitecture(spec))
440       return objfile_ap.release();
441   }
442 
443   return NULL;
444 }
445 
446 ObjectFile *ObjectFileELF::CreateMemoryInstance(
447     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
448     const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
449   if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) {
450     const uint8_t *magic = data_sp->GetBytes();
451     if (ELFHeader::MagicBytesMatch(magic)) {
452       unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
453       if (address_size == 4 || address_size == 8) {
454         std::unique_ptr<ObjectFileELF> objfile_ap(
455             new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
456         ArchSpec spec;
457         if (objfile_ap->GetArchitecture(spec) &&
458             objfile_ap->SetModulesArchitecture(spec))
459           return objfile_ap.release();
460       }
461     }
462   }
463   return NULL;
464 }
465 
466 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
467                                     lldb::addr_t data_offset,
468                                     lldb::addr_t data_length) {
469   if (data_sp &&
470       data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
471     const uint8_t *magic = data_sp->GetBytes() + data_offset;
472     return ELFHeader::MagicBytesMatch(magic);
473   }
474   return false;
475 }
476 
477 /*
478  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
479  *
480  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
481  *   code or tables extracted from it, as desired without restriction.
482  */
483 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) {
484   static const uint32_t g_crc32_tab[] = {
485       0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
486       0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
487       0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
488       0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
489       0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
490       0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
491       0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
492       0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
493       0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
494       0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
495       0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
496       0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
497       0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
498       0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
499       0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
500       0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
501       0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
502       0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
503       0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
504       0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
505       0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
506       0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
507       0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
508       0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
509       0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
510       0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
511       0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
512       0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
513       0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
514       0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
515       0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
516       0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
517       0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
518       0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
519       0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
520       0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
521       0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
522       0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
523       0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
524       0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
525       0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
526       0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
527       0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};
528   const uint8_t *p = (const uint8_t *)buf;
529 
530   crc = crc ^ ~0U;
531   while (size--)
532     crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
533   return crc ^ ~0U;
534 }
535 
536 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) {
537   return calc_crc32(0U, buf, size);
538 }
539 
540 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
541     const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
542 
543   uint32_t core_notes_crc = 0;
544 
545   for (const ELFProgramHeader &H : program_headers) {
546     if (H.p_type == llvm::ELF::PT_NOTE) {
547       const elf_off ph_offset = H.p_offset;
548       const size_t ph_size = H.p_filesz;
549 
550       DataExtractor segment_data;
551       if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) {
552         // The ELF program header contained incorrect data, probably corefile
553         // is incomplete or corrupted.
554         break;
555       }
556 
557       core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(),
558                                   segment_data.GetByteSize());
559     }
560   }
561 
562   return core_notes_crc;
563 }
564 
565 static const char *OSABIAsCString(unsigned char osabi_byte) {
566 #define _MAKE_OSABI_CASE(x)                                                    \
567   case x:                                                                      \
568     return #x
569   switch (osabi_byte) {
570     _MAKE_OSABI_CASE(ELFOSABI_NONE);
571     _MAKE_OSABI_CASE(ELFOSABI_HPUX);
572     _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
573     _MAKE_OSABI_CASE(ELFOSABI_GNU);
574     _MAKE_OSABI_CASE(ELFOSABI_HURD);
575     _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
576     _MAKE_OSABI_CASE(ELFOSABI_AIX);
577     _MAKE_OSABI_CASE(ELFOSABI_IRIX);
578     _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
579     _MAKE_OSABI_CASE(ELFOSABI_TRU64);
580     _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
581     _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
582     _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
583     _MAKE_OSABI_CASE(ELFOSABI_NSK);
584     _MAKE_OSABI_CASE(ELFOSABI_AROS);
585     _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
586     _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
587     _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
588     _MAKE_OSABI_CASE(ELFOSABI_ARM);
589     _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
590   default:
591     return "<unknown-osabi>";
592   }
593 #undef _MAKE_OSABI_CASE
594 }
595 
596 //
597 // WARNING : This function is being deprecated
598 // It's functionality has moved to ArchSpec::SetArchitecture This function is
599 // only being kept to validate the move.
600 //
601 // TODO : Remove this function
602 static bool GetOsFromOSABI(unsigned char osabi_byte,
603                            llvm::Triple::OSType &ostype) {
604   switch (osabi_byte) {
605   case ELFOSABI_AIX:
606     ostype = llvm::Triple::OSType::AIX;
607     break;
608   case ELFOSABI_FREEBSD:
609     ostype = llvm::Triple::OSType::FreeBSD;
610     break;
611   case ELFOSABI_GNU:
612     ostype = llvm::Triple::OSType::Linux;
613     break;
614   case ELFOSABI_NETBSD:
615     ostype = llvm::Triple::OSType::NetBSD;
616     break;
617   case ELFOSABI_OPENBSD:
618     ostype = llvm::Triple::OSType::OpenBSD;
619     break;
620   case ELFOSABI_SOLARIS:
621     ostype = llvm::Triple::OSType::Solaris;
622     break;
623   default:
624     ostype = llvm::Triple::OSType::UnknownOS;
625   }
626   return ostype != llvm::Triple::OSType::UnknownOS;
627 }
628 
629 size_t ObjectFileELF::GetModuleSpecifications(
630     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
631     lldb::offset_t data_offset, lldb::offset_t file_offset,
632     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
634 
635   const size_t initial_count = specs.GetSize();
636 
637   if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
638     DataExtractor data;
639     data.SetData(data_sp);
640     elf::ELFHeader header;
641     lldb::offset_t header_offset = data_offset;
642     if (header.Parse(data, &header_offset)) {
643       if (data_sp) {
644         ModuleSpec spec(file);
645 
646         const uint32_t sub_type = subTypeFromElfHeader(header);
647         spec.GetArchitecture().SetArchitecture(
648             eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
649 
650         if (spec.GetArchitecture().IsValid()) {
651           llvm::Triple::OSType ostype;
652           llvm::Triple::VendorType vendor;
653           llvm::Triple::OSType spec_ostype =
654               spec.GetArchitecture().GetTriple().getOS();
655 
656           if (log)
657             log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s",
658                         __FUNCTION__, file.GetPath().c_str(),
659                         OSABIAsCString(header.e_ident[EI_OSABI]));
660 
661           // SetArchitecture should have set the vendor to unknown
662           vendor = spec.GetArchitecture().GetTriple().getVendor();
663           assert(vendor == llvm::Triple::UnknownVendor);
664           UNUSED_IF_ASSERT_DISABLED(vendor);
665 
666           //
667           // Validate it is ok to remove GetOsFromOSABI
668           GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
669           assert(spec_ostype == ostype);
670           if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
671             if (log)
672               log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type "
673                           "from ELF header OSABI.",
674                           __FUNCTION__, file.GetPath().c_str());
675           }
676 
677           data_sp = MapFileData(file, -1, file_offset);
678           if (data_sp)
679             data.SetData(data_sp);
680           // In case there is header extension in the section #0, the header we
681           // parsed above could have sentinel values for e_phnum, e_shnum, and
682           // e_shstrndx.  In this case we need to reparse the header with a
683           // bigger data source to get the actual values.
684           if (header.HasHeaderExtension()) {
685             lldb::offset_t header_offset = data_offset;
686             header.Parse(data, &header_offset);
687           }
688 
689           uint32_t gnu_debuglink_crc = 0;
690           std::string gnu_debuglink_file;
691           SectionHeaderColl section_headers;
692           lldb_private::UUID &uuid = spec.GetUUID();
693 
694           GetSectionHeaderInfo(section_headers, data, header, uuid,
695                                gnu_debuglink_file, gnu_debuglink_crc,
696                                spec.GetArchitecture());
697 
698           llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
699 
700           if (log)
701             log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s "
702                         "(architecture %s)",
703                         __FUNCTION__, file.GetPath().c_str(),
704                         spec_triple.getTriple().c_str(),
705                         spec.GetArchitecture().GetArchitectureName());
706 
707           if (!uuid.IsValid()) {
708             uint32_t core_notes_crc = 0;
709 
710             if (!gnu_debuglink_crc) {
711               static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
712               lldb_private::Timer scoped_timer(
713                   func_cat,
714                   "Calculating module crc32 %s with size %" PRIu64 " KiB",
715                   file.GetLastPathComponent().AsCString(),
716                   (FileSystem::Instance().GetByteSize(file) - file_offset) /
717                       1024);
718 
719               // For core files - which usually don't happen to have a
720               // gnu_debuglink, and are pretty bulky - calculating whole
721               // contents crc32 would be too much of luxury.  Thus we will need
722               // to fallback to something simpler.
723               if (header.e_type == llvm::ELF::ET_CORE) {
724                 ProgramHeaderColl program_headers;
725                 GetProgramHeaderInfo(program_headers, data, header);
726 
727                 core_notes_crc =
728                     CalculateELFNotesSegmentsCRC32(program_headers, data);
729               } else {
730                 gnu_debuglink_crc = calc_gnu_debuglink_crc32(
731                     data.GetDataStart(), data.GetByteSize());
732               }
733             }
734             using u32le = llvm::support::ulittle32_t;
735             if (gnu_debuglink_crc) {
736               // Use 4 bytes of crc from the .gnu_debuglink section.
737               u32le data(gnu_debuglink_crc);
738               uuid = UUID::fromData(&data, sizeof(data));
739             } else if (core_notes_crc) {
740               // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
741               // it look different form .gnu_debuglink crc followed by 4 bytes
742               // of note segments crc.
743               u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
744               uuid = UUID::fromData(data, sizeof(data));
745             }
746           }
747 
748           specs.Append(spec);
749         }
750       }
751     }
752   }
753 
754   return specs.GetSize() - initial_count;
755 }
756 
757 //------------------------------------------------------------------
758 // PluginInterface protocol
759 //------------------------------------------------------------------
760 lldb_private::ConstString ObjectFileELF::GetPluginName() {
761   return GetPluginNameStatic();
762 }
763 
764 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; }
765 //------------------------------------------------------------------
766 // ObjectFile protocol
767 //------------------------------------------------------------------
768 
769 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
770                              DataBufferSP &data_sp, lldb::offset_t data_offset,
771                              const FileSpec *file, lldb::offset_t file_offset,
772                              lldb::offset_t length)
773     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
774       m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0),
775       m_program_headers(), m_section_headers(), m_dynamic_symbols(),
776       m_filespec_ap(), m_entry_point_address(), m_arch_spec() {
777   if (file)
778     m_file = *file;
779   ::memset(&m_header, 0, sizeof(m_header));
780 }
781 
782 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
783                              DataBufferSP &header_data_sp,
784                              const lldb::ProcessSP &process_sp,
785                              addr_t header_addr)
786     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
787       m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0),
788       m_program_headers(), m_section_headers(), m_dynamic_symbols(),
789       m_filespec_ap(), m_entry_point_address(), m_arch_spec() {
790   ::memset(&m_header, 0, sizeof(m_header));
791 }
792 
793 ObjectFileELF::~ObjectFileELF() {}
794 
795 bool ObjectFileELF::IsExecutable() const {
796   return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
797 }
798 
799 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
800                                    bool value_is_offset) {
801   ModuleSP module_sp = GetModule();
802   if (module_sp) {
803     size_t num_loaded_sections = 0;
804     SectionList *section_list = GetSectionList();
805     if (section_list) {
806       if (!value_is_offset) {
807         bool found_offset = false;
808         for (const ELFProgramHeader &H : ProgramHeaders()) {
809           if (H.p_type != PT_LOAD || H.p_offset != 0)
810             continue;
811 
812           value = value - H.p_vaddr;
813           found_offset = true;
814           break;
815         }
816         if (!found_offset)
817           return false;
818       }
819 
820       const size_t num_sections = section_list->GetSize();
821       size_t sect_idx = 0;
822 
823       for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
824         // Iterate through the object file sections to find all of the sections
825         // that have SHF_ALLOC in their flag bits.
826         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
827         if (section_sp && section_sp->Test(SHF_ALLOC)) {
828           lldb::addr_t load_addr = section_sp->GetFileAddress();
829           // We don't want to update the load address of a section with type
830           // eSectionTypeAbsoluteAddress as they already have the absolute load
831           // address already specified
832           if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
833             load_addr += value;
834 
835           // On 32-bit systems the load address have to fit into 4 bytes. The
836           // rest of the bytes are the overflow from the addition.
837           if (GetAddressByteSize() == 4)
838             load_addr &= 0xFFFFFFFF;
839 
840           if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp,
841                                                                 load_addr))
842             ++num_loaded_sections;
843         }
844       }
845       return num_loaded_sections > 0;
846     }
847   }
848   return false;
849 }
850 
851 ByteOrder ObjectFileELF::GetByteOrder() const {
852   if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
853     return eByteOrderBig;
854   if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
855     return eByteOrderLittle;
856   return eByteOrderInvalid;
857 }
858 
859 uint32_t ObjectFileELF::GetAddressByteSize() const {
860   return m_data.GetAddressByteSize();
861 }
862 
863 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
864   Symtab *symtab = GetSymtab();
865   if (!symtab)
866     return AddressClass::eUnknown;
867 
868   // The address class is determined based on the symtab. Ask it from the
869   // object file what contains the symtab information.
870   ObjectFile *symtab_objfile = symtab->GetObjectFile();
871   if (symtab_objfile != nullptr && symtab_objfile != this)
872     return symtab_objfile->GetAddressClass(file_addr);
873 
874   auto res = ObjectFile::GetAddressClass(file_addr);
875   if (res != AddressClass::eCode)
876     return res;
877 
878   auto ub = m_address_class_map.upper_bound(file_addr);
879   if (ub == m_address_class_map.begin()) {
880     // No entry in the address class map before the address. Return default
881     // address class for an address in a code section.
882     return AddressClass::eCode;
883   }
884 
885   // Move iterator to the address class entry preceding address
886   --ub;
887 
888   return ub->second;
889 }
890 
891 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
892   return std::distance(m_section_headers.begin(), I) + 1u;
893 }
894 
895 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
896   return std::distance(m_section_headers.begin(), I) + 1u;
897 }
898 
899 bool ObjectFileELF::ParseHeader() {
900   lldb::offset_t offset = 0;
901   return m_header.Parse(m_data, &offset);
902 }
903 
904 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) {
905   // Need to parse the section list to get the UUIDs, so make sure that's been
906   // done.
907   if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
908     return false;
909 
910   using u32le = llvm::support::ulittle32_t;
911   if (m_uuid.IsValid()) {
912     // We have the full build id uuid.
913     *uuid = m_uuid;
914     return true;
915   } else if (GetType() == ObjectFile::eTypeCoreFile) {
916     uint32_t core_notes_crc = 0;
917 
918     if (!ParseProgramHeaders())
919       return false;
920 
921     core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
922 
923     if (core_notes_crc) {
924       // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look
925       // different form .gnu_debuglink crc - followed by 4 bytes of note
926       // segments crc.
927       u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)};
928       m_uuid = UUID::fromData(data, sizeof(data));
929     }
930   } else {
931     if (!m_gnu_debuglink_crc)
932       m_gnu_debuglink_crc =
933           calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize());
934     if (m_gnu_debuglink_crc) {
935       // Use 4 bytes of crc from the .gnu_debuglink section.
936       u32le data(m_gnu_debuglink_crc);
937       m_uuid = UUID::fromData(&data, sizeof(data));
938     }
939   }
940 
941   if (m_uuid.IsValid()) {
942     *uuid = m_uuid;
943     return true;
944   }
945 
946   return false;
947 }
948 
949 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() {
950   FileSpecList file_spec_list;
951 
952   if (!m_gnu_debuglink_file.empty()) {
953     FileSpec file_spec(m_gnu_debuglink_file);
954     file_spec_list.Append(file_spec);
955   }
956   return file_spec_list;
957 }
958 
959 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
960   size_t num_modules = ParseDependentModules();
961   uint32_t num_specs = 0;
962 
963   for (unsigned i = 0; i < num_modules; ++i) {
964     if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
965       num_specs++;
966   }
967 
968   return num_specs;
969 }
970 
971 Address ObjectFileELF::GetImageInfoAddress(Target *target) {
972   if (!ParseDynamicSymbols())
973     return Address();
974 
975   SectionList *section_list = GetSectionList();
976   if (!section_list)
977     return Address();
978 
979   // Find the SHT_DYNAMIC (.dynamic) section.
980   SectionSP dynsym_section_sp(
981       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true));
982   if (!dynsym_section_sp)
983     return Address();
984   assert(dynsym_section_sp->GetObjectFile() == this);
985 
986   user_id_t dynsym_id = dynsym_section_sp->GetID();
987   const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
988   if (!dynsym_hdr)
989     return Address();
990 
991   for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
992     ELFDynamic &symbol = m_dynamic_symbols[i];
993 
994     if (symbol.d_tag == DT_DEBUG) {
995       // Compute the offset as the number of previous entries plus the size of
996       // d_tag.
997       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
998       return Address(dynsym_section_sp, offset);
999     }
1000     // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
1001     // exists in non-PIE.
1002     else if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
1003               symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
1004              target) {
1005       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1006       addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1007       if (dyn_base == LLDB_INVALID_ADDRESS)
1008         return Address();
1009 
1010       Status error;
1011       if (symbol.d_tag == DT_MIPS_RLD_MAP) {
1012         // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
1013         Address addr;
1014         if (target->ReadPointerFromMemory(dyn_base + offset, false, error,
1015                                           addr))
1016           return addr;
1017       }
1018       if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
1019         // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
1020         // relative to the address of the tag.
1021         uint64_t rel_offset;
1022         rel_offset = target->ReadUnsignedIntegerFromMemory(
1023             dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
1024         if (error.Success() && rel_offset != UINT64_MAX) {
1025           Address addr;
1026           addr_t debug_ptr_address =
1027               dyn_base + (offset - GetAddressByteSize()) + rel_offset;
1028           addr.SetOffset(debug_ptr_address);
1029           return addr;
1030         }
1031       }
1032     }
1033   }
1034 
1035   return Address();
1036 }
1037 
1038 lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
1039   if (m_entry_point_address.IsValid())
1040     return m_entry_point_address;
1041 
1042   if (!ParseHeader() || !IsExecutable())
1043     return m_entry_point_address;
1044 
1045   SectionList *section_list = GetSectionList();
1046   addr_t offset = m_header.e_entry;
1047 
1048   if (!section_list)
1049     m_entry_point_address.SetOffset(offset);
1050   else
1051     m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1052   return m_entry_point_address;
1053 }
1054 
1055 //----------------------------------------------------------------------
1056 // ParseDependentModules
1057 //----------------------------------------------------------------------
1058 size_t ObjectFileELF::ParseDependentModules() {
1059   if (m_filespec_ap.get())
1060     return m_filespec_ap->GetSize();
1061 
1062   m_filespec_ap.reset(new FileSpecList());
1063 
1064   if (!ParseSectionHeaders())
1065     return 0;
1066 
1067   SectionList *section_list = GetSectionList();
1068   if (!section_list)
1069     return 0;
1070 
1071   // Find the SHT_DYNAMIC section.
1072   Section *dynsym =
1073       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
1074           .get();
1075   if (!dynsym)
1076     return 0;
1077   assert(dynsym->GetObjectFile() == this);
1078 
1079   const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID());
1080   if (!header)
1081     return 0;
1082   // sh_link: section header index of string table used by entries in the
1083   // section.
1084   Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get();
1085   if (!dynstr)
1086     return 0;
1087 
1088   DataExtractor dynsym_data;
1089   DataExtractor dynstr_data;
1090   if (ReadSectionData(dynsym, dynsym_data) &&
1091       ReadSectionData(dynstr, dynstr_data)) {
1092     ELFDynamic symbol;
1093     const lldb::offset_t section_size = dynsym_data.GetByteSize();
1094     lldb::offset_t offset = 0;
1095 
1096     // The only type of entries we are concerned with are tagged DT_NEEDED,
1097     // yielding the name of a required library.
1098     while (offset < section_size) {
1099       if (!symbol.Parse(dynsym_data, &offset))
1100         break;
1101 
1102       if (symbol.d_tag != DT_NEEDED)
1103         continue;
1104 
1105       uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1106       const char *lib_name = dynstr_data.PeekCStr(str_index);
1107       FileSpec file_spec(lib_name);
1108       FileSystem::Instance().Resolve(file_spec);
1109       m_filespec_ap->Append(file_spec);
1110     }
1111   }
1112 
1113   return m_filespec_ap->GetSize();
1114 }
1115 
1116 //----------------------------------------------------------------------
1117 // GetProgramHeaderInfo
1118 //----------------------------------------------------------------------
1119 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1120                                            DataExtractor &object_data,
1121                                            const ELFHeader &header) {
1122   // We have already parsed the program headers
1123   if (!program_headers.empty())
1124     return program_headers.size();
1125 
1126   // If there are no program headers to read we are done.
1127   if (header.e_phnum == 0)
1128     return 0;
1129 
1130   program_headers.resize(header.e_phnum);
1131   if (program_headers.size() != header.e_phnum)
1132     return 0;
1133 
1134   const size_t ph_size = header.e_phnum * header.e_phentsize;
1135   const elf_off ph_offset = header.e_phoff;
1136   DataExtractor data;
1137   if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1138     return 0;
1139 
1140   uint32_t idx;
1141   lldb::offset_t offset;
1142   for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
1143     if (!program_headers[idx].Parse(data, &offset))
1144       break;
1145   }
1146 
1147   if (idx < program_headers.size())
1148     program_headers.resize(idx);
1149 
1150   return program_headers.size();
1151 }
1152 
1153 //----------------------------------------------------------------------
1154 // ParseProgramHeaders
1155 //----------------------------------------------------------------------
1156 bool ObjectFileELF::ParseProgramHeaders() {
1157   return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0;
1158 }
1159 
1160 lldb_private::Status
1161 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
1162                                            lldb_private::ArchSpec &arch_spec,
1163                                            lldb_private::UUID &uuid) {
1164   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1165   Status error;
1166 
1167   lldb::offset_t offset = 0;
1168 
1169   while (true) {
1170     // Parse the note header.  If this fails, bail out.
1171     const lldb::offset_t note_offset = offset;
1172     ELFNote note = ELFNote();
1173     if (!note.Parse(data, &offset)) {
1174       // We're done.
1175       return error;
1176     }
1177 
1178     if (log)
1179       log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1180                   __FUNCTION__, note.n_name.c_str(), note.n_type);
1181 
1182     // Process FreeBSD ELF notes.
1183     if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1184         (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1185         (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1186       // Pull out the min version info.
1187       uint32_t version_info;
1188       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1189         error.SetErrorString("failed to read FreeBSD ABI note payload");
1190         return error;
1191       }
1192 
1193       // Convert the version info into a major/minor number.
1194       const uint32_t version_major = version_info / 100000;
1195       const uint32_t version_minor = (version_info / 1000) % 100;
1196 
1197       char os_name[32];
1198       snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32,
1199                version_major, version_minor);
1200 
1201       // Set the elf OS version to FreeBSD.  Also clear the vendor.
1202       arch_spec.GetTriple().setOSName(os_name);
1203       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1204 
1205       if (log)
1206         log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1207                     ".%" PRIu32,
1208                     __FUNCTION__, version_major, version_minor,
1209                     static_cast<uint32_t>(version_info % 1000));
1210     }
1211     // Process GNU ELF notes.
1212     else if (note.n_name == LLDB_NT_OWNER_GNU) {
1213       switch (note.n_type) {
1214       case LLDB_NT_GNU_ABI_TAG:
1215         if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1216           // Pull out the min OS version supporting the ABI.
1217           uint32_t version_info[4];
1218           if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) ==
1219               nullptr) {
1220             error.SetErrorString("failed to read GNU ABI note payload");
1221             return error;
1222           }
1223 
1224           // Set the OS per the OS field.
1225           switch (version_info[0]) {
1226           case LLDB_NT_GNU_ABI_OS_LINUX:
1227             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1228             arch_spec.GetTriple().setVendor(
1229                 llvm::Triple::VendorType::UnknownVendor);
1230             if (log)
1231               log->Printf(
1232                   "ObjectFileELF::%s detected Linux, min version %" PRIu32
1233                   ".%" PRIu32 ".%" PRIu32,
1234                   __FUNCTION__, version_info[1], version_info[2],
1235                   version_info[3]);
1236             // FIXME we have the minimal version number, we could be propagating
1237             // that.  version_info[1] = OS Major, version_info[2] = OS Minor,
1238             // version_info[3] = Revision.
1239             break;
1240           case LLDB_NT_GNU_ABI_OS_HURD:
1241             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1242             arch_spec.GetTriple().setVendor(
1243                 llvm::Triple::VendorType::UnknownVendor);
1244             if (log)
1245               log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min "
1246                           "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1247                           __FUNCTION__, version_info[1], version_info[2],
1248                           version_info[3]);
1249             break;
1250           case LLDB_NT_GNU_ABI_OS_SOLARIS:
1251             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1252             arch_spec.GetTriple().setVendor(
1253                 llvm::Triple::VendorType::UnknownVendor);
1254             if (log)
1255               log->Printf(
1256                   "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1257                   ".%" PRIu32 ".%" PRIu32,
1258                   __FUNCTION__, version_info[1], version_info[2],
1259                   version_info[3]);
1260             break;
1261           default:
1262             if (log)
1263               log->Printf(
1264                   "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1265                   ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1266                   __FUNCTION__, version_info[0], version_info[1],
1267                   version_info[2], version_info[3]);
1268             break;
1269           }
1270         }
1271         break;
1272 
1273       case LLDB_NT_GNU_BUILD_ID_TAG:
1274         // Only bother processing this if we don't already have the uuid set.
1275         if (!uuid.IsValid()) {
1276           // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1277           // build-id of a different length. Accept it as long as it's at least
1278           // 4 bytes as it will be better than our own crc32.
1279           if (note.n_descsz >= 4) {
1280             if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) {
1281               // Save the build id as the UUID for the module.
1282               uuid = UUID::fromData(buf, note.n_descsz);
1283             } else {
1284               error.SetErrorString("failed to read GNU_BUILD_ID note payload");
1285               return error;
1286             }
1287           }
1288         }
1289         break;
1290       }
1291       if (arch_spec.IsMIPS() &&
1292           arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1293         // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1294         arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1295     }
1296     // Process NetBSD ELF notes.
1297     else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1298              (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1299              (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) {
1300       // Pull out the min version info.
1301       uint32_t version_info;
1302       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1303         error.SetErrorString("failed to read NetBSD ABI note payload");
1304         return error;
1305       }
1306 
1307       // Set the elf OS version to NetBSD.  Also clear the vendor.
1308       arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1309       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1310 
1311       if (log)
1312         log->Printf(
1313             "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32,
1314             __FUNCTION__, version_info);
1315     }
1316     // Process OpenBSD ELF notes.
1317     else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1318       // Set the elf OS version to OpenBSD.  Also clear the vendor.
1319       arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1320       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1321     }
1322     // Process CSR kalimba notes
1323     else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1324              (note.n_name == LLDB_NT_OWNER_CSR)) {
1325       arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1326       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1327 
1328       // TODO At some point the description string could be processed.
1329       // It could provide a steer towards the kalimba variant which this ELF
1330       // targets.
1331       if (note.n_descsz) {
1332         const char *cstr =
1333             data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4));
1334         (void)cstr;
1335       }
1336     } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1337       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1338       arch_spec.GetTriple().setEnvironment(
1339           llvm::Triple::EnvironmentType::Android);
1340     } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1341       // This is sometimes found in core files and usually contains extended
1342       // register info
1343       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1344     } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1345       // Parse the NT_FILE to look for stuff in paths to shared libraries As
1346       // the contents look like this in a 64 bit ELF core file: count     =
1347       // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index
1348       // start              end                file_ofs           path =====
1349       // ------------------ ------------------ ------------------
1350       // ------------------------------------- [  0] 0x0000000000400000
1351       // 0x0000000000401000 0x0000000000000000 /tmp/a.out [  1]
1352       // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [
1353       // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1354       // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000
1355       // /lib/x86_64-linux-gnu/libc-2.19.so [  4] 0x00007fa79cba8000
1356       // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-
1357       // gnu/libc-2.19.so [  5] 0x00007fa79cda7000 0x00007fa79cdab000
1358       // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [  6]
1359       // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64
1360       // -linux-gnu/libc-2.19.so [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000
1361       // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [  8]
1362       // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64
1363       // -linux-gnu/ld-2.19.so [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000
1364       // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs
1365       // the count, page_size, start, end, file_ofs are uint32_t For reference:
1366       // see readelf source code (in binutils).
1367       if (note.n_type == NT_FILE) {
1368         uint64_t count = data.GetAddress(&offset);
1369         const char *cstr;
1370         data.GetAddress(&offset); // Skip page size
1371         offset += count * 3 *
1372                   data.GetAddressByteSize(); // Skip all start/end/file_ofs
1373         for (size_t i = 0; i < count; ++i) {
1374           cstr = data.GetCStr(&offset);
1375           if (cstr == nullptr) {
1376             error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read "
1377                                            "at an offset after the end "
1378                                            "(GetCStr returned nullptr)",
1379                                            __FUNCTION__);
1380             return error;
1381           }
1382           llvm::StringRef path(cstr);
1383           if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) {
1384             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1385             break;
1386           }
1387         }
1388         if (arch_spec.IsMIPS() &&
1389             arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1390           // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1391           // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1392           arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1393       }
1394     }
1395 
1396     // Calculate the offset of the next note just in case "offset" has been
1397     // used to poke at the contents of the note data
1398     offset = note_offset + note.GetByteSize();
1399   }
1400 
1401   return error;
1402 }
1403 
1404 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
1405                                        ArchSpec &arch_spec) {
1406   lldb::offset_t Offset = 0;
1407 
1408   uint8_t FormatVersion = data.GetU8(&Offset);
1409   if (FormatVersion != llvm::ARMBuildAttrs::Format_Version)
1410     return;
1411 
1412   Offset = Offset + sizeof(uint32_t); // Section Length
1413   llvm::StringRef VendorName = data.GetCStr(&Offset);
1414 
1415   if (VendorName != "aeabi")
1416     return;
1417 
1418   if (arch_spec.GetTriple().getEnvironment() ==
1419       llvm::Triple::UnknownEnvironment)
1420     arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1421 
1422   while (Offset < length) {
1423     uint8_t Tag = data.GetU8(&Offset);
1424     uint32_t Size = data.GetU32(&Offset);
1425 
1426     if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1427       continue;
1428 
1429     while (Offset < length) {
1430       uint64_t Tag = data.GetULEB128(&Offset);
1431       switch (Tag) {
1432       default:
1433         if (Tag < 32)
1434           data.GetULEB128(&Offset);
1435         else if (Tag % 2 == 0)
1436           data.GetULEB128(&Offset);
1437         else
1438           data.GetCStr(&Offset);
1439 
1440         break;
1441 
1442       case llvm::ARMBuildAttrs::CPU_raw_name:
1443       case llvm::ARMBuildAttrs::CPU_name:
1444         data.GetCStr(&Offset);
1445 
1446         break;
1447 
1448       case llvm::ARMBuildAttrs::ABI_VFP_args: {
1449         uint64_t VFPArgs = data.GetULEB128(&Offset);
1450 
1451         if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1452           if (arch_spec.GetTriple().getEnvironment() ==
1453                   llvm::Triple::UnknownEnvironment ||
1454               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1455             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1456 
1457           arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1458         } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1459           if (arch_spec.GetTriple().getEnvironment() ==
1460                   llvm::Triple::UnknownEnvironment ||
1461               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1462             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1463 
1464           arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1465         }
1466 
1467         break;
1468       }
1469       }
1470     }
1471   }
1472 }
1473 
1474 //----------------------------------------------------------------------
1475 // GetSectionHeaderInfo
1476 //----------------------------------------------------------------------
1477 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1478                                            DataExtractor &object_data,
1479                                            const elf::ELFHeader &header,
1480                                            lldb_private::UUID &uuid,
1481                                            std::string &gnu_debuglink_file,
1482                                            uint32_t &gnu_debuglink_crc,
1483                                            ArchSpec &arch_spec) {
1484   // Don't reparse the section headers if we already did that.
1485   if (!section_headers.empty())
1486     return section_headers.size();
1487 
1488   // Only initialize the arch_spec to okay defaults if they're not already set.
1489   // We'll refine this with note data as we parse the notes.
1490   if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1491     llvm::Triple::OSType ostype;
1492     llvm::Triple::OSType spec_ostype;
1493     const uint32_t sub_type = subTypeFromElfHeader(header);
1494     arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type,
1495                               header.e_ident[EI_OSABI]);
1496 
1497     // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1498     // determined based on EI_OSABI flag and the info extracted from ELF notes
1499     // (see RefineModuleDetailsFromNote). However in some cases that still
1500     // might be not enough: for example a shared library might not have any
1501     // notes at all and have EI_OSABI flag set to System V, as result the OS
1502     // will be set to UnknownOS.
1503     GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
1504     spec_ostype = arch_spec.GetTriple().getOS();
1505     assert(spec_ostype == ostype);
1506     UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1507   }
1508 
1509   if (arch_spec.GetMachine() == llvm::Triple::mips ||
1510       arch_spec.GetMachine() == llvm::Triple::mipsel ||
1511       arch_spec.GetMachine() == llvm::Triple::mips64 ||
1512       arch_spec.GetMachine() == llvm::Triple::mips64el) {
1513     switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1514     case llvm::ELF::EF_MIPS_MICROMIPS:
1515       arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
1516       break;
1517     case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1518       arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
1519       break;
1520     case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1521       arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
1522       break;
1523     default:
1524       break;
1525     }
1526   }
1527 
1528   if (arch_spec.GetMachine() == llvm::Triple::arm ||
1529       arch_spec.GetMachine() == llvm::Triple::thumb) {
1530     if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1531       arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1532     else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1533       arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1534   }
1535 
1536   // If there are no section headers we are done.
1537   if (header.e_shnum == 0)
1538     return 0;
1539 
1540   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1541 
1542   section_headers.resize(header.e_shnum);
1543   if (section_headers.size() != header.e_shnum)
1544     return 0;
1545 
1546   const size_t sh_size = header.e_shnum * header.e_shentsize;
1547   const elf_off sh_offset = header.e_shoff;
1548   DataExtractor sh_data;
1549   if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size)
1550     return 0;
1551 
1552   uint32_t idx;
1553   lldb::offset_t offset;
1554   for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1555     if (!section_headers[idx].Parse(sh_data, &offset))
1556       break;
1557   }
1558   if (idx < section_headers.size())
1559     section_headers.resize(idx);
1560 
1561   const unsigned strtab_idx = header.e_shstrndx;
1562   if (strtab_idx && strtab_idx < section_headers.size()) {
1563     const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1564     const size_t byte_size = sheader.sh_size;
1565     const Elf64_Off offset = sheader.sh_offset;
1566     lldb_private::DataExtractor shstr_data;
1567 
1568     if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) {
1569       for (SectionHeaderCollIter I = section_headers.begin();
1570            I != section_headers.end(); ++I) {
1571         static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1572         const ELFSectionHeaderInfo &sheader = *I;
1573         const uint64_t section_size =
1574             sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1575         ConstString name(shstr_data.PeekCStr(I->sh_name));
1576 
1577         I->section_name = name;
1578 
1579         if (arch_spec.IsMIPS()) {
1580           uint32_t arch_flags = arch_spec.GetFlags();
1581           DataExtractor data;
1582           if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1583 
1584             if (section_size && (data.SetData(object_data, sheader.sh_offset,
1585                                               section_size) == section_size)) {
1586               // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1587               lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1588               arch_flags |= data.GetU32(&offset);
1589 
1590               // The floating point ABI is at offset 7
1591               offset = 7;
1592               switch (data.GetU8(&offset)) {
1593               case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1594                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
1595                 break;
1596               case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1597                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
1598                 break;
1599               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1600                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
1601                 break;
1602               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1603                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
1604                 break;
1605               case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1606                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
1607                 break;
1608               case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1609                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
1610                 break;
1611               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1612                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
1613                 break;
1614               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1615                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
1616                 break;
1617               }
1618             }
1619           }
1620           // Settings appropriate ArchSpec ABI Flags
1621           switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1622           case llvm::ELF::EF_MIPS_ABI_O32:
1623             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1624             break;
1625           case EF_MIPS_ABI_O64:
1626             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
1627             break;
1628           case EF_MIPS_ABI_EABI32:
1629             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
1630             break;
1631           case EF_MIPS_ABI_EABI64:
1632             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
1633             break;
1634           default:
1635             // ABI Mask doesn't cover N32 and N64 ABI.
1636             if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1637               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
1638             else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1639               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1640             break;
1641           }
1642           arch_spec.SetFlags(arch_flags);
1643         }
1644 
1645         if (arch_spec.GetMachine() == llvm::Triple::arm ||
1646             arch_spec.GetMachine() == llvm::Triple::thumb) {
1647           DataExtractor data;
1648 
1649           if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1650               data.SetData(object_data, sheader.sh_offset, section_size) == section_size)
1651             ParseARMAttributes(data, section_size, arch_spec);
1652         }
1653 
1654         if (name == g_sect_name_gnu_debuglink) {
1655           DataExtractor data;
1656           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1657                                             section_size) == section_size)) {
1658             lldb::offset_t gnu_debuglink_offset = 0;
1659             gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset);
1660             gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4);
1661             data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1662           }
1663         }
1664 
1665         // Process ELF note section entries.
1666         bool is_note_header = (sheader.sh_type == SHT_NOTE);
1667 
1668         // The section header ".note.android.ident" is stored as a
1669         // PROGBITS type header but it is actually a note header.
1670         static ConstString g_sect_name_android_ident(".note.android.ident");
1671         if (!is_note_header && name == g_sect_name_android_ident)
1672           is_note_header = true;
1673 
1674         if (is_note_header) {
1675           // Allow notes to refine module info.
1676           DataExtractor data;
1677           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1678                                             section_size) == section_size)) {
1679             Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1680             if (error.Fail()) {
1681               if (log)
1682                 log->Printf("ObjectFileELF::%s ELF note processing failed: %s",
1683                             __FUNCTION__, error.AsCString());
1684             }
1685           }
1686         }
1687       }
1688 
1689       // Make any unknown triple components to be unspecified unknowns.
1690       if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1691         arch_spec.GetTriple().setVendorName(llvm::StringRef());
1692       if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1693         arch_spec.GetTriple().setOSName(llvm::StringRef());
1694 
1695       return section_headers.size();
1696     }
1697   }
1698 
1699   section_headers.clear();
1700   return 0;
1701 }
1702 
1703 llvm::StringRef
1704 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1705   size_t pos = symbol_name.find('@');
1706   return symbol_name.substr(0, pos);
1707 }
1708 
1709 //----------------------------------------------------------------------
1710 // ParseSectionHeaders
1711 //----------------------------------------------------------------------
1712 size_t ObjectFileELF::ParseSectionHeaders() {
1713   return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid,
1714                               m_gnu_debuglink_file, m_gnu_debuglink_crc,
1715                               m_arch_spec);
1716 }
1717 
1718 const ObjectFileELF::ELFSectionHeaderInfo *
1719 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
1720   if (!id || !ParseSectionHeaders())
1721     return NULL;
1722 
1723   if (--id < m_section_headers.size())
1724     return &m_section_headers[id];
1725 
1726   return NULL;
1727 }
1728 
1729 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
1730   if (!name || !name[0] || !ParseSectionHeaders())
1731     return 0;
1732   for (size_t i = 1; i < m_section_headers.size(); ++i)
1733     if (m_section_headers[i].section_name == ConstString(name))
1734       return i;
1735   return 0;
1736 }
1737 
1738 static SectionType GetSectionTypeFromName(llvm::StringRef Name) {
1739   return llvm::StringSwitch<SectionType>(Name)
1740       .Case(".ARM.exidx", eSectionTypeARMexidx)
1741       .Case(".ARM.extab", eSectionTypeARMextab)
1742       .Cases(".bss", ".tbss", eSectionTypeZeroFill)
1743       .Cases(".data", ".tdata", eSectionTypeData)
1744       .Case(".debug_abbrev", eSectionTypeDWARFDebugAbbrev)
1745       .Case(".debug_abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo)
1746       .Case(".debug_addr", eSectionTypeDWARFDebugAddr)
1747       .Case(".debug_aranges", eSectionTypeDWARFDebugAranges)
1748       .Case(".debug_cu_index", eSectionTypeDWARFDebugCuIndex)
1749       .Case(".debug_frame", eSectionTypeDWARFDebugFrame)
1750       .Case(".debug_info", eSectionTypeDWARFDebugInfo)
1751       .Case(".debug_info.dwo", eSectionTypeDWARFDebugInfoDwo)
1752       .Cases(".debug_line", ".debug_line.dwo", eSectionTypeDWARFDebugLine)
1753       .Cases(".debug_line_str", ".debug_line_str.dwo",
1754              eSectionTypeDWARFDebugLineStr)
1755       .Cases(".debug_loc", ".debug_loc.dwo", eSectionTypeDWARFDebugLoc)
1756       .Cases(".debug_loclists", ".debug_loclists.dwo",
1757              eSectionTypeDWARFDebugLocLists)
1758       .Case(".debug_macinfo", eSectionTypeDWARFDebugMacInfo)
1759       .Cases(".debug_macro", ".debug_macro.dwo", eSectionTypeDWARFDebugMacro)
1760       .Case(".debug_names", eSectionTypeDWARFDebugNames)
1761       .Case(".debug_pubnames", eSectionTypeDWARFDebugPubNames)
1762       .Case(".debug_pubtypes", eSectionTypeDWARFDebugPubTypes)
1763       .Case(".debug_ranges", eSectionTypeDWARFDebugRanges)
1764       .Case(".debug_rnglists", eSectionTypeDWARFDebugRngLists)
1765       .Case(".debug_str", eSectionTypeDWARFDebugStr)
1766       .Case(".debug_str.dwo", eSectionTypeDWARFDebugStrDwo)
1767       .Case(".debug_str_offsets", eSectionTypeDWARFDebugStrOffsets)
1768       .Case(".debug_str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo)
1769       .Case(".debug_types", eSectionTypeDWARFDebugTypes)
1770       .Case(".eh_frame", eSectionTypeEHFrame)
1771       .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink)
1772       .Case(".gosymtab", eSectionTypeGoSymtab)
1773       .Case(".text", eSectionTypeCode)
1774       .Default(eSectionTypeOther);
1775 }
1776 
1777 SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const {
1778   switch (H.sh_type) {
1779   case SHT_PROGBITS:
1780     if (H.sh_flags & SHF_EXECINSTR)
1781       return eSectionTypeCode;
1782     break;
1783   case SHT_SYMTAB:
1784     return eSectionTypeELFSymbolTable;
1785   case SHT_DYNSYM:
1786     return eSectionTypeELFDynamicSymbols;
1787   case SHT_RELA:
1788   case SHT_REL:
1789     return eSectionTypeELFRelocationEntries;
1790   case SHT_DYNAMIC:
1791     return eSectionTypeELFDynamicLinkInfo;
1792   }
1793   SectionType Type = GetSectionTypeFromName(H.section_name.GetStringRef());
1794   if (Type == eSectionTypeOther) {
1795     // the kalimba toolchain assumes that ELF section names are free-form.
1796     // It does support linkscripts which (can) give rise to various
1797     // arbitrarily named sections being "Code" or "Data".
1798     Type = kalimbaSectionType(m_header, H);
1799   }
1800   return Type;
1801 }
1802 
1803 static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) {
1804   switch (Type) {
1805   case eSectionTypeData:
1806   case eSectionTypeZeroFill:
1807     return arch.GetDataByteSize();
1808   case eSectionTypeCode:
1809     return arch.GetCodeByteSize();
1810   default:
1811     return 1;
1812   }
1813 }
1814 
1815 static Permissions GetPermissions(const ELFSectionHeader &H) {
1816   Permissions Perm = Permissions(0);
1817   if (H.sh_flags & SHF_ALLOC)
1818     Perm |= ePermissionsReadable;
1819   if (H.sh_flags & SHF_WRITE)
1820     Perm |= ePermissionsWritable;
1821   if (H.sh_flags & SHF_EXECINSTR)
1822     Perm |= ePermissionsExecutable;
1823   return Perm;
1824 }
1825 
1826 namespace {
1827 // (Unlinked) ELF object files usually have 0 for every section address, meaning
1828 // we need to compute synthetic addresses in order for "file addresses" from
1829 // different sections to not overlap. This class handles that logic.
1830 class VMAddressProvider {
1831   bool m_synthesizing;
1832   addr_t m_next;
1833 
1834 public:
1835   VMAddressProvider(ObjectFile::Type Type)
1836       : m_synthesizing(Type == ObjectFile::Type::eTypeObjectFile), m_next(0) {}
1837 
1838   std::pair<addr_t, addr_t> GetAddressAndSize(const ELFSectionHeader &H) {
1839     addr_t address = H.sh_addr;
1840     addr_t size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0;
1841     if (m_synthesizing && (H.sh_flags & SHF_ALLOC)) {
1842       m_next = llvm::alignTo(m_next, std::max<addr_t>(H.sh_addralign, 1));
1843       address = m_next;
1844       m_next += size;
1845     }
1846     return {address, size};
1847   }
1848 };
1849 }
1850 
1851 void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1852   if (!m_sections_ap.get() && ParseSectionHeaders()) {
1853     m_sections_ap.reset(new SectionList());
1854 
1855     VMAddressProvider address_provider(CalculateType());
1856     for (SectionHeaderCollIter I = m_section_headers.begin();
1857          I != m_section_headers.end(); ++I) {
1858       const ELFSectionHeaderInfo &header = *I;
1859 
1860       ConstString &name = I->section_name;
1861       const uint64_t file_size =
1862           header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1863 
1864       addr_t vm_addr, vm_size;
1865       std::tie(vm_addr, vm_size) = address_provider.GetAddressAndSize(header);
1866 
1867       SectionType sect_type = GetSectionType(header);
1868 
1869       const uint32_t target_bytes_size =
1870           GetTargetByteSize(sect_type, m_arch_spec);
1871 
1872       elf::elf_xword log2align =
1873           (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign);
1874 
1875       SectionSP section_sp(new Section(
1876           GetModule(), // Module to which this section belongs.
1877           this, // ObjectFile to which this section belongs and should read
1878                 // section data from.
1879           SectionIndex(I),     // Section ID.
1880           name,                // Section name.
1881           sect_type,           // Section type.
1882           vm_addr,             // VM address.
1883           vm_size,             // VM size in bytes of this section.
1884           header.sh_offset,    // Offset of this section in the file.
1885           file_size,           // Size of the section as found in the file.
1886           log2align,           // Alignment of the section
1887           header.sh_flags,     // Flags for this section.
1888           target_bytes_size)); // Number of host bytes per target byte
1889 
1890       section_sp->SetPermissions(GetPermissions(header));
1891       section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS);
1892       m_sections_ap->AddSection(section_sp);
1893     }
1894   }
1895 
1896   // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1897   // unified section list.
1898   if (GetType() != eTypeDebugInfo)
1899     unified_section_list = *m_sections_ap;
1900 }
1901 
1902 // Find the arm/aarch64 mapping symbol character in the given symbol name.
1903 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
1904 // recognize cases when the mapping symbol prefixed by an arbitrary string
1905 // because if a symbol prefix added to each symbol in the object file with
1906 // objcopy then the mapping symbols are also prefixed.
1907 static char FindArmAarch64MappingSymbol(const char *symbol_name) {
1908   if (!symbol_name)
1909     return '\0';
1910 
1911   const char *dollar_pos = ::strchr(symbol_name, '$');
1912   if (!dollar_pos || dollar_pos[1] == '\0')
1913     return '\0';
1914 
1915   if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
1916     return dollar_pos[1];
1917   return '\0';
1918 }
1919 
1920 #define STO_MIPS_ISA (3 << 6)
1921 #define STO_MICROMIPS (2 << 6)
1922 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
1923 
1924 // private
1925 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
1926                                      SectionList *section_list,
1927                                      const size_t num_symbols,
1928                                      const DataExtractor &symtab_data,
1929                                      const DataExtractor &strtab_data) {
1930   ELFSymbol symbol;
1931   lldb::offset_t offset = 0;
1932 
1933   static ConstString text_section_name(".text");
1934   static ConstString init_section_name(".init");
1935   static ConstString fini_section_name(".fini");
1936   static ConstString ctors_section_name(".ctors");
1937   static ConstString dtors_section_name(".dtors");
1938 
1939   static ConstString data_section_name(".data");
1940   static ConstString rodata_section_name(".rodata");
1941   static ConstString rodata1_section_name(".rodata1");
1942   static ConstString data2_section_name(".data1");
1943   static ConstString bss_section_name(".bss");
1944   static ConstString opd_section_name(".opd"); // For ppc64
1945 
1946   // On Android the oatdata and the oatexec symbols in the oat and odex files
1947   // covers the full .text section what causes issues with displaying unusable
1948   // symbol name to the user and very slow unwinding speed because the
1949   // instruction emulation based unwind plans try to emulate all instructions
1950   // in these symbols. Don't add these symbols to the symbol list as they have
1951   // no use for the debugger and they are causing a lot of trouble. Filtering
1952   // can't be restricted to Android because this special object file don't
1953   // contain the note section specifying the environment to Android but the
1954   // custom extension and file name makes it highly unlikely that this will
1955   // collide with anything else.
1956   ConstString file_extension = m_file.GetFileNameExtension();
1957   bool skip_oatdata_oatexec = file_extension == ConstString(".oat") ||
1958                               file_extension == ConstString(".odex");
1959 
1960   ArchSpec arch;
1961   GetArchitecture(arch);
1962   ModuleSP module_sp(GetModule());
1963   SectionList *module_section_list =
1964       module_sp ? module_sp->GetSectionList() : nullptr;
1965 
1966   // Local cache to avoid doing a FindSectionByName for each symbol. The "const
1967   // char*" key must came from a ConstString object so they can be compared by
1968   // pointer
1969   std::unordered_map<const char *, lldb::SectionSP> section_name_to_section;
1970 
1971   unsigned i;
1972   for (i = 0; i < num_symbols; ++i) {
1973     if (!symbol.Parse(symtab_data, &offset))
1974       break;
1975 
1976     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1977     if (!symbol_name)
1978       symbol_name = "";
1979 
1980     // No need to add non-section symbols that have no names
1981     if (symbol.getType() != STT_SECTION &&
1982         (symbol_name == nullptr || symbol_name[0] == '\0'))
1983       continue;
1984 
1985     // Skipping oatdata and oatexec sections if it is requested. See details
1986     // above the definition of skip_oatdata_oatexec for the reasons.
1987     if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 ||
1988                                  ::strcmp(symbol_name, "oatexec") == 0))
1989       continue;
1990 
1991     SectionSP symbol_section_sp;
1992     SymbolType symbol_type = eSymbolTypeInvalid;
1993     Elf64_Half section_idx = symbol.st_shndx;
1994 
1995     switch (section_idx) {
1996     case SHN_ABS:
1997       symbol_type = eSymbolTypeAbsolute;
1998       break;
1999     case SHN_UNDEF:
2000       symbol_type = eSymbolTypeUndefined;
2001       break;
2002     default:
2003       symbol_section_sp = section_list->GetSectionAtIndex(section_idx);
2004       break;
2005     }
2006 
2007     // If a symbol is undefined do not process it further even if it has a STT
2008     // type
2009     if (symbol_type != eSymbolTypeUndefined) {
2010       switch (symbol.getType()) {
2011       default:
2012       case STT_NOTYPE:
2013         // The symbol's type is not specified.
2014         break;
2015 
2016       case STT_OBJECT:
2017         // The symbol is associated with a data object, such as a variable, an
2018         // array, etc.
2019         symbol_type = eSymbolTypeData;
2020         break;
2021 
2022       case STT_FUNC:
2023         // The symbol is associated with a function or other executable code.
2024         symbol_type = eSymbolTypeCode;
2025         break;
2026 
2027       case STT_SECTION:
2028         // The symbol is associated with a section. Symbol table entries of
2029         // this type exist primarily for relocation and normally have STB_LOCAL
2030         // binding.
2031         break;
2032 
2033       case STT_FILE:
2034         // Conventionally, the symbol's name gives the name of the source file
2035         // associated with the object file. A file symbol has STB_LOCAL
2036         // binding, its section index is SHN_ABS, and it precedes the other
2037         // STB_LOCAL symbols for the file, if it is present.
2038         symbol_type = eSymbolTypeSourceFile;
2039         break;
2040 
2041       case STT_GNU_IFUNC:
2042         // The symbol is associated with an indirect function. The actual
2043         // function will be resolved if it is referenced.
2044         symbol_type = eSymbolTypeResolver;
2045         break;
2046       }
2047     }
2048 
2049     if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2050       if (symbol_section_sp) {
2051         const ConstString &sect_name = symbol_section_sp->GetName();
2052         if (sect_name == text_section_name || sect_name == init_section_name ||
2053             sect_name == fini_section_name || sect_name == ctors_section_name ||
2054             sect_name == dtors_section_name) {
2055           symbol_type = eSymbolTypeCode;
2056         } else if (sect_name == data_section_name ||
2057                    sect_name == data2_section_name ||
2058                    sect_name == rodata_section_name ||
2059                    sect_name == rodata1_section_name ||
2060                    sect_name == bss_section_name) {
2061           symbol_type = eSymbolTypeData;
2062         }
2063       }
2064     }
2065 
2066     int64_t symbol_value_offset = 0;
2067     uint32_t additional_flags = 0;
2068 
2069     if (arch.IsValid()) {
2070       if (arch.GetMachine() == llvm::Triple::arm) {
2071         if (symbol.getBinding() == STB_LOCAL) {
2072           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2073           if (symbol_type == eSymbolTypeCode) {
2074             switch (mapping_symbol) {
2075             case 'a':
2076               // $a[.<any>]* - marks an ARM instruction sequence
2077               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2078               break;
2079             case 'b':
2080             case 't':
2081               // $b[.<any>]* - marks a THUMB BL instruction sequence
2082               // $t[.<any>]* - marks a THUMB instruction sequence
2083               m_address_class_map[symbol.st_value] =
2084                   AddressClass::eCodeAlternateISA;
2085               break;
2086             case 'd':
2087               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2088               m_address_class_map[symbol.st_value] = AddressClass::eData;
2089               break;
2090             }
2091           }
2092           if (mapping_symbol)
2093             continue;
2094         }
2095       } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2096         if (symbol.getBinding() == STB_LOCAL) {
2097           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2098           if (symbol_type == eSymbolTypeCode) {
2099             switch (mapping_symbol) {
2100             case 'x':
2101               // $x[.<any>]* - marks an A64 instruction sequence
2102               m_address_class_map[symbol.st_value] = AddressClass::eCode;
2103               break;
2104             case 'd':
2105               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2106               m_address_class_map[symbol.st_value] = AddressClass::eData;
2107               break;
2108             }
2109           }
2110           if (mapping_symbol)
2111             continue;
2112         }
2113       }
2114 
2115       if (arch.GetMachine() == llvm::Triple::arm) {
2116         if (symbol_type == eSymbolTypeCode) {
2117           if (symbol.st_value & 1) {
2118             // Subtracting 1 from the address effectively unsets the low order
2119             // bit, which results in the address actually pointing to the
2120             // beginning of the symbol. This delta will be used below in
2121             // conjunction with symbol.st_value to produce the final
2122             // symbol_value that we store in the symtab.
2123             symbol_value_offset = -1;
2124             m_address_class_map[symbol.st_value ^ 1] =
2125                 AddressClass::eCodeAlternateISA;
2126           } else {
2127             // This address is ARM
2128             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2129           }
2130         }
2131       }
2132 
2133       /*
2134        * MIPS:
2135        * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2136        * MIPS).
2137        * This allows processor to switch between microMIPS and MIPS without any
2138        * need
2139        * for special mode-control register. However, apart from .debug_line,
2140        * none of
2141        * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2142        * st_other
2143        * flag to check whether the symbol is microMIPS and then set the address
2144        * class
2145        * accordingly.
2146       */
2147       const llvm::Triple::ArchType llvm_arch = arch.GetMachine();
2148       if (llvm_arch == llvm::Triple::mips ||
2149           llvm_arch == llvm::Triple::mipsel ||
2150           llvm_arch == llvm::Triple::mips64 ||
2151           llvm_arch == llvm::Triple::mips64el) {
2152         if (IS_MICROMIPS(symbol.st_other))
2153           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2154         else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2155           symbol.st_value = symbol.st_value & (~1ull);
2156           m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA;
2157         } else {
2158           if (symbol_type == eSymbolTypeCode)
2159             m_address_class_map[symbol.st_value] = AddressClass::eCode;
2160           else if (symbol_type == eSymbolTypeData)
2161             m_address_class_map[symbol.st_value] = AddressClass::eData;
2162           else
2163             m_address_class_map[symbol.st_value] = AddressClass::eUnknown;
2164         }
2165       }
2166     }
2167 
2168     // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2169     // symbols. See above for more details.
2170     uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2171 
2172     if (symbol_section_sp == nullptr && section_idx == SHN_ABS &&
2173         symbol.st_size != 0) {
2174       // We don't have a section for a symbol with non-zero size. Create a new
2175       // section for it so the address range covered by the symbol is also
2176       // covered by the module (represented through the section list). It is
2177       // needed so module lookup for the addresses covered by this symbol will
2178       // be successfull. This case happens for absolute symbols.
2179       ConstString fake_section_name(std::string(".absolute.") + symbol_name);
2180       symbol_section_sp =
2181           std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name,
2182                                     eSectionTypeAbsoluteAddress, symbol_value,
2183                                     symbol.st_size, 0, 0, 0, SHF_ALLOC);
2184 
2185       module_section_list->AddSection(symbol_section_sp);
2186       section_list->AddSection(symbol_section_sp);
2187     }
2188 
2189     if (symbol_section_sp &&
2190         CalculateType() != ObjectFile::Type::eTypeObjectFile)
2191       symbol_value -= symbol_section_sp->GetFileAddress();
2192 
2193     if (symbol_section_sp && module_section_list &&
2194         module_section_list != section_list) {
2195       const ConstString &sect_name = symbol_section_sp->GetName();
2196       auto section_it = section_name_to_section.find(sect_name.GetCString());
2197       if (section_it == section_name_to_section.end())
2198         section_it =
2199             section_name_to_section
2200                 .emplace(sect_name.GetCString(),
2201                          module_section_list->FindSectionByName(sect_name))
2202                 .first;
2203       if (section_it->second)
2204         symbol_section_sp = section_it->second;
2205     }
2206 
2207     bool is_global = symbol.getBinding() == STB_GLOBAL;
2208     uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2209     bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z');
2210 
2211     llvm::StringRef symbol_ref(symbol_name);
2212 
2213     // Symbol names may contain @VERSION suffixes. Find those and strip them
2214     // temporarily.
2215     size_t version_pos = symbol_ref.find('@');
2216     bool has_suffix = version_pos != llvm::StringRef::npos;
2217     llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2218     Mangled mangled(ConstString(symbol_bare), is_mangled);
2219 
2220     // Now append the suffix back to mangled and unmangled names. Only do it if
2221     // the demangling was successful (string is not empty).
2222     if (has_suffix) {
2223       llvm::StringRef suffix = symbol_ref.substr(version_pos);
2224 
2225       llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2226       if (!mangled_name.empty())
2227         mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2228 
2229       ConstString demangled =
2230           mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2231       llvm::StringRef demangled_name = demangled.GetStringRef();
2232       if (!demangled_name.empty())
2233         mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2234     }
2235 
2236     // In ELF all symbol should have a valid size but it is not true for some
2237     // function symbols coming from hand written assembly. As none of the
2238     // function symbol should have 0 size we try to calculate the size for
2239     // these symbols in the symtab with saying that their original size is not
2240     // valid.
2241     bool symbol_size_valid =
2242         symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2243 
2244     Symbol dc_symbol(
2245         i + start_id, // ID is the original symbol table index.
2246         mangled,
2247         symbol_type,                    // Type of this symbol
2248         is_global,                      // Is this globally visible?
2249         false,                          // Is this symbol debug info?
2250         false,                          // Is this symbol a trampoline?
2251         false,                          // Is this symbol artificial?
2252         AddressRange(symbol_section_sp, // Section in which this symbol is
2253                                         // defined or null.
2254                      symbol_value,      // Offset in section or symbol value.
2255                      symbol.st_size),   // Size in bytes of this symbol.
2256         symbol_size_valid,              // Symbol size is valid
2257         has_suffix,                     // Contains linker annotations?
2258         flags);                         // Symbol flags.
2259     symtab->AddSymbol(dc_symbol);
2260   }
2261   return i;
2262 }
2263 
2264 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
2265                                          user_id_t start_id,
2266                                          lldb_private::Section *symtab) {
2267   if (symtab->GetObjectFile() != this) {
2268     // If the symbol table section is owned by a different object file, have it
2269     // do the parsing.
2270     ObjectFileELF *obj_file_elf =
2271         static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2272     return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2273   }
2274 
2275   // Get section list for this object file.
2276   SectionList *section_list = m_sections_ap.get();
2277   if (!section_list)
2278     return 0;
2279 
2280   user_id_t symtab_id = symtab->GetID();
2281   const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2282   assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2283          symtab_hdr->sh_type == SHT_DYNSYM);
2284 
2285   // sh_link: section header index of associated string table. Section ID's are
2286   // ones based.
2287   user_id_t strtab_id = symtab_hdr->sh_link + 1;
2288   Section *strtab = section_list->FindSectionByID(strtab_id).get();
2289 
2290   if (symtab && strtab) {
2291     assert(symtab->GetObjectFile() == this);
2292     assert(strtab->GetObjectFile() == this);
2293 
2294     DataExtractor symtab_data;
2295     DataExtractor strtab_data;
2296     if (ReadSectionData(symtab, symtab_data) &&
2297         ReadSectionData(strtab, strtab_data)) {
2298       size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2299 
2300       return ParseSymbols(symbol_table, start_id, section_list, num_symbols,
2301                           symtab_data, strtab_data);
2302     }
2303   }
2304 
2305   return 0;
2306 }
2307 
2308 size_t ObjectFileELF::ParseDynamicSymbols() {
2309   if (m_dynamic_symbols.size())
2310     return m_dynamic_symbols.size();
2311 
2312   SectionList *section_list = GetSectionList();
2313   if (!section_list)
2314     return 0;
2315 
2316   // Find the SHT_DYNAMIC section.
2317   Section *dynsym =
2318       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
2319           .get();
2320   if (!dynsym)
2321     return 0;
2322   assert(dynsym->GetObjectFile() == this);
2323 
2324   ELFDynamic symbol;
2325   DataExtractor dynsym_data;
2326   if (ReadSectionData(dynsym, dynsym_data)) {
2327     const lldb::offset_t section_size = dynsym_data.GetByteSize();
2328     lldb::offset_t cursor = 0;
2329 
2330     while (cursor < section_size) {
2331       if (!symbol.Parse(dynsym_data, &cursor))
2332         break;
2333 
2334       m_dynamic_symbols.push_back(symbol);
2335     }
2336   }
2337 
2338   return m_dynamic_symbols.size();
2339 }
2340 
2341 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
2342   if (!ParseDynamicSymbols())
2343     return NULL;
2344 
2345   DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2346   DynamicSymbolCollIter E = m_dynamic_symbols.end();
2347   for (; I != E; ++I) {
2348     ELFDynamic *symbol = &*I;
2349 
2350     if (symbol->d_tag == tag)
2351       return symbol;
2352   }
2353 
2354   return NULL;
2355 }
2356 
2357 unsigned ObjectFileELF::PLTRelocationType() {
2358   // DT_PLTREL
2359   //  This member specifies the type of relocation entry to which the
2360   //  procedure linkage table refers. The d_val member holds DT_REL or
2361   //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2362   //  must use the same relocation.
2363   const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2364 
2365   if (symbol)
2366     return symbol->d_val;
2367 
2368   return 0;
2369 }
2370 
2371 // Returns the size of the normal plt entries and the offset of the first
2372 // normal plt entry. The 0th entry in the plt table is usually a resolution
2373 // entry which have different size in some architectures then the rest of the
2374 // plt entries.
2375 static std::pair<uint64_t, uint64_t>
2376 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
2377                          const ELFSectionHeader *plt_hdr) {
2378   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2379 
2380   // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2381   // 16 bytes. So round the entsize up by the alignment if addralign is set.
2382   elf_xword plt_entsize =
2383       plt_hdr->sh_addralign
2384           ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign)
2385           : plt_hdr->sh_entsize;
2386 
2387   // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2388   // PLT entries relocation code in general requires multiple instruction and
2389   // should be greater than 4 bytes in most cases. Try to guess correct size
2390   // just in case.
2391   if (plt_entsize <= 4) {
2392     // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2393     // size of the plt entries based on the number of entries and the size of
2394     // the plt section with the assumption that the size of the 0th entry is at
2395     // least as big as the size of the normal entries and it isn't much bigger
2396     // then that.
2397     if (plt_hdr->sh_addralign)
2398       plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2399                     (num_relocations + 1) * plt_hdr->sh_addralign;
2400     else
2401       plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2402   }
2403 
2404   elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2405 
2406   return std::make_pair(plt_entsize, plt_offset);
2407 }
2408 
2409 static unsigned ParsePLTRelocations(
2410     Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2411     const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2412     const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2413     const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2414     DataExtractor &symtab_data, DataExtractor &strtab_data) {
2415   ELFRelocation rel(rel_type);
2416   ELFSymbol symbol;
2417   lldb::offset_t offset = 0;
2418 
2419   uint64_t plt_offset, plt_entsize;
2420   std::tie(plt_entsize, plt_offset) =
2421       GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2422   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2423 
2424   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2425   reloc_info_fn reloc_type;
2426   reloc_info_fn reloc_symbol;
2427 
2428   if (hdr->Is32Bit()) {
2429     reloc_type = ELFRelocation::RelocType32;
2430     reloc_symbol = ELFRelocation::RelocSymbol32;
2431   } else {
2432     reloc_type = ELFRelocation::RelocType64;
2433     reloc_symbol = ELFRelocation::RelocSymbol64;
2434   }
2435 
2436   unsigned slot_type = hdr->GetRelocationJumpSlotType();
2437   unsigned i;
2438   for (i = 0; i < num_relocations; ++i) {
2439     if (!rel.Parse(rel_data, &offset))
2440       break;
2441 
2442     if (reloc_type(rel) != slot_type)
2443       continue;
2444 
2445     lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2446     if (!symbol.Parse(symtab_data, &symbol_offset))
2447       break;
2448 
2449     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2450     bool is_mangled =
2451         symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2452     uint64_t plt_index = plt_offset + i * plt_entsize;
2453 
2454     Symbol jump_symbol(
2455         i + start_id,          // Symbol table index
2456         symbol_name,           // symbol name.
2457         is_mangled,            // is the symbol name mangled?
2458         eSymbolTypeTrampoline, // Type of this symbol
2459         false,                 // Is this globally visible?
2460         false,                 // Is this symbol debug info?
2461         true,                  // Is this symbol a trampoline?
2462         true,                  // Is this symbol artificial?
2463         plt_section_sp, // Section in which this symbol is defined or null.
2464         plt_index,      // Offset in section or symbol value.
2465         plt_entsize,    // Size in bytes of this symbol.
2466         true,           // Size is valid
2467         false,          // Contains linker annotations?
2468         0);             // Symbol flags.
2469 
2470     symbol_table->AddSymbol(jump_symbol);
2471   }
2472 
2473   return i;
2474 }
2475 
2476 unsigned
2477 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
2478                                       const ELFSectionHeaderInfo *rel_hdr,
2479                                       user_id_t rel_id) {
2480   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2481 
2482   // The link field points to the associated symbol table.
2483   user_id_t symtab_id = rel_hdr->sh_link;
2484 
2485   // If the link field doesn't point to the appropriate symbol name table then
2486   // try to find it by name as some compiler don't fill in the link fields.
2487   if (!symtab_id)
2488     symtab_id = GetSectionIndexByName(".dynsym");
2489 
2490   // Get PLT section.  We cannot use rel_hdr->sh_info, since current linkers
2491   // point that to the .got.plt or .got section instead of .plt.
2492   user_id_t plt_id = GetSectionIndexByName(".plt");
2493 
2494   if (!symtab_id || !plt_id)
2495     return 0;
2496 
2497   // Section ID's are ones based;
2498   symtab_id++;
2499   plt_id++;
2500 
2501   const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2502   if (!plt_hdr)
2503     return 0;
2504 
2505   const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2506   if (!sym_hdr)
2507     return 0;
2508 
2509   SectionList *section_list = m_sections_ap.get();
2510   if (!section_list)
2511     return 0;
2512 
2513   Section *rel_section = section_list->FindSectionByID(rel_id).get();
2514   if (!rel_section)
2515     return 0;
2516 
2517   SectionSP plt_section_sp(section_list->FindSectionByID(plt_id));
2518   if (!plt_section_sp)
2519     return 0;
2520 
2521   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2522   if (!symtab)
2523     return 0;
2524 
2525   // sh_link points to associated string table.
2526   Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2527   if (!strtab)
2528     return 0;
2529 
2530   DataExtractor rel_data;
2531   if (!ReadSectionData(rel_section, rel_data))
2532     return 0;
2533 
2534   DataExtractor symtab_data;
2535   if (!ReadSectionData(symtab, symtab_data))
2536     return 0;
2537 
2538   DataExtractor strtab_data;
2539   if (!ReadSectionData(strtab, strtab_data))
2540     return 0;
2541 
2542   unsigned rel_type = PLTRelocationType();
2543   if (!rel_type)
2544     return 0;
2545 
2546   return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header,
2547                              rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2548                              rel_data, symtab_data, strtab_data);
2549 }
2550 
2551 unsigned ObjectFileELF::ApplyRelocations(
2552     Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2553     const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2554     DataExtractor &rel_data, DataExtractor &symtab_data,
2555     DataExtractor &debug_data, Section *rel_section) {
2556   ELFRelocation rel(rel_hdr->sh_type);
2557   lldb::addr_t offset = 0;
2558   const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2559   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2560   reloc_info_fn reloc_type;
2561   reloc_info_fn reloc_symbol;
2562 
2563   if (hdr->Is32Bit()) {
2564     reloc_type = ELFRelocation::RelocType32;
2565     reloc_symbol = ELFRelocation::RelocSymbol32;
2566   } else {
2567     reloc_type = ELFRelocation::RelocType64;
2568     reloc_symbol = ELFRelocation::RelocSymbol64;
2569   }
2570 
2571   for (unsigned i = 0; i < num_relocations; ++i) {
2572     if (!rel.Parse(rel_data, &offset))
2573       break;
2574 
2575     Symbol *symbol = NULL;
2576 
2577     if (hdr->Is32Bit()) {
2578       switch (reloc_type(rel)) {
2579       case R_386_32:
2580       case R_386_PC32:
2581       default:
2582         // FIXME: This asserts with this input:
2583         //
2584         // foo.cpp
2585         // int main(int argc, char **argv) { return 0; }
2586         //
2587         // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o
2588         //
2589         // and running this on the foo.o module.
2590         assert(false && "unexpected relocation type");
2591       }
2592     } else {
2593       switch (reloc_type(rel)) {
2594       case R_AARCH64_ABS64:
2595       case R_X86_64_64: {
2596         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2597         if (symbol) {
2598           addr_t value = symbol->GetAddressRef().GetFileAddress();
2599           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2600           uint64_t *dst = reinterpret_cast<uint64_t *>(
2601               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2602               ELFRelocation::RelocOffset64(rel));
2603           uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel);
2604           memcpy(dst, &val_offset, sizeof(uint64_t));
2605         }
2606         break;
2607       }
2608       case R_X86_64_32:
2609       case R_X86_64_32S:
2610       case R_AARCH64_ABS32: {
2611         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2612         if (symbol) {
2613           addr_t value = symbol->GetAddressRef().GetFileAddress();
2614           value += ELFRelocation::RelocAddend32(rel);
2615           if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) ||
2616               (reloc_type(rel) == R_X86_64_32S &&
2617                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) ||
2618               (reloc_type(rel) == R_AARCH64_ABS32 &&
2619                ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) {
2620             Log *log =
2621                 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
2622             log->Printf("Failed to apply debug info relocations");
2623             break;
2624           }
2625           uint32_t truncated_addr = (value & 0xFFFFFFFF);
2626           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2627           uint32_t *dst = reinterpret_cast<uint32_t *>(
2628               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2629               ELFRelocation::RelocOffset32(rel));
2630           memcpy(dst, &truncated_addr, sizeof(uint32_t));
2631         }
2632         break;
2633       }
2634       case R_X86_64_PC32:
2635       default:
2636         assert(false && "unexpected relocation type");
2637       }
2638     }
2639   }
2640 
2641   return 0;
2642 }
2643 
2644 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
2645                                               user_id_t rel_id,
2646                                               lldb_private::Symtab *thetab) {
2647   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2648 
2649   // Parse in the section list if needed.
2650   SectionList *section_list = GetSectionList();
2651   if (!section_list)
2652     return 0;
2653 
2654   // Section ID's are ones based.
2655   user_id_t symtab_id = rel_hdr->sh_link + 1;
2656   user_id_t debug_id = rel_hdr->sh_info + 1;
2657 
2658   const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2659   if (!symtab_hdr)
2660     return 0;
2661 
2662   const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2663   if (!debug_hdr)
2664     return 0;
2665 
2666   Section *rel = section_list->FindSectionByID(rel_id).get();
2667   if (!rel)
2668     return 0;
2669 
2670   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2671   if (!symtab)
2672     return 0;
2673 
2674   Section *debug = section_list->FindSectionByID(debug_id).get();
2675   if (!debug)
2676     return 0;
2677 
2678   DataExtractor rel_data;
2679   DataExtractor symtab_data;
2680   DataExtractor debug_data;
2681 
2682   if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) &&
2683       GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) &&
2684       GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) {
2685     ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr,
2686                      rel_data, symtab_data, debug_data, debug);
2687   }
2688 
2689   return 0;
2690 }
2691 
2692 Symtab *ObjectFileELF::GetSymtab() {
2693   ModuleSP module_sp(GetModule());
2694   if (!module_sp)
2695     return NULL;
2696 
2697   // We always want to use the main object file so we (hopefully) only have one
2698   // cached copy of our symtab, dynamic sections, etc.
2699   ObjectFile *module_obj_file = module_sp->GetObjectFile();
2700   if (module_obj_file && module_obj_file != this)
2701     return module_obj_file->GetSymtab();
2702 
2703   if (m_symtab_ap.get() == NULL) {
2704     SectionList *section_list = module_sp->GetSectionList();
2705     if (!section_list)
2706       return NULL;
2707 
2708     uint64_t symbol_id = 0;
2709     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2710 
2711     // Sharable objects and dynamic executables usually have 2 distinct symbol
2712     // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
2713     // smaller version of the symtab that only contains global symbols. The
2714     // information found in the dynsym is therefore also found in the symtab,
2715     // while the reverse is not necessarily true.
2716     Section *symtab =
2717         section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get();
2718     if (!symtab) {
2719       // The symtab section is non-allocable and can be stripped, so if it
2720       // doesn't exist then use the dynsym section which should always be
2721       // there.
2722       symtab =
2723           section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true)
2724               .get();
2725     }
2726     if (symtab) {
2727       m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2728       symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab);
2729     }
2730 
2731     // DT_JMPREL
2732     //      If present, this entry's d_ptr member holds the address of
2733     //      relocation
2734     //      entries associated solely with the procedure linkage table.
2735     //      Separating
2736     //      these relocation entries lets the dynamic linker ignore them during
2737     //      process initialization, if lazy binding is enabled. If this entry is
2738     //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2739     //      also be present.
2740     const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2741     if (symbol) {
2742       // Synthesize trampoline symbols to help navigate the PLT.
2743       addr_t addr = symbol->d_ptr;
2744       Section *reloc_section =
2745           section_list->FindSectionContainingFileAddress(addr).get();
2746       if (reloc_section) {
2747         user_id_t reloc_id = reloc_section->GetID();
2748         const ELFSectionHeaderInfo *reloc_header =
2749             GetSectionHeaderByIndex(reloc_id);
2750         assert(reloc_header);
2751 
2752         if (m_symtab_ap == nullptr)
2753           m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2754 
2755         ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header,
2756                                reloc_id);
2757       }
2758     }
2759 
2760     DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo();
2761     if (eh_frame) {
2762       if (m_symtab_ap == nullptr)
2763         m_symtab_ap.reset(new Symtab(this));
2764       ParseUnwindSymbols(m_symtab_ap.get(), eh_frame);
2765     }
2766 
2767     // If we still don't have any symtab then create an empty instance to avoid
2768     // do the section lookup next time.
2769     if (m_symtab_ap == nullptr)
2770       m_symtab_ap.reset(new Symtab(this));
2771 
2772     m_symtab_ap->CalculateSymbolSizes();
2773   }
2774 
2775   return m_symtab_ap.get();
2776 }
2777 
2778 void ObjectFileELF::RelocateSection(lldb_private::Section *section)
2779 {
2780   static const char *debug_prefix = ".debug";
2781 
2782   // Set relocated bit so we stop getting called, regardless of whether we
2783   // actually relocate.
2784   section->SetIsRelocated(true);
2785 
2786   // We only relocate in ELF relocatable files
2787   if (CalculateType() != eTypeObjectFile)
2788     return;
2789 
2790   const char *section_name = section->GetName().GetCString();
2791   // Can't relocate that which can't be named
2792   if (section_name == nullptr)
2793     return;
2794 
2795   // We don't relocate non-debug sections at the moment
2796   if (strncmp(section_name, debug_prefix, strlen(debug_prefix)))
2797     return;
2798 
2799   // Relocation section names to look for
2800   std::string needle = std::string(".rel") + section_name;
2801   std::string needlea = std::string(".rela") + section_name;
2802 
2803   for (SectionHeaderCollIter I = m_section_headers.begin();
2804        I != m_section_headers.end(); ++I) {
2805     if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
2806       const char *hay_name = I->section_name.GetCString();
2807       if (hay_name == nullptr)
2808         continue;
2809       if (needle == hay_name || needlea == hay_name) {
2810         const ELFSectionHeader &reloc_header = *I;
2811         user_id_t reloc_id = SectionIndex(I);
2812         RelocateDebugSections(&reloc_header, reloc_id, GetSymtab());
2813         break;
2814       }
2815     }
2816   }
2817 }
2818 
2819 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
2820                                        DWARFCallFrameInfo *eh_frame) {
2821   SectionList *section_list = GetSectionList();
2822   if (!section_list)
2823     return;
2824 
2825   // First we save the new symbols into a separate list and add them to the
2826   // symbol table after we colleced all symbols we want to add. This is
2827   // neccessary because adding a new symbol invalidates the internal index of
2828   // the symtab what causing the next lookup to be slow because it have to
2829   // recalculate the index first.
2830   std::vector<Symbol> new_symbols;
2831 
2832   eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols](
2833       lldb::addr_t file_addr, uint32_t size, dw_offset_t) {
2834     Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
2835     if (symbol) {
2836       if (!symbol->GetByteSizeIsValid()) {
2837         symbol->SetByteSize(size);
2838         symbol->SetSizeIsSynthesized(true);
2839       }
2840     } else {
2841       SectionSP section_sp =
2842           section_list->FindSectionContainingFileAddress(file_addr);
2843       if (section_sp) {
2844         addr_t offset = file_addr - section_sp->GetFileAddress();
2845         const char *symbol_name = GetNextSyntheticSymbolName().GetCString();
2846         uint64_t symbol_id = symbol_table->GetNumSymbols();
2847         Symbol eh_symbol(
2848             symbol_id,       // Symbol table index.
2849             symbol_name,     // Symbol name.
2850             false,           // Is the symbol name mangled?
2851             eSymbolTypeCode, // Type of this symbol.
2852             true,            // Is this globally visible?
2853             false,           // Is this symbol debug info?
2854             false,           // Is this symbol a trampoline?
2855             true,            // Is this symbol artificial?
2856             section_sp,      // Section in which this symbol is defined or null.
2857             offset,          // Offset in section or symbol value.
2858             0,     // Size:          Don't specify the size as an FDE can
2859             false, // Size is valid: cover multiple symbols.
2860             false, // Contains linker annotations?
2861             0);    // Symbol flags.
2862         new_symbols.push_back(eh_symbol);
2863       }
2864     }
2865     return true;
2866   });
2867 
2868   for (const Symbol &s : new_symbols)
2869     symbol_table->AddSymbol(s);
2870 }
2871 
2872 bool ObjectFileELF::IsStripped() {
2873   // TODO: determine this for ELF
2874   return false;
2875 }
2876 
2877 //===----------------------------------------------------------------------===//
2878 // Dump
2879 //
2880 // Dump the specifics of the runtime file container (such as any headers
2881 // segments, sections, etc).
2882 //----------------------------------------------------------------------
2883 void ObjectFileELF::Dump(Stream *s) {
2884   ModuleSP module_sp(GetModule());
2885   if (!module_sp) {
2886     return;
2887   }
2888 
2889   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2890   s->Printf("%p: ", static_cast<void *>(this));
2891   s->Indent();
2892   s->PutCString("ObjectFileELF");
2893 
2894   ArchSpec header_arch;
2895   GetArchitecture(header_arch);
2896 
2897   *s << ", file = '" << m_file
2898      << "', arch = " << header_arch.GetArchitectureName() << "\n";
2899 
2900   DumpELFHeader(s, m_header);
2901   s->EOL();
2902   DumpELFProgramHeaders(s);
2903   s->EOL();
2904   DumpELFSectionHeaders(s);
2905   s->EOL();
2906   SectionList *section_list = GetSectionList();
2907   if (section_list)
2908     section_list->Dump(s, NULL, true, UINT32_MAX);
2909   Symtab *symtab = GetSymtab();
2910   if (symtab)
2911     symtab->Dump(s, NULL, eSortOrderNone);
2912   s->EOL();
2913   DumpDependentModules(s);
2914   s->EOL();
2915 }
2916 
2917 //----------------------------------------------------------------------
2918 // DumpELFHeader
2919 //
2920 // Dump the ELF header to the specified output stream
2921 //----------------------------------------------------------------------
2922 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
2923   s->PutCString("ELF Header\n");
2924   s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2925   s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
2926             header.e_ident[EI_MAG1]);
2927   s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
2928             header.e_ident[EI_MAG2]);
2929   s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
2930             header.e_ident[EI_MAG3]);
2931 
2932   s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2933   s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2934   DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2935   s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2936   s->Printf("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2937 
2938   s->Printf("e_type      = 0x%4.4x ", header.e_type);
2939   DumpELFHeader_e_type(s, header.e_type);
2940   s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2941   s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2942   s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2943   s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2944   s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2945   s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2946   s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2947   s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2948   s->Printf("e_phnum     = 0x%8.8x\n", header.e_phnum);
2949   s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2950   s->Printf("e_shnum     = 0x%8.8x\n", header.e_shnum);
2951   s->Printf("e_shstrndx  = 0x%8.8x\n", header.e_shstrndx);
2952 }
2953 
2954 //----------------------------------------------------------------------
2955 // DumpELFHeader_e_type
2956 //
2957 // Dump an token value for the ELF header member e_type
2958 //----------------------------------------------------------------------
2959 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
2960   switch (e_type) {
2961   case ET_NONE:
2962     *s << "ET_NONE";
2963     break;
2964   case ET_REL:
2965     *s << "ET_REL";
2966     break;
2967   case ET_EXEC:
2968     *s << "ET_EXEC";
2969     break;
2970   case ET_DYN:
2971     *s << "ET_DYN";
2972     break;
2973   case ET_CORE:
2974     *s << "ET_CORE";
2975     break;
2976   default:
2977     break;
2978   }
2979 }
2980 
2981 //----------------------------------------------------------------------
2982 // DumpELFHeader_e_ident_EI_DATA
2983 //
2984 // Dump an token value for the ELF header member e_ident[EI_DATA]
2985 //----------------------------------------------------------------------
2986 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
2987                                                   unsigned char ei_data) {
2988   switch (ei_data) {
2989   case ELFDATANONE:
2990     *s << "ELFDATANONE";
2991     break;
2992   case ELFDATA2LSB:
2993     *s << "ELFDATA2LSB - Little Endian";
2994     break;
2995   case ELFDATA2MSB:
2996     *s << "ELFDATA2MSB - Big Endian";
2997     break;
2998   default:
2999     break;
3000   }
3001 }
3002 
3003 //----------------------------------------------------------------------
3004 // DumpELFProgramHeader
3005 //
3006 // Dump a single ELF program header to the specified output stream
3007 //----------------------------------------------------------------------
3008 void ObjectFileELF::DumpELFProgramHeader(Stream *s,
3009                                          const ELFProgramHeader &ph) {
3010   DumpELFProgramHeader_p_type(s, ph.p_type);
3011   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
3012             ph.p_vaddr, ph.p_paddr);
3013   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
3014             ph.p_flags);
3015 
3016   DumpELFProgramHeader_p_flags(s, ph.p_flags);
3017   s->Printf(") %8.8" PRIx64, ph.p_align);
3018 }
3019 
3020 //----------------------------------------------------------------------
3021 // DumpELFProgramHeader_p_type
3022 //
3023 // Dump an token value for the ELF program header member p_type which describes
3024 // the type of the program header
3025 // ----------------------------------------------------------------------
3026 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
3027   const int kStrWidth = 15;
3028   switch (p_type) {
3029     CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3030     CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3031     CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3032     CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3033     CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3034     CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3035     CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3036     CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3037     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3038   default:
3039     s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3040     break;
3041   }
3042 }
3043 
3044 //----------------------------------------------------------------------
3045 // DumpELFProgramHeader_p_flags
3046 //
3047 // Dump an token value for the ELF program header member p_flags
3048 //----------------------------------------------------------------------
3049 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
3050   *s << ((p_flags & PF_X) ? "PF_X" : "    ")
3051      << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3052      << ((p_flags & PF_W) ? "PF_W" : "    ")
3053      << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3054      << ((p_flags & PF_R) ? "PF_R" : "    ");
3055 }
3056 
3057 //----------------------------------------------------------------------
3058 // DumpELFProgramHeaders
3059 //
3060 // Dump all of the ELF program header to the specified output stream
3061 //----------------------------------------------------------------------
3062 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
3063   if (!ParseProgramHeaders())
3064     return;
3065 
3066   s->PutCString("Program Headers\n");
3067   s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3068                 "p_filesz p_memsz  p_flags                   p_align\n");
3069   s->PutCString("==== --------------- -------- -------- -------- "
3070                 "-------- -------- ------------------------- --------\n");
3071 
3072   for (const auto &H : llvm::enumerate(m_program_headers)) {
3073     s->Format("[{0,2}] ", H.index());
3074     ObjectFileELF::DumpELFProgramHeader(s, H.value());
3075     s->EOL();
3076   }
3077 }
3078 
3079 //----------------------------------------------------------------------
3080 // DumpELFSectionHeader
3081 //
3082 // Dump a single ELF section header to the specified output stream
3083 //----------------------------------------------------------------------
3084 void ObjectFileELF::DumpELFSectionHeader(Stream *s,
3085                                          const ELFSectionHeaderInfo &sh) {
3086   s->Printf("%8.8x ", sh.sh_name);
3087   DumpELFSectionHeader_sh_type(s, sh.sh_type);
3088   s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3089   DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3090   s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3091             sh.sh_offset, sh.sh_size);
3092   s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3093   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3094 }
3095 
3096 //----------------------------------------------------------------------
3097 // DumpELFSectionHeader_sh_type
3098 //
3099 // Dump an token value for the ELF section header member sh_type which
3100 // describes the type of the section
3101 //----------------------------------------------------------------------
3102 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
3103   const int kStrWidth = 12;
3104   switch (sh_type) {
3105     CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3106     CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3107     CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3108     CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3109     CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3110     CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3111     CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3112     CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3113     CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3114     CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3115     CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3116     CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3117     CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3118     CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3119     CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3120     CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3121   default:
3122     s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3123     break;
3124   }
3125 }
3126 
3127 //----------------------------------------------------------------------
3128 // DumpELFSectionHeader_sh_flags
3129 //
3130 // Dump an token value for the ELF section header member sh_flags
3131 //----------------------------------------------------------------------
3132 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
3133                                                   elf_xword sh_flags) {
3134   *s << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3135      << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3136      << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3137      << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3138      << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3139 }
3140 
3141 //----------------------------------------------------------------------
3142 // DumpELFSectionHeaders
3143 //
3144 // Dump all of the ELF section header to the specified output stream
3145 //----------------------------------------------------------------------
3146 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
3147   if (!ParseSectionHeaders())
3148     return;
3149 
3150   s->PutCString("Section Headers\n");
3151   s->PutCString("IDX  name     type         flags                            "
3152                 "addr     offset   size     link     info     addralgn "
3153                 "entsize  Name\n");
3154   s->PutCString("==== -------- ------------ -------------------------------- "
3155                 "-------- -------- -------- -------- -------- -------- "
3156                 "-------- ====================\n");
3157 
3158   uint32_t idx = 0;
3159   for (SectionHeaderCollConstIter I = m_section_headers.begin();
3160        I != m_section_headers.end(); ++I, ++idx) {
3161     s->Printf("[%2u] ", idx);
3162     ObjectFileELF::DumpELFSectionHeader(s, *I);
3163     const char *section_name = I->section_name.AsCString("");
3164     if (section_name)
3165       *s << ' ' << section_name << "\n";
3166   }
3167 }
3168 
3169 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
3170   size_t num_modules = ParseDependentModules();
3171 
3172   if (num_modules > 0) {
3173     s->PutCString("Dependent Modules:\n");
3174     for (unsigned i = 0; i < num_modules; ++i) {
3175       const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3176       s->Printf("   %s\n", spec.GetFilename().GetCString());
3177     }
3178   }
3179 }
3180 
3181 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) {
3182   if (!ParseHeader())
3183     return false;
3184 
3185   if (m_section_headers.empty()) {
3186     // Allow elf notes to be parsed which may affect the detected architecture.
3187     ParseSectionHeaders();
3188   }
3189 
3190   if (CalculateType() == eTypeCoreFile &&
3191       m_arch_spec.TripleOSIsUnspecifiedUnknown()) {
3192     // Core files don't have section headers yet they have PT_NOTE program
3193     // headers that might shed more light on the architecture
3194     for (const elf::ELFProgramHeader &H : ProgramHeaders()) {
3195       if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0)
3196         continue;
3197       DataExtractor data;
3198       if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) {
3199         UUID uuid;
3200         RefineModuleDetailsFromNote(data, m_arch_spec, uuid);
3201       }
3202     }
3203   }
3204   arch = m_arch_spec;
3205   return true;
3206 }
3207 
3208 ObjectFile::Type ObjectFileELF::CalculateType() {
3209   switch (m_header.e_type) {
3210   case llvm::ELF::ET_NONE:
3211     // 0 - No file type
3212     return eTypeUnknown;
3213 
3214   case llvm::ELF::ET_REL:
3215     // 1 - Relocatable file
3216     return eTypeObjectFile;
3217 
3218   case llvm::ELF::ET_EXEC:
3219     // 2 - Executable file
3220     return eTypeExecutable;
3221 
3222   case llvm::ELF::ET_DYN:
3223     // 3 - Shared object file
3224     return eTypeSharedLibrary;
3225 
3226   case ET_CORE:
3227     // 4 - Core file
3228     return eTypeCoreFile;
3229 
3230   default:
3231     break;
3232   }
3233   return eTypeUnknown;
3234 }
3235 
3236 ObjectFile::Strata ObjectFileELF::CalculateStrata() {
3237   switch (m_header.e_type) {
3238   case llvm::ELF::ET_NONE:
3239     // 0 - No file type
3240     return eStrataUnknown;
3241 
3242   case llvm::ELF::ET_REL:
3243     // 1 - Relocatable file
3244     return eStrataUnknown;
3245 
3246   case llvm::ELF::ET_EXEC:
3247     // 2 - Executable file
3248     // TODO: is there any way to detect that an executable is a kernel
3249     // related executable by inspecting the program headers, section headers,
3250     // symbols, or any other flag bits???
3251     return eStrataUser;
3252 
3253   case llvm::ELF::ET_DYN:
3254     // 3 - Shared object file
3255     // TODO: is there any way to detect that an shared library is a kernel
3256     // related executable by inspecting the program headers, section headers,
3257     // symbols, or any other flag bits???
3258     return eStrataUnknown;
3259 
3260   case ET_CORE:
3261     // 4 - Core file
3262     // TODO: is there any way to detect that an core file is a kernel
3263     // related executable by inspecting the program headers, section headers,
3264     // symbols, or any other flag bits???
3265     return eStrataUnknown;
3266 
3267   default:
3268     break;
3269   }
3270   return eStrataUnknown;
3271 }
3272 
3273 size_t ObjectFileELF::ReadSectionData(Section *section,
3274                        lldb::offset_t section_offset, void *dst,
3275                        size_t dst_len) {
3276   // If some other objectfile owns this data, pass this to them.
3277   if (section->GetObjectFile() != this)
3278     return section->GetObjectFile()->ReadSectionData(section, section_offset,
3279                                                      dst, dst_len);
3280 
3281   if (!section->Test(SHF_COMPRESSED))
3282     return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3283 
3284   // For compressed sections we need to read to full data to be able to
3285   // decompress.
3286   DataExtractor data;
3287   ReadSectionData(section, data);
3288   return data.CopyData(section_offset, dst_len, dst);
3289 }
3290 
3291 size_t ObjectFileELF::ReadSectionData(Section *section,
3292                                       DataExtractor &section_data) {
3293   // If some other objectfile owns this data, pass this to them.
3294   if (section->GetObjectFile() != this)
3295     return section->GetObjectFile()->ReadSectionData(section, section_data);
3296 
3297   size_t result = ObjectFile::ReadSectionData(section, section_data);
3298   if (result == 0 || !section->Test(SHF_COMPRESSED))
3299     return result;
3300 
3301   auto Decompressor = llvm::object::Decompressor::create(
3302       section->GetName().GetStringRef(),
3303       {reinterpret_cast<const char *>(section_data.GetDataStart()),
3304        size_t(section_data.GetByteSize())},
3305       GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8);
3306   if (!Decompressor) {
3307     GetModule()->ReportWarning(
3308         "Unable to initialize decompressor for section '%s': %s",
3309         section->GetName().GetCString(),
3310         llvm::toString(Decompressor.takeError()).c_str());
3311     section_data.Clear();
3312     return 0;
3313   }
3314 
3315   auto buffer_sp =
3316       std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0);
3317   if (auto error = Decompressor->decompress(
3318           {reinterpret_cast<char *>(buffer_sp->GetBytes()),
3319            size_t(buffer_sp->GetByteSize())})) {
3320     GetModule()->ReportWarning(
3321         "Decompression of section '%s' failed: %s",
3322         section->GetName().GetCString(),
3323         llvm::toString(std::move(error)).c_str());
3324     section_data.Clear();
3325     return 0;
3326   }
3327 
3328   section_data.SetData(buffer_sp);
3329   return buffer_sp->GetByteSize();
3330 }
3331 
3332 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() {
3333   ParseProgramHeaders();
3334   return m_program_headers;
3335 }
3336 
3337 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) {
3338   return DataExtractor(m_data, H.p_offset, H.p_filesz);
3339 }
3340 
3341 bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
3342   for (const ELFProgramHeader &H : ProgramHeaders()) {
3343     if (H.p_paddr != 0)
3344       return true;
3345   }
3346   return false;
3347 }
3348 
3349 std::vector<ObjectFile::LoadableData>
3350 ObjectFileELF::GetLoadableData(Target &target) {
3351   // Create a list of loadable data from loadable segments, using physical
3352   // addresses if they aren't all null
3353   std::vector<LoadableData> loadables;
3354   bool should_use_paddr = AnySegmentHasPhysicalAddress();
3355   for (const ELFProgramHeader &H : ProgramHeaders()) {
3356     LoadableData loadable;
3357     if (H.p_type != llvm::ELF::PT_LOAD)
3358       continue;
3359     loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr;
3360     if (loadable.Dest == LLDB_INVALID_ADDRESS)
3361       continue;
3362     if (H.p_filesz == 0)
3363       continue;
3364     auto segment_data = GetSegmentData(H);
3365     loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3366                                                 segment_data.GetByteSize());
3367     loadables.push_back(loadable);
3368   }
3369   return loadables;
3370 }
3371