1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <algorithm> 13 #include <cassert> 14 #include <unordered_map> 15 16 #include "lldb/Core/FileSpecList.h" 17 #include "lldb/Core/Module.h" 18 #include "lldb/Core/ModuleSpec.h" 19 #include "lldb/Core/PluginManager.h" 20 #include "lldb/Core/Section.h" 21 #include "lldb/Host/FileSystem.h" 22 #include "lldb/Symbol/DWARFCallFrameInfo.h" 23 #include "lldb/Symbol/SymbolContext.h" 24 #include "lldb/Target/SectionLoadList.h" 25 #include "lldb/Target/Target.h" 26 #include "lldb/Utility/ArchSpec.h" 27 #include "lldb/Utility/DataBufferHeap.h" 28 #include "lldb/Utility/Log.h" 29 #include "lldb/Utility/Status.h" 30 #include "lldb/Utility/Stream.h" 31 #include "lldb/Utility/Timer.h" 32 33 #include "llvm/ADT/PointerUnion.h" 34 #include "llvm/ADT/StringRef.h" 35 #include "llvm/Object/Decompressor.h" 36 #include "llvm/Support/ARMBuildAttributes.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/MemoryBuffer.h" 39 #include "llvm/Support/MipsABIFlags.h" 40 41 #define CASE_AND_STREAM(s, def, width) \ 42 case def: \ 43 s->Printf("%-*s", width, #def); \ 44 break; 45 46 using namespace lldb; 47 using namespace lldb_private; 48 using namespace elf; 49 using namespace llvm::ELF; 50 51 namespace { 52 53 // ELF note owner definitions 54 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 55 const char *const LLDB_NT_OWNER_GNU = "GNU"; 56 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 57 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD"; 58 const char *const LLDB_NT_OWNER_CSR = "csr"; 59 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 60 const char *const LLDB_NT_OWNER_CORE = "CORE"; 61 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 62 63 // ELF note type definitions 64 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 65 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 66 67 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 68 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 69 70 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 71 72 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 73 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 74 75 // GNU ABI note OS constants 76 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 77 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 78 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 79 80 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 81 #define NT_PRSTATUS 1 82 #define NT_PRFPREG 2 83 #define NT_PRPSINFO 3 84 #define NT_TASKSTRUCT 4 85 #define NT_AUXV 6 86 #define NT_SIGINFO 0x53494749 87 #define NT_FILE 0x46494c45 88 #define NT_PRXFPREG 0x46e62b7f 89 #define NT_PPC_VMX 0x100 90 #define NT_PPC_SPE 0x101 91 #define NT_PPC_VSX 0x102 92 #define NT_386_TLS 0x200 93 #define NT_386_IOPERM 0x201 94 #define NT_X86_XSTATE 0x202 95 #define NT_S390_HIGH_GPRS 0x300 96 #define NT_S390_TIMER 0x301 97 #define NT_S390_TODCMP 0x302 98 #define NT_S390_TODPREG 0x303 99 #define NT_S390_CTRS 0x304 100 #define NT_S390_PREFIX 0x305 101 #define NT_S390_LAST_BREAK 0x306 102 #define NT_S390_SYSTEM_CALL 0x307 103 #define NT_S390_TDB 0x308 104 #define NT_S390_VXRS_LOW 0x309 105 #define NT_S390_VXRS_HIGH 0x30a 106 #define NT_ARM_VFP 0x400 107 #define NT_ARM_TLS 0x401 108 #define NT_ARM_HW_BREAK 0x402 109 #define NT_ARM_HW_WATCH 0x403 110 #define NT_ARM_SYSTEM_CALL 0x404 111 #define NT_METAG_CBUF 0x500 112 #define NT_METAG_RPIPE 0x501 113 #define NT_METAG_TLS 0x502 114 115 //===----------------------------------------------------------------------===// 116 /// @class ELFRelocation 117 /// Generic wrapper for ELFRel and ELFRela. 118 /// 119 /// This helper class allows us to parse both ELFRel and ELFRela relocation 120 /// entries in a generic manner. 121 class ELFRelocation { 122 public: 123 /// Constructs an ELFRelocation entry with a personality as given by @p 124 /// type. 125 /// 126 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 127 ELFRelocation(unsigned type); 128 129 ~ELFRelocation(); 130 131 bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 132 133 static unsigned RelocType32(const ELFRelocation &rel); 134 135 static unsigned RelocType64(const ELFRelocation &rel); 136 137 static unsigned RelocSymbol32(const ELFRelocation &rel); 138 139 static unsigned RelocSymbol64(const ELFRelocation &rel); 140 141 static unsigned RelocOffset32(const ELFRelocation &rel); 142 143 static unsigned RelocOffset64(const ELFRelocation &rel); 144 145 static unsigned RelocAddend32(const ELFRelocation &rel); 146 147 static unsigned RelocAddend64(const ELFRelocation &rel); 148 149 private: 150 typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion; 151 152 RelocUnion reloc; 153 }; 154 155 ELFRelocation::ELFRelocation(unsigned type) { 156 if (type == DT_REL || type == SHT_REL) 157 reloc = new ELFRel(); 158 else if (type == DT_RELA || type == SHT_RELA) 159 reloc = new ELFRela(); 160 else { 161 assert(false && "unexpected relocation type"); 162 reloc = static_cast<ELFRel *>(NULL); 163 } 164 } 165 166 ELFRelocation::~ELFRelocation() { 167 if (reloc.is<ELFRel *>()) 168 delete reloc.get<ELFRel *>(); 169 else 170 delete reloc.get<ELFRela *>(); 171 } 172 173 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data, 174 lldb::offset_t *offset) { 175 if (reloc.is<ELFRel *>()) 176 return reloc.get<ELFRel *>()->Parse(data, offset); 177 else 178 return reloc.get<ELFRela *>()->Parse(data, offset); 179 } 180 181 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) { 182 if (rel.reloc.is<ELFRel *>()) 183 return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>()); 184 else 185 return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>()); 186 } 187 188 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) { 189 if (rel.reloc.is<ELFRel *>()) 190 return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>()); 191 else 192 return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>()); 193 } 194 195 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) { 196 if (rel.reloc.is<ELFRel *>()) 197 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>()); 198 else 199 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>()); 200 } 201 202 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) { 203 if (rel.reloc.is<ELFRel *>()) 204 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>()); 205 else 206 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>()); 207 } 208 209 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) { 210 if (rel.reloc.is<ELFRel *>()) 211 return rel.reloc.get<ELFRel *>()->r_offset; 212 else 213 return rel.reloc.get<ELFRela *>()->r_offset; 214 } 215 216 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) { 217 if (rel.reloc.is<ELFRel *>()) 218 return rel.reloc.get<ELFRel *>()->r_offset; 219 else 220 return rel.reloc.get<ELFRela *>()->r_offset; 221 } 222 223 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) { 224 if (rel.reloc.is<ELFRel *>()) 225 return 0; 226 else 227 return rel.reloc.get<ELFRela *>()->r_addend; 228 } 229 230 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) { 231 if (rel.reloc.is<ELFRel *>()) 232 return 0; 233 else 234 return rel.reloc.get<ELFRela *>()->r_addend; 235 } 236 237 } // end anonymous namespace 238 239 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) { 240 // Read all fields. 241 if (data.GetU32(offset, &n_namesz, 3) == NULL) 242 return false; 243 244 // The name field is required to be nul-terminated, and n_namesz includes the 245 // terminating nul in observed implementations (contrary to the ELF-64 spec). 246 // A special case is needed for cores generated by some older Linux versions, 247 // which write a note named "CORE" without a nul terminator and n_namesz = 4. 248 if (n_namesz == 4) { 249 char buf[4]; 250 if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4) 251 return false; 252 if (strncmp(buf, "CORE", 4) == 0) { 253 n_name = "CORE"; 254 *offset += 4; 255 return true; 256 } 257 } 258 259 const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4)); 260 if (cstr == NULL) { 261 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS)); 262 if (log) 263 log->Printf("Failed to parse note name lacking nul terminator"); 264 265 return false; 266 } 267 n_name = cstr; 268 return true; 269 } 270 271 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) { 272 const uint32_t dsp_rev = e_flags & 0xFF; 273 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 274 switch (dsp_rev) { 275 // TODO(mg11) Support more variants 276 case 10: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 278 break; 279 case 14: 280 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 281 break; 282 case 17: 283 case 20: 284 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 285 break; 286 default: 287 break; 288 } 289 return kal_arch_variant; 290 } 291 292 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) { 293 const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH; 294 uint32_t endian = header.e_ident[EI_DATA]; 295 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 296 uint32_t fileclass = header.e_ident[EI_CLASS]; 297 298 // If there aren't any elf flags available (e.g core elf file) then return 299 // default 300 // 32 or 64 bit arch (without any architecture revision) based on object file's class. 301 if (header.e_type == ET_CORE) { 302 switch (fileclass) { 303 case llvm::ELF::ELFCLASS32: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 305 : ArchSpec::eMIPSSubType_mips32; 306 case llvm::ELF::ELFCLASS64: 307 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 308 : ArchSpec::eMIPSSubType_mips64; 309 default: 310 return arch_variant; 311 } 312 } 313 314 switch (mips_arch) { 315 case llvm::ELF::EF_MIPS_ARCH_1: 316 case llvm::ELF::EF_MIPS_ARCH_2: 317 case llvm::ELF::EF_MIPS_ARCH_32: 318 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el 319 : ArchSpec::eMIPSSubType_mips32; 320 case llvm::ELF::EF_MIPS_ARCH_32R2: 321 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el 322 : ArchSpec::eMIPSSubType_mips32r2; 323 case llvm::ELF::EF_MIPS_ARCH_32R6: 324 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el 325 : ArchSpec::eMIPSSubType_mips32r6; 326 case llvm::ELF::EF_MIPS_ARCH_3: 327 case llvm::ELF::EF_MIPS_ARCH_4: 328 case llvm::ELF::EF_MIPS_ARCH_5: 329 case llvm::ELF::EF_MIPS_ARCH_64: 330 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el 331 : ArchSpec::eMIPSSubType_mips64; 332 case llvm::ELF::EF_MIPS_ARCH_64R2: 333 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el 334 : ArchSpec::eMIPSSubType_mips64r2; 335 case llvm::ELF::EF_MIPS_ARCH_64R6: 336 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el 337 : ArchSpec::eMIPSSubType_mips64r6; 338 default: 339 break; 340 } 341 342 return arch_variant; 343 } 344 345 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) { 346 if (header.e_machine == llvm::ELF::EM_MIPS) 347 return mipsVariantFromElfFlags(header); 348 349 return llvm::ELF::EM_CSR_KALIMBA == header.e_machine 350 ? kalimbaVariantFromElfFlags(header.e_flags) 351 : LLDB_INVALID_CPUTYPE; 352 } 353 354 //! The kalimba toolchain identifies a code section as being 355 //! one with the SHT_PROGBITS set in the section sh_type and the top 356 //! bit in the 32-bit address field set. 357 static lldb::SectionType 358 kalimbaSectionType(const elf::ELFHeader &header, 359 const elf::ELFSectionHeader §_hdr) { 360 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) { 361 return eSectionTypeOther; 362 } 363 364 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) { 365 return eSectionTypeZeroFill; 366 } 367 368 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) { 369 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 370 return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode 371 : eSectionTypeData; 372 } 373 374 return eSectionTypeOther; 375 } 376 377 // Arbitrary constant used as UUID prefix for core files. 378 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C); 379 380 //------------------------------------------------------------------ 381 // Static methods. 382 //------------------------------------------------------------------ 383 void ObjectFileELF::Initialize() { 384 PluginManager::RegisterPlugin(GetPluginNameStatic(), 385 GetPluginDescriptionStatic(), CreateInstance, 386 CreateMemoryInstance, GetModuleSpecifications); 387 } 388 389 void ObjectFileELF::Terminate() { 390 PluginManager::UnregisterPlugin(CreateInstance); 391 } 392 393 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() { 394 static ConstString g_name("elf"); 395 return g_name; 396 } 397 398 const char *ObjectFileELF::GetPluginDescriptionStatic() { 399 return "ELF object file reader."; 400 } 401 402 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp, 403 DataBufferSP &data_sp, 404 lldb::offset_t data_offset, 405 const lldb_private::FileSpec *file, 406 lldb::offset_t file_offset, 407 lldb::offset_t length) { 408 if (!data_sp) { 409 data_sp = MapFileData(*file, length, file_offset); 410 if (!data_sp) 411 return nullptr; 412 data_offset = 0; 413 } 414 415 assert(data_sp); 416 417 if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset)) 418 return nullptr; 419 420 const uint8_t *magic = data_sp->GetBytes() + data_offset; 421 if (!ELFHeader::MagicBytesMatch(magic)) 422 return nullptr; 423 424 // Update the data to contain the entire file if it doesn't already 425 if (data_sp->GetByteSize() < length) { 426 data_sp = MapFileData(*file, length, file_offset); 427 if (!data_sp) 428 return nullptr; 429 data_offset = 0; 430 magic = data_sp->GetBytes(); 431 } 432 433 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 434 if (address_size == 4 || address_size == 8) { 435 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF( 436 module_sp, data_sp, data_offset, file, file_offset, length)); 437 ArchSpec spec; 438 if (objfile_ap->GetArchitecture(spec) && 439 objfile_ap->SetModulesArchitecture(spec)) 440 return objfile_ap.release(); 441 } 442 443 return NULL; 444 } 445 446 ObjectFile *ObjectFileELF::CreateMemoryInstance( 447 const lldb::ModuleSP &module_sp, DataBufferSP &data_sp, 448 const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) { 449 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) { 450 const uint8_t *magic = data_sp->GetBytes(); 451 if (ELFHeader::MagicBytesMatch(magic)) { 452 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 453 if (address_size == 4 || address_size == 8) { 454 std::unique_ptr<ObjectFileELF> objfile_ap( 455 new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 456 ArchSpec spec; 457 if (objfile_ap->GetArchitecture(spec) && 458 objfile_ap->SetModulesArchitecture(spec)) 459 return objfile_ap.release(); 460 } 461 } 462 } 463 return NULL; 464 } 465 466 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp, 467 lldb::addr_t data_offset, 468 lldb::addr_t data_length) { 469 if (data_sp && 470 data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) { 471 const uint8_t *magic = data_sp->GetBytes() + data_offset; 472 return ELFHeader::MagicBytesMatch(magic); 473 } 474 return false; 475 } 476 477 /* 478 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 479 * 480 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 481 * code or tables extracted from it, as desired without restriction. 482 */ 483 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) { 484 static const uint32_t g_crc32_tab[] = { 485 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 486 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 487 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 488 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 489 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 490 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 491 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 492 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 493 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 494 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 495 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 496 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 497 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 498 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 499 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 500 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 501 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 502 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 503 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 504 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 505 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 506 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 507 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 508 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 509 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 510 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 511 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 512 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 513 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 514 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 515 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 516 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 517 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 518 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 519 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 520 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 521 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 522 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 523 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 524 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 525 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 526 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 527 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d}; 528 const uint8_t *p = (const uint8_t *)buf; 529 530 crc = crc ^ ~0U; 531 while (size--) 532 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 533 return crc ^ ~0U; 534 } 535 536 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) { 537 return calc_crc32(0U, buf, size); 538 } 539 540 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32( 541 const ProgramHeaderColl &program_headers, DataExtractor &object_data) { 542 543 uint32_t core_notes_crc = 0; 544 545 for (const ELFProgramHeader &H : program_headers) { 546 if (H.p_type == llvm::ELF::PT_NOTE) { 547 const elf_off ph_offset = H.p_offset; 548 const size_t ph_size = H.p_filesz; 549 550 DataExtractor segment_data; 551 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) { 552 // The ELF program header contained incorrect data, probably corefile 553 // is incomplete or corrupted. 554 break; 555 } 556 557 core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(), 558 segment_data.GetByteSize()); 559 } 560 } 561 562 return core_notes_crc; 563 } 564 565 static const char *OSABIAsCString(unsigned char osabi_byte) { 566 #define _MAKE_OSABI_CASE(x) \ 567 case x: \ 568 return #x 569 switch (osabi_byte) { 570 _MAKE_OSABI_CASE(ELFOSABI_NONE); 571 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 572 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 573 _MAKE_OSABI_CASE(ELFOSABI_GNU); 574 _MAKE_OSABI_CASE(ELFOSABI_HURD); 575 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 576 _MAKE_OSABI_CASE(ELFOSABI_AIX); 577 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 578 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 579 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 580 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 581 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 582 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 583 _MAKE_OSABI_CASE(ELFOSABI_NSK); 584 _MAKE_OSABI_CASE(ELFOSABI_AROS); 585 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 586 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 587 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 588 _MAKE_OSABI_CASE(ELFOSABI_ARM); 589 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 590 default: 591 return "<unknown-osabi>"; 592 } 593 #undef _MAKE_OSABI_CASE 594 } 595 596 // 597 // WARNING : This function is being deprecated 598 // It's functionality has moved to ArchSpec::SetArchitecture This function is 599 // only being kept to validate the move. 600 // 601 // TODO : Remove this function 602 static bool GetOsFromOSABI(unsigned char osabi_byte, 603 llvm::Triple::OSType &ostype) { 604 switch (osabi_byte) { 605 case ELFOSABI_AIX: 606 ostype = llvm::Triple::OSType::AIX; 607 break; 608 case ELFOSABI_FREEBSD: 609 ostype = llvm::Triple::OSType::FreeBSD; 610 break; 611 case ELFOSABI_GNU: 612 ostype = llvm::Triple::OSType::Linux; 613 break; 614 case ELFOSABI_NETBSD: 615 ostype = llvm::Triple::OSType::NetBSD; 616 break; 617 case ELFOSABI_OPENBSD: 618 ostype = llvm::Triple::OSType::OpenBSD; 619 break; 620 case ELFOSABI_SOLARIS: 621 ostype = llvm::Triple::OSType::Solaris; 622 break; 623 default: 624 ostype = llvm::Triple::OSType::UnknownOS; 625 } 626 return ostype != llvm::Triple::OSType::UnknownOS; 627 } 628 629 size_t ObjectFileELF::GetModuleSpecifications( 630 const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp, 631 lldb::offset_t data_offset, lldb::offset_t file_offset, 632 lldb::offset_t length, lldb_private::ModuleSpecList &specs) { 633 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 634 635 const size_t initial_count = specs.GetSize(); 636 637 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) { 638 DataExtractor data; 639 data.SetData(data_sp); 640 elf::ELFHeader header; 641 lldb::offset_t header_offset = data_offset; 642 if (header.Parse(data, &header_offset)) { 643 if (data_sp) { 644 ModuleSpec spec(file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture( 648 eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 649 650 if (spec.GetArchitecture().IsValid()) { 651 llvm::Triple::OSType ostype; 652 llvm::Triple::VendorType vendor; 653 llvm::Triple::OSType spec_ostype = 654 spec.GetArchitecture().GetTriple().getOS(); 655 656 if (log) 657 log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s", 658 __FUNCTION__, file.GetPath().c_str(), 659 OSABIAsCString(header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture().GetTriple().getVendor(); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 UNUSED_IF_ASSERT_DISABLED(vendor); 665 666 // 667 // Validate it is ok to remove GetOsFromOSABI 668 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 669 assert(spec_ostype == ostype); 670 if (spec_ostype != llvm::Triple::OSType::UnknownOS) { 671 if (log) 672 log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type " 673 "from ELF header OSABI.", 674 __FUNCTION__, file.GetPath().c_str()); 675 } 676 677 data_sp = MapFileData(file, -1, file_offset); 678 if (data_sp) 679 data.SetData(data_sp); 680 // In case there is header extension in the section #0, the header we 681 // parsed above could have sentinel values for e_phnum, e_shnum, and 682 // e_shstrndx. In this case we need to reparse the header with a 683 // bigger data source to get the actual values. 684 if (header.HasHeaderExtension()) { 685 lldb::offset_t header_offset = data_offset; 686 header.Parse(data, &header_offset); 687 } 688 689 uint32_t gnu_debuglink_crc = 0; 690 std::string gnu_debuglink_file; 691 SectionHeaderColl section_headers; 692 lldb_private::UUID &uuid = spec.GetUUID(); 693 694 GetSectionHeaderInfo(section_headers, data, header, uuid, 695 gnu_debuglink_file, gnu_debuglink_crc, 696 spec.GetArchitecture()); 697 698 llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple(); 699 700 if (log) 701 log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s " 702 "(architecture %s)", 703 __FUNCTION__, file.GetPath().c_str(), 704 spec_triple.getTriple().c_str(), 705 spec.GetArchitecture().GetArchitectureName()); 706 707 if (!uuid.IsValid()) { 708 uint32_t core_notes_crc = 0; 709 710 if (!gnu_debuglink_crc) { 711 static Timer::Category func_cat(LLVM_PRETTY_FUNCTION); 712 lldb_private::Timer scoped_timer( 713 func_cat, 714 "Calculating module crc32 %s with size %" PRIu64 " KiB", 715 file.GetLastPathComponent().AsCString(), 716 (FileSystem::Instance().GetByteSize(file) - file_offset) / 717 1024); 718 719 // For core files - which usually don't happen to have a 720 // gnu_debuglink, and are pretty bulky - calculating whole 721 // contents crc32 would be too much of luxury. Thus we will need 722 // to fallback to something simpler. 723 if (header.e_type == llvm::ELF::ET_CORE) { 724 ProgramHeaderColl program_headers; 725 GetProgramHeaderInfo(program_headers, data, header); 726 727 core_notes_crc = 728 CalculateELFNotesSegmentsCRC32(program_headers, data); 729 } else { 730 gnu_debuglink_crc = calc_gnu_debuglink_crc32( 731 data.GetDataStart(), data.GetByteSize()); 732 } 733 } 734 using u32le = llvm::support::ulittle32_t; 735 if (gnu_debuglink_crc) { 736 // Use 4 bytes of crc from the .gnu_debuglink section. 737 u32le data(gnu_debuglink_crc); 738 uuid = UUID::fromData(&data, sizeof(data)); 739 } else if (core_notes_crc) { 740 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make 741 // it look different form .gnu_debuglink crc followed by 4 bytes 742 // of note segments crc. 743 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 744 uuid = UUID::fromData(data, sizeof(data)); 745 } 746 } 747 748 specs.Append(spec); 749 } 750 } 751 } 752 } 753 754 return specs.GetSize() - initial_count; 755 } 756 757 //------------------------------------------------------------------ 758 // PluginInterface protocol 759 //------------------------------------------------------------------ 760 lldb_private::ConstString ObjectFileELF::GetPluginName() { 761 return GetPluginNameStatic(); 762 } 763 764 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; } 765 //------------------------------------------------------------------ 766 // ObjectFile protocol 767 //------------------------------------------------------------------ 768 769 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 770 DataBufferSP &data_sp, lldb::offset_t data_offset, 771 const FileSpec *file, lldb::offset_t file_offset, 772 lldb::offset_t length) 773 : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 774 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 775 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 776 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 777 if (file) 778 m_file = *file; 779 ::memset(&m_header, 0, sizeof(m_header)); 780 } 781 782 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp, 783 DataBufferSP &header_data_sp, 784 const lldb::ProcessSP &process_sp, 785 addr_t header_addr) 786 : ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 787 m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0), 788 m_program_headers(), m_section_headers(), m_dynamic_symbols(), 789 m_filespec_ap(), m_entry_point_address(), m_arch_spec() { 790 ::memset(&m_header, 0, sizeof(m_header)); 791 } 792 793 ObjectFileELF::~ObjectFileELF() {} 794 795 bool ObjectFileELF::IsExecutable() const { 796 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 797 } 798 799 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value, 800 bool value_is_offset) { 801 ModuleSP module_sp = GetModule(); 802 if (module_sp) { 803 size_t num_loaded_sections = 0; 804 SectionList *section_list = GetSectionList(); 805 if (section_list) { 806 if (!value_is_offset) { 807 bool found_offset = false; 808 for (const ELFProgramHeader &H : ProgramHeaders()) { 809 if (H.p_type != PT_LOAD || H.p_offset != 0) 810 continue; 811 812 value = value - H.p_vaddr; 813 found_offset = true; 814 break; 815 } 816 if (!found_offset) 817 return false; 818 } 819 820 const size_t num_sections = section_list->GetSize(); 821 size_t sect_idx = 0; 822 823 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) { 824 // Iterate through the object file sections to find all of the sections 825 // that have SHF_ALLOC in their flag bits. 826 SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx)); 827 if (section_sp && section_sp->Test(SHF_ALLOC)) { 828 lldb::addr_t load_addr = section_sp->GetFileAddress(); 829 // We don't want to update the load address of a section with type 830 // eSectionTypeAbsoluteAddress as they already have the absolute load 831 // address already specified 832 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 833 load_addr += value; 834 835 // On 32-bit systems the load address have to fit into 4 bytes. The 836 // rest of the bytes are the overflow from the addition. 837 if (GetAddressByteSize() == 4) 838 load_addr &= 0xFFFFFFFF; 839 840 if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp, 841 load_addr)) 842 ++num_loaded_sections; 843 } 844 } 845 return num_loaded_sections > 0; 846 } 847 } 848 return false; 849 } 850 851 ByteOrder ObjectFileELF::GetByteOrder() const { 852 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 853 return eByteOrderBig; 854 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 855 return eByteOrderLittle; 856 return eByteOrderInvalid; 857 } 858 859 uint32_t ObjectFileELF::GetAddressByteSize() const { 860 return m_data.GetAddressByteSize(); 861 } 862 863 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) { 864 Symtab *symtab = GetSymtab(); 865 if (!symtab) 866 return AddressClass::eUnknown; 867 868 // The address class is determined based on the symtab. Ask it from the 869 // object file what contains the symtab information. 870 ObjectFile *symtab_objfile = symtab->GetObjectFile(); 871 if (symtab_objfile != nullptr && symtab_objfile != this) 872 return symtab_objfile->GetAddressClass(file_addr); 873 874 auto res = ObjectFile::GetAddressClass(file_addr); 875 if (res != AddressClass::eCode) 876 return res; 877 878 auto ub = m_address_class_map.upper_bound(file_addr); 879 if (ub == m_address_class_map.begin()) { 880 // No entry in the address class map before the address. Return default 881 // address class for an address in a code section. 882 return AddressClass::eCode; 883 } 884 885 // Move iterator to the address class entry preceding address 886 --ub; 887 888 return ub->second; 889 } 890 891 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) { 892 return std::distance(m_section_headers.begin(), I) + 1u; 893 } 894 895 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const { 896 return std::distance(m_section_headers.begin(), I) + 1u; 897 } 898 899 bool ObjectFileELF::ParseHeader() { 900 lldb::offset_t offset = 0; 901 return m_header.Parse(m_data, &offset); 902 } 903 904 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) { 905 // Need to parse the section list to get the UUIDs, so make sure that's been 906 // done. 907 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 908 return false; 909 910 using u32le = llvm::support::ulittle32_t; 911 if (m_uuid.IsValid()) { 912 // We have the full build id uuid. 913 *uuid = m_uuid; 914 return true; 915 } else if (GetType() == ObjectFile::eTypeCoreFile) { 916 uint32_t core_notes_crc = 0; 917 918 if (!ParseProgramHeaders()) 919 return false; 920 921 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 922 923 if (core_notes_crc) { 924 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look 925 // different form .gnu_debuglink crc - followed by 4 bytes of note 926 // segments crc. 927 u32le data[] = {u32le(g_core_uuid_magic), u32le(core_notes_crc)}; 928 m_uuid = UUID::fromData(data, sizeof(data)); 929 } 930 } else { 931 if (!m_gnu_debuglink_crc) 932 m_gnu_debuglink_crc = 933 calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize()); 934 if (m_gnu_debuglink_crc) { 935 // Use 4 bytes of crc from the .gnu_debuglink section. 936 u32le data(m_gnu_debuglink_crc); 937 m_uuid = UUID::fromData(&data, sizeof(data)); 938 } 939 } 940 941 if (m_uuid.IsValid()) { 942 *uuid = m_uuid; 943 return true; 944 } 945 946 return false; 947 } 948 949 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() { 950 FileSpecList file_spec_list; 951 952 if (!m_gnu_debuglink_file.empty()) { 953 FileSpec file_spec(m_gnu_debuglink_file); 954 file_spec_list.Append(file_spec); 955 } 956 return file_spec_list; 957 } 958 959 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) { 960 size_t num_modules = ParseDependentModules(); 961 uint32_t num_specs = 0; 962 963 for (unsigned i = 0; i < num_modules; ++i) { 964 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 965 num_specs++; 966 } 967 968 return num_specs; 969 } 970 971 Address ObjectFileELF::GetImageInfoAddress(Target *target) { 972 if (!ParseDynamicSymbols()) 973 return Address(); 974 975 SectionList *section_list = GetSectionList(); 976 if (!section_list) 977 return Address(); 978 979 // Find the SHT_DYNAMIC (.dynamic) section. 980 SectionSP dynsym_section_sp( 981 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)); 982 if (!dynsym_section_sp) 983 return Address(); 984 assert(dynsym_section_sp->GetObjectFile() == this); 985 986 user_id_t dynsym_id = dynsym_section_sp->GetID(); 987 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 988 if (!dynsym_hdr) 989 return Address(); 990 991 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) { 992 ELFDynamic &symbol = m_dynamic_symbols[i]; 993 994 if (symbol.d_tag == DT_DEBUG) { 995 // Compute the offset as the number of previous entries plus the size of 996 // d_tag. 997 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 998 return Address(dynsym_section_sp, offset); 999 } 1000 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP 1001 // exists in non-PIE. 1002 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || 1003 symbol.d_tag == DT_MIPS_RLD_MAP_REL) && 1004 target) { 1005 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1006 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1007 if (dyn_base == LLDB_INVALID_ADDRESS) 1008 return Address(); 1009 1010 Status error; 1011 if (symbol.d_tag == DT_MIPS_RLD_MAP) { 1012 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1013 Address addr; 1014 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, 1015 addr)) 1016 return addr; 1017 } 1018 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) { 1019 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, 1020 // relative to the address of the tag. 1021 uint64_t rel_offset; 1022 rel_offset = target->ReadUnsignedIntegerFromMemory( 1023 dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1024 if (error.Success() && rel_offset != UINT64_MAX) { 1025 Address addr; 1026 addr_t debug_ptr_address = 1027 dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1028 addr.SetOffset(debug_ptr_address); 1029 return addr; 1030 } 1031 } 1032 } 1033 } 1034 1035 return Address(); 1036 } 1037 1038 lldb_private::Address ObjectFileELF::GetEntryPointAddress() { 1039 if (m_entry_point_address.IsValid()) 1040 return m_entry_point_address; 1041 1042 if (!ParseHeader() || !IsExecutable()) 1043 return m_entry_point_address; 1044 1045 SectionList *section_list = GetSectionList(); 1046 addr_t offset = m_header.e_entry; 1047 1048 if (!section_list) 1049 m_entry_point_address.SetOffset(offset); 1050 else 1051 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1052 return m_entry_point_address; 1053 } 1054 1055 //---------------------------------------------------------------------- 1056 // ParseDependentModules 1057 //---------------------------------------------------------------------- 1058 size_t ObjectFileELF::ParseDependentModules() { 1059 if (m_filespec_ap.get()) 1060 return m_filespec_ap->GetSize(); 1061 1062 m_filespec_ap.reset(new FileSpecList()); 1063 1064 if (!ParseSectionHeaders()) 1065 return 0; 1066 1067 SectionList *section_list = GetSectionList(); 1068 if (!section_list) 1069 return 0; 1070 1071 // Find the SHT_DYNAMIC section. 1072 Section *dynsym = 1073 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 1074 .get(); 1075 if (!dynsym) 1076 return 0; 1077 assert(dynsym->GetObjectFile() == this); 1078 1079 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID()); 1080 if (!header) 1081 return 0; 1082 // sh_link: section header index of string table used by entries in the 1083 // section. 1084 Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get(); 1085 if (!dynstr) 1086 return 0; 1087 1088 DataExtractor dynsym_data; 1089 DataExtractor dynstr_data; 1090 if (ReadSectionData(dynsym, dynsym_data) && 1091 ReadSectionData(dynstr, dynstr_data)) { 1092 ELFDynamic symbol; 1093 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1094 lldb::offset_t offset = 0; 1095 1096 // The only type of entries we are concerned with are tagged DT_NEEDED, 1097 // yielding the name of a required library. 1098 while (offset < section_size) { 1099 if (!symbol.Parse(dynsym_data, &offset)) 1100 break; 1101 1102 if (symbol.d_tag != DT_NEEDED) 1103 continue; 1104 1105 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1106 const char *lib_name = dynstr_data.PeekCStr(str_index); 1107 FileSpec file_spec(lib_name); 1108 FileSystem::Instance().Resolve(file_spec); 1109 m_filespec_ap->Append(file_spec); 1110 } 1111 } 1112 1113 return m_filespec_ap->GetSize(); 1114 } 1115 1116 //---------------------------------------------------------------------- 1117 // GetProgramHeaderInfo 1118 //---------------------------------------------------------------------- 1119 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1120 DataExtractor &object_data, 1121 const ELFHeader &header) { 1122 // We have already parsed the program headers 1123 if (!program_headers.empty()) 1124 return program_headers.size(); 1125 1126 // If there are no program headers to read we are done. 1127 if (header.e_phnum == 0) 1128 return 0; 1129 1130 program_headers.resize(header.e_phnum); 1131 if (program_headers.size() != header.e_phnum) 1132 return 0; 1133 1134 const size_t ph_size = header.e_phnum * header.e_phentsize; 1135 const elf_off ph_offset = header.e_phoff; 1136 DataExtractor data; 1137 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1138 return 0; 1139 1140 uint32_t idx; 1141 lldb::offset_t offset; 1142 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) { 1143 if (!program_headers[idx].Parse(data, &offset)) 1144 break; 1145 } 1146 1147 if (idx < program_headers.size()) 1148 program_headers.resize(idx); 1149 1150 return program_headers.size(); 1151 } 1152 1153 //---------------------------------------------------------------------- 1154 // ParseProgramHeaders 1155 //---------------------------------------------------------------------- 1156 bool ObjectFileELF::ParseProgramHeaders() { 1157 return GetProgramHeaderInfo(m_program_headers, m_data, m_header) != 0; 1158 } 1159 1160 lldb_private::Status 1161 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data, 1162 lldb_private::ArchSpec &arch_spec, 1163 lldb_private::UUID &uuid) { 1164 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1165 Status error; 1166 1167 lldb::offset_t offset = 0; 1168 1169 while (true) { 1170 // Parse the note header. If this fails, bail out. 1171 const lldb::offset_t note_offset = offset; 1172 ELFNote note = ELFNote(); 1173 if (!note.Parse(data, &offset)) { 1174 // We're done. 1175 return error; 1176 } 1177 1178 if (log) 1179 log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, 1180 __FUNCTION__, note.n_name.c_str(), note.n_type); 1181 1182 // Process FreeBSD ELF notes. 1183 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1184 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1185 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) { 1186 // Pull out the min version info. 1187 uint32_t version_info; 1188 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1189 error.SetErrorString("failed to read FreeBSD ABI note payload"); 1190 return error; 1191 } 1192 1193 // Convert the version info into a major/minor number. 1194 const uint32_t version_major = version_info / 100000; 1195 const uint32_t version_minor = (version_info / 1000) % 100; 1196 1197 char os_name[32]; 1198 snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32, 1199 version_major, version_minor); 1200 1201 // Set the elf OS version to FreeBSD. Also clear the vendor. 1202 arch_spec.GetTriple().setOSName(os_name); 1203 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1204 1205 if (log) 1206 log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 1207 ".%" PRIu32, 1208 __FUNCTION__, version_major, version_minor, 1209 static_cast<uint32_t>(version_info % 1000)); 1210 } 1211 // Process GNU ELF notes. 1212 else if (note.n_name == LLDB_NT_OWNER_GNU) { 1213 switch (note.n_type) { 1214 case LLDB_NT_GNU_ABI_TAG: 1215 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) { 1216 // Pull out the min OS version supporting the ABI. 1217 uint32_t version_info[4]; 1218 if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) == 1219 nullptr) { 1220 error.SetErrorString("failed to read GNU ABI note payload"); 1221 return error; 1222 } 1223 1224 // Set the OS per the OS field. 1225 switch (version_info[0]) { 1226 case LLDB_NT_GNU_ABI_OS_LINUX: 1227 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1228 arch_spec.GetTriple().setVendor( 1229 llvm::Triple::VendorType::UnknownVendor); 1230 if (log) 1231 log->Printf( 1232 "ObjectFileELF::%s detected Linux, min version %" PRIu32 1233 ".%" PRIu32 ".%" PRIu32, 1234 __FUNCTION__, version_info[1], version_info[2], 1235 version_info[3]); 1236 // FIXME we have the minimal version number, we could be propagating 1237 // that. version_info[1] = OS Major, version_info[2] = OS Minor, 1238 // version_info[3] = Revision. 1239 break; 1240 case LLDB_NT_GNU_ABI_OS_HURD: 1241 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1242 arch_spec.GetTriple().setVendor( 1243 llvm::Triple::VendorType::UnknownVendor); 1244 if (log) 1245 log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min " 1246 "version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1247 __FUNCTION__, version_info[1], version_info[2], 1248 version_info[3]); 1249 break; 1250 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1251 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris); 1252 arch_spec.GetTriple().setVendor( 1253 llvm::Triple::VendorType::UnknownVendor); 1254 if (log) 1255 log->Printf( 1256 "ObjectFileELF::%s detected Solaris, min version %" PRIu32 1257 ".%" PRIu32 ".%" PRIu32, 1258 __FUNCTION__, version_info[1], version_info[2], 1259 version_info[3]); 1260 break; 1261 default: 1262 if (log) 1263 log->Printf( 1264 "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 1265 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, 1266 __FUNCTION__, version_info[0], version_info[1], 1267 version_info[2], version_info[3]); 1268 break; 1269 } 1270 } 1271 break; 1272 1273 case LLDB_NT_GNU_BUILD_ID_TAG: 1274 // Only bother processing this if we don't already have the uuid set. 1275 if (!uuid.IsValid()) { 1276 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a 1277 // build-id of a different length. Accept it as long as it's at least 1278 // 4 bytes as it will be better than our own crc32. 1279 if (note.n_descsz >= 4) { 1280 if (const uint8_t *buf = data.PeekData(offset, note.n_descsz)) { 1281 // Save the build id as the UUID for the module. 1282 uuid = UUID::fromData(buf, note.n_descsz); 1283 } else { 1284 error.SetErrorString("failed to read GNU_BUILD_ID note payload"); 1285 return error; 1286 } 1287 } 1288 } 1289 break; 1290 } 1291 if (arch_spec.IsMIPS() && 1292 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1293 // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform 1294 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1295 } 1296 // Process NetBSD ELF notes. 1297 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1298 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1299 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) { 1300 // Pull out the min version info. 1301 uint32_t version_info; 1302 if (data.GetU32(&offset, &version_info, 1) == nullptr) { 1303 error.SetErrorString("failed to read NetBSD ABI note payload"); 1304 return error; 1305 } 1306 1307 // Set the elf OS version to NetBSD. Also clear the vendor. 1308 arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD); 1309 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1310 1311 if (log) 1312 log->Printf( 1313 "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, 1314 __FUNCTION__, version_info); 1315 } 1316 // Process OpenBSD ELF notes. 1317 else if (note.n_name == LLDB_NT_OWNER_OPENBSD) { 1318 // Set the elf OS version to OpenBSD. Also clear the vendor. 1319 arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD); 1320 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor); 1321 } 1322 // Process CSR kalimba notes 1323 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1324 (note.n_name == LLDB_NT_OWNER_CSR)) { 1325 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1326 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1327 1328 // TODO At some point the description string could be processed. 1329 // It could provide a steer towards the kalimba variant which this ELF 1330 // targets. 1331 if (note.n_descsz) { 1332 const char *cstr = 1333 data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4)); 1334 (void)cstr; 1335 } 1336 } else if (note.n_name == LLDB_NT_OWNER_ANDROID) { 1337 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1338 arch_spec.GetTriple().setEnvironment( 1339 llvm::Triple::EnvironmentType::Android); 1340 } else if (note.n_name == LLDB_NT_OWNER_LINUX) { 1341 // This is sometimes found in core files and usually contains extended 1342 // register info 1343 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1344 } else if (note.n_name == LLDB_NT_OWNER_CORE) { 1345 // Parse the NT_FILE to look for stuff in paths to shared libraries As 1346 // the contents look like this in a 64 bit ELF core file: count = 1347 // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index 1348 // start end file_ofs path ===== 1349 // ------------------ ------------------ ------------------ 1350 // ------------------------------------- [ 0] 0x0000000000400000 1351 // 0x0000000000401000 0x0000000000000000 /tmp/a.out [ 1] 1352 // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [ 1353 // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1354 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 1355 // /lib/x86_64-linux-gnu/libc-2.19.so [ 4] 0x00007fa79cba8000 1356 // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux- 1357 // gnu/libc-2.19.so [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 1358 // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [ 6] 1359 // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64 1360 // -linux-gnu/libc-2.19.so [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 1361 // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [ 8] 1362 // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64 1363 // -linux-gnu/ld-2.19.so [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 1364 // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs 1365 // the count, page_size, start, end, file_ofs are uint32_t For reference: 1366 // see readelf source code (in binutils). 1367 if (note.n_type == NT_FILE) { 1368 uint64_t count = data.GetAddress(&offset); 1369 const char *cstr; 1370 data.GetAddress(&offset); // Skip page size 1371 offset += count * 3 * 1372 data.GetAddressByteSize(); // Skip all start/end/file_ofs 1373 for (size_t i = 0; i < count; ++i) { 1374 cstr = data.GetCStr(&offset); 1375 if (cstr == nullptr) { 1376 error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read " 1377 "at an offset after the end " 1378 "(GetCStr returned nullptr)", 1379 __FUNCTION__); 1380 return error; 1381 } 1382 llvm::StringRef path(cstr); 1383 if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) { 1384 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1385 break; 1386 } 1387 } 1388 if (arch_spec.IsMIPS() && 1389 arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1390 // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some 1391 // cases (e.g. compile with -nostdlib) Hence set OS to Linux 1392 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1393 } 1394 } 1395 1396 // Calculate the offset of the next note just in case "offset" has been 1397 // used to poke at the contents of the note data 1398 offset = note_offset + note.GetByteSize(); 1399 } 1400 1401 return error; 1402 } 1403 1404 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, 1405 ArchSpec &arch_spec) { 1406 lldb::offset_t Offset = 0; 1407 1408 uint8_t FormatVersion = data.GetU8(&Offset); 1409 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1410 return; 1411 1412 Offset = Offset + sizeof(uint32_t); // Section Length 1413 llvm::StringRef VendorName = data.GetCStr(&Offset); 1414 1415 if (VendorName != "aeabi") 1416 return; 1417 1418 if (arch_spec.GetTriple().getEnvironment() == 1419 llvm::Triple::UnknownEnvironment) 1420 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1421 1422 while (Offset < length) { 1423 uint8_t Tag = data.GetU8(&Offset); 1424 uint32_t Size = data.GetU32(&Offset); 1425 1426 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1427 continue; 1428 1429 while (Offset < length) { 1430 uint64_t Tag = data.GetULEB128(&Offset); 1431 switch (Tag) { 1432 default: 1433 if (Tag < 32) 1434 data.GetULEB128(&Offset); 1435 else if (Tag % 2 == 0) 1436 data.GetULEB128(&Offset); 1437 else 1438 data.GetCStr(&Offset); 1439 1440 break; 1441 1442 case llvm::ARMBuildAttrs::CPU_raw_name: 1443 case llvm::ARMBuildAttrs::CPU_name: 1444 data.GetCStr(&Offset); 1445 1446 break; 1447 1448 case llvm::ARMBuildAttrs::ABI_VFP_args: { 1449 uint64_t VFPArgs = data.GetULEB128(&Offset); 1450 1451 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) { 1452 if (arch_spec.GetTriple().getEnvironment() == 1453 llvm::Triple::UnknownEnvironment || 1454 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1455 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1456 1457 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1458 } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) { 1459 if (arch_spec.GetTriple().getEnvironment() == 1460 llvm::Triple::UnknownEnvironment || 1461 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1462 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1463 1464 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1465 } 1466 1467 break; 1468 } 1469 } 1470 } 1471 } 1472 } 1473 1474 //---------------------------------------------------------------------- 1475 // GetSectionHeaderInfo 1476 //---------------------------------------------------------------------- 1477 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1478 DataExtractor &object_data, 1479 const elf::ELFHeader &header, 1480 lldb_private::UUID &uuid, 1481 std::string &gnu_debuglink_file, 1482 uint32_t &gnu_debuglink_crc, 1483 ArchSpec &arch_spec) { 1484 // Don't reparse the section headers if we already did that. 1485 if (!section_headers.empty()) 1486 return section_headers.size(); 1487 1488 // Only initialize the arch_spec to okay defaults if they're not already set. 1489 // We'll refine this with note data as we parse the notes. 1490 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) { 1491 llvm::Triple::OSType ostype; 1492 llvm::Triple::OSType spec_ostype; 1493 const uint32_t sub_type = subTypeFromElfHeader(header); 1494 arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type, 1495 header.e_ident[EI_OSABI]); 1496 1497 // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is 1498 // determined based on EI_OSABI flag and the info extracted from ELF notes 1499 // (see RefineModuleDetailsFromNote). However in some cases that still 1500 // might be not enough: for example a shared library might not have any 1501 // notes at all and have EI_OSABI flag set to System V, as result the OS 1502 // will be set to UnknownOS. 1503 GetOsFromOSABI(header.e_ident[EI_OSABI], ostype); 1504 spec_ostype = arch_spec.GetTriple().getOS(); 1505 assert(spec_ostype == ostype); 1506 UNUSED_IF_ASSERT_DISABLED(spec_ostype); 1507 } 1508 1509 if (arch_spec.GetMachine() == llvm::Triple::mips || 1510 arch_spec.GetMachine() == llvm::Triple::mipsel || 1511 arch_spec.GetMachine() == llvm::Triple::mips64 || 1512 arch_spec.GetMachine() == llvm::Triple::mips64el) { 1513 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) { 1514 case llvm::ELF::EF_MIPS_MICROMIPS: 1515 arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips); 1516 break; 1517 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1518 arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16); 1519 break; 1520 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1521 arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx); 1522 break; 1523 default: 1524 break; 1525 } 1526 } 1527 1528 if (arch_spec.GetMachine() == llvm::Triple::arm || 1529 arch_spec.GetMachine() == llvm::Triple::thumb) { 1530 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1531 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1532 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1533 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1534 } 1535 1536 // If there are no section headers we are done. 1537 if (header.e_shnum == 0) 1538 return 0; 1539 1540 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES)); 1541 1542 section_headers.resize(header.e_shnum); 1543 if (section_headers.size() != header.e_shnum) 1544 return 0; 1545 1546 const size_t sh_size = header.e_shnum * header.e_shentsize; 1547 const elf_off sh_offset = header.e_shoff; 1548 DataExtractor sh_data; 1549 if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size) 1550 return 0; 1551 1552 uint32_t idx; 1553 lldb::offset_t offset; 1554 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) { 1555 if (!section_headers[idx].Parse(sh_data, &offset)) 1556 break; 1557 } 1558 if (idx < section_headers.size()) 1559 section_headers.resize(idx); 1560 1561 const unsigned strtab_idx = header.e_shstrndx; 1562 if (strtab_idx && strtab_idx < section_headers.size()) { 1563 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1564 const size_t byte_size = sheader.sh_size; 1565 const Elf64_Off offset = sheader.sh_offset; 1566 lldb_private::DataExtractor shstr_data; 1567 1568 if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) { 1569 for (SectionHeaderCollIter I = section_headers.begin(); 1570 I != section_headers.end(); ++I) { 1571 static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink"); 1572 const ELFSectionHeaderInfo &sheader = *I; 1573 const uint64_t section_size = 1574 sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1575 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1576 1577 I->section_name = name; 1578 1579 if (arch_spec.IsMIPS()) { 1580 uint32_t arch_flags = arch_spec.GetFlags(); 1581 DataExtractor data; 1582 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) { 1583 1584 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1585 section_size) == section_size)) { 1586 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1587 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1588 arch_flags |= data.GetU32(&offset); 1589 1590 // The floating point ABI is at offset 7 1591 offset = 7; 1592 switch (data.GetU8(&offset)) { 1593 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY: 1594 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1595 break; 1596 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE: 1597 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1598 break; 1599 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE: 1600 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1601 break; 1602 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT: 1603 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1604 break; 1605 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64: 1606 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1607 break; 1608 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX: 1609 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1610 break; 1611 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64: 1612 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1613 break; 1614 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A: 1615 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1616 break; 1617 } 1618 } 1619 } 1620 // Settings appropriate ArchSpec ABI Flags 1621 switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) { 1622 case llvm::ELF::EF_MIPS_ABI_O32: 1623 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1624 break; 1625 case EF_MIPS_ABI_O64: 1626 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1627 break; 1628 case EF_MIPS_ABI_EABI32: 1629 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1630 break; 1631 case EF_MIPS_ABI_EABI64: 1632 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1633 break; 1634 default: 1635 // ABI Mask doesn't cover N32 and N64 ABI. 1636 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1637 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1638 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1639 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1640 break; 1641 } 1642 arch_spec.SetFlags(arch_flags); 1643 } 1644 1645 if (arch_spec.GetMachine() == llvm::Triple::arm || 1646 arch_spec.GetMachine() == llvm::Triple::thumb) { 1647 DataExtractor data; 1648 1649 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1650 data.SetData(object_data, sheader.sh_offset, section_size) == section_size) 1651 ParseARMAttributes(data, section_size, arch_spec); 1652 } 1653 1654 if (name == g_sect_name_gnu_debuglink) { 1655 DataExtractor data; 1656 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1657 section_size) == section_size)) { 1658 lldb::offset_t gnu_debuglink_offset = 0; 1659 gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset); 1660 gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4); 1661 data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1662 } 1663 } 1664 1665 // Process ELF note section entries. 1666 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1667 1668 // The section header ".note.android.ident" is stored as a 1669 // PROGBITS type header but it is actually a note header. 1670 static ConstString g_sect_name_android_ident(".note.android.ident"); 1671 if (!is_note_header && name == g_sect_name_android_ident) 1672 is_note_header = true; 1673 1674 if (is_note_header) { 1675 // Allow notes to refine module info. 1676 DataExtractor data; 1677 if (section_size && (data.SetData(object_data, sheader.sh_offset, 1678 section_size) == section_size)) { 1679 Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid); 1680 if (error.Fail()) { 1681 if (log) 1682 log->Printf("ObjectFileELF::%s ELF note processing failed: %s", 1683 __FUNCTION__, error.AsCString()); 1684 } 1685 } 1686 } 1687 } 1688 1689 // Make any unknown triple components to be unspecified unknowns. 1690 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1691 arch_spec.GetTriple().setVendorName(llvm::StringRef()); 1692 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1693 arch_spec.GetTriple().setOSName(llvm::StringRef()); 1694 1695 return section_headers.size(); 1696 } 1697 } 1698 1699 section_headers.clear(); 1700 return 0; 1701 } 1702 1703 llvm::StringRef 1704 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const { 1705 size_t pos = symbol_name.find('@'); 1706 return symbol_name.substr(0, pos); 1707 } 1708 1709 //---------------------------------------------------------------------- 1710 // ParseSectionHeaders 1711 //---------------------------------------------------------------------- 1712 size_t ObjectFileELF::ParseSectionHeaders() { 1713 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, 1714 m_gnu_debuglink_file, m_gnu_debuglink_crc, 1715 m_arch_spec); 1716 } 1717 1718 const ObjectFileELF::ELFSectionHeaderInfo * 1719 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) { 1720 if (!id || !ParseSectionHeaders()) 1721 return NULL; 1722 1723 if (--id < m_section_headers.size()) 1724 return &m_section_headers[id]; 1725 1726 return NULL; 1727 } 1728 1729 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) { 1730 if (!name || !name[0] || !ParseSectionHeaders()) 1731 return 0; 1732 for (size_t i = 1; i < m_section_headers.size(); ++i) 1733 if (m_section_headers[i].section_name == ConstString(name)) 1734 return i; 1735 return 0; 1736 } 1737 1738 static SectionType GetSectionTypeFromName(llvm::StringRef Name) { 1739 return llvm::StringSwitch<SectionType>(Name) 1740 .Case(".ARM.exidx", eSectionTypeARMexidx) 1741 .Case(".ARM.extab", eSectionTypeARMextab) 1742 .Cases(".bss", ".tbss", eSectionTypeZeroFill) 1743 .Cases(".data", ".tdata", eSectionTypeData) 1744 .Case(".debug_abbrev", eSectionTypeDWARFDebugAbbrev) 1745 .Case(".debug_abbrev.dwo", eSectionTypeDWARFDebugAbbrevDwo) 1746 .Case(".debug_addr", eSectionTypeDWARFDebugAddr) 1747 .Case(".debug_aranges", eSectionTypeDWARFDebugAranges) 1748 .Case(".debug_cu_index", eSectionTypeDWARFDebugCuIndex) 1749 .Case(".debug_frame", eSectionTypeDWARFDebugFrame) 1750 .Case(".debug_info", eSectionTypeDWARFDebugInfo) 1751 .Case(".debug_info.dwo", eSectionTypeDWARFDebugInfoDwo) 1752 .Cases(".debug_line", ".debug_line.dwo", eSectionTypeDWARFDebugLine) 1753 .Cases(".debug_line_str", ".debug_line_str.dwo", 1754 eSectionTypeDWARFDebugLineStr) 1755 .Cases(".debug_loc", ".debug_loc.dwo", eSectionTypeDWARFDebugLoc) 1756 .Cases(".debug_loclists", ".debug_loclists.dwo", 1757 eSectionTypeDWARFDebugLocLists) 1758 .Case(".debug_macinfo", eSectionTypeDWARFDebugMacInfo) 1759 .Cases(".debug_macro", ".debug_macro.dwo", eSectionTypeDWARFDebugMacro) 1760 .Case(".debug_names", eSectionTypeDWARFDebugNames) 1761 .Case(".debug_pubnames", eSectionTypeDWARFDebugPubNames) 1762 .Case(".debug_pubtypes", eSectionTypeDWARFDebugPubTypes) 1763 .Case(".debug_ranges", eSectionTypeDWARFDebugRanges) 1764 .Case(".debug_rnglists", eSectionTypeDWARFDebugRngLists) 1765 .Case(".debug_str", eSectionTypeDWARFDebugStr) 1766 .Case(".debug_str.dwo", eSectionTypeDWARFDebugStrDwo) 1767 .Case(".debug_str_offsets", eSectionTypeDWARFDebugStrOffsets) 1768 .Case(".debug_str_offsets.dwo", eSectionTypeDWARFDebugStrOffsetsDwo) 1769 .Case(".debug_types", eSectionTypeDWARFDebugTypes) 1770 .Case(".eh_frame", eSectionTypeEHFrame) 1771 .Case(".gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink) 1772 .Case(".gosymtab", eSectionTypeGoSymtab) 1773 .Case(".text", eSectionTypeCode) 1774 .Default(eSectionTypeOther); 1775 } 1776 1777 SectionType ObjectFileELF::GetSectionType(const ELFSectionHeaderInfo &H) const { 1778 switch (H.sh_type) { 1779 case SHT_PROGBITS: 1780 if (H.sh_flags & SHF_EXECINSTR) 1781 return eSectionTypeCode; 1782 break; 1783 case SHT_SYMTAB: 1784 return eSectionTypeELFSymbolTable; 1785 case SHT_DYNSYM: 1786 return eSectionTypeELFDynamicSymbols; 1787 case SHT_RELA: 1788 case SHT_REL: 1789 return eSectionTypeELFRelocationEntries; 1790 case SHT_DYNAMIC: 1791 return eSectionTypeELFDynamicLinkInfo; 1792 } 1793 SectionType Type = GetSectionTypeFromName(H.section_name.GetStringRef()); 1794 if (Type == eSectionTypeOther) { 1795 // the kalimba toolchain assumes that ELF section names are free-form. 1796 // It does support linkscripts which (can) give rise to various 1797 // arbitrarily named sections being "Code" or "Data". 1798 Type = kalimbaSectionType(m_header, H); 1799 } 1800 return Type; 1801 } 1802 1803 static uint32_t GetTargetByteSize(SectionType Type, const ArchSpec &arch) { 1804 switch (Type) { 1805 case eSectionTypeData: 1806 case eSectionTypeZeroFill: 1807 return arch.GetDataByteSize(); 1808 case eSectionTypeCode: 1809 return arch.GetCodeByteSize(); 1810 default: 1811 return 1; 1812 } 1813 } 1814 1815 static Permissions GetPermissions(const ELFSectionHeader &H) { 1816 Permissions Perm = Permissions(0); 1817 if (H.sh_flags & SHF_ALLOC) 1818 Perm |= ePermissionsReadable; 1819 if (H.sh_flags & SHF_WRITE) 1820 Perm |= ePermissionsWritable; 1821 if (H.sh_flags & SHF_EXECINSTR) 1822 Perm |= ePermissionsExecutable; 1823 return Perm; 1824 } 1825 1826 namespace { 1827 // (Unlinked) ELF object files usually have 0 for every section address, meaning 1828 // we need to compute synthetic addresses in order for "file addresses" from 1829 // different sections to not overlap. This class handles that logic. 1830 class VMAddressProvider { 1831 bool m_synthesizing; 1832 addr_t m_next; 1833 1834 public: 1835 VMAddressProvider(ObjectFile::Type Type) 1836 : m_synthesizing(Type == ObjectFile::Type::eTypeObjectFile), m_next(0) {} 1837 1838 std::pair<addr_t, addr_t> GetAddressAndSize(const ELFSectionHeader &H) { 1839 addr_t address = H.sh_addr; 1840 addr_t size = H.sh_flags & SHF_ALLOC ? H.sh_size : 0; 1841 if (m_synthesizing && (H.sh_flags & SHF_ALLOC)) { 1842 m_next = llvm::alignTo(m_next, std::max<addr_t>(H.sh_addralign, 1)); 1843 address = m_next; 1844 m_next += size; 1845 } 1846 return {address, size}; 1847 } 1848 }; 1849 } 1850 1851 void ObjectFileELF::CreateSections(SectionList &unified_section_list) { 1852 if (!m_sections_ap.get() && ParseSectionHeaders()) { 1853 m_sections_ap.reset(new SectionList()); 1854 1855 VMAddressProvider address_provider(CalculateType()); 1856 for (SectionHeaderCollIter I = m_section_headers.begin(); 1857 I != m_section_headers.end(); ++I) { 1858 const ELFSectionHeaderInfo &header = *I; 1859 1860 ConstString &name = I->section_name; 1861 const uint64_t file_size = 1862 header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1863 1864 addr_t vm_addr, vm_size; 1865 std::tie(vm_addr, vm_size) = address_provider.GetAddressAndSize(header); 1866 1867 SectionType sect_type = GetSectionType(header); 1868 1869 const uint32_t target_bytes_size = 1870 GetTargetByteSize(sect_type, m_arch_spec); 1871 1872 elf::elf_xword log2align = 1873 (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign); 1874 1875 SectionSP section_sp(new Section( 1876 GetModule(), // Module to which this section belongs. 1877 this, // ObjectFile to which this section belongs and should read 1878 // section data from. 1879 SectionIndex(I), // Section ID. 1880 name, // Section name. 1881 sect_type, // Section type. 1882 vm_addr, // VM address. 1883 vm_size, // VM size in bytes of this section. 1884 header.sh_offset, // Offset of this section in the file. 1885 file_size, // Size of the section as found in the file. 1886 log2align, // Alignment of the section 1887 header.sh_flags, // Flags for this section. 1888 target_bytes_size)); // Number of host bytes per target byte 1889 1890 section_sp->SetPermissions(GetPermissions(header)); 1891 section_sp->SetIsThreadSpecific(header.sh_flags & SHF_TLS); 1892 m_sections_ap->AddSection(section_sp); 1893 } 1894 } 1895 1896 // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the 1897 // unified section list. 1898 if (GetType() != eTypeDebugInfo) 1899 unified_section_list = *m_sections_ap; 1900 } 1901 1902 // Find the arm/aarch64 mapping symbol character in the given symbol name. 1903 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we 1904 // recognize cases when the mapping symbol prefixed by an arbitrary string 1905 // because if a symbol prefix added to each symbol in the object file with 1906 // objcopy then the mapping symbols are also prefixed. 1907 static char FindArmAarch64MappingSymbol(const char *symbol_name) { 1908 if (!symbol_name) 1909 return '\0'; 1910 1911 const char *dollar_pos = ::strchr(symbol_name, '$'); 1912 if (!dollar_pos || dollar_pos[1] == '\0') 1913 return '\0'; 1914 1915 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 1916 return dollar_pos[1]; 1917 return '\0'; 1918 } 1919 1920 #define STO_MIPS_ISA (3 << 6) 1921 #define STO_MICROMIPS (2 << 6) 1922 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS) 1923 1924 // private 1925 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id, 1926 SectionList *section_list, 1927 const size_t num_symbols, 1928 const DataExtractor &symtab_data, 1929 const DataExtractor &strtab_data) { 1930 ELFSymbol symbol; 1931 lldb::offset_t offset = 0; 1932 1933 static ConstString text_section_name(".text"); 1934 static ConstString init_section_name(".init"); 1935 static ConstString fini_section_name(".fini"); 1936 static ConstString ctors_section_name(".ctors"); 1937 static ConstString dtors_section_name(".dtors"); 1938 1939 static ConstString data_section_name(".data"); 1940 static ConstString rodata_section_name(".rodata"); 1941 static ConstString rodata1_section_name(".rodata1"); 1942 static ConstString data2_section_name(".data1"); 1943 static ConstString bss_section_name(".bss"); 1944 static ConstString opd_section_name(".opd"); // For ppc64 1945 1946 // On Android the oatdata and the oatexec symbols in the oat and odex files 1947 // covers the full .text section what causes issues with displaying unusable 1948 // symbol name to the user and very slow unwinding speed because the 1949 // instruction emulation based unwind plans try to emulate all instructions 1950 // in these symbols. Don't add these symbols to the symbol list as they have 1951 // no use for the debugger and they are causing a lot of trouble. Filtering 1952 // can't be restricted to Android because this special object file don't 1953 // contain the note section specifying the environment to Android but the 1954 // custom extension and file name makes it highly unlikely that this will 1955 // collide with anything else. 1956 ConstString file_extension = m_file.GetFileNameExtension(); 1957 bool skip_oatdata_oatexec = file_extension == ConstString(".oat") || 1958 file_extension == ConstString(".odex"); 1959 1960 ArchSpec arch; 1961 GetArchitecture(arch); 1962 ModuleSP module_sp(GetModule()); 1963 SectionList *module_section_list = 1964 module_sp ? module_sp->GetSectionList() : nullptr; 1965 1966 // Local cache to avoid doing a FindSectionByName for each symbol. The "const 1967 // char*" key must came from a ConstString object so they can be compared by 1968 // pointer 1969 std::unordered_map<const char *, lldb::SectionSP> section_name_to_section; 1970 1971 unsigned i; 1972 for (i = 0; i < num_symbols; ++i) { 1973 if (!symbol.Parse(symtab_data, &offset)) 1974 break; 1975 1976 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1977 if (!symbol_name) 1978 symbol_name = ""; 1979 1980 // No need to add non-section symbols that have no names 1981 if (symbol.getType() != STT_SECTION && 1982 (symbol_name == nullptr || symbol_name[0] == '\0')) 1983 continue; 1984 1985 // Skipping oatdata and oatexec sections if it is requested. See details 1986 // above the definition of skip_oatdata_oatexec for the reasons. 1987 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || 1988 ::strcmp(symbol_name, "oatexec") == 0)) 1989 continue; 1990 1991 SectionSP symbol_section_sp; 1992 SymbolType symbol_type = eSymbolTypeInvalid; 1993 Elf64_Half section_idx = symbol.st_shndx; 1994 1995 switch (section_idx) { 1996 case SHN_ABS: 1997 symbol_type = eSymbolTypeAbsolute; 1998 break; 1999 case SHN_UNDEF: 2000 symbol_type = eSymbolTypeUndefined; 2001 break; 2002 default: 2003 symbol_section_sp = section_list->GetSectionAtIndex(section_idx); 2004 break; 2005 } 2006 2007 // If a symbol is undefined do not process it further even if it has a STT 2008 // type 2009 if (symbol_type != eSymbolTypeUndefined) { 2010 switch (symbol.getType()) { 2011 default: 2012 case STT_NOTYPE: 2013 // The symbol's type is not specified. 2014 break; 2015 2016 case STT_OBJECT: 2017 // The symbol is associated with a data object, such as a variable, an 2018 // array, etc. 2019 symbol_type = eSymbolTypeData; 2020 break; 2021 2022 case STT_FUNC: 2023 // The symbol is associated with a function or other executable code. 2024 symbol_type = eSymbolTypeCode; 2025 break; 2026 2027 case STT_SECTION: 2028 // The symbol is associated with a section. Symbol table entries of 2029 // this type exist primarily for relocation and normally have STB_LOCAL 2030 // binding. 2031 break; 2032 2033 case STT_FILE: 2034 // Conventionally, the symbol's name gives the name of the source file 2035 // associated with the object file. A file symbol has STB_LOCAL 2036 // binding, its section index is SHN_ABS, and it precedes the other 2037 // STB_LOCAL symbols for the file, if it is present. 2038 symbol_type = eSymbolTypeSourceFile; 2039 break; 2040 2041 case STT_GNU_IFUNC: 2042 // The symbol is associated with an indirect function. The actual 2043 // function will be resolved if it is referenced. 2044 symbol_type = eSymbolTypeResolver; 2045 break; 2046 } 2047 } 2048 2049 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) { 2050 if (symbol_section_sp) { 2051 const ConstString §_name = symbol_section_sp->GetName(); 2052 if (sect_name == text_section_name || sect_name == init_section_name || 2053 sect_name == fini_section_name || sect_name == ctors_section_name || 2054 sect_name == dtors_section_name) { 2055 symbol_type = eSymbolTypeCode; 2056 } else if (sect_name == data_section_name || 2057 sect_name == data2_section_name || 2058 sect_name == rodata_section_name || 2059 sect_name == rodata1_section_name || 2060 sect_name == bss_section_name) { 2061 symbol_type = eSymbolTypeData; 2062 } 2063 } 2064 } 2065 2066 int64_t symbol_value_offset = 0; 2067 uint32_t additional_flags = 0; 2068 2069 if (arch.IsValid()) { 2070 if (arch.GetMachine() == llvm::Triple::arm) { 2071 if (symbol.getBinding() == STB_LOCAL) { 2072 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2073 if (symbol_type == eSymbolTypeCode) { 2074 switch (mapping_symbol) { 2075 case 'a': 2076 // $a[.<any>]* - marks an ARM instruction sequence 2077 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2078 break; 2079 case 'b': 2080 case 't': 2081 // $b[.<any>]* - marks a THUMB BL instruction sequence 2082 // $t[.<any>]* - marks a THUMB instruction sequence 2083 m_address_class_map[symbol.st_value] = 2084 AddressClass::eCodeAlternateISA; 2085 break; 2086 case 'd': 2087 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2088 m_address_class_map[symbol.st_value] = AddressClass::eData; 2089 break; 2090 } 2091 } 2092 if (mapping_symbol) 2093 continue; 2094 } 2095 } else if (arch.GetMachine() == llvm::Triple::aarch64) { 2096 if (symbol.getBinding() == STB_LOCAL) { 2097 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2098 if (symbol_type == eSymbolTypeCode) { 2099 switch (mapping_symbol) { 2100 case 'x': 2101 // $x[.<any>]* - marks an A64 instruction sequence 2102 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2103 break; 2104 case 'd': 2105 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2106 m_address_class_map[symbol.st_value] = AddressClass::eData; 2107 break; 2108 } 2109 } 2110 if (mapping_symbol) 2111 continue; 2112 } 2113 } 2114 2115 if (arch.GetMachine() == llvm::Triple::arm) { 2116 if (symbol_type == eSymbolTypeCode) { 2117 if (symbol.st_value & 1) { 2118 // Subtracting 1 from the address effectively unsets the low order 2119 // bit, which results in the address actually pointing to the 2120 // beginning of the symbol. This delta will be used below in 2121 // conjunction with symbol.st_value to produce the final 2122 // symbol_value that we store in the symtab. 2123 symbol_value_offset = -1; 2124 m_address_class_map[symbol.st_value ^ 1] = 2125 AddressClass::eCodeAlternateISA; 2126 } else { 2127 // This address is ARM 2128 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2129 } 2130 } 2131 } 2132 2133 /* 2134 * MIPS: 2135 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for 2136 * MIPS). 2137 * This allows processor to switch between microMIPS and MIPS without any 2138 * need 2139 * for special mode-control register. However, apart from .debug_line, 2140 * none of 2141 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use 2142 * st_other 2143 * flag to check whether the symbol is microMIPS and then set the address 2144 * class 2145 * accordingly. 2146 */ 2147 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2148 if (llvm_arch == llvm::Triple::mips || 2149 llvm_arch == llvm::Triple::mipsel || 2150 llvm_arch == llvm::Triple::mips64 || 2151 llvm_arch == llvm::Triple::mips64el) { 2152 if (IS_MICROMIPS(symbol.st_other)) 2153 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2154 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) { 2155 symbol.st_value = symbol.st_value & (~1ull); 2156 m_address_class_map[symbol.st_value] = AddressClass::eCodeAlternateISA; 2157 } else { 2158 if (symbol_type == eSymbolTypeCode) 2159 m_address_class_map[symbol.st_value] = AddressClass::eCode; 2160 else if (symbol_type == eSymbolTypeData) 2161 m_address_class_map[symbol.st_value] = AddressClass::eData; 2162 else 2163 m_address_class_map[symbol.st_value] = AddressClass::eUnknown; 2164 } 2165 } 2166 } 2167 2168 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB 2169 // symbols. See above for more details. 2170 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2171 2172 if (symbol_section_sp == nullptr && section_idx == SHN_ABS && 2173 symbol.st_size != 0) { 2174 // We don't have a section for a symbol with non-zero size. Create a new 2175 // section for it so the address range covered by the symbol is also 2176 // covered by the module (represented through the section list). It is 2177 // needed so module lookup for the addresses covered by this symbol will 2178 // be successfull. This case happens for absolute symbols. 2179 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2180 symbol_section_sp = 2181 std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name, 2182 eSectionTypeAbsoluteAddress, symbol_value, 2183 symbol.st_size, 0, 0, 0, SHF_ALLOC); 2184 2185 module_section_list->AddSection(symbol_section_sp); 2186 section_list->AddSection(symbol_section_sp); 2187 } 2188 2189 if (symbol_section_sp && 2190 CalculateType() != ObjectFile::Type::eTypeObjectFile) 2191 symbol_value -= symbol_section_sp->GetFileAddress(); 2192 2193 if (symbol_section_sp && module_section_list && 2194 module_section_list != section_list) { 2195 const ConstString §_name = symbol_section_sp->GetName(); 2196 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2197 if (section_it == section_name_to_section.end()) 2198 section_it = 2199 section_name_to_section 2200 .emplace(sect_name.GetCString(), 2201 module_section_list->FindSectionByName(sect_name)) 2202 .first; 2203 if (section_it->second) 2204 symbol_section_sp = section_it->second; 2205 } 2206 2207 bool is_global = symbol.getBinding() == STB_GLOBAL; 2208 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2209 bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z'); 2210 2211 llvm::StringRef symbol_ref(symbol_name); 2212 2213 // Symbol names may contain @VERSION suffixes. Find those and strip them 2214 // temporarily. 2215 size_t version_pos = symbol_ref.find('@'); 2216 bool has_suffix = version_pos != llvm::StringRef::npos; 2217 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2218 Mangled mangled(ConstString(symbol_bare), is_mangled); 2219 2220 // Now append the suffix back to mangled and unmangled names. Only do it if 2221 // the demangling was successful (string is not empty). 2222 if (has_suffix) { 2223 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2224 2225 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2226 if (!mangled_name.empty()) 2227 mangled.SetMangledName(ConstString((mangled_name + suffix).str())); 2228 2229 ConstString demangled = 2230 mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2231 llvm::StringRef demangled_name = demangled.GetStringRef(); 2232 if (!demangled_name.empty()) 2233 mangled.SetDemangledName(ConstString((demangled_name + suffix).str())); 2234 } 2235 2236 // In ELF all symbol should have a valid size but it is not true for some 2237 // function symbols coming from hand written assembly. As none of the 2238 // function symbol should have 0 size we try to calculate the size for 2239 // these symbols in the symtab with saying that their original size is not 2240 // valid. 2241 bool symbol_size_valid = 2242 symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2243 2244 Symbol dc_symbol( 2245 i + start_id, // ID is the original symbol table index. 2246 mangled, 2247 symbol_type, // Type of this symbol 2248 is_global, // Is this globally visible? 2249 false, // Is this symbol debug info? 2250 false, // Is this symbol a trampoline? 2251 false, // Is this symbol artificial? 2252 AddressRange(symbol_section_sp, // Section in which this symbol is 2253 // defined or null. 2254 symbol_value, // Offset in section or symbol value. 2255 symbol.st_size), // Size in bytes of this symbol. 2256 symbol_size_valid, // Symbol size is valid 2257 has_suffix, // Contains linker annotations? 2258 flags); // Symbol flags. 2259 symtab->AddSymbol(dc_symbol); 2260 } 2261 return i; 2262 } 2263 2264 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2265 user_id_t start_id, 2266 lldb_private::Section *symtab) { 2267 if (symtab->GetObjectFile() != this) { 2268 // If the symbol table section is owned by a different object file, have it 2269 // do the parsing. 2270 ObjectFileELF *obj_file_elf = 2271 static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2272 return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab); 2273 } 2274 2275 // Get section list for this object file. 2276 SectionList *section_list = m_sections_ap.get(); 2277 if (!section_list) 2278 return 0; 2279 2280 user_id_t symtab_id = symtab->GetID(); 2281 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2282 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2283 symtab_hdr->sh_type == SHT_DYNSYM); 2284 2285 // sh_link: section header index of associated string table. Section ID's are 2286 // ones based. 2287 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2288 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2289 2290 if (symtab && strtab) { 2291 assert(symtab->GetObjectFile() == this); 2292 assert(strtab->GetObjectFile() == this); 2293 2294 DataExtractor symtab_data; 2295 DataExtractor strtab_data; 2296 if (ReadSectionData(symtab, symtab_data) && 2297 ReadSectionData(strtab, strtab_data)) { 2298 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2299 2300 return ParseSymbols(symbol_table, start_id, section_list, num_symbols, 2301 symtab_data, strtab_data); 2302 } 2303 } 2304 2305 return 0; 2306 } 2307 2308 size_t ObjectFileELF::ParseDynamicSymbols() { 2309 if (m_dynamic_symbols.size()) 2310 return m_dynamic_symbols.size(); 2311 2312 SectionList *section_list = GetSectionList(); 2313 if (!section_list) 2314 return 0; 2315 2316 // Find the SHT_DYNAMIC section. 2317 Section *dynsym = 2318 section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true) 2319 .get(); 2320 if (!dynsym) 2321 return 0; 2322 assert(dynsym->GetObjectFile() == this); 2323 2324 ELFDynamic symbol; 2325 DataExtractor dynsym_data; 2326 if (ReadSectionData(dynsym, dynsym_data)) { 2327 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2328 lldb::offset_t cursor = 0; 2329 2330 while (cursor < section_size) { 2331 if (!symbol.Parse(dynsym_data, &cursor)) 2332 break; 2333 2334 m_dynamic_symbols.push_back(symbol); 2335 } 2336 } 2337 2338 return m_dynamic_symbols.size(); 2339 } 2340 2341 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) { 2342 if (!ParseDynamicSymbols()) 2343 return NULL; 2344 2345 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2346 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2347 for (; I != E; ++I) { 2348 ELFDynamic *symbol = &*I; 2349 2350 if (symbol->d_tag == tag) 2351 return symbol; 2352 } 2353 2354 return NULL; 2355 } 2356 2357 unsigned ObjectFileELF::PLTRelocationType() { 2358 // DT_PLTREL 2359 // This member specifies the type of relocation entry to which the 2360 // procedure linkage table refers. The d_val member holds DT_REL or 2361 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2362 // must use the same relocation. 2363 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2364 2365 if (symbol) 2366 return symbol->d_val; 2367 2368 return 0; 2369 } 2370 2371 // Returns the size of the normal plt entries and the offset of the first 2372 // normal plt entry. The 0th entry in the plt table is usually a resolution 2373 // entry which have different size in some architectures then the rest of the 2374 // plt entries. 2375 static std::pair<uint64_t, uint64_t> 2376 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr, 2377 const ELFSectionHeader *plt_hdr) { 2378 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2379 2380 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 2381 // 16 bytes. So round the entsize up by the alignment if addralign is set. 2382 elf_xword plt_entsize = 2383 plt_hdr->sh_addralign 2384 ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign) 2385 : plt_hdr->sh_entsize; 2386 2387 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2388 // PLT entries relocation code in general requires multiple instruction and 2389 // should be greater than 4 bytes in most cases. Try to guess correct size 2390 // just in case. 2391 if (plt_entsize <= 4) { 2392 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the 2393 // size of the plt entries based on the number of entries and the size of 2394 // the plt section with the assumption that the size of the 0th entry is at 2395 // least as big as the size of the normal entries and it isn't much bigger 2396 // then that. 2397 if (plt_hdr->sh_addralign) 2398 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / 2399 (num_relocations + 1) * plt_hdr->sh_addralign; 2400 else 2401 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2402 } 2403 2404 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2405 2406 return std::make_pair(plt_entsize, plt_offset); 2407 } 2408 2409 static unsigned ParsePLTRelocations( 2410 Symtab *symbol_table, user_id_t start_id, unsigned rel_type, 2411 const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2412 const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr, 2413 const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data, 2414 DataExtractor &symtab_data, DataExtractor &strtab_data) { 2415 ELFRelocation rel(rel_type); 2416 ELFSymbol symbol; 2417 lldb::offset_t offset = 0; 2418 2419 uint64_t plt_offset, plt_entsize; 2420 std::tie(plt_entsize, plt_offset) = 2421 GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2422 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2423 2424 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2425 reloc_info_fn reloc_type; 2426 reloc_info_fn reloc_symbol; 2427 2428 if (hdr->Is32Bit()) { 2429 reloc_type = ELFRelocation::RelocType32; 2430 reloc_symbol = ELFRelocation::RelocSymbol32; 2431 } else { 2432 reloc_type = ELFRelocation::RelocType64; 2433 reloc_symbol = ELFRelocation::RelocSymbol64; 2434 } 2435 2436 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2437 unsigned i; 2438 for (i = 0; i < num_relocations; ++i) { 2439 if (!rel.Parse(rel_data, &offset)) 2440 break; 2441 2442 if (reloc_type(rel) != slot_type) 2443 continue; 2444 2445 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2446 if (!symbol.Parse(symtab_data, &symbol_offset)) 2447 break; 2448 2449 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2450 bool is_mangled = 2451 symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2452 uint64_t plt_index = plt_offset + i * plt_entsize; 2453 2454 Symbol jump_symbol( 2455 i + start_id, // Symbol table index 2456 symbol_name, // symbol name. 2457 is_mangled, // is the symbol name mangled? 2458 eSymbolTypeTrampoline, // Type of this symbol 2459 false, // Is this globally visible? 2460 false, // Is this symbol debug info? 2461 true, // Is this symbol a trampoline? 2462 true, // Is this symbol artificial? 2463 plt_section_sp, // Section in which this symbol is defined or null. 2464 plt_index, // Offset in section or symbol value. 2465 plt_entsize, // Size in bytes of this symbol. 2466 true, // Size is valid 2467 false, // Contains linker annotations? 2468 0); // Symbol flags. 2469 2470 symbol_table->AddSymbol(jump_symbol); 2471 } 2472 2473 return i; 2474 } 2475 2476 unsigned 2477 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id, 2478 const ELFSectionHeaderInfo *rel_hdr, 2479 user_id_t rel_id) { 2480 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2481 2482 // The link field points to the associated symbol table. 2483 user_id_t symtab_id = rel_hdr->sh_link; 2484 2485 // If the link field doesn't point to the appropriate symbol name table then 2486 // try to find it by name as some compiler don't fill in the link fields. 2487 if (!symtab_id) 2488 symtab_id = GetSectionIndexByName(".dynsym"); 2489 2490 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2491 // point that to the .got.plt or .got section instead of .plt. 2492 user_id_t plt_id = GetSectionIndexByName(".plt"); 2493 2494 if (!symtab_id || !plt_id) 2495 return 0; 2496 2497 // Section ID's are ones based; 2498 symtab_id++; 2499 plt_id++; 2500 2501 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2502 if (!plt_hdr) 2503 return 0; 2504 2505 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2506 if (!sym_hdr) 2507 return 0; 2508 2509 SectionList *section_list = m_sections_ap.get(); 2510 if (!section_list) 2511 return 0; 2512 2513 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2514 if (!rel_section) 2515 return 0; 2516 2517 SectionSP plt_section_sp(section_list->FindSectionByID(plt_id)); 2518 if (!plt_section_sp) 2519 return 0; 2520 2521 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2522 if (!symtab) 2523 return 0; 2524 2525 // sh_link points to associated string table. 2526 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2527 if (!strtab) 2528 return 0; 2529 2530 DataExtractor rel_data; 2531 if (!ReadSectionData(rel_section, rel_data)) 2532 return 0; 2533 2534 DataExtractor symtab_data; 2535 if (!ReadSectionData(symtab, symtab_data)) 2536 return 0; 2537 2538 DataExtractor strtab_data; 2539 if (!ReadSectionData(strtab, strtab_data)) 2540 return 0; 2541 2542 unsigned rel_type = PLTRelocationType(); 2543 if (!rel_type) 2544 return 0; 2545 2546 return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header, 2547 rel_hdr, plt_hdr, sym_hdr, plt_section_sp, 2548 rel_data, symtab_data, strtab_data); 2549 } 2550 2551 unsigned ObjectFileELF::ApplyRelocations( 2552 Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2553 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2554 DataExtractor &rel_data, DataExtractor &symtab_data, 2555 DataExtractor &debug_data, Section *rel_section) { 2556 ELFRelocation rel(rel_hdr->sh_type); 2557 lldb::addr_t offset = 0; 2558 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2559 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2560 reloc_info_fn reloc_type; 2561 reloc_info_fn reloc_symbol; 2562 2563 if (hdr->Is32Bit()) { 2564 reloc_type = ELFRelocation::RelocType32; 2565 reloc_symbol = ELFRelocation::RelocSymbol32; 2566 } else { 2567 reloc_type = ELFRelocation::RelocType64; 2568 reloc_symbol = ELFRelocation::RelocSymbol64; 2569 } 2570 2571 for (unsigned i = 0; i < num_relocations; ++i) { 2572 if (!rel.Parse(rel_data, &offset)) 2573 break; 2574 2575 Symbol *symbol = NULL; 2576 2577 if (hdr->Is32Bit()) { 2578 switch (reloc_type(rel)) { 2579 case R_386_32: 2580 case R_386_PC32: 2581 default: 2582 // FIXME: This asserts with this input: 2583 // 2584 // foo.cpp 2585 // int main(int argc, char **argv) { return 0; } 2586 // 2587 // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o 2588 // 2589 // and running this on the foo.o module. 2590 assert(false && "unexpected relocation type"); 2591 } 2592 } else { 2593 switch (reloc_type(rel)) { 2594 case R_AARCH64_ABS64: 2595 case R_X86_64_64: { 2596 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2597 if (symbol) { 2598 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2599 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2600 uint64_t *dst = reinterpret_cast<uint64_t *>( 2601 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2602 ELFRelocation::RelocOffset64(rel)); 2603 uint64_t val_offset = value + ELFRelocation::RelocAddend64(rel); 2604 memcpy(dst, &val_offset, sizeof(uint64_t)); 2605 } 2606 break; 2607 } 2608 case R_X86_64_32: 2609 case R_X86_64_32S: 2610 case R_AARCH64_ABS32: { 2611 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2612 if (symbol) { 2613 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2614 value += ELFRelocation::RelocAddend32(rel); 2615 if ((reloc_type(rel) == R_X86_64_32 && (value > UINT32_MAX)) || 2616 (reloc_type(rel) == R_X86_64_32S && 2617 ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN)) || 2618 (reloc_type(rel) == R_AARCH64_ABS32 && 2619 ((int64_t)value > INT32_MAX && (int64_t)value < INT32_MIN))) { 2620 Log *log = 2621 lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES); 2622 log->Printf("Failed to apply debug info relocations"); 2623 break; 2624 } 2625 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2626 DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer(); 2627 uint32_t *dst = reinterpret_cast<uint32_t *>( 2628 data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + 2629 ELFRelocation::RelocOffset32(rel)); 2630 memcpy(dst, &truncated_addr, sizeof(uint32_t)); 2631 } 2632 break; 2633 } 2634 case R_X86_64_PC32: 2635 default: 2636 assert(false && "unexpected relocation type"); 2637 } 2638 } 2639 } 2640 2641 return 0; 2642 } 2643 2644 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, 2645 user_id_t rel_id, 2646 lldb_private::Symtab *thetab) { 2647 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2648 2649 // Parse in the section list if needed. 2650 SectionList *section_list = GetSectionList(); 2651 if (!section_list) 2652 return 0; 2653 2654 // Section ID's are ones based. 2655 user_id_t symtab_id = rel_hdr->sh_link + 1; 2656 user_id_t debug_id = rel_hdr->sh_info + 1; 2657 2658 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2659 if (!symtab_hdr) 2660 return 0; 2661 2662 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2663 if (!debug_hdr) 2664 return 0; 2665 2666 Section *rel = section_list->FindSectionByID(rel_id).get(); 2667 if (!rel) 2668 return 0; 2669 2670 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2671 if (!symtab) 2672 return 0; 2673 2674 Section *debug = section_list->FindSectionByID(debug_id).get(); 2675 if (!debug) 2676 return 0; 2677 2678 DataExtractor rel_data; 2679 DataExtractor symtab_data; 2680 DataExtractor debug_data; 2681 2682 if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) && 2683 GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) && 2684 GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) { 2685 ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr, 2686 rel_data, symtab_data, debug_data, debug); 2687 } 2688 2689 return 0; 2690 } 2691 2692 Symtab *ObjectFileELF::GetSymtab() { 2693 ModuleSP module_sp(GetModule()); 2694 if (!module_sp) 2695 return NULL; 2696 2697 // We always want to use the main object file so we (hopefully) only have one 2698 // cached copy of our symtab, dynamic sections, etc. 2699 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2700 if (module_obj_file && module_obj_file != this) 2701 return module_obj_file->GetSymtab(); 2702 2703 if (m_symtab_ap.get() == NULL) { 2704 SectionList *section_list = module_sp->GetSectionList(); 2705 if (!section_list) 2706 return NULL; 2707 2708 uint64_t symbol_id = 0; 2709 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2710 2711 // Sharable objects and dynamic executables usually have 2 distinct symbol 2712 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a 2713 // smaller version of the symtab that only contains global symbols. The 2714 // information found in the dynsym is therefore also found in the symtab, 2715 // while the reverse is not necessarily true. 2716 Section *symtab = 2717 section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get(); 2718 if (!symtab) { 2719 // The symtab section is non-allocable and can be stripped, so if it 2720 // doesn't exist then use the dynsym section which should always be 2721 // there. 2722 symtab = 2723 section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true) 2724 .get(); 2725 } 2726 if (symtab) { 2727 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2728 symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab); 2729 } 2730 2731 // DT_JMPREL 2732 // If present, this entry's d_ptr member holds the address of 2733 // relocation 2734 // entries associated solely with the procedure linkage table. 2735 // Separating 2736 // these relocation entries lets the dynamic linker ignore them during 2737 // process initialization, if lazy binding is enabled. If this entry is 2738 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2739 // also be present. 2740 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2741 if (symbol) { 2742 // Synthesize trampoline symbols to help navigate the PLT. 2743 addr_t addr = symbol->d_ptr; 2744 Section *reloc_section = 2745 section_list->FindSectionContainingFileAddress(addr).get(); 2746 if (reloc_section) { 2747 user_id_t reloc_id = reloc_section->GetID(); 2748 const ELFSectionHeaderInfo *reloc_header = 2749 GetSectionHeaderByIndex(reloc_id); 2750 assert(reloc_header); 2751 2752 if (m_symtab_ap == nullptr) 2753 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2754 2755 ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header, 2756 reloc_id); 2757 } 2758 } 2759 2760 DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo(); 2761 if (eh_frame) { 2762 if (m_symtab_ap == nullptr) 2763 m_symtab_ap.reset(new Symtab(this)); 2764 ParseUnwindSymbols(m_symtab_ap.get(), eh_frame); 2765 } 2766 2767 // If we still don't have any symtab then create an empty instance to avoid 2768 // do the section lookup next time. 2769 if (m_symtab_ap == nullptr) 2770 m_symtab_ap.reset(new Symtab(this)); 2771 2772 m_symtab_ap->CalculateSymbolSizes(); 2773 } 2774 2775 return m_symtab_ap.get(); 2776 } 2777 2778 void ObjectFileELF::RelocateSection(lldb_private::Section *section) 2779 { 2780 static const char *debug_prefix = ".debug"; 2781 2782 // Set relocated bit so we stop getting called, regardless of whether we 2783 // actually relocate. 2784 section->SetIsRelocated(true); 2785 2786 // We only relocate in ELF relocatable files 2787 if (CalculateType() != eTypeObjectFile) 2788 return; 2789 2790 const char *section_name = section->GetName().GetCString(); 2791 // Can't relocate that which can't be named 2792 if (section_name == nullptr) 2793 return; 2794 2795 // We don't relocate non-debug sections at the moment 2796 if (strncmp(section_name, debug_prefix, strlen(debug_prefix))) 2797 return; 2798 2799 // Relocation section names to look for 2800 std::string needle = std::string(".rel") + section_name; 2801 std::string needlea = std::string(".rela") + section_name; 2802 2803 for (SectionHeaderCollIter I = m_section_headers.begin(); 2804 I != m_section_headers.end(); ++I) { 2805 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) { 2806 const char *hay_name = I->section_name.GetCString(); 2807 if (hay_name == nullptr) 2808 continue; 2809 if (needle == hay_name || needlea == hay_name) { 2810 const ELFSectionHeader &reloc_header = *I; 2811 user_id_t reloc_id = SectionIndex(I); 2812 RelocateDebugSections(&reloc_header, reloc_id, GetSymtab()); 2813 break; 2814 } 2815 } 2816 } 2817 } 2818 2819 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, 2820 DWARFCallFrameInfo *eh_frame) { 2821 SectionList *section_list = GetSectionList(); 2822 if (!section_list) 2823 return; 2824 2825 // First we save the new symbols into a separate list and add them to the 2826 // symbol table after we colleced all symbols we want to add. This is 2827 // neccessary because adding a new symbol invalidates the internal index of 2828 // the symtab what causing the next lookup to be slow because it have to 2829 // recalculate the index first. 2830 std::vector<Symbol> new_symbols; 2831 2832 eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols]( 2833 lldb::addr_t file_addr, uint32_t size, dw_offset_t) { 2834 Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 2835 if (symbol) { 2836 if (!symbol->GetByteSizeIsValid()) { 2837 symbol->SetByteSize(size); 2838 symbol->SetSizeIsSynthesized(true); 2839 } 2840 } else { 2841 SectionSP section_sp = 2842 section_list->FindSectionContainingFileAddress(file_addr); 2843 if (section_sp) { 2844 addr_t offset = file_addr - section_sp->GetFileAddress(); 2845 const char *symbol_name = GetNextSyntheticSymbolName().GetCString(); 2846 uint64_t symbol_id = symbol_table->GetNumSymbols(); 2847 Symbol eh_symbol( 2848 symbol_id, // Symbol table index. 2849 symbol_name, // Symbol name. 2850 false, // Is the symbol name mangled? 2851 eSymbolTypeCode, // Type of this symbol. 2852 true, // Is this globally visible? 2853 false, // Is this symbol debug info? 2854 false, // Is this symbol a trampoline? 2855 true, // Is this symbol artificial? 2856 section_sp, // Section in which this symbol is defined or null. 2857 offset, // Offset in section or symbol value. 2858 0, // Size: Don't specify the size as an FDE can 2859 false, // Size is valid: cover multiple symbols. 2860 false, // Contains linker annotations? 2861 0); // Symbol flags. 2862 new_symbols.push_back(eh_symbol); 2863 } 2864 } 2865 return true; 2866 }); 2867 2868 for (const Symbol &s : new_symbols) 2869 symbol_table->AddSymbol(s); 2870 } 2871 2872 bool ObjectFileELF::IsStripped() { 2873 // TODO: determine this for ELF 2874 return false; 2875 } 2876 2877 //===----------------------------------------------------------------------===// 2878 // Dump 2879 // 2880 // Dump the specifics of the runtime file container (such as any headers 2881 // segments, sections, etc). 2882 //---------------------------------------------------------------------- 2883 void ObjectFileELF::Dump(Stream *s) { 2884 ModuleSP module_sp(GetModule()); 2885 if (!module_sp) { 2886 return; 2887 } 2888 2889 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2890 s->Printf("%p: ", static_cast<void *>(this)); 2891 s->Indent(); 2892 s->PutCString("ObjectFileELF"); 2893 2894 ArchSpec header_arch; 2895 GetArchitecture(header_arch); 2896 2897 *s << ", file = '" << m_file 2898 << "', arch = " << header_arch.GetArchitectureName() << "\n"; 2899 2900 DumpELFHeader(s, m_header); 2901 s->EOL(); 2902 DumpELFProgramHeaders(s); 2903 s->EOL(); 2904 DumpELFSectionHeaders(s); 2905 s->EOL(); 2906 SectionList *section_list = GetSectionList(); 2907 if (section_list) 2908 section_list->Dump(s, NULL, true, UINT32_MAX); 2909 Symtab *symtab = GetSymtab(); 2910 if (symtab) 2911 symtab->Dump(s, NULL, eSortOrderNone); 2912 s->EOL(); 2913 DumpDependentModules(s); 2914 s->EOL(); 2915 } 2916 2917 //---------------------------------------------------------------------- 2918 // DumpELFHeader 2919 // 2920 // Dump the ELF header to the specified output stream 2921 //---------------------------------------------------------------------- 2922 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) { 2923 s->PutCString("ELF Header\n"); 2924 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2925 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1], 2926 header.e_ident[EI_MAG1]); 2927 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2], 2928 header.e_ident[EI_MAG2]); 2929 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3], 2930 header.e_ident[EI_MAG3]); 2931 2932 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2933 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2934 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2935 s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2936 s->Printf("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2937 2938 s->Printf("e_type = 0x%4.4x ", header.e_type); 2939 DumpELFHeader_e_type(s, header.e_type); 2940 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2941 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2942 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2943 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2944 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2945 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2946 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2947 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2948 s->Printf("e_phnum = 0x%8.8x\n", header.e_phnum); 2949 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2950 s->Printf("e_shnum = 0x%8.8x\n", header.e_shnum); 2951 s->Printf("e_shstrndx = 0x%8.8x\n", header.e_shstrndx); 2952 } 2953 2954 //---------------------------------------------------------------------- 2955 // DumpELFHeader_e_type 2956 // 2957 // Dump an token value for the ELF header member e_type 2958 //---------------------------------------------------------------------- 2959 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) { 2960 switch (e_type) { 2961 case ET_NONE: 2962 *s << "ET_NONE"; 2963 break; 2964 case ET_REL: 2965 *s << "ET_REL"; 2966 break; 2967 case ET_EXEC: 2968 *s << "ET_EXEC"; 2969 break; 2970 case ET_DYN: 2971 *s << "ET_DYN"; 2972 break; 2973 case ET_CORE: 2974 *s << "ET_CORE"; 2975 break; 2976 default: 2977 break; 2978 } 2979 } 2980 2981 //---------------------------------------------------------------------- 2982 // DumpELFHeader_e_ident_EI_DATA 2983 // 2984 // Dump an token value for the ELF header member e_ident[EI_DATA] 2985 //---------------------------------------------------------------------- 2986 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, 2987 unsigned char ei_data) { 2988 switch (ei_data) { 2989 case ELFDATANONE: 2990 *s << "ELFDATANONE"; 2991 break; 2992 case ELFDATA2LSB: 2993 *s << "ELFDATA2LSB - Little Endian"; 2994 break; 2995 case ELFDATA2MSB: 2996 *s << "ELFDATA2MSB - Big Endian"; 2997 break; 2998 default: 2999 break; 3000 } 3001 } 3002 3003 //---------------------------------------------------------------------- 3004 // DumpELFProgramHeader 3005 // 3006 // Dump a single ELF program header to the specified output stream 3007 //---------------------------------------------------------------------- 3008 void ObjectFileELF::DumpELFProgramHeader(Stream *s, 3009 const ELFProgramHeader &ph) { 3010 DumpELFProgramHeader_p_type(s, ph.p_type); 3011 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, 3012 ph.p_vaddr, ph.p_paddr); 3013 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, 3014 ph.p_flags); 3015 3016 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3017 s->Printf(") %8.8" PRIx64, ph.p_align); 3018 } 3019 3020 //---------------------------------------------------------------------- 3021 // DumpELFProgramHeader_p_type 3022 // 3023 // Dump an token value for the ELF program header member p_type which describes 3024 // the type of the program header 3025 // ---------------------------------------------------------------------- 3026 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) { 3027 const int kStrWidth = 15; 3028 switch (p_type) { 3029 CASE_AND_STREAM(s, PT_NULL, kStrWidth); 3030 CASE_AND_STREAM(s, PT_LOAD, kStrWidth); 3031 CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth); 3032 CASE_AND_STREAM(s, PT_INTERP, kStrWidth); 3033 CASE_AND_STREAM(s, PT_NOTE, kStrWidth); 3034 CASE_AND_STREAM(s, PT_SHLIB, kStrWidth); 3035 CASE_AND_STREAM(s, PT_PHDR, kStrWidth); 3036 CASE_AND_STREAM(s, PT_TLS, kStrWidth); 3037 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3038 default: 3039 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3040 break; 3041 } 3042 } 3043 3044 //---------------------------------------------------------------------- 3045 // DumpELFProgramHeader_p_flags 3046 // 3047 // Dump an token value for the ELF program header member p_flags 3048 //---------------------------------------------------------------------- 3049 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) { 3050 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3051 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3052 << ((p_flags & PF_W) ? "PF_W" : " ") 3053 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3054 << ((p_flags & PF_R) ? "PF_R" : " "); 3055 } 3056 3057 //---------------------------------------------------------------------- 3058 // DumpELFProgramHeaders 3059 // 3060 // Dump all of the ELF program header to the specified output stream 3061 //---------------------------------------------------------------------- 3062 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) { 3063 if (!ParseProgramHeaders()) 3064 return; 3065 3066 s->PutCString("Program Headers\n"); 3067 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3068 "p_filesz p_memsz p_flags p_align\n"); 3069 s->PutCString("==== --------------- -------- -------- -------- " 3070 "-------- -------- ------------------------- --------\n"); 3071 3072 for (const auto &H : llvm::enumerate(m_program_headers)) { 3073 s->Format("[{0,2}] ", H.index()); 3074 ObjectFileELF::DumpELFProgramHeader(s, H.value()); 3075 s->EOL(); 3076 } 3077 } 3078 3079 //---------------------------------------------------------------------- 3080 // DumpELFSectionHeader 3081 // 3082 // Dump a single ELF section header to the specified output stream 3083 //---------------------------------------------------------------------- 3084 void ObjectFileELF::DumpELFSectionHeader(Stream *s, 3085 const ELFSectionHeaderInfo &sh) { 3086 s->Printf("%8.8x ", sh.sh_name); 3087 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3088 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3089 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3090 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, 3091 sh.sh_offset, sh.sh_size); 3092 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3093 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3094 } 3095 3096 //---------------------------------------------------------------------- 3097 // DumpELFSectionHeader_sh_type 3098 // 3099 // Dump an token value for the ELF section header member sh_type which 3100 // describes the type of the section 3101 //---------------------------------------------------------------------- 3102 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) { 3103 const int kStrWidth = 12; 3104 switch (sh_type) { 3105 CASE_AND_STREAM(s, SHT_NULL, kStrWidth); 3106 CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth); 3107 CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth); 3108 CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth); 3109 CASE_AND_STREAM(s, SHT_RELA, kStrWidth); 3110 CASE_AND_STREAM(s, SHT_HASH, kStrWidth); 3111 CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth); 3112 CASE_AND_STREAM(s, SHT_NOTE, kStrWidth); 3113 CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth); 3114 CASE_AND_STREAM(s, SHT_REL, kStrWidth); 3115 CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth); 3116 CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth); 3117 CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth); 3118 CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth); 3119 CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth); 3120 CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth); 3121 default: 3122 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3123 break; 3124 } 3125 } 3126 3127 //---------------------------------------------------------------------- 3128 // DumpELFSectionHeader_sh_flags 3129 // 3130 // Dump an token value for the ELF section header member sh_flags 3131 //---------------------------------------------------------------------- 3132 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, 3133 elf_xword sh_flags) { 3134 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3135 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3136 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3137 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3138 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3139 } 3140 3141 //---------------------------------------------------------------------- 3142 // DumpELFSectionHeaders 3143 // 3144 // Dump all of the ELF section header to the specified output stream 3145 //---------------------------------------------------------------------- 3146 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) { 3147 if (!ParseSectionHeaders()) 3148 return; 3149 3150 s->PutCString("Section Headers\n"); 3151 s->PutCString("IDX name type flags " 3152 "addr offset size link info addralgn " 3153 "entsize Name\n"); 3154 s->PutCString("==== -------- ------------ -------------------------------- " 3155 "-------- -------- -------- -------- -------- -------- " 3156 "-------- ====================\n"); 3157 3158 uint32_t idx = 0; 3159 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3160 I != m_section_headers.end(); ++I, ++idx) { 3161 s->Printf("[%2u] ", idx); 3162 ObjectFileELF::DumpELFSectionHeader(s, *I); 3163 const char *section_name = I->section_name.AsCString(""); 3164 if (section_name) 3165 *s << ' ' << section_name << "\n"; 3166 } 3167 } 3168 3169 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) { 3170 size_t num_modules = ParseDependentModules(); 3171 3172 if (num_modules > 0) { 3173 s->PutCString("Dependent Modules:\n"); 3174 for (unsigned i = 0; i < num_modules; ++i) { 3175 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3176 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3177 } 3178 } 3179 } 3180 3181 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) { 3182 if (!ParseHeader()) 3183 return false; 3184 3185 if (m_section_headers.empty()) { 3186 // Allow elf notes to be parsed which may affect the detected architecture. 3187 ParseSectionHeaders(); 3188 } 3189 3190 if (CalculateType() == eTypeCoreFile && 3191 m_arch_spec.TripleOSIsUnspecifiedUnknown()) { 3192 // Core files don't have section headers yet they have PT_NOTE program 3193 // headers that might shed more light on the architecture 3194 for (const elf::ELFProgramHeader &H : ProgramHeaders()) { 3195 if (H.p_type != PT_NOTE || H.p_offset == 0 || H.p_filesz == 0) 3196 continue; 3197 DataExtractor data; 3198 if (data.SetData(m_data, H.p_offset, H.p_filesz) == H.p_filesz) { 3199 UUID uuid; 3200 RefineModuleDetailsFromNote(data, m_arch_spec, uuid); 3201 } 3202 } 3203 } 3204 arch = m_arch_spec; 3205 return true; 3206 } 3207 3208 ObjectFile::Type ObjectFileELF::CalculateType() { 3209 switch (m_header.e_type) { 3210 case llvm::ELF::ET_NONE: 3211 // 0 - No file type 3212 return eTypeUnknown; 3213 3214 case llvm::ELF::ET_REL: 3215 // 1 - Relocatable file 3216 return eTypeObjectFile; 3217 3218 case llvm::ELF::ET_EXEC: 3219 // 2 - Executable file 3220 return eTypeExecutable; 3221 3222 case llvm::ELF::ET_DYN: 3223 // 3 - Shared object file 3224 return eTypeSharedLibrary; 3225 3226 case ET_CORE: 3227 // 4 - Core file 3228 return eTypeCoreFile; 3229 3230 default: 3231 break; 3232 } 3233 return eTypeUnknown; 3234 } 3235 3236 ObjectFile::Strata ObjectFileELF::CalculateStrata() { 3237 switch (m_header.e_type) { 3238 case llvm::ELF::ET_NONE: 3239 // 0 - No file type 3240 return eStrataUnknown; 3241 3242 case llvm::ELF::ET_REL: 3243 // 1 - Relocatable file 3244 return eStrataUnknown; 3245 3246 case llvm::ELF::ET_EXEC: 3247 // 2 - Executable file 3248 // TODO: is there any way to detect that an executable is a kernel 3249 // related executable by inspecting the program headers, section headers, 3250 // symbols, or any other flag bits??? 3251 return eStrataUser; 3252 3253 case llvm::ELF::ET_DYN: 3254 // 3 - Shared object file 3255 // TODO: is there any way to detect that an shared library is a kernel 3256 // related executable by inspecting the program headers, section headers, 3257 // symbols, or any other flag bits??? 3258 return eStrataUnknown; 3259 3260 case ET_CORE: 3261 // 4 - Core file 3262 // TODO: is there any way to detect that an core file is a kernel 3263 // related executable by inspecting the program headers, section headers, 3264 // symbols, or any other flag bits??? 3265 return eStrataUnknown; 3266 3267 default: 3268 break; 3269 } 3270 return eStrataUnknown; 3271 } 3272 3273 size_t ObjectFileELF::ReadSectionData(Section *section, 3274 lldb::offset_t section_offset, void *dst, 3275 size_t dst_len) { 3276 // If some other objectfile owns this data, pass this to them. 3277 if (section->GetObjectFile() != this) 3278 return section->GetObjectFile()->ReadSectionData(section, section_offset, 3279 dst, dst_len); 3280 3281 if (!section->Test(SHF_COMPRESSED)) 3282 return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len); 3283 3284 // For compressed sections we need to read to full data to be able to 3285 // decompress. 3286 DataExtractor data; 3287 ReadSectionData(section, data); 3288 return data.CopyData(section_offset, dst_len, dst); 3289 } 3290 3291 size_t ObjectFileELF::ReadSectionData(Section *section, 3292 DataExtractor §ion_data) { 3293 // If some other objectfile owns this data, pass this to them. 3294 if (section->GetObjectFile() != this) 3295 return section->GetObjectFile()->ReadSectionData(section, section_data); 3296 3297 size_t result = ObjectFile::ReadSectionData(section, section_data); 3298 if (result == 0 || !section->Test(SHF_COMPRESSED)) 3299 return result; 3300 3301 auto Decompressor = llvm::object::Decompressor::create( 3302 section->GetName().GetStringRef(), 3303 {reinterpret_cast<const char *>(section_data.GetDataStart()), 3304 size_t(section_data.GetByteSize())}, 3305 GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8); 3306 if (!Decompressor) { 3307 GetModule()->ReportWarning( 3308 "Unable to initialize decompressor for section '%s': %s", 3309 section->GetName().GetCString(), 3310 llvm::toString(Decompressor.takeError()).c_str()); 3311 section_data.Clear(); 3312 return 0; 3313 } 3314 3315 auto buffer_sp = 3316 std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0); 3317 if (auto error = Decompressor->decompress( 3318 {reinterpret_cast<char *>(buffer_sp->GetBytes()), 3319 size_t(buffer_sp->GetByteSize())})) { 3320 GetModule()->ReportWarning( 3321 "Decompression of section '%s' failed: %s", 3322 section->GetName().GetCString(), 3323 llvm::toString(std::move(error)).c_str()); 3324 section_data.Clear(); 3325 return 0; 3326 } 3327 3328 section_data.SetData(buffer_sp); 3329 return buffer_sp->GetByteSize(); 3330 } 3331 3332 llvm::ArrayRef<ELFProgramHeader> ObjectFileELF::ProgramHeaders() { 3333 ParseProgramHeaders(); 3334 return m_program_headers; 3335 } 3336 3337 DataExtractor ObjectFileELF::GetSegmentData(const ELFProgramHeader &H) { 3338 return DataExtractor(m_data, H.p_offset, H.p_filesz); 3339 } 3340 3341 bool ObjectFileELF::AnySegmentHasPhysicalAddress() { 3342 for (const ELFProgramHeader &H : ProgramHeaders()) { 3343 if (H.p_paddr != 0) 3344 return true; 3345 } 3346 return false; 3347 } 3348 3349 std::vector<ObjectFile::LoadableData> 3350 ObjectFileELF::GetLoadableData(Target &target) { 3351 // Create a list of loadable data from loadable segments, using physical 3352 // addresses if they aren't all null 3353 std::vector<LoadableData> loadables; 3354 bool should_use_paddr = AnySegmentHasPhysicalAddress(); 3355 for (const ELFProgramHeader &H : ProgramHeaders()) { 3356 LoadableData loadable; 3357 if (H.p_type != llvm::ELF::PT_LOAD) 3358 continue; 3359 loadable.Dest = should_use_paddr ? H.p_paddr : H.p_vaddr; 3360 if (loadable.Dest == LLDB_INVALID_ADDRESS) 3361 continue; 3362 if (H.p_filesz == 0) 3363 continue; 3364 auto segment_data = GetSegmentData(H); 3365 loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(), 3366 segment_data.GetByteSize()); 3367 loadables.push_back(loadable); 3368 } 3369 return loadables; 3370 } 3371