xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 5f2d0c3c23d1287522c20bb59337eb3ed9147511)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 static bool
601 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
602 {
603     switch (osabi_byte)
604     {
605         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
606         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
607         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
608         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
609         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
610         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
611         default:
612             ostype = llvm::Triple::OSType::UnknownOS;
613     }
614     return ostype != llvm::Triple::OSType::UnknownOS;
615 }
616 
617 size_t
618 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
619                                         lldb::DataBufferSP& data_sp,
620                                         lldb::offset_t data_offset,
621                                         lldb::offset_t file_offset,
622                                         lldb::offset_t length,
623                                         lldb_private::ModuleSpecList &specs)
624 {
625     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
626 
627     const size_t initial_count = specs.GetSize();
628 
629     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
630     {
631         DataExtractor data;
632         data.SetData(data_sp);
633         elf::ELFHeader header;
634         if (header.Parse(data, &data_offset))
635         {
636             if (data_sp)
637             {
638                 ModuleSpec spec (file);
639 
640                 const uint32_t sub_type = subTypeFromElfHeader(header);
641                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
642                                                        header.e_machine,
643                                                        sub_type);
644 
645                 if (spec.GetArchitecture().IsValid())
646                 {
647                     llvm::Triple::OSType ostype;
648                     // First try to determine the OS type from the OSABI field in the elf header.
649 
650                     if (log)
651                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
652                     if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS)
653                     {
654                         spec.GetArchitecture ().GetTriple ().setOS (ostype);
655 
656                         // Also clear the vendor so we don't end up with situations like
657                         // x86_64-apple-FreeBSD.
658                         spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
659 
660                         if (log)
661                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
662                     }
663 
664                     // Try to get the UUID from the section list. Usually that's at the end, so
665                     // map the file in if we don't have it already.
666                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
667                     if (section_header_end > data_sp->GetByteSize())
668                     {
669                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
670                         data.SetData(data_sp);
671                     }
672 
673                     uint32_t gnu_debuglink_crc = 0;
674                     std::string gnu_debuglink_file;
675                     SectionHeaderColl section_headers;
676                     lldb_private::UUID &uuid = spec.GetUUID();
677 
678                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
679 
680                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
681 
682                     if (log)
683                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
684 
685                     if (!uuid.IsValid())
686                     {
687                         uint32_t core_notes_crc = 0;
688 
689                         if (!gnu_debuglink_crc)
690                         {
691                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
692                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
693                                                               file.GetLastPathComponent().AsCString(),
694                                                               (file.GetByteSize()-file_offset)/1024);
695 
696                             // For core files - which usually don't happen to have a gnu_debuglink,
697                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
698                             // Thus we will need to fallback to something simpler.
699                             if (header.e_type == llvm::ELF::ET_CORE)
700                             {
701                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
702                                 if (program_headers_end > data_sp->GetByteSize())
703                                 {
704                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
705                                     data.SetData(data_sp);
706                                 }
707                                 ProgramHeaderColl program_headers;
708                                 GetProgramHeaderInfo(program_headers, data, header);
709 
710                                 size_t segment_data_end = 0;
711                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
712                                      I != program_headers.end(); ++I)
713                                 {
714                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
715                                 }
716 
717                                 if (segment_data_end > data_sp->GetByteSize())
718                                 {
719                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
720                                     data.SetData(data_sp);
721                                 }
722 
723                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
724                             }
725                             else
726                             {
727                                 // Need to map entire file into memory to calculate the crc.
728                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
729                                 data.SetData(data_sp);
730                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
731                             }
732                         }
733                         if (gnu_debuglink_crc)
734                         {
735                             // Use 4 bytes of crc from the .gnu_debuglink section.
736                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
737                             uuid.SetBytes (uuidt, sizeof(uuidt));
738                         }
739                         else if (core_notes_crc)
740                         {
741                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
742                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
743                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
744                             uuid.SetBytes (uuidt, sizeof(uuidt));
745                         }
746                     }
747 
748                     specs.Append(spec);
749                 }
750             }
751         }
752     }
753 
754     return specs.GetSize() - initial_count;
755 }
756 
757 //------------------------------------------------------------------
758 // PluginInterface protocol
759 //------------------------------------------------------------------
760 lldb_private::ConstString
761 ObjectFileELF::GetPluginName()
762 {
763     return GetPluginNameStatic();
764 }
765 
766 uint32_t
767 ObjectFileELF::GetPluginVersion()
768 {
769     return m_plugin_version;
770 }
771 //------------------------------------------------------------------
772 // ObjectFile protocol
773 //------------------------------------------------------------------
774 
775 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
776                               DataBufferSP& data_sp,
777                               lldb::offset_t data_offset,
778                               const FileSpec* file,
779                               lldb::offset_t file_offset,
780                               lldb::offset_t length) :
781     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
782     m_header(),
783     m_uuid(),
784     m_gnu_debuglink_file(),
785     m_gnu_debuglink_crc(0),
786     m_program_headers(),
787     m_section_headers(),
788     m_dynamic_symbols(),
789     m_filespec_ap(),
790     m_entry_point_address(),
791     m_arch_spec()
792 {
793     if (file)
794         m_file = *file;
795     ::memset(&m_header, 0, sizeof(m_header));
796 }
797 
798 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
799                               DataBufferSP& data_sp,
800                               const lldb::ProcessSP &process_sp,
801                               addr_t header_addr) :
802     ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp),
803     m_header(),
804     m_uuid(),
805     m_gnu_debuglink_file(),
806     m_gnu_debuglink_crc(0),
807     m_program_headers(),
808     m_section_headers(),
809     m_dynamic_symbols(),
810     m_filespec_ap(),
811     m_entry_point_address(),
812     m_arch_spec()
813 {
814     ::memset(&m_header, 0, sizeof(m_header));
815 }
816 
817 ObjectFileELF::~ObjectFileELF()
818 {
819 }
820 
821 bool
822 ObjectFileELF::IsExecutable() const
823 {
824     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
825 }
826 
827 bool
828 ObjectFileELF::SetLoadAddress (Target &target,
829                                lldb::addr_t value,
830                                bool value_is_offset)
831 {
832     ModuleSP module_sp = GetModule();
833     if (module_sp)
834     {
835         size_t num_loaded_sections = 0;
836         SectionList *section_list = GetSectionList ();
837         if (section_list)
838         {
839             if (value_is_offset)
840             {
841                 const size_t num_sections = section_list->GetSize();
842                 size_t sect_idx = 0;
843 
844                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
845                 {
846                     // Iterate through the object file sections to find all
847                     // of the sections that have SHF_ALLOC in their flag bits.
848                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
849                     // if (section_sp && !section_sp->IsThreadSpecific())
850                     if (section_sp && section_sp->Test(SHF_ALLOC))
851                     {
852                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value))
853                             ++num_loaded_sections;
854                     }
855                 }
856                 return num_loaded_sections > 0;
857             }
858             else
859             {
860                 // Not sure how to slide an ELF file given the base address
861                 // of the ELF file in memory
862             }
863         }
864     }
865     return false; // If it changed
866 }
867 
868 ByteOrder
869 ObjectFileELF::GetByteOrder() const
870 {
871     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
872         return eByteOrderBig;
873     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
874         return eByteOrderLittle;
875     return eByteOrderInvalid;
876 }
877 
878 uint32_t
879 ObjectFileELF::GetAddressByteSize() const
880 {
881     return m_data.GetAddressByteSize();
882 }
883 
884 // Top 16 bits of the `Symbol` flags are available.
885 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
886 
887 AddressClass
888 ObjectFileELF::GetAddressClass (addr_t file_addr)
889 {
890     auto res = ObjectFile::GetAddressClass (file_addr);
891 
892     if (res != eAddressClassCode)
893         return res;
894 
895     auto ub = m_address_class_map.upper_bound(file_addr);
896     if (ub == m_address_class_map.begin())
897     {
898         // No entry in the address class map before the address. Return
899         // default address class for an address in a code section.
900         return eAddressClassCode;
901     }
902 
903     // Move iterator to the address class entry preceding address
904     --ub;
905 
906     return ub->second;
907 }
908 
909 size_t
910 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
911 {
912     return std::distance(m_section_headers.begin(), I) + 1u;
913 }
914 
915 size_t
916 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
917 {
918     return std::distance(m_section_headers.begin(), I) + 1u;
919 }
920 
921 bool
922 ObjectFileELF::ParseHeader()
923 {
924     lldb::offset_t offset = 0;
925     return m_header.Parse(m_data, &offset);
926 }
927 
928 bool
929 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
930 {
931     // Need to parse the section list to get the UUIDs, so make sure that's been done.
932     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
933         return false;
934 
935     if (m_uuid.IsValid())
936     {
937         // We have the full build id uuid.
938         *uuid = m_uuid;
939         return true;
940     }
941     else if (GetType() == ObjectFile::eTypeCoreFile)
942     {
943         uint32_t core_notes_crc = 0;
944 
945         if (!ParseProgramHeaders())
946             return false;
947 
948         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
949 
950         if (core_notes_crc)
951         {
952             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
953             // look different form .gnu_debuglink crc - followed by 4 bytes of note
954             // segments crc.
955             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
956             m_uuid.SetBytes (uuidt, sizeof(uuidt));
957         }
958     }
959     else
960     {
961         if (!m_gnu_debuglink_crc)
962             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
963         if (m_gnu_debuglink_crc)
964         {
965             // Use 4 bytes of crc from the .gnu_debuglink section.
966             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
967             m_uuid.SetBytes (uuidt, sizeof(uuidt));
968         }
969     }
970 
971     if (m_uuid.IsValid())
972     {
973         *uuid = m_uuid;
974         return true;
975     }
976 
977     return false;
978 }
979 
980 lldb_private::FileSpecList
981 ObjectFileELF::GetDebugSymbolFilePaths()
982 {
983     FileSpecList file_spec_list;
984 
985     if (!m_gnu_debuglink_file.empty())
986     {
987         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
988         file_spec_list.Append (file_spec);
989     }
990     return file_spec_list;
991 }
992 
993 uint32_t
994 ObjectFileELF::GetDependentModules(FileSpecList &files)
995 {
996     size_t num_modules = ParseDependentModules();
997     uint32_t num_specs = 0;
998 
999     for (unsigned i = 0; i < num_modules; ++i)
1000     {
1001         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1002             num_specs++;
1003     }
1004 
1005     return num_specs;
1006 }
1007 
1008 Address
1009 ObjectFileELF::GetImageInfoAddress(Target *target)
1010 {
1011     if (!ParseDynamicSymbols())
1012         return Address();
1013 
1014     SectionList *section_list = GetSectionList();
1015     if (!section_list)
1016         return Address();
1017 
1018     // Find the SHT_DYNAMIC (.dynamic) section.
1019     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1020     if (!dynsym_section_sp)
1021         return Address();
1022     assert (dynsym_section_sp->GetObjectFile() == this);
1023 
1024     user_id_t dynsym_id = dynsym_section_sp->GetID();
1025     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1026     if (!dynsym_hdr)
1027         return Address();
1028 
1029     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1030     {
1031         ELFDynamic &symbol = m_dynamic_symbols[i];
1032 
1033         if (symbol.d_tag == DT_DEBUG)
1034         {
1035             // Compute the offset as the number of previous entries plus the
1036             // size of d_tag.
1037             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1038             return Address(dynsym_section_sp, offset);
1039         }
1040         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1041         {
1042             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1043             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1044             if (dyn_base == LLDB_INVALID_ADDRESS)
1045                 return Address();
1046             Address addr;
1047             Error error;
1048             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1049                 return addr;
1050         }
1051     }
1052 
1053     return Address();
1054 }
1055 
1056 lldb_private::Address
1057 ObjectFileELF::GetEntryPointAddress ()
1058 {
1059     if (m_entry_point_address.IsValid())
1060         return m_entry_point_address;
1061 
1062     if (!ParseHeader() || !IsExecutable())
1063         return m_entry_point_address;
1064 
1065     SectionList *section_list = GetSectionList();
1066     addr_t offset = m_header.e_entry;
1067 
1068     if (!section_list)
1069         m_entry_point_address.SetOffset(offset);
1070     else
1071         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1072     return m_entry_point_address;
1073 }
1074 
1075 //----------------------------------------------------------------------
1076 // ParseDependentModules
1077 //----------------------------------------------------------------------
1078 size_t
1079 ObjectFileELF::ParseDependentModules()
1080 {
1081     if (m_filespec_ap.get())
1082         return m_filespec_ap->GetSize();
1083 
1084     m_filespec_ap.reset(new FileSpecList());
1085 
1086     if (!ParseSectionHeaders())
1087         return 0;
1088 
1089     SectionList *section_list = GetSectionList();
1090     if (!section_list)
1091         return 0;
1092 
1093     // Find the SHT_DYNAMIC section.
1094     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1095     if (!dynsym)
1096         return 0;
1097     assert (dynsym->GetObjectFile() == this);
1098 
1099     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1100     if (!header)
1101         return 0;
1102     // sh_link: section header index of string table used by entries in the section.
1103     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1104     if (!dynstr)
1105         return 0;
1106 
1107     DataExtractor dynsym_data;
1108     DataExtractor dynstr_data;
1109     if (ReadSectionData(dynsym, dynsym_data) &&
1110         ReadSectionData(dynstr, dynstr_data))
1111     {
1112         ELFDynamic symbol;
1113         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1114         lldb::offset_t offset = 0;
1115 
1116         // The only type of entries we are concerned with are tagged DT_NEEDED,
1117         // yielding the name of a required library.
1118         while (offset < section_size)
1119         {
1120             if (!symbol.Parse(dynsym_data, &offset))
1121                 break;
1122 
1123             if (symbol.d_tag != DT_NEEDED)
1124                 continue;
1125 
1126             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1127             const char *lib_name = dynstr_data.PeekCStr(str_index);
1128             m_filespec_ap->Append(FileSpec(lib_name, true));
1129         }
1130     }
1131 
1132     return m_filespec_ap->GetSize();
1133 }
1134 
1135 //----------------------------------------------------------------------
1136 // GetProgramHeaderInfo
1137 //----------------------------------------------------------------------
1138 size_t
1139 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1140                                     DataExtractor &object_data,
1141                                     const ELFHeader &header)
1142 {
1143     // We have already parsed the program headers
1144     if (!program_headers.empty())
1145         return program_headers.size();
1146 
1147     // If there are no program headers to read we are done.
1148     if (header.e_phnum == 0)
1149         return 0;
1150 
1151     program_headers.resize(header.e_phnum);
1152     if (program_headers.size() != header.e_phnum)
1153         return 0;
1154 
1155     const size_t ph_size = header.e_phnum * header.e_phentsize;
1156     const elf_off ph_offset = header.e_phoff;
1157     DataExtractor data;
1158     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1159         return 0;
1160 
1161     uint32_t idx;
1162     lldb::offset_t offset;
1163     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1164     {
1165         if (program_headers[idx].Parse(data, &offset) == false)
1166             break;
1167     }
1168 
1169     if (idx < program_headers.size())
1170         program_headers.resize(idx);
1171 
1172     return program_headers.size();
1173 
1174 }
1175 
1176 //----------------------------------------------------------------------
1177 // ParseProgramHeaders
1178 //----------------------------------------------------------------------
1179 size_t
1180 ObjectFileELF::ParseProgramHeaders()
1181 {
1182     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1183 }
1184 
1185 lldb_private::Error
1186 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1187 {
1188     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1189     Error error;
1190 
1191     lldb::offset_t offset = 0;
1192 
1193     while (true)
1194     {
1195         // Parse the note header.  If this fails, bail out.
1196         ELFNote note = ELFNote();
1197         if (!note.Parse(data, &offset))
1198         {
1199             // We're done.
1200             return error;
1201         }
1202 
1203         // If a tag processor handles the tag, it should set processed to true, and
1204         // the loop will assume the tag processing has moved entirely past the note's payload.
1205         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1206         bool processed = false;
1207 
1208         if (log)
1209             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1210 
1211         // Process FreeBSD ELF notes.
1212         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1213             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1214             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1215         {
1216             // We'll consume the payload below.
1217             processed = true;
1218 
1219             // Pull out the min version info.
1220             uint32_t version_info;
1221             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1222             {
1223                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1224                 return error;
1225             }
1226 
1227             // Convert the version info into a major/minor number.
1228             const uint32_t version_major = version_info / 100000;
1229             const uint32_t version_minor = (version_info / 1000) % 100;
1230 
1231             char os_name[32];
1232             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1233 
1234             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1235             arch_spec.GetTriple ().setOSName (os_name);
1236             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1237 
1238             if (log)
1239                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1240         }
1241         // Process GNU ELF notes.
1242         else if (note.n_name == LLDB_NT_OWNER_GNU)
1243         {
1244             switch (note.n_type)
1245             {
1246                 case LLDB_NT_GNU_ABI_TAG:
1247                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1248                     {
1249                         // We'll consume the payload below.
1250                         processed = true;
1251 
1252                         // Pull out the min OS version supporting the ABI.
1253                         uint32_t version_info[4];
1254                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1255                         {
1256                             error.SetErrorString ("failed to read GNU ABI note payload");
1257                             return error;
1258                         }
1259 
1260                         // Set the OS per the OS field.
1261                         switch (version_info[0])
1262                         {
1263                             case LLDB_NT_GNU_ABI_OS_LINUX:
1264                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1265                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1266                                 if (log)
1267                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1268                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1269                                 break;
1270                             case LLDB_NT_GNU_ABI_OS_HURD:
1271                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1272                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1273                                 if (log)
1274                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1275                                 break;
1276                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1277                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1278                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1279                                 if (log)
1280                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1281                                 break;
1282                             default:
1283                                 if (log)
1284                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1285                                 break;
1286                         }
1287                     }
1288                     break;
1289 
1290                 case LLDB_NT_GNU_BUILD_ID_TAG:
1291                     // Only bother processing this if we don't already have the uuid set.
1292                     if (!uuid.IsValid())
1293                     {
1294                         // We'll consume the payload below.
1295                         processed = true;
1296 
1297                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1298                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1299                         {
1300                             uint8_t uuidbuf[20];
1301                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1302                             {
1303                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1304                                 return error;
1305                             }
1306 
1307                             // Save the build id as the UUID for the module.
1308                             uuid.SetBytes (uuidbuf, note.n_descsz);
1309                         }
1310                     }
1311                     break;
1312             }
1313         }
1314         // Process NetBSD ELF notes.
1315         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1316                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1317                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1318         {
1319 
1320             // We'll consume the payload below.
1321             processed = true;
1322 
1323             // Pull out the min version info.
1324             uint32_t version_info;
1325             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1326             {
1327                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1328                 return error;
1329             }
1330 
1331             // Set the elf OS version to NetBSD.  Also clear the vendor.
1332             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1333             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1334 
1335             if (log)
1336                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1337         }
1338         // Process CSR kalimba notes
1339         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1340                 (note.n_name == LLDB_NT_OWNER_CSR))
1341         {
1342             // We'll consume the payload below.
1343             processed = true;
1344             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1345             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1346 
1347             // TODO At some point the description string could be processed.
1348             // It could provide a steer towards the kalimba variant which
1349             // this ELF targets.
1350             if(note.n_descsz)
1351             {
1352                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1353                 (void)cstr;
1354             }
1355         }
1356         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1357         {
1358             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1359             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1360         }
1361 
1362         if (!processed)
1363             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1364     }
1365 
1366     return error;
1367 }
1368 
1369 
1370 //----------------------------------------------------------------------
1371 // GetSectionHeaderInfo
1372 //----------------------------------------------------------------------
1373 size_t
1374 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1375                                     lldb_private::DataExtractor &object_data,
1376                                     const elf::ELFHeader &header,
1377                                     lldb_private::UUID &uuid,
1378                                     std::string &gnu_debuglink_file,
1379                                     uint32_t &gnu_debuglink_crc,
1380                                     ArchSpec &arch_spec)
1381 {
1382     // Don't reparse the section headers if we already did that.
1383     if (!section_headers.empty())
1384         return section_headers.size();
1385 
1386     // Only initialize the arch_spec to okay defaults if they're not already set.
1387     // We'll refine this with note data as we parse the notes.
1388     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1389     {
1390         const uint32_t sub_type = subTypeFromElfHeader(header);
1391         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type);
1392     }
1393 
1394     // If there are no section headers we are done.
1395     if (header.e_shnum == 0)
1396         return 0;
1397 
1398     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1399 
1400     section_headers.resize(header.e_shnum);
1401     if (section_headers.size() != header.e_shnum)
1402         return 0;
1403 
1404     const size_t sh_size = header.e_shnum * header.e_shentsize;
1405     const elf_off sh_offset = header.e_shoff;
1406     DataExtractor sh_data;
1407     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1408         return 0;
1409 
1410     uint32_t idx;
1411     lldb::offset_t offset;
1412     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1413     {
1414         if (section_headers[idx].Parse(sh_data, &offset) == false)
1415             break;
1416     }
1417     if (idx < section_headers.size())
1418         section_headers.resize(idx);
1419 
1420     const unsigned strtab_idx = header.e_shstrndx;
1421     if (strtab_idx && strtab_idx < section_headers.size())
1422     {
1423         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1424         const size_t byte_size = sheader.sh_size;
1425         const Elf64_Off offset = sheader.sh_offset;
1426         lldb_private::DataExtractor shstr_data;
1427 
1428         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1429         {
1430             for (SectionHeaderCollIter I = section_headers.begin();
1431                  I != section_headers.end(); ++I)
1432             {
1433                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1434                 const ELFSectionHeaderInfo &header = *I;
1435                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1436                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1437 
1438                 I->section_name = name;
1439 
1440                 if (name == g_sect_name_gnu_debuglink)
1441                 {
1442                     DataExtractor data;
1443                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1444                     {
1445                         lldb::offset_t gnu_debuglink_offset = 0;
1446                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1447                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1448                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1449                     }
1450                 }
1451 
1452                 // Process ELF note section entries.
1453                 bool is_note_header = (header.sh_type == SHT_NOTE);
1454 
1455                 // The section header ".note.android.ident" is stored as a
1456                 // PROGBITS type header but it is actually a note header.
1457                 static ConstString g_sect_name_android_ident (".note.android.ident");
1458                 if (!is_note_header && name == g_sect_name_android_ident)
1459                     is_note_header = true;
1460 
1461                 if (is_note_header)
1462                 {
1463                     // Allow notes to refine module info.
1464                     DataExtractor data;
1465                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1466                     {
1467                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1468                         if (error.Fail ())
1469                         {
1470                             if (log)
1471                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1472                         }
1473                     }
1474                 }
1475             }
1476 
1477             return section_headers.size();
1478         }
1479     }
1480 
1481     section_headers.clear();
1482     return 0;
1483 }
1484 
1485 size_t
1486 ObjectFileELF::GetProgramHeaderCount()
1487 {
1488     return ParseProgramHeaders();
1489 }
1490 
1491 const elf::ELFProgramHeader *
1492 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1493 {
1494     if (!id || !ParseProgramHeaders())
1495         return NULL;
1496 
1497     if (--id < m_program_headers.size())
1498         return &m_program_headers[id];
1499 
1500     return NULL;
1501 }
1502 
1503 DataExtractor
1504 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1505 {
1506     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1507     if (segment_header == NULL)
1508         return DataExtractor();
1509     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1510 }
1511 
1512 std::string
1513 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1514 {
1515     size_t pos = symbol_name.find("@");
1516     return symbol_name.substr(0, pos).str();
1517 }
1518 
1519 //----------------------------------------------------------------------
1520 // ParseSectionHeaders
1521 //----------------------------------------------------------------------
1522 size_t
1523 ObjectFileELF::ParseSectionHeaders()
1524 {
1525     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1526 }
1527 
1528 const ObjectFileELF::ELFSectionHeaderInfo *
1529 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1530 {
1531     if (!id || !ParseSectionHeaders())
1532         return NULL;
1533 
1534     if (--id < m_section_headers.size())
1535         return &m_section_headers[id];
1536 
1537     return NULL;
1538 }
1539 
1540 lldb::user_id_t
1541 ObjectFileELF::GetSectionIndexByName(const char* name)
1542 {
1543     if (!name || !name[0] || !ParseSectionHeaders())
1544         return 0;
1545     for (size_t i = 1; i < m_section_headers.size(); ++i)
1546         if (m_section_headers[i].section_name == ConstString(name))
1547             return i;
1548     return 0;
1549 }
1550 
1551 void
1552 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1553 {
1554     if (!m_sections_ap.get() && ParseSectionHeaders())
1555     {
1556         m_sections_ap.reset(new SectionList());
1557 
1558         for (SectionHeaderCollIter I = m_section_headers.begin();
1559              I != m_section_headers.end(); ++I)
1560         {
1561             const ELFSectionHeaderInfo &header = *I;
1562 
1563             ConstString& name = I->section_name;
1564             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1565             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1566 
1567             static ConstString g_sect_name_text (".text");
1568             static ConstString g_sect_name_data (".data");
1569             static ConstString g_sect_name_bss (".bss");
1570             static ConstString g_sect_name_tdata (".tdata");
1571             static ConstString g_sect_name_tbss (".tbss");
1572             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1573             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1574             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1575             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1576             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1577             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1578             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1579             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1580             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1581             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1582             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1583             static ConstString g_sect_name_eh_frame (".eh_frame");
1584 
1585             SectionType sect_type = eSectionTypeOther;
1586 
1587             bool is_thread_specific = false;
1588 
1589             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1590             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1591             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1592             else if (name == g_sect_name_tdata)
1593             {
1594                 sect_type = eSectionTypeData;
1595                 is_thread_specific = true;
1596             }
1597             else if (name == g_sect_name_tbss)
1598             {
1599                 sect_type = eSectionTypeZeroFill;
1600                 is_thread_specific = true;
1601             }
1602             // .debug_abbrev – Abbreviations used in the .debug_info section
1603             // .debug_aranges – Lookup table for mapping addresses to compilation units
1604             // .debug_frame – Call frame information
1605             // .debug_info – The core DWARF information section
1606             // .debug_line – Line number information
1607             // .debug_loc – Location lists used in DW_AT_location attributes
1608             // .debug_macinfo – Macro information
1609             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1610             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1611             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1612             // .debug_str – String table used in .debug_info
1613             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1614             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1615             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1616             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1617             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1618             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1619             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1620             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1621             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1622             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1623             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1624             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1625             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1626             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1627             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1628 
1629             switch (header.sh_type)
1630             {
1631                 case SHT_SYMTAB:
1632                     assert (sect_type == eSectionTypeOther);
1633                     sect_type = eSectionTypeELFSymbolTable;
1634                     break;
1635                 case SHT_DYNSYM:
1636                     assert (sect_type == eSectionTypeOther);
1637                     sect_type = eSectionTypeELFDynamicSymbols;
1638                     break;
1639                 case SHT_RELA:
1640                 case SHT_REL:
1641                     assert (sect_type == eSectionTypeOther);
1642                     sect_type = eSectionTypeELFRelocationEntries;
1643                     break;
1644                 case SHT_DYNAMIC:
1645                     assert (sect_type == eSectionTypeOther);
1646                     sect_type = eSectionTypeELFDynamicLinkInfo;
1647                     break;
1648             }
1649 
1650             if (eSectionTypeOther == sect_type)
1651             {
1652                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1653                 // supports linkscripts which (can) give rise to various arbitarily named
1654                 // sections being "Code" or "Data".
1655                 sect_type = kalimbaSectionType(m_header, header);
1656             }
1657 
1658             const uint32_t target_bytes_size =
1659                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1660                 m_arch_spec.GetDataByteSize() :
1661                     eSectionTypeCode == sect_type ?
1662                     m_arch_spec.GetCodeByteSize() : 1;
1663 
1664             elf::elf_xword log2align = (header.sh_addralign==0)
1665                                         ? 0
1666                                         : llvm::Log2_64(header.sh_addralign);
1667             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1668                                               this,               // ObjectFile to which this section belongs and should read section data from.
1669                                               SectionIndex(I),    // Section ID.
1670                                               name,               // Section name.
1671                                               sect_type,          // Section type.
1672                                               header.sh_addr,     // VM address.
1673                                               vm_size,            // VM size in bytes of this section.
1674                                               header.sh_offset,   // Offset of this section in the file.
1675                                               file_size,          // Size of the section as found in the file.
1676                                               log2align,          // Alignment of the section
1677                                               header.sh_flags,    // Flags for this section.
1678                                               target_bytes_size));// Number of host bytes per target byte
1679 
1680             if (is_thread_specific)
1681                 section_sp->SetIsThreadSpecific (is_thread_specific);
1682             m_sections_ap->AddSection(section_sp);
1683         }
1684     }
1685 
1686     if (m_sections_ap.get())
1687     {
1688         if (GetType() == eTypeDebugInfo)
1689         {
1690             static const SectionType g_sections[] =
1691             {
1692                 eSectionTypeDWARFDebugAranges,
1693                 eSectionTypeDWARFDebugInfo,
1694                 eSectionTypeDWARFDebugAbbrev,
1695                 eSectionTypeDWARFDebugFrame,
1696                 eSectionTypeDWARFDebugLine,
1697                 eSectionTypeDWARFDebugStr,
1698                 eSectionTypeDWARFDebugLoc,
1699                 eSectionTypeDWARFDebugMacInfo,
1700                 eSectionTypeDWARFDebugPubNames,
1701                 eSectionTypeDWARFDebugPubTypes,
1702                 eSectionTypeDWARFDebugRanges,
1703                 eSectionTypeELFSymbolTable,
1704             };
1705             SectionList *elf_section_list = m_sections_ap.get();
1706             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1707             {
1708                 SectionType section_type = g_sections[idx];
1709                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1710                 if (section_sp)
1711                 {
1712                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1713                     if (module_section_sp)
1714                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1715                     else
1716                         unified_section_list.AddSection (section_sp);
1717                 }
1718             }
1719         }
1720         else
1721         {
1722             unified_section_list = *m_sections_ap;
1723         }
1724     }
1725 }
1726 
1727 // private
1728 unsigned
1729 ObjectFileELF::ParseSymbols (Symtab *symtab,
1730                              user_id_t start_id,
1731                              SectionList *section_list,
1732                              const size_t num_symbols,
1733                              const DataExtractor &symtab_data,
1734                              const DataExtractor &strtab_data)
1735 {
1736     ELFSymbol symbol;
1737     lldb::offset_t offset = 0;
1738 
1739     static ConstString text_section_name(".text");
1740     static ConstString init_section_name(".init");
1741     static ConstString fini_section_name(".fini");
1742     static ConstString ctors_section_name(".ctors");
1743     static ConstString dtors_section_name(".dtors");
1744 
1745     static ConstString data_section_name(".data");
1746     static ConstString rodata_section_name(".rodata");
1747     static ConstString rodata1_section_name(".rodata1");
1748     static ConstString data2_section_name(".data1");
1749     static ConstString bss_section_name(".bss");
1750     static ConstString opd_section_name(".opd");    // For ppc64
1751 
1752     //StreamFile strm(stdout, false);
1753     unsigned i;
1754     for (i = 0; i < num_symbols; ++i)
1755     {
1756         if (symbol.Parse(symtab_data, &offset) == false)
1757             break;
1758 
1759         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1760 
1761         // No need to add non-section symbols that have no names
1762         if (symbol.getType() != STT_SECTION &&
1763             (symbol_name == NULL || symbol_name[0] == '\0'))
1764             continue;
1765 
1766         //symbol.Dump (&strm, i, &strtab_data, section_list);
1767 
1768         SectionSP symbol_section_sp;
1769         SymbolType symbol_type = eSymbolTypeInvalid;
1770         Elf64_Half symbol_idx = symbol.st_shndx;
1771 
1772         switch (symbol_idx)
1773         {
1774         case SHN_ABS:
1775             symbol_type = eSymbolTypeAbsolute;
1776             break;
1777         case SHN_UNDEF:
1778             symbol_type = eSymbolTypeUndefined;
1779             break;
1780         default:
1781             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1782             break;
1783         }
1784 
1785         // If a symbol is undefined do not process it further even if it has a STT type
1786         if (symbol_type != eSymbolTypeUndefined)
1787         {
1788             switch (symbol.getType())
1789             {
1790             default:
1791             case STT_NOTYPE:
1792                 // The symbol's type is not specified.
1793                 break;
1794 
1795             case STT_OBJECT:
1796                 // The symbol is associated with a data object, such as a variable,
1797                 // an array, etc.
1798                 symbol_type = eSymbolTypeData;
1799                 break;
1800 
1801             case STT_FUNC:
1802                 // The symbol is associated with a function or other executable code.
1803                 symbol_type = eSymbolTypeCode;
1804                 break;
1805 
1806             case STT_SECTION:
1807                 // The symbol is associated with a section. Symbol table entries of
1808                 // this type exist primarily for relocation and normally have
1809                 // STB_LOCAL binding.
1810                 break;
1811 
1812             case STT_FILE:
1813                 // Conventionally, the symbol's name gives the name of the source
1814                 // file associated with the object file. A file symbol has STB_LOCAL
1815                 // binding, its section index is SHN_ABS, and it precedes the other
1816                 // STB_LOCAL symbols for the file, if it is present.
1817                 symbol_type = eSymbolTypeSourceFile;
1818                 break;
1819 
1820             case STT_GNU_IFUNC:
1821                 // The symbol is associated with an indirect function. The actual
1822                 // function will be resolved if it is referenced.
1823                 symbol_type = eSymbolTypeResolver;
1824                 break;
1825             }
1826         }
1827 
1828         if (symbol_type == eSymbolTypeInvalid)
1829         {
1830             if (symbol_section_sp)
1831             {
1832                 const ConstString &sect_name = symbol_section_sp->GetName();
1833                 if (sect_name == text_section_name ||
1834                     sect_name == init_section_name ||
1835                     sect_name == fini_section_name ||
1836                     sect_name == ctors_section_name ||
1837                     sect_name == dtors_section_name)
1838                 {
1839                     symbol_type = eSymbolTypeCode;
1840                 }
1841                 else if (sect_name == data_section_name ||
1842                          sect_name == data2_section_name ||
1843                          sect_name == rodata_section_name ||
1844                          sect_name == rodata1_section_name ||
1845                          sect_name == bss_section_name)
1846                 {
1847                     symbol_type = eSymbolTypeData;
1848                 }
1849             }
1850         }
1851 
1852         int64_t symbol_value_offset = 0;
1853         uint32_t additional_flags = 0;
1854 
1855         ArchSpec arch;
1856         if (GetArchitecture(arch))
1857         {
1858             if (arch.GetMachine() == llvm::Triple::arm)
1859             {
1860                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1861                 {
1862                     // These are reserved for the specification (e.g.: mapping
1863                     // symbols). We don't want to add them to the symbol table.
1864 
1865                     if (symbol_type == eSymbolTypeCode)
1866                     {
1867                         llvm::StringRef symbol_name_ref(symbol_name);
1868                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1869                         {
1870                             // $a[.<any>]* - marks an ARM instruction sequence
1871                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1872                         }
1873                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1874                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1875                         {
1876                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1877                             // $t[.<any>]* - marks a THUMB instruction sequence
1878                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1879                         }
1880                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1881                         {
1882                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1883                             m_address_class_map[symbol.st_value] = eAddressClassData;
1884                         }
1885                     }
1886 
1887                     continue;
1888                 }
1889             }
1890             else if (arch.GetMachine() == llvm::Triple::aarch64)
1891             {
1892                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1893                 {
1894                     // These are reserved for the specification (e.g.: mapping
1895                     // symbols). We don't want to add them to the symbol table.
1896 
1897                     if (symbol_type == eSymbolTypeCode)
1898                     {
1899                         llvm::StringRef symbol_name_ref(symbol_name);
1900                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
1901                         {
1902                             // $x[.<any>]* - marks an A64 instruction sequence
1903                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1904                         }
1905                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1906                         {
1907                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1908                             m_address_class_map[symbol.st_value] = eAddressClassData;
1909                         }
1910                     }
1911 
1912                     continue;
1913                 }
1914             }
1915 
1916             if (arch.GetMachine() == llvm::Triple::arm)
1917             {
1918                 if (symbol_type == eSymbolTypeCode)
1919                 {
1920                     if (symbol.st_value & 1)
1921                     {
1922                         // Subtracting 1 from the address effectively unsets
1923                         // the low order bit, which results in the address
1924                         // actually pointing to the beginning of the symbol.
1925                         // This delta will be used below in conjunction with
1926                         // symbol.st_value to produce the final symbol_value
1927                         // that we store in the symtab.
1928                         symbol_value_offset = -1;
1929                         additional_flags = ARM_ELF_SYM_IS_THUMB;
1930                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
1931                     }
1932                     else
1933                     {
1934                         // This address is ARM
1935                         m_address_class_map[symbol.st_value] = eAddressClassCode;
1936                     }
1937                 }
1938             }
1939         }
1940 
1941         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
1942         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
1943         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
1944         {
1945             ModuleSP module_sp(GetModule());
1946             if (module_sp)
1947             {
1948                 SectionList *module_section_list = module_sp->GetSectionList();
1949                 if (module_section_list && module_section_list != section_list)
1950                 {
1951                     const ConstString &sect_name = symbol_section_sp->GetName();
1952                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
1953                     if (section_sp && section_sp->GetFileSize())
1954                     {
1955                         symbol_section_sp = section_sp;
1956                     }
1957                 }
1958             }
1959         }
1960 
1961         // symbol_value_offset may contain 0 for ARM symbols or -1 for
1962         // THUMB symbols. See above for more details.
1963         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
1964         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
1965             symbol_value -= symbol_section_sp->GetFileAddress();
1966         bool is_global = symbol.getBinding() == STB_GLOBAL;
1967         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
1968         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
1969 
1970         llvm::StringRef symbol_ref(symbol_name);
1971 
1972         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
1973         size_t version_pos = symbol_ref.find('@');
1974         bool has_suffix = version_pos != llvm::StringRef::npos;
1975         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
1976         Mangled mangled(ConstString(symbol_bare), is_mangled);
1977 
1978         // Now append the suffix back to mangled and unmangled names. Only do it if the
1979         // demangling was sucessful (string is not empty).
1980         if (has_suffix)
1981         {
1982             llvm::StringRef suffix = symbol_ref.substr(version_pos);
1983 
1984             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
1985             if (! mangled_name.empty())
1986                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
1987 
1988             llvm::StringRef demangled_name = mangled.GetDemangledName().GetStringRef();
1989             if (! demangled_name.empty())
1990                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
1991         }
1992 
1993         Symbol dc_symbol(
1994             i + start_id,       // ID is the original symbol table index.
1995             mangled,
1996             symbol_type,        // Type of this symbol
1997             is_global,          // Is this globally visible?
1998             false,              // Is this symbol debug info?
1999             false,              // Is this symbol a trampoline?
2000             false,              // Is this symbol artificial?
2001             AddressRange(
2002                 symbol_section_sp,  // Section in which this symbol is defined or null.
2003                 symbol_value,       // Offset in section or symbol value.
2004                 symbol.st_size),    // Size in bytes of this symbol.
2005             true,               // Size is valid
2006             has_suffix,         // Contains linker annotations?
2007             flags);             // Symbol flags.
2008         symtab->AddSymbol(dc_symbol);
2009     }
2010     return i;
2011 }
2012 
2013 unsigned
2014 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2015 {
2016     if (symtab->GetObjectFile() != this)
2017     {
2018         // If the symbol table section is owned by a different object file, have it do the
2019         // parsing.
2020         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2021         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2022     }
2023 
2024     // Get section list for this object file.
2025     SectionList *section_list = m_sections_ap.get();
2026     if (!section_list)
2027         return 0;
2028 
2029     user_id_t symtab_id = symtab->GetID();
2030     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2031     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2032            symtab_hdr->sh_type == SHT_DYNSYM);
2033 
2034     // sh_link: section header index of associated string table.
2035     // Section ID's are ones based.
2036     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2037     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2038 
2039     if (symtab && strtab)
2040     {
2041         assert (symtab->GetObjectFile() == this);
2042         assert (strtab->GetObjectFile() == this);
2043 
2044         DataExtractor symtab_data;
2045         DataExtractor strtab_data;
2046         if (ReadSectionData(symtab, symtab_data) &&
2047             ReadSectionData(strtab, strtab_data))
2048         {
2049             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2050 
2051             return ParseSymbols(symbol_table, start_id, section_list,
2052                                 num_symbols, symtab_data, strtab_data);
2053         }
2054     }
2055 
2056     return 0;
2057 }
2058 
2059 size_t
2060 ObjectFileELF::ParseDynamicSymbols()
2061 {
2062     if (m_dynamic_symbols.size())
2063         return m_dynamic_symbols.size();
2064 
2065     SectionList *section_list = GetSectionList();
2066     if (!section_list)
2067         return 0;
2068 
2069     // Find the SHT_DYNAMIC section.
2070     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2071     if (!dynsym)
2072         return 0;
2073     assert (dynsym->GetObjectFile() == this);
2074 
2075     ELFDynamic symbol;
2076     DataExtractor dynsym_data;
2077     if (ReadSectionData(dynsym, dynsym_data))
2078     {
2079         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2080         lldb::offset_t cursor = 0;
2081 
2082         while (cursor < section_size)
2083         {
2084             if (!symbol.Parse(dynsym_data, &cursor))
2085                 break;
2086 
2087             m_dynamic_symbols.push_back(symbol);
2088         }
2089     }
2090 
2091     return m_dynamic_symbols.size();
2092 }
2093 
2094 const ELFDynamic *
2095 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2096 {
2097     if (!ParseDynamicSymbols())
2098         return NULL;
2099 
2100     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2101     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2102     for ( ; I != E; ++I)
2103     {
2104         ELFDynamic *symbol = &*I;
2105 
2106         if (symbol->d_tag == tag)
2107             return symbol;
2108     }
2109 
2110     return NULL;
2111 }
2112 
2113 unsigned
2114 ObjectFileELF::PLTRelocationType()
2115 {
2116     // DT_PLTREL
2117     //  This member specifies the type of relocation entry to which the
2118     //  procedure linkage table refers. The d_val member holds DT_REL or
2119     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2120     //  must use the same relocation.
2121     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2122 
2123     if (symbol)
2124         return symbol->d_val;
2125 
2126     return 0;
2127 }
2128 
2129 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2130 // 0th entry in the plt table is ususally a resolution entry which have different size in some
2131 // architectures then the rest of the plt entries.
2132 static std::pair<uint64_t, uint64_t>
2133 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2134 {
2135     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2136 
2137     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2138     // So round the entsize up by the alignment if addralign is set.
2139     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2140         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2141 
2142     if (plt_entsize == 0)
2143     {
2144         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2145         // entries based on the number of entries and the size of the plt section with the
2146         // asumption that the size of the 0th entry is at least as big as the size of the normal
2147         // entries and it isn't mutch bigger then that.
2148         if (plt_hdr->sh_addralign)
2149             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2150         else
2151             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2152     }
2153 
2154     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2155 
2156     return std::make_pair(plt_entsize, plt_offset);
2157 }
2158 
2159 static unsigned
2160 ParsePLTRelocations(Symtab *symbol_table,
2161                     user_id_t start_id,
2162                     unsigned rel_type,
2163                     const ELFHeader *hdr,
2164                     const ELFSectionHeader *rel_hdr,
2165                     const ELFSectionHeader *plt_hdr,
2166                     const ELFSectionHeader *sym_hdr,
2167                     const lldb::SectionSP &plt_section_sp,
2168                     DataExtractor &rel_data,
2169                     DataExtractor &symtab_data,
2170                     DataExtractor &strtab_data)
2171 {
2172     ELFRelocation rel(rel_type);
2173     ELFSymbol symbol;
2174     lldb::offset_t offset = 0;
2175 
2176     uint64_t plt_offset, plt_entsize;
2177     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2178     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2179 
2180     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2181     reloc_info_fn reloc_type;
2182     reloc_info_fn reloc_symbol;
2183 
2184     if (hdr->Is32Bit())
2185     {
2186         reloc_type = ELFRelocation::RelocType32;
2187         reloc_symbol = ELFRelocation::RelocSymbol32;
2188     }
2189     else
2190     {
2191         reloc_type = ELFRelocation::RelocType64;
2192         reloc_symbol = ELFRelocation::RelocSymbol64;
2193     }
2194 
2195     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2196     unsigned i;
2197     for (i = 0; i < num_relocations; ++i)
2198     {
2199         if (rel.Parse(rel_data, &offset) == false)
2200             break;
2201 
2202         if (reloc_type(rel) != slot_type)
2203             continue;
2204 
2205         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2206         if (!symbol.Parse(symtab_data, &symbol_offset))
2207             break;
2208 
2209         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2210         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2211         uint64_t plt_index = plt_offset + i * plt_entsize;
2212 
2213         Symbol jump_symbol(
2214             i + start_id,    // Symbol table index
2215             symbol_name,     // symbol name.
2216             is_mangled,      // is the symbol name mangled?
2217             eSymbolTypeTrampoline, // Type of this symbol
2218             false,           // Is this globally visible?
2219             false,           // Is this symbol debug info?
2220             true,            // Is this symbol a trampoline?
2221             true,            // Is this symbol artificial?
2222             plt_section_sp,  // Section in which this symbol is defined or null.
2223             plt_index,       // Offset in section or symbol value.
2224             plt_entsize,     // Size in bytes of this symbol.
2225             true,            // Size is valid
2226             false,           // Contains linker annotations?
2227             0);              // Symbol flags.
2228 
2229         symbol_table->AddSymbol(jump_symbol);
2230     }
2231 
2232     return i;
2233 }
2234 
2235 unsigned
2236 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2237                                       user_id_t start_id,
2238                                       const ELFSectionHeaderInfo *rel_hdr,
2239                                       user_id_t rel_id)
2240 {
2241     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2242 
2243     // The link field points to the associated symbol table. The info field
2244     // points to the section holding the plt.
2245     user_id_t symtab_id = rel_hdr->sh_link;
2246     user_id_t plt_id = rel_hdr->sh_info;
2247 
2248     // If the link field doesn't point to the appropriate symbol name table then
2249     // try to find it by name as some compiler don't fill in the link fields.
2250     if (!symtab_id)
2251         symtab_id = GetSectionIndexByName(".dynsym");
2252     if (!plt_id)
2253         plt_id = GetSectionIndexByName(".plt");
2254 
2255     if (!symtab_id || !plt_id)
2256         return 0;
2257 
2258     // Section ID's are ones based;
2259     symtab_id++;
2260     plt_id++;
2261 
2262     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2263     if (!plt_hdr)
2264         return 0;
2265 
2266     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2267     if (!sym_hdr)
2268         return 0;
2269 
2270     SectionList *section_list = m_sections_ap.get();
2271     if (!section_list)
2272         return 0;
2273 
2274     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2275     if (!rel_section)
2276         return 0;
2277 
2278     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2279     if (!plt_section_sp)
2280         return 0;
2281 
2282     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2283     if (!symtab)
2284         return 0;
2285 
2286     // sh_link points to associated string table.
2287     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2288     if (!strtab)
2289         return 0;
2290 
2291     DataExtractor rel_data;
2292     if (!ReadSectionData(rel_section, rel_data))
2293         return 0;
2294 
2295     DataExtractor symtab_data;
2296     if (!ReadSectionData(symtab, symtab_data))
2297         return 0;
2298 
2299     DataExtractor strtab_data;
2300     if (!ReadSectionData(strtab, strtab_data))
2301         return 0;
2302 
2303     unsigned rel_type = PLTRelocationType();
2304     if (!rel_type)
2305         return 0;
2306 
2307     return ParsePLTRelocations (symbol_table,
2308                                 start_id,
2309                                 rel_type,
2310                                 &m_header,
2311                                 rel_hdr,
2312                                 plt_hdr,
2313                                 sym_hdr,
2314                                 plt_section_sp,
2315                                 rel_data,
2316                                 symtab_data,
2317                                 strtab_data);
2318 }
2319 
2320 unsigned
2321 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2322                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2323                 DataExtractor &rel_data, DataExtractor &symtab_data,
2324                 DataExtractor &debug_data, Section* rel_section)
2325 {
2326     ELFRelocation rel(rel_hdr->sh_type);
2327     lldb::addr_t offset = 0;
2328     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2329     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2330     reloc_info_fn reloc_type;
2331     reloc_info_fn reloc_symbol;
2332 
2333     if (hdr->Is32Bit())
2334     {
2335         reloc_type = ELFRelocation::RelocType32;
2336         reloc_symbol = ELFRelocation::RelocSymbol32;
2337     }
2338     else
2339     {
2340         reloc_type = ELFRelocation::RelocType64;
2341         reloc_symbol = ELFRelocation::RelocSymbol64;
2342     }
2343 
2344     for (unsigned i = 0; i < num_relocations; ++i)
2345     {
2346         if (rel.Parse(rel_data, &offset) == false)
2347             break;
2348 
2349         Symbol* symbol = NULL;
2350 
2351         if (hdr->Is32Bit())
2352         {
2353             switch (reloc_type(rel)) {
2354             case R_386_32:
2355             case R_386_PC32:
2356             default:
2357                 assert(false && "unexpected relocation type");
2358             }
2359         } else {
2360             switch (reloc_type(rel)) {
2361             case R_X86_64_64:
2362             {
2363                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2364                 if (symbol)
2365                 {
2366                     addr_t value = symbol->GetAddress().GetFileAddress();
2367                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2368                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2369                     *dst = value + ELFRelocation::RelocAddend64(rel);
2370                 }
2371                 break;
2372             }
2373             case R_X86_64_32:
2374             case R_X86_64_32S:
2375             {
2376                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2377                 if (symbol)
2378                 {
2379                     addr_t value = symbol->GetAddress().GetFileAddress();
2380                     value += ELFRelocation::RelocAddend32(rel);
2381                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2382                            (reloc_type(rel) == R_X86_64_32S &&
2383                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2384                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2385                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2386                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2387                     *dst = truncated_addr;
2388                 }
2389                 break;
2390             }
2391             case R_X86_64_PC32:
2392             default:
2393                 assert(false && "unexpected relocation type");
2394             }
2395         }
2396     }
2397 
2398     return 0;
2399 }
2400 
2401 unsigned
2402 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2403 {
2404     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2405 
2406     // Parse in the section list if needed.
2407     SectionList *section_list = GetSectionList();
2408     if (!section_list)
2409         return 0;
2410 
2411     // Section ID's are ones based.
2412     user_id_t symtab_id = rel_hdr->sh_link + 1;
2413     user_id_t debug_id = rel_hdr->sh_info + 1;
2414 
2415     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2416     if (!symtab_hdr)
2417         return 0;
2418 
2419     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2420     if (!debug_hdr)
2421         return 0;
2422 
2423     Section *rel = section_list->FindSectionByID(rel_id).get();
2424     if (!rel)
2425         return 0;
2426 
2427     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2428     if (!symtab)
2429         return 0;
2430 
2431     Section *debug = section_list->FindSectionByID(debug_id).get();
2432     if (!debug)
2433         return 0;
2434 
2435     DataExtractor rel_data;
2436     DataExtractor symtab_data;
2437     DataExtractor debug_data;
2438 
2439     if (ReadSectionData(rel, rel_data) &&
2440         ReadSectionData(symtab, symtab_data) &&
2441         ReadSectionData(debug, debug_data))
2442     {
2443         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2444                         rel_data, symtab_data, debug_data, debug);
2445     }
2446 
2447     return 0;
2448 }
2449 
2450 Symtab *
2451 ObjectFileELF::GetSymtab()
2452 {
2453     ModuleSP module_sp(GetModule());
2454     if (!module_sp)
2455         return NULL;
2456 
2457     // We always want to use the main object file so we (hopefully) only have one cached copy
2458     // of our symtab, dynamic sections, etc.
2459     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2460     if (module_obj_file && module_obj_file != this)
2461         return module_obj_file->GetSymtab();
2462 
2463     if (m_symtab_ap.get() == NULL)
2464     {
2465         SectionList *section_list = module_sp->GetSectionList();
2466         if (!section_list)
2467             return NULL;
2468 
2469         uint64_t symbol_id = 0;
2470         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2471 
2472         m_symtab_ap.reset(new Symtab(this));
2473 
2474         // Sharable objects and dynamic executables usually have 2 distinct symbol
2475         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2476         // version of the symtab that only contains global symbols. The information found
2477         // in the dynsym is therefore also found in the symtab, while the reverse is not
2478         // necessarily true.
2479         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2480         if (!symtab)
2481         {
2482             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2483             // then use the dynsym section which should always be there.
2484             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2485         }
2486         if (symtab)
2487             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2488 
2489         // DT_JMPREL
2490         //      If present, this entry's d_ptr member holds the address of relocation
2491         //      entries associated solely with the procedure linkage table. Separating
2492         //      these relocation entries lets the dynamic linker ignore them during
2493         //      process initialization, if lazy binding is enabled. If this entry is
2494         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2495         //      also be present.
2496         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2497         if (symbol)
2498         {
2499             // Synthesize trampoline symbols to help navigate the PLT.
2500             addr_t addr = symbol->d_ptr;
2501             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2502             if (reloc_section)
2503             {
2504                 user_id_t reloc_id = reloc_section->GetID();
2505                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2506                 assert(reloc_header);
2507 
2508                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2509             }
2510         }
2511     }
2512 
2513     for (SectionHeaderCollIter I = m_section_headers.begin();
2514          I != m_section_headers.end(); ++I)
2515     {
2516         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2517         {
2518             if (CalculateType() == eTypeObjectFile)
2519             {
2520                 const char *section_name = I->section_name.AsCString("");
2521                 if (strstr(section_name, ".rela.debug") ||
2522                     strstr(section_name, ".rel.debug"))
2523                 {
2524                     const ELFSectionHeader &reloc_header = *I;
2525                     user_id_t reloc_id = SectionIndex(I);
2526                     RelocateDebugSections(&reloc_header, reloc_id);
2527                 }
2528             }
2529         }
2530     }
2531     return m_symtab_ap.get();
2532 }
2533 
2534 Symbol *
2535 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2536 {
2537     if (!m_symtab_ap.get())
2538         return nullptr; // GetSymtab() should be called first.
2539 
2540     const SectionList *section_list = GetSectionList();
2541     if (!section_list)
2542         return nullptr;
2543 
2544     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2545     {
2546         AddressRange range;
2547         if (eh_frame->GetAddressRange (so_addr, range))
2548         {
2549             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2550             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2551             if (symbol)
2552                 return symbol;
2553 
2554             // Note that a (stripped) symbol won't be found by GetSymtab()...
2555             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2556             if (eh_sym_section_sp.get())
2557             {
2558                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2559                 addr_t offset = file_addr - section_base;
2560                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2561 
2562                 Symbol eh_symbol(
2563                         symbol_id,            // Symbol table index.
2564                         "???",                // Symbol name.
2565                         false,                // Is the symbol name mangled?
2566                         eSymbolTypeCode,      // Type of this symbol.
2567                         true,                 // Is this globally visible?
2568                         false,                // Is this symbol debug info?
2569                         false,                // Is this symbol a trampoline?
2570                         true,                 // Is this symbol artificial?
2571                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2572                         offset,               // Offset in section or symbol value.
2573                         range.GetByteSize(),  // Size in bytes of this symbol.
2574                         true,                 // Size is valid.
2575                         false,                // Contains linker annotations?
2576                         0);                   // Symbol flags.
2577                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2578                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2579             }
2580         }
2581     }
2582     return nullptr;
2583 }
2584 
2585 
2586 bool
2587 ObjectFileELF::IsStripped ()
2588 {
2589     // TODO: determine this for ELF
2590     return false;
2591 }
2592 
2593 //===----------------------------------------------------------------------===//
2594 // Dump
2595 //
2596 // Dump the specifics of the runtime file container (such as any headers
2597 // segments, sections, etc).
2598 //----------------------------------------------------------------------
2599 void
2600 ObjectFileELF::Dump(Stream *s)
2601 {
2602     DumpELFHeader(s, m_header);
2603     s->EOL();
2604     DumpELFProgramHeaders(s);
2605     s->EOL();
2606     DumpELFSectionHeaders(s);
2607     s->EOL();
2608     SectionList *section_list = GetSectionList();
2609     if (section_list)
2610         section_list->Dump(s, NULL, true, UINT32_MAX);
2611     Symtab *symtab = GetSymtab();
2612     if (symtab)
2613         symtab->Dump(s, NULL, eSortOrderNone);
2614     s->EOL();
2615     DumpDependentModules(s);
2616     s->EOL();
2617 }
2618 
2619 //----------------------------------------------------------------------
2620 // DumpELFHeader
2621 //
2622 // Dump the ELF header to the specified output stream
2623 //----------------------------------------------------------------------
2624 void
2625 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2626 {
2627     s->PutCString("ELF Header\n");
2628     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2629     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2630               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2631     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2632               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2633     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2634               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2635 
2636     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2637     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2638     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2639     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2640     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2641 
2642     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2643     DumpELFHeader_e_type(s, header.e_type);
2644     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2645     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2646     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2647     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2648     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2649     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2650     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2651     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2652     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2653     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2654     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2655     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2656 }
2657 
2658 //----------------------------------------------------------------------
2659 // DumpELFHeader_e_type
2660 //
2661 // Dump an token value for the ELF header member e_type
2662 //----------------------------------------------------------------------
2663 void
2664 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2665 {
2666     switch (e_type)
2667     {
2668     case ET_NONE:   *s << "ET_NONE"; break;
2669     case ET_REL:    *s << "ET_REL"; break;
2670     case ET_EXEC:   *s << "ET_EXEC"; break;
2671     case ET_DYN:    *s << "ET_DYN"; break;
2672     case ET_CORE:   *s << "ET_CORE"; break;
2673     default:
2674         break;
2675     }
2676 }
2677 
2678 //----------------------------------------------------------------------
2679 // DumpELFHeader_e_ident_EI_DATA
2680 //
2681 // Dump an token value for the ELF header member e_ident[EI_DATA]
2682 //----------------------------------------------------------------------
2683 void
2684 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2685 {
2686     switch (ei_data)
2687     {
2688     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2689     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2690     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2691     default:
2692         break;
2693     }
2694 }
2695 
2696 
2697 //----------------------------------------------------------------------
2698 // DumpELFProgramHeader
2699 //
2700 // Dump a single ELF program header to the specified output stream
2701 //----------------------------------------------------------------------
2702 void
2703 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2704 {
2705     DumpELFProgramHeader_p_type(s, ph.p_type);
2706     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2707     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2708 
2709     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2710     s->Printf(") %8.8" PRIx64, ph.p_align);
2711 }
2712 
2713 //----------------------------------------------------------------------
2714 // DumpELFProgramHeader_p_type
2715 //
2716 // Dump an token value for the ELF program header member p_type which
2717 // describes the type of the program header
2718 // ----------------------------------------------------------------------
2719 void
2720 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2721 {
2722     const int kStrWidth = 15;
2723     switch (p_type)
2724     {
2725     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2726     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2727     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2728     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2729     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2730     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2731     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2732     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2733     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2734     default:
2735         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2736         break;
2737     }
2738 }
2739 
2740 
2741 //----------------------------------------------------------------------
2742 // DumpELFProgramHeader_p_flags
2743 //
2744 // Dump an token value for the ELF program header member p_flags
2745 //----------------------------------------------------------------------
2746 void
2747 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2748 {
2749     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2750         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2751         << ((p_flags & PF_W) ? "PF_W" : "    ")
2752         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2753         << ((p_flags & PF_R) ? "PF_R" : "    ");
2754 }
2755 
2756 //----------------------------------------------------------------------
2757 // DumpELFProgramHeaders
2758 //
2759 // Dump all of the ELF program header to the specified output stream
2760 //----------------------------------------------------------------------
2761 void
2762 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2763 {
2764     if (!ParseProgramHeaders())
2765         return;
2766 
2767     s->PutCString("Program Headers\n");
2768     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2769                   "p_filesz p_memsz  p_flags                   p_align\n");
2770     s->PutCString("==== --------------- -------- -------- -------- "
2771                   "-------- -------- ------------------------- --------\n");
2772 
2773     uint32_t idx = 0;
2774     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2775          I != m_program_headers.end(); ++I, ++idx)
2776     {
2777         s->Printf("[%2u] ", idx);
2778         ObjectFileELF::DumpELFProgramHeader(s, *I);
2779         s->EOL();
2780     }
2781 }
2782 
2783 //----------------------------------------------------------------------
2784 // DumpELFSectionHeader
2785 //
2786 // Dump a single ELF section header to the specified output stream
2787 //----------------------------------------------------------------------
2788 void
2789 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2790 {
2791     s->Printf("%8.8x ", sh.sh_name);
2792     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2793     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2794     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2795     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2796     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2797     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2798 }
2799 
2800 //----------------------------------------------------------------------
2801 // DumpELFSectionHeader_sh_type
2802 //
2803 // Dump an token value for the ELF section header member sh_type which
2804 // describes the type of the section
2805 //----------------------------------------------------------------------
2806 void
2807 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2808 {
2809     const int kStrWidth = 12;
2810     switch (sh_type)
2811     {
2812     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2813     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2814     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2815     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2816     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2817     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2818     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2819     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2820     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2821     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2822     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2823     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2824     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2825     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2826     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2827     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2828     default:
2829         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2830         break;
2831     }
2832 }
2833 
2834 //----------------------------------------------------------------------
2835 // DumpELFSectionHeader_sh_flags
2836 //
2837 // Dump an token value for the ELF section header member sh_flags
2838 //----------------------------------------------------------------------
2839 void
2840 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2841 {
2842     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2843         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2844         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2845         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2846         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2847 }
2848 
2849 //----------------------------------------------------------------------
2850 // DumpELFSectionHeaders
2851 //
2852 // Dump all of the ELF section header to the specified output stream
2853 //----------------------------------------------------------------------
2854 void
2855 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2856 {
2857     if (!ParseSectionHeaders())
2858         return;
2859 
2860     s->PutCString("Section Headers\n");
2861     s->PutCString("IDX  name     type         flags                            "
2862                   "addr     offset   size     link     info     addralgn "
2863                   "entsize  Name\n");
2864     s->PutCString("==== -------- ------------ -------------------------------- "
2865                   "-------- -------- -------- -------- -------- -------- "
2866                   "-------- ====================\n");
2867 
2868     uint32_t idx = 0;
2869     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2870          I != m_section_headers.end(); ++I, ++idx)
2871     {
2872         s->Printf("[%2u] ", idx);
2873         ObjectFileELF::DumpELFSectionHeader(s, *I);
2874         const char* section_name = I->section_name.AsCString("");
2875         if (section_name)
2876             *s << ' ' << section_name << "\n";
2877     }
2878 }
2879 
2880 void
2881 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2882 {
2883     size_t num_modules = ParseDependentModules();
2884 
2885     if (num_modules > 0)
2886     {
2887         s->PutCString("Dependent Modules:\n");
2888         for (unsigned i = 0; i < num_modules; ++i)
2889         {
2890             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2891             s->Printf("   %s\n", spec.GetFilename().GetCString());
2892         }
2893     }
2894 }
2895 
2896 bool
2897 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2898 {
2899     if (!ParseHeader())
2900         return false;
2901 
2902     if (m_section_headers.empty())
2903     {
2904         // Allow elf notes to be parsed which may affect the detected architecture.
2905         ParseSectionHeaders();
2906     }
2907 
2908     arch = m_arch_spec;
2909     return true;
2910 }
2911 
2912 ObjectFile::Type
2913 ObjectFileELF::CalculateType()
2914 {
2915     switch (m_header.e_type)
2916     {
2917         case llvm::ELF::ET_NONE:
2918             // 0 - No file type
2919             return eTypeUnknown;
2920 
2921         case llvm::ELF::ET_REL:
2922             // 1 - Relocatable file
2923             return eTypeObjectFile;
2924 
2925         case llvm::ELF::ET_EXEC:
2926             // 2 - Executable file
2927             return eTypeExecutable;
2928 
2929         case llvm::ELF::ET_DYN:
2930             // 3 - Shared object file
2931             return eTypeSharedLibrary;
2932 
2933         case ET_CORE:
2934             // 4 - Core file
2935             return eTypeCoreFile;
2936 
2937         default:
2938             break;
2939     }
2940     return eTypeUnknown;
2941 }
2942 
2943 ObjectFile::Strata
2944 ObjectFileELF::CalculateStrata()
2945 {
2946     switch (m_header.e_type)
2947     {
2948         case llvm::ELF::ET_NONE:
2949             // 0 - No file type
2950             return eStrataUnknown;
2951 
2952         case llvm::ELF::ET_REL:
2953             // 1 - Relocatable file
2954             return eStrataUnknown;
2955 
2956         case llvm::ELF::ET_EXEC:
2957             // 2 - Executable file
2958             // TODO: is there any way to detect that an executable is a kernel
2959             // related executable by inspecting the program headers, section
2960             // headers, symbols, or any other flag bits???
2961             return eStrataUser;
2962 
2963         case llvm::ELF::ET_DYN:
2964             // 3 - Shared object file
2965             // TODO: is there any way to detect that an shared library is a kernel
2966             // related executable by inspecting the program headers, section
2967             // headers, symbols, or any other flag bits???
2968             return eStrataUnknown;
2969 
2970         case ET_CORE:
2971             // 4 - Core file
2972             // TODO: is there any way to detect that an core file is a kernel
2973             // related executable by inspecting the program headers, section
2974             // headers, symbols, or any other flag bits???
2975             return eStrataUnknown;
2976 
2977         default:
2978             break;
2979     }
2980     return eStrataUnknown;
2981 }
2982 
2983