xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 56ab68f3233d24e07343de937dfb58b4f932072f)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <algorithm>
13 #include <cassert>
14 #include <unordered_map>
15 
16 #include "lldb/Core/FileSpecList.h"
17 #include "lldb/Core/Module.h"
18 #include "lldb/Core/ModuleSpec.h"
19 #include "lldb/Core/PluginManager.h"
20 #include "lldb/Core/Section.h"
21 #include "lldb/Symbol/DWARFCallFrameInfo.h"
22 #include "lldb/Symbol/SymbolContext.h"
23 #include "lldb/Target/SectionLoadList.h"
24 #include "lldb/Target/Target.h"
25 #include "lldb/Utility/ArchSpec.h"
26 #include "lldb/Utility/DataBufferHeap.h"
27 #include "lldb/Utility/Log.h"
28 #include "lldb/Utility/Status.h"
29 #include "lldb/Utility/Stream.h"
30 #include "lldb/Utility/Timer.h"
31 
32 #include "llvm/ADT/PointerUnion.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/Object/Decompressor.h"
35 #include "llvm/Support/ARMBuildAttributes.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/MipsABIFlags.h"
39 
40 #define CASE_AND_STREAM(s, def, width)                                         \
41   case def:                                                                    \
42     s->Printf("%-*s", width, #def);                                            \
43     break;
44 
45 using namespace lldb;
46 using namespace lldb_private;
47 using namespace elf;
48 using namespace llvm::ELF;
49 
50 namespace {
51 
52 // ELF note owner definitions
53 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
54 const char *const LLDB_NT_OWNER_GNU = "GNU";
55 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD";
56 const char *const LLDB_NT_OWNER_OPENBSD = "OpenBSD";
57 const char *const LLDB_NT_OWNER_CSR = "csr";
58 const char *const LLDB_NT_OWNER_ANDROID = "Android";
59 const char *const LLDB_NT_OWNER_CORE = "CORE";
60 const char *const LLDB_NT_OWNER_LINUX = "LINUX";
61 
62 // ELF note type definitions
63 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01;
64 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
65 
66 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_SIZE = 16;
68 
69 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
70 
71 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01;
72 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4;
73 
74 // GNU ABI note OS constants
75 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00;
76 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01;
77 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
78 
79 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants
80 #define NT_PRSTATUS 1
81 #define NT_PRFPREG 2
82 #define NT_PRPSINFO 3
83 #define NT_TASKSTRUCT 4
84 #define NT_AUXV 6
85 #define NT_SIGINFO 0x53494749
86 #define NT_FILE 0x46494c45
87 #define NT_PRXFPREG 0x46e62b7f
88 #define NT_PPC_VMX 0x100
89 #define NT_PPC_SPE 0x101
90 #define NT_PPC_VSX 0x102
91 #define NT_386_TLS 0x200
92 #define NT_386_IOPERM 0x201
93 #define NT_X86_XSTATE 0x202
94 #define NT_S390_HIGH_GPRS 0x300
95 #define NT_S390_TIMER 0x301
96 #define NT_S390_TODCMP 0x302
97 #define NT_S390_TODPREG 0x303
98 #define NT_S390_CTRS 0x304
99 #define NT_S390_PREFIX 0x305
100 #define NT_S390_LAST_BREAK 0x306
101 #define NT_S390_SYSTEM_CALL 0x307
102 #define NT_S390_TDB 0x308
103 #define NT_S390_VXRS_LOW 0x309
104 #define NT_S390_VXRS_HIGH 0x30a
105 #define NT_ARM_VFP 0x400
106 #define NT_ARM_TLS 0x401
107 #define NT_ARM_HW_BREAK 0x402
108 #define NT_ARM_HW_WATCH 0x403
109 #define NT_ARM_SYSTEM_CALL 0x404
110 #define NT_METAG_CBUF 0x500
111 #define NT_METAG_RPIPE 0x501
112 #define NT_METAG_TLS 0x502
113 
114 //===----------------------------------------------------------------------===//
115 /// @class ELFRelocation
116 /// Generic wrapper for ELFRel and ELFRela.
117 ///
118 /// This helper class allows us to parse both ELFRel and ELFRela relocation
119 /// entries in a generic manner.
120 class ELFRelocation {
121 public:
122   /// Constructs an ELFRelocation entry with a personality as given by @p
123   /// type.
124   ///
125   /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
126   ELFRelocation(unsigned type);
127 
128   ~ELFRelocation();
129 
130   bool Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
131 
132   static unsigned RelocType32(const ELFRelocation &rel);
133 
134   static unsigned RelocType64(const ELFRelocation &rel);
135 
136   static unsigned RelocSymbol32(const ELFRelocation &rel);
137 
138   static unsigned RelocSymbol64(const ELFRelocation &rel);
139 
140   static unsigned RelocOffset32(const ELFRelocation &rel);
141 
142   static unsigned RelocOffset64(const ELFRelocation &rel);
143 
144   static unsigned RelocAddend32(const ELFRelocation &rel);
145 
146   static unsigned RelocAddend64(const ELFRelocation &rel);
147 
148 private:
149   typedef llvm::PointerUnion<ELFRel *, ELFRela *> RelocUnion;
150 
151   RelocUnion reloc;
152 };
153 
154 ELFRelocation::ELFRelocation(unsigned type) {
155   if (type == DT_REL || type == SHT_REL)
156     reloc = new ELFRel();
157   else if (type == DT_RELA || type == SHT_RELA)
158     reloc = new ELFRela();
159   else {
160     assert(false && "unexpected relocation type");
161     reloc = static_cast<ELFRel *>(NULL);
162   }
163 }
164 
165 ELFRelocation::~ELFRelocation() {
166   if (reloc.is<ELFRel *>())
167     delete reloc.get<ELFRel *>();
168   else
169     delete reloc.get<ELFRela *>();
170 }
171 
172 bool ELFRelocation::Parse(const lldb_private::DataExtractor &data,
173                           lldb::offset_t *offset) {
174   if (reloc.is<ELFRel *>())
175     return reloc.get<ELFRel *>()->Parse(data, offset);
176   else
177     return reloc.get<ELFRela *>()->Parse(data, offset);
178 }
179 
180 unsigned ELFRelocation::RelocType32(const ELFRelocation &rel) {
181   if (rel.reloc.is<ELFRel *>())
182     return ELFRel::RelocType32(*rel.reloc.get<ELFRel *>());
183   else
184     return ELFRela::RelocType32(*rel.reloc.get<ELFRela *>());
185 }
186 
187 unsigned ELFRelocation::RelocType64(const ELFRelocation &rel) {
188   if (rel.reloc.is<ELFRel *>())
189     return ELFRel::RelocType64(*rel.reloc.get<ELFRel *>());
190   else
191     return ELFRela::RelocType64(*rel.reloc.get<ELFRela *>());
192 }
193 
194 unsigned ELFRelocation::RelocSymbol32(const ELFRelocation &rel) {
195   if (rel.reloc.is<ELFRel *>())
196     return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel *>());
197   else
198     return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela *>());
199 }
200 
201 unsigned ELFRelocation::RelocSymbol64(const ELFRelocation &rel) {
202   if (rel.reloc.is<ELFRel *>())
203     return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel *>());
204   else
205     return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela *>());
206 }
207 
208 unsigned ELFRelocation::RelocOffset32(const ELFRelocation &rel) {
209   if (rel.reloc.is<ELFRel *>())
210     return rel.reloc.get<ELFRel *>()->r_offset;
211   else
212     return rel.reloc.get<ELFRela *>()->r_offset;
213 }
214 
215 unsigned ELFRelocation::RelocOffset64(const ELFRelocation &rel) {
216   if (rel.reloc.is<ELFRel *>())
217     return rel.reloc.get<ELFRel *>()->r_offset;
218   else
219     return rel.reloc.get<ELFRela *>()->r_offset;
220 }
221 
222 unsigned ELFRelocation::RelocAddend32(const ELFRelocation &rel) {
223   if (rel.reloc.is<ELFRel *>())
224     return 0;
225   else
226     return rel.reloc.get<ELFRela *>()->r_addend;
227 }
228 
229 unsigned ELFRelocation::RelocAddend64(const ELFRelocation &rel) {
230   if (rel.reloc.is<ELFRel *>())
231     return 0;
232   else
233     return rel.reloc.get<ELFRela *>()->r_addend;
234 }
235 
236 } // end anonymous namespace
237 
238 bool ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) {
239   // Read all fields.
240   if (data.GetU32(offset, &n_namesz, 3) == NULL)
241     return false;
242 
243   // The name field is required to be nul-terminated, and n_namesz includes the
244   // terminating nul in observed implementations (contrary to the ELF-64 spec).
245   // A special case is needed for cores generated by some older Linux versions,
246   // which write a note named "CORE" without a nul terminator and n_namesz = 4.
247   if (n_namesz == 4) {
248     char buf[4];
249     if (data.ExtractBytes(*offset, 4, data.GetByteOrder(), buf) != 4)
250       return false;
251     if (strncmp(buf, "CORE", 4) == 0) {
252       n_name = "CORE";
253       *offset += 4;
254       return true;
255     }
256   }
257 
258   const char *cstr = data.GetCStr(offset, llvm::alignTo(n_namesz, 4));
259   if (cstr == NULL) {
260     Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS));
261     if (log)
262       log->Printf("Failed to parse note name lacking nul terminator");
263 
264     return false;
265   }
266   n_name = cstr;
267   return true;
268 }
269 
270 static uint32_t kalimbaVariantFromElfFlags(const elf::elf_word e_flags) {
271   const uint32_t dsp_rev = e_flags & 0xFF;
272   uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
273   switch (dsp_rev) {
274   // TODO(mg11) Support more variants
275   case 10:
276     kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
277     break;
278   case 14:
279     kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
280     break;
281   case 17:
282   case 20:
283     kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
284     break;
285   default:
286     break;
287   }
288   return kal_arch_variant;
289 }
290 
291 static uint32_t mipsVariantFromElfFlags (const elf::ELFHeader &header) {
292   const uint32_t mips_arch = header.e_flags & llvm::ELF::EF_MIPS_ARCH;
293   uint32_t endian = header.e_ident[EI_DATA];
294   uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
295   uint32_t fileclass = header.e_ident[EI_CLASS];
296 
297   // If there aren't any elf flags available (e.g core elf file) then return
298   // default
299   // 32 or 64 bit arch (without any architecture revision) based on object file's class.
300   if (header.e_type == ET_CORE) {
301     switch (fileclass) {
302     case llvm::ELF::ELFCLASS32:
303       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
304                                      : ArchSpec::eMIPSSubType_mips32;
305     case llvm::ELF::ELFCLASS64:
306       return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
307                                      : ArchSpec::eMIPSSubType_mips64;
308     default:
309       return arch_variant;
310     }
311   }
312 
313   switch (mips_arch) {
314   case llvm::ELF::EF_MIPS_ARCH_1:
315   case llvm::ELF::EF_MIPS_ARCH_2:
316   case llvm::ELF::EF_MIPS_ARCH_32:
317     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el
318                                    : ArchSpec::eMIPSSubType_mips32;
319   case llvm::ELF::EF_MIPS_ARCH_32R2:
320     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el
321                                    : ArchSpec::eMIPSSubType_mips32r2;
322   case llvm::ELF::EF_MIPS_ARCH_32R6:
323     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el
324                                    : ArchSpec::eMIPSSubType_mips32r6;
325   case llvm::ELF::EF_MIPS_ARCH_3:
326   case llvm::ELF::EF_MIPS_ARCH_4:
327   case llvm::ELF::EF_MIPS_ARCH_5:
328   case llvm::ELF::EF_MIPS_ARCH_64:
329     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el
330                                    : ArchSpec::eMIPSSubType_mips64;
331   case llvm::ELF::EF_MIPS_ARCH_64R2:
332     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el
333                                    : ArchSpec::eMIPSSubType_mips64r2;
334   case llvm::ELF::EF_MIPS_ARCH_64R6:
335     return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el
336                                    : ArchSpec::eMIPSSubType_mips64r6;
337   default:
338     break;
339   }
340 
341   return arch_variant;
342 }
343 
344 static uint32_t subTypeFromElfHeader(const elf::ELFHeader &header) {
345   if (header.e_machine == llvm::ELF::EM_MIPS)
346     return mipsVariantFromElfFlags(header);
347 
348   return llvm::ELF::EM_CSR_KALIMBA == header.e_machine
349              ? kalimbaVariantFromElfFlags(header.e_flags)
350              : LLDB_INVALID_CPUTYPE;
351 }
352 
353 //! The kalimba toolchain identifies a code section as being
354 //! one with the SHT_PROGBITS set in the section sh_type and the top
355 //! bit in the 32-bit address field set.
356 static lldb::SectionType
357 kalimbaSectionType(const elf::ELFHeader &header,
358                    const elf::ELFSectionHeader &sect_hdr) {
359   if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) {
360     return eSectionTypeOther;
361   }
362 
363   if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) {
364     return eSectionTypeZeroFill;
365   }
366 
367   if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) {
368     const lldb::addr_t KAL_CODE_BIT = 1 << 31;
369     return KAL_CODE_BIT & sect_hdr.sh_addr ? eSectionTypeCode
370                                            : eSectionTypeData;
371   }
372 
373   return eSectionTypeOther;
374 }
375 
376 // Arbitrary constant used as UUID prefix for core files.
377 const uint32_t ObjectFileELF::g_core_uuid_magic(0xE210C);
378 
379 //------------------------------------------------------------------
380 // Static methods.
381 //------------------------------------------------------------------
382 void ObjectFileELF::Initialize() {
383   PluginManager::RegisterPlugin(GetPluginNameStatic(),
384                                 GetPluginDescriptionStatic(), CreateInstance,
385                                 CreateMemoryInstance, GetModuleSpecifications);
386 }
387 
388 void ObjectFileELF::Terminate() {
389   PluginManager::UnregisterPlugin(CreateInstance);
390 }
391 
392 lldb_private::ConstString ObjectFileELF::GetPluginNameStatic() {
393   static ConstString g_name("elf");
394   return g_name;
395 }
396 
397 const char *ObjectFileELF::GetPluginDescriptionStatic() {
398   return "ELF object file reader.";
399 }
400 
401 ObjectFile *ObjectFileELF::CreateInstance(const lldb::ModuleSP &module_sp,
402                                           DataBufferSP &data_sp,
403                                           lldb::offset_t data_offset,
404                                           const lldb_private::FileSpec *file,
405                                           lldb::offset_t file_offset,
406                                           lldb::offset_t length) {
407   if (!data_sp) {
408     data_sp = MapFileData(*file, length, file_offset);
409     if (!data_sp)
410       return nullptr;
411     data_offset = 0;
412   }
413 
414   assert(data_sp);
415 
416   if (data_sp->GetByteSize() <= (llvm::ELF::EI_NIDENT + data_offset))
417     return nullptr;
418 
419   const uint8_t *magic = data_sp->GetBytes() + data_offset;
420   if (!ELFHeader::MagicBytesMatch(magic))
421     return nullptr;
422 
423   // Update the data to contain the entire file if it doesn't already
424   if (data_sp->GetByteSize() < length) {
425     data_sp = MapFileData(*file, length, file_offset);
426     if (!data_sp)
427       return nullptr;
428     data_offset = 0;
429     magic = data_sp->GetBytes();
430   }
431 
432   unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
433   if (address_size == 4 || address_size == 8) {
434     std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(
435         module_sp, data_sp, data_offset, file, file_offset, length));
436     ArchSpec spec;
437     if (objfile_ap->GetArchitecture(spec) &&
438         objfile_ap->SetModulesArchitecture(spec))
439       return objfile_ap.release();
440   }
441 
442   return NULL;
443 }
444 
445 ObjectFile *ObjectFileELF::CreateMemoryInstance(
446     const lldb::ModuleSP &module_sp, DataBufferSP &data_sp,
447     const lldb::ProcessSP &process_sp, lldb::addr_t header_addr) {
448   if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) {
449     const uint8_t *magic = data_sp->GetBytes();
450     if (ELFHeader::MagicBytesMatch(magic)) {
451       unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
452       if (address_size == 4 || address_size == 8) {
453         std::unique_ptr<ObjectFileELF> objfile_ap(
454             new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
455         ArchSpec spec;
456         if (objfile_ap->GetArchitecture(spec) &&
457             objfile_ap->SetModulesArchitecture(spec))
458           return objfile_ap.release();
459       }
460     }
461   }
462   return NULL;
463 }
464 
465 bool ObjectFileELF::MagicBytesMatch(DataBufferSP &data_sp,
466                                     lldb::addr_t data_offset,
467                                     lldb::addr_t data_length) {
468   if (data_sp &&
469       data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) {
470     const uint8_t *magic = data_sp->GetBytes() + data_offset;
471     return ELFHeader::MagicBytesMatch(magic);
472   }
473   return false;
474 }
475 
476 /*
477  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
478  *
479  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
480  *   code or tables extracted from it, as desired without restriction.
481  */
482 static uint32_t calc_crc32(uint32_t crc, const void *buf, size_t size) {
483   static const uint32_t g_crc32_tab[] = {
484       0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
485       0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
486       0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
487       0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
488       0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
489       0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
490       0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
491       0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
492       0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
493       0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
494       0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
495       0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
496       0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
497       0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
498       0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
499       0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
500       0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
501       0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
502       0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
503       0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
504       0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
505       0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
506       0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
507       0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
508       0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
509       0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
510       0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
511       0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
512       0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
513       0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
514       0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
515       0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
516       0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
517       0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
518       0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
519       0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
520       0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
521       0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
522       0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
523       0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
524       0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
525       0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
526       0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d};
527   const uint8_t *p = (const uint8_t *)buf;
528 
529   crc = crc ^ ~0U;
530   while (size--)
531     crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
532   return crc ^ ~0U;
533 }
534 
535 static uint32_t calc_gnu_debuglink_crc32(const void *buf, size_t size) {
536   return calc_crc32(0U, buf, size);
537 }
538 
539 uint32_t ObjectFileELF::CalculateELFNotesSegmentsCRC32(
540     const ProgramHeaderColl &program_headers, DataExtractor &object_data) {
541   typedef ProgramHeaderCollConstIter Iter;
542 
543   uint32_t core_notes_crc = 0;
544 
545   for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) {
546     if (I->p_type == llvm::ELF::PT_NOTE) {
547       const elf_off ph_offset = I->p_offset;
548       const size_t ph_size = I->p_filesz;
549 
550       DataExtractor segment_data;
551       if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) {
552         // The ELF program header contained incorrect data, probably corefile
553         // is incomplete or corrupted.
554         break;
555       }
556 
557       core_notes_crc = calc_crc32(core_notes_crc, segment_data.GetDataStart(),
558                                   segment_data.GetByteSize());
559     }
560   }
561 
562   return core_notes_crc;
563 }
564 
565 static const char *OSABIAsCString(unsigned char osabi_byte) {
566 #define _MAKE_OSABI_CASE(x)                                                    \
567   case x:                                                                      \
568     return #x
569   switch (osabi_byte) {
570     _MAKE_OSABI_CASE(ELFOSABI_NONE);
571     _MAKE_OSABI_CASE(ELFOSABI_HPUX);
572     _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
573     _MAKE_OSABI_CASE(ELFOSABI_GNU);
574     _MAKE_OSABI_CASE(ELFOSABI_HURD);
575     _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
576     _MAKE_OSABI_CASE(ELFOSABI_AIX);
577     _MAKE_OSABI_CASE(ELFOSABI_IRIX);
578     _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
579     _MAKE_OSABI_CASE(ELFOSABI_TRU64);
580     _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
581     _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
582     _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
583     _MAKE_OSABI_CASE(ELFOSABI_NSK);
584     _MAKE_OSABI_CASE(ELFOSABI_AROS);
585     _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
586     _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
587     _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
588     _MAKE_OSABI_CASE(ELFOSABI_ARM);
589     _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
590   default:
591     return "<unknown-osabi>";
592   }
593 #undef _MAKE_OSABI_CASE
594 }
595 
596 //
597 // WARNING : This function is being deprecated
598 // It's functionality has moved to ArchSpec::SetArchitecture This function is
599 // only being kept to validate the move.
600 //
601 // TODO : Remove this function
602 static bool GetOsFromOSABI(unsigned char osabi_byte,
603                            llvm::Triple::OSType &ostype) {
604   switch (osabi_byte) {
605   case ELFOSABI_AIX:
606     ostype = llvm::Triple::OSType::AIX;
607     break;
608   case ELFOSABI_FREEBSD:
609     ostype = llvm::Triple::OSType::FreeBSD;
610     break;
611   case ELFOSABI_GNU:
612     ostype = llvm::Triple::OSType::Linux;
613     break;
614   case ELFOSABI_NETBSD:
615     ostype = llvm::Triple::OSType::NetBSD;
616     break;
617   case ELFOSABI_OPENBSD:
618     ostype = llvm::Triple::OSType::OpenBSD;
619     break;
620   case ELFOSABI_SOLARIS:
621     ostype = llvm::Triple::OSType::Solaris;
622     break;
623   default:
624     ostype = llvm::Triple::OSType::UnknownOS;
625   }
626   return ostype != llvm::Triple::OSType::UnknownOS;
627 }
628 
629 size_t ObjectFileELF::GetModuleSpecifications(
630     const lldb_private::FileSpec &file, lldb::DataBufferSP &data_sp,
631     lldb::offset_t data_offset, lldb::offset_t file_offset,
632     lldb::offset_t length, lldb_private::ModuleSpecList &specs) {
633   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
634 
635   const size_t initial_count = specs.GetSize();
636 
637   if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) {
638     DataExtractor data;
639     data.SetData(data_sp);
640     elf::ELFHeader header;
641     lldb::offset_t header_offset = data_offset;
642     if (header.Parse(data, &header_offset)) {
643       if (data_sp) {
644         ModuleSpec spec(file);
645 
646         const uint32_t sub_type = subTypeFromElfHeader(header);
647         spec.GetArchitecture().SetArchitecture(
648             eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
649 
650         if (spec.GetArchitecture().IsValid()) {
651           llvm::Triple::OSType ostype;
652           llvm::Triple::VendorType vendor;
653           llvm::Triple::OSType spec_ostype =
654               spec.GetArchitecture().GetTriple().getOS();
655 
656           if (log)
657             log->Printf("ObjectFileELF::%s file '%s' module OSABI: %s",
658                         __FUNCTION__, file.GetPath().c_str(),
659                         OSABIAsCString(header.e_ident[EI_OSABI]));
660 
661           // SetArchitecture should have set the vendor to unknown
662           vendor = spec.GetArchitecture().GetTriple().getVendor();
663           assert(vendor == llvm::Triple::UnknownVendor);
664           UNUSED_IF_ASSERT_DISABLED(vendor);
665 
666           //
667           // Validate it is ok to remove GetOsFromOSABI
668           GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
669           assert(spec_ostype == ostype);
670           if (spec_ostype != llvm::Triple::OSType::UnknownOS) {
671             if (log)
672               log->Printf("ObjectFileELF::%s file '%s' set ELF module OS type "
673                           "from ELF header OSABI.",
674                           __FUNCTION__, file.GetPath().c_str());
675           }
676 
677           data_sp = MapFileData(file, -1, file_offset);
678           if (data_sp)
679             data.SetData(data_sp);
680           // In case there is header extension in the section #0, the header we
681           // parsed above could have sentinel values for e_phnum, e_shnum, and
682           // e_shstrndx.  In this case we need to reparse the header with a
683           // bigger data source to get the actual values.
684           if (header.HasHeaderExtension()) {
685             lldb::offset_t header_offset = data_offset;
686             header.Parse(data, &header_offset);
687           }
688 
689           uint32_t gnu_debuglink_crc = 0;
690           std::string gnu_debuglink_file;
691           SectionHeaderColl section_headers;
692           lldb_private::UUID &uuid = spec.GetUUID();
693 
694           GetSectionHeaderInfo(section_headers, data, header, uuid,
695                                gnu_debuglink_file, gnu_debuglink_crc,
696                                spec.GetArchitecture());
697 
698           llvm::Triple &spec_triple = spec.GetArchitecture().GetTriple();
699 
700           if (log)
701             log->Printf("ObjectFileELF::%s file '%s' module set to triple: %s "
702                         "(architecture %s)",
703                         __FUNCTION__, file.GetPath().c_str(),
704                         spec_triple.getTriple().c_str(),
705                         spec.GetArchitecture().GetArchitectureName());
706 
707           if (!uuid.IsValid()) {
708             uint32_t core_notes_crc = 0;
709 
710             if (!gnu_debuglink_crc) {
711               static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
712               lldb_private::Timer scoped_timer(
713                   func_cat,
714                   "Calculating module crc32 %s with size %" PRIu64 " KiB",
715                   file.GetLastPathComponent().AsCString(),
716                   (file.GetByteSize() - file_offset) / 1024);
717 
718               // For core files - which usually don't happen to have a
719               // gnu_debuglink, and are pretty bulky - calculating whole
720               // contents crc32 would be too much of luxury.  Thus we will need
721               // to fallback to something simpler.
722               if (header.e_type == llvm::ELF::ET_CORE) {
723                 ProgramHeaderColl program_headers;
724                 GetProgramHeaderInfo(program_headers, data, header);
725 
726                 core_notes_crc =
727                     CalculateELFNotesSegmentsCRC32(program_headers, data);
728               } else {
729                 gnu_debuglink_crc = calc_gnu_debuglink_crc32(
730                     data.GetDataStart(), data.GetByteSize());
731               }
732             }
733             if (gnu_debuglink_crc) {
734               // Use 4 bytes of crc from the .gnu_debuglink section.
735               uint32_t uuidt[4] = {gnu_debuglink_crc, 0, 0, 0};
736               uuid.SetBytes(uuidt, sizeof(uuidt));
737             } else if (core_notes_crc) {
738               // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make
739               // it look different form .gnu_debuglink crc followed by 4 bytes
740               // of note segments crc.
741               uint32_t uuidt[4] = {g_core_uuid_magic, core_notes_crc, 0, 0};
742               uuid.SetBytes(uuidt, sizeof(uuidt));
743             }
744           }
745 
746           specs.Append(spec);
747         }
748       }
749     }
750   }
751 
752   return specs.GetSize() - initial_count;
753 }
754 
755 //------------------------------------------------------------------
756 // PluginInterface protocol
757 //------------------------------------------------------------------
758 lldb_private::ConstString ObjectFileELF::GetPluginName() {
759   return GetPluginNameStatic();
760 }
761 
762 uint32_t ObjectFileELF::GetPluginVersion() { return m_plugin_version; }
763 //------------------------------------------------------------------
764 // ObjectFile protocol
765 //------------------------------------------------------------------
766 
767 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
768                              DataBufferSP &data_sp, lldb::offset_t data_offset,
769                              const FileSpec *file, lldb::offset_t file_offset,
770                              lldb::offset_t length)
771     : ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
772       m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0),
773       m_program_headers(), m_section_headers(), m_dynamic_symbols(),
774       m_filespec_ap(), m_entry_point_address(), m_arch_spec() {
775   if (file)
776     m_file = *file;
777   ::memset(&m_header, 0, sizeof(m_header));
778 }
779 
780 ObjectFileELF::ObjectFileELF(const lldb::ModuleSP &module_sp,
781                              DataBufferSP &header_data_sp,
782                              const lldb::ProcessSP &process_sp,
783                              addr_t header_addr)
784     : ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
785       m_header(), m_uuid(), m_gnu_debuglink_file(), m_gnu_debuglink_crc(0),
786       m_program_headers(), m_section_headers(), m_dynamic_symbols(),
787       m_filespec_ap(), m_entry_point_address(), m_arch_spec() {
788   ::memset(&m_header, 0, sizeof(m_header));
789 }
790 
791 ObjectFileELF::~ObjectFileELF() {}
792 
793 bool ObjectFileELF::IsExecutable() const {
794   return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
795 }
796 
797 bool ObjectFileELF::SetLoadAddress(Target &target, lldb::addr_t value,
798                                    bool value_is_offset) {
799   ModuleSP module_sp = GetModule();
800   if (module_sp) {
801     size_t num_loaded_sections = 0;
802     SectionList *section_list = GetSectionList();
803     if (section_list) {
804       if (!value_is_offset) {
805         bool found_offset = false;
806         for (size_t i = 1, count = GetProgramHeaderCount(); i <= count; ++i) {
807           const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i);
808           if (header == nullptr)
809             continue;
810 
811           if (header->p_type != PT_LOAD || header->p_offset != 0)
812             continue;
813 
814           value = value - header->p_vaddr;
815           found_offset = true;
816           break;
817         }
818         if (!found_offset)
819           return false;
820       }
821 
822       const size_t num_sections = section_list->GetSize();
823       size_t sect_idx = 0;
824 
825       for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) {
826         // Iterate through the object file sections to find all of the sections
827         // that have SHF_ALLOC in their flag bits.
828         SectionSP section_sp(section_list->GetSectionAtIndex(sect_idx));
829         if (section_sp && section_sp->Test(SHF_ALLOC)) {
830           lldb::addr_t load_addr = section_sp->GetFileAddress();
831           // We don't want to update the load address of a section with type
832           // eSectionTypeAbsoluteAddress as they already have the absolute load
833           // address already specified
834           if (section_sp->GetType() != eSectionTypeAbsoluteAddress)
835             load_addr += value;
836 
837           // On 32-bit systems the load address have to fit into 4 bytes. The
838           // rest of the bytes are the overflow from the addition.
839           if (GetAddressByteSize() == 4)
840             load_addr &= 0xFFFFFFFF;
841 
842           if (target.GetSectionLoadList().SetSectionLoadAddress(section_sp,
843                                                                 load_addr))
844             ++num_loaded_sections;
845         }
846       }
847       return num_loaded_sections > 0;
848     }
849   }
850   return false;
851 }
852 
853 ByteOrder ObjectFileELF::GetByteOrder() const {
854   if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
855     return eByteOrderBig;
856   if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
857     return eByteOrderLittle;
858   return eByteOrderInvalid;
859 }
860 
861 uint32_t ObjectFileELF::GetAddressByteSize() const {
862   return m_data.GetAddressByteSize();
863 }
864 
865 AddressClass ObjectFileELF::GetAddressClass(addr_t file_addr) {
866   Symtab *symtab = GetSymtab();
867   if (!symtab)
868     return eAddressClassUnknown;
869 
870   // The address class is determined based on the symtab. Ask it from the
871   // object file what contains the symtab information.
872   ObjectFile *symtab_objfile = symtab->GetObjectFile();
873   if (symtab_objfile != nullptr && symtab_objfile != this)
874     return symtab_objfile->GetAddressClass(file_addr);
875 
876   auto res = ObjectFile::GetAddressClass(file_addr);
877   if (res != eAddressClassCode)
878     return res;
879 
880   auto ub = m_address_class_map.upper_bound(file_addr);
881   if (ub == m_address_class_map.begin()) {
882     // No entry in the address class map before the address. Return default
883     // address class for an address in a code section.
884     return eAddressClassCode;
885   }
886 
887   // Move iterator to the address class entry preceding address
888   --ub;
889 
890   return ub->second;
891 }
892 
893 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) {
894   return std::distance(m_section_headers.begin(), I) + 1u;
895 }
896 
897 size_t ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const {
898   return std::distance(m_section_headers.begin(), I) + 1u;
899 }
900 
901 bool ObjectFileELF::ParseHeader() {
902   lldb::offset_t offset = 0;
903   return m_header.Parse(m_data, &offset);
904 }
905 
906 bool ObjectFileELF::GetUUID(lldb_private::UUID *uuid) {
907   // Need to parse the section list to get the UUIDs, so make sure that's been
908   // done.
909   if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
910     return false;
911 
912   if (m_uuid.IsValid()) {
913     // We have the full build id uuid.
914     *uuid = m_uuid;
915     return true;
916   } else if (GetType() == ObjectFile::eTypeCoreFile) {
917     uint32_t core_notes_crc = 0;
918 
919     if (!ParseProgramHeaders())
920       return false;
921 
922     core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
923 
924     if (core_notes_crc) {
925       // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look
926       // different form .gnu_debuglink crc - followed by 4 bytes of note
927       // segments crc.
928       uint32_t uuidt[4] = {g_core_uuid_magic, core_notes_crc, 0, 0};
929       m_uuid.SetBytes(uuidt, sizeof(uuidt));
930     }
931   } else {
932     if (!m_gnu_debuglink_crc)
933       m_gnu_debuglink_crc =
934           calc_gnu_debuglink_crc32(m_data.GetDataStart(), m_data.GetByteSize());
935     if (m_gnu_debuglink_crc) {
936       // Use 4 bytes of crc from the .gnu_debuglink section.
937       uint32_t uuidt[4] = {m_gnu_debuglink_crc, 0, 0, 0};
938       m_uuid.SetBytes(uuidt, sizeof(uuidt));
939     }
940   }
941 
942   if (m_uuid.IsValid()) {
943     *uuid = m_uuid;
944     return true;
945   }
946 
947   return false;
948 }
949 
950 lldb_private::FileSpecList ObjectFileELF::GetDebugSymbolFilePaths() {
951   FileSpecList file_spec_list;
952 
953   if (!m_gnu_debuglink_file.empty()) {
954     FileSpec file_spec(m_gnu_debuglink_file, false);
955     file_spec_list.Append(file_spec);
956   }
957   return file_spec_list;
958 }
959 
960 uint32_t ObjectFileELF::GetDependentModules(FileSpecList &files) {
961   size_t num_modules = ParseDependentModules();
962   uint32_t num_specs = 0;
963 
964   for (unsigned i = 0; i < num_modules; ++i) {
965     if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
966       num_specs++;
967   }
968 
969   return num_specs;
970 }
971 
972 Address ObjectFileELF::GetImageInfoAddress(Target *target) {
973   if (!ParseDynamicSymbols())
974     return Address();
975 
976   SectionList *section_list = GetSectionList();
977   if (!section_list)
978     return Address();
979 
980   // Find the SHT_DYNAMIC (.dynamic) section.
981   SectionSP dynsym_section_sp(
982       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true));
983   if (!dynsym_section_sp)
984     return Address();
985   assert(dynsym_section_sp->GetObjectFile() == this);
986 
987   user_id_t dynsym_id = dynsym_section_sp->GetID();
988   const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
989   if (!dynsym_hdr)
990     return Address();
991 
992   for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) {
993     ELFDynamic &symbol = m_dynamic_symbols[i];
994 
995     if (symbol.d_tag == DT_DEBUG) {
996       // Compute the offset as the number of previous entries plus the size of
997       // d_tag.
998       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
999       return Address(dynsym_section_sp, offset);
1000     }
1001     // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP
1002     // exists in non-PIE.
1003     else if ((symbol.d_tag == DT_MIPS_RLD_MAP ||
1004               symbol.d_tag == DT_MIPS_RLD_MAP_REL) &&
1005              target) {
1006       addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1007       addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1008       if (dyn_base == LLDB_INVALID_ADDRESS)
1009         return Address();
1010 
1011       Status error;
1012       if (symbol.d_tag == DT_MIPS_RLD_MAP) {
1013         // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer.
1014         Address addr;
1015         if (target->ReadPointerFromMemory(dyn_base + offset, false, error,
1016                                           addr))
1017           return addr;
1018       }
1019       if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) {
1020         // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer,
1021         // relative to the address of the tag.
1022         uint64_t rel_offset;
1023         rel_offset = target->ReadUnsignedIntegerFromMemory(
1024             dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error);
1025         if (error.Success() && rel_offset != UINT64_MAX) {
1026           Address addr;
1027           addr_t debug_ptr_address =
1028               dyn_base + (offset - GetAddressByteSize()) + rel_offset;
1029           addr.SetOffset(debug_ptr_address);
1030           return addr;
1031         }
1032       }
1033     }
1034   }
1035 
1036   return Address();
1037 }
1038 
1039 lldb_private::Address ObjectFileELF::GetEntryPointAddress() {
1040   if (m_entry_point_address.IsValid())
1041     return m_entry_point_address;
1042 
1043   if (!ParseHeader() || !IsExecutable())
1044     return m_entry_point_address;
1045 
1046   SectionList *section_list = GetSectionList();
1047   addr_t offset = m_header.e_entry;
1048 
1049   if (!section_list)
1050     m_entry_point_address.SetOffset(offset);
1051   else
1052     m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1053   return m_entry_point_address;
1054 }
1055 
1056 //----------------------------------------------------------------------
1057 // ParseDependentModules
1058 //----------------------------------------------------------------------
1059 size_t ObjectFileELF::ParseDependentModules() {
1060   if (m_filespec_ap.get())
1061     return m_filespec_ap->GetSize();
1062 
1063   m_filespec_ap.reset(new FileSpecList());
1064 
1065   if (!ParseSectionHeaders())
1066     return 0;
1067 
1068   SectionList *section_list = GetSectionList();
1069   if (!section_list)
1070     return 0;
1071 
1072   // Find the SHT_DYNAMIC section.
1073   Section *dynsym =
1074       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
1075           .get();
1076   if (!dynsym)
1077     return 0;
1078   assert(dynsym->GetObjectFile() == this);
1079 
1080   const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex(dynsym->GetID());
1081   if (!header)
1082     return 0;
1083   // sh_link: section header index of string table used by entries in the
1084   // section.
1085   Section *dynstr = section_list->FindSectionByID(header->sh_link + 1).get();
1086   if (!dynstr)
1087     return 0;
1088 
1089   DataExtractor dynsym_data;
1090   DataExtractor dynstr_data;
1091   if (ReadSectionData(dynsym, dynsym_data) &&
1092       ReadSectionData(dynstr, dynstr_data)) {
1093     ELFDynamic symbol;
1094     const lldb::offset_t section_size = dynsym_data.GetByteSize();
1095     lldb::offset_t offset = 0;
1096 
1097     // The only type of entries we are concerned with are tagged DT_NEEDED,
1098     // yielding the name of a required library.
1099     while (offset < section_size) {
1100       if (!symbol.Parse(dynsym_data, &offset))
1101         break;
1102 
1103       if (symbol.d_tag != DT_NEEDED)
1104         continue;
1105 
1106       uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1107       const char *lib_name = dynstr_data.PeekCStr(str_index);
1108       m_filespec_ap->Append(FileSpec(lib_name, true));
1109     }
1110   }
1111 
1112   return m_filespec_ap->GetSize();
1113 }
1114 
1115 //----------------------------------------------------------------------
1116 // GetProgramHeaderInfo
1117 //----------------------------------------------------------------------
1118 size_t ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1119                                            DataExtractor &object_data,
1120                                            const ELFHeader &header) {
1121   // We have already parsed the program headers
1122   if (!program_headers.empty())
1123     return program_headers.size();
1124 
1125   // If there are no program headers to read we are done.
1126   if (header.e_phnum == 0)
1127     return 0;
1128 
1129   program_headers.resize(header.e_phnum);
1130   if (program_headers.size() != header.e_phnum)
1131     return 0;
1132 
1133   const size_t ph_size = header.e_phnum * header.e_phentsize;
1134   const elf_off ph_offset = header.e_phoff;
1135   DataExtractor data;
1136   if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1137     return 0;
1138 
1139   uint32_t idx;
1140   lldb::offset_t offset;
1141   for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) {
1142     if (program_headers[idx].Parse(data, &offset) == false)
1143       break;
1144   }
1145 
1146   if (idx < program_headers.size())
1147     program_headers.resize(idx);
1148 
1149   return program_headers.size();
1150 }
1151 
1152 //----------------------------------------------------------------------
1153 // ParseProgramHeaders
1154 //----------------------------------------------------------------------
1155 size_t ObjectFileELF::ParseProgramHeaders() {
1156   return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1157 }
1158 
1159 lldb_private::Status
1160 ObjectFileELF::RefineModuleDetailsFromNote(lldb_private::DataExtractor &data,
1161                                            lldb_private::ArchSpec &arch_spec,
1162                                            lldb_private::UUID &uuid) {
1163   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1164   Status error;
1165 
1166   lldb::offset_t offset = 0;
1167 
1168   while (true) {
1169     // Parse the note header.  If this fails, bail out.
1170     const lldb::offset_t note_offset = offset;
1171     ELFNote note = ELFNote();
1172     if (!note.Parse(data, &offset)) {
1173       // We're done.
1174       return error;
1175     }
1176 
1177     if (log)
1178       log->Printf("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32,
1179                   __FUNCTION__, note.n_name.c_str(), note.n_type);
1180 
1181     // Process FreeBSD ELF notes.
1182     if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1183         (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1184         (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) {
1185       // Pull out the min version info.
1186       uint32_t version_info;
1187       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1188         error.SetErrorString("failed to read FreeBSD ABI note payload");
1189         return error;
1190       }
1191 
1192       // Convert the version info into a major/minor number.
1193       const uint32_t version_major = version_info / 100000;
1194       const uint32_t version_minor = (version_info / 1000) % 100;
1195 
1196       char os_name[32];
1197       snprintf(os_name, sizeof(os_name), "freebsd%" PRIu32 ".%" PRIu32,
1198                version_major, version_minor);
1199 
1200       // Set the elf OS version to FreeBSD.  Also clear the vendor.
1201       arch_spec.GetTriple().setOSName(os_name);
1202       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1203 
1204       if (log)
1205         log->Printf("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32
1206                     ".%" PRIu32,
1207                     __FUNCTION__, version_major, version_minor,
1208                     static_cast<uint32_t>(version_info % 1000));
1209     }
1210     // Process GNU ELF notes.
1211     else if (note.n_name == LLDB_NT_OWNER_GNU) {
1212       switch (note.n_type) {
1213       case LLDB_NT_GNU_ABI_TAG:
1214         if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) {
1215           // Pull out the min OS version supporting the ABI.
1216           uint32_t version_info[4];
1217           if (data.GetU32(&offset, &version_info[0], note.n_descsz / 4) ==
1218               nullptr) {
1219             error.SetErrorString("failed to read GNU ABI note payload");
1220             return error;
1221           }
1222 
1223           // Set the OS per the OS field.
1224           switch (version_info[0]) {
1225           case LLDB_NT_GNU_ABI_OS_LINUX:
1226             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1227             arch_spec.GetTriple().setVendor(
1228                 llvm::Triple::VendorType::UnknownVendor);
1229             if (log)
1230               log->Printf(
1231                   "ObjectFileELF::%s detected Linux, min version %" PRIu32
1232                   ".%" PRIu32 ".%" PRIu32,
1233                   __FUNCTION__, version_info[1], version_info[2],
1234                   version_info[3]);
1235             // FIXME we have the minimal version number, we could be propagating
1236             // that.  version_info[1] = OS Major, version_info[2] = OS Minor,
1237             // version_info[3] = Revision.
1238             break;
1239           case LLDB_NT_GNU_ABI_OS_HURD:
1240             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1241             arch_spec.GetTriple().setVendor(
1242                 llvm::Triple::VendorType::UnknownVendor);
1243             if (log)
1244               log->Printf("ObjectFileELF::%s detected Hurd (unsupported), min "
1245                           "version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1246                           __FUNCTION__, version_info[1], version_info[2],
1247                           version_info[3]);
1248             break;
1249           case LLDB_NT_GNU_ABI_OS_SOLARIS:
1250             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Solaris);
1251             arch_spec.GetTriple().setVendor(
1252                 llvm::Triple::VendorType::UnknownVendor);
1253             if (log)
1254               log->Printf(
1255                   "ObjectFileELF::%s detected Solaris, min version %" PRIu32
1256                   ".%" PRIu32 ".%" PRIu32,
1257                   __FUNCTION__, version_info[1], version_info[2],
1258                   version_info[3]);
1259             break;
1260           default:
1261             if (log)
1262               log->Printf(
1263                   "ObjectFileELF::%s unrecognized OS in note, id %" PRIu32
1264                   ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32,
1265                   __FUNCTION__, version_info[0], version_info[1],
1266                   version_info[2], version_info[3]);
1267             break;
1268           }
1269         }
1270         break;
1271 
1272       case LLDB_NT_GNU_BUILD_ID_TAG:
1273         // Only bother processing this if we don't already have the uuid set.
1274         if (!uuid.IsValid()) {
1275           // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a
1276           // build-id of a different
1277           // length. Accept it as long as it's at least 4 bytes as it will be
1278           // better than our own crc32.
1279           if (note.n_descsz >= 4 && note.n_descsz <= 20) {
1280             uint8_t uuidbuf[20];
1281             if (data.GetU8(&offset, &uuidbuf, note.n_descsz) == nullptr) {
1282               error.SetErrorString("failed to read GNU_BUILD_ID note payload");
1283               return error;
1284             }
1285 
1286             // Save the build id as the UUID for the module.
1287             uuid.SetBytes(uuidbuf, note.n_descsz);
1288           }
1289         }
1290         break;
1291       }
1292       if (arch_spec.IsMIPS() &&
1293           arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1294         // The note.n_name == LLDB_NT_OWNER_GNU is valid for Linux platform
1295         arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1296     }
1297     // Process NetBSD ELF notes.
1298     else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1299              (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1300              (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) {
1301       // Pull out the min version info.
1302       uint32_t version_info;
1303       if (data.GetU32(&offset, &version_info, 1) == nullptr) {
1304         error.SetErrorString("failed to read NetBSD ABI note payload");
1305         return error;
1306       }
1307 
1308       // Set the elf OS version to NetBSD.  Also clear the vendor.
1309       arch_spec.GetTriple().setOS(llvm::Triple::OSType::NetBSD);
1310       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1311 
1312       if (log)
1313         log->Printf(
1314             "ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32,
1315             __FUNCTION__, version_info);
1316     }
1317     // Process OpenBSD ELF notes.
1318     else if (note.n_name == LLDB_NT_OWNER_OPENBSD) {
1319       // Set the elf OS version to OpenBSD.  Also clear the vendor.
1320       arch_spec.GetTriple().setOS(llvm::Triple::OSType::OpenBSD);
1321       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::UnknownVendor);
1322     }
1323     // Process CSR kalimba notes
1324     else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1325              (note.n_name == LLDB_NT_OWNER_CSR)) {
1326       arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1327       arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1328 
1329       // TODO At some point the description string could be processed.
1330       // It could provide a steer towards the kalimba variant which this ELF
1331       // targets.
1332       if (note.n_descsz) {
1333         const char *cstr =
1334             data.GetCStr(&offset, llvm::alignTo(note.n_descsz, 4));
1335         (void)cstr;
1336       }
1337     } else if (note.n_name == LLDB_NT_OWNER_ANDROID) {
1338       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1339       arch_spec.GetTriple().setEnvironment(
1340           llvm::Triple::EnvironmentType::Android);
1341     } else if (note.n_name == LLDB_NT_OWNER_LINUX) {
1342       // This is sometimes found in core files and usually contains extended
1343       // register info
1344       arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1345     } else if (note.n_name == LLDB_NT_OWNER_CORE) {
1346       // Parse the NT_FILE to look for stuff in paths to shared libraries As
1347       // the contents look like this in a 64 bit ELF core file: count     =
1348       // 0x000000000000000a (10) page_size = 0x0000000000001000 (4096) Index
1349       // start              end                file_ofs           path =====
1350       // ------------------ ------------------ ------------------
1351       // ------------------------------------- [  0] 0x0000000000400000
1352       // 0x0000000000401000 0x0000000000000000 /tmp/a.out [  1]
1353       // 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out [
1354       // 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out
1355       // [  3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000
1356       // /lib/x86_64-linux-gnu/libc-2.19.so [  4] 0x00007fa79cba8000
1357       // 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-
1358       // gnu/libc-2.19.so [  5] 0x00007fa79cda7000 0x00007fa79cdab000
1359       // 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so [  6]
1360       // 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64
1361       // -linux-gnu/libc-2.19.so [  7] 0x00007fa79cdb2000 0x00007fa79cdd5000
1362       // 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so [  8]
1363       // 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64
1364       // -linux-gnu/ld-2.19.so [  9] 0x00007fa79cfd5000 0x00007fa79cfd6000
1365       // 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so In the 32 bit ELFs
1366       // the count, page_size, start, end, file_ofs are uint32_t For reference:
1367       // see readelf source code (in binutils).
1368       if (note.n_type == NT_FILE) {
1369         uint64_t count = data.GetAddress(&offset);
1370         const char *cstr;
1371         data.GetAddress(&offset); // Skip page size
1372         offset += count * 3 *
1373                   data.GetAddressByteSize(); // Skip all start/end/file_ofs
1374         for (size_t i = 0; i < count; ++i) {
1375           cstr = data.GetCStr(&offset);
1376           if (cstr == nullptr) {
1377             error.SetErrorStringWithFormat("ObjectFileELF::%s trying to read "
1378                                            "at an offset after the end "
1379                                            "(GetCStr returned nullptr)",
1380                                            __FUNCTION__);
1381             return error;
1382           }
1383           llvm::StringRef path(cstr);
1384           if (path.contains("/lib/x86_64-linux-gnu") || path.contains("/lib/i386-linux-gnu")) {
1385             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1386             break;
1387           }
1388         }
1389         if (arch_spec.IsMIPS() &&
1390             arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1391           // In case of MIPSR6, the LLDB_NT_OWNER_GNU note is missing for some
1392           // cases (e.g. compile with -nostdlib) Hence set OS to Linux
1393           arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1394       }
1395     }
1396 
1397     // Calculate the offset of the next note just in case "offset" has been
1398     // used to poke at the contents of the note data
1399     offset = note_offset + note.GetByteSize();
1400   }
1401 
1402   return error;
1403 }
1404 
1405 void ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length,
1406                                        ArchSpec &arch_spec) {
1407   lldb::offset_t Offset = 0;
1408 
1409   uint8_t FormatVersion = data.GetU8(&Offset);
1410   if (FormatVersion != llvm::ARMBuildAttrs::Format_Version)
1411     return;
1412 
1413   Offset = Offset + sizeof(uint32_t); // Section Length
1414   llvm::StringRef VendorName = data.GetCStr(&Offset);
1415 
1416   if (VendorName != "aeabi")
1417     return;
1418 
1419   if (arch_spec.GetTriple().getEnvironment() ==
1420       llvm::Triple::UnknownEnvironment)
1421     arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1422 
1423   while (Offset < length) {
1424     uint8_t Tag = data.GetU8(&Offset);
1425     uint32_t Size = data.GetU32(&Offset);
1426 
1427     if (Tag != llvm::ARMBuildAttrs::File || Size == 0)
1428       continue;
1429 
1430     while (Offset < length) {
1431       uint64_t Tag = data.GetULEB128(&Offset);
1432       switch (Tag) {
1433       default:
1434         if (Tag < 32)
1435           data.GetULEB128(&Offset);
1436         else if (Tag % 2 == 0)
1437           data.GetULEB128(&Offset);
1438         else
1439           data.GetCStr(&Offset);
1440 
1441         break;
1442 
1443       case llvm::ARMBuildAttrs::CPU_raw_name:
1444       case llvm::ARMBuildAttrs::CPU_name:
1445         data.GetCStr(&Offset);
1446 
1447         break;
1448 
1449       case llvm::ARMBuildAttrs::ABI_VFP_args: {
1450         uint64_t VFPArgs = data.GetULEB128(&Offset);
1451 
1452         if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) {
1453           if (arch_spec.GetTriple().getEnvironment() ==
1454                   llvm::Triple::UnknownEnvironment ||
1455               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF)
1456             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI);
1457 
1458           arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1459         } else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) {
1460           if (arch_spec.GetTriple().getEnvironment() ==
1461                   llvm::Triple::UnknownEnvironment ||
1462               arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI)
1463             arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF);
1464 
1465           arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1466         }
1467 
1468         break;
1469       }
1470       }
1471     }
1472   }
1473 }
1474 
1475 //----------------------------------------------------------------------
1476 // GetSectionHeaderInfo
1477 //----------------------------------------------------------------------
1478 size_t ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1479                                            DataExtractor &object_data,
1480                                            const elf::ELFHeader &header,
1481                                            lldb_private::UUID &uuid,
1482                                            std::string &gnu_debuglink_file,
1483                                            uint32_t &gnu_debuglink_crc,
1484                                            ArchSpec &arch_spec) {
1485   // Don't reparse the section headers if we already did that.
1486   if (!section_headers.empty())
1487     return section_headers.size();
1488 
1489   // Only initialize the arch_spec to okay defaults if they're not already set.
1490   // We'll refine this with note data as we parse the notes.
1491   if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) {
1492     llvm::Triple::OSType ostype;
1493     llvm::Triple::OSType spec_ostype;
1494     const uint32_t sub_type = subTypeFromElfHeader(header);
1495     arch_spec.SetArchitecture(eArchTypeELF, header.e_machine, sub_type,
1496                               header.e_ident[EI_OSABI]);
1497 
1498     // Validate if it is ok to remove GetOsFromOSABI. Note, that now the OS is
1499     // determined based on EI_OSABI flag and the info extracted from ELF notes
1500     // (see RefineModuleDetailsFromNote). However in some cases that still
1501     // might be not enough: for example a shared library might not have any
1502     // notes at all and have EI_OSABI flag set to System V, as result the OS
1503     // will be set to UnknownOS.
1504     GetOsFromOSABI(header.e_ident[EI_OSABI], ostype);
1505     spec_ostype = arch_spec.GetTriple().getOS();
1506     assert(spec_ostype == ostype);
1507     UNUSED_IF_ASSERT_DISABLED(spec_ostype);
1508   }
1509 
1510   if (arch_spec.GetMachine() == llvm::Triple::mips ||
1511       arch_spec.GetMachine() == llvm::Triple::mipsel ||
1512       arch_spec.GetMachine() == llvm::Triple::mips64 ||
1513       arch_spec.GetMachine() == llvm::Triple::mips64el) {
1514     switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) {
1515     case llvm::ELF::EF_MIPS_MICROMIPS:
1516       arch_spec.SetFlags(ArchSpec::eMIPSAse_micromips);
1517       break;
1518     case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1519       arch_spec.SetFlags(ArchSpec::eMIPSAse_mips16);
1520       break;
1521     case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1522       arch_spec.SetFlags(ArchSpec::eMIPSAse_mdmx);
1523       break;
1524     default:
1525       break;
1526     }
1527   }
1528 
1529   if (arch_spec.GetMachine() == llvm::Triple::arm ||
1530       arch_spec.GetMachine() == llvm::Triple::thumb) {
1531     if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT)
1532       arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float);
1533     else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT)
1534       arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float);
1535   }
1536 
1537   // If there are no section headers we are done.
1538   if (header.e_shnum == 0)
1539     return 0;
1540 
1541   Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES));
1542 
1543   section_headers.resize(header.e_shnum);
1544   if (section_headers.size() != header.e_shnum)
1545     return 0;
1546 
1547   const size_t sh_size = header.e_shnum * header.e_shentsize;
1548   const elf_off sh_offset = header.e_shoff;
1549   DataExtractor sh_data;
1550   if (sh_data.SetData(object_data, sh_offset, sh_size) != sh_size)
1551     return 0;
1552 
1553   uint32_t idx;
1554   lldb::offset_t offset;
1555   for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) {
1556     if (section_headers[idx].Parse(sh_data, &offset) == false)
1557       break;
1558   }
1559   if (idx < section_headers.size())
1560     section_headers.resize(idx);
1561 
1562   const unsigned strtab_idx = header.e_shstrndx;
1563   if (strtab_idx && strtab_idx < section_headers.size()) {
1564     const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1565     const size_t byte_size = sheader.sh_size;
1566     const Elf64_Off offset = sheader.sh_offset;
1567     lldb_private::DataExtractor shstr_data;
1568 
1569     if (shstr_data.SetData(object_data, offset, byte_size) == byte_size) {
1570       for (SectionHeaderCollIter I = section_headers.begin();
1571            I != section_headers.end(); ++I) {
1572         static ConstString g_sect_name_gnu_debuglink(".gnu_debuglink");
1573         const ELFSectionHeaderInfo &sheader = *I;
1574         const uint64_t section_size =
1575             sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size;
1576         ConstString name(shstr_data.PeekCStr(I->sh_name));
1577 
1578         I->section_name = name;
1579 
1580         if (arch_spec.IsMIPS()) {
1581           uint32_t arch_flags = arch_spec.GetFlags();
1582           DataExtractor data;
1583           if (sheader.sh_type == SHT_MIPS_ABIFLAGS) {
1584 
1585             if (section_size && (data.SetData(object_data, sheader.sh_offset,
1586                                               section_size) == section_size)) {
1587               // MIPS ASE Mask is at offset 12 in MIPS.abiflags section
1588               lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0
1589               arch_flags |= data.GetU32(&offset);
1590 
1591               // The floating point ABI is at offset 7
1592               offset = 7;
1593               switch (data.GetU8(&offset)) {
1594               case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY:
1595                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY;
1596                 break;
1597               case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE:
1598                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE;
1599                 break;
1600               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE:
1601                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE;
1602                 break;
1603               case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT:
1604                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT;
1605                 break;
1606               case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64:
1607                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64;
1608                 break;
1609               case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX:
1610                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX;
1611                 break;
1612               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64:
1613                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64;
1614                 break;
1615               case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A:
1616                 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A;
1617                 break;
1618               }
1619             }
1620           }
1621           // Settings appropriate ArchSpec ABI Flags
1622           switch (header.e_flags & llvm::ELF::EF_MIPS_ABI) {
1623           case llvm::ELF::EF_MIPS_ABI_O32:
1624             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32;
1625             break;
1626           case EF_MIPS_ABI_O64:
1627             arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64;
1628             break;
1629           case EF_MIPS_ABI_EABI32:
1630             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32;
1631             break;
1632           case EF_MIPS_ABI_EABI64:
1633             arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64;
1634             break;
1635           default:
1636             // ABI Mask doesn't cover N32 and N64 ABI.
1637             if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64)
1638               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64;
1639             else if (header.e_flags & llvm::ELF::EF_MIPS_ABI2)
1640               arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32;
1641             break;
1642           }
1643           arch_spec.SetFlags(arch_flags);
1644         }
1645 
1646         if (arch_spec.GetMachine() == llvm::Triple::arm ||
1647             arch_spec.GetMachine() == llvm::Triple::thumb) {
1648           DataExtractor data;
1649 
1650           if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 &&
1651               data.SetData(object_data, sheader.sh_offset, section_size) == section_size)
1652             ParseARMAttributes(data, section_size, arch_spec);
1653         }
1654 
1655         if (name == g_sect_name_gnu_debuglink) {
1656           DataExtractor data;
1657           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1658                                             section_size) == section_size)) {
1659             lldb::offset_t gnu_debuglink_offset = 0;
1660             gnu_debuglink_file = data.GetCStr(&gnu_debuglink_offset);
1661             gnu_debuglink_offset = llvm::alignTo(gnu_debuglink_offset, 4);
1662             data.GetU32(&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1663           }
1664         }
1665 
1666         // Process ELF note section entries.
1667         bool is_note_header = (sheader.sh_type == SHT_NOTE);
1668 
1669         // The section header ".note.android.ident" is stored as a
1670         // PROGBITS type header but it is actually a note header.
1671         static ConstString g_sect_name_android_ident(".note.android.ident");
1672         if (!is_note_header && name == g_sect_name_android_ident)
1673           is_note_header = true;
1674 
1675         if (is_note_header) {
1676           // Allow notes to refine module info.
1677           DataExtractor data;
1678           if (section_size && (data.SetData(object_data, sheader.sh_offset,
1679                                             section_size) == section_size)) {
1680             Status error = RefineModuleDetailsFromNote(data, arch_spec, uuid);
1681             if (error.Fail()) {
1682               if (log)
1683                 log->Printf("ObjectFileELF::%s ELF note processing failed: %s",
1684                             __FUNCTION__, error.AsCString());
1685             }
1686           }
1687         }
1688       }
1689 
1690       // Make any unknown triple components to be unspecified unknowns.
1691       if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor)
1692         arch_spec.GetTriple().setVendorName(llvm::StringRef());
1693       if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS)
1694         arch_spec.GetTriple().setOSName(llvm::StringRef());
1695 
1696       return section_headers.size();
1697     }
1698   }
1699 
1700   section_headers.clear();
1701   return 0;
1702 }
1703 
1704 size_t ObjectFileELF::GetProgramHeaderCount() { return ParseProgramHeaders(); }
1705 
1706 const elf::ELFProgramHeader *
1707 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) {
1708   if (!id || !ParseProgramHeaders())
1709     return NULL;
1710 
1711   if (--id < m_program_headers.size())
1712     return &m_program_headers[id];
1713 
1714   return NULL;
1715 }
1716 
1717 DataExtractor ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) {
1718   const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1719   if (segment_header == NULL)
1720     return DataExtractor();
1721   return DataExtractor(m_data, segment_header->p_offset,
1722                        segment_header->p_filesz);
1723 }
1724 
1725 llvm::StringRef
1726 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const {
1727   size_t pos = symbol_name.find('@');
1728   return symbol_name.substr(0, pos);
1729 }
1730 
1731 //----------------------------------------------------------------------
1732 // ParseSectionHeaders
1733 //----------------------------------------------------------------------
1734 size_t ObjectFileELF::ParseSectionHeaders() {
1735   return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid,
1736                               m_gnu_debuglink_file, m_gnu_debuglink_crc,
1737                               m_arch_spec);
1738 }
1739 
1740 const ObjectFileELF::ELFSectionHeaderInfo *
1741 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) {
1742   if (!id || !ParseSectionHeaders())
1743     return NULL;
1744 
1745   if (--id < m_section_headers.size())
1746     return &m_section_headers[id];
1747 
1748   return NULL;
1749 }
1750 
1751 lldb::user_id_t ObjectFileELF::GetSectionIndexByName(const char *name) {
1752   if (!name || !name[0] || !ParseSectionHeaders())
1753     return 0;
1754   for (size_t i = 1; i < m_section_headers.size(); ++i)
1755     if (m_section_headers[i].section_name == ConstString(name))
1756       return i;
1757   return 0;
1758 }
1759 
1760 static SectionType getSectionType(llvm::StringRef section_name) {
1761   if (!section_name.startswith(".")) {
1762     return eSectionTypeOther;
1763   }
1764 
1765   // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section,
1766   // http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1767   // MISSING? .debug-index -
1768   // http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1769   return llvm::StringSwitch<SectionType>(section_name.drop_front(1))
1770       .Case("text", eSectionTypeCode)
1771       .Case("data", eSectionTypeData)
1772       .Case("bss", eSectionTypeZeroFill)
1773       .Case("tdata", eSectionTypeData)
1774       .Case("tbss", eSectionTypeZeroFill)
1775       // Abbreviations used in the .debug_info section
1776       .Case("debug_abbrev", eSectionTypeDWARFDebugAbbrev)
1777       .Case("debug_abbrev.dwo", eSectionTypeDWARFDebugAbbrev)
1778       .Case("debug_addr", eSectionTypeDWARFDebugAddr)
1779       // Lookup table for mapping addresses to compilation units
1780       .Case("debug_aranges", eSectionTypeDWARFDebugAranges)
1781       .Case("debug_cu_index", eSectionTypeDWARFDebugCuIndex)
1782       // Call frame information
1783       .Case("debug_frame", eSectionTypeDWARFDebugFrame)
1784       // The core DWARF information section
1785       .Case("debug_info", eSectionTypeDWARFDebugInfo)
1786       .Case("debug_info.dwo", eSectionTypeDWARFDebugInfo)
1787       // Line number information
1788       .Case("debug_line", eSectionTypeDWARFDebugLine)
1789       .Case("debug_line.dwo", eSectionTypeDWARFDebugLine)
1790       // Location lists used in DW_AT_location attributes
1791       .Case("debug_loc", eSectionTypeDWARFDebugLoc)
1792       .Case("debug_loc.dwo", eSectionTypeDWARFDebugLoc)
1793       // Macro information
1794       .Case("debug_macinfo", eSectionTypeDWARFDebugMacInfo)
1795       .Case("debug_macro", eSectionTypeDWARFDebugMacro)
1796       .Case("debug_macro.dwo", eSectionTypeDWARFDebugMacro)
1797       // Lookup table for mapping object and function names to compilation units
1798       .Case("debug_pubnames", eSectionTypeDWARFDebugPubNames)
1799       // Lookup table for mapping type names to compilation units
1800       .Case("debug_pubtypes", eSectionTypeDWARFDebugPubTypes)
1801       // Address ranges used in DW_AT_ranges attributes
1802       .Case("debug_ranges", eSectionTypeDWARFDebugRanges)
1803       // String table used in .debug_info
1804       .Case("debug_str", eSectionTypeDWARFDebugStr)
1805       .Case("debug_str.dwo", eSectionTypeDWARFDebugStr)
1806       .Case("debug_str_offsets", eSectionTypeDWARFDebugStrOffsets)
1807       .Case("debug_str_offsets.dwo", eSectionTypeDWARFDebugStrOffsets)
1808       .Case("debug_types", eSectionTypeDWARFDebugTypes)
1809       .Case("gnu_debugaltlink", eSectionTypeDWARFGNUDebugAltLink)
1810       .Case("eh_frame", eSectionTypeEHFrame)
1811       .Case("ARM.exidx", eSectionTypeARMexidx)
1812       .Case("ARM.extab", eSectionTypeARMextab)
1813       .Case("gosymtab", eSectionTypeGoSymtab)
1814       .Default(eSectionTypeOther);
1815 }
1816 
1817 void ObjectFileELF::CreateSections(SectionList &unified_section_list) {
1818   if (!m_sections_ap.get() && ParseSectionHeaders()) {
1819     m_sections_ap.reset(new SectionList());
1820 
1821     // Object files frequently have 0 for every section address, meaning we
1822     // need to compute synthetic addresses in order for "file addresses" from
1823     // different sections to not overlap
1824     bool synthaddrs = (CalculateType() == ObjectFile::Type::eTypeObjectFile);
1825     uint64_t nextaddr = 0;
1826 
1827     for (SectionHeaderCollIter I = m_section_headers.begin();
1828          I != m_section_headers.end(); ++I) {
1829       const ELFSectionHeaderInfo &header = *I;
1830 
1831       llvm::StringRef section_name = I->section_name.GetStringRef();
1832       const uint64_t file_size =
1833           header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1834       const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1835 
1836       SectionType sect_type = getSectionType(section_name);
1837       bool is_thread_specific =
1838           section_name.equals(".tdata") || section_name.equals(".tbss");
1839 
1840       const uint32_t permissions =
1841           ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0u) |
1842           ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0u) |
1843           ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0u);
1844       switch (header.sh_type) {
1845       case SHT_SYMTAB:
1846         assert(sect_type == eSectionTypeOther);
1847         sect_type = eSectionTypeELFSymbolTable;
1848         break;
1849       case SHT_DYNSYM:
1850         assert(sect_type == eSectionTypeOther);
1851         sect_type = eSectionTypeELFDynamicSymbols;
1852         break;
1853       case SHT_RELA:
1854       case SHT_REL:
1855         assert(sect_type == eSectionTypeOther);
1856         sect_type = eSectionTypeELFRelocationEntries;
1857         break;
1858       case SHT_DYNAMIC:
1859         assert(sect_type == eSectionTypeOther);
1860         sect_type = eSectionTypeELFDynamicLinkInfo;
1861         break;
1862       }
1863 
1864       if (eSectionTypeOther == sect_type) {
1865         // the kalimba toolchain assumes that ELF section names are free-form.
1866         // It does support linkscripts which (can) give rise to various
1867         // arbitrarily named sections being "Code" or "Data".
1868         sect_type = kalimbaSectionType(m_header, header);
1869       }
1870 
1871       // In common case ELF code section can have arbitrary name (for example,
1872       // we can specify it using section attribute for particular function) so
1873       // assume that section is a code section if it has SHF_EXECINSTR flag set
1874       // and has SHT_PROGBITS type.
1875       if (eSectionTypeOther == sect_type &&
1876           llvm::ELF::SHT_PROGBITS == header.sh_type &&
1877           (header.sh_flags & SHF_EXECINSTR)) {
1878         sect_type = eSectionTypeCode;
1879       }
1880 
1881       const uint32_t target_bytes_size =
1882           (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type)
1883               ? m_arch_spec.GetDataByteSize()
1884               : eSectionTypeCode == sect_type ? m_arch_spec.GetCodeByteSize()
1885                                               : 1;
1886       elf::elf_xword log2align =
1887           (header.sh_addralign == 0) ? 0 : llvm::Log2_64(header.sh_addralign);
1888 
1889       uint64_t addr = header.sh_addr;
1890 
1891       if ((header.sh_flags & SHF_ALLOC) && synthaddrs) {
1892           nextaddr =
1893               (nextaddr + header.sh_addralign - 1) & ~(header.sh_addralign - 1);
1894           addr = nextaddr;
1895           nextaddr += vm_size;
1896       }
1897 
1898       SectionSP section_sp(new Section(
1899           GetModule(), // Module to which this section belongs.
1900           this, // ObjectFile to which this section belongs and should read
1901                 // section data from.
1902           SectionIndex(I),     // Section ID.
1903           I->section_name,     // Section name.
1904           sect_type,           // Section type.
1905           addr,                // VM address.
1906           vm_size,             // VM size in bytes of this section.
1907           header.sh_offset,    // Offset of this section in the file.
1908           file_size,           // Size of the section as found in the file.
1909           log2align,           // Alignment of the section
1910           header.sh_flags,     // Flags for this section.
1911           target_bytes_size)); // Number of host bytes per target byte
1912 
1913       section_sp->SetPermissions(permissions);
1914       if (is_thread_specific)
1915         section_sp->SetIsThreadSpecific(is_thread_specific);
1916       m_sections_ap->AddSection(section_sp);
1917     }
1918   }
1919 
1920   // For eTypeDebugInfo files, the Symbol Vendor will take care of updating the
1921   // unified section list.
1922   if (GetType() != eTypeDebugInfo)
1923     unified_section_list = *m_sections_ap;
1924 }
1925 
1926 // Find the arm/aarch64 mapping symbol character in the given symbol name.
1927 // Mapping symbols have the form of "$<char>[.<any>]*". Additionally we
1928 // recognize cases when the mapping symbol prefixed by an arbitrary string
1929 // because if a symbol prefix added to each symbol in the object file with
1930 // objcopy then the mapping symbols are also prefixed.
1931 static char FindArmAarch64MappingSymbol(const char *symbol_name) {
1932   if (!symbol_name)
1933     return '\0';
1934 
1935   const char *dollar_pos = ::strchr(symbol_name, '$');
1936   if (!dollar_pos || dollar_pos[1] == '\0')
1937     return '\0';
1938 
1939   if (dollar_pos[2] == '\0' || dollar_pos[2] == '.')
1940     return dollar_pos[1];
1941   return '\0';
1942 }
1943 
1944 #define STO_MIPS_ISA (3 << 6)
1945 #define STO_MICROMIPS (2 << 6)
1946 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER)&STO_MIPS_ISA) == STO_MICROMIPS)
1947 
1948 // private
1949 unsigned ObjectFileELF::ParseSymbols(Symtab *symtab, user_id_t start_id,
1950                                      SectionList *section_list,
1951                                      const size_t num_symbols,
1952                                      const DataExtractor &symtab_data,
1953                                      const DataExtractor &strtab_data) {
1954   ELFSymbol symbol;
1955   lldb::offset_t offset = 0;
1956 
1957   static ConstString text_section_name(".text");
1958   static ConstString init_section_name(".init");
1959   static ConstString fini_section_name(".fini");
1960   static ConstString ctors_section_name(".ctors");
1961   static ConstString dtors_section_name(".dtors");
1962 
1963   static ConstString data_section_name(".data");
1964   static ConstString rodata_section_name(".rodata");
1965   static ConstString rodata1_section_name(".rodata1");
1966   static ConstString data2_section_name(".data1");
1967   static ConstString bss_section_name(".bss");
1968   static ConstString opd_section_name(".opd"); // For ppc64
1969 
1970   // On Android the oatdata and the oatexec symbols in the oat and odex files
1971   // covers the full .text section what causes issues with displaying unusable
1972   // symbol name to the user and very slow unwinding speed because the
1973   // instruction emulation based unwind plans try to emulate all instructions
1974   // in these symbols. Don't add these symbols to the symbol list as they have
1975   // no use for the debugger and they are causing a lot of trouble. Filtering
1976   // can't be restricted to Android because this special object file don't
1977   // contain the note section specifying the environment to Android but the
1978   // custom extension and file name makes it highly unlikely that this will
1979   // collide with anything else.
1980   ConstString file_extension = m_file.GetFileNameExtension();
1981   bool skip_oatdata_oatexec = file_extension == ConstString("oat") ||
1982                               file_extension == ConstString("odex");
1983 
1984   ArchSpec arch;
1985   GetArchitecture(arch);
1986   ModuleSP module_sp(GetModule());
1987   SectionList *module_section_list =
1988       module_sp ? module_sp->GetSectionList() : nullptr;
1989 
1990   // Local cache to avoid doing a FindSectionByName for each symbol. The "const
1991   // char*" key must came from a ConstString object so they can be compared by
1992   // pointer
1993   std::unordered_map<const char *, lldb::SectionSP> section_name_to_section;
1994 
1995   unsigned i;
1996   for (i = 0; i < num_symbols; ++i) {
1997     if (symbol.Parse(symtab_data, &offset) == false)
1998       break;
1999 
2000     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2001     if (!symbol_name)
2002       symbol_name = "";
2003 
2004     // No need to add non-section symbols that have no names
2005     if (symbol.getType() != STT_SECTION &&
2006         (symbol_name == nullptr || symbol_name[0] == '\0'))
2007       continue;
2008 
2009     // Skipping oatdata and oatexec sections if it is requested. See details
2010     // above the definition of skip_oatdata_oatexec for the reasons.
2011     if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 ||
2012                                  ::strcmp(symbol_name, "oatexec") == 0))
2013       continue;
2014 
2015     SectionSP symbol_section_sp;
2016     SymbolType symbol_type = eSymbolTypeInvalid;
2017     Elf64_Half section_idx = symbol.st_shndx;
2018 
2019     switch (section_idx) {
2020     case SHN_ABS:
2021       symbol_type = eSymbolTypeAbsolute;
2022       break;
2023     case SHN_UNDEF:
2024       symbol_type = eSymbolTypeUndefined;
2025       break;
2026     default:
2027       symbol_section_sp = section_list->GetSectionAtIndex(section_idx);
2028       break;
2029     }
2030 
2031     // If a symbol is undefined do not process it further even if it has a STT
2032     // type
2033     if (symbol_type != eSymbolTypeUndefined) {
2034       switch (symbol.getType()) {
2035       default:
2036       case STT_NOTYPE:
2037         // The symbol's type is not specified.
2038         break;
2039 
2040       case STT_OBJECT:
2041         // The symbol is associated with a data object, such as a variable, an
2042         // array, etc.
2043         symbol_type = eSymbolTypeData;
2044         break;
2045 
2046       case STT_FUNC:
2047         // The symbol is associated with a function or other executable code.
2048         symbol_type = eSymbolTypeCode;
2049         break;
2050 
2051       case STT_SECTION:
2052         // The symbol is associated with a section. Symbol table entries of
2053         // this type exist primarily for relocation and normally have STB_LOCAL
2054         // binding.
2055         break;
2056 
2057       case STT_FILE:
2058         // Conventionally, the symbol's name gives the name of the source file
2059         // associated with the object file. A file symbol has STB_LOCAL
2060         // binding, its section index is SHN_ABS, and it precedes the other
2061         // STB_LOCAL symbols for the file, if it is present.
2062         symbol_type = eSymbolTypeSourceFile;
2063         break;
2064 
2065       case STT_GNU_IFUNC:
2066         // The symbol is associated with an indirect function. The actual
2067         // function will be resolved if it is referenced.
2068         symbol_type = eSymbolTypeResolver;
2069         break;
2070       }
2071     }
2072 
2073     if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) {
2074       if (symbol_section_sp) {
2075         const ConstString &sect_name = symbol_section_sp->GetName();
2076         if (sect_name == text_section_name || sect_name == init_section_name ||
2077             sect_name == fini_section_name || sect_name == ctors_section_name ||
2078             sect_name == dtors_section_name) {
2079           symbol_type = eSymbolTypeCode;
2080         } else if (sect_name == data_section_name ||
2081                    sect_name == data2_section_name ||
2082                    sect_name == rodata_section_name ||
2083                    sect_name == rodata1_section_name ||
2084                    sect_name == bss_section_name) {
2085           symbol_type = eSymbolTypeData;
2086         }
2087       }
2088     }
2089 
2090     int64_t symbol_value_offset = 0;
2091     uint32_t additional_flags = 0;
2092 
2093     if (arch.IsValid()) {
2094       if (arch.GetMachine() == llvm::Triple::arm) {
2095         if (symbol.getBinding() == STB_LOCAL) {
2096           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2097           if (symbol_type == eSymbolTypeCode) {
2098             switch (mapping_symbol) {
2099             case 'a':
2100               // $a[.<any>]* - marks an ARM instruction sequence
2101               m_address_class_map[symbol.st_value] = eAddressClassCode;
2102               break;
2103             case 'b':
2104             case 't':
2105               // $b[.<any>]* - marks a THUMB BL instruction sequence
2106               // $t[.<any>]* - marks a THUMB instruction sequence
2107               m_address_class_map[symbol.st_value] =
2108                   eAddressClassCodeAlternateISA;
2109               break;
2110             case 'd':
2111               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2112               m_address_class_map[symbol.st_value] = eAddressClassData;
2113               break;
2114             }
2115           }
2116           if (mapping_symbol)
2117             continue;
2118         }
2119       } else if (arch.GetMachine() == llvm::Triple::aarch64) {
2120         if (symbol.getBinding() == STB_LOCAL) {
2121           char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name);
2122           if (symbol_type == eSymbolTypeCode) {
2123             switch (mapping_symbol) {
2124             case 'x':
2125               // $x[.<any>]* - marks an A64 instruction sequence
2126               m_address_class_map[symbol.st_value] = eAddressClassCode;
2127               break;
2128             case 'd':
2129               // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2130               m_address_class_map[symbol.st_value] = eAddressClassData;
2131               break;
2132             }
2133           }
2134           if (mapping_symbol)
2135             continue;
2136         }
2137       }
2138 
2139       if (arch.GetMachine() == llvm::Triple::arm) {
2140         if (symbol_type == eSymbolTypeCode) {
2141           if (symbol.st_value & 1) {
2142             // Subtracting 1 from the address effectively unsets the low order
2143             // bit, which results in the address actually pointing to the
2144             // beginning of the symbol. This delta will be used below in
2145             // conjunction with symbol.st_value to produce the final
2146             // symbol_value that we store in the symtab.
2147             symbol_value_offset = -1;
2148             m_address_class_map[symbol.st_value ^ 1] =
2149                 eAddressClassCodeAlternateISA;
2150           } else {
2151             // This address is ARM
2152             m_address_class_map[symbol.st_value] = eAddressClassCode;
2153           }
2154         }
2155       }
2156 
2157       /*
2158        * MIPS:
2159        * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for
2160        * MIPS).
2161        * This allows processor to switch between microMIPS and MIPS without any
2162        * need
2163        * for special mode-control register. However, apart from .debug_line,
2164        * none of
2165        * the ELF/DWARF sections set the ISA bit (for symbol or section). Use
2166        * st_other
2167        * flag to check whether the symbol is microMIPS and then set the address
2168        * class
2169        * accordingly.
2170       */
2171       const llvm::Triple::ArchType llvm_arch = arch.GetMachine();
2172       if (llvm_arch == llvm::Triple::mips ||
2173           llvm_arch == llvm::Triple::mipsel ||
2174           llvm_arch == llvm::Triple::mips64 ||
2175           llvm_arch == llvm::Triple::mips64el) {
2176         if (IS_MICROMIPS(symbol.st_other))
2177           m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2178         else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) {
2179           symbol.st_value = symbol.st_value & (~1ull);
2180           m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
2181         } else {
2182           if (symbol_type == eSymbolTypeCode)
2183             m_address_class_map[symbol.st_value] = eAddressClassCode;
2184           else if (symbol_type == eSymbolTypeData)
2185             m_address_class_map[symbol.st_value] = eAddressClassData;
2186           else
2187             m_address_class_map[symbol.st_value] = eAddressClassUnknown;
2188         }
2189       }
2190     }
2191 
2192     // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB
2193     // symbols. See above for more details.
2194     uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2195 
2196     if (symbol_section_sp == nullptr && section_idx == SHN_ABS &&
2197         symbol.st_size != 0) {
2198       // We don't have a section for a symbol with non-zero size. Create a new
2199       // section for it so the address range covered by the symbol is also
2200       // covered by the module (represented through the section list). It is
2201       // needed so module lookup for the addresses covered by this symbol will
2202       // be successfull. This case happens for absolute symbols.
2203       ConstString fake_section_name(std::string(".absolute.") + symbol_name);
2204       symbol_section_sp =
2205           std::make_shared<Section>(module_sp, this, SHN_ABS, fake_section_name,
2206                                     eSectionTypeAbsoluteAddress, symbol_value,
2207                                     symbol.st_size, 0, 0, 0, SHF_ALLOC);
2208 
2209       module_section_list->AddSection(symbol_section_sp);
2210       section_list->AddSection(symbol_section_sp);
2211     }
2212 
2213     if (symbol_section_sp &&
2214         CalculateType() != ObjectFile::Type::eTypeObjectFile)
2215       symbol_value -= symbol_section_sp->GetFileAddress();
2216 
2217     if (symbol_section_sp && module_section_list &&
2218         module_section_list != section_list) {
2219       const ConstString &sect_name = symbol_section_sp->GetName();
2220       auto section_it = section_name_to_section.find(sect_name.GetCString());
2221       if (section_it == section_name_to_section.end())
2222         section_it =
2223             section_name_to_section
2224                 .emplace(sect_name.GetCString(),
2225                          module_section_list->FindSectionByName(sect_name))
2226                 .first;
2227       if (section_it->second)
2228         symbol_section_sp = section_it->second;
2229     }
2230 
2231     bool is_global = symbol.getBinding() == STB_GLOBAL;
2232     uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2233     bool is_mangled = (symbol_name[0] == '_' && symbol_name[1] == 'Z');
2234 
2235     llvm::StringRef symbol_ref(symbol_name);
2236 
2237     // Symbol names may contain @VERSION suffixes. Find those and strip them
2238     // temporarily.
2239     size_t version_pos = symbol_ref.find('@');
2240     bool has_suffix = version_pos != llvm::StringRef::npos;
2241     llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2242     Mangled mangled(ConstString(symbol_bare), is_mangled);
2243 
2244     // Now append the suffix back to mangled and unmangled names. Only do it if
2245     // the demangling was successful (string is not empty).
2246     if (has_suffix) {
2247       llvm::StringRef suffix = symbol_ref.substr(version_pos);
2248 
2249       llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2250       if (!mangled_name.empty())
2251         mangled.SetMangledName(ConstString((mangled_name + suffix).str()));
2252 
2253       ConstString demangled =
2254           mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2255       llvm::StringRef demangled_name = demangled.GetStringRef();
2256       if (!demangled_name.empty())
2257         mangled.SetDemangledName(ConstString((demangled_name + suffix).str()));
2258     }
2259 
2260     // In ELF all symbol should have a valid size but it is not true for some
2261     // function symbols coming from hand written assembly. As none of the
2262     // function symbol should have 0 size we try to calculate the size for
2263     // these symbols in the symtab with saying that their original size is not
2264     // valid.
2265     bool symbol_size_valid =
2266         symbol.st_size != 0 || symbol.getType() != STT_FUNC;
2267 
2268     Symbol dc_symbol(
2269         i + start_id, // ID is the original symbol table index.
2270         mangled,
2271         symbol_type,                    // Type of this symbol
2272         is_global,                      // Is this globally visible?
2273         false,                          // Is this symbol debug info?
2274         false,                          // Is this symbol a trampoline?
2275         false,                          // Is this symbol artificial?
2276         AddressRange(symbol_section_sp, // Section in which this symbol is
2277                                         // defined or null.
2278                      symbol_value,      // Offset in section or symbol value.
2279                      symbol.st_size),   // Size in bytes of this symbol.
2280         symbol_size_valid,              // Symbol size is valid
2281         has_suffix,                     // Contains linker annotations?
2282         flags);                         // Symbol flags.
2283     symtab->AddSymbol(dc_symbol);
2284   }
2285   return i;
2286 }
2287 
2288 unsigned ObjectFileELF::ParseSymbolTable(Symtab *symbol_table,
2289                                          user_id_t start_id,
2290                                          lldb_private::Section *symtab) {
2291   if (symtab->GetObjectFile() != this) {
2292     // If the symbol table section is owned by a different object file, have it
2293     // do the parsing.
2294     ObjectFileELF *obj_file_elf =
2295         static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2296     return obj_file_elf->ParseSymbolTable(symbol_table, start_id, symtab);
2297   }
2298 
2299   // Get section list for this object file.
2300   SectionList *section_list = m_sections_ap.get();
2301   if (!section_list)
2302     return 0;
2303 
2304   user_id_t symtab_id = symtab->GetID();
2305   const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2306   assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2307          symtab_hdr->sh_type == SHT_DYNSYM);
2308 
2309   // sh_link: section header index of associated string table. Section ID's are
2310   // ones based.
2311   user_id_t strtab_id = symtab_hdr->sh_link + 1;
2312   Section *strtab = section_list->FindSectionByID(strtab_id).get();
2313 
2314   if (symtab && strtab) {
2315     assert(symtab->GetObjectFile() == this);
2316     assert(strtab->GetObjectFile() == this);
2317 
2318     DataExtractor symtab_data;
2319     DataExtractor strtab_data;
2320     if (ReadSectionData(symtab, symtab_data) &&
2321         ReadSectionData(strtab, strtab_data)) {
2322       size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2323 
2324       return ParseSymbols(symbol_table, start_id, section_list, num_symbols,
2325                           symtab_data, strtab_data);
2326     }
2327   }
2328 
2329   return 0;
2330 }
2331 
2332 size_t ObjectFileELF::ParseDynamicSymbols() {
2333   if (m_dynamic_symbols.size())
2334     return m_dynamic_symbols.size();
2335 
2336   SectionList *section_list = GetSectionList();
2337   if (!section_list)
2338     return 0;
2339 
2340   // Find the SHT_DYNAMIC section.
2341   Section *dynsym =
2342       section_list->FindSectionByType(eSectionTypeELFDynamicLinkInfo, true)
2343           .get();
2344   if (!dynsym)
2345     return 0;
2346   assert(dynsym->GetObjectFile() == this);
2347 
2348   ELFDynamic symbol;
2349   DataExtractor dynsym_data;
2350   if (ReadSectionData(dynsym, dynsym_data)) {
2351     const lldb::offset_t section_size = dynsym_data.GetByteSize();
2352     lldb::offset_t cursor = 0;
2353 
2354     while (cursor < section_size) {
2355       if (!symbol.Parse(dynsym_data, &cursor))
2356         break;
2357 
2358       m_dynamic_symbols.push_back(symbol);
2359     }
2360   }
2361 
2362   return m_dynamic_symbols.size();
2363 }
2364 
2365 const ELFDynamic *ObjectFileELF::FindDynamicSymbol(unsigned tag) {
2366   if (!ParseDynamicSymbols())
2367     return NULL;
2368 
2369   DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2370   DynamicSymbolCollIter E = m_dynamic_symbols.end();
2371   for (; I != E; ++I) {
2372     ELFDynamic *symbol = &*I;
2373 
2374     if (symbol->d_tag == tag)
2375       return symbol;
2376   }
2377 
2378   return NULL;
2379 }
2380 
2381 unsigned ObjectFileELF::PLTRelocationType() {
2382   // DT_PLTREL
2383   //  This member specifies the type of relocation entry to which the
2384   //  procedure linkage table refers. The d_val member holds DT_REL or
2385   //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2386   //  must use the same relocation.
2387   const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2388 
2389   if (symbol)
2390     return symbol->d_val;
2391 
2392   return 0;
2393 }
2394 
2395 // Returns the size of the normal plt entries and the offset of the first
2396 // normal plt entry. The 0th entry in the plt table is usually a resolution
2397 // entry which have different size in some architectures then the rest of the
2398 // plt entries.
2399 static std::pair<uint64_t, uint64_t>
2400 GetPltEntrySizeAndOffset(const ELFSectionHeader *rel_hdr,
2401                          const ELFSectionHeader *plt_hdr) {
2402   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2403 
2404   // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are
2405   // 16 bytes. So round the entsize up by the alignment if addralign is set.
2406   elf_xword plt_entsize =
2407       plt_hdr->sh_addralign
2408           ? llvm::alignTo(plt_hdr->sh_entsize, plt_hdr->sh_addralign)
2409           : plt_hdr->sh_entsize;
2410 
2411   // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly.
2412   // PLT entries relocation code in general requires multiple instruction and
2413   // should be greater than 4 bytes in most cases. Try to guess correct size
2414   // just in case.
2415   if (plt_entsize <= 4) {
2416     // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the
2417     // size of the plt entries based on the number of entries and the size of
2418     // the plt section with the assumption that the size of the 0th entry is at
2419     // least as big as the size of the normal entries and it isn't much bigger
2420     // then that.
2421     if (plt_hdr->sh_addralign)
2422       plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign /
2423                     (num_relocations + 1) * plt_hdr->sh_addralign;
2424     else
2425       plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2426   }
2427 
2428   elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2429 
2430   return std::make_pair(plt_entsize, plt_offset);
2431 }
2432 
2433 static unsigned ParsePLTRelocations(
2434     Symtab *symbol_table, user_id_t start_id, unsigned rel_type,
2435     const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2436     const ELFSectionHeader *plt_hdr, const ELFSectionHeader *sym_hdr,
2437     const lldb::SectionSP &plt_section_sp, DataExtractor &rel_data,
2438     DataExtractor &symtab_data, DataExtractor &strtab_data) {
2439   ELFRelocation rel(rel_type);
2440   ELFSymbol symbol;
2441   lldb::offset_t offset = 0;
2442 
2443   uint64_t plt_offset, plt_entsize;
2444   std::tie(plt_entsize, plt_offset) =
2445       GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2446   const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2447 
2448   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2449   reloc_info_fn reloc_type;
2450   reloc_info_fn reloc_symbol;
2451 
2452   if (hdr->Is32Bit()) {
2453     reloc_type = ELFRelocation::RelocType32;
2454     reloc_symbol = ELFRelocation::RelocSymbol32;
2455   } else {
2456     reloc_type = ELFRelocation::RelocType64;
2457     reloc_symbol = ELFRelocation::RelocSymbol64;
2458   }
2459 
2460   unsigned slot_type = hdr->GetRelocationJumpSlotType();
2461   unsigned i;
2462   for (i = 0; i < num_relocations; ++i) {
2463     if (rel.Parse(rel_data, &offset) == false)
2464       break;
2465 
2466     if (reloc_type(rel) != slot_type)
2467       continue;
2468 
2469     lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2470     if (!symbol.Parse(symtab_data, &symbol_offset))
2471       break;
2472 
2473     const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2474     bool is_mangled =
2475         symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2476     uint64_t plt_index = plt_offset + i * plt_entsize;
2477 
2478     Symbol jump_symbol(
2479         i + start_id,          // Symbol table index
2480         symbol_name,           // symbol name.
2481         is_mangled,            // is the symbol name mangled?
2482         eSymbolTypeTrampoline, // Type of this symbol
2483         false,                 // Is this globally visible?
2484         false,                 // Is this symbol debug info?
2485         true,                  // Is this symbol a trampoline?
2486         true,                  // Is this symbol artificial?
2487         plt_section_sp, // Section in which this symbol is defined or null.
2488         plt_index,      // Offset in section or symbol value.
2489         plt_entsize,    // Size in bytes of this symbol.
2490         true,           // Size is valid
2491         false,          // Contains linker annotations?
2492         0);             // Symbol flags.
2493 
2494     symbol_table->AddSymbol(jump_symbol);
2495   }
2496 
2497   return i;
2498 }
2499 
2500 unsigned
2501 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, user_id_t start_id,
2502                                       const ELFSectionHeaderInfo *rel_hdr,
2503                                       user_id_t rel_id) {
2504   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2505 
2506   // The link field points to the associated symbol table.
2507   user_id_t symtab_id = rel_hdr->sh_link;
2508 
2509   // If the link field doesn't point to the appropriate symbol name table then
2510   // try to find it by name as some compiler don't fill in the link fields.
2511   if (!symtab_id)
2512     symtab_id = GetSectionIndexByName(".dynsym");
2513 
2514   // Get PLT section.  We cannot use rel_hdr->sh_info, since current linkers
2515   // point that to the .got.plt or .got section instead of .plt.
2516   user_id_t plt_id = GetSectionIndexByName(".plt");
2517 
2518   if (!symtab_id || !plt_id)
2519     return 0;
2520 
2521   // Section ID's are ones based;
2522   symtab_id++;
2523   plt_id++;
2524 
2525   const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2526   if (!plt_hdr)
2527     return 0;
2528 
2529   const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2530   if (!sym_hdr)
2531     return 0;
2532 
2533   SectionList *section_list = m_sections_ap.get();
2534   if (!section_list)
2535     return 0;
2536 
2537   Section *rel_section = section_list->FindSectionByID(rel_id).get();
2538   if (!rel_section)
2539     return 0;
2540 
2541   SectionSP plt_section_sp(section_list->FindSectionByID(plt_id));
2542   if (!plt_section_sp)
2543     return 0;
2544 
2545   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2546   if (!symtab)
2547     return 0;
2548 
2549   // sh_link points to associated string table.
2550   Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2551   if (!strtab)
2552     return 0;
2553 
2554   DataExtractor rel_data;
2555   if (!ReadSectionData(rel_section, rel_data))
2556     return 0;
2557 
2558   DataExtractor symtab_data;
2559   if (!ReadSectionData(symtab, symtab_data))
2560     return 0;
2561 
2562   DataExtractor strtab_data;
2563   if (!ReadSectionData(strtab, strtab_data))
2564     return 0;
2565 
2566   unsigned rel_type = PLTRelocationType();
2567   if (!rel_type)
2568     return 0;
2569 
2570   return ParsePLTRelocations(symbol_table, start_id, rel_type, &m_header,
2571                              rel_hdr, plt_hdr, sym_hdr, plt_section_sp,
2572                              rel_data, symtab_data, strtab_data);
2573 }
2574 
2575 unsigned ObjectFileELF::ApplyRelocations(
2576     Symtab *symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2577     const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2578     DataExtractor &rel_data, DataExtractor &symtab_data,
2579     DataExtractor &debug_data, Section *rel_section) {
2580   ELFRelocation rel(rel_hdr->sh_type);
2581   lldb::addr_t offset = 0;
2582   const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2583   typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2584   reloc_info_fn reloc_type;
2585   reloc_info_fn reloc_symbol;
2586 
2587   if (hdr->Is32Bit()) {
2588     reloc_type = ELFRelocation::RelocType32;
2589     reloc_symbol = ELFRelocation::RelocSymbol32;
2590   } else {
2591     reloc_type = ELFRelocation::RelocType64;
2592     reloc_symbol = ELFRelocation::RelocSymbol64;
2593   }
2594 
2595   for (unsigned i = 0; i < num_relocations; ++i) {
2596     if (rel.Parse(rel_data, &offset) == false)
2597       break;
2598 
2599     Symbol *symbol = NULL;
2600 
2601     if (hdr->Is32Bit()) {
2602       switch (reloc_type(rel)) {
2603       case R_386_32:
2604       case R_386_PC32:
2605       default:
2606         // FIXME: This asserts with this input:
2607         //
2608         // foo.cpp
2609         // int main(int argc, char **argv) { return 0; }
2610         //
2611         // clang++.exe --target=i686-unknown-linux-gnu -g -c foo.cpp -o foo.o
2612         //
2613         // and running this on the foo.o module.
2614         assert(false && "unexpected relocation type");
2615       }
2616     } else {
2617       switch (reloc_type(rel)) {
2618       case R_X86_64_64: {
2619         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2620         if (symbol) {
2621           addr_t value = symbol->GetAddressRef().GetFileAddress();
2622           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2623           uint64_t *dst = reinterpret_cast<uint64_t *>(
2624               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2625               ELFRelocation::RelocOffset64(rel));
2626           *dst = value + ELFRelocation::RelocAddend64(rel);
2627         }
2628         break;
2629       }
2630       case R_X86_64_32:
2631       case R_X86_64_32S: {
2632         symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2633         if (symbol) {
2634           addr_t value = symbol->GetAddressRef().GetFileAddress();
2635           value += ELFRelocation::RelocAddend32(rel);
2636           assert(
2637               (reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2638               (reloc_type(rel) == R_X86_64_32S &&
2639                ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2640           uint32_t truncated_addr = (value & 0xFFFFFFFF);
2641           DataBufferSP &data_buffer_sp = debug_data.GetSharedDataBuffer();
2642           uint32_t *dst = reinterpret_cast<uint32_t *>(
2643               data_buffer_sp->GetBytes() + rel_section->GetFileOffset() +
2644               ELFRelocation::RelocOffset32(rel));
2645           *dst = truncated_addr;
2646         }
2647         break;
2648       }
2649       case R_X86_64_PC32:
2650       default:
2651         assert(false && "unexpected relocation type");
2652       }
2653     }
2654   }
2655 
2656   return 0;
2657 }
2658 
2659 unsigned ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr,
2660                                               user_id_t rel_id,
2661                                               lldb_private::Symtab *thetab) {
2662   assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2663 
2664   // Parse in the section list if needed.
2665   SectionList *section_list = GetSectionList();
2666   if (!section_list)
2667     return 0;
2668 
2669   // Section ID's are ones based.
2670   user_id_t symtab_id = rel_hdr->sh_link + 1;
2671   user_id_t debug_id = rel_hdr->sh_info + 1;
2672 
2673   const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2674   if (!symtab_hdr)
2675     return 0;
2676 
2677   const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2678   if (!debug_hdr)
2679     return 0;
2680 
2681   Section *rel = section_list->FindSectionByID(rel_id).get();
2682   if (!rel)
2683     return 0;
2684 
2685   Section *symtab = section_list->FindSectionByID(symtab_id).get();
2686   if (!symtab)
2687     return 0;
2688 
2689   Section *debug = section_list->FindSectionByID(debug_id).get();
2690   if (!debug)
2691     return 0;
2692 
2693   DataExtractor rel_data;
2694   DataExtractor symtab_data;
2695   DataExtractor debug_data;
2696 
2697   if (GetData(rel->GetFileOffset(), rel->GetFileSize(), rel_data) &&
2698       GetData(symtab->GetFileOffset(), symtab->GetFileSize(), symtab_data) &&
2699       GetData(debug->GetFileOffset(), debug->GetFileSize(), debug_data)) {
2700     ApplyRelocations(thetab, &m_header, rel_hdr, symtab_hdr, debug_hdr,
2701                      rel_data, symtab_data, debug_data, debug);
2702   }
2703 
2704   return 0;
2705 }
2706 
2707 Symtab *ObjectFileELF::GetSymtab() {
2708   ModuleSP module_sp(GetModule());
2709   if (!module_sp)
2710     return NULL;
2711 
2712   // We always want to use the main object file so we (hopefully) only have one
2713   // cached copy of our symtab, dynamic sections, etc.
2714   ObjectFile *module_obj_file = module_sp->GetObjectFile();
2715   if (module_obj_file && module_obj_file != this)
2716     return module_obj_file->GetSymtab();
2717 
2718   if (m_symtab_ap.get() == NULL) {
2719     SectionList *section_list = module_sp->GetSectionList();
2720     if (!section_list)
2721       return NULL;
2722 
2723     uint64_t symbol_id = 0;
2724     std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2725 
2726     // Sharable objects and dynamic executables usually have 2 distinct symbol
2727     // tables, one named ".symtab", and the other ".dynsym". The dynsym is a
2728     // smaller version of the symtab that only contains global symbols. The
2729     // information found in the dynsym is therefore also found in the symtab,
2730     // while the reverse is not necessarily true.
2731     Section *symtab =
2732         section_list->FindSectionByType(eSectionTypeELFSymbolTable, true).get();
2733     if (!symtab) {
2734       // The symtab section is non-allocable and can be stripped, so if it
2735       // doesn't exist then use the dynsym section which should always be
2736       // there.
2737       symtab =
2738           section_list->FindSectionByType(eSectionTypeELFDynamicSymbols, true)
2739               .get();
2740     }
2741     if (symtab) {
2742       m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2743       symbol_id += ParseSymbolTable(m_symtab_ap.get(), symbol_id, symtab);
2744     }
2745 
2746     // DT_JMPREL
2747     //      If present, this entry's d_ptr member holds the address of
2748     //      relocation
2749     //      entries associated solely with the procedure linkage table.
2750     //      Separating
2751     //      these relocation entries lets the dynamic linker ignore them during
2752     //      process initialization, if lazy binding is enabled. If this entry is
2753     //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2754     //      also be present.
2755     const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2756     if (symbol) {
2757       // Synthesize trampoline symbols to help navigate the PLT.
2758       addr_t addr = symbol->d_ptr;
2759       Section *reloc_section =
2760           section_list->FindSectionContainingFileAddress(addr).get();
2761       if (reloc_section) {
2762         user_id_t reloc_id = reloc_section->GetID();
2763         const ELFSectionHeaderInfo *reloc_header =
2764             GetSectionHeaderByIndex(reloc_id);
2765         assert(reloc_header);
2766 
2767         if (m_symtab_ap == nullptr)
2768           m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2769 
2770         ParseTrampolineSymbols(m_symtab_ap.get(), symbol_id, reloc_header,
2771                                reloc_id);
2772       }
2773     }
2774 
2775     DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo();
2776     if (eh_frame) {
2777       if (m_symtab_ap == nullptr)
2778         m_symtab_ap.reset(new Symtab(this));
2779       ParseUnwindSymbols(m_symtab_ap.get(), eh_frame);
2780     }
2781 
2782     // If we still don't have any symtab then create an empty instance to avoid
2783     // do the section lookup next time.
2784     if (m_symtab_ap == nullptr)
2785       m_symtab_ap.reset(new Symtab(this));
2786 
2787     m_symtab_ap->CalculateSymbolSizes();
2788   }
2789 
2790   return m_symtab_ap.get();
2791 }
2792 
2793 void ObjectFileELF::RelocateSection(lldb_private::Section *section)
2794 {
2795   static const llvm::StringRef debug_prefix(".debug");
2796 
2797   // Set relocated bit so we stop getting called, regardless of whether we
2798   // actually relocate.
2799   section->SetIsRelocated(true);
2800 
2801   // We only relocate in ELF relocatable files
2802   if (CalculateType() != eTypeObjectFile)
2803     return;
2804 
2805   llvm::StringRef section_name = section->GetName().GetStringRef();
2806   // Can't relocate that which can't be named
2807   if (section_name.empty())
2808     return;
2809 
2810   // We don't relocate non-debug sections at the moment
2811   if (section_name.startswith(debug_prefix))
2812     return;
2813 
2814   // Relocation section names to look for
2815   std::string needle = std::string(".rel") + section_name.str();
2816   std::string needlea = std::string(".rela") + section_name.str();
2817 
2818   for (SectionHeaderCollIter I = m_section_headers.begin();
2819        I != m_section_headers.end(); ++I) {
2820     if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) {
2821       const char *hay_name = I->section_name.GetCString();
2822       if (hay_name == nullptr)
2823         continue;
2824       if (needle == hay_name || needlea == hay_name) {
2825         const ELFSectionHeader &reloc_header = *I;
2826         user_id_t reloc_id = SectionIndex(I);
2827         RelocateDebugSections(&reloc_header, reloc_id, GetSymtab());
2828         break;
2829       }
2830     }
2831   }
2832 }
2833 
2834 void ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table,
2835                                        DWARFCallFrameInfo *eh_frame) {
2836   SectionList *section_list = GetSectionList();
2837   if (!section_list)
2838     return;
2839 
2840   // First we save the new symbols into a separate list and add them to the
2841   // symbol table after we colleced all symbols we want to add. This is
2842   // necessary because adding a new symbol invalidates the internal index of
2843   // the symtab what causing the next lookup to be slow because it have to
2844   // recalculate the index first.
2845   std::vector<Symbol> new_symbols;
2846 
2847   eh_frame->ForEachFDEEntries([this, symbol_table, section_list, &new_symbols](
2848       lldb::addr_t file_addr, uint32_t size, dw_offset_t) {
2849     Symbol *symbol = symbol_table->FindSymbolAtFileAddress(file_addr);
2850     if (symbol) {
2851       if (!symbol->GetByteSizeIsValid()) {
2852         symbol->SetByteSize(size);
2853         symbol->SetSizeIsSynthesized(true);
2854       }
2855     } else {
2856       SectionSP section_sp =
2857           section_list->FindSectionContainingFileAddress(file_addr);
2858       if (section_sp) {
2859         addr_t offset = file_addr - section_sp->GetFileAddress();
2860         const char *symbol_name = GetNextSyntheticSymbolName().GetCString();
2861         uint64_t symbol_id = symbol_table->GetNumSymbols();
2862         Symbol eh_symbol(
2863             symbol_id,       // Symbol table index.
2864             symbol_name,     // Symbol name.
2865             false,           // Is the symbol name mangled?
2866             eSymbolTypeCode, // Type of this symbol.
2867             true,            // Is this globally visible?
2868             false,           // Is this symbol debug info?
2869             false,           // Is this symbol a trampoline?
2870             true,            // Is this symbol artificial?
2871             section_sp,      // Section in which this symbol is defined or null.
2872             offset,          // Offset in section or symbol value.
2873             0,     // Size:          Don't specify the size as an FDE can
2874             false, // Size is valid: cover multiple symbols.
2875             false, // Contains linker annotations?
2876             0);    // Symbol flags.
2877         new_symbols.push_back(eh_symbol);
2878       }
2879     }
2880     return true;
2881   });
2882 
2883   for (const Symbol &s : new_symbols)
2884     symbol_table->AddSymbol(s);
2885 }
2886 
2887 bool ObjectFileELF::IsStripped() {
2888   // TODO: determine this for ELF
2889   return false;
2890 }
2891 
2892 //===----------------------------------------------------------------------===//
2893 // Dump
2894 //
2895 // Dump the specifics of the runtime file container (such as any headers
2896 // segments, sections, etc).
2897 //----------------------------------------------------------------------
2898 void ObjectFileELF::Dump(Stream *s) {
2899   ModuleSP module_sp(GetModule());
2900   if (!module_sp) {
2901     return;
2902   }
2903 
2904   std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex());
2905   s->Printf("%p: ", static_cast<void *>(this));
2906   s->Indent();
2907   s->PutCString("ObjectFileELF");
2908 
2909   ArchSpec header_arch;
2910   GetArchitecture(header_arch);
2911 
2912   *s << ", file = '" << m_file
2913      << "', arch = " << header_arch.GetArchitectureName() << "\n";
2914 
2915   DumpELFHeader(s, m_header);
2916   s->EOL();
2917   DumpELFProgramHeaders(s);
2918   s->EOL();
2919   DumpELFSectionHeaders(s);
2920   s->EOL();
2921   SectionList *section_list = GetSectionList();
2922   if (section_list)
2923     section_list->Dump(s, NULL, true, UINT32_MAX);
2924   Symtab *symtab = GetSymtab();
2925   if (symtab)
2926     symtab->Dump(s, NULL, eSortOrderNone);
2927   s->EOL();
2928   DumpDependentModules(s);
2929   s->EOL();
2930 }
2931 
2932 //----------------------------------------------------------------------
2933 // DumpELFHeader
2934 //
2935 // Dump the ELF header to the specified output stream
2936 //----------------------------------------------------------------------
2937 void ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) {
2938   s->PutCString("ELF Header\n");
2939   s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2940   s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG1],
2941             header.e_ident[EI_MAG1]);
2942   s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG2],
2943             header.e_ident[EI_MAG2]);
2944   s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n", header.e_ident[EI_MAG3],
2945             header.e_ident[EI_MAG3]);
2946 
2947   s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2948   s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2949   DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2950   s->Printf("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2951   s->Printf("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2952 
2953   s->Printf("e_type      = 0x%4.4x ", header.e_type);
2954   DumpELFHeader_e_type(s, header.e_type);
2955   s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2956   s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2957   s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2958   s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2959   s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2960   s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2961   s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2962   s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2963   s->Printf("e_phnum     = 0x%8.8x\n", header.e_phnum);
2964   s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2965   s->Printf("e_shnum     = 0x%8.8x\n", header.e_shnum);
2966   s->Printf("e_shstrndx  = 0x%8.8x\n", header.e_shstrndx);
2967 }
2968 
2969 //----------------------------------------------------------------------
2970 // DumpELFHeader_e_type
2971 //
2972 // Dump an token value for the ELF header member e_type
2973 //----------------------------------------------------------------------
2974 void ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) {
2975   switch (e_type) {
2976   case ET_NONE:
2977     *s << "ET_NONE";
2978     break;
2979   case ET_REL:
2980     *s << "ET_REL";
2981     break;
2982   case ET_EXEC:
2983     *s << "ET_EXEC";
2984     break;
2985   case ET_DYN:
2986     *s << "ET_DYN";
2987     break;
2988   case ET_CORE:
2989     *s << "ET_CORE";
2990     break;
2991   default:
2992     break;
2993   }
2994 }
2995 
2996 //----------------------------------------------------------------------
2997 // DumpELFHeader_e_ident_EI_DATA
2998 //
2999 // Dump an token value for the ELF header member e_ident[EI_DATA]
3000 //----------------------------------------------------------------------
3001 void ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s,
3002                                                   unsigned char ei_data) {
3003   switch (ei_data) {
3004   case ELFDATANONE:
3005     *s << "ELFDATANONE";
3006     break;
3007   case ELFDATA2LSB:
3008     *s << "ELFDATA2LSB - Little Endian";
3009     break;
3010   case ELFDATA2MSB:
3011     *s << "ELFDATA2MSB - Big Endian";
3012     break;
3013   default:
3014     break;
3015   }
3016 }
3017 
3018 //----------------------------------------------------------------------
3019 // DumpELFProgramHeader
3020 //
3021 // Dump a single ELF program header to the specified output stream
3022 //----------------------------------------------------------------------
3023 void ObjectFileELF::DumpELFProgramHeader(Stream *s,
3024                                          const ELFProgramHeader &ph) {
3025   DumpELFProgramHeader_p_type(s, ph.p_type);
3026   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset,
3027             ph.p_vaddr, ph.p_paddr);
3028   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz,
3029             ph.p_flags);
3030 
3031   DumpELFProgramHeader_p_flags(s, ph.p_flags);
3032   s->Printf(") %8.8" PRIx64, ph.p_align);
3033 }
3034 
3035 //----------------------------------------------------------------------
3036 // DumpELFProgramHeader_p_type
3037 //
3038 // Dump an token value for the ELF program header member p_type which describes
3039 // the type of the program header
3040 // ----------------------------------------------------------------------
3041 void ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) {
3042   const int kStrWidth = 15;
3043   switch (p_type) {
3044     CASE_AND_STREAM(s, PT_NULL, kStrWidth);
3045     CASE_AND_STREAM(s, PT_LOAD, kStrWidth);
3046     CASE_AND_STREAM(s, PT_DYNAMIC, kStrWidth);
3047     CASE_AND_STREAM(s, PT_INTERP, kStrWidth);
3048     CASE_AND_STREAM(s, PT_NOTE, kStrWidth);
3049     CASE_AND_STREAM(s, PT_SHLIB, kStrWidth);
3050     CASE_AND_STREAM(s, PT_PHDR, kStrWidth);
3051     CASE_AND_STREAM(s, PT_TLS, kStrWidth);
3052     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
3053   default:
3054     s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
3055     break;
3056   }
3057 }
3058 
3059 //----------------------------------------------------------------------
3060 // DumpELFProgramHeader_p_flags
3061 //
3062 // Dump an token value for the ELF program header member p_flags
3063 //----------------------------------------------------------------------
3064 void ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) {
3065   *s << ((p_flags & PF_X) ? "PF_X" : "    ")
3066      << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
3067      << ((p_flags & PF_W) ? "PF_W" : "    ")
3068      << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
3069      << ((p_flags & PF_R) ? "PF_R" : "    ");
3070 }
3071 
3072 //----------------------------------------------------------------------
3073 // DumpELFProgramHeaders
3074 //
3075 // Dump all of the ELF program header to the specified output stream
3076 //----------------------------------------------------------------------
3077 void ObjectFileELF::DumpELFProgramHeaders(Stream *s) {
3078   if (!ParseProgramHeaders())
3079     return;
3080 
3081   s->PutCString("Program Headers\n");
3082   s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
3083                 "p_filesz p_memsz  p_flags                   p_align\n");
3084   s->PutCString("==== --------------- -------- -------- -------- "
3085                 "-------- -------- ------------------------- --------\n");
3086 
3087   uint32_t idx = 0;
3088   for (ProgramHeaderCollConstIter I = m_program_headers.begin();
3089        I != m_program_headers.end(); ++I, ++idx) {
3090     s->Printf("[%2u] ", idx);
3091     ObjectFileELF::DumpELFProgramHeader(s, *I);
3092     s->EOL();
3093   }
3094 }
3095 
3096 //----------------------------------------------------------------------
3097 // DumpELFSectionHeader
3098 //
3099 // Dump a single ELF section header to the specified output stream
3100 //----------------------------------------------------------------------
3101 void ObjectFileELF::DumpELFSectionHeader(Stream *s,
3102                                          const ELFSectionHeaderInfo &sh) {
3103   s->Printf("%8.8x ", sh.sh_name);
3104   DumpELFSectionHeader_sh_type(s, sh.sh_type);
3105   s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
3106   DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
3107   s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr,
3108             sh.sh_offset, sh.sh_size);
3109   s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
3110   s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
3111 }
3112 
3113 //----------------------------------------------------------------------
3114 // DumpELFSectionHeader_sh_type
3115 //
3116 // Dump an token value for the ELF section header member sh_type which
3117 // describes the type of the section
3118 //----------------------------------------------------------------------
3119 void ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) {
3120   const int kStrWidth = 12;
3121   switch (sh_type) {
3122     CASE_AND_STREAM(s, SHT_NULL, kStrWidth);
3123     CASE_AND_STREAM(s, SHT_PROGBITS, kStrWidth);
3124     CASE_AND_STREAM(s, SHT_SYMTAB, kStrWidth);
3125     CASE_AND_STREAM(s, SHT_STRTAB, kStrWidth);
3126     CASE_AND_STREAM(s, SHT_RELA, kStrWidth);
3127     CASE_AND_STREAM(s, SHT_HASH, kStrWidth);
3128     CASE_AND_STREAM(s, SHT_DYNAMIC, kStrWidth);
3129     CASE_AND_STREAM(s, SHT_NOTE, kStrWidth);
3130     CASE_AND_STREAM(s, SHT_NOBITS, kStrWidth);
3131     CASE_AND_STREAM(s, SHT_REL, kStrWidth);
3132     CASE_AND_STREAM(s, SHT_SHLIB, kStrWidth);
3133     CASE_AND_STREAM(s, SHT_DYNSYM, kStrWidth);
3134     CASE_AND_STREAM(s, SHT_LOPROC, kStrWidth);
3135     CASE_AND_STREAM(s, SHT_HIPROC, kStrWidth);
3136     CASE_AND_STREAM(s, SHT_LOUSER, kStrWidth);
3137     CASE_AND_STREAM(s, SHT_HIUSER, kStrWidth);
3138   default:
3139     s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
3140     break;
3141   }
3142 }
3143 
3144 //----------------------------------------------------------------------
3145 // DumpELFSectionHeader_sh_flags
3146 //
3147 // Dump an token value for the ELF section header member sh_flags
3148 //----------------------------------------------------------------------
3149 void ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s,
3150                                                   elf_xword sh_flags) {
3151   *s << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
3152      << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
3153      << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
3154      << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
3155      << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
3156 }
3157 
3158 //----------------------------------------------------------------------
3159 // DumpELFSectionHeaders
3160 //
3161 // Dump all of the ELF section header to the specified output stream
3162 //----------------------------------------------------------------------
3163 void ObjectFileELF::DumpELFSectionHeaders(Stream *s) {
3164   if (!ParseSectionHeaders())
3165     return;
3166 
3167   s->PutCString("Section Headers\n");
3168   s->PutCString("IDX  name     type         flags                            "
3169                 "addr     offset   size     link     info     addralgn "
3170                 "entsize  Name\n");
3171   s->PutCString("==== -------- ------------ -------------------------------- "
3172                 "-------- -------- -------- -------- -------- -------- "
3173                 "-------- ====================\n");
3174 
3175   uint32_t idx = 0;
3176   for (SectionHeaderCollConstIter I = m_section_headers.begin();
3177        I != m_section_headers.end(); ++I, ++idx) {
3178     s->Printf("[%2u] ", idx);
3179     ObjectFileELF::DumpELFSectionHeader(s, *I);
3180     const char *section_name = I->section_name.AsCString("");
3181     if (section_name)
3182       *s << ' ' << section_name << "\n";
3183   }
3184 }
3185 
3186 void ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) {
3187   size_t num_modules = ParseDependentModules();
3188 
3189   if (num_modules > 0) {
3190     s->PutCString("Dependent Modules:\n");
3191     for (unsigned i = 0; i < num_modules; ++i) {
3192       const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3193       s->Printf("   %s\n", spec.GetFilename().GetCString());
3194     }
3195   }
3196 }
3197 
3198 bool ObjectFileELF::GetArchitecture(ArchSpec &arch) {
3199   if (!ParseHeader())
3200     return false;
3201 
3202   if (m_section_headers.empty()) {
3203     // Allow elf notes to be parsed which may affect the detected architecture.
3204     ParseSectionHeaders();
3205   }
3206 
3207   if (CalculateType() == eTypeCoreFile &&
3208       m_arch_spec.TripleOSIsUnspecifiedUnknown()) {
3209     // Core files don't have section headers yet they have PT_NOTE program
3210     // headers that might shed more light on the architecture
3211     if (ParseProgramHeaders()) {
3212       for (size_t i = 1, count = GetProgramHeaderCount(); i <= count; ++i) {
3213         const elf::ELFProgramHeader *header = GetProgramHeaderByIndex(i);
3214         if (header && header->p_type == PT_NOTE && header->p_offset != 0 &&
3215             header->p_filesz > 0) {
3216           DataExtractor data;
3217           if (data.SetData(m_data, header->p_offset, header->p_filesz) ==
3218               header->p_filesz) {
3219             lldb_private::UUID uuid;
3220             RefineModuleDetailsFromNote(data, m_arch_spec, uuid);
3221           }
3222         }
3223       }
3224     }
3225   }
3226   arch = m_arch_spec;
3227   return true;
3228 }
3229 
3230 ObjectFile::Type ObjectFileELF::CalculateType() {
3231   switch (m_header.e_type) {
3232   case llvm::ELF::ET_NONE:
3233     // 0 - No file type
3234     return eTypeUnknown;
3235 
3236   case llvm::ELF::ET_REL:
3237     // 1 - Relocatable file
3238     return eTypeObjectFile;
3239 
3240   case llvm::ELF::ET_EXEC:
3241     // 2 - Executable file
3242     return eTypeExecutable;
3243 
3244   case llvm::ELF::ET_DYN:
3245     // 3 - Shared object file
3246     return eTypeSharedLibrary;
3247 
3248   case ET_CORE:
3249     // 4 - Core file
3250     return eTypeCoreFile;
3251 
3252   default:
3253     break;
3254   }
3255   return eTypeUnknown;
3256 }
3257 
3258 ObjectFile::Strata ObjectFileELF::CalculateStrata() {
3259   switch (m_header.e_type) {
3260   case llvm::ELF::ET_NONE:
3261     // 0 - No file type
3262     return eStrataUnknown;
3263 
3264   case llvm::ELF::ET_REL:
3265     // 1 - Relocatable file
3266     return eStrataUnknown;
3267 
3268   case llvm::ELF::ET_EXEC:
3269     // 2 - Executable file
3270     // TODO: is there any way to detect that an executable is a kernel
3271     // related executable by inspecting the program headers, section headers,
3272     // symbols, or any other flag bits???
3273     return eStrataUser;
3274 
3275   case llvm::ELF::ET_DYN:
3276     // 3 - Shared object file
3277     // TODO: is there any way to detect that an shared library is a kernel
3278     // related executable by inspecting the program headers, section headers,
3279     // symbols, or any other flag bits???
3280     return eStrataUnknown;
3281 
3282   case ET_CORE:
3283     // 4 - Core file
3284     // TODO: is there any way to detect that an core file is a kernel
3285     // related executable by inspecting the program headers, section headers,
3286     // symbols, or any other flag bits???
3287     return eStrataUnknown;
3288 
3289   default:
3290     break;
3291   }
3292   return eStrataUnknown;
3293 }
3294 
3295 size_t ObjectFileELF::ReadSectionData(Section *section,
3296                        lldb::offset_t section_offset, void *dst,
3297                        size_t dst_len) {
3298   // If some other objectfile owns this data, pass this to them.
3299   if (section->GetObjectFile() != this)
3300     return section->GetObjectFile()->ReadSectionData(section, section_offset,
3301                                                      dst, dst_len);
3302 
3303   if (!section->Test(SHF_COMPRESSED))
3304     return ObjectFile::ReadSectionData(section, section_offset, dst, dst_len);
3305 
3306   // For compressed sections we need to read to full data to be able to
3307   // decompress.
3308   DataExtractor data;
3309   ReadSectionData(section, data);
3310   return data.CopyData(section_offset, dst_len, dst);
3311 }
3312 
3313 size_t ObjectFileELF::ReadSectionData(Section *section,
3314                                       DataExtractor &section_data) {
3315   // If some other objectfile owns this data, pass this to them.
3316   if (section->GetObjectFile() != this)
3317     return section->GetObjectFile()->ReadSectionData(section, section_data);
3318 
3319   Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_MODULES);
3320 
3321   size_t result = ObjectFile::ReadSectionData(section, section_data);
3322   if (result == 0 || !section->Test(SHF_COMPRESSED))
3323     return result;
3324 
3325   auto Decompressor = llvm::object::Decompressor::create(
3326       section->GetName().GetStringRef(),
3327       {reinterpret_cast<const char *>(section_data.GetDataStart()),
3328        size_t(section_data.GetByteSize())},
3329       GetByteOrder() == eByteOrderLittle, GetAddressByteSize() == 8);
3330   if (!Decompressor) {
3331     LLDB_LOG_ERROR(log, Decompressor.takeError(),
3332                    "Unable to initialize decompressor for section {0}",
3333                    section->GetName());
3334     return result;
3335   }
3336   auto buffer_sp =
3337       std::make_shared<DataBufferHeap>(Decompressor->getDecompressedSize(), 0);
3338   if (auto Error = Decompressor->decompress(
3339           {reinterpret_cast<char *>(buffer_sp->GetBytes()),
3340            size_t(buffer_sp->GetByteSize())})) {
3341     LLDB_LOG_ERROR(log, std::move(Error), "Decompression of section {0} failed",
3342                    section->GetName());
3343     return result;
3344   }
3345   section_data.SetData(buffer_sp);
3346   return buffer_sp->GetByteSize();
3347 }
3348 
3349 bool ObjectFileELF::AnySegmentHasPhysicalAddress() {
3350   size_t header_count = ParseProgramHeaders();
3351   for (size_t i = 1; i <= header_count; ++i) {
3352     auto header = GetProgramHeaderByIndex(i);
3353     if (header->p_paddr != 0)
3354       return true;
3355   }
3356   return false;
3357 }
3358 
3359 std::vector<ObjectFile::LoadableData>
3360 ObjectFileELF::GetLoadableData(Target &target) {
3361   // Create a list of loadable data from loadable segments, using physical
3362   // addresses if they aren't all null
3363   std::vector<LoadableData> loadables;
3364   size_t header_count = ParseProgramHeaders();
3365   bool should_use_paddr = AnySegmentHasPhysicalAddress();
3366   for (size_t i = 1; i <= header_count; ++i) {
3367     LoadableData loadable;
3368     auto header = GetProgramHeaderByIndex(i);
3369     if (header->p_type != llvm::ELF::PT_LOAD)
3370       continue;
3371     loadable.Dest = should_use_paddr ? header->p_paddr : header->p_vaddr;
3372     if (loadable.Dest == LLDB_INVALID_ADDRESS)
3373       continue;
3374     if (header->p_filesz == 0)
3375       continue;
3376     auto segment_data = GetSegmentDataByIndex(i);
3377     loadable.Contents = llvm::ArrayRef<uint8_t>(segment_data.GetDataStart(),
3378                                                 segment_data.GetByteSize());
3379     loadables.push_back(loadable);
3380   }
3381   return loadables;
3382 }
3383