1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 // 601 // WARNING : This function is being deprecated 602 // It's functionality has moved to ArchSpec::SetArchitecture 603 // This function is only being kept to validate the move. 604 // 605 // TODO : Remove this function 606 static bool 607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 608 { 609 switch (osabi_byte) 610 { 611 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 612 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 613 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 614 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 615 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 616 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 617 default: 618 ostype = llvm::Triple::OSType::UnknownOS; 619 } 620 return ostype != llvm::Triple::OSType::UnknownOS; 621 } 622 623 size_t 624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 625 lldb::DataBufferSP& data_sp, 626 lldb::offset_t data_offset, 627 lldb::offset_t file_offset, 628 lldb::offset_t length, 629 lldb_private::ModuleSpecList &specs) 630 { 631 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 632 633 const size_t initial_count = specs.GetSize(); 634 635 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 636 { 637 DataExtractor data; 638 data.SetData(data_sp); 639 elf::ELFHeader header; 640 if (header.Parse(data, &data_offset)) 641 { 642 if (data_sp) 643 { 644 ModuleSpec spec (file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 648 header.e_machine, 649 sub_type, 650 header.e_ident[EI_OSABI]); 651 652 if (spec.GetArchitecture().IsValid()) 653 { 654 llvm::Triple::OSType ostype; 655 llvm::Triple::VendorType vendor; 656 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 657 658 if (log) 659 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 665 // 666 // Validate it is ok to remove GetOsFromOSABI 667 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 668 assert(spec_ostype == ostype); 669 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 670 { 671 if (log) 672 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 673 } 674 675 // Try to get the UUID from the section list. Usually that's at the end, so 676 // map the file in if we don't have it already. 677 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 678 if (section_header_end > data_sp->GetByteSize()) 679 { 680 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 681 data.SetData(data_sp); 682 } 683 684 uint32_t gnu_debuglink_crc = 0; 685 std::string gnu_debuglink_file; 686 SectionHeaderColl section_headers; 687 lldb_private::UUID &uuid = spec.GetUUID(); 688 689 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 690 691 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 692 693 if (log) 694 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 695 696 if (!uuid.IsValid()) 697 { 698 uint32_t core_notes_crc = 0; 699 700 if (!gnu_debuglink_crc) 701 { 702 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 703 "Calculating module crc32 %s with size %" PRIu64 " KiB", 704 file.GetLastPathComponent().AsCString(), 705 (file.GetByteSize()-file_offset)/1024); 706 707 // For core files - which usually don't happen to have a gnu_debuglink, 708 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 709 // Thus we will need to fallback to something simpler. 710 if (header.e_type == llvm::ELF::ET_CORE) 711 { 712 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 713 if (program_headers_end > data_sp->GetByteSize()) 714 { 715 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 716 data.SetData(data_sp); 717 } 718 ProgramHeaderColl program_headers; 719 GetProgramHeaderInfo(program_headers, data, header); 720 721 size_t segment_data_end = 0; 722 for (ProgramHeaderCollConstIter I = program_headers.begin(); 723 I != program_headers.end(); ++I) 724 { 725 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 726 } 727 728 if (segment_data_end > data_sp->GetByteSize()) 729 { 730 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 731 data.SetData(data_sp); 732 } 733 734 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 735 } 736 else 737 { 738 // Need to map entire file into memory to calculate the crc. 739 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 740 data.SetData(data_sp); 741 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 742 } 743 } 744 if (gnu_debuglink_crc) 745 { 746 // Use 4 bytes of crc from the .gnu_debuglink section. 747 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 748 uuid.SetBytes (uuidt, sizeof(uuidt)); 749 } 750 else if (core_notes_crc) 751 { 752 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 753 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 754 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 755 uuid.SetBytes (uuidt, sizeof(uuidt)); 756 } 757 } 758 759 specs.Append(spec); 760 } 761 } 762 } 763 } 764 765 return specs.GetSize() - initial_count; 766 } 767 768 //------------------------------------------------------------------ 769 // PluginInterface protocol 770 //------------------------------------------------------------------ 771 lldb_private::ConstString 772 ObjectFileELF::GetPluginName() 773 { 774 return GetPluginNameStatic(); 775 } 776 777 uint32_t 778 ObjectFileELF::GetPluginVersion() 779 { 780 return m_plugin_version; 781 } 782 //------------------------------------------------------------------ 783 // ObjectFile protocol 784 //------------------------------------------------------------------ 785 786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 787 DataBufferSP& data_sp, 788 lldb::offset_t data_offset, 789 const FileSpec* file, 790 lldb::offset_t file_offset, 791 lldb::offset_t length) : 792 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 793 m_header(), 794 m_uuid(), 795 m_gnu_debuglink_file(), 796 m_gnu_debuglink_crc(0), 797 m_program_headers(), 798 m_section_headers(), 799 m_dynamic_symbols(), 800 m_filespec_ap(), 801 m_entry_point_address(), 802 m_arch_spec() 803 { 804 if (file) 805 m_file = *file; 806 ::memset(&m_header, 0, sizeof(m_header)); 807 } 808 809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 810 DataBufferSP& header_data_sp, 811 const lldb::ProcessSP &process_sp, 812 addr_t header_addr) : 813 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 814 m_header(), 815 m_uuid(), 816 m_gnu_debuglink_file(), 817 m_gnu_debuglink_crc(0), 818 m_program_headers(), 819 m_section_headers(), 820 m_dynamic_symbols(), 821 m_filespec_ap(), 822 m_entry_point_address(), 823 m_arch_spec() 824 { 825 ::memset(&m_header, 0, sizeof(m_header)); 826 } 827 828 ObjectFileELF::~ObjectFileELF() 829 { 830 } 831 832 bool 833 ObjectFileELF::IsExecutable() const 834 { 835 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 836 } 837 838 bool 839 ObjectFileELF::SetLoadAddress (Target &target, 840 lldb::addr_t value, 841 bool value_is_offset) 842 { 843 ModuleSP module_sp = GetModule(); 844 if (module_sp) 845 { 846 size_t num_loaded_sections = 0; 847 SectionList *section_list = GetSectionList (); 848 if (section_list) 849 { 850 if (!value_is_offset) 851 { 852 bool found_offset = false; 853 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 854 { 855 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 856 if (header == nullptr) 857 continue; 858 859 if (header->p_type != PT_LOAD || header->p_offset != 0) 860 continue; 861 862 value = value - header->p_vaddr; 863 found_offset = true; 864 break; 865 } 866 if (!found_offset) 867 return false; 868 } 869 870 const size_t num_sections = section_list->GetSize(); 871 size_t sect_idx = 0; 872 873 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 874 { 875 // Iterate through the object file sections to find all 876 // of the sections that have SHF_ALLOC in their flag bits. 877 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 878 // if (section_sp && !section_sp->IsThreadSpecific()) 879 if (section_sp && section_sp->Test(SHF_ALLOC)) 880 { 881 lldb::addr_t load_addr = section_sp->GetFileAddress() + value; 882 883 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 884 // the bytes are the overflow from the addition. 885 if (GetAddressByteSize() == 4) 886 load_addr &= 0xFFFFFFFF; 887 888 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 889 ++num_loaded_sections; 890 } 891 } 892 return num_loaded_sections > 0; 893 } 894 } 895 return false; 896 } 897 898 ByteOrder 899 ObjectFileELF::GetByteOrder() const 900 { 901 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 902 return eByteOrderBig; 903 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 904 return eByteOrderLittle; 905 return eByteOrderInvalid; 906 } 907 908 uint32_t 909 ObjectFileELF::GetAddressByteSize() const 910 { 911 return m_data.GetAddressByteSize(); 912 } 913 914 // Top 16 bits of the `Symbol` flags are available. 915 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 916 917 AddressClass 918 ObjectFileELF::GetAddressClass (addr_t file_addr) 919 { 920 Symtab* symtab = GetSymtab(); 921 if (!symtab) 922 return eAddressClassUnknown; 923 924 // The address class is determined based on the symtab. Ask it from the object file what 925 // contains the symtab information. 926 ObjectFile* symtab_objfile = symtab->GetObjectFile(); 927 if (symtab_objfile != nullptr && symtab_objfile != this) 928 return symtab_objfile->GetAddressClass(file_addr); 929 930 auto res = ObjectFile::GetAddressClass (file_addr); 931 if (res != eAddressClassCode) 932 return res; 933 934 auto ub = m_address_class_map.upper_bound(file_addr); 935 if (ub == m_address_class_map.begin()) 936 { 937 // No entry in the address class map before the address. Return 938 // default address class for an address in a code section. 939 return eAddressClassCode; 940 } 941 942 // Move iterator to the address class entry preceding address 943 --ub; 944 945 return ub->second; 946 } 947 948 size_t 949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 950 { 951 return std::distance(m_section_headers.begin(), I) + 1u; 952 } 953 954 size_t 955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 956 { 957 return std::distance(m_section_headers.begin(), I) + 1u; 958 } 959 960 bool 961 ObjectFileELF::ParseHeader() 962 { 963 lldb::offset_t offset = 0; 964 if (!m_header.Parse(m_data, &offset)) 965 return false; 966 967 if (!IsInMemory()) 968 return true; 969 970 // For in memory object files m_data might not contain the full object file. Try to load it 971 // until the end of the "Section header table" what is at the end of the ELF file. 972 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 973 if (m_data.GetByteSize() < file_size) 974 { 975 ProcessSP process_sp (m_process_wp.lock()); 976 if (!process_sp) 977 return false; 978 979 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 980 if (!data_sp) 981 return false; 982 m_data.SetData(data_sp, 0, file_size); 983 } 984 985 return true; 986 } 987 988 bool 989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 990 { 991 // Need to parse the section list to get the UUIDs, so make sure that's been done. 992 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 993 return false; 994 995 if (m_uuid.IsValid()) 996 { 997 // We have the full build id uuid. 998 *uuid = m_uuid; 999 return true; 1000 } 1001 else if (GetType() == ObjectFile::eTypeCoreFile) 1002 { 1003 uint32_t core_notes_crc = 0; 1004 1005 if (!ParseProgramHeaders()) 1006 return false; 1007 1008 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 1009 1010 if (core_notes_crc) 1011 { 1012 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 1013 // look different form .gnu_debuglink crc - followed by 4 bytes of note 1014 // segments crc. 1015 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 1016 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1017 } 1018 } 1019 else 1020 { 1021 if (!m_gnu_debuglink_crc) 1022 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1023 if (m_gnu_debuglink_crc) 1024 { 1025 // Use 4 bytes of crc from the .gnu_debuglink section. 1026 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1027 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1028 } 1029 } 1030 1031 if (m_uuid.IsValid()) 1032 { 1033 *uuid = m_uuid; 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 lldb_private::FileSpecList 1041 ObjectFileELF::GetDebugSymbolFilePaths() 1042 { 1043 FileSpecList file_spec_list; 1044 1045 if (!m_gnu_debuglink_file.empty()) 1046 { 1047 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1048 file_spec_list.Append (file_spec); 1049 } 1050 return file_spec_list; 1051 } 1052 1053 uint32_t 1054 ObjectFileELF::GetDependentModules(FileSpecList &files) 1055 { 1056 size_t num_modules = ParseDependentModules(); 1057 uint32_t num_specs = 0; 1058 1059 for (unsigned i = 0; i < num_modules; ++i) 1060 { 1061 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1062 num_specs++; 1063 } 1064 1065 return num_specs; 1066 } 1067 1068 Address 1069 ObjectFileELF::GetImageInfoAddress(Target *target) 1070 { 1071 if (!ParseDynamicSymbols()) 1072 return Address(); 1073 1074 SectionList *section_list = GetSectionList(); 1075 if (!section_list) 1076 return Address(); 1077 1078 // Find the SHT_DYNAMIC (.dynamic) section. 1079 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1080 if (!dynsym_section_sp) 1081 return Address(); 1082 assert (dynsym_section_sp->GetObjectFile() == this); 1083 1084 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1085 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1086 if (!dynsym_hdr) 1087 return Address(); 1088 1089 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1090 { 1091 ELFDynamic &symbol = m_dynamic_symbols[i]; 1092 1093 if (symbol.d_tag == DT_DEBUG) 1094 { 1095 // Compute the offset as the number of previous entries plus the 1096 // size of d_tag. 1097 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1098 return Address(dynsym_section_sp, offset); 1099 } 1100 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE. 1101 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target) 1102 { 1103 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1104 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1105 if (dyn_base == LLDB_INVALID_ADDRESS) 1106 return Address(); 1107 1108 Error error; 1109 if (symbol.d_tag == DT_MIPS_RLD_MAP) 1110 { 1111 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1112 Address addr; 1113 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1114 return addr; 1115 } 1116 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) 1117 { 1118 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag. 1119 uint64_t rel_offset; 1120 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1121 if (error.Success() && rel_offset != UINT64_MAX) 1122 { 1123 Address addr; 1124 addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1125 addr.SetOffset (debug_ptr_address); 1126 return addr; 1127 } 1128 } 1129 } 1130 } 1131 1132 return Address(); 1133 } 1134 1135 lldb_private::Address 1136 ObjectFileELF::GetEntryPointAddress () 1137 { 1138 if (m_entry_point_address.IsValid()) 1139 return m_entry_point_address; 1140 1141 if (!ParseHeader() || !IsExecutable()) 1142 return m_entry_point_address; 1143 1144 SectionList *section_list = GetSectionList(); 1145 addr_t offset = m_header.e_entry; 1146 1147 if (!section_list) 1148 m_entry_point_address.SetOffset(offset); 1149 else 1150 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1151 return m_entry_point_address; 1152 } 1153 1154 //---------------------------------------------------------------------- 1155 // ParseDependentModules 1156 //---------------------------------------------------------------------- 1157 size_t 1158 ObjectFileELF::ParseDependentModules() 1159 { 1160 if (m_filespec_ap.get()) 1161 return m_filespec_ap->GetSize(); 1162 1163 m_filespec_ap.reset(new FileSpecList()); 1164 1165 if (!ParseSectionHeaders()) 1166 return 0; 1167 1168 SectionList *section_list = GetSectionList(); 1169 if (!section_list) 1170 return 0; 1171 1172 // Find the SHT_DYNAMIC section. 1173 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1174 if (!dynsym) 1175 return 0; 1176 assert (dynsym->GetObjectFile() == this); 1177 1178 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1179 if (!header) 1180 return 0; 1181 // sh_link: section header index of string table used by entries in the section. 1182 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1183 if (!dynstr) 1184 return 0; 1185 1186 DataExtractor dynsym_data; 1187 DataExtractor dynstr_data; 1188 if (ReadSectionData(dynsym, dynsym_data) && 1189 ReadSectionData(dynstr, dynstr_data)) 1190 { 1191 ELFDynamic symbol; 1192 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1193 lldb::offset_t offset = 0; 1194 1195 // The only type of entries we are concerned with are tagged DT_NEEDED, 1196 // yielding the name of a required library. 1197 while (offset < section_size) 1198 { 1199 if (!symbol.Parse(dynsym_data, &offset)) 1200 break; 1201 1202 if (symbol.d_tag != DT_NEEDED) 1203 continue; 1204 1205 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1206 const char *lib_name = dynstr_data.PeekCStr(str_index); 1207 m_filespec_ap->Append(FileSpec(lib_name, true)); 1208 } 1209 } 1210 1211 return m_filespec_ap->GetSize(); 1212 } 1213 1214 //---------------------------------------------------------------------- 1215 // GetProgramHeaderInfo 1216 //---------------------------------------------------------------------- 1217 size_t 1218 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1219 DataExtractor &object_data, 1220 const ELFHeader &header) 1221 { 1222 // We have already parsed the program headers 1223 if (!program_headers.empty()) 1224 return program_headers.size(); 1225 1226 // If there are no program headers to read we are done. 1227 if (header.e_phnum == 0) 1228 return 0; 1229 1230 program_headers.resize(header.e_phnum); 1231 if (program_headers.size() != header.e_phnum) 1232 return 0; 1233 1234 const size_t ph_size = header.e_phnum * header.e_phentsize; 1235 const elf_off ph_offset = header.e_phoff; 1236 DataExtractor data; 1237 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1238 return 0; 1239 1240 uint32_t idx; 1241 lldb::offset_t offset; 1242 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1243 { 1244 if (program_headers[idx].Parse(data, &offset) == false) 1245 break; 1246 } 1247 1248 if (idx < program_headers.size()) 1249 program_headers.resize(idx); 1250 1251 return program_headers.size(); 1252 1253 } 1254 1255 //---------------------------------------------------------------------- 1256 // ParseProgramHeaders 1257 //---------------------------------------------------------------------- 1258 size_t 1259 ObjectFileELF::ParseProgramHeaders() 1260 { 1261 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1262 } 1263 1264 lldb_private::Error 1265 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1266 { 1267 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1268 Error error; 1269 1270 lldb::offset_t offset = 0; 1271 1272 while (true) 1273 { 1274 // Parse the note header. If this fails, bail out. 1275 ELFNote note = ELFNote(); 1276 if (!note.Parse(data, &offset)) 1277 { 1278 // We're done. 1279 return error; 1280 } 1281 1282 // If a tag processor handles the tag, it should set processed to true, and 1283 // the loop will assume the tag processing has moved entirely past the note's payload. 1284 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1285 bool processed = false; 1286 1287 if (log) 1288 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1289 1290 // Process FreeBSD ELF notes. 1291 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1292 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1293 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1294 { 1295 // We'll consume the payload below. 1296 processed = true; 1297 1298 // Pull out the min version info. 1299 uint32_t version_info; 1300 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1301 { 1302 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1303 return error; 1304 } 1305 1306 // Convert the version info into a major/minor number. 1307 const uint32_t version_major = version_info / 100000; 1308 const uint32_t version_minor = (version_info / 1000) % 100; 1309 1310 char os_name[32]; 1311 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1312 1313 // Set the elf OS version to FreeBSD. Also clear the vendor. 1314 arch_spec.GetTriple ().setOSName (os_name); 1315 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1316 1317 if (log) 1318 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1319 } 1320 // Process GNU ELF notes. 1321 else if (note.n_name == LLDB_NT_OWNER_GNU) 1322 { 1323 switch (note.n_type) 1324 { 1325 case LLDB_NT_GNU_ABI_TAG: 1326 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1327 { 1328 // We'll consume the payload below. 1329 processed = true; 1330 1331 // Pull out the min OS version supporting the ABI. 1332 uint32_t version_info[4]; 1333 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1334 { 1335 error.SetErrorString ("failed to read GNU ABI note payload"); 1336 return error; 1337 } 1338 1339 // Set the OS per the OS field. 1340 switch (version_info[0]) 1341 { 1342 case LLDB_NT_GNU_ABI_OS_LINUX: 1343 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1344 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1345 if (log) 1346 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1347 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1348 break; 1349 case LLDB_NT_GNU_ABI_OS_HURD: 1350 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1351 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1352 if (log) 1353 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1354 break; 1355 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1356 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1357 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1358 if (log) 1359 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1360 break; 1361 default: 1362 if (log) 1363 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1364 break; 1365 } 1366 } 1367 break; 1368 1369 case LLDB_NT_GNU_BUILD_ID_TAG: 1370 // Only bother processing this if we don't already have the uuid set. 1371 if (!uuid.IsValid()) 1372 { 1373 // We'll consume the payload below. 1374 processed = true; 1375 1376 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1377 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1378 { 1379 uint8_t uuidbuf[20]; 1380 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1381 { 1382 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1383 return error; 1384 } 1385 1386 // Save the build id as the UUID for the module. 1387 uuid.SetBytes (uuidbuf, note.n_descsz); 1388 } 1389 } 1390 break; 1391 } 1392 } 1393 // Process NetBSD ELF notes. 1394 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1395 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1396 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1397 { 1398 1399 // We'll consume the payload below. 1400 processed = true; 1401 1402 // Pull out the min version info. 1403 uint32_t version_info; 1404 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1405 { 1406 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1407 return error; 1408 } 1409 1410 // Set the elf OS version to NetBSD. Also clear the vendor. 1411 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1412 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1413 1414 if (log) 1415 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1416 } 1417 // Process CSR kalimba notes 1418 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1419 (note.n_name == LLDB_NT_OWNER_CSR)) 1420 { 1421 // We'll consume the payload below. 1422 processed = true; 1423 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1424 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1425 1426 // TODO At some point the description string could be processed. 1427 // It could provide a steer towards the kalimba variant which 1428 // this ELF targets. 1429 if(note.n_descsz) 1430 { 1431 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1432 (void)cstr; 1433 } 1434 } 1435 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1436 { 1437 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1438 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1439 } 1440 1441 if (!processed) 1442 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1443 } 1444 1445 return error; 1446 } 1447 1448 1449 //---------------------------------------------------------------------- 1450 // GetSectionHeaderInfo 1451 //---------------------------------------------------------------------- 1452 size_t 1453 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1454 lldb_private::DataExtractor &object_data, 1455 const elf::ELFHeader &header, 1456 lldb_private::UUID &uuid, 1457 std::string &gnu_debuglink_file, 1458 uint32_t &gnu_debuglink_crc, 1459 ArchSpec &arch_spec) 1460 { 1461 // Don't reparse the section headers if we already did that. 1462 if (!section_headers.empty()) 1463 return section_headers.size(); 1464 1465 // Only initialize the arch_spec to okay defaults if they're not already set. 1466 // We'll refine this with note data as we parse the notes. 1467 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1468 { 1469 llvm::Triple::OSType ostype; 1470 llvm::Triple::OSType spec_ostype; 1471 const uint32_t sub_type = subTypeFromElfHeader(header); 1472 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1473 // 1474 // Validate if it is ok to remove GetOsFromOSABI 1475 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1476 spec_ostype = arch_spec.GetTriple ().getOS (); 1477 assert(spec_ostype == ostype); 1478 } 1479 1480 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1481 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1482 { 1483 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1484 { 1485 case llvm::ELF::EF_MIPS_MICROMIPS: 1486 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1487 break; 1488 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1489 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1490 break; 1491 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1492 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1493 break; 1494 default: 1495 break; 1496 } 1497 } 1498 1499 // If there are no section headers we are done. 1500 if (header.e_shnum == 0) 1501 return 0; 1502 1503 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1504 1505 section_headers.resize(header.e_shnum); 1506 if (section_headers.size() != header.e_shnum) 1507 return 0; 1508 1509 const size_t sh_size = header.e_shnum * header.e_shentsize; 1510 const elf_off sh_offset = header.e_shoff; 1511 DataExtractor sh_data; 1512 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1513 return 0; 1514 1515 uint32_t idx; 1516 lldb::offset_t offset; 1517 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1518 { 1519 if (section_headers[idx].Parse(sh_data, &offset) == false) 1520 break; 1521 } 1522 if (idx < section_headers.size()) 1523 section_headers.resize(idx); 1524 1525 const unsigned strtab_idx = header.e_shstrndx; 1526 if (strtab_idx && strtab_idx < section_headers.size()) 1527 { 1528 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1529 const size_t byte_size = sheader.sh_size; 1530 const Elf64_Off offset = sheader.sh_offset; 1531 lldb_private::DataExtractor shstr_data; 1532 1533 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1534 { 1535 for (SectionHeaderCollIter I = section_headers.begin(); 1536 I != section_headers.end(); ++I) 1537 { 1538 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1539 const ELFSectionHeaderInfo &sheader = *I; 1540 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1541 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1542 1543 I->section_name = name; 1544 1545 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1546 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1547 { 1548 uint32_t arch_flags = arch_spec.GetFlags (); 1549 DataExtractor data; 1550 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) 1551 { 1552 1553 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1554 { 1555 lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0 1556 arch_flags |= data.GetU32 (&ase_offset); 1557 } 1558 } 1559 // Settings appropriate ArchSpec ABI Flags 1560 if (header.e_flags & llvm::ELF::EF_MIPS_ABI2) 1561 { 1562 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1563 } 1564 else if (header.e_flags & llvm::ELF::EF_MIPS_ABI_O32) 1565 { 1566 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1567 } 1568 arch_spec.SetFlags (arch_flags); 1569 } 1570 1571 if (name == g_sect_name_gnu_debuglink) 1572 { 1573 DataExtractor data; 1574 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1575 { 1576 lldb::offset_t gnu_debuglink_offset = 0; 1577 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1578 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1579 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1580 } 1581 } 1582 1583 // Process ELF note section entries. 1584 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1585 1586 // The section header ".note.android.ident" is stored as a 1587 // PROGBITS type header but it is actually a note header. 1588 static ConstString g_sect_name_android_ident (".note.android.ident"); 1589 if (!is_note_header && name == g_sect_name_android_ident) 1590 is_note_header = true; 1591 1592 if (is_note_header) 1593 { 1594 // Allow notes to refine module info. 1595 DataExtractor data; 1596 if (section_size && (data.SetData (object_data, sheader.sh_offset, section_size) == section_size)) 1597 { 1598 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1599 if (error.Fail ()) 1600 { 1601 if (log) 1602 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1603 } 1604 } 1605 } 1606 } 1607 1608 return section_headers.size(); 1609 } 1610 } 1611 1612 section_headers.clear(); 1613 return 0; 1614 } 1615 1616 size_t 1617 ObjectFileELF::GetProgramHeaderCount() 1618 { 1619 return ParseProgramHeaders(); 1620 } 1621 1622 const elf::ELFProgramHeader * 1623 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1624 { 1625 if (!id || !ParseProgramHeaders()) 1626 return NULL; 1627 1628 if (--id < m_program_headers.size()) 1629 return &m_program_headers[id]; 1630 1631 return NULL; 1632 } 1633 1634 DataExtractor 1635 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1636 { 1637 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1638 if (segment_header == NULL) 1639 return DataExtractor(); 1640 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1641 } 1642 1643 std::string 1644 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1645 { 1646 size_t pos = symbol_name.find('@'); 1647 return symbol_name.substr(0, pos).str(); 1648 } 1649 1650 //---------------------------------------------------------------------- 1651 // ParseSectionHeaders 1652 //---------------------------------------------------------------------- 1653 size_t 1654 ObjectFileELF::ParseSectionHeaders() 1655 { 1656 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1657 } 1658 1659 const ObjectFileELF::ELFSectionHeaderInfo * 1660 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1661 { 1662 if (!id || !ParseSectionHeaders()) 1663 return NULL; 1664 1665 if (--id < m_section_headers.size()) 1666 return &m_section_headers[id]; 1667 1668 return NULL; 1669 } 1670 1671 lldb::user_id_t 1672 ObjectFileELF::GetSectionIndexByName(const char* name) 1673 { 1674 if (!name || !name[0] || !ParseSectionHeaders()) 1675 return 0; 1676 for (size_t i = 1; i < m_section_headers.size(); ++i) 1677 if (m_section_headers[i].section_name == ConstString(name)) 1678 return i; 1679 return 0; 1680 } 1681 1682 void 1683 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1684 { 1685 if (!m_sections_ap.get() && ParseSectionHeaders()) 1686 { 1687 m_sections_ap.reset(new SectionList()); 1688 1689 for (SectionHeaderCollIter I = m_section_headers.begin(); 1690 I != m_section_headers.end(); ++I) 1691 { 1692 const ELFSectionHeaderInfo &header = *I; 1693 1694 ConstString& name = I->section_name; 1695 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1696 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1697 1698 static ConstString g_sect_name_text (".text"); 1699 static ConstString g_sect_name_data (".data"); 1700 static ConstString g_sect_name_bss (".bss"); 1701 static ConstString g_sect_name_tdata (".tdata"); 1702 static ConstString g_sect_name_tbss (".tbss"); 1703 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1704 static ConstString g_sect_name_dwarf_debug_addr (".debug_addr"); 1705 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1706 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1707 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1708 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1709 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1710 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1711 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1712 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1713 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1714 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1715 static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets"); 1716 static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo"); 1717 static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo"); 1718 static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo"); 1719 static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo"); 1720 static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo"); 1721 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo"); 1722 static ConstString g_sect_name_eh_frame (".eh_frame"); 1723 static ConstString g_sect_name_go_symtab (".gosymtab"); 1724 1725 SectionType sect_type = eSectionTypeOther; 1726 1727 bool is_thread_specific = false; 1728 1729 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1730 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1731 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1732 else if (name == g_sect_name_tdata) 1733 { 1734 sect_type = eSectionTypeData; 1735 is_thread_specific = true; 1736 } 1737 else if (name == g_sect_name_tbss) 1738 { 1739 sect_type = eSectionTypeZeroFill; 1740 is_thread_specific = true; 1741 } 1742 // .debug_abbrev – Abbreviations used in the .debug_info section 1743 // .debug_aranges – Lookup table for mapping addresses to compilation units 1744 // .debug_frame – Call frame information 1745 // .debug_info – The core DWARF information section 1746 // .debug_line – Line number information 1747 // .debug_loc – Location lists used in DW_AT_location attributes 1748 // .debug_macinfo – Macro information 1749 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1750 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1751 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1752 // .debug_str – String table used in .debug_info 1753 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1754 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1755 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1756 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1757 else if (name == g_sect_name_dwarf_debug_addr) sect_type = eSectionTypeDWARFDebugAddr; 1758 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1759 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1760 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1761 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1762 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1763 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1764 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1765 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1766 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1767 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1768 else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets; 1769 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) sect_type = eSectionTypeDWARFDebugAbbrev; 1770 else if (name == g_sect_name_dwarf_debug_info_dwo) sect_type = eSectionTypeDWARFDebugInfo; 1771 else if (name == g_sect_name_dwarf_debug_line_dwo) sect_type = eSectionTypeDWARFDebugLine; 1772 else if (name == g_sect_name_dwarf_debug_loc_dwo) sect_type = eSectionTypeDWARFDebugLoc; 1773 else if (name == g_sect_name_dwarf_debug_str_dwo) sect_type = eSectionTypeDWARFDebugStr; 1774 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets; 1775 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1776 else if (name == g_sect_name_go_symtab) sect_type = eSectionTypeGoSymtab; 1777 1778 switch (header.sh_type) 1779 { 1780 case SHT_SYMTAB: 1781 assert (sect_type == eSectionTypeOther); 1782 sect_type = eSectionTypeELFSymbolTable; 1783 break; 1784 case SHT_DYNSYM: 1785 assert (sect_type == eSectionTypeOther); 1786 sect_type = eSectionTypeELFDynamicSymbols; 1787 break; 1788 case SHT_RELA: 1789 case SHT_REL: 1790 assert (sect_type == eSectionTypeOther); 1791 sect_type = eSectionTypeELFRelocationEntries; 1792 break; 1793 case SHT_DYNAMIC: 1794 assert (sect_type == eSectionTypeOther); 1795 sect_type = eSectionTypeELFDynamicLinkInfo; 1796 break; 1797 } 1798 1799 if (eSectionTypeOther == sect_type) 1800 { 1801 // the kalimba toolchain assumes that ELF section names are free-form. It does 1802 // support linkscripts which (can) give rise to various arbitrarily named 1803 // sections being "Code" or "Data". 1804 sect_type = kalimbaSectionType(m_header, header); 1805 } 1806 1807 const uint32_t target_bytes_size = 1808 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1809 m_arch_spec.GetDataByteSize() : 1810 eSectionTypeCode == sect_type ? 1811 m_arch_spec.GetCodeByteSize() : 1; 1812 1813 elf::elf_xword log2align = (header.sh_addralign==0) 1814 ? 0 1815 : llvm::Log2_64(header.sh_addralign); 1816 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1817 this, // ObjectFile to which this section belongs and should read section data from. 1818 SectionIndex(I), // Section ID. 1819 name, // Section name. 1820 sect_type, // Section type. 1821 header.sh_addr, // VM address. 1822 vm_size, // VM size in bytes of this section. 1823 header.sh_offset, // Offset of this section in the file. 1824 file_size, // Size of the section as found in the file. 1825 log2align, // Alignment of the section 1826 header.sh_flags, // Flags for this section. 1827 target_bytes_size));// Number of host bytes per target byte 1828 1829 if (is_thread_specific) 1830 section_sp->SetIsThreadSpecific (is_thread_specific); 1831 m_sections_ap->AddSection(section_sp); 1832 } 1833 } 1834 1835 if (m_sections_ap.get()) 1836 { 1837 if (GetType() == eTypeDebugInfo) 1838 { 1839 static const SectionType g_sections[] = 1840 { 1841 eSectionTypeDWARFDebugAbbrev, 1842 eSectionTypeDWARFDebugAddr, 1843 eSectionTypeDWARFDebugAranges, 1844 eSectionTypeDWARFDebugFrame, 1845 eSectionTypeDWARFDebugInfo, 1846 eSectionTypeDWARFDebugLine, 1847 eSectionTypeDWARFDebugLoc, 1848 eSectionTypeDWARFDebugMacInfo, 1849 eSectionTypeDWARFDebugPubNames, 1850 eSectionTypeDWARFDebugPubTypes, 1851 eSectionTypeDWARFDebugRanges, 1852 eSectionTypeDWARFDebugStr, 1853 eSectionTypeDWARFDebugStrOffsets, 1854 eSectionTypeELFSymbolTable, 1855 }; 1856 SectionList *elf_section_list = m_sections_ap.get(); 1857 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1858 { 1859 SectionType section_type = g_sections[idx]; 1860 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1861 if (section_sp) 1862 { 1863 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1864 if (module_section_sp) 1865 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1866 else 1867 unified_section_list.AddSection (section_sp); 1868 } 1869 } 1870 } 1871 else 1872 { 1873 unified_section_list = *m_sections_ap; 1874 } 1875 } 1876 } 1877 1878 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the 1879 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by 1880 // an arbitrary string because if a symbol prefix added to each symbol in the object file with 1881 // objcopy then the mapping symbols are also prefixed. 1882 static char 1883 FindArmAarch64MappingSymbol(const char* symbol_name) 1884 { 1885 if (!symbol_name) 1886 return '\0'; 1887 1888 const char* dollar_pos = ::strchr(symbol_name, '$'); 1889 if (!dollar_pos || dollar_pos[1] == '\0') 1890 return '\0'; 1891 1892 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 1893 return dollar_pos[1]; 1894 return '\0'; 1895 } 1896 1897 #define STO_MIPS_ISA (3 << 6) 1898 #define STO_MICROMIPS (2 << 6) 1899 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER) & STO_MIPS_ISA) == STO_MICROMIPS) 1900 1901 // private 1902 unsigned 1903 ObjectFileELF::ParseSymbols (Symtab *symtab, 1904 user_id_t start_id, 1905 SectionList *section_list, 1906 const size_t num_symbols, 1907 const DataExtractor &symtab_data, 1908 const DataExtractor &strtab_data) 1909 { 1910 ELFSymbol symbol; 1911 lldb::offset_t offset = 0; 1912 1913 static ConstString text_section_name(".text"); 1914 static ConstString init_section_name(".init"); 1915 static ConstString fini_section_name(".fini"); 1916 static ConstString ctors_section_name(".ctors"); 1917 static ConstString dtors_section_name(".dtors"); 1918 1919 static ConstString data_section_name(".data"); 1920 static ConstString rodata_section_name(".rodata"); 1921 static ConstString rodata1_section_name(".rodata1"); 1922 static ConstString data2_section_name(".data1"); 1923 static ConstString bss_section_name(".bss"); 1924 static ConstString opd_section_name(".opd"); // For ppc64 1925 1926 // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full 1927 // .text section what causes issues with displaying unusable symbol name to the user and very 1928 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 1929 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 1930 // use for the debugger and they are causing a lot of trouble. 1931 // Filtering can't be restricted to Android because this special object file don't contain the 1932 // note section specifying the environment to Android but the custom extension and file name 1933 // makes it highly unlikely that this will collide with anything else. 1934 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat"); 1935 1936 unsigned i; 1937 for (i = 0; i < num_symbols; ++i) 1938 { 1939 if (symbol.Parse(symtab_data, &offset) == false) 1940 break; 1941 1942 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1943 1944 // No need to add non-section symbols that have no names 1945 if (symbol.getType() != STT_SECTION && 1946 (symbol_name == NULL || symbol_name[0] == '\0')) 1947 continue; 1948 1949 // Skipping oatdata and oatexec sections if it is requested. See details above the 1950 // definition of skip_oatdata_oatexec for the reasons. 1951 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 1952 continue; 1953 1954 SectionSP symbol_section_sp; 1955 SymbolType symbol_type = eSymbolTypeInvalid; 1956 Elf64_Half symbol_idx = symbol.st_shndx; 1957 1958 switch (symbol_idx) 1959 { 1960 case SHN_ABS: 1961 symbol_type = eSymbolTypeAbsolute; 1962 break; 1963 case SHN_UNDEF: 1964 symbol_type = eSymbolTypeUndefined; 1965 break; 1966 default: 1967 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1968 break; 1969 } 1970 1971 // If a symbol is undefined do not process it further even if it has a STT type 1972 if (symbol_type != eSymbolTypeUndefined) 1973 { 1974 switch (symbol.getType()) 1975 { 1976 default: 1977 case STT_NOTYPE: 1978 // The symbol's type is not specified. 1979 break; 1980 1981 case STT_OBJECT: 1982 // The symbol is associated with a data object, such as a variable, 1983 // an array, etc. 1984 symbol_type = eSymbolTypeData; 1985 break; 1986 1987 case STT_FUNC: 1988 // The symbol is associated with a function or other executable code. 1989 symbol_type = eSymbolTypeCode; 1990 break; 1991 1992 case STT_SECTION: 1993 // The symbol is associated with a section. Symbol table entries of 1994 // this type exist primarily for relocation and normally have 1995 // STB_LOCAL binding. 1996 break; 1997 1998 case STT_FILE: 1999 // Conventionally, the symbol's name gives the name of the source 2000 // file associated with the object file. A file symbol has STB_LOCAL 2001 // binding, its section index is SHN_ABS, and it precedes the other 2002 // STB_LOCAL symbols for the file, if it is present. 2003 symbol_type = eSymbolTypeSourceFile; 2004 break; 2005 2006 case STT_GNU_IFUNC: 2007 // The symbol is associated with an indirect function. The actual 2008 // function will be resolved if it is referenced. 2009 symbol_type = eSymbolTypeResolver; 2010 break; 2011 } 2012 } 2013 2014 if (symbol_type == eSymbolTypeInvalid) 2015 { 2016 if (symbol_section_sp) 2017 { 2018 const ConstString §_name = symbol_section_sp->GetName(); 2019 if (sect_name == text_section_name || 2020 sect_name == init_section_name || 2021 sect_name == fini_section_name || 2022 sect_name == ctors_section_name || 2023 sect_name == dtors_section_name) 2024 { 2025 symbol_type = eSymbolTypeCode; 2026 } 2027 else if (sect_name == data_section_name || 2028 sect_name == data2_section_name || 2029 sect_name == rodata_section_name || 2030 sect_name == rodata1_section_name || 2031 sect_name == bss_section_name) 2032 { 2033 symbol_type = eSymbolTypeData; 2034 } 2035 } 2036 } 2037 2038 int64_t symbol_value_offset = 0; 2039 uint32_t additional_flags = 0; 2040 2041 ArchSpec arch; 2042 if (GetArchitecture(arch)) 2043 { 2044 if (arch.GetMachine() == llvm::Triple::arm) 2045 { 2046 if (symbol.getBinding() == STB_LOCAL) 2047 { 2048 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2049 if (symbol_type == eSymbolTypeCode) 2050 { 2051 switch (mapping_symbol) 2052 { 2053 case 'a': 2054 // $a[.<any>]* - marks an ARM instruction sequence 2055 m_address_class_map[symbol.st_value] = eAddressClassCode; 2056 break; 2057 case 'b': 2058 case 't': 2059 // $b[.<any>]* - marks a THUMB BL instruction sequence 2060 // $t[.<any>]* - marks a THUMB instruction sequence 2061 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2062 break; 2063 case 'd': 2064 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2065 m_address_class_map[symbol.st_value] = eAddressClassData; 2066 break; 2067 } 2068 } 2069 if (mapping_symbol) 2070 continue; 2071 } 2072 } 2073 else if (arch.GetMachine() == llvm::Triple::aarch64) 2074 { 2075 if (symbol.getBinding() == STB_LOCAL) 2076 { 2077 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2078 if (symbol_type == eSymbolTypeCode) 2079 { 2080 switch (mapping_symbol) 2081 { 2082 case 'x': 2083 // $x[.<any>]* - marks an A64 instruction sequence 2084 m_address_class_map[symbol.st_value] = eAddressClassCode; 2085 break; 2086 case 'd': 2087 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2088 m_address_class_map[symbol.st_value] = eAddressClassData; 2089 break; 2090 } 2091 } 2092 if (mapping_symbol) 2093 continue; 2094 } 2095 } 2096 2097 if (arch.GetMachine() == llvm::Triple::arm) 2098 { 2099 if (symbol_type == eSymbolTypeCode) 2100 { 2101 if (symbol.st_value & 1) 2102 { 2103 // Subtracting 1 from the address effectively unsets 2104 // the low order bit, which results in the address 2105 // actually pointing to the beginning of the symbol. 2106 // This delta will be used below in conjunction with 2107 // symbol.st_value to produce the final symbol_value 2108 // that we store in the symtab. 2109 symbol_value_offset = -1; 2110 additional_flags = ARM_ELF_SYM_IS_THUMB; 2111 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2112 } 2113 else 2114 { 2115 // This address is ARM 2116 m_address_class_map[symbol.st_value] = eAddressClassCode; 2117 } 2118 } 2119 } 2120 2121 /* 2122 * MIPS: 2123 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for MIPS). 2124 * This allows processer to switch between microMIPS and MIPS without any need 2125 * for special mode-control register. However, apart from .debug_line, none of 2126 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use st_other 2127 * flag to check whether the symbol is microMIPS and then set the address class 2128 * accordingly. 2129 */ 2130 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2131 if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel 2132 || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el) 2133 { 2134 if (IS_MICROMIPS(symbol.st_other)) 2135 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2136 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) 2137 { 2138 symbol.st_value = symbol.st_value & (~1ull); 2139 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2140 } 2141 else 2142 { 2143 if (symbol_type == eSymbolTypeCode) 2144 m_address_class_map[symbol.st_value] = eAddressClassCode; 2145 else if (symbol_type == eSymbolTypeData) 2146 m_address_class_map[symbol.st_value] = eAddressClassData; 2147 else 2148 m_address_class_map[symbol.st_value] = eAddressClassUnknown; 2149 } 2150 } 2151 } 2152 2153 // symbol_value_offset may contain 0 for ARM symbols or -1 for 2154 // THUMB symbols. See above for more details. 2155 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2156 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2157 symbol_value -= symbol_section_sp->GetFileAddress(); 2158 2159 if (symbol_section_sp) 2160 { 2161 ModuleSP module_sp(GetModule()); 2162 if (module_sp) 2163 { 2164 SectionList *module_section_list = module_sp->GetSectionList(); 2165 if (module_section_list && module_section_list != section_list) 2166 { 2167 const ConstString §_name = symbol_section_sp->GetName(); 2168 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 2169 if (section_sp && section_sp->GetFileSize()) 2170 { 2171 symbol_section_sp = section_sp; 2172 } 2173 } 2174 } 2175 } 2176 2177 bool is_global = symbol.getBinding() == STB_GLOBAL; 2178 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2179 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2180 2181 llvm::StringRef symbol_ref(symbol_name); 2182 2183 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2184 size_t version_pos = symbol_ref.find('@'); 2185 bool has_suffix = version_pos != llvm::StringRef::npos; 2186 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2187 Mangled mangled(ConstString(symbol_bare), is_mangled); 2188 2189 // Now append the suffix back to mangled and unmangled names. Only do it if the 2190 // demangling was successful (string is not empty). 2191 if (has_suffix) 2192 { 2193 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2194 2195 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2196 if (! mangled_name.empty()) 2197 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2198 2199 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2200 llvm::StringRef demangled_name = demangled.GetStringRef(); 2201 if (!demangled_name.empty()) 2202 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2203 } 2204 2205 Symbol dc_symbol( 2206 i + start_id, // ID is the original symbol table index. 2207 mangled, 2208 symbol_type, // Type of this symbol 2209 is_global, // Is this globally visible? 2210 false, // Is this symbol debug info? 2211 false, // Is this symbol a trampoline? 2212 false, // Is this symbol artificial? 2213 AddressRange( 2214 symbol_section_sp, // Section in which this symbol is defined or null. 2215 symbol_value, // Offset in section or symbol value. 2216 symbol.st_size), // Size in bytes of this symbol. 2217 symbol.st_size != 0, // Size is valid if it is not 0 2218 has_suffix, // Contains linker annotations? 2219 flags); // Symbol flags. 2220 symtab->AddSymbol(dc_symbol); 2221 } 2222 return i; 2223 } 2224 2225 unsigned 2226 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 2227 { 2228 if (symtab->GetObjectFile() != this) 2229 { 2230 // If the symbol table section is owned by a different object file, have it do the 2231 // parsing. 2232 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2233 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2234 } 2235 2236 // Get section list for this object file. 2237 SectionList *section_list = m_sections_ap.get(); 2238 if (!section_list) 2239 return 0; 2240 2241 user_id_t symtab_id = symtab->GetID(); 2242 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2243 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2244 symtab_hdr->sh_type == SHT_DYNSYM); 2245 2246 // sh_link: section header index of associated string table. 2247 // Section ID's are ones based. 2248 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2249 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2250 2251 if (symtab && strtab) 2252 { 2253 assert (symtab->GetObjectFile() == this); 2254 assert (strtab->GetObjectFile() == this); 2255 2256 DataExtractor symtab_data; 2257 DataExtractor strtab_data; 2258 if (ReadSectionData(symtab, symtab_data) && 2259 ReadSectionData(strtab, strtab_data)) 2260 { 2261 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2262 2263 return ParseSymbols(symbol_table, start_id, section_list, 2264 num_symbols, symtab_data, strtab_data); 2265 } 2266 } 2267 2268 return 0; 2269 } 2270 2271 size_t 2272 ObjectFileELF::ParseDynamicSymbols() 2273 { 2274 if (m_dynamic_symbols.size()) 2275 return m_dynamic_symbols.size(); 2276 2277 SectionList *section_list = GetSectionList(); 2278 if (!section_list) 2279 return 0; 2280 2281 // Find the SHT_DYNAMIC section. 2282 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2283 if (!dynsym) 2284 return 0; 2285 assert (dynsym->GetObjectFile() == this); 2286 2287 ELFDynamic symbol; 2288 DataExtractor dynsym_data; 2289 if (ReadSectionData(dynsym, dynsym_data)) 2290 { 2291 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2292 lldb::offset_t cursor = 0; 2293 2294 while (cursor < section_size) 2295 { 2296 if (!symbol.Parse(dynsym_data, &cursor)) 2297 break; 2298 2299 m_dynamic_symbols.push_back(symbol); 2300 } 2301 } 2302 2303 return m_dynamic_symbols.size(); 2304 } 2305 2306 const ELFDynamic * 2307 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2308 { 2309 if (!ParseDynamicSymbols()) 2310 return NULL; 2311 2312 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2313 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2314 for ( ; I != E; ++I) 2315 { 2316 ELFDynamic *symbol = &*I; 2317 2318 if (symbol->d_tag == tag) 2319 return symbol; 2320 } 2321 2322 return NULL; 2323 } 2324 2325 unsigned 2326 ObjectFileELF::PLTRelocationType() 2327 { 2328 // DT_PLTREL 2329 // This member specifies the type of relocation entry to which the 2330 // procedure linkage table refers. The d_val member holds DT_REL or 2331 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2332 // must use the same relocation. 2333 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2334 2335 if (symbol) 2336 return symbol->d_val; 2337 2338 return 0; 2339 } 2340 2341 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2342 // 0th entry in the plt table is usually a resolution entry which have different size in some 2343 // architectures then the rest of the plt entries. 2344 static std::pair<uint64_t, uint64_t> 2345 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2346 { 2347 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2348 2349 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2350 // So round the entsize up by the alignment if addralign is set. 2351 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2352 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2353 2354 if (plt_entsize == 0) 2355 { 2356 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2357 // entries based on the number of entries and the size of the plt section with the 2358 // assumption that the size of the 0th entry is at least as big as the size of the normal 2359 // entries and it isn't much bigger then that. 2360 if (plt_hdr->sh_addralign) 2361 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2362 else 2363 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2364 } 2365 2366 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2367 2368 return std::make_pair(plt_entsize, plt_offset); 2369 } 2370 2371 static unsigned 2372 ParsePLTRelocations(Symtab *symbol_table, 2373 user_id_t start_id, 2374 unsigned rel_type, 2375 const ELFHeader *hdr, 2376 const ELFSectionHeader *rel_hdr, 2377 const ELFSectionHeader *plt_hdr, 2378 const ELFSectionHeader *sym_hdr, 2379 const lldb::SectionSP &plt_section_sp, 2380 DataExtractor &rel_data, 2381 DataExtractor &symtab_data, 2382 DataExtractor &strtab_data) 2383 { 2384 ELFRelocation rel(rel_type); 2385 ELFSymbol symbol; 2386 lldb::offset_t offset = 0; 2387 2388 uint64_t plt_offset, plt_entsize; 2389 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2390 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2391 2392 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2393 reloc_info_fn reloc_type; 2394 reloc_info_fn reloc_symbol; 2395 2396 if (hdr->Is32Bit()) 2397 { 2398 reloc_type = ELFRelocation::RelocType32; 2399 reloc_symbol = ELFRelocation::RelocSymbol32; 2400 } 2401 else 2402 { 2403 reloc_type = ELFRelocation::RelocType64; 2404 reloc_symbol = ELFRelocation::RelocSymbol64; 2405 } 2406 2407 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2408 unsigned i; 2409 for (i = 0; i < num_relocations; ++i) 2410 { 2411 if (rel.Parse(rel_data, &offset) == false) 2412 break; 2413 2414 if (reloc_type(rel) != slot_type) 2415 continue; 2416 2417 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2418 if (!symbol.Parse(symtab_data, &symbol_offset)) 2419 break; 2420 2421 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2422 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2423 uint64_t plt_index = plt_offset + i * plt_entsize; 2424 2425 Symbol jump_symbol( 2426 i + start_id, // Symbol table index 2427 symbol_name, // symbol name. 2428 is_mangled, // is the symbol name mangled? 2429 eSymbolTypeTrampoline, // Type of this symbol 2430 false, // Is this globally visible? 2431 false, // Is this symbol debug info? 2432 true, // Is this symbol a trampoline? 2433 true, // Is this symbol artificial? 2434 plt_section_sp, // Section in which this symbol is defined or null. 2435 plt_index, // Offset in section or symbol value. 2436 plt_entsize, // Size in bytes of this symbol. 2437 true, // Size is valid 2438 false, // Contains linker annotations? 2439 0); // Symbol flags. 2440 2441 symbol_table->AddSymbol(jump_symbol); 2442 } 2443 2444 return i; 2445 } 2446 2447 unsigned 2448 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2449 user_id_t start_id, 2450 const ELFSectionHeaderInfo *rel_hdr, 2451 user_id_t rel_id) 2452 { 2453 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2454 2455 // The link field points to the associated symbol table. The info field 2456 // points to the section holding the plt. 2457 user_id_t symtab_id = rel_hdr->sh_link; 2458 user_id_t plt_id = rel_hdr->sh_info; 2459 2460 // If the link field doesn't point to the appropriate symbol name table then 2461 // try to find it by name as some compiler don't fill in the link fields. 2462 if (!symtab_id) 2463 symtab_id = GetSectionIndexByName(".dynsym"); 2464 if (!plt_id) 2465 plt_id = GetSectionIndexByName(".plt"); 2466 2467 if (!symtab_id || !plt_id) 2468 return 0; 2469 2470 // Section ID's are ones based; 2471 symtab_id++; 2472 plt_id++; 2473 2474 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2475 if (!plt_hdr) 2476 return 0; 2477 2478 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2479 if (!sym_hdr) 2480 return 0; 2481 2482 SectionList *section_list = m_sections_ap.get(); 2483 if (!section_list) 2484 return 0; 2485 2486 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2487 if (!rel_section) 2488 return 0; 2489 2490 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2491 if (!plt_section_sp) 2492 return 0; 2493 2494 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2495 if (!symtab) 2496 return 0; 2497 2498 // sh_link points to associated string table. 2499 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2500 if (!strtab) 2501 return 0; 2502 2503 DataExtractor rel_data; 2504 if (!ReadSectionData(rel_section, rel_data)) 2505 return 0; 2506 2507 DataExtractor symtab_data; 2508 if (!ReadSectionData(symtab, symtab_data)) 2509 return 0; 2510 2511 DataExtractor strtab_data; 2512 if (!ReadSectionData(strtab, strtab_data)) 2513 return 0; 2514 2515 unsigned rel_type = PLTRelocationType(); 2516 if (!rel_type) 2517 return 0; 2518 2519 return ParsePLTRelocations (symbol_table, 2520 start_id, 2521 rel_type, 2522 &m_header, 2523 rel_hdr, 2524 plt_hdr, 2525 sym_hdr, 2526 plt_section_sp, 2527 rel_data, 2528 symtab_data, 2529 strtab_data); 2530 } 2531 2532 unsigned 2533 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2534 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2535 DataExtractor &rel_data, DataExtractor &symtab_data, 2536 DataExtractor &debug_data, Section* rel_section) 2537 { 2538 ELFRelocation rel(rel_hdr->sh_type); 2539 lldb::addr_t offset = 0; 2540 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2541 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2542 reloc_info_fn reloc_type; 2543 reloc_info_fn reloc_symbol; 2544 2545 if (hdr->Is32Bit()) 2546 { 2547 reloc_type = ELFRelocation::RelocType32; 2548 reloc_symbol = ELFRelocation::RelocSymbol32; 2549 } 2550 else 2551 { 2552 reloc_type = ELFRelocation::RelocType64; 2553 reloc_symbol = ELFRelocation::RelocSymbol64; 2554 } 2555 2556 for (unsigned i = 0; i < num_relocations; ++i) 2557 { 2558 if (rel.Parse(rel_data, &offset) == false) 2559 break; 2560 2561 Symbol* symbol = NULL; 2562 2563 if (hdr->Is32Bit()) 2564 { 2565 switch (reloc_type(rel)) { 2566 case R_386_32: 2567 case R_386_PC32: 2568 default: 2569 assert(false && "unexpected relocation type"); 2570 } 2571 } else { 2572 switch (reloc_type(rel)) { 2573 case R_X86_64_64: 2574 { 2575 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2576 if (symbol) 2577 { 2578 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2579 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2580 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2581 *dst = value + ELFRelocation::RelocAddend64(rel); 2582 } 2583 break; 2584 } 2585 case R_X86_64_32: 2586 case R_X86_64_32S: 2587 { 2588 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2589 if (symbol) 2590 { 2591 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2592 value += ELFRelocation::RelocAddend32(rel); 2593 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2594 (reloc_type(rel) == R_X86_64_32S && 2595 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2596 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2597 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2598 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2599 *dst = truncated_addr; 2600 } 2601 break; 2602 } 2603 case R_X86_64_PC32: 2604 default: 2605 assert(false && "unexpected relocation type"); 2606 } 2607 } 2608 } 2609 2610 return 0; 2611 } 2612 2613 unsigned 2614 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2615 { 2616 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2617 2618 // Parse in the section list if needed. 2619 SectionList *section_list = GetSectionList(); 2620 if (!section_list) 2621 return 0; 2622 2623 // Section ID's are ones based. 2624 user_id_t symtab_id = rel_hdr->sh_link + 1; 2625 user_id_t debug_id = rel_hdr->sh_info + 1; 2626 2627 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2628 if (!symtab_hdr) 2629 return 0; 2630 2631 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2632 if (!debug_hdr) 2633 return 0; 2634 2635 Section *rel = section_list->FindSectionByID(rel_id).get(); 2636 if (!rel) 2637 return 0; 2638 2639 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2640 if (!symtab) 2641 return 0; 2642 2643 Section *debug = section_list->FindSectionByID(debug_id).get(); 2644 if (!debug) 2645 return 0; 2646 2647 DataExtractor rel_data; 2648 DataExtractor symtab_data; 2649 DataExtractor debug_data; 2650 2651 if (ReadSectionData(rel, rel_data) && 2652 ReadSectionData(symtab, symtab_data) && 2653 ReadSectionData(debug, debug_data)) 2654 { 2655 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2656 rel_data, symtab_data, debug_data, debug); 2657 } 2658 2659 return 0; 2660 } 2661 2662 Symtab * 2663 ObjectFileELF::GetSymtab() 2664 { 2665 ModuleSP module_sp(GetModule()); 2666 if (!module_sp) 2667 return NULL; 2668 2669 // We always want to use the main object file so we (hopefully) only have one cached copy 2670 // of our symtab, dynamic sections, etc. 2671 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2672 if (module_obj_file && module_obj_file != this) 2673 return module_obj_file->GetSymtab(); 2674 2675 if (m_symtab_ap.get() == NULL) 2676 { 2677 SectionList *section_list = module_sp->GetSectionList(); 2678 if (!section_list) 2679 return NULL; 2680 2681 uint64_t symbol_id = 0; 2682 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2683 2684 // Sharable objects and dynamic executables usually have 2 distinct symbol 2685 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2686 // version of the symtab that only contains global symbols. The information found 2687 // in the dynsym is therefore also found in the symtab, while the reverse is not 2688 // necessarily true. 2689 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2690 if (!symtab) 2691 { 2692 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2693 // then use the dynsym section which should always be there. 2694 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2695 } 2696 if (symtab) 2697 { 2698 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2699 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2700 } 2701 2702 // DT_JMPREL 2703 // If present, this entry's d_ptr member holds the address of relocation 2704 // entries associated solely with the procedure linkage table. Separating 2705 // these relocation entries lets the dynamic linker ignore them during 2706 // process initialization, if lazy binding is enabled. If this entry is 2707 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2708 // also be present. 2709 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2710 if (symbol) 2711 { 2712 // Synthesize trampoline symbols to help navigate the PLT. 2713 addr_t addr = symbol->d_ptr; 2714 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2715 if (reloc_section) 2716 { 2717 user_id_t reloc_id = reloc_section->GetID(); 2718 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2719 assert(reloc_header); 2720 2721 if (m_symtab_ap == nullptr) 2722 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2723 2724 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2725 } 2726 } 2727 2728 // If we still don't have any symtab then create an empty instance to avoid do the section 2729 // lookup next time. 2730 if (m_symtab_ap == nullptr) 2731 m_symtab_ap.reset(new Symtab(this)); 2732 2733 m_symtab_ap->CalculateSymbolSizes(); 2734 } 2735 2736 for (SectionHeaderCollIter I = m_section_headers.begin(); 2737 I != m_section_headers.end(); ++I) 2738 { 2739 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2740 { 2741 if (CalculateType() == eTypeObjectFile) 2742 { 2743 const char *section_name = I->section_name.AsCString(""); 2744 if (strstr(section_name, ".rela.debug") || 2745 strstr(section_name, ".rel.debug")) 2746 { 2747 const ELFSectionHeader &reloc_header = *I; 2748 user_id_t reloc_id = SectionIndex(I); 2749 RelocateDebugSections(&reloc_header, reloc_id); 2750 } 2751 } 2752 } 2753 } 2754 return m_symtab_ap.get(); 2755 } 2756 2757 Symbol * 2758 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2759 { 2760 if (!m_symtab_ap.get()) 2761 return nullptr; // GetSymtab() should be called first. 2762 2763 const SectionList *section_list = GetSectionList(); 2764 if (!section_list) 2765 return nullptr; 2766 2767 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2768 { 2769 AddressRange range; 2770 if (eh_frame->GetAddressRange (so_addr, range)) 2771 { 2772 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2773 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2774 if (symbol) 2775 return symbol; 2776 2777 // Note that a (stripped) symbol won't be found by GetSymtab()... 2778 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2779 if (eh_sym_section_sp.get()) 2780 { 2781 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2782 addr_t offset = file_addr - section_base; 2783 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2784 2785 Symbol eh_symbol( 2786 symbol_id, // Symbol table index. 2787 "???", // Symbol name. 2788 false, // Is the symbol name mangled? 2789 eSymbolTypeCode, // Type of this symbol. 2790 true, // Is this globally visible? 2791 false, // Is this symbol debug info? 2792 false, // Is this symbol a trampoline? 2793 true, // Is this symbol artificial? 2794 eh_sym_section_sp, // Section in which this symbol is defined or null. 2795 offset, // Offset in section or symbol value. 2796 range.GetByteSize(), // Size in bytes of this symbol. 2797 true, // Size is valid. 2798 false, // Contains linker annotations? 2799 0); // Symbol flags. 2800 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2801 return m_symtab_ap->SymbolAtIndex(symbol_id); 2802 } 2803 } 2804 } 2805 return nullptr; 2806 } 2807 2808 2809 bool 2810 ObjectFileELF::IsStripped () 2811 { 2812 // TODO: determine this for ELF 2813 return false; 2814 } 2815 2816 //===----------------------------------------------------------------------===// 2817 // Dump 2818 // 2819 // Dump the specifics of the runtime file container (such as any headers 2820 // segments, sections, etc). 2821 //---------------------------------------------------------------------- 2822 void 2823 ObjectFileELF::Dump(Stream *s) 2824 { 2825 DumpELFHeader(s, m_header); 2826 s->EOL(); 2827 DumpELFProgramHeaders(s); 2828 s->EOL(); 2829 DumpELFSectionHeaders(s); 2830 s->EOL(); 2831 SectionList *section_list = GetSectionList(); 2832 if (section_list) 2833 section_list->Dump(s, NULL, true, UINT32_MAX); 2834 Symtab *symtab = GetSymtab(); 2835 if (symtab) 2836 symtab->Dump(s, NULL, eSortOrderNone); 2837 s->EOL(); 2838 DumpDependentModules(s); 2839 s->EOL(); 2840 } 2841 2842 //---------------------------------------------------------------------- 2843 // DumpELFHeader 2844 // 2845 // Dump the ELF header to the specified output stream 2846 //---------------------------------------------------------------------- 2847 void 2848 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2849 { 2850 s->PutCString("ELF Header\n"); 2851 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2852 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2853 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2854 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2855 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2856 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2857 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2858 2859 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2860 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2861 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2862 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2863 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2864 2865 s->Printf("e_type = 0x%4.4x ", header.e_type); 2866 DumpELFHeader_e_type(s, header.e_type); 2867 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2868 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2869 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2870 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2871 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2872 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2873 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2874 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2875 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2876 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2877 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2878 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2879 } 2880 2881 //---------------------------------------------------------------------- 2882 // DumpELFHeader_e_type 2883 // 2884 // Dump an token value for the ELF header member e_type 2885 //---------------------------------------------------------------------- 2886 void 2887 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2888 { 2889 switch (e_type) 2890 { 2891 case ET_NONE: *s << "ET_NONE"; break; 2892 case ET_REL: *s << "ET_REL"; break; 2893 case ET_EXEC: *s << "ET_EXEC"; break; 2894 case ET_DYN: *s << "ET_DYN"; break; 2895 case ET_CORE: *s << "ET_CORE"; break; 2896 default: 2897 break; 2898 } 2899 } 2900 2901 //---------------------------------------------------------------------- 2902 // DumpELFHeader_e_ident_EI_DATA 2903 // 2904 // Dump an token value for the ELF header member e_ident[EI_DATA] 2905 //---------------------------------------------------------------------- 2906 void 2907 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2908 { 2909 switch (ei_data) 2910 { 2911 case ELFDATANONE: *s << "ELFDATANONE"; break; 2912 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2913 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2914 default: 2915 break; 2916 } 2917 } 2918 2919 2920 //---------------------------------------------------------------------- 2921 // DumpELFProgramHeader 2922 // 2923 // Dump a single ELF program header to the specified output stream 2924 //---------------------------------------------------------------------- 2925 void 2926 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2927 { 2928 DumpELFProgramHeader_p_type(s, ph.p_type); 2929 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2930 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2931 2932 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2933 s->Printf(") %8.8" PRIx64, ph.p_align); 2934 } 2935 2936 //---------------------------------------------------------------------- 2937 // DumpELFProgramHeader_p_type 2938 // 2939 // Dump an token value for the ELF program header member p_type which 2940 // describes the type of the program header 2941 // ---------------------------------------------------------------------- 2942 void 2943 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2944 { 2945 const int kStrWidth = 15; 2946 switch (p_type) 2947 { 2948 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2949 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2950 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2951 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2952 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2953 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2954 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2955 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2956 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2957 default: 2958 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2959 break; 2960 } 2961 } 2962 2963 2964 //---------------------------------------------------------------------- 2965 // DumpELFProgramHeader_p_flags 2966 // 2967 // Dump an token value for the ELF program header member p_flags 2968 //---------------------------------------------------------------------- 2969 void 2970 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2971 { 2972 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2973 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2974 << ((p_flags & PF_W) ? "PF_W" : " ") 2975 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2976 << ((p_flags & PF_R) ? "PF_R" : " "); 2977 } 2978 2979 //---------------------------------------------------------------------- 2980 // DumpELFProgramHeaders 2981 // 2982 // Dump all of the ELF program header to the specified output stream 2983 //---------------------------------------------------------------------- 2984 void 2985 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2986 { 2987 if (!ParseProgramHeaders()) 2988 return; 2989 2990 s->PutCString("Program Headers\n"); 2991 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2992 "p_filesz p_memsz p_flags p_align\n"); 2993 s->PutCString("==== --------------- -------- -------- -------- " 2994 "-------- -------- ------------------------- --------\n"); 2995 2996 uint32_t idx = 0; 2997 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2998 I != m_program_headers.end(); ++I, ++idx) 2999 { 3000 s->Printf("[%2u] ", idx); 3001 ObjectFileELF::DumpELFProgramHeader(s, *I); 3002 s->EOL(); 3003 } 3004 } 3005 3006 //---------------------------------------------------------------------- 3007 // DumpELFSectionHeader 3008 // 3009 // Dump a single ELF section header to the specified output stream 3010 //---------------------------------------------------------------------- 3011 void 3012 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 3013 { 3014 s->Printf("%8.8x ", sh.sh_name); 3015 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3016 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3017 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3018 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 3019 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3020 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3021 } 3022 3023 //---------------------------------------------------------------------- 3024 // DumpELFSectionHeader_sh_type 3025 // 3026 // Dump an token value for the ELF section header member sh_type which 3027 // describes the type of the section 3028 //---------------------------------------------------------------------- 3029 void 3030 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 3031 { 3032 const int kStrWidth = 12; 3033 switch (sh_type) 3034 { 3035 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 3036 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 3037 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 3038 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 3039 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 3040 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 3041 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 3042 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 3043 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 3044 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 3045 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 3046 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 3047 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 3048 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 3049 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 3050 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 3051 default: 3052 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3053 break; 3054 } 3055 } 3056 3057 //---------------------------------------------------------------------- 3058 // DumpELFSectionHeader_sh_flags 3059 // 3060 // Dump an token value for the ELF section header member sh_flags 3061 //---------------------------------------------------------------------- 3062 void 3063 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 3064 { 3065 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3066 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3067 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3068 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3069 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3070 } 3071 3072 //---------------------------------------------------------------------- 3073 // DumpELFSectionHeaders 3074 // 3075 // Dump all of the ELF section header to the specified output stream 3076 //---------------------------------------------------------------------- 3077 void 3078 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 3079 { 3080 if (!ParseSectionHeaders()) 3081 return; 3082 3083 s->PutCString("Section Headers\n"); 3084 s->PutCString("IDX name type flags " 3085 "addr offset size link info addralgn " 3086 "entsize Name\n"); 3087 s->PutCString("==== -------- ------------ -------------------------------- " 3088 "-------- -------- -------- -------- -------- -------- " 3089 "-------- ====================\n"); 3090 3091 uint32_t idx = 0; 3092 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3093 I != m_section_headers.end(); ++I, ++idx) 3094 { 3095 s->Printf("[%2u] ", idx); 3096 ObjectFileELF::DumpELFSectionHeader(s, *I); 3097 const char* section_name = I->section_name.AsCString(""); 3098 if (section_name) 3099 *s << ' ' << section_name << "\n"; 3100 } 3101 } 3102 3103 void 3104 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 3105 { 3106 size_t num_modules = ParseDependentModules(); 3107 3108 if (num_modules > 0) 3109 { 3110 s->PutCString("Dependent Modules:\n"); 3111 for (unsigned i = 0; i < num_modules; ++i) 3112 { 3113 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3114 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3115 } 3116 } 3117 } 3118 3119 bool 3120 ObjectFileELF::GetArchitecture (ArchSpec &arch) 3121 { 3122 if (!ParseHeader()) 3123 return false; 3124 3125 if (m_section_headers.empty()) 3126 { 3127 // Allow elf notes to be parsed which may affect the detected architecture. 3128 ParseSectionHeaders(); 3129 } 3130 3131 arch = m_arch_spec; 3132 return true; 3133 } 3134 3135 ObjectFile::Type 3136 ObjectFileELF::CalculateType() 3137 { 3138 switch (m_header.e_type) 3139 { 3140 case llvm::ELF::ET_NONE: 3141 // 0 - No file type 3142 return eTypeUnknown; 3143 3144 case llvm::ELF::ET_REL: 3145 // 1 - Relocatable file 3146 return eTypeObjectFile; 3147 3148 case llvm::ELF::ET_EXEC: 3149 // 2 - Executable file 3150 return eTypeExecutable; 3151 3152 case llvm::ELF::ET_DYN: 3153 // 3 - Shared object file 3154 return eTypeSharedLibrary; 3155 3156 case ET_CORE: 3157 // 4 - Core file 3158 return eTypeCoreFile; 3159 3160 default: 3161 break; 3162 } 3163 return eTypeUnknown; 3164 } 3165 3166 ObjectFile::Strata 3167 ObjectFileELF::CalculateStrata() 3168 { 3169 switch (m_header.e_type) 3170 { 3171 case llvm::ELF::ET_NONE: 3172 // 0 - No file type 3173 return eStrataUnknown; 3174 3175 case llvm::ELF::ET_REL: 3176 // 1 - Relocatable file 3177 return eStrataUnknown; 3178 3179 case llvm::ELF::ET_EXEC: 3180 // 2 - Executable file 3181 // TODO: is there any way to detect that an executable is a kernel 3182 // related executable by inspecting the program headers, section 3183 // headers, symbols, or any other flag bits??? 3184 return eStrataUser; 3185 3186 case llvm::ELF::ET_DYN: 3187 // 3 - Shared object file 3188 // TODO: is there any way to detect that an shared library is a kernel 3189 // related executable by inspecting the program headers, section 3190 // headers, symbols, or any other flag bits??? 3191 return eStrataUnknown; 3192 3193 case ET_CORE: 3194 // 4 - Core file 3195 // TODO: is there any way to detect that an core file is a kernel 3196 // related executable by inspecting the program headers, section 3197 // headers, symbols, or any other flag bits??? 3198 return eStrataUnknown; 3199 3200 default: 3201 break; 3202 } 3203 return eStrataUnknown; 3204 } 3205 3206