xref: /llvm-project/lldb/source/Plugins/ObjectFile/ELF/ObjectFileELF.cpp (revision 42ecef3b15e9b74fe6bf8dca6bae76650e095726)
1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (!value_is_offset)
851             {
852                 bool found_offset = false;
853                 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i)
854                 {
855                     const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i);
856                     if (header == nullptr)
857                         continue;
858 
859                     if (header->p_type != PT_LOAD || header->p_offset != 0)
860                         continue;
861 
862                     value = value - header->p_vaddr;
863                     found_offset = true;
864                     break;
865                 }
866                 if (!found_offset)
867                     return false;
868             }
869 
870             const size_t num_sections = section_list->GetSize();
871             size_t sect_idx = 0;
872 
873             for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
874             {
875                 // Iterate through the object file sections to find all
876                 // of the sections that have SHF_ALLOC in their flag bits.
877                 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
878                 // if (section_sp && !section_sp->IsThreadSpecific())
879                 if (section_sp && section_sp->Test(SHF_ALLOC))
880                 {
881                     lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
882 
883                     // On 32-bit systems the load address have to fit into 4 bytes. The rest of
884                     // the bytes are the overflow from the addition.
885                     if (GetAddressByteSize() == 4)
886                         load_addr &= 0xFFFFFFFF;
887 
888                     if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
889                         ++num_loaded_sections;
890                 }
891             }
892             return num_loaded_sections > 0;
893         }
894     }
895     return false;
896 }
897 
898 ByteOrder
899 ObjectFileELF::GetByteOrder() const
900 {
901     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
902         return eByteOrderBig;
903     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
904         return eByteOrderLittle;
905     return eByteOrderInvalid;
906 }
907 
908 uint32_t
909 ObjectFileELF::GetAddressByteSize() const
910 {
911     return m_data.GetAddressByteSize();
912 }
913 
914 // Top 16 bits of the `Symbol` flags are available.
915 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
916 
917 AddressClass
918 ObjectFileELF::GetAddressClass (addr_t file_addr)
919 {
920     Symtab* symtab = GetSymtab();
921     if (!symtab)
922         return eAddressClassUnknown;
923 
924     // The address class is determined based on the symtab. Ask it from the object file what
925     // contains the symtab information.
926     ObjectFile* symtab_objfile = symtab->GetObjectFile();
927     if (symtab_objfile != nullptr && symtab_objfile != this)
928         return symtab_objfile->GetAddressClass(file_addr);
929 
930     auto res = ObjectFile::GetAddressClass (file_addr);
931     if (res != eAddressClassCode)
932         return res;
933 
934     auto ub = m_address_class_map.upper_bound(file_addr);
935     if (ub == m_address_class_map.begin())
936     {
937         // No entry in the address class map before the address. Return
938         // default address class for an address in a code section.
939         return eAddressClassCode;
940     }
941 
942     // Move iterator to the address class entry preceding address
943     --ub;
944 
945     return ub->second;
946 }
947 
948 size_t
949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
950 {
951     return std::distance(m_section_headers.begin(), I) + 1u;
952 }
953 
954 size_t
955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
956 {
957     return std::distance(m_section_headers.begin(), I) + 1u;
958 }
959 
960 bool
961 ObjectFileELF::ParseHeader()
962 {
963     lldb::offset_t offset = 0;
964     if (!m_header.Parse(m_data, &offset))
965         return false;
966 
967     if (!IsInMemory())
968         return true;
969 
970     // For in memory object files m_data might not contain the full object file. Try to load it
971     // until the end of the "Section header table" what is at the end of the ELF file.
972     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
973     if (m_data.GetByteSize() < file_size)
974     {
975         ProcessSP process_sp (m_process_wp.lock());
976         if (!process_sp)
977             return false;
978 
979         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
980         if (!data_sp)
981             return false;
982         m_data.SetData(data_sp, 0, file_size);
983     }
984 
985     return true;
986 }
987 
988 bool
989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
990 {
991     // Need to parse the section list to get the UUIDs, so make sure that's been done.
992     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
993         return false;
994 
995     if (m_uuid.IsValid())
996     {
997         // We have the full build id uuid.
998         *uuid = m_uuid;
999         return true;
1000     }
1001     else if (GetType() == ObjectFile::eTypeCoreFile)
1002     {
1003         uint32_t core_notes_crc = 0;
1004 
1005         if (!ParseProgramHeaders())
1006             return false;
1007 
1008         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
1009 
1010         if (core_notes_crc)
1011         {
1012             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
1013             // look different form .gnu_debuglink crc - followed by 4 bytes of note
1014             // segments crc.
1015             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
1016             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1017         }
1018     }
1019     else
1020     {
1021         if (!m_gnu_debuglink_crc)
1022             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1023         if (m_gnu_debuglink_crc)
1024         {
1025             // Use 4 bytes of crc from the .gnu_debuglink section.
1026             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1027             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1028         }
1029     }
1030 
1031     if (m_uuid.IsValid())
1032     {
1033         *uuid = m_uuid;
1034         return true;
1035     }
1036 
1037     return false;
1038 }
1039 
1040 lldb_private::FileSpecList
1041 ObjectFileELF::GetDebugSymbolFilePaths()
1042 {
1043     FileSpecList file_spec_list;
1044 
1045     if (!m_gnu_debuglink_file.empty())
1046     {
1047         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1048         file_spec_list.Append (file_spec);
1049     }
1050     return file_spec_list;
1051 }
1052 
1053 uint32_t
1054 ObjectFileELF::GetDependentModules(FileSpecList &files)
1055 {
1056     size_t num_modules = ParseDependentModules();
1057     uint32_t num_specs = 0;
1058 
1059     for (unsigned i = 0; i < num_modules; ++i)
1060     {
1061         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1062             num_specs++;
1063     }
1064 
1065     return num_specs;
1066 }
1067 
1068 Address
1069 ObjectFileELF::GetImageInfoAddress(Target *target)
1070 {
1071     if (!ParseDynamicSymbols())
1072         return Address();
1073 
1074     SectionList *section_list = GetSectionList();
1075     if (!section_list)
1076         return Address();
1077 
1078     // Find the SHT_DYNAMIC (.dynamic) section.
1079     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1080     if (!dynsym_section_sp)
1081         return Address();
1082     assert (dynsym_section_sp->GetObjectFile() == this);
1083 
1084     user_id_t dynsym_id = dynsym_section_sp->GetID();
1085     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1086     if (!dynsym_hdr)
1087         return Address();
1088 
1089     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1090     {
1091         ELFDynamic &symbol = m_dynamic_symbols[i];
1092 
1093         if (symbol.d_tag == DT_DEBUG)
1094         {
1095             // Compute the offset as the number of previous entries plus the
1096             // size of d_tag.
1097             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1098             return Address(dynsym_section_sp, offset);
1099         }
1100         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1101         {
1102             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1103             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1104             if (dyn_base == LLDB_INVALID_ADDRESS)
1105                 return Address();
1106             Address addr;
1107             Error error;
1108             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1109                 return addr;
1110         }
1111     }
1112 
1113     return Address();
1114 }
1115 
1116 lldb_private::Address
1117 ObjectFileELF::GetEntryPointAddress ()
1118 {
1119     if (m_entry_point_address.IsValid())
1120         return m_entry_point_address;
1121 
1122     if (!ParseHeader() || !IsExecutable())
1123         return m_entry_point_address;
1124 
1125     SectionList *section_list = GetSectionList();
1126     addr_t offset = m_header.e_entry;
1127 
1128     if (!section_list)
1129         m_entry_point_address.SetOffset(offset);
1130     else
1131         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1132     return m_entry_point_address;
1133 }
1134 
1135 //----------------------------------------------------------------------
1136 // ParseDependentModules
1137 //----------------------------------------------------------------------
1138 size_t
1139 ObjectFileELF::ParseDependentModules()
1140 {
1141     if (m_filespec_ap.get())
1142         return m_filespec_ap->GetSize();
1143 
1144     m_filespec_ap.reset(new FileSpecList());
1145 
1146     if (!ParseSectionHeaders())
1147         return 0;
1148 
1149     SectionList *section_list = GetSectionList();
1150     if (!section_list)
1151         return 0;
1152 
1153     // Find the SHT_DYNAMIC section.
1154     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1155     if (!dynsym)
1156         return 0;
1157     assert (dynsym->GetObjectFile() == this);
1158 
1159     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1160     if (!header)
1161         return 0;
1162     // sh_link: section header index of string table used by entries in the section.
1163     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1164     if (!dynstr)
1165         return 0;
1166 
1167     DataExtractor dynsym_data;
1168     DataExtractor dynstr_data;
1169     if (ReadSectionData(dynsym, dynsym_data) &&
1170         ReadSectionData(dynstr, dynstr_data))
1171     {
1172         ELFDynamic symbol;
1173         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1174         lldb::offset_t offset = 0;
1175 
1176         // The only type of entries we are concerned with are tagged DT_NEEDED,
1177         // yielding the name of a required library.
1178         while (offset < section_size)
1179         {
1180             if (!symbol.Parse(dynsym_data, &offset))
1181                 break;
1182 
1183             if (symbol.d_tag != DT_NEEDED)
1184                 continue;
1185 
1186             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1187             const char *lib_name = dynstr_data.PeekCStr(str_index);
1188             m_filespec_ap->Append(FileSpec(lib_name, true));
1189         }
1190     }
1191 
1192     return m_filespec_ap->GetSize();
1193 }
1194 
1195 //----------------------------------------------------------------------
1196 // GetProgramHeaderInfo
1197 //----------------------------------------------------------------------
1198 size_t
1199 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1200                                     DataExtractor &object_data,
1201                                     const ELFHeader &header)
1202 {
1203     // We have already parsed the program headers
1204     if (!program_headers.empty())
1205         return program_headers.size();
1206 
1207     // If there are no program headers to read we are done.
1208     if (header.e_phnum == 0)
1209         return 0;
1210 
1211     program_headers.resize(header.e_phnum);
1212     if (program_headers.size() != header.e_phnum)
1213         return 0;
1214 
1215     const size_t ph_size = header.e_phnum * header.e_phentsize;
1216     const elf_off ph_offset = header.e_phoff;
1217     DataExtractor data;
1218     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1219         return 0;
1220 
1221     uint32_t idx;
1222     lldb::offset_t offset;
1223     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1224     {
1225         if (program_headers[idx].Parse(data, &offset) == false)
1226             break;
1227     }
1228 
1229     if (idx < program_headers.size())
1230         program_headers.resize(idx);
1231 
1232     return program_headers.size();
1233 
1234 }
1235 
1236 //----------------------------------------------------------------------
1237 // ParseProgramHeaders
1238 //----------------------------------------------------------------------
1239 size_t
1240 ObjectFileELF::ParseProgramHeaders()
1241 {
1242     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1243 }
1244 
1245 lldb_private::Error
1246 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1247 {
1248     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1249     Error error;
1250 
1251     lldb::offset_t offset = 0;
1252 
1253     while (true)
1254     {
1255         // Parse the note header.  If this fails, bail out.
1256         ELFNote note = ELFNote();
1257         if (!note.Parse(data, &offset))
1258         {
1259             // We're done.
1260             return error;
1261         }
1262 
1263         // If a tag processor handles the tag, it should set processed to true, and
1264         // the loop will assume the tag processing has moved entirely past the note's payload.
1265         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1266         bool processed = false;
1267 
1268         if (log)
1269             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1270 
1271         // Process FreeBSD ELF notes.
1272         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1273             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1274             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1275         {
1276             // We'll consume the payload below.
1277             processed = true;
1278 
1279             // Pull out the min version info.
1280             uint32_t version_info;
1281             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1282             {
1283                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1284                 return error;
1285             }
1286 
1287             // Convert the version info into a major/minor number.
1288             const uint32_t version_major = version_info / 100000;
1289             const uint32_t version_minor = (version_info / 1000) % 100;
1290 
1291             char os_name[32];
1292             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1293 
1294             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1295             arch_spec.GetTriple ().setOSName (os_name);
1296             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1297 
1298             if (log)
1299                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1300         }
1301         // Process GNU ELF notes.
1302         else if (note.n_name == LLDB_NT_OWNER_GNU)
1303         {
1304             switch (note.n_type)
1305             {
1306                 case LLDB_NT_GNU_ABI_TAG:
1307                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1308                     {
1309                         // We'll consume the payload below.
1310                         processed = true;
1311 
1312                         // Pull out the min OS version supporting the ABI.
1313                         uint32_t version_info[4];
1314                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1315                         {
1316                             error.SetErrorString ("failed to read GNU ABI note payload");
1317                             return error;
1318                         }
1319 
1320                         // Set the OS per the OS field.
1321                         switch (version_info[0])
1322                         {
1323                             case LLDB_NT_GNU_ABI_OS_LINUX:
1324                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1325                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1326                                 if (log)
1327                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1328                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1329                                 break;
1330                             case LLDB_NT_GNU_ABI_OS_HURD:
1331                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1332                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1333                                 if (log)
1334                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1335                                 break;
1336                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1337                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1338                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1339                                 if (log)
1340                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1341                                 break;
1342                             default:
1343                                 if (log)
1344                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1345                                 break;
1346                         }
1347                     }
1348                     break;
1349 
1350                 case LLDB_NT_GNU_BUILD_ID_TAG:
1351                     // Only bother processing this if we don't already have the uuid set.
1352                     if (!uuid.IsValid())
1353                     {
1354                         // We'll consume the payload below.
1355                         processed = true;
1356 
1357                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1358                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1359                         {
1360                             uint8_t uuidbuf[20];
1361                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1362                             {
1363                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1364                                 return error;
1365                             }
1366 
1367                             // Save the build id as the UUID for the module.
1368                             uuid.SetBytes (uuidbuf, note.n_descsz);
1369                         }
1370                     }
1371                     break;
1372             }
1373         }
1374         // Process NetBSD ELF notes.
1375         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1376                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1377                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1378         {
1379 
1380             // We'll consume the payload below.
1381             processed = true;
1382 
1383             // Pull out the min version info.
1384             uint32_t version_info;
1385             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1386             {
1387                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1388                 return error;
1389             }
1390 
1391             // Set the elf OS version to NetBSD.  Also clear the vendor.
1392             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1393             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1394 
1395             if (log)
1396                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1397         }
1398         // Process CSR kalimba notes
1399         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1400                 (note.n_name == LLDB_NT_OWNER_CSR))
1401         {
1402             // We'll consume the payload below.
1403             processed = true;
1404             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1405             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1406 
1407             // TODO At some point the description string could be processed.
1408             // It could provide a steer towards the kalimba variant which
1409             // this ELF targets.
1410             if(note.n_descsz)
1411             {
1412                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1413                 (void)cstr;
1414             }
1415         }
1416         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1417         {
1418             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1419             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1420         }
1421 
1422         if (!processed)
1423             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1424     }
1425 
1426     return error;
1427 }
1428 
1429 
1430 //----------------------------------------------------------------------
1431 // GetSectionHeaderInfo
1432 //----------------------------------------------------------------------
1433 size_t
1434 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1435                                     lldb_private::DataExtractor &object_data,
1436                                     const elf::ELFHeader &header,
1437                                     lldb_private::UUID &uuid,
1438                                     std::string &gnu_debuglink_file,
1439                                     uint32_t &gnu_debuglink_crc,
1440                                     ArchSpec &arch_spec)
1441 {
1442     // Don't reparse the section headers if we already did that.
1443     if (!section_headers.empty())
1444         return section_headers.size();
1445 
1446     // Only initialize the arch_spec to okay defaults if they're not already set.
1447     // We'll refine this with note data as we parse the notes.
1448     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1449     {
1450         llvm::Triple::OSType ostype;
1451         llvm::Triple::OSType spec_ostype;
1452         const uint32_t sub_type = subTypeFromElfHeader(header);
1453         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1454         //
1455         // Validate if it is ok to remove GetOsFromOSABI
1456         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1457         spec_ostype = arch_spec.GetTriple ().getOS ();
1458         assert(spec_ostype == ostype);
1459     }
1460 
1461     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1462         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1463     {
1464         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1465         {
1466             case llvm::ELF::EF_MIPS_MICROMIPS:
1467                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1468                 break;
1469             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1470                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1471                 break;
1472             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1473                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1474                 break;
1475             default:
1476                 break;
1477         }
1478     }
1479 
1480     // If there are no section headers we are done.
1481     if (header.e_shnum == 0)
1482         return 0;
1483 
1484     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1485 
1486     section_headers.resize(header.e_shnum);
1487     if (section_headers.size() != header.e_shnum)
1488         return 0;
1489 
1490     const size_t sh_size = header.e_shnum * header.e_shentsize;
1491     const elf_off sh_offset = header.e_shoff;
1492     DataExtractor sh_data;
1493     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1494         return 0;
1495 
1496     uint32_t idx;
1497     lldb::offset_t offset;
1498     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1499     {
1500         if (section_headers[idx].Parse(sh_data, &offset) == false)
1501             break;
1502     }
1503     if (idx < section_headers.size())
1504         section_headers.resize(idx);
1505 
1506     const unsigned strtab_idx = header.e_shstrndx;
1507     if (strtab_idx && strtab_idx < section_headers.size())
1508     {
1509         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1510         const size_t byte_size = sheader.sh_size;
1511         const Elf64_Off offset = sheader.sh_offset;
1512         lldb_private::DataExtractor shstr_data;
1513 
1514         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1515         {
1516             for (SectionHeaderCollIter I = section_headers.begin();
1517                  I != section_headers.end(); ++I)
1518             {
1519                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1520                 const ELFSectionHeaderInfo &header = *I;
1521                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1522                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1523 
1524                 I->section_name = name;
1525 
1526                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1527                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1528                 {
1529                     if (header.sh_type == SHT_MIPS_ABIFLAGS)
1530                     {
1531                         DataExtractor data;
1532                         if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1533                         {
1534                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1535                             uint32_t arch_flags = arch_spec.GetFlags ();
1536                             arch_flags |= data.GetU32 (&ase_offset);
1537                             arch_spec.SetFlags (arch_flags);
1538                         }
1539                     }
1540                 }
1541 
1542                 if (name == g_sect_name_gnu_debuglink)
1543                 {
1544                     DataExtractor data;
1545                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1546                     {
1547                         lldb::offset_t gnu_debuglink_offset = 0;
1548                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1549                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1550                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1551                     }
1552                 }
1553 
1554                 // Process ELF note section entries.
1555                 bool is_note_header = (header.sh_type == SHT_NOTE);
1556 
1557                 // The section header ".note.android.ident" is stored as a
1558                 // PROGBITS type header but it is actually a note header.
1559                 static ConstString g_sect_name_android_ident (".note.android.ident");
1560                 if (!is_note_header && name == g_sect_name_android_ident)
1561                     is_note_header = true;
1562 
1563                 if (is_note_header)
1564                 {
1565                     // Allow notes to refine module info.
1566                     DataExtractor data;
1567                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1568                     {
1569                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1570                         if (error.Fail ())
1571                         {
1572                             if (log)
1573                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1574                         }
1575                     }
1576                 }
1577             }
1578 
1579             return section_headers.size();
1580         }
1581     }
1582 
1583     section_headers.clear();
1584     return 0;
1585 }
1586 
1587 size_t
1588 ObjectFileELF::GetProgramHeaderCount()
1589 {
1590     return ParseProgramHeaders();
1591 }
1592 
1593 const elf::ELFProgramHeader *
1594 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1595 {
1596     if (!id || !ParseProgramHeaders())
1597         return NULL;
1598 
1599     if (--id < m_program_headers.size())
1600         return &m_program_headers[id];
1601 
1602     return NULL;
1603 }
1604 
1605 DataExtractor
1606 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1607 {
1608     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1609     if (segment_header == NULL)
1610         return DataExtractor();
1611     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1612 }
1613 
1614 std::string
1615 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1616 {
1617     size_t pos = symbol_name.find('@');
1618     return symbol_name.substr(0, pos).str();
1619 }
1620 
1621 //----------------------------------------------------------------------
1622 // ParseSectionHeaders
1623 //----------------------------------------------------------------------
1624 size_t
1625 ObjectFileELF::ParseSectionHeaders()
1626 {
1627     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1628 }
1629 
1630 const ObjectFileELF::ELFSectionHeaderInfo *
1631 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1632 {
1633     if (!id || !ParseSectionHeaders())
1634         return NULL;
1635 
1636     if (--id < m_section_headers.size())
1637         return &m_section_headers[id];
1638 
1639     return NULL;
1640 }
1641 
1642 lldb::user_id_t
1643 ObjectFileELF::GetSectionIndexByName(const char* name)
1644 {
1645     if (!name || !name[0] || !ParseSectionHeaders())
1646         return 0;
1647     for (size_t i = 1; i < m_section_headers.size(); ++i)
1648         if (m_section_headers[i].section_name == ConstString(name))
1649             return i;
1650     return 0;
1651 }
1652 
1653 void
1654 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1655 {
1656     if (!m_sections_ap.get() && ParseSectionHeaders())
1657     {
1658         m_sections_ap.reset(new SectionList());
1659 
1660         for (SectionHeaderCollIter I = m_section_headers.begin();
1661              I != m_section_headers.end(); ++I)
1662         {
1663             const ELFSectionHeaderInfo &header = *I;
1664 
1665             ConstString& name = I->section_name;
1666             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1667             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1668 
1669             static ConstString g_sect_name_text (".text");
1670             static ConstString g_sect_name_data (".data");
1671             static ConstString g_sect_name_bss (".bss");
1672             static ConstString g_sect_name_tdata (".tdata");
1673             static ConstString g_sect_name_tbss (".tbss");
1674             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1675             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1676             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1677             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1678             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1679             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1680             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1681             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1682             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1683             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1684             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1685             static ConstString g_sect_name_eh_frame (".eh_frame");
1686 
1687             SectionType sect_type = eSectionTypeOther;
1688 
1689             bool is_thread_specific = false;
1690 
1691             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1692             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1693             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1694             else if (name == g_sect_name_tdata)
1695             {
1696                 sect_type = eSectionTypeData;
1697                 is_thread_specific = true;
1698             }
1699             else if (name == g_sect_name_tbss)
1700             {
1701                 sect_type = eSectionTypeZeroFill;
1702                 is_thread_specific = true;
1703             }
1704             // .debug_abbrev – Abbreviations used in the .debug_info section
1705             // .debug_aranges – Lookup table for mapping addresses to compilation units
1706             // .debug_frame – Call frame information
1707             // .debug_info – The core DWARF information section
1708             // .debug_line – Line number information
1709             // .debug_loc – Location lists used in DW_AT_location attributes
1710             // .debug_macinfo – Macro information
1711             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1712             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1713             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1714             // .debug_str – String table used in .debug_info
1715             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1716             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1717             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1718             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1719             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1720             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1721             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1722             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1723             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1724             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1725             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1726             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1727             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1728             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1729             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1730 
1731             switch (header.sh_type)
1732             {
1733                 case SHT_SYMTAB:
1734                     assert (sect_type == eSectionTypeOther);
1735                     sect_type = eSectionTypeELFSymbolTable;
1736                     break;
1737                 case SHT_DYNSYM:
1738                     assert (sect_type == eSectionTypeOther);
1739                     sect_type = eSectionTypeELFDynamicSymbols;
1740                     break;
1741                 case SHT_RELA:
1742                 case SHT_REL:
1743                     assert (sect_type == eSectionTypeOther);
1744                     sect_type = eSectionTypeELFRelocationEntries;
1745                     break;
1746                 case SHT_DYNAMIC:
1747                     assert (sect_type == eSectionTypeOther);
1748                     sect_type = eSectionTypeELFDynamicLinkInfo;
1749                     break;
1750             }
1751 
1752             if (eSectionTypeOther == sect_type)
1753             {
1754                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1755                 // support linkscripts which (can) give rise to various arbitrarily named
1756                 // sections being "Code" or "Data".
1757                 sect_type = kalimbaSectionType(m_header, header);
1758             }
1759 
1760             const uint32_t target_bytes_size =
1761                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1762                 m_arch_spec.GetDataByteSize() :
1763                     eSectionTypeCode == sect_type ?
1764                     m_arch_spec.GetCodeByteSize() : 1;
1765 
1766             elf::elf_xword log2align = (header.sh_addralign==0)
1767                                         ? 0
1768                                         : llvm::Log2_64(header.sh_addralign);
1769             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1770                                               this,               // ObjectFile to which this section belongs and should read section data from.
1771                                               SectionIndex(I),    // Section ID.
1772                                               name,               // Section name.
1773                                               sect_type,          // Section type.
1774                                               header.sh_addr,     // VM address.
1775                                               vm_size,            // VM size in bytes of this section.
1776                                               header.sh_offset,   // Offset of this section in the file.
1777                                               file_size,          // Size of the section as found in the file.
1778                                               log2align,          // Alignment of the section
1779                                               header.sh_flags,    // Flags for this section.
1780                                               target_bytes_size));// Number of host bytes per target byte
1781 
1782             if (is_thread_specific)
1783                 section_sp->SetIsThreadSpecific (is_thread_specific);
1784             m_sections_ap->AddSection(section_sp);
1785         }
1786     }
1787 
1788     if (m_sections_ap.get())
1789     {
1790         if (GetType() == eTypeDebugInfo)
1791         {
1792             static const SectionType g_sections[] =
1793             {
1794                 eSectionTypeDWARFDebugAranges,
1795                 eSectionTypeDWARFDebugInfo,
1796                 eSectionTypeDWARFDebugAbbrev,
1797                 eSectionTypeDWARFDebugFrame,
1798                 eSectionTypeDWARFDebugLine,
1799                 eSectionTypeDWARFDebugStr,
1800                 eSectionTypeDWARFDebugLoc,
1801                 eSectionTypeDWARFDebugMacInfo,
1802                 eSectionTypeDWARFDebugPubNames,
1803                 eSectionTypeDWARFDebugPubTypes,
1804                 eSectionTypeDWARFDebugRanges,
1805                 eSectionTypeELFSymbolTable,
1806             };
1807             SectionList *elf_section_list = m_sections_ap.get();
1808             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1809             {
1810                 SectionType section_type = g_sections[idx];
1811                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1812                 if (section_sp)
1813                 {
1814                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1815                     if (module_section_sp)
1816                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1817                     else
1818                         unified_section_list.AddSection (section_sp);
1819                 }
1820             }
1821         }
1822         else
1823         {
1824             unified_section_list = *m_sections_ap;
1825         }
1826     }
1827 }
1828 
1829 // private
1830 unsigned
1831 ObjectFileELF::ParseSymbols (Symtab *symtab,
1832                              user_id_t start_id,
1833                              SectionList *section_list,
1834                              const size_t num_symbols,
1835                              const DataExtractor &symtab_data,
1836                              const DataExtractor &strtab_data)
1837 {
1838     ELFSymbol symbol;
1839     lldb::offset_t offset = 0;
1840 
1841     static ConstString text_section_name(".text");
1842     static ConstString init_section_name(".init");
1843     static ConstString fini_section_name(".fini");
1844     static ConstString ctors_section_name(".ctors");
1845     static ConstString dtors_section_name(".dtors");
1846 
1847     static ConstString data_section_name(".data");
1848     static ConstString rodata_section_name(".rodata");
1849     static ConstString rodata1_section_name(".rodata1");
1850     static ConstString data2_section_name(".data1");
1851     static ConstString bss_section_name(".bss");
1852     static ConstString opd_section_name(".opd");    // For ppc64
1853 
1854     // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full
1855     // .text section what causes issues with displaying unusable symbol name to the user and very
1856     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1857     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1858     // use for the debugger and they are causing a lot of trouble.
1859     // Filtering can't be restricted to Android because this special object file don't contain the
1860     // note section specifying the environment to Android but the custom extension and file name
1861     // makes it highly unlikely that this will collide with anything else.
1862     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat");
1863 
1864     unsigned i;
1865     for (i = 0; i < num_symbols; ++i)
1866     {
1867         if (symbol.Parse(symtab_data, &offset) == false)
1868             break;
1869 
1870         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1871 
1872         // No need to add non-section symbols that have no names
1873         if (symbol.getType() != STT_SECTION &&
1874             (symbol_name == NULL || symbol_name[0] == '\0'))
1875             continue;
1876 
1877         // Skipping oatdata and oatexec sections if it is requested. See details above the
1878         // definition of skip_oatdata_oatexec for the reasons.
1879         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1880             continue;
1881 
1882         SectionSP symbol_section_sp;
1883         SymbolType symbol_type = eSymbolTypeInvalid;
1884         Elf64_Half symbol_idx = symbol.st_shndx;
1885 
1886         switch (symbol_idx)
1887         {
1888         case SHN_ABS:
1889             symbol_type = eSymbolTypeAbsolute;
1890             break;
1891         case SHN_UNDEF:
1892             symbol_type = eSymbolTypeUndefined;
1893             break;
1894         default:
1895             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1896             break;
1897         }
1898 
1899         // If a symbol is undefined do not process it further even if it has a STT type
1900         if (symbol_type != eSymbolTypeUndefined)
1901         {
1902             switch (symbol.getType())
1903             {
1904             default:
1905             case STT_NOTYPE:
1906                 // The symbol's type is not specified.
1907                 break;
1908 
1909             case STT_OBJECT:
1910                 // The symbol is associated with a data object, such as a variable,
1911                 // an array, etc.
1912                 symbol_type = eSymbolTypeData;
1913                 break;
1914 
1915             case STT_FUNC:
1916                 // The symbol is associated with a function or other executable code.
1917                 symbol_type = eSymbolTypeCode;
1918                 break;
1919 
1920             case STT_SECTION:
1921                 // The symbol is associated with a section. Symbol table entries of
1922                 // this type exist primarily for relocation and normally have
1923                 // STB_LOCAL binding.
1924                 break;
1925 
1926             case STT_FILE:
1927                 // Conventionally, the symbol's name gives the name of the source
1928                 // file associated with the object file. A file symbol has STB_LOCAL
1929                 // binding, its section index is SHN_ABS, and it precedes the other
1930                 // STB_LOCAL symbols for the file, if it is present.
1931                 symbol_type = eSymbolTypeSourceFile;
1932                 break;
1933 
1934             case STT_GNU_IFUNC:
1935                 // The symbol is associated with an indirect function. The actual
1936                 // function will be resolved if it is referenced.
1937                 symbol_type = eSymbolTypeResolver;
1938                 break;
1939             }
1940         }
1941 
1942         if (symbol_type == eSymbolTypeInvalid)
1943         {
1944             if (symbol_section_sp)
1945             {
1946                 const ConstString &sect_name = symbol_section_sp->GetName();
1947                 if (sect_name == text_section_name ||
1948                     sect_name == init_section_name ||
1949                     sect_name == fini_section_name ||
1950                     sect_name == ctors_section_name ||
1951                     sect_name == dtors_section_name)
1952                 {
1953                     symbol_type = eSymbolTypeCode;
1954                 }
1955                 else if (sect_name == data_section_name ||
1956                          sect_name == data2_section_name ||
1957                          sect_name == rodata_section_name ||
1958                          sect_name == rodata1_section_name ||
1959                          sect_name == bss_section_name)
1960                 {
1961                     symbol_type = eSymbolTypeData;
1962                 }
1963             }
1964         }
1965 
1966         int64_t symbol_value_offset = 0;
1967         uint32_t additional_flags = 0;
1968 
1969         ArchSpec arch;
1970         if (GetArchitecture(arch))
1971         {
1972             if (arch.GetMachine() == llvm::Triple::arm)
1973             {
1974                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1975                 {
1976                     // These are reserved for the specification (e.g.: mapping
1977                     // symbols). We don't want to add them to the symbol table.
1978 
1979                     if (symbol_type == eSymbolTypeCode)
1980                     {
1981                         llvm::StringRef symbol_name_ref(symbol_name);
1982                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1983                         {
1984                             // $a[.<any>]* - marks an ARM instruction sequence
1985                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1986                         }
1987                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1988                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1989                         {
1990                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1991                             // $t[.<any>]* - marks a THUMB instruction sequence
1992                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1993                         }
1994                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1995                         {
1996                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1997                             m_address_class_map[symbol.st_value] = eAddressClassData;
1998                         }
1999                     }
2000                     continue;
2001                 }
2002             }
2003             else if (arch.GetMachine() == llvm::Triple::aarch64)
2004             {
2005                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
2006                 {
2007                     // These are reserved for the specification (e.g.: mapping
2008                     // symbols). We don't want to add them to the symbol table.
2009 
2010                     if (symbol_type == eSymbolTypeCode)
2011                     {
2012                         llvm::StringRef symbol_name_ref(symbol_name);
2013                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
2014                         {
2015                             // $x[.<any>]* - marks an A64 instruction sequence
2016                             m_address_class_map[symbol.st_value] = eAddressClassCode;
2017                         }
2018                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2019                         {
2020                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2021                             m_address_class_map[symbol.st_value] = eAddressClassData;
2022                         }
2023                     }
2024 
2025                     continue;
2026                 }
2027             }
2028 
2029             if (arch.GetMachine() == llvm::Triple::arm)
2030             {
2031                 if (symbol_type == eSymbolTypeCode)
2032                 {
2033                     if (symbol.st_value & 1)
2034                     {
2035                         // Subtracting 1 from the address effectively unsets
2036                         // the low order bit, which results in the address
2037                         // actually pointing to the beginning of the symbol.
2038                         // This delta will be used below in conjunction with
2039                         // symbol.st_value to produce the final symbol_value
2040                         // that we store in the symtab.
2041                         symbol_value_offset = -1;
2042                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2043                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2044                     }
2045                     else
2046                     {
2047                         // This address is ARM
2048                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2049                     }
2050                 }
2051             }
2052         }
2053 
2054         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2055         // THUMB symbols. See above for more details.
2056         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2057         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2058             symbol_value -= symbol_section_sp->GetFileAddress();
2059 
2060         if (symbol_section_sp)
2061         {
2062             ModuleSP module_sp(GetModule());
2063             if (module_sp)
2064             {
2065                 SectionList *module_section_list = module_sp->GetSectionList();
2066                 if (module_section_list && module_section_list != section_list)
2067                 {
2068                     const ConstString &sect_name = symbol_section_sp->GetName();
2069                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2070                     if (section_sp && section_sp->GetFileSize())
2071                     {
2072                         symbol_section_sp = section_sp;
2073                     }
2074                 }
2075             }
2076         }
2077 
2078         bool is_global = symbol.getBinding() == STB_GLOBAL;
2079         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2080         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2081 
2082         llvm::StringRef symbol_ref(symbol_name);
2083 
2084         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2085         size_t version_pos = symbol_ref.find('@');
2086         bool has_suffix = version_pos != llvm::StringRef::npos;
2087         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2088         Mangled mangled(ConstString(symbol_bare), is_mangled);
2089 
2090         // Now append the suffix back to mangled and unmangled names. Only do it if the
2091         // demangling was successful (string is not empty).
2092         if (has_suffix)
2093         {
2094             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2095 
2096             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2097             if (! mangled_name.empty())
2098                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2099 
2100             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2101             llvm::StringRef demangled_name = demangled.GetStringRef();
2102             if (!demangled_name.empty())
2103                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2104         }
2105 
2106         Symbol dc_symbol(
2107             i + start_id,       // ID is the original symbol table index.
2108             mangled,
2109             symbol_type,        // Type of this symbol
2110             is_global,          // Is this globally visible?
2111             false,              // Is this symbol debug info?
2112             false,              // Is this symbol a trampoline?
2113             false,              // Is this symbol artificial?
2114             AddressRange(
2115                 symbol_section_sp,  // Section in which this symbol is defined or null.
2116                 symbol_value,       // Offset in section or symbol value.
2117                 symbol.st_size),    // Size in bytes of this symbol.
2118             symbol.st_size != 0,    // Size is valid if it is not 0
2119             has_suffix,             // Contains linker annotations?
2120             flags);                 // Symbol flags.
2121         symtab->AddSymbol(dc_symbol);
2122     }
2123     return i;
2124 }
2125 
2126 unsigned
2127 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2128 {
2129     if (symtab->GetObjectFile() != this)
2130     {
2131         // If the symbol table section is owned by a different object file, have it do the
2132         // parsing.
2133         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2134         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2135     }
2136 
2137     // Get section list for this object file.
2138     SectionList *section_list = m_sections_ap.get();
2139     if (!section_list)
2140         return 0;
2141 
2142     user_id_t symtab_id = symtab->GetID();
2143     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2144     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2145            symtab_hdr->sh_type == SHT_DYNSYM);
2146 
2147     // sh_link: section header index of associated string table.
2148     // Section ID's are ones based.
2149     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2150     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2151 
2152     if (symtab && strtab)
2153     {
2154         assert (symtab->GetObjectFile() == this);
2155         assert (strtab->GetObjectFile() == this);
2156 
2157         DataExtractor symtab_data;
2158         DataExtractor strtab_data;
2159         if (ReadSectionData(symtab, symtab_data) &&
2160             ReadSectionData(strtab, strtab_data))
2161         {
2162             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2163 
2164             return ParseSymbols(symbol_table, start_id, section_list,
2165                                 num_symbols, symtab_data, strtab_data);
2166         }
2167     }
2168 
2169     return 0;
2170 }
2171 
2172 size_t
2173 ObjectFileELF::ParseDynamicSymbols()
2174 {
2175     if (m_dynamic_symbols.size())
2176         return m_dynamic_symbols.size();
2177 
2178     SectionList *section_list = GetSectionList();
2179     if (!section_list)
2180         return 0;
2181 
2182     // Find the SHT_DYNAMIC section.
2183     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2184     if (!dynsym)
2185         return 0;
2186     assert (dynsym->GetObjectFile() == this);
2187 
2188     ELFDynamic symbol;
2189     DataExtractor dynsym_data;
2190     if (ReadSectionData(dynsym, dynsym_data))
2191     {
2192         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2193         lldb::offset_t cursor = 0;
2194 
2195         while (cursor < section_size)
2196         {
2197             if (!symbol.Parse(dynsym_data, &cursor))
2198                 break;
2199 
2200             m_dynamic_symbols.push_back(symbol);
2201         }
2202     }
2203 
2204     return m_dynamic_symbols.size();
2205 }
2206 
2207 const ELFDynamic *
2208 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2209 {
2210     if (!ParseDynamicSymbols())
2211         return NULL;
2212 
2213     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2214     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2215     for ( ; I != E; ++I)
2216     {
2217         ELFDynamic *symbol = &*I;
2218 
2219         if (symbol->d_tag == tag)
2220             return symbol;
2221     }
2222 
2223     return NULL;
2224 }
2225 
2226 unsigned
2227 ObjectFileELF::PLTRelocationType()
2228 {
2229     // DT_PLTREL
2230     //  This member specifies the type of relocation entry to which the
2231     //  procedure linkage table refers. The d_val member holds DT_REL or
2232     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2233     //  must use the same relocation.
2234     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2235 
2236     if (symbol)
2237         return symbol->d_val;
2238 
2239     return 0;
2240 }
2241 
2242 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2243 // 0th entry in the plt table is usually a resolution entry which have different size in some
2244 // architectures then the rest of the plt entries.
2245 static std::pair<uint64_t, uint64_t>
2246 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2247 {
2248     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2249 
2250     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2251     // So round the entsize up by the alignment if addralign is set.
2252     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2253         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2254 
2255     if (plt_entsize == 0)
2256     {
2257         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2258         // entries based on the number of entries and the size of the plt section with the
2259         // assumption that the size of the 0th entry is at least as big as the size of the normal
2260         // entries and it isn't much bigger then that.
2261         if (plt_hdr->sh_addralign)
2262             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2263         else
2264             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2265     }
2266 
2267     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2268 
2269     return std::make_pair(plt_entsize, plt_offset);
2270 }
2271 
2272 static unsigned
2273 ParsePLTRelocations(Symtab *symbol_table,
2274                     user_id_t start_id,
2275                     unsigned rel_type,
2276                     const ELFHeader *hdr,
2277                     const ELFSectionHeader *rel_hdr,
2278                     const ELFSectionHeader *plt_hdr,
2279                     const ELFSectionHeader *sym_hdr,
2280                     const lldb::SectionSP &plt_section_sp,
2281                     DataExtractor &rel_data,
2282                     DataExtractor &symtab_data,
2283                     DataExtractor &strtab_data)
2284 {
2285     ELFRelocation rel(rel_type);
2286     ELFSymbol symbol;
2287     lldb::offset_t offset = 0;
2288 
2289     uint64_t plt_offset, plt_entsize;
2290     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2291     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2292 
2293     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2294     reloc_info_fn reloc_type;
2295     reloc_info_fn reloc_symbol;
2296 
2297     if (hdr->Is32Bit())
2298     {
2299         reloc_type = ELFRelocation::RelocType32;
2300         reloc_symbol = ELFRelocation::RelocSymbol32;
2301     }
2302     else
2303     {
2304         reloc_type = ELFRelocation::RelocType64;
2305         reloc_symbol = ELFRelocation::RelocSymbol64;
2306     }
2307 
2308     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2309     unsigned i;
2310     for (i = 0; i < num_relocations; ++i)
2311     {
2312         if (rel.Parse(rel_data, &offset) == false)
2313             break;
2314 
2315         if (reloc_type(rel) != slot_type)
2316             continue;
2317 
2318         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2319         if (!symbol.Parse(symtab_data, &symbol_offset))
2320             break;
2321 
2322         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2323         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2324         uint64_t plt_index = plt_offset + i * plt_entsize;
2325 
2326         Symbol jump_symbol(
2327             i + start_id,    // Symbol table index
2328             symbol_name,     // symbol name.
2329             is_mangled,      // is the symbol name mangled?
2330             eSymbolTypeTrampoline, // Type of this symbol
2331             false,           // Is this globally visible?
2332             false,           // Is this symbol debug info?
2333             true,            // Is this symbol a trampoline?
2334             true,            // Is this symbol artificial?
2335             plt_section_sp,  // Section in which this symbol is defined or null.
2336             plt_index,       // Offset in section or symbol value.
2337             plt_entsize,     // Size in bytes of this symbol.
2338             true,            // Size is valid
2339             false,           // Contains linker annotations?
2340             0);              // Symbol flags.
2341 
2342         symbol_table->AddSymbol(jump_symbol);
2343     }
2344 
2345     return i;
2346 }
2347 
2348 unsigned
2349 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2350                                       user_id_t start_id,
2351                                       const ELFSectionHeaderInfo *rel_hdr,
2352                                       user_id_t rel_id)
2353 {
2354     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2355 
2356     // The link field points to the associated symbol table. The info field
2357     // points to the section holding the plt.
2358     user_id_t symtab_id = rel_hdr->sh_link;
2359     user_id_t plt_id = rel_hdr->sh_info;
2360 
2361     // If the link field doesn't point to the appropriate symbol name table then
2362     // try to find it by name as some compiler don't fill in the link fields.
2363     if (!symtab_id)
2364         symtab_id = GetSectionIndexByName(".dynsym");
2365     if (!plt_id)
2366         plt_id = GetSectionIndexByName(".plt");
2367 
2368     if (!symtab_id || !plt_id)
2369         return 0;
2370 
2371     // Section ID's are ones based;
2372     symtab_id++;
2373     plt_id++;
2374 
2375     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2376     if (!plt_hdr)
2377         return 0;
2378 
2379     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2380     if (!sym_hdr)
2381         return 0;
2382 
2383     SectionList *section_list = m_sections_ap.get();
2384     if (!section_list)
2385         return 0;
2386 
2387     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2388     if (!rel_section)
2389         return 0;
2390 
2391     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2392     if (!plt_section_sp)
2393         return 0;
2394 
2395     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2396     if (!symtab)
2397         return 0;
2398 
2399     // sh_link points to associated string table.
2400     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2401     if (!strtab)
2402         return 0;
2403 
2404     DataExtractor rel_data;
2405     if (!ReadSectionData(rel_section, rel_data))
2406         return 0;
2407 
2408     DataExtractor symtab_data;
2409     if (!ReadSectionData(symtab, symtab_data))
2410         return 0;
2411 
2412     DataExtractor strtab_data;
2413     if (!ReadSectionData(strtab, strtab_data))
2414         return 0;
2415 
2416     unsigned rel_type = PLTRelocationType();
2417     if (!rel_type)
2418         return 0;
2419 
2420     return ParsePLTRelocations (symbol_table,
2421                                 start_id,
2422                                 rel_type,
2423                                 &m_header,
2424                                 rel_hdr,
2425                                 plt_hdr,
2426                                 sym_hdr,
2427                                 plt_section_sp,
2428                                 rel_data,
2429                                 symtab_data,
2430                                 strtab_data);
2431 }
2432 
2433 unsigned
2434 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2435                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2436                 DataExtractor &rel_data, DataExtractor &symtab_data,
2437                 DataExtractor &debug_data, Section* rel_section)
2438 {
2439     ELFRelocation rel(rel_hdr->sh_type);
2440     lldb::addr_t offset = 0;
2441     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2442     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2443     reloc_info_fn reloc_type;
2444     reloc_info_fn reloc_symbol;
2445 
2446     if (hdr->Is32Bit())
2447     {
2448         reloc_type = ELFRelocation::RelocType32;
2449         reloc_symbol = ELFRelocation::RelocSymbol32;
2450     }
2451     else
2452     {
2453         reloc_type = ELFRelocation::RelocType64;
2454         reloc_symbol = ELFRelocation::RelocSymbol64;
2455     }
2456 
2457     for (unsigned i = 0; i < num_relocations; ++i)
2458     {
2459         if (rel.Parse(rel_data, &offset) == false)
2460             break;
2461 
2462         Symbol* symbol = NULL;
2463 
2464         if (hdr->Is32Bit())
2465         {
2466             switch (reloc_type(rel)) {
2467             case R_386_32:
2468             case R_386_PC32:
2469             default:
2470                 assert(false && "unexpected relocation type");
2471             }
2472         } else {
2473             switch (reloc_type(rel)) {
2474             case R_X86_64_64:
2475             {
2476                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2477                 if (symbol)
2478                 {
2479                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2480                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2481                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2482                     *dst = value + ELFRelocation::RelocAddend64(rel);
2483                 }
2484                 break;
2485             }
2486             case R_X86_64_32:
2487             case R_X86_64_32S:
2488             {
2489                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2490                 if (symbol)
2491                 {
2492                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2493                     value += ELFRelocation::RelocAddend32(rel);
2494                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2495                            (reloc_type(rel) == R_X86_64_32S &&
2496                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2497                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2498                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2499                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2500                     *dst = truncated_addr;
2501                 }
2502                 break;
2503             }
2504             case R_X86_64_PC32:
2505             default:
2506                 assert(false && "unexpected relocation type");
2507             }
2508         }
2509     }
2510 
2511     return 0;
2512 }
2513 
2514 unsigned
2515 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2516 {
2517     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2518 
2519     // Parse in the section list if needed.
2520     SectionList *section_list = GetSectionList();
2521     if (!section_list)
2522         return 0;
2523 
2524     // Section ID's are ones based.
2525     user_id_t symtab_id = rel_hdr->sh_link + 1;
2526     user_id_t debug_id = rel_hdr->sh_info + 1;
2527 
2528     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2529     if (!symtab_hdr)
2530         return 0;
2531 
2532     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2533     if (!debug_hdr)
2534         return 0;
2535 
2536     Section *rel = section_list->FindSectionByID(rel_id).get();
2537     if (!rel)
2538         return 0;
2539 
2540     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2541     if (!symtab)
2542         return 0;
2543 
2544     Section *debug = section_list->FindSectionByID(debug_id).get();
2545     if (!debug)
2546         return 0;
2547 
2548     DataExtractor rel_data;
2549     DataExtractor symtab_data;
2550     DataExtractor debug_data;
2551 
2552     if (ReadSectionData(rel, rel_data) &&
2553         ReadSectionData(symtab, symtab_data) &&
2554         ReadSectionData(debug, debug_data))
2555     {
2556         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2557                         rel_data, symtab_data, debug_data, debug);
2558     }
2559 
2560     return 0;
2561 }
2562 
2563 Symtab *
2564 ObjectFileELF::GetSymtab()
2565 {
2566     ModuleSP module_sp(GetModule());
2567     if (!module_sp)
2568         return NULL;
2569 
2570     // We always want to use the main object file so we (hopefully) only have one cached copy
2571     // of our symtab, dynamic sections, etc.
2572     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2573     if (module_obj_file && module_obj_file != this)
2574         return module_obj_file->GetSymtab();
2575 
2576     if (m_symtab_ap.get() == NULL)
2577     {
2578         SectionList *section_list = module_sp->GetSectionList();
2579         if (!section_list)
2580             return NULL;
2581 
2582         uint64_t symbol_id = 0;
2583         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2584 
2585         // Sharable objects and dynamic executables usually have 2 distinct symbol
2586         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2587         // version of the symtab that only contains global symbols. The information found
2588         // in the dynsym is therefore also found in the symtab, while the reverse is not
2589         // necessarily true.
2590         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2591         if (!symtab)
2592         {
2593             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2594             // then use the dynsym section which should always be there.
2595             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2596         }
2597         if (symtab)
2598         {
2599             m_symtab_ap.reset(new Symtab(symtab->GetObjectFile()));
2600             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2601         }
2602 
2603         // DT_JMPREL
2604         //      If present, this entry's d_ptr member holds the address of relocation
2605         //      entries associated solely with the procedure linkage table. Separating
2606         //      these relocation entries lets the dynamic linker ignore them during
2607         //      process initialization, if lazy binding is enabled. If this entry is
2608         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2609         //      also be present.
2610         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2611         if (symbol)
2612         {
2613             // Synthesize trampoline symbols to help navigate the PLT.
2614             addr_t addr = symbol->d_ptr;
2615             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2616             if (reloc_section)
2617             {
2618                 user_id_t reloc_id = reloc_section->GetID();
2619                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2620                 assert(reloc_header);
2621 
2622                 if (m_symtab_ap == nullptr)
2623                     m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile()));
2624 
2625                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2626             }
2627         }
2628 
2629         // If we still don't have any symtab then create an empty instance to avoid do the section
2630         // lookup next time.
2631         if (m_symtab_ap == nullptr)
2632             m_symtab_ap.reset(new Symtab(this));
2633 
2634         m_symtab_ap->CalculateSymbolSizes();
2635     }
2636 
2637     for (SectionHeaderCollIter I = m_section_headers.begin();
2638          I != m_section_headers.end(); ++I)
2639     {
2640         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2641         {
2642             if (CalculateType() == eTypeObjectFile)
2643             {
2644                 const char *section_name = I->section_name.AsCString("");
2645                 if (strstr(section_name, ".rela.debug") ||
2646                     strstr(section_name, ".rel.debug"))
2647                 {
2648                     const ELFSectionHeader &reloc_header = *I;
2649                     user_id_t reloc_id = SectionIndex(I);
2650                     RelocateDebugSections(&reloc_header, reloc_id);
2651                 }
2652             }
2653         }
2654     }
2655     return m_symtab_ap.get();
2656 }
2657 
2658 Symbol *
2659 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2660 {
2661     if (!m_symtab_ap.get())
2662         return nullptr; // GetSymtab() should be called first.
2663 
2664     const SectionList *section_list = GetSectionList();
2665     if (!section_list)
2666         return nullptr;
2667 
2668     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2669     {
2670         AddressRange range;
2671         if (eh_frame->GetAddressRange (so_addr, range))
2672         {
2673             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2674             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2675             if (symbol)
2676                 return symbol;
2677 
2678             // Note that a (stripped) symbol won't be found by GetSymtab()...
2679             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2680             if (eh_sym_section_sp.get())
2681             {
2682                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2683                 addr_t offset = file_addr - section_base;
2684                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2685 
2686                 Symbol eh_symbol(
2687                         symbol_id,            // Symbol table index.
2688                         "???",                // Symbol name.
2689                         false,                // Is the symbol name mangled?
2690                         eSymbolTypeCode,      // Type of this symbol.
2691                         true,                 // Is this globally visible?
2692                         false,                // Is this symbol debug info?
2693                         false,                // Is this symbol a trampoline?
2694                         true,                 // Is this symbol artificial?
2695                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2696                         offset,               // Offset in section or symbol value.
2697                         range.GetByteSize(),  // Size in bytes of this symbol.
2698                         true,                 // Size is valid.
2699                         false,                // Contains linker annotations?
2700                         0);                   // Symbol flags.
2701                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2702                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2703             }
2704         }
2705     }
2706     return nullptr;
2707 }
2708 
2709 
2710 bool
2711 ObjectFileELF::IsStripped ()
2712 {
2713     // TODO: determine this for ELF
2714     return false;
2715 }
2716 
2717 //===----------------------------------------------------------------------===//
2718 // Dump
2719 //
2720 // Dump the specifics of the runtime file container (such as any headers
2721 // segments, sections, etc).
2722 //----------------------------------------------------------------------
2723 void
2724 ObjectFileELF::Dump(Stream *s)
2725 {
2726     DumpELFHeader(s, m_header);
2727     s->EOL();
2728     DumpELFProgramHeaders(s);
2729     s->EOL();
2730     DumpELFSectionHeaders(s);
2731     s->EOL();
2732     SectionList *section_list = GetSectionList();
2733     if (section_list)
2734         section_list->Dump(s, NULL, true, UINT32_MAX);
2735     Symtab *symtab = GetSymtab();
2736     if (symtab)
2737         symtab->Dump(s, NULL, eSortOrderNone);
2738     s->EOL();
2739     DumpDependentModules(s);
2740     s->EOL();
2741 }
2742 
2743 //----------------------------------------------------------------------
2744 // DumpELFHeader
2745 //
2746 // Dump the ELF header to the specified output stream
2747 //----------------------------------------------------------------------
2748 void
2749 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2750 {
2751     s->PutCString("ELF Header\n");
2752     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2753     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2754               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2755     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2756               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2757     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2758               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2759 
2760     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2761     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2762     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2763     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2764     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2765 
2766     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2767     DumpELFHeader_e_type(s, header.e_type);
2768     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2769     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2770     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2771     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2772     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2773     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2774     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2775     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2776     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2777     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2778     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2779     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2780 }
2781 
2782 //----------------------------------------------------------------------
2783 // DumpELFHeader_e_type
2784 //
2785 // Dump an token value for the ELF header member e_type
2786 //----------------------------------------------------------------------
2787 void
2788 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2789 {
2790     switch (e_type)
2791     {
2792     case ET_NONE:   *s << "ET_NONE"; break;
2793     case ET_REL:    *s << "ET_REL"; break;
2794     case ET_EXEC:   *s << "ET_EXEC"; break;
2795     case ET_DYN:    *s << "ET_DYN"; break;
2796     case ET_CORE:   *s << "ET_CORE"; break;
2797     default:
2798         break;
2799     }
2800 }
2801 
2802 //----------------------------------------------------------------------
2803 // DumpELFHeader_e_ident_EI_DATA
2804 //
2805 // Dump an token value for the ELF header member e_ident[EI_DATA]
2806 //----------------------------------------------------------------------
2807 void
2808 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2809 {
2810     switch (ei_data)
2811     {
2812     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2813     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2814     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2815     default:
2816         break;
2817     }
2818 }
2819 
2820 
2821 //----------------------------------------------------------------------
2822 // DumpELFProgramHeader
2823 //
2824 // Dump a single ELF program header to the specified output stream
2825 //----------------------------------------------------------------------
2826 void
2827 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2828 {
2829     DumpELFProgramHeader_p_type(s, ph.p_type);
2830     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2831     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2832 
2833     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2834     s->Printf(") %8.8" PRIx64, ph.p_align);
2835 }
2836 
2837 //----------------------------------------------------------------------
2838 // DumpELFProgramHeader_p_type
2839 //
2840 // Dump an token value for the ELF program header member p_type which
2841 // describes the type of the program header
2842 // ----------------------------------------------------------------------
2843 void
2844 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2845 {
2846     const int kStrWidth = 15;
2847     switch (p_type)
2848     {
2849     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2850     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2851     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2852     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2853     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2854     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2855     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2856     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2857     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2858     default:
2859         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2860         break;
2861     }
2862 }
2863 
2864 
2865 //----------------------------------------------------------------------
2866 // DumpELFProgramHeader_p_flags
2867 //
2868 // Dump an token value for the ELF program header member p_flags
2869 //----------------------------------------------------------------------
2870 void
2871 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2872 {
2873     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2874         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2875         << ((p_flags & PF_W) ? "PF_W" : "    ")
2876         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2877         << ((p_flags & PF_R) ? "PF_R" : "    ");
2878 }
2879 
2880 //----------------------------------------------------------------------
2881 // DumpELFProgramHeaders
2882 //
2883 // Dump all of the ELF program header to the specified output stream
2884 //----------------------------------------------------------------------
2885 void
2886 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2887 {
2888     if (!ParseProgramHeaders())
2889         return;
2890 
2891     s->PutCString("Program Headers\n");
2892     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2893                   "p_filesz p_memsz  p_flags                   p_align\n");
2894     s->PutCString("==== --------------- -------- -------- -------- "
2895                   "-------- -------- ------------------------- --------\n");
2896 
2897     uint32_t idx = 0;
2898     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2899          I != m_program_headers.end(); ++I, ++idx)
2900     {
2901         s->Printf("[%2u] ", idx);
2902         ObjectFileELF::DumpELFProgramHeader(s, *I);
2903         s->EOL();
2904     }
2905 }
2906 
2907 //----------------------------------------------------------------------
2908 // DumpELFSectionHeader
2909 //
2910 // Dump a single ELF section header to the specified output stream
2911 //----------------------------------------------------------------------
2912 void
2913 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2914 {
2915     s->Printf("%8.8x ", sh.sh_name);
2916     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2917     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2918     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2919     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2920     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2921     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2922 }
2923 
2924 //----------------------------------------------------------------------
2925 // DumpELFSectionHeader_sh_type
2926 //
2927 // Dump an token value for the ELF section header member sh_type which
2928 // describes the type of the section
2929 //----------------------------------------------------------------------
2930 void
2931 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2932 {
2933     const int kStrWidth = 12;
2934     switch (sh_type)
2935     {
2936     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2937     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2938     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2939     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2940     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2941     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2942     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2943     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2944     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2945     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2946     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2947     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2948     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2949     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2950     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2951     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2952     default:
2953         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2954         break;
2955     }
2956 }
2957 
2958 //----------------------------------------------------------------------
2959 // DumpELFSectionHeader_sh_flags
2960 //
2961 // Dump an token value for the ELF section header member sh_flags
2962 //----------------------------------------------------------------------
2963 void
2964 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2965 {
2966     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2967         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2968         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2969         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2970         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2971 }
2972 
2973 //----------------------------------------------------------------------
2974 // DumpELFSectionHeaders
2975 //
2976 // Dump all of the ELF section header to the specified output stream
2977 //----------------------------------------------------------------------
2978 void
2979 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2980 {
2981     if (!ParseSectionHeaders())
2982         return;
2983 
2984     s->PutCString("Section Headers\n");
2985     s->PutCString("IDX  name     type         flags                            "
2986                   "addr     offset   size     link     info     addralgn "
2987                   "entsize  Name\n");
2988     s->PutCString("==== -------- ------------ -------------------------------- "
2989                   "-------- -------- -------- -------- -------- -------- "
2990                   "-------- ====================\n");
2991 
2992     uint32_t idx = 0;
2993     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2994          I != m_section_headers.end(); ++I, ++idx)
2995     {
2996         s->Printf("[%2u] ", idx);
2997         ObjectFileELF::DumpELFSectionHeader(s, *I);
2998         const char* section_name = I->section_name.AsCString("");
2999         if (section_name)
3000             *s << ' ' << section_name << "\n";
3001     }
3002 }
3003 
3004 void
3005 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
3006 {
3007     size_t num_modules = ParseDependentModules();
3008 
3009     if (num_modules > 0)
3010     {
3011         s->PutCString("Dependent Modules:\n");
3012         for (unsigned i = 0; i < num_modules; ++i)
3013         {
3014             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
3015             s->Printf("   %s\n", spec.GetFilename().GetCString());
3016         }
3017     }
3018 }
3019 
3020 bool
3021 ObjectFileELF::GetArchitecture (ArchSpec &arch)
3022 {
3023     if (!ParseHeader())
3024         return false;
3025 
3026     if (m_section_headers.empty())
3027     {
3028         // Allow elf notes to be parsed which may affect the detected architecture.
3029         ParseSectionHeaders();
3030     }
3031 
3032     arch = m_arch_spec;
3033     return true;
3034 }
3035 
3036 ObjectFile::Type
3037 ObjectFileELF::CalculateType()
3038 {
3039     switch (m_header.e_type)
3040     {
3041         case llvm::ELF::ET_NONE:
3042             // 0 - No file type
3043             return eTypeUnknown;
3044 
3045         case llvm::ELF::ET_REL:
3046             // 1 - Relocatable file
3047             return eTypeObjectFile;
3048 
3049         case llvm::ELF::ET_EXEC:
3050             // 2 - Executable file
3051             return eTypeExecutable;
3052 
3053         case llvm::ELF::ET_DYN:
3054             // 3 - Shared object file
3055             return eTypeSharedLibrary;
3056 
3057         case ET_CORE:
3058             // 4 - Core file
3059             return eTypeCoreFile;
3060 
3061         default:
3062             break;
3063     }
3064     return eTypeUnknown;
3065 }
3066 
3067 ObjectFile::Strata
3068 ObjectFileELF::CalculateStrata()
3069 {
3070     switch (m_header.e_type)
3071     {
3072         case llvm::ELF::ET_NONE:
3073             // 0 - No file type
3074             return eStrataUnknown;
3075 
3076         case llvm::ELF::ET_REL:
3077             // 1 - Relocatable file
3078             return eStrataUnknown;
3079 
3080         case llvm::ELF::ET_EXEC:
3081             // 2 - Executable file
3082             // TODO: is there any way to detect that an executable is a kernel
3083             // related executable by inspecting the program headers, section
3084             // headers, symbols, or any other flag bits???
3085             return eStrataUser;
3086 
3087         case llvm::ELF::ET_DYN:
3088             // 3 - Shared object file
3089             // TODO: is there any way to detect that an shared library is a kernel
3090             // related executable by inspecting the program headers, section
3091             // headers, symbols, or any other flag bits???
3092             return eStrataUnknown;
3093 
3094         case ET_CORE:
3095             // 4 - Core file
3096             // TODO: is there any way to detect that an core file is a kernel
3097             // related executable by inspecting the program headers, section
3098             // headers, symbols, or any other flag bits???
3099             return eStrataUnknown;
3100 
3101         default:
3102             break;
3103     }
3104     return eStrataUnknown;
3105 }
3106 
3107