1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 // 601 // WARNING : This function is being deprecated 602 // It's functionality has moved to ArchSpec::SetArchitecture 603 // This function is only being kept to validate the move. 604 // 605 // TODO : Remove this function 606 static bool 607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 608 { 609 switch (osabi_byte) 610 { 611 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 612 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 613 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 614 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 615 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 616 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 617 default: 618 ostype = llvm::Triple::OSType::UnknownOS; 619 } 620 return ostype != llvm::Triple::OSType::UnknownOS; 621 } 622 623 size_t 624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 625 lldb::DataBufferSP& data_sp, 626 lldb::offset_t data_offset, 627 lldb::offset_t file_offset, 628 lldb::offset_t length, 629 lldb_private::ModuleSpecList &specs) 630 { 631 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 632 633 const size_t initial_count = specs.GetSize(); 634 635 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 636 { 637 DataExtractor data; 638 data.SetData(data_sp); 639 elf::ELFHeader header; 640 if (header.Parse(data, &data_offset)) 641 { 642 if (data_sp) 643 { 644 ModuleSpec spec (file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 648 header.e_machine, 649 sub_type, 650 header.e_ident[EI_OSABI]); 651 652 if (spec.GetArchitecture().IsValid()) 653 { 654 llvm::Triple::OSType ostype; 655 llvm::Triple::VendorType vendor; 656 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 657 658 if (log) 659 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 665 // 666 // Validate it is ok to remove GetOsFromOSABI 667 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 668 assert(spec_ostype == ostype); 669 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 670 { 671 if (log) 672 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 673 } 674 675 // Try to get the UUID from the section list. Usually that's at the end, so 676 // map the file in if we don't have it already. 677 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 678 if (section_header_end > data_sp->GetByteSize()) 679 { 680 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 681 data.SetData(data_sp); 682 } 683 684 uint32_t gnu_debuglink_crc = 0; 685 std::string gnu_debuglink_file; 686 SectionHeaderColl section_headers; 687 lldb_private::UUID &uuid = spec.GetUUID(); 688 689 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 690 691 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 692 693 if (log) 694 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 695 696 if (!uuid.IsValid()) 697 { 698 uint32_t core_notes_crc = 0; 699 700 if (!gnu_debuglink_crc) 701 { 702 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 703 "Calculating module crc32 %s with size %" PRIu64 " KiB", 704 file.GetLastPathComponent().AsCString(), 705 (file.GetByteSize()-file_offset)/1024); 706 707 // For core files - which usually don't happen to have a gnu_debuglink, 708 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 709 // Thus we will need to fallback to something simpler. 710 if (header.e_type == llvm::ELF::ET_CORE) 711 { 712 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 713 if (program_headers_end > data_sp->GetByteSize()) 714 { 715 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 716 data.SetData(data_sp); 717 } 718 ProgramHeaderColl program_headers; 719 GetProgramHeaderInfo(program_headers, data, header); 720 721 size_t segment_data_end = 0; 722 for (ProgramHeaderCollConstIter I = program_headers.begin(); 723 I != program_headers.end(); ++I) 724 { 725 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 726 } 727 728 if (segment_data_end > data_sp->GetByteSize()) 729 { 730 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 731 data.SetData(data_sp); 732 } 733 734 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 735 } 736 else 737 { 738 // Need to map entire file into memory to calculate the crc. 739 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 740 data.SetData(data_sp); 741 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 742 } 743 } 744 if (gnu_debuglink_crc) 745 { 746 // Use 4 bytes of crc from the .gnu_debuglink section. 747 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 748 uuid.SetBytes (uuidt, sizeof(uuidt)); 749 } 750 else if (core_notes_crc) 751 { 752 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 753 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 754 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 755 uuid.SetBytes (uuidt, sizeof(uuidt)); 756 } 757 } 758 759 specs.Append(spec); 760 } 761 } 762 } 763 } 764 765 return specs.GetSize() - initial_count; 766 } 767 768 //------------------------------------------------------------------ 769 // PluginInterface protocol 770 //------------------------------------------------------------------ 771 lldb_private::ConstString 772 ObjectFileELF::GetPluginName() 773 { 774 return GetPluginNameStatic(); 775 } 776 777 uint32_t 778 ObjectFileELF::GetPluginVersion() 779 { 780 return m_plugin_version; 781 } 782 //------------------------------------------------------------------ 783 // ObjectFile protocol 784 //------------------------------------------------------------------ 785 786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 787 DataBufferSP& data_sp, 788 lldb::offset_t data_offset, 789 const FileSpec* file, 790 lldb::offset_t file_offset, 791 lldb::offset_t length) : 792 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 793 m_header(), 794 m_uuid(), 795 m_gnu_debuglink_file(), 796 m_gnu_debuglink_crc(0), 797 m_program_headers(), 798 m_section_headers(), 799 m_dynamic_symbols(), 800 m_filespec_ap(), 801 m_entry_point_address(), 802 m_arch_spec() 803 { 804 if (file) 805 m_file = *file; 806 ::memset(&m_header, 0, sizeof(m_header)); 807 } 808 809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 810 DataBufferSP& header_data_sp, 811 const lldb::ProcessSP &process_sp, 812 addr_t header_addr) : 813 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 814 m_header(), 815 m_uuid(), 816 m_gnu_debuglink_file(), 817 m_gnu_debuglink_crc(0), 818 m_program_headers(), 819 m_section_headers(), 820 m_dynamic_symbols(), 821 m_filespec_ap(), 822 m_entry_point_address(), 823 m_arch_spec() 824 { 825 ::memset(&m_header, 0, sizeof(m_header)); 826 } 827 828 ObjectFileELF::~ObjectFileELF() 829 { 830 } 831 832 bool 833 ObjectFileELF::IsExecutable() const 834 { 835 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 836 } 837 838 bool 839 ObjectFileELF::SetLoadAddress (Target &target, 840 lldb::addr_t value, 841 bool value_is_offset) 842 { 843 ModuleSP module_sp = GetModule(); 844 if (module_sp) 845 { 846 size_t num_loaded_sections = 0; 847 SectionList *section_list = GetSectionList (); 848 if (section_list) 849 { 850 if (!value_is_offset) 851 { 852 bool found_offset = false; 853 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 854 { 855 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 856 if (header == nullptr) 857 continue; 858 859 if (header->p_type != PT_LOAD || header->p_offset != 0) 860 continue; 861 862 value = value - header->p_vaddr; 863 found_offset = true; 864 break; 865 } 866 if (!found_offset) 867 return false; 868 } 869 870 const size_t num_sections = section_list->GetSize(); 871 size_t sect_idx = 0; 872 873 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 874 { 875 // Iterate through the object file sections to find all 876 // of the sections that have SHF_ALLOC in their flag bits. 877 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 878 // if (section_sp && !section_sp->IsThreadSpecific()) 879 if (section_sp && section_sp->Test(SHF_ALLOC)) 880 { 881 lldb::addr_t load_addr = section_sp->GetFileAddress() + value; 882 883 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 884 // the bytes are the overflow from the addition. 885 if (GetAddressByteSize() == 4) 886 load_addr &= 0xFFFFFFFF; 887 888 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 889 ++num_loaded_sections; 890 } 891 } 892 return num_loaded_sections > 0; 893 } 894 } 895 return false; 896 } 897 898 ByteOrder 899 ObjectFileELF::GetByteOrder() const 900 { 901 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 902 return eByteOrderBig; 903 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 904 return eByteOrderLittle; 905 return eByteOrderInvalid; 906 } 907 908 uint32_t 909 ObjectFileELF::GetAddressByteSize() const 910 { 911 return m_data.GetAddressByteSize(); 912 } 913 914 // Top 16 bits of the `Symbol` flags are available. 915 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 916 917 AddressClass 918 ObjectFileELF::GetAddressClass (addr_t file_addr) 919 { 920 Symtab* symtab = GetSymtab(); 921 if (!symtab) 922 return eAddressClassUnknown; 923 924 // The address class is determined based on the symtab. Ask it from the object file what 925 // contains the symtab information. 926 ObjectFile* symtab_objfile = symtab->GetObjectFile(); 927 if (symtab_objfile != nullptr && symtab_objfile != this) 928 return symtab_objfile->GetAddressClass(file_addr); 929 930 auto res = ObjectFile::GetAddressClass (file_addr); 931 if (res != eAddressClassCode) 932 return res; 933 934 auto ub = m_address_class_map.upper_bound(file_addr); 935 if (ub == m_address_class_map.begin()) 936 { 937 // No entry in the address class map before the address. Return 938 // default address class for an address in a code section. 939 return eAddressClassCode; 940 } 941 942 // Move iterator to the address class entry preceding address 943 --ub; 944 945 return ub->second; 946 } 947 948 size_t 949 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 950 { 951 return std::distance(m_section_headers.begin(), I) + 1u; 952 } 953 954 size_t 955 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 956 { 957 return std::distance(m_section_headers.begin(), I) + 1u; 958 } 959 960 bool 961 ObjectFileELF::ParseHeader() 962 { 963 lldb::offset_t offset = 0; 964 if (!m_header.Parse(m_data, &offset)) 965 return false; 966 967 if (!IsInMemory()) 968 return true; 969 970 // For in memory object files m_data might not contain the full object file. Try to load it 971 // until the end of the "Section header table" what is at the end of the ELF file. 972 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 973 if (m_data.GetByteSize() < file_size) 974 { 975 ProcessSP process_sp (m_process_wp.lock()); 976 if (!process_sp) 977 return false; 978 979 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 980 if (!data_sp) 981 return false; 982 m_data.SetData(data_sp, 0, file_size); 983 } 984 985 return true; 986 } 987 988 bool 989 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 990 { 991 // Need to parse the section list to get the UUIDs, so make sure that's been done. 992 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 993 return false; 994 995 if (m_uuid.IsValid()) 996 { 997 // We have the full build id uuid. 998 *uuid = m_uuid; 999 return true; 1000 } 1001 else if (GetType() == ObjectFile::eTypeCoreFile) 1002 { 1003 uint32_t core_notes_crc = 0; 1004 1005 if (!ParseProgramHeaders()) 1006 return false; 1007 1008 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 1009 1010 if (core_notes_crc) 1011 { 1012 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 1013 // look different form .gnu_debuglink crc - followed by 4 bytes of note 1014 // segments crc. 1015 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 1016 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1017 } 1018 } 1019 else 1020 { 1021 if (!m_gnu_debuglink_crc) 1022 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1023 if (m_gnu_debuglink_crc) 1024 { 1025 // Use 4 bytes of crc from the .gnu_debuglink section. 1026 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1027 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1028 } 1029 } 1030 1031 if (m_uuid.IsValid()) 1032 { 1033 *uuid = m_uuid; 1034 return true; 1035 } 1036 1037 return false; 1038 } 1039 1040 lldb_private::FileSpecList 1041 ObjectFileELF::GetDebugSymbolFilePaths() 1042 { 1043 FileSpecList file_spec_list; 1044 1045 if (!m_gnu_debuglink_file.empty()) 1046 { 1047 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1048 file_spec_list.Append (file_spec); 1049 } 1050 return file_spec_list; 1051 } 1052 1053 uint32_t 1054 ObjectFileELF::GetDependentModules(FileSpecList &files) 1055 { 1056 size_t num_modules = ParseDependentModules(); 1057 uint32_t num_specs = 0; 1058 1059 for (unsigned i = 0; i < num_modules; ++i) 1060 { 1061 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1062 num_specs++; 1063 } 1064 1065 return num_specs; 1066 } 1067 1068 Address 1069 ObjectFileELF::GetImageInfoAddress(Target *target) 1070 { 1071 if (!ParseDynamicSymbols()) 1072 return Address(); 1073 1074 SectionList *section_list = GetSectionList(); 1075 if (!section_list) 1076 return Address(); 1077 1078 // Find the SHT_DYNAMIC (.dynamic) section. 1079 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1080 if (!dynsym_section_sp) 1081 return Address(); 1082 assert (dynsym_section_sp->GetObjectFile() == this); 1083 1084 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1085 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1086 if (!dynsym_hdr) 1087 return Address(); 1088 1089 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1090 { 1091 ELFDynamic &symbol = m_dynamic_symbols[i]; 1092 1093 if (symbol.d_tag == DT_DEBUG) 1094 { 1095 // Compute the offset as the number of previous entries plus the 1096 // size of d_tag. 1097 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1098 return Address(dynsym_section_sp, offset); 1099 } 1100 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1101 { 1102 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1103 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1104 if (dyn_base == LLDB_INVALID_ADDRESS) 1105 return Address(); 1106 Address addr; 1107 Error error; 1108 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1109 return addr; 1110 } 1111 } 1112 1113 return Address(); 1114 } 1115 1116 lldb_private::Address 1117 ObjectFileELF::GetEntryPointAddress () 1118 { 1119 if (m_entry_point_address.IsValid()) 1120 return m_entry_point_address; 1121 1122 if (!ParseHeader() || !IsExecutable()) 1123 return m_entry_point_address; 1124 1125 SectionList *section_list = GetSectionList(); 1126 addr_t offset = m_header.e_entry; 1127 1128 if (!section_list) 1129 m_entry_point_address.SetOffset(offset); 1130 else 1131 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1132 return m_entry_point_address; 1133 } 1134 1135 //---------------------------------------------------------------------- 1136 // ParseDependentModules 1137 //---------------------------------------------------------------------- 1138 size_t 1139 ObjectFileELF::ParseDependentModules() 1140 { 1141 if (m_filespec_ap.get()) 1142 return m_filespec_ap->GetSize(); 1143 1144 m_filespec_ap.reset(new FileSpecList()); 1145 1146 if (!ParseSectionHeaders()) 1147 return 0; 1148 1149 SectionList *section_list = GetSectionList(); 1150 if (!section_list) 1151 return 0; 1152 1153 // Find the SHT_DYNAMIC section. 1154 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1155 if (!dynsym) 1156 return 0; 1157 assert (dynsym->GetObjectFile() == this); 1158 1159 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1160 if (!header) 1161 return 0; 1162 // sh_link: section header index of string table used by entries in the section. 1163 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1164 if (!dynstr) 1165 return 0; 1166 1167 DataExtractor dynsym_data; 1168 DataExtractor dynstr_data; 1169 if (ReadSectionData(dynsym, dynsym_data) && 1170 ReadSectionData(dynstr, dynstr_data)) 1171 { 1172 ELFDynamic symbol; 1173 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1174 lldb::offset_t offset = 0; 1175 1176 // The only type of entries we are concerned with are tagged DT_NEEDED, 1177 // yielding the name of a required library. 1178 while (offset < section_size) 1179 { 1180 if (!symbol.Parse(dynsym_data, &offset)) 1181 break; 1182 1183 if (symbol.d_tag != DT_NEEDED) 1184 continue; 1185 1186 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1187 const char *lib_name = dynstr_data.PeekCStr(str_index); 1188 m_filespec_ap->Append(FileSpec(lib_name, true)); 1189 } 1190 } 1191 1192 return m_filespec_ap->GetSize(); 1193 } 1194 1195 //---------------------------------------------------------------------- 1196 // GetProgramHeaderInfo 1197 //---------------------------------------------------------------------- 1198 size_t 1199 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1200 DataExtractor &object_data, 1201 const ELFHeader &header) 1202 { 1203 // We have already parsed the program headers 1204 if (!program_headers.empty()) 1205 return program_headers.size(); 1206 1207 // If there are no program headers to read we are done. 1208 if (header.e_phnum == 0) 1209 return 0; 1210 1211 program_headers.resize(header.e_phnum); 1212 if (program_headers.size() != header.e_phnum) 1213 return 0; 1214 1215 const size_t ph_size = header.e_phnum * header.e_phentsize; 1216 const elf_off ph_offset = header.e_phoff; 1217 DataExtractor data; 1218 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1219 return 0; 1220 1221 uint32_t idx; 1222 lldb::offset_t offset; 1223 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1224 { 1225 if (program_headers[idx].Parse(data, &offset) == false) 1226 break; 1227 } 1228 1229 if (idx < program_headers.size()) 1230 program_headers.resize(idx); 1231 1232 return program_headers.size(); 1233 1234 } 1235 1236 //---------------------------------------------------------------------- 1237 // ParseProgramHeaders 1238 //---------------------------------------------------------------------- 1239 size_t 1240 ObjectFileELF::ParseProgramHeaders() 1241 { 1242 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1243 } 1244 1245 lldb_private::Error 1246 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1247 { 1248 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1249 Error error; 1250 1251 lldb::offset_t offset = 0; 1252 1253 while (true) 1254 { 1255 // Parse the note header. If this fails, bail out. 1256 ELFNote note = ELFNote(); 1257 if (!note.Parse(data, &offset)) 1258 { 1259 // We're done. 1260 return error; 1261 } 1262 1263 // If a tag processor handles the tag, it should set processed to true, and 1264 // the loop will assume the tag processing has moved entirely past the note's payload. 1265 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1266 bool processed = false; 1267 1268 if (log) 1269 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1270 1271 // Process FreeBSD ELF notes. 1272 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1273 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1274 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1275 { 1276 // We'll consume the payload below. 1277 processed = true; 1278 1279 // Pull out the min version info. 1280 uint32_t version_info; 1281 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1282 { 1283 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1284 return error; 1285 } 1286 1287 // Convert the version info into a major/minor number. 1288 const uint32_t version_major = version_info / 100000; 1289 const uint32_t version_minor = (version_info / 1000) % 100; 1290 1291 char os_name[32]; 1292 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1293 1294 // Set the elf OS version to FreeBSD. Also clear the vendor. 1295 arch_spec.GetTriple ().setOSName (os_name); 1296 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1297 1298 if (log) 1299 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1300 } 1301 // Process GNU ELF notes. 1302 else if (note.n_name == LLDB_NT_OWNER_GNU) 1303 { 1304 switch (note.n_type) 1305 { 1306 case LLDB_NT_GNU_ABI_TAG: 1307 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1308 { 1309 // We'll consume the payload below. 1310 processed = true; 1311 1312 // Pull out the min OS version supporting the ABI. 1313 uint32_t version_info[4]; 1314 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1315 { 1316 error.SetErrorString ("failed to read GNU ABI note payload"); 1317 return error; 1318 } 1319 1320 // Set the OS per the OS field. 1321 switch (version_info[0]) 1322 { 1323 case LLDB_NT_GNU_ABI_OS_LINUX: 1324 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1325 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1326 if (log) 1327 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1328 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1329 break; 1330 case LLDB_NT_GNU_ABI_OS_HURD: 1331 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1332 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1333 if (log) 1334 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1335 break; 1336 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1337 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1338 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1339 if (log) 1340 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1341 break; 1342 default: 1343 if (log) 1344 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1345 break; 1346 } 1347 } 1348 break; 1349 1350 case LLDB_NT_GNU_BUILD_ID_TAG: 1351 // Only bother processing this if we don't already have the uuid set. 1352 if (!uuid.IsValid()) 1353 { 1354 // We'll consume the payload below. 1355 processed = true; 1356 1357 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1358 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1359 { 1360 uint8_t uuidbuf[20]; 1361 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1362 { 1363 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1364 return error; 1365 } 1366 1367 // Save the build id as the UUID for the module. 1368 uuid.SetBytes (uuidbuf, note.n_descsz); 1369 } 1370 } 1371 break; 1372 } 1373 } 1374 // Process NetBSD ELF notes. 1375 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1376 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1377 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1378 { 1379 1380 // We'll consume the payload below. 1381 processed = true; 1382 1383 // Pull out the min version info. 1384 uint32_t version_info; 1385 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1386 { 1387 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1388 return error; 1389 } 1390 1391 // Set the elf OS version to NetBSD. Also clear the vendor. 1392 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1393 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1394 1395 if (log) 1396 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1397 } 1398 // Process CSR kalimba notes 1399 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1400 (note.n_name == LLDB_NT_OWNER_CSR)) 1401 { 1402 // We'll consume the payload below. 1403 processed = true; 1404 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1405 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1406 1407 // TODO At some point the description string could be processed. 1408 // It could provide a steer towards the kalimba variant which 1409 // this ELF targets. 1410 if(note.n_descsz) 1411 { 1412 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1413 (void)cstr; 1414 } 1415 } 1416 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1417 { 1418 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1419 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1420 } 1421 1422 if (!processed) 1423 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1424 } 1425 1426 return error; 1427 } 1428 1429 1430 //---------------------------------------------------------------------- 1431 // GetSectionHeaderInfo 1432 //---------------------------------------------------------------------- 1433 size_t 1434 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1435 lldb_private::DataExtractor &object_data, 1436 const elf::ELFHeader &header, 1437 lldb_private::UUID &uuid, 1438 std::string &gnu_debuglink_file, 1439 uint32_t &gnu_debuglink_crc, 1440 ArchSpec &arch_spec) 1441 { 1442 // Don't reparse the section headers if we already did that. 1443 if (!section_headers.empty()) 1444 return section_headers.size(); 1445 1446 // Only initialize the arch_spec to okay defaults if they're not already set. 1447 // We'll refine this with note data as we parse the notes. 1448 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1449 { 1450 llvm::Triple::OSType ostype; 1451 llvm::Triple::OSType spec_ostype; 1452 const uint32_t sub_type = subTypeFromElfHeader(header); 1453 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1454 // 1455 // Validate if it is ok to remove GetOsFromOSABI 1456 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1457 spec_ostype = arch_spec.GetTriple ().getOS (); 1458 assert(spec_ostype == ostype); 1459 } 1460 1461 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1462 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1463 { 1464 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1465 { 1466 case llvm::ELF::EF_MIPS_MICROMIPS: 1467 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1468 break; 1469 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1470 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1471 break; 1472 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1473 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1474 break; 1475 default: 1476 break; 1477 } 1478 } 1479 1480 // If there are no section headers we are done. 1481 if (header.e_shnum == 0) 1482 return 0; 1483 1484 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1485 1486 section_headers.resize(header.e_shnum); 1487 if (section_headers.size() != header.e_shnum) 1488 return 0; 1489 1490 const size_t sh_size = header.e_shnum * header.e_shentsize; 1491 const elf_off sh_offset = header.e_shoff; 1492 DataExtractor sh_data; 1493 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1494 return 0; 1495 1496 uint32_t idx; 1497 lldb::offset_t offset; 1498 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1499 { 1500 if (section_headers[idx].Parse(sh_data, &offset) == false) 1501 break; 1502 } 1503 if (idx < section_headers.size()) 1504 section_headers.resize(idx); 1505 1506 const unsigned strtab_idx = header.e_shstrndx; 1507 if (strtab_idx && strtab_idx < section_headers.size()) 1508 { 1509 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1510 const size_t byte_size = sheader.sh_size; 1511 const Elf64_Off offset = sheader.sh_offset; 1512 lldb_private::DataExtractor shstr_data; 1513 1514 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1515 { 1516 for (SectionHeaderCollIter I = section_headers.begin(); 1517 I != section_headers.end(); ++I) 1518 { 1519 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1520 const ELFSectionHeaderInfo &header = *I; 1521 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1522 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1523 1524 I->section_name = name; 1525 1526 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1527 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1528 { 1529 if (header.sh_type == SHT_MIPS_ABIFLAGS) 1530 { 1531 DataExtractor data; 1532 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1533 { 1534 lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0 1535 uint32_t arch_flags = arch_spec.GetFlags (); 1536 arch_flags |= data.GetU32 (&ase_offset); 1537 arch_spec.SetFlags (arch_flags); 1538 } 1539 } 1540 } 1541 1542 if (name == g_sect_name_gnu_debuglink) 1543 { 1544 DataExtractor data; 1545 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1546 { 1547 lldb::offset_t gnu_debuglink_offset = 0; 1548 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1549 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1550 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1551 } 1552 } 1553 1554 // Process ELF note section entries. 1555 bool is_note_header = (header.sh_type == SHT_NOTE); 1556 1557 // The section header ".note.android.ident" is stored as a 1558 // PROGBITS type header but it is actually a note header. 1559 static ConstString g_sect_name_android_ident (".note.android.ident"); 1560 if (!is_note_header && name == g_sect_name_android_ident) 1561 is_note_header = true; 1562 1563 if (is_note_header) 1564 { 1565 // Allow notes to refine module info. 1566 DataExtractor data; 1567 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1568 { 1569 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1570 if (error.Fail ()) 1571 { 1572 if (log) 1573 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1574 } 1575 } 1576 } 1577 } 1578 1579 return section_headers.size(); 1580 } 1581 } 1582 1583 section_headers.clear(); 1584 return 0; 1585 } 1586 1587 size_t 1588 ObjectFileELF::GetProgramHeaderCount() 1589 { 1590 return ParseProgramHeaders(); 1591 } 1592 1593 const elf::ELFProgramHeader * 1594 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1595 { 1596 if (!id || !ParseProgramHeaders()) 1597 return NULL; 1598 1599 if (--id < m_program_headers.size()) 1600 return &m_program_headers[id]; 1601 1602 return NULL; 1603 } 1604 1605 DataExtractor 1606 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1607 { 1608 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1609 if (segment_header == NULL) 1610 return DataExtractor(); 1611 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1612 } 1613 1614 std::string 1615 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1616 { 1617 size_t pos = symbol_name.find('@'); 1618 return symbol_name.substr(0, pos).str(); 1619 } 1620 1621 //---------------------------------------------------------------------- 1622 // ParseSectionHeaders 1623 //---------------------------------------------------------------------- 1624 size_t 1625 ObjectFileELF::ParseSectionHeaders() 1626 { 1627 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1628 } 1629 1630 const ObjectFileELF::ELFSectionHeaderInfo * 1631 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1632 { 1633 if (!id || !ParseSectionHeaders()) 1634 return NULL; 1635 1636 if (--id < m_section_headers.size()) 1637 return &m_section_headers[id]; 1638 1639 return NULL; 1640 } 1641 1642 lldb::user_id_t 1643 ObjectFileELF::GetSectionIndexByName(const char* name) 1644 { 1645 if (!name || !name[0] || !ParseSectionHeaders()) 1646 return 0; 1647 for (size_t i = 1; i < m_section_headers.size(); ++i) 1648 if (m_section_headers[i].section_name == ConstString(name)) 1649 return i; 1650 return 0; 1651 } 1652 1653 void 1654 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1655 { 1656 if (!m_sections_ap.get() && ParseSectionHeaders()) 1657 { 1658 m_sections_ap.reset(new SectionList()); 1659 1660 for (SectionHeaderCollIter I = m_section_headers.begin(); 1661 I != m_section_headers.end(); ++I) 1662 { 1663 const ELFSectionHeaderInfo &header = *I; 1664 1665 ConstString& name = I->section_name; 1666 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1667 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1668 1669 static ConstString g_sect_name_text (".text"); 1670 static ConstString g_sect_name_data (".data"); 1671 static ConstString g_sect_name_bss (".bss"); 1672 static ConstString g_sect_name_tdata (".tdata"); 1673 static ConstString g_sect_name_tbss (".tbss"); 1674 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1675 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1676 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1677 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1678 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1679 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1680 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1681 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1682 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1683 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1684 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1685 static ConstString g_sect_name_eh_frame (".eh_frame"); 1686 1687 SectionType sect_type = eSectionTypeOther; 1688 1689 bool is_thread_specific = false; 1690 1691 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1692 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1693 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1694 else if (name == g_sect_name_tdata) 1695 { 1696 sect_type = eSectionTypeData; 1697 is_thread_specific = true; 1698 } 1699 else if (name == g_sect_name_tbss) 1700 { 1701 sect_type = eSectionTypeZeroFill; 1702 is_thread_specific = true; 1703 } 1704 // .debug_abbrev – Abbreviations used in the .debug_info section 1705 // .debug_aranges – Lookup table for mapping addresses to compilation units 1706 // .debug_frame – Call frame information 1707 // .debug_info – The core DWARF information section 1708 // .debug_line – Line number information 1709 // .debug_loc – Location lists used in DW_AT_location attributes 1710 // .debug_macinfo – Macro information 1711 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1712 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1713 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1714 // .debug_str – String table used in .debug_info 1715 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1716 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1717 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1718 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1719 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1720 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1721 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1722 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1723 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1724 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1725 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1726 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1727 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1728 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1729 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1730 1731 switch (header.sh_type) 1732 { 1733 case SHT_SYMTAB: 1734 assert (sect_type == eSectionTypeOther); 1735 sect_type = eSectionTypeELFSymbolTable; 1736 break; 1737 case SHT_DYNSYM: 1738 assert (sect_type == eSectionTypeOther); 1739 sect_type = eSectionTypeELFDynamicSymbols; 1740 break; 1741 case SHT_RELA: 1742 case SHT_REL: 1743 assert (sect_type == eSectionTypeOther); 1744 sect_type = eSectionTypeELFRelocationEntries; 1745 break; 1746 case SHT_DYNAMIC: 1747 assert (sect_type == eSectionTypeOther); 1748 sect_type = eSectionTypeELFDynamicLinkInfo; 1749 break; 1750 } 1751 1752 if (eSectionTypeOther == sect_type) 1753 { 1754 // the kalimba toolchain assumes that ELF section names are free-form. It does 1755 // support linkscripts which (can) give rise to various arbitrarily named 1756 // sections being "Code" or "Data". 1757 sect_type = kalimbaSectionType(m_header, header); 1758 } 1759 1760 const uint32_t target_bytes_size = 1761 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1762 m_arch_spec.GetDataByteSize() : 1763 eSectionTypeCode == sect_type ? 1764 m_arch_spec.GetCodeByteSize() : 1; 1765 1766 elf::elf_xword log2align = (header.sh_addralign==0) 1767 ? 0 1768 : llvm::Log2_64(header.sh_addralign); 1769 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1770 this, // ObjectFile to which this section belongs and should read section data from. 1771 SectionIndex(I), // Section ID. 1772 name, // Section name. 1773 sect_type, // Section type. 1774 header.sh_addr, // VM address. 1775 vm_size, // VM size in bytes of this section. 1776 header.sh_offset, // Offset of this section in the file. 1777 file_size, // Size of the section as found in the file. 1778 log2align, // Alignment of the section 1779 header.sh_flags, // Flags for this section. 1780 target_bytes_size));// Number of host bytes per target byte 1781 1782 if (is_thread_specific) 1783 section_sp->SetIsThreadSpecific (is_thread_specific); 1784 m_sections_ap->AddSection(section_sp); 1785 } 1786 } 1787 1788 if (m_sections_ap.get()) 1789 { 1790 if (GetType() == eTypeDebugInfo) 1791 { 1792 static const SectionType g_sections[] = 1793 { 1794 eSectionTypeDWARFDebugAranges, 1795 eSectionTypeDWARFDebugInfo, 1796 eSectionTypeDWARFDebugAbbrev, 1797 eSectionTypeDWARFDebugFrame, 1798 eSectionTypeDWARFDebugLine, 1799 eSectionTypeDWARFDebugStr, 1800 eSectionTypeDWARFDebugLoc, 1801 eSectionTypeDWARFDebugMacInfo, 1802 eSectionTypeDWARFDebugPubNames, 1803 eSectionTypeDWARFDebugPubTypes, 1804 eSectionTypeDWARFDebugRanges, 1805 eSectionTypeELFSymbolTable, 1806 }; 1807 SectionList *elf_section_list = m_sections_ap.get(); 1808 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1809 { 1810 SectionType section_type = g_sections[idx]; 1811 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1812 if (section_sp) 1813 { 1814 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1815 if (module_section_sp) 1816 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1817 else 1818 unified_section_list.AddSection (section_sp); 1819 } 1820 } 1821 } 1822 else 1823 { 1824 unified_section_list = *m_sections_ap; 1825 } 1826 } 1827 } 1828 1829 // private 1830 unsigned 1831 ObjectFileELF::ParseSymbols (Symtab *symtab, 1832 user_id_t start_id, 1833 SectionList *section_list, 1834 const size_t num_symbols, 1835 const DataExtractor &symtab_data, 1836 const DataExtractor &strtab_data) 1837 { 1838 ELFSymbol symbol; 1839 lldb::offset_t offset = 0; 1840 1841 static ConstString text_section_name(".text"); 1842 static ConstString init_section_name(".init"); 1843 static ConstString fini_section_name(".fini"); 1844 static ConstString ctors_section_name(".ctors"); 1845 static ConstString dtors_section_name(".dtors"); 1846 1847 static ConstString data_section_name(".data"); 1848 static ConstString rodata_section_name(".rodata"); 1849 static ConstString rodata1_section_name(".rodata1"); 1850 static ConstString data2_section_name(".data1"); 1851 static ConstString bss_section_name(".bss"); 1852 static ConstString opd_section_name(".opd"); // For ppc64 1853 1854 // On Android the oatdata and the oatexec symbols in system@framework@boot.oat covers the full 1855 // .text section what causes issues with displaying unusable symbol name to the user and very 1856 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 1857 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 1858 // use for the debugger and they are causing a lot of trouble. 1859 // Filtering can't be restricted to Android because this special object file don't contain the 1860 // note section specifying the environment to Android but the custom extension and file name 1861 // makes it highly unlikely that this will collide with anything else. 1862 bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@framework@boot.oat"); 1863 1864 unsigned i; 1865 for (i = 0; i < num_symbols; ++i) 1866 { 1867 if (symbol.Parse(symtab_data, &offset) == false) 1868 break; 1869 1870 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1871 1872 // No need to add non-section symbols that have no names 1873 if (symbol.getType() != STT_SECTION && 1874 (symbol_name == NULL || symbol_name[0] == '\0')) 1875 continue; 1876 1877 // Skipping oatdata and oatexec sections if it is requested. See details above the 1878 // definition of skip_oatdata_oatexec for the reasons. 1879 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 1880 continue; 1881 1882 SectionSP symbol_section_sp; 1883 SymbolType symbol_type = eSymbolTypeInvalid; 1884 Elf64_Half symbol_idx = symbol.st_shndx; 1885 1886 switch (symbol_idx) 1887 { 1888 case SHN_ABS: 1889 symbol_type = eSymbolTypeAbsolute; 1890 break; 1891 case SHN_UNDEF: 1892 symbol_type = eSymbolTypeUndefined; 1893 break; 1894 default: 1895 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1896 break; 1897 } 1898 1899 // If a symbol is undefined do not process it further even if it has a STT type 1900 if (symbol_type != eSymbolTypeUndefined) 1901 { 1902 switch (symbol.getType()) 1903 { 1904 default: 1905 case STT_NOTYPE: 1906 // The symbol's type is not specified. 1907 break; 1908 1909 case STT_OBJECT: 1910 // The symbol is associated with a data object, such as a variable, 1911 // an array, etc. 1912 symbol_type = eSymbolTypeData; 1913 break; 1914 1915 case STT_FUNC: 1916 // The symbol is associated with a function or other executable code. 1917 symbol_type = eSymbolTypeCode; 1918 break; 1919 1920 case STT_SECTION: 1921 // The symbol is associated with a section. Symbol table entries of 1922 // this type exist primarily for relocation and normally have 1923 // STB_LOCAL binding. 1924 break; 1925 1926 case STT_FILE: 1927 // Conventionally, the symbol's name gives the name of the source 1928 // file associated with the object file. A file symbol has STB_LOCAL 1929 // binding, its section index is SHN_ABS, and it precedes the other 1930 // STB_LOCAL symbols for the file, if it is present. 1931 symbol_type = eSymbolTypeSourceFile; 1932 break; 1933 1934 case STT_GNU_IFUNC: 1935 // The symbol is associated with an indirect function. The actual 1936 // function will be resolved if it is referenced. 1937 symbol_type = eSymbolTypeResolver; 1938 break; 1939 } 1940 } 1941 1942 if (symbol_type == eSymbolTypeInvalid) 1943 { 1944 if (symbol_section_sp) 1945 { 1946 const ConstString §_name = symbol_section_sp->GetName(); 1947 if (sect_name == text_section_name || 1948 sect_name == init_section_name || 1949 sect_name == fini_section_name || 1950 sect_name == ctors_section_name || 1951 sect_name == dtors_section_name) 1952 { 1953 symbol_type = eSymbolTypeCode; 1954 } 1955 else if (sect_name == data_section_name || 1956 sect_name == data2_section_name || 1957 sect_name == rodata_section_name || 1958 sect_name == rodata1_section_name || 1959 sect_name == bss_section_name) 1960 { 1961 symbol_type = eSymbolTypeData; 1962 } 1963 } 1964 } 1965 1966 int64_t symbol_value_offset = 0; 1967 uint32_t additional_flags = 0; 1968 1969 ArchSpec arch; 1970 if (GetArchitecture(arch)) 1971 { 1972 if (arch.GetMachine() == llvm::Triple::arm) 1973 { 1974 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1975 { 1976 // These are reserved for the specification (e.g.: mapping 1977 // symbols). We don't want to add them to the symbol table. 1978 1979 if (symbol_type == eSymbolTypeCode) 1980 { 1981 llvm::StringRef symbol_name_ref(symbol_name); 1982 if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a.")) 1983 { 1984 // $a[.<any>]* - marks an ARM instruction sequence 1985 m_address_class_map[symbol.st_value] = eAddressClassCode; 1986 } 1987 else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") || 1988 symbol_name_ref == "$t" || symbol_name_ref.startswith("$t.")) 1989 { 1990 // $b[.<any>]* - marks a THUMB BL instruction sequence 1991 // $t[.<any>]* - marks a THUMB instruction sequence 1992 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 1993 } 1994 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1995 { 1996 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1997 m_address_class_map[symbol.st_value] = eAddressClassData; 1998 } 1999 } 2000 continue; 2001 } 2002 } 2003 else if (arch.GetMachine() == llvm::Triple::aarch64) 2004 { 2005 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 2006 { 2007 // These are reserved for the specification (e.g.: mapping 2008 // symbols). We don't want to add them to the symbol table. 2009 2010 if (symbol_type == eSymbolTypeCode) 2011 { 2012 llvm::StringRef symbol_name_ref(symbol_name); 2013 if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x.")) 2014 { 2015 // $x[.<any>]* - marks an A64 instruction sequence 2016 m_address_class_map[symbol.st_value] = eAddressClassCode; 2017 } 2018 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 2019 { 2020 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2021 m_address_class_map[symbol.st_value] = eAddressClassData; 2022 } 2023 } 2024 2025 continue; 2026 } 2027 } 2028 2029 if (arch.GetMachine() == llvm::Triple::arm) 2030 { 2031 if (symbol_type == eSymbolTypeCode) 2032 { 2033 if (symbol.st_value & 1) 2034 { 2035 // Subtracting 1 from the address effectively unsets 2036 // the low order bit, which results in the address 2037 // actually pointing to the beginning of the symbol. 2038 // This delta will be used below in conjunction with 2039 // symbol.st_value to produce the final symbol_value 2040 // that we store in the symtab. 2041 symbol_value_offset = -1; 2042 additional_flags = ARM_ELF_SYM_IS_THUMB; 2043 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2044 } 2045 else 2046 { 2047 // This address is ARM 2048 m_address_class_map[symbol.st_value] = eAddressClassCode; 2049 } 2050 } 2051 } 2052 } 2053 2054 // symbol_value_offset may contain 0 for ARM symbols or -1 for 2055 // THUMB symbols. See above for more details. 2056 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2057 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2058 symbol_value -= symbol_section_sp->GetFileAddress(); 2059 2060 if (symbol_section_sp) 2061 { 2062 ModuleSP module_sp(GetModule()); 2063 if (module_sp) 2064 { 2065 SectionList *module_section_list = module_sp->GetSectionList(); 2066 if (module_section_list && module_section_list != section_list) 2067 { 2068 const ConstString §_name = symbol_section_sp->GetName(); 2069 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 2070 if (section_sp && section_sp->GetFileSize()) 2071 { 2072 symbol_section_sp = section_sp; 2073 } 2074 } 2075 } 2076 } 2077 2078 bool is_global = symbol.getBinding() == STB_GLOBAL; 2079 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2080 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2081 2082 llvm::StringRef symbol_ref(symbol_name); 2083 2084 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2085 size_t version_pos = symbol_ref.find('@'); 2086 bool has_suffix = version_pos != llvm::StringRef::npos; 2087 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2088 Mangled mangled(ConstString(symbol_bare), is_mangled); 2089 2090 // Now append the suffix back to mangled and unmangled names. Only do it if the 2091 // demangling was successful (string is not empty). 2092 if (has_suffix) 2093 { 2094 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2095 2096 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2097 if (! mangled_name.empty()) 2098 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2099 2100 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2101 llvm::StringRef demangled_name = demangled.GetStringRef(); 2102 if (!demangled_name.empty()) 2103 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2104 } 2105 2106 Symbol dc_symbol( 2107 i + start_id, // ID is the original symbol table index. 2108 mangled, 2109 symbol_type, // Type of this symbol 2110 is_global, // Is this globally visible? 2111 false, // Is this symbol debug info? 2112 false, // Is this symbol a trampoline? 2113 false, // Is this symbol artificial? 2114 AddressRange( 2115 symbol_section_sp, // Section in which this symbol is defined or null. 2116 symbol_value, // Offset in section or symbol value. 2117 symbol.st_size), // Size in bytes of this symbol. 2118 symbol.st_size != 0, // Size is valid if it is not 0 2119 has_suffix, // Contains linker annotations? 2120 flags); // Symbol flags. 2121 symtab->AddSymbol(dc_symbol); 2122 } 2123 return i; 2124 } 2125 2126 unsigned 2127 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 2128 { 2129 if (symtab->GetObjectFile() != this) 2130 { 2131 // If the symbol table section is owned by a different object file, have it do the 2132 // parsing. 2133 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2134 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2135 } 2136 2137 // Get section list for this object file. 2138 SectionList *section_list = m_sections_ap.get(); 2139 if (!section_list) 2140 return 0; 2141 2142 user_id_t symtab_id = symtab->GetID(); 2143 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2144 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2145 symtab_hdr->sh_type == SHT_DYNSYM); 2146 2147 // sh_link: section header index of associated string table. 2148 // Section ID's are ones based. 2149 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2150 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2151 2152 if (symtab && strtab) 2153 { 2154 assert (symtab->GetObjectFile() == this); 2155 assert (strtab->GetObjectFile() == this); 2156 2157 DataExtractor symtab_data; 2158 DataExtractor strtab_data; 2159 if (ReadSectionData(symtab, symtab_data) && 2160 ReadSectionData(strtab, strtab_data)) 2161 { 2162 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2163 2164 return ParseSymbols(symbol_table, start_id, section_list, 2165 num_symbols, symtab_data, strtab_data); 2166 } 2167 } 2168 2169 return 0; 2170 } 2171 2172 size_t 2173 ObjectFileELF::ParseDynamicSymbols() 2174 { 2175 if (m_dynamic_symbols.size()) 2176 return m_dynamic_symbols.size(); 2177 2178 SectionList *section_list = GetSectionList(); 2179 if (!section_list) 2180 return 0; 2181 2182 // Find the SHT_DYNAMIC section. 2183 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2184 if (!dynsym) 2185 return 0; 2186 assert (dynsym->GetObjectFile() == this); 2187 2188 ELFDynamic symbol; 2189 DataExtractor dynsym_data; 2190 if (ReadSectionData(dynsym, dynsym_data)) 2191 { 2192 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2193 lldb::offset_t cursor = 0; 2194 2195 while (cursor < section_size) 2196 { 2197 if (!symbol.Parse(dynsym_data, &cursor)) 2198 break; 2199 2200 m_dynamic_symbols.push_back(symbol); 2201 } 2202 } 2203 2204 return m_dynamic_symbols.size(); 2205 } 2206 2207 const ELFDynamic * 2208 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2209 { 2210 if (!ParseDynamicSymbols()) 2211 return NULL; 2212 2213 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2214 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2215 for ( ; I != E; ++I) 2216 { 2217 ELFDynamic *symbol = &*I; 2218 2219 if (symbol->d_tag == tag) 2220 return symbol; 2221 } 2222 2223 return NULL; 2224 } 2225 2226 unsigned 2227 ObjectFileELF::PLTRelocationType() 2228 { 2229 // DT_PLTREL 2230 // This member specifies the type of relocation entry to which the 2231 // procedure linkage table refers. The d_val member holds DT_REL or 2232 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2233 // must use the same relocation. 2234 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2235 2236 if (symbol) 2237 return symbol->d_val; 2238 2239 return 0; 2240 } 2241 2242 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2243 // 0th entry in the plt table is usually a resolution entry which have different size in some 2244 // architectures then the rest of the plt entries. 2245 static std::pair<uint64_t, uint64_t> 2246 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2247 { 2248 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2249 2250 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2251 // So round the entsize up by the alignment if addralign is set. 2252 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2253 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2254 2255 if (plt_entsize == 0) 2256 { 2257 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2258 // entries based on the number of entries and the size of the plt section with the 2259 // assumption that the size of the 0th entry is at least as big as the size of the normal 2260 // entries and it isn't much bigger then that. 2261 if (plt_hdr->sh_addralign) 2262 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2263 else 2264 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2265 } 2266 2267 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2268 2269 return std::make_pair(plt_entsize, plt_offset); 2270 } 2271 2272 static unsigned 2273 ParsePLTRelocations(Symtab *symbol_table, 2274 user_id_t start_id, 2275 unsigned rel_type, 2276 const ELFHeader *hdr, 2277 const ELFSectionHeader *rel_hdr, 2278 const ELFSectionHeader *plt_hdr, 2279 const ELFSectionHeader *sym_hdr, 2280 const lldb::SectionSP &plt_section_sp, 2281 DataExtractor &rel_data, 2282 DataExtractor &symtab_data, 2283 DataExtractor &strtab_data) 2284 { 2285 ELFRelocation rel(rel_type); 2286 ELFSymbol symbol; 2287 lldb::offset_t offset = 0; 2288 2289 uint64_t plt_offset, plt_entsize; 2290 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2291 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2292 2293 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2294 reloc_info_fn reloc_type; 2295 reloc_info_fn reloc_symbol; 2296 2297 if (hdr->Is32Bit()) 2298 { 2299 reloc_type = ELFRelocation::RelocType32; 2300 reloc_symbol = ELFRelocation::RelocSymbol32; 2301 } 2302 else 2303 { 2304 reloc_type = ELFRelocation::RelocType64; 2305 reloc_symbol = ELFRelocation::RelocSymbol64; 2306 } 2307 2308 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2309 unsigned i; 2310 for (i = 0; i < num_relocations; ++i) 2311 { 2312 if (rel.Parse(rel_data, &offset) == false) 2313 break; 2314 2315 if (reloc_type(rel) != slot_type) 2316 continue; 2317 2318 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2319 if (!symbol.Parse(symtab_data, &symbol_offset)) 2320 break; 2321 2322 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2323 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2324 uint64_t plt_index = plt_offset + i * plt_entsize; 2325 2326 Symbol jump_symbol( 2327 i + start_id, // Symbol table index 2328 symbol_name, // symbol name. 2329 is_mangled, // is the symbol name mangled? 2330 eSymbolTypeTrampoline, // Type of this symbol 2331 false, // Is this globally visible? 2332 false, // Is this symbol debug info? 2333 true, // Is this symbol a trampoline? 2334 true, // Is this symbol artificial? 2335 plt_section_sp, // Section in which this symbol is defined or null. 2336 plt_index, // Offset in section or symbol value. 2337 plt_entsize, // Size in bytes of this symbol. 2338 true, // Size is valid 2339 false, // Contains linker annotations? 2340 0); // Symbol flags. 2341 2342 symbol_table->AddSymbol(jump_symbol); 2343 } 2344 2345 return i; 2346 } 2347 2348 unsigned 2349 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2350 user_id_t start_id, 2351 const ELFSectionHeaderInfo *rel_hdr, 2352 user_id_t rel_id) 2353 { 2354 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2355 2356 // The link field points to the associated symbol table. The info field 2357 // points to the section holding the plt. 2358 user_id_t symtab_id = rel_hdr->sh_link; 2359 user_id_t plt_id = rel_hdr->sh_info; 2360 2361 // If the link field doesn't point to the appropriate symbol name table then 2362 // try to find it by name as some compiler don't fill in the link fields. 2363 if (!symtab_id) 2364 symtab_id = GetSectionIndexByName(".dynsym"); 2365 if (!plt_id) 2366 plt_id = GetSectionIndexByName(".plt"); 2367 2368 if (!symtab_id || !plt_id) 2369 return 0; 2370 2371 // Section ID's are ones based; 2372 symtab_id++; 2373 plt_id++; 2374 2375 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2376 if (!plt_hdr) 2377 return 0; 2378 2379 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2380 if (!sym_hdr) 2381 return 0; 2382 2383 SectionList *section_list = m_sections_ap.get(); 2384 if (!section_list) 2385 return 0; 2386 2387 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2388 if (!rel_section) 2389 return 0; 2390 2391 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2392 if (!plt_section_sp) 2393 return 0; 2394 2395 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2396 if (!symtab) 2397 return 0; 2398 2399 // sh_link points to associated string table. 2400 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2401 if (!strtab) 2402 return 0; 2403 2404 DataExtractor rel_data; 2405 if (!ReadSectionData(rel_section, rel_data)) 2406 return 0; 2407 2408 DataExtractor symtab_data; 2409 if (!ReadSectionData(symtab, symtab_data)) 2410 return 0; 2411 2412 DataExtractor strtab_data; 2413 if (!ReadSectionData(strtab, strtab_data)) 2414 return 0; 2415 2416 unsigned rel_type = PLTRelocationType(); 2417 if (!rel_type) 2418 return 0; 2419 2420 return ParsePLTRelocations (symbol_table, 2421 start_id, 2422 rel_type, 2423 &m_header, 2424 rel_hdr, 2425 plt_hdr, 2426 sym_hdr, 2427 plt_section_sp, 2428 rel_data, 2429 symtab_data, 2430 strtab_data); 2431 } 2432 2433 unsigned 2434 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2435 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2436 DataExtractor &rel_data, DataExtractor &symtab_data, 2437 DataExtractor &debug_data, Section* rel_section) 2438 { 2439 ELFRelocation rel(rel_hdr->sh_type); 2440 lldb::addr_t offset = 0; 2441 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2442 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2443 reloc_info_fn reloc_type; 2444 reloc_info_fn reloc_symbol; 2445 2446 if (hdr->Is32Bit()) 2447 { 2448 reloc_type = ELFRelocation::RelocType32; 2449 reloc_symbol = ELFRelocation::RelocSymbol32; 2450 } 2451 else 2452 { 2453 reloc_type = ELFRelocation::RelocType64; 2454 reloc_symbol = ELFRelocation::RelocSymbol64; 2455 } 2456 2457 for (unsigned i = 0; i < num_relocations; ++i) 2458 { 2459 if (rel.Parse(rel_data, &offset) == false) 2460 break; 2461 2462 Symbol* symbol = NULL; 2463 2464 if (hdr->Is32Bit()) 2465 { 2466 switch (reloc_type(rel)) { 2467 case R_386_32: 2468 case R_386_PC32: 2469 default: 2470 assert(false && "unexpected relocation type"); 2471 } 2472 } else { 2473 switch (reloc_type(rel)) { 2474 case R_X86_64_64: 2475 { 2476 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2477 if (symbol) 2478 { 2479 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2480 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2481 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2482 *dst = value + ELFRelocation::RelocAddend64(rel); 2483 } 2484 break; 2485 } 2486 case R_X86_64_32: 2487 case R_X86_64_32S: 2488 { 2489 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2490 if (symbol) 2491 { 2492 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2493 value += ELFRelocation::RelocAddend32(rel); 2494 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2495 (reloc_type(rel) == R_X86_64_32S && 2496 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2497 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2498 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2499 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2500 *dst = truncated_addr; 2501 } 2502 break; 2503 } 2504 case R_X86_64_PC32: 2505 default: 2506 assert(false && "unexpected relocation type"); 2507 } 2508 } 2509 } 2510 2511 return 0; 2512 } 2513 2514 unsigned 2515 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2516 { 2517 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2518 2519 // Parse in the section list if needed. 2520 SectionList *section_list = GetSectionList(); 2521 if (!section_list) 2522 return 0; 2523 2524 // Section ID's are ones based. 2525 user_id_t symtab_id = rel_hdr->sh_link + 1; 2526 user_id_t debug_id = rel_hdr->sh_info + 1; 2527 2528 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2529 if (!symtab_hdr) 2530 return 0; 2531 2532 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2533 if (!debug_hdr) 2534 return 0; 2535 2536 Section *rel = section_list->FindSectionByID(rel_id).get(); 2537 if (!rel) 2538 return 0; 2539 2540 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2541 if (!symtab) 2542 return 0; 2543 2544 Section *debug = section_list->FindSectionByID(debug_id).get(); 2545 if (!debug) 2546 return 0; 2547 2548 DataExtractor rel_data; 2549 DataExtractor symtab_data; 2550 DataExtractor debug_data; 2551 2552 if (ReadSectionData(rel, rel_data) && 2553 ReadSectionData(symtab, symtab_data) && 2554 ReadSectionData(debug, debug_data)) 2555 { 2556 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2557 rel_data, symtab_data, debug_data, debug); 2558 } 2559 2560 return 0; 2561 } 2562 2563 Symtab * 2564 ObjectFileELF::GetSymtab() 2565 { 2566 ModuleSP module_sp(GetModule()); 2567 if (!module_sp) 2568 return NULL; 2569 2570 // We always want to use the main object file so we (hopefully) only have one cached copy 2571 // of our symtab, dynamic sections, etc. 2572 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2573 if (module_obj_file && module_obj_file != this) 2574 return module_obj_file->GetSymtab(); 2575 2576 if (m_symtab_ap.get() == NULL) 2577 { 2578 SectionList *section_list = module_sp->GetSectionList(); 2579 if (!section_list) 2580 return NULL; 2581 2582 uint64_t symbol_id = 0; 2583 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2584 2585 // Sharable objects and dynamic executables usually have 2 distinct symbol 2586 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2587 // version of the symtab that only contains global symbols. The information found 2588 // in the dynsym is therefore also found in the symtab, while the reverse is not 2589 // necessarily true. 2590 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2591 if (!symtab) 2592 { 2593 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2594 // then use the dynsym section which should always be there. 2595 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2596 } 2597 if (symtab) 2598 { 2599 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 2600 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2601 } 2602 2603 // DT_JMPREL 2604 // If present, this entry's d_ptr member holds the address of relocation 2605 // entries associated solely with the procedure linkage table. Separating 2606 // these relocation entries lets the dynamic linker ignore them during 2607 // process initialization, if lazy binding is enabled. If this entry is 2608 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2609 // also be present. 2610 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2611 if (symbol) 2612 { 2613 // Synthesize trampoline symbols to help navigate the PLT. 2614 addr_t addr = symbol->d_ptr; 2615 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2616 if (reloc_section) 2617 { 2618 user_id_t reloc_id = reloc_section->GetID(); 2619 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2620 assert(reloc_header); 2621 2622 if (m_symtab_ap == nullptr) 2623 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 2624 2625 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2626 } 2627 } 2628 2629 // If we still don't have any symtab then create an empty instance to avoid do the section 2630 // lookup next time. 2631 if (m_symtab_ap == nullptr) 2632 m_symtab_ap.reset(new Symtab(this)); 2633 2634 m_symtab_ap->CalculateSymbolSizes(); 2635 } 2636 2637 for (SectionHeaderCollIter I = m_section_headers.begin(); 2638 I != m_section_headers.end(); ++I) 2639 { 2640 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2641 { 2642 if (CalculateType() == eTypeObjectFile) 2643 { 2644 const char *section_name = I->section_name.AsCString(""); 2645 if (strstr(section_name, ".rela.debug") || 2646 strstr(section_name, ".rel.debug")) 2647 { 2648 const ELFSectionHeader &reloc_header = *I; 2649 user_id_t reloc_id = SectionIndex(I); 2650 RelocateDebugSections(&reloc_header, reloc_id); 2651 } 2652 } 2653 } 2654 } 2655 return m_symtab_ap.get(); 2656 } 2657 2658 Symbol * 2659 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2660 { 2661 if (!m_symtab_ap.get()) 2662 return nullptr; // GetSymtab() should be called first. 2663 2664 const SectionList *section_list = GetSectionList(); 2665 if (!section_list) 2666 return nullptr; 2667 2668 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2669 { 2670 AddressRange range; 2671 if (eh_frame->GetAddressRange (so_addr, range)) 2672 { 2673 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2674 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2675 if (symbol) 2676 return symbol; 2677 2678 // Note that a (stripped) symbol won't be found by GetSymtab()... 2679 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2680 if (eh_sym_section_sp.get()) 2681 { 2682 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2683 addr_t offset = file_addr - section_base; 2684 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2685 2686 Symbol eh_symbol( 2687 symbol_id, // Symbol table index. 2688 "???", // Symbol name. 2689 false, // Is the symbol name mangled? 2690 eSymbolTypeCode, // Type of this symbol. 2691 true, // Is this globally visible? 2692 false, // Is this symbol debug info? 2693 false, // Is this symbol a trampoline? 2694 true, // Is this symbol artificial? 2695 eh_sym_section_sp, // Section in which this symbol is defined or null. 2696 offset, // Offset in section or symbol value. 2697 range.GetByteSize(), // Size in bytes of this symbol. 2698 true, // Size is valid. 2699 false, // Contains linker annotations? 2700 0); // Symbol flags. 2701 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2702 return m_symtab_ap->SymbolAtIndex(symbol_id); 2703 } 2704 } 2705 } 2706 return nullptr; 2707 } 2708 2709 2710 bool 2711 ObjectFileELF::IsStripped () 2712 { 2713 // TODO: determine this for ELF 2714 return false; 2715 } 2716 2717 //===----------------------------------------------------------------------===// 2718 // Dump 2719 // 2720 // Dump the specifics of the runtime file container (such as any headers 2721 // segments, sections, etc). 2722 //---------------------------------------------------------------------- 2723 void 2724 ObjectFileELF::Dump(Stream *s) 2725 { 2726 DumpELFHeader(s, m_header); 2727 s->EOL(); 2728 DumpELFProgramHeaders(s); 2729 s->EOL(); 2730 DumpELFSectionHeaders(s); 2731 s->EOL(); 2732 SectionList *section_list = GetSectionList(); 2733 if (section_list) 2734 section_list->Dump(s, NULL, true, UINT32_MAX); 2735 Symtab *symtab = GetSymtab(); 2736 if (symtab) 2737 symtab->Dump(s, NULL, eSortOrderNone); 2738 s->EOL(); 2739 DumpDependentModules(s); 2740 s->EOL(); 2741 } 2742 2743 //---------------------------------------------------------------------- 2744 // DumpELFHeader 2745 // 2746 // Dump the ELF header to the specified output stream 2747 //---------------------------------------------------------------------- 2748 void 2749 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2750 { 2751 s->PutCString("ELF Header\n"); 2752 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2753 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2754 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2755 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2756 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2757 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2758 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2759 2760 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2761 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2762 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2763 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2764 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2765 2766 s->Printf("e_type = 0x%4.4x ", header.e_type); 2767 DumpELFHeader_e_type(s, header.e_type); 2768 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2769 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2770 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2771 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2772 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2773 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2774 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2775 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2776 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2777 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2778 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2779 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2780 } 2781 2782 //---------------------------------------------------------------------- 2783 // DumpELFHeader_e_type 2784 // 2785 // Dump an token value for the ELF header member e_type 2786 //---------------------------------------------------------------------- 2787 void 2788 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2789 { 2790 switch (e_type) 2791 { 2792 case ET_NONE: *s << "ET_NONE"; break; 2793 case ET_REL: *s << "ET_REL"; break; 2794 case ET_EXEC: *s << "ET_EXEC"; break; 2795 case ET_DYN: *s << "ET_DYN"; break; 2796 case ET_CORE: *s << "ET_CORE"; break; 2797 default: 2798 break; 2799 } 2800 } 2801 2802 //---------------------------------------------------------------------- 2803 // DumpELFHeader_e_ident_EI_DATA 2804 // 2805 // Dump an token value for the ELF header member e_ident[EI_DATA] 2806 //---------------------------------------------------------------------- 2807 void 2808 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2809 { 2810 switch (ei_data) 2811 { 2812 case ELFDATANONE: *s << "ELFDATANONE"; break; 2813 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2814 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2815 default: 2816 break; 2817 } 2818 } 2819 2820 2821 //---------------------------------------------------------------------- 2822 // DumpELFProgramHeader 2823 // 2824 // Dump a single ELF program header to the specified output stream 2825 //---------------------------------------------------------------------- 2826 void 2827 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2828 { 2829 DumpELFProgramHeader_p_type(s, ph.p_type); 2830 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2831 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2832 2833 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2834 s->Printf(") %8.8" PRIx64, ph.p_align); 2835 } 2836 2837 //---------------------------------------------------------------------- 2838 // DumpELFProgramHeader_p_type 2839 // 2840 // Dump an token value for the ELF program header member p_type which 2841 // describes the type of the program header 2842 // ---------------------------------------------------------------------- 2843 void 2844 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2845 { 2846 const int kStrWidth = 15; 2847 switch (p_type) 2848 { 2849 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2850 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2851 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2852 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2853 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2854 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2855 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2856 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2857 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2858 default: 2859 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2860 break; 2861 } 2862 } 2863 2864 2865 //---------------------------------------------------------------------- 2866 // DumpELFProgramHeader_p_flags 2867 // 2868 // Dump an token value for the ELF program header member p_flags 2869 //---------------------------------------------------------------------- 2870 void 2871 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2872 { 2873 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2874 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2875 << ((p_flags & PF_W) ? "PF_W" : " ") 2876 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2877 << ((p_flags & PF_R) ? "PF_R" : " "); 2878 } 2879 2880 //---------------------------------------------------------------------- 2881 // DumpELFProgramHeaders 2882 // 2883 // Dump all of the ELF program header to the specified output stream 2884 //---------------------------------------------------------------------- 2885 void 2886 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2887 { 2888 if (!ParseProgramHeaders()) 2889 return; 2890 2891 s->PutCString("Program Headers\n"); 2892 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2893 "p_filesz p_memsz p_flags p_align\n"); 2894 s->PutCString("==== --------------- -------- -------- -------- " 2895 "-------- -------- ------------------------- --------\n"); 2896 2897 uint32_t idx = 0; 2898 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2899 I != m_program_headers.end(); ++I, ++idx) 2900 { 2901 s->Printf("[%2u] ", idx); 2902 ObjectFileELF::DumpELFProgramHeader(s, *I); 2903 s->EOL(); 2904 } 2905 } 2906 2907 //---------------------------------------------------------------------- 2908 // DumpELFSectionHeader 2909 // 2910 // Dump a single ELF section header to the specified output stream 2911 //---------------------------------------------------------------------- 2912 void 2913 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2914 { 2915 s->Printf("%8.8x ", sh.sh_name); 2916 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2917 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2918 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2919 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2920 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2921 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2922 } 2923 2924 //---------------------------------------------------------------------- 2925 // DumpELFSectionHeader_sh_type 2926 // 2927 // Dump an token value for the ELF section header member sh_type which 2928 // describes the type of the section 2929 //---------------------------------------------------------------------- 2930 void 2931 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2932 { 2933 const int kStrWidth = 12; 2934 switch (sh_type) 2935 { 2936 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2937 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2938 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2939 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2940 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2941 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2942 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2943 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2944 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2945 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2946 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2947 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2948 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2949 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2950 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2951 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2952 default: 2953 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2954 break; 2955 } 2956 } 2957 2958 //---------------------------------------------------------------------- 2959 // DumpELFSectionHeader_sh_flags 2960 // 2961 // Dump an token value for the ELF section header member sh_flags 2962 //---------------------------------------------------------------------- 2963 void 2964 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2965 { 2966 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2967 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2968 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2969 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2970 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2971 } 2972 2973 //---------------------------------------------------------------------- 2974 // DumpELFSectionHeaders 2975 // 2976 // Dump all of the ELF section header to the specified output stream 2977 //---------------------------------------------------------------------- 2978 void 2979 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2980 { 2981 if (!ParseSectionHeaders()) 2982 return; 2983 2984 s->PutCString("Section Headers\n"); 2985 s->PutCString("IDX name type flags " 2986 "addr offset size link info addralgn " 2987 "entsize Name\n"); 2988 s->PutCString("==== -------- ------------ -------------------------------- " 2989 "-------- -------- -------- -------- -------- -------- " 2990 "-------- ====================\n"); 2991 2992 uint32_t idx = 0; 2993 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2994 I != m_section_headers.end(); ++I, ++idx) 2995 { 2996 s->Printf("[%2u] ", idx); 2997 ObjectFileELF::DumpELFSectionHeader(s, *I); 2998 const char* section_name = I->section_name.AsCString(""); 2999 if (section_name) 3000 *s << ' ' << section_name << "\n"; 3001 } 3002 } 3003 3004 void 3005 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 3006 { 3007 size_t num_modules = ParseDependentModules(); 3008 3009 if (num_modules > 0) 3010 { 3011 s->PutCString("Dependent Modules:\n"); 3012 for (unsigned i = 0; i < num_modules; ++i) 3013 { 3014 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3015 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3016 } 3017 } 3018 } 3019 3020 bool 3021 ObjectFileELF::GetArchitecture (ArchSpec &arch) 3022 { 3023 if (!ParseHeader()) 3024 return false; 3025 3026 if (m_section_headers.empty()) 3027 { 3028 // Allow elf notes to be parsed which may affect the detected architecture. 3029 ParseSectionHeaders(); 3030 } 3031 3032 arch = m_arch_spec; 3033 return true; 3034 } 3035 3036 ObjectFile::Type 3037 ObjectFileELF::CalculateType() 3038 { 3039 switch (m_header.e_type) 3040 { 3041 case llvm::ELF::ET_NONE: 3042 // 0 - No file type 3043 return eTypeUnknown; 3044 3045 case llvm::ELF::ET_REL: 3046 // 1 - Relocatable file 3047 return eTypeObjectFile; 3048 3049 case llvm::ELF::ET_EXEC: 3050 // 2 - Executable file 3051 return eTypeExecutable; 3052 3053 case llvm::ELF::ET_DYN: 3054 // 3 - Shared object file 3055 return eTypeSharedLibrary; 3056 3057 case ET_CORE: 3058 // 4 - Core file 3059 return eTypeCoreFile; 3060 3061 default: 3062 break; 3063 } 3064 return eTypeUnknown; 3065 } 3066 3067 ObjectFile::Strata 3068 ObjectFileELF::CalculateStrata() 3069 { 3070 switch (m_header.e_type) 3071 { 3072 case llvm::ELF::ET_NONE: 3073 // 0 - No file type 3074 return eStrataUnknown; 3075 3076 case llvm::ELF::ET_REL: 3077 // 1 - Relocatable file 3078 return eStrataUnknown; 3079 3080 case llvm::ELF::ET_EXEC: 3081 // 2 - Executable file 3082 // TODO: is there any way to detect that an executable is a kernel 3083 // related executable by inspecting the program headers, section 3084 // headers, symbols, or any other flag bits??? 3085 return eStrataUser; 3086 3087 case llvm::ELF::ET_DYN: 3088 // 3 - Shared object file 3089 // TODO: is there any way to detect that an shared library is a kernel 3090 // related executable by inspecting the program headers, section 3091 // headers, symbols, or any other flag bits??? 3092 return eStrataUnknown; 3093 3094 case ET_CORE: 3095 // 4 - Core file 3096 // TODO: is there any way to detect that an core file is a kernel 3097 // related executable by inspecting the program headers, section 3098 // headers, symbols, or any other flag bits??? 3099 return eStrataUnknown; 3100 3101 default: 3102 break; 3103 } 3104 return eStrataUnknown; 3105 } 3106 3107